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Abstract: The rich information contained in biological data is often distorted by multiple 
interacting intrinsic or extrinsic factors. Modeling the effects of these factors is necessary to 
uncover the underlying true signals. However, this is challenging in real applications, because 
biological data usually consist of tens of thousands or millions of factors, and no reliable prior 
knowledge is available on how these factors exert the effect, to what degree the effect is, as well 
as how they interact with each other. Thus, the existing approaches rely on excessive 
simplification or unrealistic assumptions such as the probabilistic independence among factors. 
In this paper, we report the finding that after reformulating the data as a contingency tensor the 
problem can be well addressed by a fundamental machine learning principle, Maximum Entropy, 
with an extra effort of designing an efficient algorithm to solve the large-scale optimization 
problem. Based on the principle of maximum entropy, and by constraining the marginals of the 
contingency tensor using the observed values, our Conditional Multifactorial Contingency 
(CMC) model imposes minimum but essential assumptions about the multifactorial joint effects 
and leads to a conceptually simple distribution, which informs how these factors exert the effects 
and interact with each other. By replacing hard constraints with expected values, CMC avoids 
the NP-hard problem and results in a theoretically solvable convex problem. However, due to the 
large scale of variables and constraints, the standard convex solvers do not work. Exploring the 
special properties of the CMC model we developed an efficient iterative optimizer, which 
reduces the running time from infeasible to minutes or from days to seconds. We applied CMC 
to quite a few cutting-edge biological applications, including the detection of driving 
transcription factor, scRNA-seq normalization, cancer-associated gene identification, GO-term 
activity transformation, and quantification of single-cell-level similarity. CMC gained much 
better performance than other methods with respect to various evaluation criteria. Our source 
code of CMC as well as its example applications can be found at https://github.com/yu-lab-
vt/CMC. 

 
One-Sentence Summary: CMC jointly learns intertwined effects of numerous factors in 
biologival data and outperform existing methods in multiple cutting-edge biological applications. 
 
 
Main Text:  
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The volume of biological data is rapidly growing with the fast advancement of techniques, 
containing rich information about biological-related quantities under various conditions (1-4). 
The observed biological data are often influenced by numerous intrinsic or extrinsic factors at the 
same time, which may distort or even bury the impact of variables of real interest. For instance, 
mutation data collection (Fig. 1A Application 1), which documents the DNA mutations 
occurring in each gene for each individual cancer patient, is widely used to study the relationship 
between mutation and cancer initiation or progression (2, 5, 6). However, the data is affected by 
intrinsic factors such as each patient’s genetic background, gene-related factors, and types of 
DNA mutations (such as C:G or A:T transversions, etc.) (2, 7). As another example, transcription 
factor (TF)-gene binding state data (Fig. 1A Application 3) (3), which measures whether a TF 
binds to a gene, are simultaneously affected by tons of gene characteristics as well as tons of TF 
characteristics. 

