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Abstract40 

 41 
The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment 42 
likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated 43 
that C. merolae’s cellular affinity for CO2 is stronger than its rubisco affinity for CO2. This 44 
provided further evidence that C. merolae operates a CCM while lacking structures and functions 45 
characteristic of CCMs in other organisms. To test how such a CCM could function, we created a 46 
mathematical compartmental model of a simple CCM distinct from those previously described in 47 
detail. The results supported the feasibility of this proposed minimal and non-canonical CCM in 48 
C. merolae. To facilitate robust modeling of this process, we incorporated new physiological and 49 
enzymatic data into the model, and we additionally trained a surrogate machine-learning model 50 
to emulate the mechanistic model and characterized the effects of model parameters on key 51 
outputs. This parameter exploration enabled us to identify model features that influenced 52 
whether the model met experimentally-derived criteria for functional carbon-concentration and 53 
efficient energy usage. Such parameters included cytosolic pH, bicarbonate pumping cost and 54 
kinetics, cell radius, carboxylation velocity, number of thylakoid membranes, and CO2 55 
membrane permeability. Our exploration thus suggested that a novel CCM could exist in C. 56 
merolae and illuminated essential features necessary for CCMs to function. 57 
 58 
Significance 59 

60 
Carbon-concentrating mechanisms (CCMs) are processes which boost photosynthetic efficiency. 61 
By developing modeling approaches to robustly describe CCMs in organisms where biochemical 62 
data is limited, such as extremophile algae, we can better understand how organisms survive 63 
environmental challenges. We demonstrate an interdisciplinary modeling approach which 64 
efficiently sampled from large parameter spaces and identified features (e.g., compartment 65 
permeability, pH, enzyme characteristics) which determine the function and energy cost of a 66 
simple CCM. This approach is new to compartmental photosynthetic modeling, and could 67 
facilitate effective use of models to inform experiments and rational engineering. For example, 68 
engineering CCMs into crops may improve agricultural productivity, and could benefit from 69 
models defining the structural and biochemical features necessary for CCM function. 70 
 71 
Introduction72 

73 
Cyanidioschyzon merolae is a red microalga found in moist environments surrounding 74 
geothermal sulfur springs. This species is extremophilic, with optimal laboratory growth 75 
conditions including low pH (~ 2) and high temperatures (~ 42 °C) (1, 2). C. merolae and other 76 
thermo-acidophilic red algae draw interest for their unique biology and simple characteristics, 77 
which position them as useful model organisms and as candidates for biotechnology applications 78 
(3–6). For example, C. merolae is of interest because it is one of few organisms which relies on 79 
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photosynthesis in geothermal spring environments, where hot and acidic conditions restrict the 80 
availability of inorganic carbon and challenge biological carbon fixation (1, 7). Notably, 81 
organisms of acid waters can only access approximately 10 micromolar inorganic carbon, as the 82 
inorganic carbon pool at acid pH is primarily the volatile species CO2. In comparison, organisms 83 
of near-neutral and alkaline waters may have access to several millimolar of inorganic carbon, 84 
due to accumulation of the involatile bicarbonate (8). 85 
 C. merolae is thought to survive in its challenging environment in part by operating a 86 
carbon-concentrating mechanism (CCM) (9–11). CCMs boost carbon-fixation efficiency by 87 
concentrating CO2 around rubisco, providing ample substrate for carbon-fixation and inhibiting a 88 
competing oxygen-fixation reaction of rubisco. Evidence supporting a CCM in C. merolae 89 
includes measured accumulation of carbon in the cell, d13C consistent with a CCM, similar 90 
growth rates under ambient and elevated CO2, transcriptional response of potential CCM genes 91 
to CO2 fluctuations, and substantial CO2 assimilation at low environmental CO2 concentrations 92 
(9–12). However, many of these indications of the CCM are not definitive: in particular, it is not 93 
known how much of C. merolae’s ability to assimilate CO2 efficiently could be explained by the 94 
affinity of C. merolae rubisco for CO2. Thus, we here provide further evidence for the CCM in 95 
C. merolae by demonstrating that the affinity of C. merolae cells for CO2 is better than could be 96 
explained by the affinity of C. merolae rubisco for CO2. 97 
 C. merolae’s CCM may be described as a “novel” or “non-canonical” CCM, as the C. 98 
merolae CCM must operate differently from the few CCMs which are well-characterized. Unlike 99 
algae and cyanobacteria with well-characterized CCMs, C. merolae is not able to take up 100 
external bicarbonate, and C. merolae lacks anatomy associated with the pyrenoid CCM organelle 101 
(10, 11, 13, 14). The absence of these CCM features in C. merolae challenges our understanding 102 
of how algal CCMs work, and presents the opportunity to define essential CCM components. We 103 
thus used mathematical modeling, informed by new experimental measurements, to explore how 104 
the C. merolae CCM may function.  105 

