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Abstract

The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment
likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated
that C. merolae’s cellular affinity for CO; is stronger than its rubisco affinity for CO». This
provided further evidence that C. merolae operates a CCM while lacking structures and functions
characteristic of CCMs in other organisms. To test how such a CCM could function, we created a
mathematical compartmental model of a simple CCM distinct from those previously described in
detail. The results supported the feasibility of this proposed minimal and non-canonical CCM in
C. merolae. To facilitate robust modeling of this process, we incorporated new physiological and
enzymatic data into the model, and we additionally trained a surrogate machine-learning model
to emulate the mechanistic model and characterized the effects of model parameters on key
outputs. This parameter exploration enabled us to identify model features that influenced
whether the model met experimentally-derived criteria for functional carbon-concentration and
efficient energy usage. Such parameters included cytosolic pH, bicarbonate pumping cost and
kinetics, cell radius, carboxylation velocity, number of thylakoid membranes, and CO»
membrane permeability. Our exploration thus suggested that a novel CCM could exist in C.
merolae and illuminated essential features necessary for CCMs to function.

Significance

Carbon-concentrating mechanisms (CCMs) are processes which boost photosynthetic efficiency.
By developing modeling approaches to robustly describe CCMs in organisms where biochemical
data is limited, such as extremophile algae, we can better understand how organisms survive
environmental challenges. We demonstrate an interdisciplinary modeling approach which
efficiently sampled from large parameter spaces and identified features (e.g., compartment
permeability, pH, enzyme characteristics) which determine the function and energy cost of a
simple CCM. This approach is new to compartmental photosynthetic modeling, and could
facilitate effective use of models to inform experiments and rational engineering. For example,
engineering CCMs into crops may improve agricultural productivity, and could benefit from
models defining the structural and biochemical features necessary for CCM function.

Introduction

Cyanidioschyzon merolae is a red microalga found in moist environments surrounding
geothermal sulfur springs. This species is extremophilic, with optimal laboratory growth
conditions including low pH (~ 2) and high temperatures (~ 42 °C) (1, 2). C. merolae and other
thermo-acidophilic red algae draw interest for their unique biology and simple characteristics,
which position them as useful model organisms and as candidates for biotechnology applications
(3-6). For example, C. merolae is of interest because it is one of few organisms which relies on
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photosynthesis in geothermal spring environments, where hot and acidic conditions restrict the
availability of inorganic carbon and challenge biological carbon fixation (1, 7). Notably,
organisms of acid waters can only access approximately 10 micromolar inorganic carbon, as the
inorganic carbon pool at acid pH is primarily the volatile species COz. In comparison, organisms
of near-neutral and alkaline waters may have access to several millimolar of inorganic carbon,
due to accumulation of the involatile bicarbonate (8).

C. merolae is thought to survive in its challenging environment in part by operating a
carbon-concentrating mechanism (CCM) (9—11). CCMs boost carbon-fixation efficiency by
concentrating CO; around rubisco, providing ample substrate for carbon-fixation and inhibiting a
competing oxygen-fixation reaction of rubisco. Evidence supporting a CCM in C. merolae
includes measured accumulation of carbon in the cell, §!3C consistent with a CCM, similar
growth rates under ambient and elevated CO, transcriptional response of potential CCM genes
to CO» fluctuations, and substantial CO; assimilation at low environmental CO; concentrations
(9—12). However, many of these indications of the CCM are not definitive: in particular, it is not
known how much of C. merolae’s ability to assimilate CO; efficiently could be explained by the
affinity of C. merolae rubisco for CO,. Thus, we here provide further evidence for the CCM in
C. merolae by demonstrating that the affinity of C. merolae cells for CO; is better than could be
explained by the affinity of C. merolae rubisco for COs,.

C. merolae’s CCM may be described as a “novel” or “non-canonical” CCM, as the C.
merolae CCM must operate differently from the few CCMs which are well-characterized. Unlike
algae and cyanobacteria with well-characterized CCMs, C. merolae is not able to take up
external bicarbonate, and C. merolae lacks anatomy associated with the pyrenoid CCM organelle
(10, 11, 13, 14). The absence of these CCM features in C. merolae challenges our understanding
of how algal CCMs work, and presents the opportunity to define essential CCM components. We
thus used mathematical modeling, informed by new experimental measurements, to explore how
the C. merolae CCM may function.

Research on CCMs has long employed mathematical models to understand the
components of functional CCMs in model cyanobacteria and algae. A particular area of interest
in CCM modeling is the possibility of boosting crop productivity by engineering CCMs into
crops which lack CCMs (15-18). We sought to add to the inspiration for these engineering
efforts by modeling a heat-tolerant CCM with minimal components which offers unique
possibilities for plant engineering (19). To draw robust conclusions about cellular characteristics
which can support a CCM, we used state-of-the-art statistical methods to define the effects of
model parameters on the predicted photosynthetic phenotype while limiting unwarranted a priori
assumptions.

Some sets of model input parameters produced model outputs which met empirically-
based criteria for functional carbon concentration and efficient energy usage, and we identified
input parameters which have substantial impacts on the model outputs. Overall, our model of a
hypothetical biophysical CCM which requires minimal enzymes and anatomical features (Figure
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1) appears to represent a feasible CCM structure in C. merolae, which invites further research
into the sources of environmental resilience in extremophile algae.

Methods

Experimental data collection

Extraction, purification, and kinetic assays of C. merolae rubisco; and measurement of gas-
exchange parameters by open-path infra-red gas analysis, were as detailed in Supplemental
Methods.

Model details

The hypothetical CCM described in this study (Figure 1) was modeled as a set of well-mixed
compartments and represented as a system of ordinary differential equations (ODEs). In this
minimal biophysical CCM, carbon diffuses into the cell as CO», is trapped in the cytosol as
bicarbonate by action of carbonic anhydrase, and is pumped into the chloroplast, where a second
carbonic anhydrase provides CO> around rubisco. No pyrenoid diffusion barrier is present,
though we accounted for potential effects of the concentric thylakoids which are present in C.
merolae and many other aquatic photosynthetic organisms (22).