Explicitly modeling the effects of a large number of factors is challenging, as no reliable prior  
knowledge is available on how these factors exert their effects, as well as to what degree the 
effects are. What’s more, the numerous factors’ effects are often intertwined, and call for joint 
consideration of all the factors (Fig. 1B) (2, 8, 9). The necessity of jointly considering the 
heterogeneities in all factors is further confirmed by the consequences of either ignoring a part of 
the factors or considering the factors separately (Fig. 1C). Yet, disentangling multiple mutually 
correlated factors from data alone is not a trivial problem, as we are usually agnostic on how the 
factor interact with each other. As a consequence, existing approaches make oversimplified or 
unrealistic assumptions, either considering all factors in a given group to have the same effect or 
estimating each factor’s effect individually and combining multiple factors’ effects with an 
arbitrarily given formula (2, 5, 8 10–14). 
A case in point for this unfortunate scenario is the driving TF identification for a query gene set, 
an application that leans heavily on TF-gene binding state data. All of the state-of-the-art studies 
(10-13) treated the genes equally, likely due to the mathematical convenience. However, 
different genes obviously have different affinities of being bound by a TF. Another example is 
the normalization of scRNA-seq data. (8, 9) normalized out the gene factor and/or the cell factor 
independently, while (15-18) partially considered the gene factor when estimating the cell factor. 
The last example is cancer-associated gene identification which relies on mutation data. A 
formerly prevalent method, MutSig1.0 (5), ignored factors that exhibit gene-wise or patient-wise 
heterogeneous impacts and solely considered mutation types. An improved method, MutSigCV 
(2), acknowledged the importance of considering the different impacts of each factor, but treated 
these factors independently and used an unfounded multiplicative function to achieve a joint 
effect, which still resulted in many false-positive findings. 
In this work, we show that this problem can be well addressed with a fundamental principle in 
the machine learning field, maximum entropy, by reformulating the data as a contingency tensor 
with each dimension corresponding to a factor class, and switching to a new type of constraint. 
Here, factor class refers to a group of factors that can be defined by users but should be exclusive 
to each other. For example, the cancer mutation data, which have three factor classes (patient, 
gene, and mutation type), can be reformulated as a high dimensional tensor (Fig. 1A). And 
naturally, within each factor class, a factor represents a particular individual, such a particular 
patient or gene.  
We name our proposed model Conditional Multifactorial Contingency (CMC). Under the 
guidance of maximum entropy, CMC aims to learn the joint probability distribution of each entry 
in the contingency tensor with the expectations of the margins along each dimension fixed to the 
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observed values. This is a large-scale optimization problem with potentially billions of variables 
and millions of constraints. By applying the Lagrangian method, we obtained an unconstrained 
optimization problem with a much-reduced number of variables. Interestingly, the impact 
strengths of factors can be well depicted by Lagrange multipliers, which naturally emerge during 
the optimization process. 
However, to make the model practically useful, there are two issues to be resolved. 1) Efficiently 
solve this large-scale optimization problem. Even though the Lagrangian method has simplified 
the problem significantly, with tens of thousands of variables, solving it is still a daunting task. 
Indeed, we tried many existing solvers and all of them are impractical. By fully exploring the 
special structure of the CMC model, we developed a highly efficient iterative strategy to solve 
the optimization problem. Our strategy exhibits a remarkable speed and memory advantage, 
being more than 100,000 times faster than standard convex solvers and using 1,000 folds less 
memory when applied to real-world datasets. 2) Effectively conduct statistical analysis with the 
probability generated by the CMC model. Notice that each entry in the contingency table has a 
different probability due to factors’ heterogeneous impacts. Usually, we are interested in a given 
part of the entries and perform hypothesis testing for the observed values. Yet, the p-value does 
not follow an analytical form when probabilities are not equal. We resolved this issue by 
leveraging the saddle point theory and developing a numerical scheme for computing the p-
value. 
Here we present the CMC model with more details. Fig. 1A gives an overview of the CMC 
model. The CMC model reformulates the biological data into a multi-dimension contingency 
tensor in which each dimension corresponds to one factor class whose individual-wise 
heterogeneous effects contribute to the data’s variance. A probability distribution for each entry 
of the tensor is then learned. The distribution comes from joint consideration of all factor classes 
so as to reveals how these factor classes collectively impact the value of that entry. For statistical 
inference, this distribution can be used as the null distribution of the effect of heterogeneity. 
Instead of directly learning the distribution of each entry, CMC learns a hidden vector for each 
factor class, and each element of the vector measure how strong the effect of each individual 
(e.g., a gene, a patient, etc.) contributes to a value of interest: mutation count, binding state, or 
expression level. Therefore, each vector, with various values in its elements, models the 
heterogenous effects of the corresponding factor calss. The estimated effect strength of an 
individual can be regarded as an overall measure of this individual’s intrinsic characteristic w.r.t. 
the values of interest. For example, in the mutation count dataset, the estimated effect strength of 
a patient reflects his/her inherent vulnerability to any mutation due to genetic background and/or 
any other contributors. 
The CMC model estimates the distribution based on the marginal totals in each dimension. A 
marginal total is the sum of all entries corresponding to one index (an individual or a factor) in 
one dimension. For each factor class, the marginal total reveals the impact strength of each factor 
to the observational event of interest, while the differential information of margins reflects the 
individual-wise heterogeneous effects within the factor class. Taking the mutation count tensor 
as an example, a larger marginal total of a patient/gene implies a higher vulnerability of this 
patient/gene to any DNA mutation. 
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Fig. 1. Introduction to the CMC model. (A) CMC model and its three example applications: Tumor 
associated gene identification (application 1); scRNA-seq data normalization (application 2); and driving TF 
identification (application 3). Left: for these applications, the values in their data (mutation list; scRNA-seq 
raw count; and TF-gene binding respectively) are often relevant to multiple factors (gene, patient, and 
mutation type factors in application 1; gene, cell, and cDNA length factors in application 2; and gene and TF 
factors in application 3) and are impacted by the individual-wise heterogeneity in each factor. Middle: the 
data of each application is reformulated to a multi-dimensional tensor in which each dimension corresponds 
to one factor class that exerts influence on the data values. For each entry in the tensor, the CMC model 
learns the optimal probability distribution form that reveals how the multiple factors jointly impact the value 
of this entry, as well as to what degree the effects are. The null distribution of each entry conditioned on the 
inferred impact strengthes is computed. Right: By comparing the observed data and its corresponding null 
distribution that incorporated with the heterogenous impact strengthes of all factors, CMC identifies the 
associated genes, normalizes out the unwanted variance, and detects the driving TFs for application 1~3, 
respectively. (B) Heterogeneities among mutation data. Black dots in the 3D tensor indicate mutation events 
corresponding to specific gene/patient/mutation type. The heatmaps in three projected directions show the 
joint mutation rates of any two factors. Heatmaps of mutation rate under independence assumption and 
homogeneity assumption are also shown. (C) Necessity of jointly consider all factors’ heterogeneities. (Top) In 
the application of driving TFs identification, results are compared between jointly considering the 
heterogeneities of gene and TF factors and ignoring the heterogeneity of gene factor. Ignoring gene factor 
results in false positive and negatives. (Bottom) In the scRNA-seq normalization, results are shown for jointly 
or separately considering the heterogeneities of gene and cell factors. The separate application of 
normalization on different dimensions leads to problems in housekeeping genes 
 

With no extra assumption of the observed values other than the effect of all factors, the 
probability distribution of the entries in an 𝑁 ×𝑀 × 𝑄 tensor can be captured by maximizing the 
entropy under the marginal expectation constraints:  
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where 𝑃"#$ is the probability of tensor entry (𝑖, 𝑗, 𝑘) to take value 1. We assume each entry 
follows the Bernoulli distribution. 𝑛", 𝑚# and 𝑞$ are the marginal totals of the 𝑖*+	, 𝑗*+ and 𝑘*+ 
individual in the three dimensions, respectively. The marginal expectation constraints impose 
considerations for the heterogeneities, and the maximum entropy principle ensures no extra 
information is introduced. The CMC model is applicable on the tensor of any dimension. For 
simplicity, here we only present the three-dimensional case. 
An alternative way to understand the role of the maximum entropy principle here is to search for 
the probability distribution of the tensor under the marginal expectation constraints and the 
consistency principle. The consistency principle is based on the concept that the solutions to a 
problem should be consistent if this problem can be solved in more than one way. Maximum 
entropy is a way to search for this unique distribution (19). 

To solve Eq. 1, Lagrange multipliers {𝑟"}, {𝑤#} and {𝑞$} are introduced: 
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The optimal solution of Eq. 2 takes the form: 
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𝑃"#$ = 	 0!"#$%#&'

0!"#$%#&'1'
          (3) 