Research on CCMs has long employed mathematical models to understand the 106 
components of functional CCMs in model cyanobacteria and algae. A particular area of interest 107 
in CCM modeling is the possibility of boosting crop productivity by engineering CCMs into 108 
crops which lack CCMs (15–18). We sought to add to the inspiration for these engineering 109 
efforts by modeling a heat-tolerant CCM with minimal components which offers unique 110 
possibilities for plant engineering (19). To draw robust conclusions about cellular characteristics 111 
which can support a CCM, we used state-of-the-art statistical methods to define the effects of 112 
model parameters on the predicted photosynthetic phenotype while limiting unwarranted a priori 113 
assumptions.  114 

Some sets of model input parameters produced model outputs which met empirically-115 
based criteria for functional carbon concentration and efficient energy usage, and we identified 116 
input parameters which have substantial impacts on the model outputs. Overall, our model of a 117 
hypothetical biophysical CCM which requires minimal enzymes and anatomical features (Figure 118 
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1) appears to represent a feasible CCM structure in C. merolae, which invites further research 119 
into the sources of environmental resilience in extremophile algae. 120 

 121 
Methods 122 

 123 
Experimental data collection 124 
Extraction, purification, and kinetic assays of C. merolae rubisco; and measurement of gas-125 
exchange parameters by open-path infra-red gas analysis, were as detailed in Supplemental 126 
Methods. 127 
 128 
Model details 129 
The hypothetical CCM described in this study (Figure 1) was modeled as a set of well-mixed 130 
compartments and represented as a system of ordinary differential equations (ODEs). In this 131 
minimal biophysical CCM, carbon diffuses into the cell as CO2, is trapped in the cytosol as 132 
bicarbonate by action of carbonic anhydrase, and is pumped into the chloroplast, where a second 133 
carbonic anhydrase provides CO2 around rubisco. No pyrenoid diffusion barrier is present, 134 
though we accounted for potential effects of the concentric thylakoids which are present in C. 135 
merolae and many other aquatic photosynthetic organisms (22).  136 

The model geometry is based on the cellular structure of C. merolae as apparent in 137 
published micrographs of this alga (22–31). The modeled cell and its boundary layer form a 138 
series of concentric spherical well-mixed compartments. The cell is enclosed by a lipid bilayer of 139 
radius !"#$%&!"##. The cell is surrounded by a medium boundary layer of radius 2 ∗ !"#$%&!"##, 140 
beyond which lies an infinite external medium.  The cell contains a cytosol of radius  !"#$%&!"## 141 
and a chloroplast stroma space of radius 0.25 ∗ !"#$%&!"##.  142 
 Molecules cross the boundary of the stroma space according to diffusion or transport 143 
equations. For flux calculations, the boundary consists of 1 to 7 lipid bilayers of negligible 144 
thickness that are evenly spaced from 0.5 ∗ !"#$%&!"## to 0.25 ∗ !"#$%&!"##. This boundary 145 
structure represents the fact that the C. merolae chloroplast is surrounded by a chloroplast 146 
envelope and by approximately 4 to 6 thylakoids which appear as concentric circles or spirals in 147 
thin-section microscopy (22). A range of possible transport scenarios (how many membranes 148 
molecules must cross when crossing between the cytosol and stroma, and how much energy this 149 
crossing costs) are captured by varying parameters Membranes and Pumpcost.  150 