The model geometry is based on the cellular structure of C. merolae as apparent in
published micrographs of this alga (22-31). The modeled cell and its boundary layer form a
series of concentric spherical well-mixed compartments. The cell is enclosed by a lipid bilayer of
radius Radius.,;;. The cell is surrounded by a medium boundary layer of radius 2 * Radius,;,
beyond which lies an infinite external medium. The cell contains a cytosol of radius Radius,,;
and a chloroplast stroma space of radius 0.25 * Radius ;.

Molecules cross the boundary of the stroma space according to diffusion or transport
equations. For flux calculations, the boundary consists of 1 to 7 lipid bilayers of negligible
thickness that are evenly spaced from 0.5 * Radius..;; to 0.25 * Radius ;. This boundary
structure represents the fact that the C. merolae chloroplast is surrounded by a chloroplast
envelope and by approximately 4 to 6 thylakoids which appear as concentric circles or spirals in
thin-section microscopy (22). A range of possible transport scenarios (how many membranes
molecules must cross when crossing between the cytosol and stroma, and how much energy this
crossing costs) are captured by varying parameters Membranes and Pump os:.

Diffusion through lipid membranes was described using estimates of conductivity of lipid
membranes to the chemical species in question:

]membrane dif fusion = Conductivityx * ([X]A - [X]B) (El)
Where Conductivityx is the conductivity — in units of um?/s — of chemical species X through a
lipid bilayer, and /X/a and /X]s are the concentrations of that species on the two sides of that
lipid bilayer. Diffusion into or out of the medium boundary layer was described as an analogous
simple diffusion flux, with conductivity determined according to diffusion coefficients through
water at the boundary layer thickness. Lipid permeability coefficients for CO2 and HCO3™ and the
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water diffusion coefficient for O were sourced from the literature (Table S1), and other
necessary gas permeability and diffusion coefficients were determined from the literature values

by Graham’s law of diffusion:
41 M,
2 =2 E2
m / m, (E2)

Where the rates of diffusion »; and r; for two different ideal gases, here CO; and O», are related
according to their two molar masses M; and M.
To describe diffusion of CO,, HCO3, and O> through variable numbers of stacked
thylakoid membranes, an overall conductivity through all of the layers was calculated as:
n -1
Overall Conductivity = (2(4711",12 * Conductivityx)‘1> (E3)
i=1
Where r, is the radius of the sphere formed by the nth thylakoid membrane. This overall
conductivity value is then used in (E1) to describe the movement of a chemical species from the
outer stroma into the inner stroma space, as shown in Figure 1. We assume that small gas
molecules diffuse easily around membrane proteins, so that the diffusion of CO> and O through
any modeled membrane is potentially impeded by increased path length, but is not impeded by
CO; and O2 passing through high-resistance protein material.

Spontaneous interconversion of CO2 and HCO3™ (E4-5) was described using simple first-
order kinetics, according to the rate constant of the dehydration (slower) step of the
interconversion:

]C02 hydration = kz [COZ] (E4')
]HCO; dehydration = k—z [HCOB_] [H+] (ES)
Note that CO2 must first be hydrated to H2CO3, which is then deprotonated to yield the HCO3-
ion. However, because the interconversion of HCO3™ and H2COs is essentially instantaneous
relative to the hydration-dehydration reaction, here we ignore the H2COs species and
approximate the spontaneous interconversion as the hydration-dehydration reaction.
The interconversion of CO; and HCOs3™ by carbonic anhydrase was described as in (16):

[CAT* CArear = (I€0,1 — HEGHEL)

Jea = (E6)

K02
K + [HCO,] (ﬁ) +[C0,]

m

Where the K, value is the overall K. for the CO2/HCO;™ system. This value is temperature-
sensitive and was calculated using the R package seacarb package (32). Other potentially
temperature-sensitive parameters receive temperature adjustments according to Q1o or Q1s
factors.

Carboxylation by rubisco was described as with the assumption that CO; is limiting, as in
(33):
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Vmax ionlCO
v, = Carboxylatlon[ 2] (E7)

[COL1 + Ky (1 + %)

m

To estimate oxygenation, we estimate v./v, (carboxylation flux over oxygenation flux) from the
CO»/0; specificity (Scw) of rubisco and chloroplast CO; and O concentrations (E8), and then use

this to arrive at v.

Ve [C 02])

—=S (E8)
Vo 0 ( [0,]

The pumping of HCOs™ across the stack of thylakoid membranes by a bicarbonate pump was
described by simple Michaelis-Menten kinetics:

Vinax[HCO5]

JHcoz pump = K, + [HCO] (E9)

Respiration in the light (R.) was estimated from experimental data according to a modified Kok

method, by measuring under sub-saturating light intensities and extrapolating CO- release in the
absence of light (Figure 2). The mean measured value of R; was normalized to cell size for use
in the model: we assume that the empirical measurement of R; we obtained was, on a per cell
basis, characteristic of a C. merolae cell of a radius of 1 pm. Under the assumption that R; should
vary proportionally with cell volume, we normalized R; as follows:

Volume (E].O)

Lnormalized RLmeasured Volumesym
ATP costs for the cell were estimated as:
ATP.ytq = 3V, + 3.5v, + (]Hco; pump * Membranes * Pump,os;) (E11)

Where Membranes is the number of thylakoid stacks and Pump..s: is the assumed cost, in ATP,
of pumping a single HCO3 ion across a lipid bilayer by the hypothesized pump.

A full list of all flux equations and the system of ODEs used to describe the system can
be found in Supplemental Materials.

Definition of reasonable model output values

To ensure the model reproduced experimental results, we used new and published experimental
data to set acceptable bounds for the following model outputs: CO2 compensation point (I coz),
the ratio of ATP consumption flux to net CO; assimilation flux (ATP per CO»), the steady-state
CO; concentration in the chloroplast stroma (stromal CO3), and the ratio of oxygen-fixation flux
to carbon-fixation flux (vo/vc). Selection and justification of these bounds are detailed in
Supplemental Methods.