Eq. 3 reveals how the probability distribution is determined by the impact strengthes of all 
factors. It shows that the probability distribution of entry (i, j, k) is determined and only 
determined by multipliers with the ith individual of the first factor, 𝑗*+ of the second, and 𝑘*+ of 
the last. This is consistent with our intuition that value in each entry should only be related to its 
corresponding individuals’ impact strengthes rather than others’. For example, the probability of 
a mutation occurring in a gene of a patient should only be related to this specific patient’s and 
this gene’s vulnerabilities rather than those of other patients or genes. Considering that 𝑃"#$ is 
monotonically increasing with 𝑒-" , 𝑒.% , 𝑒/' and that 𝑒-" , 𝑒.% , 𝑒/' remain positive, 𝑒-" can be 
safely interpreted as a quantitative measure of the impact strengthes due to the intrinsic 
characteristic of individual (𝑖) within the first factor. The same applies to 𝑒.% and 𝑒/'.  
The distribution form in Eq. 3 is consistent with the approximate mean of Fisher's noncentral 
hypergeometric distribution of multiple binary variables. This distribution is a generalization of 
the hypergeometric distribution by allowing the modification of sampling probabilities with a 
weight factor. Indeed, the ratio of two individuals’ susceptivities within a factor corresponds to 
the ratio of these two individuals’ weights. However, Fisher's noncentral hypergeometric 
distribution can only handle one factor, and even for the single factor, the weights of all 
individuals are required to be provided by users. Instead, in the CMC model, such susceptivities 
are automatically learned from the data itself.  
Having obtained the probability distribution form (Eq. 3), the impact strengthes, or the 
parameters {𝑟"}, {𝑤#} and {𝑢$}, embedding in any given data can be learned through maximum 
likelihood estimation: 

	 max
-,.,/
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where 𝑥"#$ ∈ {0,1} is the observed value in entry (𝑖, 𝑗, 𝑘) of the tensor. 

According to Eq. 3, given the information of margins, the solution {𝑃"#$} is unique, as for any 
entry (𝑖, 𝑗, 𝑘), its 𝑟" +𝑤# + 𝑢$ is fixed (see Supplementary). The problem of searching 
𝑁 ×𝑀 × 𝑄 variables {𝑃"#$} in Eq. 1 now converts into searching 𝑁 +𝑀 + 𝑄 variables {𝑟"}, 
{𝑤#} and {𝑢$} in Eq. 4, which simplified the problem significantly. However, due to the large 
scale of variables and constraints, searching the global solution is still infeasible in many real 
applications. By fully exploring the special structure of the CMC model, we proposed a highly 
efficient iterative strategy (Fig. 2A, Supplementary Algorithm 1) and initialization strategies (see 
Supplementary) to solve the optimization problem. The former strategy aims to update variable 
sets {𝑟"}, {𝑤#} and {𝑢$} are updated respectively, based on an observation that: dependency 
among variables within a variable sets (say {𝑟"}) disappears, if the other variable sets are fixed. 
In other words, variables, 𝑟', … , 𝑟), can be independently optimized. And for any specific 
variable, 𝑟" for example, the solution can be obtained by Newton’s method. The latter strategies 
aim to get a good initialization for Newton’s method when solving a specific variable. They 
eighter utilize solution from history or from other variables belonging to the same variable set. 
Borrowing information from other variables is feasible thanks to the careful design of the 
algorithm after fully exploring the special structure of CMC model (see Supplementary). Our 
algorithm is guaranteed to converge to the global optimal solution (see Supplementary), and 
exhibits a remarkable speed and memory advantage, being more than 100,000 times faster than 
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standard convex solvers and using 1,000 folds less memory when applied to real-world datasets 
(Fig. 2D).  

One contribution and strength of this work lies in the type of marginal constraints that CMC 
employs. Instead of constraining the problem on the exact margins as noncentral hypergeometric 
distribution or other works did, CMC constrains the problem on the expectations of margins (Fig. 
2B). The exact margin constraints result in an NP-hard problem, while the margin expectation 
constraints lead to a simple form of distribution (Eq. 3), which can be easily extended to high 
dimensional tensors. 

The null distribution of the tensor can be extensively applied to downstream analyses. In many 
tasks, such as driving TF identification and cancer-associated gene detection, people are 
interested in querying whether some observations are significantly higher than the corresponding 
expected values. This procedure involves the statistical test on multiple entries jointly. The 
statistical test on entries sharing the same expected value is straightforward, with the null 
distribution being Binomial distribution. However, as CMC carefully takes care of the 
heterogeneities of all factors, the expected values of the entry set are typically different. In this 
case, the statistical test becomes extremely hard. For example, for a case with sum 𝑌 of the 
observed values in 𝑁 entries, there are ∑ N𝑁𝑌O

)
"&2  possible cases whose sums of observed values 

are larger than this specific case. And these ∑ N𝑁𝑌O
)
"&2  cases have different probabilities of being 

observed, making it an NP-hard problem to consider all these cases. The saddle point 
approximation is utilized here to well approximate the exact p-value (Fig. 2C; see 
Supplementary).  
All the above discussion about the CMC model can easily be extended to high dimensional 
tensors, and tensors with values beyond binary numbers (such as probability values, and integer 
frequency count). It is also compatible with data with missing values (see Supplementary). 

The CMC model is first applied to the single-cell RNA-seq (scRNA-seq) raw count data 
normalization. scRNA-seq is a sequencing technique used to measure the number of mRNA 
molecules of each gene in a single cell (20). To prepare the sequencing library, mRNA 
molecules of each cell are reverse transcripted to cDNA and then go through steps such as PCR 
amplification and fragmentation. The raw count is the number of reads (fragments) over a gene. 
During these processes, the sequencing output (raw counts) is impacted by artificial factors, 
including the cell factor (such as cell’s library size that will directly impact the total counts of the 
cell) and the gene factor (such as GC content of the gene’s sequence that may impact the 
efficiency of PCR amplification). Besides, we found that, for full-length sequencing techniques, 
such as Smart-seq2 (21,22), the cDNA-length factor also has a non-negligible impact on the final 
raw counts (Fig. S 3). cDNA length is defined as the sequence length of the cDNA after its 
reverse transcription from the template mRNA. A longer sequence implies more fragments to be 
generated after the fragmentation procedure and consequently larger raw counts in the final step. 
Typically, the cDNA length is equal to the gene’s mRNA that it is reverse transcribed from. 
However, incomplete reverse transcription may occur and result in truncated cDNAs that are 
shorter than the typical one and will generate fewer fragments in the downstream steps (23). As a 
result, the corresponding mRNA tends to have smaller read counts. We observed such a non-
negligible impact of the cDNA-length factor in scRNA-seq datasets from different labs (24, 25).  
To normalize the scRNA-seq raw counts, we constructed the raw counts into a tensor with three 
dimensions, corresponding to the gene factor, cell factor, and cDNA-length factor, respectively.   
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Fig. 2. The CMC model. (A) Framework of CMC model. We took the 3D mutation count tensor as an 
example. A larger marginal total of a patient implies a higher vulnerability of this patient to the DNA 
mutations. With no extra assumption of the observational event of interest other than the heterogeneities in 
all factors, the heterogeneity induced null probability distribution of the tensor’s entries can be captured by 
maximizing the entropy under the marginal expectation constraints.  Having obtained the form of probability 
distribution, the “susceptivity” of each individual in each factor is learned from the data through maximum 
likelihood estimation. The optimization problem can be quickly solved by iteratively optimizing variables 
corresponding to each dimension. During each iteration, variables of any specific dimension can be 
independently solved (in parallel) with variables of other dimensions fixed. (B) Constraints on expectation. 
CMC applies the marginal constraints on the sum of expectations of corresponding entries. The marginal 
constraints on the outcomes result in an NP-hard problem, while the constraint on expectation leads to a 
simple distribution form for any entries and can be easily extended to high dimensional tensors. (C) Saddle 
point approximation. Given the expected value of each entry in the tensor, applications like enrichment 
analysis need to check whether the observed values in a set of entries are significantly higher than the 
corresponding expected values. This procedure involves the statistical test on multiple entries wherein the 
expected values are typically different. Since computing the exact p-value is an NP-hard problem, saddle 
point approximation is utilized here to well approximate the exact p-value. (D) Efficiency comparison of 
different optimization solvers. In which, “LR solver” is short for logistic regression solver; “\” means either 
out of memory or running time is too long (> 5 days) to be recorded. The last four rows represent the data 
sizes coming from real studies. 