Diffusion through lipid membranes was described using estimates of conductivity of lipid 151 
membranes to the chemical species in question: 152 

,$"$%&'("	*+,,-.+/( = ./0#%12$3$240 ∗ ([7]1 − [7]2)	 (<=) 153 
Where Conductivityx is the conductivity –  in units of µm3/s – of chemical species X through a 154 
lipid bilayer, and [X]A and [X]B are the concentrations of that species on the two sides of that 155 
lipid bilayer. Diffusion into or out of the medium boundary layer was described as an analogous 156 
simple diffusion flux, with conductivity determined according to diffusion coefficients through 157 
water at the boundary layer thickness. Lipid permeability coefficients for CO2 and HCO3- and the 158 
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water diffusion coefficient for O2 were sourced from the literature (Table S1), and other 159 
necessary gas permeability and diffusion coefficients were determined from the literature values 160 
by Graham’s law of diffusion: 161 

>3
>4
=	?

@3

@4
(<A) 162 

Where the rates of diffusion r1 and r2 for two different ideal gases, here CO2 and O2, are related 163 
according to their two molar masses M1 and M2.  164 

To describe diffusion of CO2, HCO3-, and O2 through variable numbers of stacked 165 
thylakoid membranes, an overall conductivity through all of the layers was calculated as: 166 

B3C>"DD	./0#%12$3$24 = EF(4H>(
4 ∗ ./0#%12$3$240)

53
(

+63

I

53

(<J) 167 

Where rn is the radius of the sphere formed by the nth thylakoid membrane. This overall 168 
conductivity value is then used in (E1) to describe the movement of a chemical species from the 169 
outer stroma into the inner stroma space, as shown in Figure 1. We assume that small gas 170 
molecules diffuse easily around membrane proteins, so that the diffusion of CO2 and O2 through 171 
any modeled membrane is potentially impeded by increased path length, but is not impeded by 172 
CO2 and O2 passing through high-resistance protein material. 173 

Spontaneous interconversion of CO2 and HCO3- (E4-5) was described using simple first-174 
order kinetics, according to the rate constant of the dehydration (slower) step of the 175 
interconversion: 176 

,78!	9:*&';+/( = K4[.B4]	 (<L) 177 
,<78"#	*"9:*&';+/( = K54[M.B=

5][M>]	 (<N) 178 
Note that CO2 must first be hydrated to H2CO3, which is then deprotonated to yield the HCO3- 179 
ion. However, because the interconversion of HCO3- and H2CO3 is essentially instantaneous 180 
relative to the hydration-dehydration reaction, here we ignore the H2CO3 species and 181 
approximate the spontaneous interconversion as the hydration-dehydration reaction.  182 

The interconversion of CO2 and HCO3- by carbonic anhydrase was described as in (16): 183 

,71 =
[.O] ∗ .O?!'; ∗ P[.B4] −	

[M.B=
5][M>]
Q'

R

Q$
78! + [M.B=] T

Q$
78!

Q$
<78"#U + [.B4]

(<V) 184 

Where the Ka value is the overall Ka for the CO2/HCO3- system. This value is temperature-185 
sensitive and was calculated using the R package seacarb package (32). Other potentially 186 
temperature-sensitive parameters receive temperature adjustments according to Q10 or Q15 187 
factors. 188 

Carboxylation by rubisco was described as with the assumption that CO2 is limiting, as in 189 
(33): 190 
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3! =
WX"Y!'&%/@:#';+/([.B4]

Z[.B4] + Q$
78! T1 +

[B4]

Q$
8!U\

(<])
 191 

To estimate oxygenation, we estimate vc/vo (carboxylation flux over oxygenation flux) from the 192 
CO2/O2 specificity (Sc/o) of rubisco and chloroplast CO2 and O2 concentrations (E8), and then use 193 
this to arrive at vo.  194 