Model optimization and estimation of simulated compensation point

Steady-state fluxes and metabolite concentrations were solved using odeint() from Python’s
SciPy library (34). Latin hypercube parameter sampling (35) and curve-fitting to generate
compensation point estimates were as detailed in Supplemental Methods.
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Parameter exploration and surrogate model selection

In order to thoroughly explore the 19-dimensional parameter space in a computationally-feasible
way, we trained a surrogate machine-learning model on the mechanistic CCM model. By
emulating the intricacies of the mechanistic model, surrogate modeling faithfully captures
dynamics of complex systems while alleviating the substantial computational costs associated
with obtaining results. Surrogate modeling additionally gave us access to powerful statistical
tools for machine-learning model analysis, including SHapley Additive exPlanations (SHAP)
(36) and partial dependence (PD) plots (37).

To identify the optimal surrogate model for parameter exploration, we compared four
popular machine-learning models: eXtreme Gradient Boosting (XGBoost) (38), Local
approximate Gaussian Process (laGP) (39), single-layer Neural Network (NN) (40), and Deep
Neural Network (DNN) (38). We collected a 240,000-sized dataset, where the outputs were
simulated from the CCM model at space-filling input locations. 90% of the data was used for
training the surrogate, and the remaining 10% was used as the test dataset to validate the model
performance. The evaluation of prediction performance was based on the root-mean-square error
(RMSE):

Ntest ~ 2
i —¥1)

Niest

RMSE =
i=1
where y; is the i-th test output and y; is the i-th predicted model output.

Model outputs had varying scales and degrees of skew, so to effectively compare
prediction performance on different model outputs, a normalized RMSE (NRMSE) was
calculated. The NRMSE was calculated as the RMSE divided by Viax — Ymin> Where Vi qx 18
the highest test output and y,,;,, is the lowest test output.

From the model evaluation (Table S2), it appears that XGBoost outperformed other
models for vo,/ve and ATP per CO», and remained comparable for /'co> and stromal CO». As such,
XGBoost was used as the surrogate model for further analyses.

Results and Discussion

Rubisco kinetics demonstrated that C. merolae operates a CCM

In previous work, we determine that if C. merolae has rubisco kinetics similar to other red algae,
then this alga must operate a CCM to maintain its measured photosynthetic efficiency.
Alternatively, its measured photosynthetic efficiency could be explained by unprecedented rubisco
kinetics, meaning enzyme properties favoring carbon-fixation over oxygen-fixation to an
unprecedented degree (10). Here we confirmed that C. merolae rubisco kinetics are similar to those
of other red-type (Form 1D) rubiscos (41-43). C. merolae rubisco had a strong affinity for CO»
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(low Kc), a poor affinity for O» (high Ko), and a slow carboxylation rate (low kcatc) (Figure 2).
Consistent with other studies, kcatc and K¢ were higher when measured at increased temperature,
while Ko was lower. Although Ko is a component of rubisco specificity (Scs) and S, decreases
with increased temperature, in vitro Ko is observed to decrease with increased assay temperature
in some species (42, 44, 45).

These kinetics findings indicated C. merolae does operate a CCM, as C. merolae cells had
higher affinity for CO; than C. merolae rubisco (8.71 + 1.7 uM cell K¢ vs. 24.9 + 3.2 uM rubisco
Kc at 45 °C, p =0.008 by two-sample #-test) (Figure 2). This result adds to the indications of the
CCM in C. merolae (9—11).

Quantitative modeling showed that a hypothesized CCM can explain C. merolae’s carbon-
concentrating behavior

To explore how the C. merolae CCM may operate, we constructed a functional model of a CCM
(Figure 1). This model demonstrated that there were parameter sets consistent with the empirical
literature that result in a functional CCM, despite the minimal model structure (Figure 3). Our
results provided quantitative support for a CCM taking inorganic carbon from the environment
solely through CO, diffusion into the cell, which we term a “non-canonical” or “novel” CCM
due to its differences in structure and function from CCMs that have been characterized in detail.
Though there is speculation that extremophilic red algae may use a Cs-like CCM, it has been
previously proposed that acidophile algae may accumulate carbon by a “bicarbonate-trap” or
“acid-loading” mechanism similar to our modeled CCM (7, 12, 15, 46, 47). Briefly, bicarbonate
would be concentrated for enzymatic action by bringing inorganic carbon speciation near
equilibrium in near-neutral cellular compartments, since the predominant inorganic carbon
species from pH ~6 to ~10 is the poorly-membrane-permeable bicarbonate.

We used two strategies to deeply explore the model parameter space and ensure that our
conclusions were robust. First, the model included new experimental data on gas-exchange and
rubisco parameters central to photosynthetic efficiency (Figure 2). Second, we developed a
method for thoroughly assessing the model’s sensitivity to the value of model parameters of
interest. Specifically, we were interested in 19 of the 43 model parameters which were
biologically interesting in relation to the function of a novel CCM and which were not well-
characterized physical constants (Table S1). We thus sampled input parameter sets through a
Latin hypercube design (35). Latin hypercube sampling enhanced analysis accuracy by
mitigating sampling bias, as it produced parameter sets distributed throughout the 19-
dimensional parameter space of interest. Then, each input parameter set was used to
parameterize the model and to generate a set of outputs for analysis.

Some of the input parameter sets produced outputs consistent with a functional CCM
with reasonable energy cost. Of particular interest were the parameter sets which met all the
empirically-based criteria for a realistic and functional CCM (criteria selection described in
Supplemental Methods). 13,998 of 240,000 (6%) of parameter sets fulfilled the two competing
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objectives of functional carbon concentration (corresponding to outputs of low / coz, high
stromal CO2, and low v,/v.) and efficient energy usage (corresponding to output of low ATP per
COy) (Figure 2).

The generated parameter sets allowed us to explore the trade-offs associated with various
features related to the CCM. For example, adding additional concentric thylakoids slightly
improved carbon concentration by presenting barriers to CO» leakage out of the chloroplast, but
incurred additional energy costs (Figure 4, Figures S1 — S2). This is consistent with other
modeling studies indicating that thylakoid membranes could affect inorganic carbon diffusion (15,
48).