 

In the experiment, the cDNA length is inferred during the alignment process (see 
Supplementary). The CMC model was applied to jointly infer these three factors and then to 
normalize out the unwanted cell and cDNA-length factors. The gene factor is not normalized out 
from the data, because it includes information of gene’s average expression level across all cells. 
Users might be interested in such information.  
More than 80% of values in a typical scRNA-seq data set are zero. However, a non-negligible 
part of them is not truly zero. Instead, due to the small number of RNA molecules in a single 
cell, many non-zero values cannot be detected (26). As there is no source information to 
distinguish truly zero from non-truly zero, we regarded all the zeros as missing values. The CMC 
model is compatible with data containing missing values (see Supplementary). 

We use two criteria to evaluate the normalization performance: 1) the variance of each gene’s 
expression across a set of homogeneous cells; 2) the differentially expressed gene (DEG) 
detection results for two distinct cell types. The first criterion is a direct measure showing how 
much of the variance due to noise (both sequencing noise and biological noise) is removed after 
the normalization. The second one illustrates the overall impact of normalization on the 
downstream analysis like DEG detection; the biological signal in the dataset should not be 
falsely removed by the normalization.  
The dataset used for this purpose is the scRNA-seq data of two cell types: immature microglia 
and proliferative-region-associated microglia (PAM), where the cell type labels are determined 
by clustering analysis based on cells’ expression profiles are also given (24). For the first 
criterion, Fig. 3A shows each gene’s variance change after normalization. Normalization using 
the CMC model reduces the variance of most genes to about half of their original variance. For 
comparison, Fig. 3B shows the variance changes after being normalized by a popular 
normalization method, total count (TC) (5), which considers the cell factor separately from the 
gene factor. It can be seen that, for the TC method, the variances reduce significantly for a small 
part of extremely highly expressed genes (such as “Rn45s” in this dataset). However, except for 
this small part of genes, the rest of the genes’ variances are only slightly changed. What’s more, 
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variances of some ERCC spike-in controls, which are supposed to have small variances, even 
became larger after normalization by TC method. This is because the total count of each cell is 
dominated by a small number of extremely highly expressed genes. Normalizing out the cell 
factor without jointly considering such heterogeneity among genes will result in the 
normalization result favoring those highly expressed genes. We compared the variance change 
after normalizing by CMC and TC methods in Fig. 3C. As can be seen, compared with the TC 
method, CMC reduces the variance of most genes, except for a small part of genes. This small 
part of genes is mainly contributed by the genes with large 0 rates (typically corresponding to the 
genes with small detected values and suffer from large detection noise). Except that, a few other 
genes (e.g., genes with small 0 rates) also result in larger variances after normalization. We 
specifically inspect the genes on the left part (0 rates <0.15) in which many important genes are 
located for this dataset. It can be seen that, compared with the TC method, after normalization by 
the CMC model, most of the genes with larger variances are the differentially expressed genes 
(DEGs) reported by (24); meanwhile, the ERCC RNA spike-in controls have much smaller 
variance. It implies that the power of the CMC model in terms of reducing the variance of 
housekeeping genes while enlarging those of DEGs’. Fig. 3D summarizes the genes’ variance 
change after the normalization performed by the CMC model and other normalization methods, 
TC(5), TMM(15), RUV(16), UQ(6), SCnorm(14), Scran(17), and Census (18). It can be seen 
that the CMC model outperforms all the other methods in terms of reducing genes’ variances. As 
for the second criterion, we performed DEG analysis on the data normalized by different 
methods. We then compare the detected DEG (PAM vs. immature microglia) with the 937 
“ground truth” DEGs. The ground truth DEGs downloaded from (24) are identified by 
comparing the expression of about 300 “pure” PAM cells with the immature microglia. The 
partial receiver operating characteristic (pROC) curve in Fig. 3E shows the CMC model 
significantly outperforms others on the basis of true positive rate again false positive rate. We 
also specifically examined the number of DEGs to be detected under the threshold of FDR<0.05. 
Results in Table S1 illustrate that the normalization by CMC model helps reveal more significant 
DEGs than all other normalization methods. 

Next, we applied the CMC model to enrichment analysis, including driving TF identification and 
tumor-associated gene identification.  