3!
3/
= ^!/ T

[.B4]
[B4]

U (<_) 195 

The pumping of HCO3- across the stack of thylakoid membranes by a bicarbonate pump was 196 
described by simple Michaelis-Menten kinetics: 197 

,<78"#	A-$A =
W$'@[M.B=

5]

Q$ + [M.B=
5]

(<`) 198 

Respiration in the light (RL) was estimated from experimental data according to a modified Kok 199 
method, by measuring under sub-saturating light intensities and extrapolating CO2 release in the 200 
absence of light (Figure 2). The mean measured value of RL was normalized to cell size for use 201 
in the model: we assume that the empirical measurement of RL we obtained was, on a per cell 202 
basis, characteristic of a C. merolae cell of a radius of 1 µm. Under the assumption that RL should 203 
vary proportionally with cell volume, we normalized RL as follows: 204 
 205 

!B(/&$'#+C"* = !B$"'.-&"*
D/#-$"

D/#-$"$%&
(<=a) 206 

ATP costs for the cell were estimated as:  207 
Obc;/;'# = 33! + 3.53/ + e,<78"#	A-$A ∗ @CXf>"0C& ∗ c%Xg!/.;h (<==) 208 

Where Membranes is the number of thylakoid stacks and Pumpcost is the assumed cost, in ATP, 209 
of pumping a single HCO3- ion across a lipid bilayer by the hypothesized pump. 210 

A full list of all flux equations and the system of ODEs used to describe the system can 211 
be found in Supplemental Materials. 212 
 213 
Definition of reasonable model output values 214 
To ensure the model reproduced experimental results, we used new and published experimental 215 
data to set acceptable bounds for the following model outputs: CO2 compensation point (ΓCO2), 216 
the ratio of ATP consumption flux to net CO2 assimilation flux (ATP per CO2), the steady-state 217 
CO2 concentration in the chloroplast stroma (stromal CO2), and the ratio of oxygen-fixation flux 218 
to carbon-fixation flux (vo/vc). Selection and justification of these bounds are detailed in  219 
Supplemental Methods. 220 
 221 
Model optimization and estimation of simulated compensation point 222 
Steady-state fluxes and metabolite concentrations were solved using odeint() from Python’s 223 
SciPy library (34). Latin hypercube parameter sampling (35) and curve-fitting to generate 224 
compensation point estimates were as detailed in Supplemental Methods. 225 
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 226 
Parameter exploration and surrogate model selection 227 
In order to thoroughly explore the 19-dimensional parameter space in a computationally-feasible 228 
way, we trained a surrogate machine-learning model on the mechanistic CCM model. By 229 
emulating the intricacies of the mechanistic model, surrogate modeling faithfully captures 230 
dynamics of complex systems while alleviating the substantial computational costs associated 231 
with obtaining results. Surrogate modeling additionally gave us access to powerful statistical 232 
tools for machine-learning model analysis, including SHapley Additive exPlanations (SHAP) 233 
(36) and partial dependence (PD) plots (37).  234 

To identify the optimal surrogate model for parameter exploration, we compared four 235 
popular machine-learning models: eXtreme Gradient Boosting (XGBoost) (38), Local 236 
approximate Gaussian Process (laGP) (39), single-layer Neural Network (NN) (40), and Deep 237 
Neural Network (DNN) (38). We collected a 240,000-sized dataset, where the outputs were 238 
simulated from the CCM model at space-filling input locations. 90% of the data was used for 239 
training the surrogate, and the remaining 10% was used as the test dataset to validate the model 240 
performance. The evaluation of prediction performance was based on the root-mean-square error 241 
(RMSE): 242 

!@^i = jF
(4+ − 4k+)4

0;".;

('()'