Machine-learning-based surrogate models identified the parameters that most influence
CCM efficiency

Like most mathematical models of photosynthetic systems, this model faced the challenge of
drawing robust conclusions while using parameters which, although bounded by their
relationship to physical processes, have substantial uncertainty (Table S1). To model a system
with limited biochemical data while not constraining input parameters to a greater degree than
was supported by the literature, it was important to assess uncertainties which seemed likely to
have substantial and interdependent effects on the model. For example, the input parameter
describing permeability of a lipid bilayer to CO2 (Plipco2) has reported values ranging over
several orders of magnitude (Table S1). Furthermore, the effect of Plipco: in the model
depended on the value of other parameters, such as the number of lipid bilayers which pose a
barrier to carbon moving between the stroma and cytosol (Membranes). Plipcoz and similar
parameters were unlikely to be satisfactorily explored by classical local sensitivity analyses,
which involve tracking model outputs when individual parameters are varied by a set fraction of
the parameter’s original value. Therefore, to reveal which model conditions were necessary for
the modeled CCM and to identify interesting directions for future investigation, we used
statistical methods to identify impactful parameters and to identify which input spaces
corresponded to target output ranges. These statistical methods involved training a surrogate
machine-learning model on our CCM model inputs and outputs. Interpretations of this surrogate
model identified which zones in the input parameter space contained the most combinations
fulfilling output criteria (Figure 5 lower left), quantified how much each input parameter
affected the prediction of outputs by the surrogate model (Figure S upper right), and visualized
the response of model outputs to inputs (Figures S4 — S7).

Some input parameters had little impact on model outputs. For these parameters, values
from across the input range were evenly represented in the parameter sets meeting all output
criteria, which is reassuring for future modeling and engineering efforts that involve these
features. The parameters with relatively little impact on outputs included values related to
carbonic anhydrase concentration and kinetics (/CA/, CAkcat, Kmco: and Kmpcos- for carbonic
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anhydrases), chloroplast pH, and values related to bicarbonate membrane permeability (Pliprcos-
. O10piipHcos-, Figure 5, Figures S4 — S8).

Other parameters were more constraining in the model, indicating their importance in
producing a functional CCM. For example, six parameters appeared to impact all four of the
target model outputs in the mean absolute SHAP plots: Ve, Vmaxpump, Kmpump, pH in the cytosol,
PlipCO:, and Membranes. As might be expected in a model relying on a cytosolic bicarbonate
trap followed by bicarbonate pumping, parameter sets that successfully and efficiently
concentrated carbon tended to have cytosolic pH at or above the pH where bicarbonate
predominates (cytosol pH above 6), and tended to have a lower ATP cost of pumping
bicarbonate (low Pumpcos:), as well as faster and higher-affinity bicarbonate pumps (high
Vmaxpump, low Knpump).

Other features enriched in parameter sets meeting output criteria were a cell radius in the
middle of the input range (moderate Radiusc.i), and a lower CO2 membrane permeability (low
Plipco:, Figure 5, Figures S4 — S9). This suggested an important relationship between the
volumes where metabolism occurs and the surface areas which present diffusion barriers
between compartments. As the radius of the cell increases, CO> loss from R; may overcome the
ability of the cell to acquire carbon through passive diffusion into the cell. Conversely, as the
radius of the cell decreases, less absolute bicarbonate pumping would be necessary to achieve
high rubisco saturation, especially when rubisco is slow (low V). In low-radius scenarios, “over-
pumping” bicarbonate could reduce energy efficiency.

In silico knockouts identified experimental targets for further characterization of the C.
merolae CCM

The modeling also suggested interesting directions for investigating enzymatic components of
the CCM. Alternative models with CCM enzymes removed (carbonic anhydrases or bicarbonate
pumping not functional) were less likely to meet the criterion of a /'coz indicative of functional
carbon concentration, but tended to have lower ATP per CO: cost than the model with all
enzymes present (Figure 4, Figures S1 — S2).

The modeled CCM functioned without fine details of cellular structure that support
photosynthesis in other organisms, such as rubisco aggregation into an area smaller than the
stroma, recapture of mitochondrially-respired CO>, and perforations or interconnections in
concentric thylakoids (9, 49, 50). It may still be of interest to explore whether similar structures
exist in C. merolae, and to investigate the biochemical and molecular basis for this novel CCM.

Further applications of surrogate modeling and uncertainty quantification

More broadly, the statistical approach adopted in this paper represents an advance in metabolic
and biochemical modeling. By training a surrogate model on the parameter space of mechanistic
biological models, we can understand and account for high-dimensional uncertainty in model
parameters. Metabolic modeling in general has been highlighted as a particularly promising
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application of surrogate modeling, since metabolic modeling has biotechnological potential but is
challenged by the complexity of metabolism and by the “trial and error” process which is often
required to produce a working metabolic model (21). Surrogate modeling has found uses in
dynamic flux balance analysis and process modeling for bioprocesses (51, 52). Our work
expands on these investigations by demonstrating what is to our knowledge the first application
of surrogate modeling to ODE-based compartmental modeling of biological systems. Our
methods may be particularly valuable for models that have poorly-defined parameters or are
extremely computationally expensive. For example, the implementation of surrogate modeling
described here could alleviate current limitations in interpreting reaction-diffusion models and
genome-scale metabolic models (21).

Effective parameter exploration and analysis may generally be useful in confronting
global challenges. Here, we used statistical sampling, surrogate modeling, and uncertainty
quantification methods to investigate how aquatic organisms achieve the high photosynthetic
efficiency that enables them to be responsible for approximately half of global photosynthetic
CO; consumption (53). Similar modeling techniques may be applied effectively to any system:
for example, as part of engineering efforts for bioproduction, crop resilience, and other goals, it
may be useful to determine which features of a system are essential or inflexible in silico before
devoting resources to in vivo experimentation.