The first one is to identify the driving TFs for a set of co-expression genes. TFs initiate and 
regulate the transcription of genes by binding to the enhancer or promoter sequences of their 
target genes. The basic idea behind the identification is to identify the TFs that bind to the co-
expression genes more frequently than they would be at random. The key point of the 
identification is to accurately infer the expected by-random binding probability of each TF-gene 
pair. However, this is not trivial, as each TF or gene has different binding affinities (i.e., how 
likely a TF tends to bind any gene, or how likely a gene is bound by any TF). In addition, the 
TFs’ and genes’ binding affinities are cell-type specific (Fig. S 7). Previous driving TF 
identification methods (such as oPOSSUM 3.0 (1), Enrichr(12), BART(11), Lisa (13), etc.) often 
ignore the heterogeneity among genes’ binding affinities and treated all genes equally, which 
will falsely disregard the evidence from important genes and emphasize the importance of others. 
Here we applied the CMC model to jointly infer the cell-type-specific binding affinities of each 
gene and TF, and the random binding probability of any TF-gene pair conditioning on the TF’s 
and gene’s biding affinities. Fig. 4A shows the framework of the driving TF identification. 
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Fig. 3. scRNA-seq data normalization. (A-B) Variance change of each gene across all cells before and after 
normalization (A: CMC model; B: Total count method). Each dot represents the variance change of an 
individual gene. The y-axis is the ratio of variance after normalization to that of before normalization. The 
variances are all computed on the log2-transformed normalized data. (C) Ratio of variance after 
normalization by CMC and TC mthods. The genes in the region of left side (0 rates < 0.15) are specifically 
inspected. Among them, the ERCC spike-in controls are legended in blue color texts; and for those genes with 
ratio larger than 1, we legended the DEGs in brown color texts. (D) Summary of all genes’ variance change 
after normalization via different methods. (E) Impact of normalization on downstream DEG analysis for two 
distinct cell types. The results are pROC curves of DEG detection after normalization via different methods. 
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Fig. 4. Driving TF and cancer-associated gene identification. (A-C) The framework and results of driving TF 
identification. (A) The framework. The input of this application is a co-expressed gene set and it outputs the 
identified driving TFs. The TF-gene binding state data is derived from ChIP-seq databases and stored in a 2D 
tensor. Each row/column corresponding to a TF/gene, respectively. The binding and non-binding states are 
distinguished by black and white colors. CMC model is applied to infer the binding affinities of each TF/gene, 
as well as the binding probability of each TF-gene pair. By comparing each TF’s observed binding state with 
the input co-expressed gene set and the corresponding binding probability, driving TFs are identified. (B) 
Summary of driving TF identification results on 49 benchmark datasets. (C) The significant TF identification 
results for an example benchmark dataset by the CMC model (Left) and the Fisher’s exact test (Right). The 
CMC successfully identified the ground truth TF, MYOD1, as the most significant driving TF. In the driving 
TF list identified by Fisher’s exact test, MYOD1 only ranks the 15th.  It falsely identified some TFs whose 
ChIP-seq experiments are performed on embryonic fibroblasts or related cell types. Embryonic fibroblasts 
are the cell types that the input DEGs are detected in. (D) Top 10 identified TFs in a real study of identifying 
TFs that drive the oligodendrocyte fate and differentiation. Green color marked the well-known TFs; Blue 
color marked the two TFs that were confirmed by KO experiments. (E-G) Results of tumor-associated gene 
identification. (G) Number of significant genes identified for 31 tumor types by the CMC model and 
MutSigCV. mutSigCV identified more than 450 significant genes for LUAD, PAAD, SKCM, and STAD. (E-
F) Tumor-associated gene identification results for KIPAN by CMC model (E) and mutSigCV (F). Among the 
133 genes identified by mutSigCV, > 90% of them are neither CGC oncogenes nor tumor suppressor genes. 
To measure the performance of the CMC model on driving TF detection, we used 49 benchmark 
datasets for testing (13). In each dataset, a single TF (or a TF family) is knocked out (KO) or 
overexpressed (OE) and the corresponding DEGs are identified. Therefore, we may input the 
DEGs into the identification model and check if the model can successfully identify the KO/OE 
TF that results in the differential expression of these genes.  

Fig. 4B summarizes, among the 49 experiments, how many datasets whose ground truth TF is 
successfully identified. We used three criteria to define the “successful identification”, namely, 
the ground truth TF appears in the top 1, 5, or 10 of the identified TF lists. As shown in the Fig.s, 
by jointly considering the TF and gene factors, the CMC model surpasses all the other methods 
in all criteria. The second best is Lisa (13), which accounts for additional biological knowledge 
(i.e., genome-wide chromatin accessibility information).  

We particularly checked the identification result in an example benchmark dataset with MYOD1 
being knocked out and serving as the ground truth TF to be identified (Fig. 4C). Method based 
on Fisher’s exact test is a good comparison, as it used the same input as the CMC model but 
ignored the various impacts of genes’ binding affinities. As shown, the CMC successfully 
identified MYOD1 as the most significant driving TF, while in Fisher’s exact test method, it 
ranks 15th. We examined the binding affinities of important genes and irrelevant genes inferred 
by CMC model. Important gene refers to the muscle-specific genes from (27), as the target TF, 
MYOD1, binds to muscle-specific genes and promotes their expression (28). Irrelevant genes are 
referred to those frequently bound by many other TFs rather than the specific TF. As shown in 
Fig.4A, CMC method estimated a small binding affinity for these important genes, i.e., less 
possibility to be bound by random. Then in the downstream statistical test, these genes would 
contribute more to TF identification. Fisher’s exact test method, however, regards all important 
and irrelevant genes as equal, and consequently, fails to capture evidence from important genes 
while falling into the traps of irrelevant genes and TFs. 