+63

, 243 

where 4+ is the $-th test output and 4k+ is the $-th predicted model output.  244 
Model outputs had varying scales and degrees of skew, so to effectively compare 245 

prediction performance on different model outputs, a normalized RMSE (NRMSE) was 246 
calculated. The NRMSE was calculated as the RMSE divided by 4$'@ −	4$+(, where 4$'@ is 247 
the highest test output and 4$+( is the lowest test output.  248 

From the model evaluation (Table S2), it appears that XGBoost outperformed other 249 
models for vo/vc and ATP per CO2, and remained comparable for ΓCO2 and stromal CO2. As such, 250 
XGBoost was used as the surrogate model for further analyses. 251 
 252 
Results and Discussion 253 

 254 
 255 
Rubisco kinetics demonstrated that C. merolae operates a CCM 256 
 257 
In previous work, we determine that if C. merolae has rubisco kinetics similar to other red algae, 258 
then this alga must operate a CCM to maintain its measured photosynthetic efficiency. 259 
Alternatively, its measured photosynthetic efficiency could be explained by unprecedented rubisco 260 
kinetics, meaning enzyme properties favoring carbon-fixation over oxygen-fixation to an 261 
unprecedented degree (10). Here we confirmed that C. merolae rubisco kinetics are similar to those 262 
of other red-type (Form 1D) rubiscos (41–43). C. merolae rubisco had a strong affinity for CO2 263 
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(low KC), a poor affinity for O2 (high KO), and a slow carboxylation rate (low kcatC) (Figure 2). 264 
Consistent with other studies, kcatC and KC were higher when measured at increased temperature, 265 
while KO was lower. Although KO is a component of rubisco specificity (Sc/o) and Sc/o decreases 266 
with increased temperature, in vitro KO is observed to decrease with increased assay temperature 267 
in some species (42, 44, 45). 268 

These kinetics findings indicated C. merolae does operate a CCM, as C. merolae cells had 269 
higher affinity for CO2 than C. merolae rubisco (8.71 ± 1.7 µM cell KC vs. 24.9 ± 3.2 µM rubisco 270 
KC at 45 °C, p = 0.008 by two-sample t-test) (Figure 2). This result adds to the indications of the 271 
CCM in C. merolae (9–11).  272 

 273 
Quantitative modeling showed that a hypothesized CCM can explain C. merolae’s carbon-274 
concentrating behavior  275 

 276 
To explore how the C. merolae CCM may operate, we constructed a functional model of a CCM 277 
(Figure 1). This model demonstrated that there were parameter sets consistent with the empirical 278 
literature that result in a functional CCM, despite the minimal model structure (Figure 3). Our 279 
results provided quantitative support for a CCM taking inorganic carbon from the environment 280 
solely through CO2 diffusion into the cell, which we term a “non-canonical” or “novel” CCM 281 
due to its differences in structure and function from CCMs that have been characterized in detail. 282 
Though there is speculation that extremophilic red algae may use a C4-like CCM, it has been 283 
previously proposed that acidophile algae may accumulate carbon by a “bicarbonate-trap” or 284 
“acid-loading”  mechanism similar to our modeled CCM (7, 12, 15, 46, 47). Briefly, bicarbonate 285 
would be concentrated for enzymatic action by bringing inorganic carbon speciation near 286 
equilibrium in near-neutral cellular compartments, since the predominant inorganic carbon 287 
species from pH ~6 to ~10 is the poorly-membrane-permeable bicarbonate. 288 