In conclusion, the extremophilic red microalga C. merolae operates a CCM, as evidenced
by this alga having gas-exchange behavior which was not explained by its rubisco properties.
Mathematical modeling suggested that this CCM could consist of a minimal mechanism which
includes thylakoid membranes as diffusion barriers. Robust parameter exploration and statistical
analysis, aided by the use of a surrogate model, allowed us to quantify the sensitivity of our
model to parameter uncertainties, identify important parameter interactions, and identify key
determinants of CCM efficiency. Therefore, in addition to supporting the presence of a novel
CCM in C. merolae, our results shed light on what conditions must be met for this CCM to
function and the essential elements of biophysical CCMs in general.

Code availability

Model code used in this study can be accessed via GitHub: https://github.com/anne-
steensma/Cmerolae CCM_model.
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472  Figure 1. Cross-section of model structure. This model describes fluxes (indicated by arrows)
473  and pools (indicated by molecular formulas) of a simplified dissolved inorganic carbon system
474  (CO2, HCO3Y) and of oxygen (O2). Molecule pools can be present in several well-mixed

475  compartments: the bulk external medium surrounding the cell, an unstirred boundary layer of
476  medium around the cell, the cytosol, or a central stromal space of the chloroplast. Circles mark
477  enzymatically-catalyzed fluxes. Compartments are not drawn to scale. PR = photorespiratory
478  COzrelease, R, = respiration in the light. All fluxes are reversible and are assigned an arbitrary

479  direction, except those fluxes which represent producing or consuming material.
480
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482  Figure 2. Experimental data incorporated into the model. (A,B). Response of net assimilation in
483  C. merolae to (A) CO> availability and (B) light availability. Points are mean + SE (n = 3), and
484  parameters calculated from the data are indicated in the upper left corner of each plot as mean +
485  SE. Dashed lines indicate trend fits used to determine Kc and R;. The linear fit used to determine
486  I'co21s not pictured. (C) Kinetic properties of C. merolae rubisco. Rubisco turnover rate for CO»
487  fixation (kcatc), Michaelis-Menten constant of CO» fixation (Kc), and Michaelis-Menten

488  constant of O, fixation (Ko) were measured at 25 and 45 °C. Data is mean = SE, n = 4.
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Figure 3. (A) Values of key model outputs. Parameter sets are organized into a 2-dimensional
histogram according to their output values of /'co> and ATP per CO», with dashed lines
indicating bounds for acceptable values of these outputs. 80 parameter sets (0.03% of total) are
not pictured on the figure, as they produced negative ATP per CO; values and could not be log-
transformed. (B) Percentages of parameter sets meeting various combinations of output criteria.
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507  Figure 4. (A, B) Effect of model input parameter Membranes (x-axis) on key model outputs.
508  Distribution of parameter set outputs for each value of Membranes is represented by a box plot
509  overlaid on a violin plot. Shaded areas represent unacceptable values of outputs. (A) Effect of
510  Membranes on model output I coz. (B) Effect of Membranes on model output ATP per CO». 80
511  parameter sets (0.03% of total) are not pictured in this panel, as they produced negative ATP per
512 COxz values and could not be log-transformed. (C, D) Effect on key model outputs when

513  bicarbonate transport or carbonic anhydrases (CAs) are removed from the model. Distribution of
514  parameter set outputs for each scenario is represented by a box plot overlaid on a violin plot.

515  Shaded areas represent out-of-bounds values of outputs. The same sampling of input parameter
516  sets was run through models representing each scenario. (C) I co2 in model scenarios where

517  various model features removed, with indication of how many parameter sets met output criteria
518 in each scenario. (D) ATP per COz in model scenarios where bicarbonate transport activity at the
519  chloroplast boundary is removed. 6,991 parameter sets producing negative ATP per CO> values
520  (0.6% of total) are not pictured in this panel.
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524 Figure 5. (upper right bar plots) Mean absolute SHapley Additive exPlanations (SHAP) plots
525  for each output criterion. (lower left density plots) Density plots of parameter sets meeting all
526  output criteria, organized by selected pairwise input parameter (input parameters pictured are
527  those input parameters with high SHAP values for all output criteria). Darker areas indicate areas
528  where more parameter sets meeting criteria occur. Scales of color vary for each plot).
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SUPPLEMENTAL MATERIAL
Supplemental Methods

Model optimization and estimation of simulated compensation point

In order to characterize the response of key outputs and robustness of conclusions to a wide
range of possible parameterizations of the model, we used Latin Hypercube Sampling to explore
240,000 parameter combinations according to the bounds specified in (Table S1). These
simulations were run on Michigan State University’s High Performance Computing Cluster.
Compensation point estimates were generated for every parameter set by running the model at
external CO> concentrations ranging from 0.0001 to 1000 uM, constructing a cubic spline from
the resulting curve of net CO; assimilation vs. external CO; concentration, and identifying the
root of this spline to find the compensation point. Each simulation was verified to reach steady-
state (metabolite concentration solutions changing 0.01% or less from previous value).

Definition of reasonable output values

CO: compensation point (T'coz)

We accepted I coz values less than or equal to 2.70 uM, corresponding to no more than twice the
mean measured value (Figure 2).

Ratio of ATP consumption flux to net CO: assimilation flux (ATP per CO:3)

We accepted ATP per CO: values which were less than or equal to 25 and greater than 0.
Measured light response curves indicated how much additional light absorption drives additional
CO; assimilation (Figure 2) We used this data to estimate how much additional ATP production
drives an additional CO» assimilation, using the photon per ATP values for various light-reaction
pathways (53), the cylindrical geometry of the gas-exchange sample chamber, and the measured
density of cells in the sample. The resulting estimated values were: 13.8 +2.19 ATP
produced/CO; assimilated (mean + SE, assuming cyclic and linear electron flow operating
equally) or 17.4 + 2.76 ATP produced/CO; assimilated (mean + SE, assuming linear electron
flow only operating). This suggests that ATP per CO; values of up to roughly 25 are supported
by photosynthetic electron flow. The lower bound of the acceptable range excludes a few
parameter sets outputting negative ATP per COz, since these parameter sets represent
particularly non-functional CCM scenarios with negative net assimilation values under ambient
CO: conditions.