To further evaluate the performance of CMC model, we applied it to a real study case to identify 
the TFs that drive oligodendrocyte (OL) lineage. Identifying these TFs is vital for understanding 
the mechanism of glial progenitor differentiation and its related diseases, such as brain 
tumorigenesis. Fig. 4D shows the top 10 driving TFs identified by CMC model. In addition to 
the previously well-known TFs of OL fate commitment and differentiation, such as Olig1, Olig2, 
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and Sox10 (ranked from 2nd to 4th), the CMC models also identified other potential TFs, such as 
Ppp1r14b (ranked 1st) and Zfp36l1 (ranked 6th), whose roles in in regulating OL differentiation 
from NSC were confirmed via knock-out (KO) experiments (reported by (29)). Specifically, 
experiment showed that the number of OL lineage cells decreased significantly in mice with 
Zfp36l1 KO, while the number of other glial cells, astrocytes, increased dramatically, suggesting 
that Zfp36l1 controls the OL-astrocyte fate transition in the developing brain. Additionally, 
Zfp36l1 was found to play a key role in gliomagenesis. Similarly, the role of Ppp1r14b was also 
confirmed by Ppp1r14b-KO experiments. These results validate the effectiveness of our CMC-
based driving TF detection model in real studies. 
We also applied the CMC model for tumor-associated gene identification. Specifically, we want 
to identify the mutated genes responsible for the initiation and progression of a particular tumor. 
The basic idea is to detect the genes with significantly more mutations than expected by chance. 
We used the genomic mutation data from 8544 patients across all major tumor types from The 
Cancer Genome Atlas (TCGA) (30,31), in which the whole-genome sequencing is performed on 
the normal and tumor samples of each patient to identify the genomic mutations. 
Again, estimating the expected mutations considering heterogeneity is critical. However, the 
mutation rates vary across patients, genome regions, and mutation categories (such as CpG 
transversions, C:G transitions, A:T transversions, etc.) Besides, such diversities between each 
factor (patient, gene, and mutation category) are twisted together (Fig. 1B). MutSigCV (2) 
reported the heterogeneities of these three factors. However, it treated the three factors 
independently and estimated the expected mutation number using the product of marginal 
relative rates of these factors. Here we applied the CMC model to jointly consider all these three 
factors. The framework of the detection is shown in Fig. S13. The mutation counts are stored in a 
tensor of three dimensions, corresponding to the patient, gene, and mutation category factors, 
respectively. 
Fig. 4G summarizes the number of significant genes identified for 31 tumor types by the CMC 
model and MutSigCV. For tumor types LUAD, PAAD, SKCM, and STAD,  MutSigCV 
identified more than 400 significant genes, while CMC resulted in a much small number of 
significant genes. 
There are two reasons behind the abnormally large number of identified significant genes by 
MutSigCV. First, the "neighbor" genes MutSigCV identified were unreliable, resulting in 
inaccurately estimated background mutation rate of each gene. Specifically, MutSigCV directly 
estimated the background mutation rate for each gene (number of synonymous mutations and 
noncoding mutations divided by the sequence length). However, there is not enough data to 
confidently estimate the mutation rate for a single gene, especially for a short gene. Instead, 
MutSigCV had to estimate the average mutation rate for a specific gene and its "neighbors". The 
neighbors were defined as genes that had similar characteristics, such as expression levels, DNA 
replication time, and open vs. closed chromatin status. What’s more, the gene characteristics are 
related to the cell types. The consequence of such a procedure is that MutSigCV's results are 
quite sensitive to the user-provided gene characteristics. For example, using as input the overall 
gene characteristics (provided by the MutSigCV's website), instead of cell-type-specific gene 
characteristics, the number of detected genes for “LUAD” changes dramatically from 1498 to 22. 
The CMC model learns the gene factor from the mutation-count tensor with more than 8000 
patients, even these patients have different types of tumors as other factors, including patient 
factor, are jointly considered during the inference of gene factor. It does not need to identify each 
gene's "neighbors". The second reason is that MutSigCV considered the gene factors and patient 
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factors independently, and the estimated mutation rates of each gene would be heavily impacted 
by some extreme patients. Specifically, for tumor "PAAD", MutSigCV always identified about 
400 significant genes regardless of the input gene characteristics. This is because, in "PAAD", 
there is one patient who has extremely large mutation numbers (7794 nonsilent mutations and 
5332 silent/noncoding mutations), while the mean nonsilent and silent/noncoding mutation 
number of the other 183 patients is 55.5 and 78.8 respectively. In MutSigCV, the estimation of 
each gene's mutation rate was dominated by this specific patient. The CMC model, on the other 
hand, jointly considers the gene factor and patient factor. Therefore, the estimated gene factor 
will not be impacted by patients with extremely large mutations, as these patients would be 
assigned very large patient susceptivity values. The CMC model identified 29 significant genes 
for "PAAD". 
We particularly examined the identification results for “KIPAN” (Fig. 4E-F), where 14 and 133 
genes are identified by CMC and MutSigCV. Among the identified genes by CMC, 21.4% of 
them are the CGC oncogenes (32) and 42.9% of them are the CGC tumor suppressor genes, 
while there are only 0.8% and 7.5% respectively for MutSigCV. 
The forth application about the quantification of cell-to-group similarity. As scRNA-seq data is 
wildly used to exploring cell-to-cell heterogeneity and identifying new cell types (24, 33-41), 
many studies struggled to answer a few common essential questions: 1) What is the relationship 
between this newly found cell type and a known cell type (24,34-39)?  2) Does a cell type newly 
found under one condition (e.g. disease model, species, tissue) also exist under another condition  
(33, 36, 40, 41)? The challenge here is a consequence of lacking well-accepted objective 
measurement of similarity between cell groups, especially at single-cell resolution and handling 
datasets generated from different sequencing platforms. In response to this, we propose a new 
quantitative metric that measures the similarity of a cell to a given target cell type w.r.t gene 
expression levels, as long as we have a set of signatures or DEGs (list of names) of this cell type. 
Such a score, named TySim, can provide a cell-to-group similarity assessment (single-cell-
resolution) and hence accumulatively a group-to-group similarity assessment. TySim defines “a 
cell is similar to a cell type” if known signatures of the target cell type are significantly highly 
differentially expressed in the cell of interest. However, assessing the extent of highly 
differential expression for a gene in a cell is a non-trivial task, as it must be considered in the 
context of other genes. Furthermore, variations in sequencing depth can possibly make different 
cells’ sequencing counts incomparable; while different genes may enjoy different preferences in 
terms of sequencing, making genes incomparable in terms of measured gene expression level. 
TySim employed the CMC to construct the distribution of each gene’s expression level in each 
cell if it is not differentially expressed, conditional on both the inferred sequencing affinity of a 
gene and that of a cell (a summary of the impacts of all possible gene/cell-related factors). From 
the null distribution given by CMC, a p-value is calculated for each cell summarizing the whole 
signature set, whose transformed form becomes our final similarity score. As a technical 
addition, a special design is introduced into the calculation of the TySim score upon  
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Fig. 5. Framework of quantification of single-cell-level similarity and its experiment results in three study 
cases. (A) The framework. The model takes the scRNA-seq dataset to be tested and the signatures or DEGs of 
the target cell type as inputs, and outputs the similarity scores that indicate how similar of each cell to the 
target cell type. The inputted scRNA-seq dataset is separated into the binary part and the non-zero part to 
take care of the “dropout” phenomenon. For each of these two parts, we estimate the expected values of each 
item in the matrix under the null hypothesis. Each cell has two pvalues from the two independent hypothesis 
tests in binary data and in non-missing data. These two p-values are combined into a single p-value using 
Fisher’s method. We also provided z score to quantitative the similarity level. (B-C) First study case: TySim 
similarity score between microglia to DAM cell type. (B) UMAP plot showing cells to be tested, including the 
P7 microglia and GPNMB+CLEC7A+ cells (“pure PAM”). P7 microglia were clustered into PAM and 
homogeneous microglia (clustering labeled obtained from (24)). (C) TySim score distributions in pure-PAM, 
clustered-PAM, and clustered-homogeneous microglia groups, respectively. Beside, the bottom-right UMAP 
plot in (A) showing transition pattern in term of similarity to DAM. Each individual cell is color-coded by its 
TySim similarity score. (D-F) Second study case: TySim score reveals cell type neglected by clustering. (D) 
tSNE plot showing the 1236 microglia cells to be tested (24) , including cells from three different ages: E14.5, 
P7 and P30. (E) The identified Ms4a7-like cells. (F) Heatmap of DEG expression of macrophages, Ms4a7-like 
cells (found by significant TySim similarity to Ms4a7+ microglia), and mature microglia. (G-L) Third study 
case: TySim Score Enables the Discovery of COP in data with contamination. (G) Human scRNA-seq dataset  
[89] to be tested. Cells are color-coded according to the cell types identified by (43). The data were 
contaminated by ambient RNAs and committed oligodendrocyte precursor (COP) was not found (43). (H) 
TySim scores that measures the similarity of each single cell to COP.  (I) COP clustering identified by (44) 
after removing the ambient RNA contamination. (J) The same UMAP plot to show the correspondence 
between COP clustering by (44) and TySim similarity score. Here, cells are color-coded by the TySim 
similarity score of a cell to COP. Note that the similarity score quantification was performed on the original 
scRNA-seq dataset with ambient RNA contamination. (K-L) TySim similarity score of a cell to COP for 
another scRNA-seq data (45). This data are also contaminated by ambient RNAs. (44) fails to identify COP 
from this data even after remove the contamination (K). TySim score of each single cell to COP (B). Again, 
the scores were compute on the original data with contamination. The bottom-right cells with high scores are 
likely to be COP by inspecting the expression pattern of COP markers. 