Steady-state CO; concentration in the chloroplast stroma (stromal CO;)

We accepted chloroplast COz concentration values of greater than or equal to the CO>
concentration in the medium under 400 ppm CO2 atmosphere, by the logic that a functional CCM
should result in rubisco accessing a greater CO> concentration than is available from ambient
medium.

Ratio of oxygen fixation flux to carbon fixation flux (Vo/Vc)
We accepted vo/v. values less than or equal to 0.3, based on data and models indicating that

plants without CCMs are unlikely to achieve vo/v. less than approximately 0.3 (54).

Experimental data collection: gas-exchange measurements
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Cyanidioschyzon merolae 10D was grown as cultures in Erlenmeyer flasks in 50 mL of medium
containing 40 mM (NH4)2SO4, 4 mM MgSO, - 7H,0, 8 mM KH,PO4, 0.75 mM CaCl, - 2H,0, 1
mL L! Hutner’s Trace Elements solution, and H2SO4 to pH 2.7 (recipe modified from MA2
medium recipe of (55)). Cultures were maintained at 40 °C under 100 umol m™ s*! white light,
with aeration by shaking at 100 rpm. For gas-exchange measurements, cultures of OD750 1.0 —
1.2 were resuspended in growth medium to OD750 0.6 (1.60x10” — 3.68x107 cells/mL). Gas-
exchange parameters were measured in a LI-6800-18 Aquatic Chamber (LI-COR Biosciences) at
45 °C, following the procedures of (10).

Experimental data collection: rubisco kinetics measurements

We purified rubisco from C. merolae biomass with a protocol adapted from (2, 56).
Approximately 60 grams of biomass were lysed by freeze-thawing followed by mechanical
homogenization. Crude rubisco was polyethylene-glycol-precipitated from clarified homogenate
and purified by FPLC. FPLC fractions eluting under the major UV trace peak were assayed by
SDS-PAGE and by spectrophotometric rubisco activity assay (procedures adapted from (57, 58))
(Figure S3). Fractions containing active semi-pure rubisco were pooled, concentrated with a 100
kDa centrifugal concentration filter, and snap-frozen for use in rubisco assays.

Purified rubisco was used to determine catalytic properties as described previously (43),
with some alterations to protein desalting and activation: concentrated protein aliquots were first
diluted with activation mix containing 100 mM Bicine-NaOH pH 8.0, 20 mM MgCl,, 10 mM
NaHCO;3, and 1 % (v/v) Plant Protease Inhibitor cocktail (Sigma-Aldrich, UK). Rubisco was then
activated at 45 °C for 15 min before being used in *CO, consumption assays at either 25 °C or 45
°C with CO; concentrations of 8, 16, 24, 36, 68, and 100 uM. To determine Ko, these CO>
concentrations were combined with concentrations of either 0, 21, 40, or 70 % (v/v) Oa. kcatc was
determined using measurements with 0% O. An aliquot of the activated protein was used for
determination of Rubisco active sites via *C-CABP binding using the method of (59). For *C-
CABP binding, protein aliquots were incubated at 45°C for 15 mins with *C-CABP to maximize
binding, prior to application to Sephadex columns as previously described (60). Aliquots were also
analyzed via SDS-PAGE alongside known concentrations of plant type Rubisco to strengthen
estimates of Rubisco content.

ODE System

dlCOz)cytosor _ Vi+ Vs 4+ Vig+ Vi, =V, =V — Vs

dt Volume o501

d[COZ]boundary _ V18 - Vl

dt Volumey,ynaary
d[HCO's_]cytosol V2 + V4- + V6 - V3 - V7 - VS

dt - Volume o501
d[COZ]chloroplast _ VS + V10 - V11 - V12 - V9

dt - VOlumechloroplast
d[HCO's_]Chloroplast _ V7 + V8 + V9 + V11 - VlO

dt Volume

chloroplast
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d[OZ]chlorOplaSt _ V16 - V13 - V15

dt Vo lumechloroplast
d[OZ]boundary . Vig + Vis

dt VOlumeboundary
Model fluxes

See Table S1 and main text for parameter sources, values, and definitions.

Diffusion of inorganic carbon through membranes or boundary layer (V1, V5, V6, V7, V15,
V18, V19)
Implemented as described in Methods.

Vl = COZ ConduCtivityboundary to cytosol([COZ]boundary - [Coz]cytosol)
V5 = COZ ConduCtivitycytosol to Chloroplast([COZ]cytosol - [COZ]Chloroplast)

V6 = HCOB_ ConduCtivityboundary to cytosol([HCO's_]boundary - [HCO'a’_]cytosol)
V7 = HCO3’_ ConduCtiVitycytosol to chloroplast([Hcos’_]cytosol - [HCOZ;]chloroplast)
V15 = ConduCtivithoundary to chloroplast([Oz]chloroplast - [Oz]boundary)

V18 = COZ ConduCtivityexterior to boundary([COZ]exterior - [COZ]boundary)
V19 = 02 ConduCtivityexterior to boundary([oz]exterior - [Oz]boundary)

Spontaneous interconversion of dissolved inorganic carbon species (V2, V3, V9, V10)
Implemented as described in Methods.
V, = COchtosol * ky x Volumecytosor
V3 = [HCOI’:]cytosol * [H+]cytosol * k—2 * VOlumecytosol
V9 = COZchloroplast * k2 * VOlumechloroplast

— - +
VlO - [HCO3 ]chloroplast * [H ]chloroplast * k—Z * VOlumechloroplast

Carbonic-anhydrase-mediated interconversion of inorganic carbon (V4, V11)
Implemented as described in Methods.

HCO3; H*
[CA]cytosol * CAkcat * ([COZ]Cytosol - [ k ]Cytols(t;l[ ]Cyt0501>

Vo= co,

ngoz + [HCO3]cytosol (#) + [COZ]Cytosol

m
HCO3 H*
[CA]chloroplast % CAkcat N ([COZ]chloroplast _ [ 3 ]chloropl;?at[ ]chloroplast)

co
K 2
Km(z:o2 + [HCO3]chlor0Plast (#) + [COZ]C’”OTOPI““

m

Vi1 =

Active transport (pumping) of bicarbonate from cytosol to stroma (V8)
Implemented as described in Methods.
Vmaxpump [HCO;] cytosol

Ve =
° [HCOJ]cytosol + Km

pump
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Carbon dioxide fixation by rubisco (V12)
Implemented as described in Methods.

Vmaxcarboxylation [COZ] chloroplast

0
[CO2]chioroptase + Krfloz (1 + %#W)

m

Vi, =

Oxygen fixation by rubisco (V13)
Implemented as described in Methods.
V12

Ve
&)
Evolution of carbon dioxide in cytosol as a result of photorespiration (V14)
This flux is determined based on the stoichiometry of photorespiration.

Vis =

1
Vi = E Vis

Evolution of oxygen into stroma from thylakoid action (V16)
This flux is determined based on the stoichiometry of photosynthesis.
Vie = Vi,

Evolution of carbon dioxide in cytosol as a result of respiration in the light (V17)
Implemented as described in Methods.

v R ( Volume . >
17 = Iy,
Volume e witn 1um radius

Supplemental Figures

Table S1. Parameter values or ranges used in the model. Values are known or assumed to be at
25 °C, unless otherwise specified.

Parameter Parameter | Parameter Source or rationale
name definition value or
range of
values
[CA] carbonic 0.04 - 0.69 range of stromal CA concentrations calculated
anhydrase mol m™ by (61)
concentratio
n, used for
both
chloroplast
and
cytosolic
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carbonic
anhydrases

[ W ] chloroplast

proton
concentratio
n in the
chloroplast
stroma,
from pH in
chloroplast

1 0-6.35 _ 10-8
M

range based on generic stroma in light pH to
average C. merolae intracellular pH reported

by (11)

[ W ] cytosol

proton
concentratio
n in the
cytosol,
from pH in
cytosol

10*7 - 107

range based on
neutral pH down to lowest C. merolae
cytosolic pH implied by (11)

[ H COS_]boundmy

HCO;5
concentratio
nin
medium
boundary
layer

0uM

assumption that HCO3™ concentrations are
negligible at typical growth pH of C. merolae

CA kcat

carbonic
anhydrase
hydration
rate

0.16x10° —
0.3x10° s™!

range of values reported and cited by (62)

CO2ppm

constant

air
concentratio
n of COy,
used for
calculation
of ambient
medium
CO;
concentratio
n

400 ppm

generic air CO, concentration

Henryco:

standard-
temperature
Henry's law
constant for
CO, used
for
calculation
of ambient
medium
CO;
concentratio
n

0.035 mol kg

"bar’!

NIST

Henryo:

standard-
temperature

0.0013 mol
kg bar

NIST
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Henry's law
constant for
O3, used for
calculation
of ambient
medium O,
concentratio
n

Hen}’ytempCOZ

Henry's law
temperature
dependence
constant for
CO, used
for
calculation
of ambient
medium
CO;
concentratio
n

2400 K

NIST

Hen”ytempOZ

Henry's law
temperature
dependence
constant for
O, used for
calculation
of ambient
medium O,
concentratio
n

1700 K

NIST

rate
constant for
uncatalyzed
CO,
hydration

13.7s!

(63)

k>

rate
constant for
uncatalyzed
CO;
dehydration

0.062 s

(64)

K¢

affinity of
rubisco for
CO,

18.5-31.3
uM

this study (measured value at 45 °C, range is
mean + 2 SEs)

Km co2 in
carbonic
anhydrase
equations

carbonic
anhydrase
affinity for
CO,

1.0-17.9
mol m

range of values from (65)

KmH CO3-

carbonic
anhydrase

26.6 —98.0
mol m

range of values from (66)
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affinity for
HCO5

Kmpump

bicarbonate
transporter
affinity for
bicarbonate

2350 uM

range based on values for high- and low-
affinity bicarbonate transporters from
cyanobacteria (summarized in (67, 68))

Ko

affinity of
rubisco for
CO,

394.0 — 564.6
uM

this study (measured value at 45 °C, range is
mean = 2 SEs) (Figure 2)

Membranes

number of
lipid
bilayers
around the
chloroplast,
including
outer
envelope

1 — 7 bilayers
(integer
values only)

see “Methods: Model geometry”

02 percent

air
concentratio
n of Oy,
used for
calculation
of medium
(O))
concentratio
n

21%

generic air O, concentration

pKa

CO; and
HCO5
system
overall pKa

5.97

(30)

Plipco:

CO;
permeabilit
y coefficient
of a double
lipid layer
membrane,
used in
conductivity
calculations

3.5x10% -
1.6x10* um /
S

range from 1/10th of value of (69) to value of
(70)

Pliprcos-

HCO;5
permeabilit
y coefficient
of a double
lipid layer
membrane,
used in
conductivity
calculations

2x107 —
1.2x10° m/s

range of values summarized in (61)

pressuréam

atmospheric
pressure

1.01325 bar

standard atmospheric pressure
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Pumpcoy the assumed | 0.25 —2 ATP | range from lowest estimated value of (71) to
cost of twice a generic value 1
pumping a
single
HCOs ion
across a
lipid bilayer
Prateroz 0, diffusion | 3050 m*s™ O, diffusion coefficient at 45.1 °C (72)
coefficient
of water,
used in
conductivity
calculations
010 CAkear Q1o for 2 generic value
parameter
CAkcat
Qiok-2 Q1o for 2 generic value
parameter k.
2
Ok Qi for 2 generic value
parameter k>
Q10K Qo for 2 generic value
parameter
K,,C02
Q10 K" Qo for 2 generic value
parameter
K, HCOos-
Q10 Kipump Q) for 2 generic value
parameter
Kntpump
Q1o Pipco: Q) for 1-2 range from generic value 2 to assuming that
parameter organisms fully maintain membrane
Plipco: permeability across temperature
Q10 PlipHCO3- Q) for 1-2 range from generic value 2 to assuming that
parameter organisms fully maintain membrane
Pliprcos- permeability across temperature
Q10Sco Qo for 0.6 measured value for a thermophile red algae
parameter rubisco (40)
SC()
O Ve Q) for 4.5 this study (ratio between kcatc measured at
parameter 45 °C and kcatc measured at 25 °C) (Figure
Ve 2)
O 10 Vmaxpump Q) for 2 generic value
parameter
Vmaxpump
Radiuscen radius of a 0.5-25uM | (1,73-77)
C. merolae

cell
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R rate of 4.95x10" this study (estimated and normalized from
respiration | mol s cell’ | gas-exchange data as described in Methods)
in the light (Figure 2)