 

consideration of the non-negligible dropout issue (26) in scRNA-seq data. Fig. 5A shows the 
framework of CMC-based TySim. 

TySim is powerful in a few aspects. Firstly, to the best of our knowledge, it is the first 
quantitative metric of similarity towards a target cell type. Secondly, instead of traditional coarse 
group-to-group comparison, TySim relates each single cell to a given cell type, in which sense it 
is a “single-cell-resolution” metric and provides much finer information. Working on single cells 
also means that TySim does not require clustering and are free of the headaches in clustering, 
e.g. tiny cell group or inseparable groups. Lastly, since for the target cell type we only need a 
DEG name list that is no longer relying on any dataset, TySim has no troubles like an 
incompatibility between datasets from different sequencing platforms and the challenges in batch 
effect removal which become extremely challenging when datasets come from different 
sequencing platforms. This empowers TySim to work impressively well on cross-platform 
problems. 
TySim similarity score can serve as an excellent facilitator or even enabler for diverse biological 
studies. Here, we present three example study cases using published real datasets, which also 
validate the effectiveness of TySim. In the first study (Fig. 5A-C), TySim score is confirmed to 
be able to quantitative the single-cell-to-target-cell-type similarity as expected, with expectation 
coming from prior knowledge about the cells and the cell types. Proliferative-region-associated 
microglia (PAM) is a subset of microglia mainly found in developing corpus callosum and 
cerebellar white matter (24). Reference (24) showed that PAM shares important signatures with 
degenerative disease-associated microglia (DAM) found in aging mouse (33). We tested TySim 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589306doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589306
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
 

score using the scRNA-seq data published with (24) (Fig.5 B). The dataset contains 
homogeneous microglia, PAM, and “pure” PAM. We calculated TySim score of each cell in the 
dataset w.r.t. DAM cell type. The DEG list of DAM was obtained from (33). The expectation is 
that PAM cells should be much more similar to DAM than homogeneous microglia cells are. 
Fig. 2A presents cell clusters found by (24) and the distribution of TySim similarity w.r.t. DAM 
in each of these cell clusters:  “pure PAM”, PAM, and homogeneous microglia. TySim well 
distinguishes pure PAM and homogeneous microglia with almost no overlap in distribution (Fig. 
5C). PAM labeled by clustering has a TySim distribution close to that of pure PAM with a small 
shift towards homogeneous microglia. This is expected since gene expression clustering try to 
assign discrete labels to every cell, including those in continuous transition state. Therefore, the 
PAM labeled by clustering may contain some cells in transition state. Overall, this result 
highlights the good power of TySim score to differentiate conceptually similar cell type (PAM) 
from others (homogeneous microglia). TySim similarity is further visualized at a single-cell 
resolution in Fig. 5A bottom-right. As each dot in the UMAP plot represents a cell, it is color-
coded by its TySim w.r.t. DAM. We can see a clear smooth and almost monotonic spectrum of 
similarity from pure PAM to the furthest cells from pure PAM in the whole gene expression 
level space. This result demonstrates that TySim score successfully captures the order of true 
similarity, suggesting TySim’s capacity in illustrating the cell-type transition state at single cell 
resolution. 
In the second study, for a microglia subset that plain clustering analysis failed to find due to very 
small amount of cells in this subset compared with the homogeneous microglia population, 
TySim accurately identifies the relevant cells (Fig. 5D-F). In this study, reference (36) 
questioned the counterintuitive absence of Ms4a7-expressing microglia subset (37) in the 
scRNA-seq data of (24).  One hypothetical root cause is that clustering analysis is prone to 
overlook tiny cell groups, especially if they have relatively subtle differences from a much larger 
group(s) compared with the overall variations in the dataset. To verify this hypothesis, we 
applied the TySim score to the dataset of (24) along with the DEG list of Ms4a7-expressing 
microglia (Ms4a7+ microglia) given by (37). We found 32 cells that were statistically 
significantly similar to Ms4a7+ microglia (FDR < 0.05) (Fig. 5E). We then checked their 
characteristics to see if they are the same type. According to (37), Ms4a7+ microglia is an 
intermediate-state cell type between macrophage and mature microglia, and express part of 
markers of these two. We checked the expression pattern of the identified Ms4a7-like cells from 
(24)’s dataset. Fig. 5F shows that some makers of mature microglia are also highly expressed in 
Ms4a7-like cells, and so are some makers of macrophages, suggesting an intermediate state. This 
validates that Ms4a7-like cells found in the (24)’s dataset using TySim similarity well match 
Ms4a7+ microglia discovered in (37). It is worth noting that the amount of Ms4a7+ microglia is 
noticeably smaller in (24)’s dataset (30 out of 1236 microglia cells) than that in (37)’s dataset 
(more than 5,000 cells out of a total of more than 76,000 cells). The clustering technique was a 
valid method to discover this subset in the latter but failed in the former, probably due to small 
group size and subtle differences from others. In contrast, the TySim similarity score has a much 
stronger ability to reveal such small cell groups characterized by relatively subtle differences. 
The third example study demonstrates that TySim enables the identification of cell type that was 
not discovered due to contamination in scRNA-seq data (Fig. G-L). In this study, we attempted 
to re-discover committed oligodendrocyte precursor (COP), a subset of oligodendrocyte, in 
human data, using TySim with a COP DEG list from mouse data. The DEG list of COP was got 
from (42) which studied the mouse oligodendrocyte lineage; while scRNA-seq data of human 
oligodendrocyte lineage was obtained from (43). Reference (43) failed to identify COP group in 
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its dataset (Fig. 5G). We applied TySim to this dataset to calculate each cell’s similarity (Fig. 
5H), which identified 170 cells that significant similarity to mouse COP. For validation purposes, 
we compared our result with that of a recently published study (44). Reference (44) managed to 
separate COPs from the larger population of oligodendrocyte precursor cells (OPCs) by cleaning 
up ambient RNAs in the scRNA-seq data before clustering analysis, and successfully identify the 
COP group in (43) data (Fig. 5I). Fig. 5I-J visualizes the correspondence between the two 
methods’ results by using the same UMAP dimensionality reduction. Fig. 5I color-codes the 
clusters given by (44), while Fig. 5J color-codes the TySim similarity score of each cell. It can be 
clearly seen that the COPs have significantly higher TySim scores than OPCs, meaning that 
TySim similarity successfully distinguishes COP. Besides, there’s a trend of similarity change in 
the OPC population, which is consistent with our knowledge about status transitions in the 
oligodendrocyte lineage. It is worth noting that our similarity evaluation was performed on the 
raw (43) dataset, without ambient RNA removal. This demonstrates a strong potential of TySim 
similarity score to work on various datasets even if there might be unknown contaminations 
inside.  
The last application is the GO-term activity transformation. It’s widely acknowledged that 
scRNA-seq data are highly noisy and suffered from the drop-out effect, which limits its power in 
cell heterogeneity analyses. Compare with the expression value of every single gene in a cell, the 
overall expression pattern of a functional-related gene set is more reliable. Therefore, we propose 
a GO term activity transformation model to transform the scRNA-seq dataset into GO term 
activity score (Fig. 6A). Compare with the scRNA-seq dataset, which represents the expression 
level of each single gene in each cell, the GO term activity score matrix represents the activity 
level of each GO term (i.e., biological process) in each cell. Since the GO term activity score is 
account for the expression of multiple genes, it is expected to be more reliable than the scRNA-
seq dataset, and therefore, benefit the downstream analysis, like cell clustering, etc. Again, CMC 
model is applied here to jointly consider the impacts of both cell and gene factor classes on 
scRNA-seq data.  
We expected our GO term activity score is more powerful in identifying cell heterogeneity, 
because 1) the GO term activity score data is more robust as each value takes into account the 
expressions of multiple gene; 2) the gene-level expression bias can be modeled and captured by 
CMC model, therefore, genes expressed homogeneously in the cell population will have less 
contribution to the final activity scores. 

To validate the effectiveness of our model, we apply it to the dataset of (24) (Fig. 6B). Reference 
(24) confirmed that PAM is a novel type of microglia that are different from homogenous 
microglia. However, as shown in Fig. 6B, the clustering analysis based on gene-level expression 
data barely separated PAM from homogenous microglia.  

Here we transform the scRNA-seq data into the GO term activity score, and redo the clustering 
analysis. As shown in Fig. 6C, PAM and homogenous microglia are well separated. Note that 
there is a narrow bridge between these two groups. These cells are likely cells in the transition 
state. Fewer transition cells are shown here. This is probably because the scRNA-seq technology 
is basically taking a snapshot of the cells at certain time point. Compared with the cells that are 
in a stable state (e.g., PAM and homogenous microglia), the cell in a rapid transition state is less  
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Fig. 6. (A) Introduction of the GO term activity transformation. By incorporating pri-knowledge of GO 
terms, the scRNA-seq data is transformed into GO term activity scores.  In the transformed data, each row 
represents a GO term and each column corresponds to a cell. The activity score indicates the level of activity 
of a specific GO term within a particular cell. The transformed data can be used for downstream analysis, 
such as clustering, etc. (B-D) Application to a real dataset (24). (B) Clustering analysis results based on 
scRNA-seq data, which barely separated PAM from homogenous microglia. (C) Clustering analysis results 
based on GO term activity score. (D) The expression pattern of PAM’s marker, Ftl1. 

 
likely to be captured, and consequently, less number of transition-state cells. Our model also 
provide the opportunity to directly inspect the activity level of any GO term in each cell. Fig. 6D 
shows the expression level of a marker of PAM cells, which demonstrate a progressive pattern of 
change from PAM to homogenous microglia. 
The CMC model is designed to jointly consider the impacts of all factors among data. Its 
solution is simple but elegant and can be solved efficiently. It’s flexible to handle data associated 
with multiple factors, with binary/integer values, and values attached by real-valued weight. 
CMC also allows data with missing values. The CMC model has demonstrated its effectiveness 
in five applications, and especially, has led to genuine biological discoveries in identifying the 
TF that function in oligodendrocyte lineage development. Consider that the real bioglocal data 
are often affected by numerous hidden factors, we believe the CMC model will show its broad 
value in science and engineering. 
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