Se/o specificity 129 —238 range of mean specificities S, for
of rubisco (molar ratio) | "taxonomy=Red algae" or
for CO, "taxonomy=Rhodophyte" in rubisco kinetics
over O, meta-analysis (78)

temperature temperature | 45 °C a typical growth temperature of C. merolae
at which the 2)
model is run

Ve maximum 15— | range of + 50% of the value used by (15)
rate of CO» 44
fixation by mM/
rubisco S

Vmaxpump maximum 185x10°¢ — range between maximum rates of two
rate of 22.48x10° different cyanobacterial bicarb transporters,
bicarbonate | mol um2 s | calculated by (16)
pumping

684  Table S2. The test root-mean-square errors (RMSEs) and normalized RMSEs (NRMSEs) of four
685  machine-learning surrogate models: eXtreme Gradient Boosting (XGBoost), Local approximate
686  Gaussian Process (1aGP), single-layer Neural Network (NN), and Deep Neural Network (DNN).

687

RMSE XGBoost laGP NN DNN
I'co2 0.1982 1.5054 0.7899 0.1458
stromal CO» 15.7500 73.2884 66.0004 15.6920
Vo/Ve 0.0132 0.1248 0.0547 0.0613
ATP per CO> 49.8090 173.7715 161.0012 72.2325
NRMSE XGBoost laGP NN DNN
I'co2 0.0142 0.1080 0.0567 0.0105
stromal CO» 0.0043 0.0201 0.0181 0.0043
Vo/Ve 0.0086 0.0813 0.0356 0.0400
ATP per CO> 0.0084 0.0293 0.0271 0.0121
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A)
2
3
< 0 parameter sets with CO,
é , | diffusing out of chloroplast
o -2
o
-4
1 2 3 4 5 6 7
Membranes around stroma
B) 2
g parameter sets
% 0 ‘ concentrating CO,
3 (low F¢p,, high stromal
o 2 CO, concentration, low
o
vo/Ve)
-4
1 2 3 4 5 6 7
Membranes around stroma
c) 2 parameter sets meeting all
g <? output criteria
5 ° (low I, high stromal
3 » CO, concentration, low
%E v,/v,, low ATP per CO, )
T4
1 2 3 4 5 6 7
Membranes around stroma
D) |Membranes 1 2 3 4 5 6 7
% meeting all4 | 3.3% 8.3% 7.2% 6.0% 5.2% 4.5% 4.3%
output criteria
688

689  Figure S1. Effect of model input parameter Membranes (x-axis) on CO; leakage from the

690  chloroplast (represented as logio(Leak %): the log-transformed percentage relationship between
691  the CO; flux from the chloroplast to cytosol and the CO, assimilation flux). (A) Results for

692  parameter sets with CO» diffusing out of the chloroplast (V5 steady-state flux towards cytosol,
693  rather than towards chloroplast) (n = 191,345). (B) Results for parameter sets concentrating CO>
694  (low I coz, high stromal CO; concentration, low vo/ve) (n = 92,764). (C) Results for parameter
695  sets meeting all output criteria (low I coz, high stromal CO» concentration, low v,/ve, low ATP
696  per COy) (n=13,998).

697

698
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700  Figure S2. Effect on key model outputs when bicarbonate transport or carbonic anhydrases

701  (CAs) are removed from the model, looking only at the 13,998 parameter sets that met all four
702 output criteria in the base model. Distribution of parameter set outputs for each scenario is

703  represented by a box plot overlaid on a violin plot. Shaded areas represent unacceptable values of
704 outputs. The same sampling of input parameter sets was run through models representing each
705  scenario. (A) I'co2in model scenarios where various model features removed, with indication of
706  how many parameter sets met output criteria in each scenario. (B) ATP per CO; in model

707  scenarios where bicarbonate transport activity at the chloroplast boundary is removed. 2,083
708  parameter sets producing negative ATP per CO; values (3% of total) are not pictured in this

709  panel due to log-transformation.

710

711
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713 .
714 Figure S3. SDS-PAGE analysis of rubisco preparation. Lane 1: protein standards (BioRad

715  Precision Plus Protein Dual Color Standards). Lanes 2 - 10 : fractions from fast protein liquid
716  chromatography (FPLC) rubisco preparation. Three major bands are observable on the gel,

717  which are believed to correspond to the rubisco large subunit (expected molecular weight 54
718  kDa), the rubisco small subunit (expected molecular weight 16 kDa), and the accessory pigment
719  phycocyanin (composed of two subunits with reported molecular weights of about 15 — 18 kDa
720  each). Arrows indicate fractions with rubisco activity detectable by a spectrophotometric assay,
721  which were pooled for further preparation and analysis (see Methods for details). Molecular
722 weights of rubisco were predicted from amino acid sequences CMV013C and CMV014C

723 (Cyanidioschyzon merolae Genome Project v3, http://czon.jp/) (75, 79) using the Protein

724 Molecular Weight Tool from the bioinformatics.org Sequence Manipulation Suite. Molecular
725  weights of phycocyanin were reported by (4, 80).

726

727

728

729
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Figure S6. Partial dependence (PD) plots of first-order effects for vo/ve.
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Figure S7. Partial dependence (PD) plots of first-order effects for ATP per COs..
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747  Figure S8. Ranges of parameters in all parameter sets (pink shaded areas) versus in parameter

748  sets meeting all output criteria (black points with error bars indicating + one standard deviation.
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