We used two strategies to deeply explore the model parameter space and ensure that our 289 
conclusions were robust. First, the model included new experimental data on gas-exchange and 290 
rubisco parameters central to photosynthetic efficiency (Figure 2). Second, we developed a 291 
method for thoroughly assessing the model’s sensitivity to the value of model parameters of 292 
interest. Specifically, we were interested in 19 of the 43 model parameters which were 293 
biologically interesting in relation to the function of a novel CCM and which were not well-294 
characterized physical constants (Table S1). We thus sampled input parameter sets through a 295 
Latin hypercube design (35). Latin hypercube sampling enhanced analysis accuracy by 296 
mitigating sampling bias, as it produced parameter sets distributed throughout the 19-297 
dimensional parameter space of interest. Then, each input parameter set was used to 298 
parameterize the model and to generate a set of outputs for analysis. 299 
 Some of the input parameter sets produced outputs consistent with a functional CCM 300 
with reasonable energy cost. Of particular interest were the parameter sets which met all the 301 
empirically-based criteria for a realistic and functional CCM (criteria selection described in 302 
Supplemental Methods). 13,998 of 240,000 (6%) of parameter sets fulfilled the two competing 303 
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objectives of functional carbon concentration (corresponding to outputs of low ΓCO2, high 304 
stromal CO2, and low vo/vc) and efficient energy usage (corresponding to output of low ATP per 305 
CO2) (Figure 2).  306 

The generated parameter sets allowed us to explore the trade-offs associated with various 307 
features related to the CCM. For example, adding additional concentric thylakoids slightly 308 
improved carbon concentration by presenting barriers to CO2 leakage out of the chloroplast, but 309 
incurred additional energy costs (Figure 4, Figures S1 – S2). This is consistent with other 310 
modeling studies indicating that thylakoid membranes could affect inorganic carbon diffusion (15, 311 
48).  312 
 313 
Machine-learning-based surrogate models identified the parameters that most influence 314 
CCM efficiency 315 
 316 
Like most mathematical models of photosynthetic systems, this model faced the challenge of 317 
drawing robust conclusions while using parameters which, although bounded by their 318 
relationship to physical processes, have substantial uncertainty (Table S1). To model a system 319 
with limited biochemical data while not constraining input parameters to a greater degree than 320 
was supported by the literature, it was important to assess uncertainties which seemed likely to 321 
have substantial and interdependent effects on the model. For example, the input parameter 322 
describing permeability of a lipid bilayer to CO2 (PlipCO2) has reported values ranging over 323 
several orders of magnitude (Table S1). Furthermore, the effect of PlipCO2 in the model 324 
depended on the value of other parameters, such as the number of lipid bilayers which pose a 325 
barrier to carbon moving between the stroma and cytosol (Membranes). PlipCO2 and similar 326 
parameters were unlikely to be satisfactorily explored by classical local sensitivity analyses, 327 
which involve tracking model outputs when individual parameters are varied by a set fraction of 328 
the parameter’s original value. Therefore, to reveal which model conditions were necessary for 329 
the modeled CCM and to identify interesting directions for future investigation, we used 330 
statistical methods to identify impactful parameters and to identify which input spaces 331 
corresponded to target output ranges. These statistical methods involved training a surrogate 332 
machine-learning model on our CCM model inputs and outputs. Interpretations of this surrogate 333 
model identified which zones in the input parameter space contained the most combinations 334 
fulfilling output criteria (Figure 5 lower left), quantified how much each input parameter 335 
affected the prediction of outputs by the surrogate model (Figure 5 upper right), and visualized 336 
the response of model outputs to inputs (Figures S4 – S7).  337 

Some input parameters had little impact on model outputs. For these parameters, values 338 
from across the input range were evenly represented in the parameter sets meeting all output 339 
criteria, which is reassuring for future modeling and engineering efforts that involve these 340 
features. The parameters with relatively little impact on outputs included values related to 341 
carbonic anhydrase concentration and kinetics ([CA], CAkcat, KmCO2 and KmHCO3- for carbonic 342 
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anhydrases), chloroplast pH, and values related to bicarbonate membrane permeability (PlipHCO3-343 
, Q10PlipHCO3-, Figure 5, Figures S4 – S8). 344 

Other parameters were more constraining in the model, indicating their importance in 345 
producing a functional CCM. For example, six parameters appeared to impact all four of the 346 
target model outputs in the mean absolute SHAP plots: Vc, Vmaxpump, Kmpump, pH in the cytosol, 347 
PlipCO2, and Membranes. As might be expected in a model relying on a cytosolic bicarbonate 348 
trap followed by bicarbonate pumping, parameter sets that successfully and efficiently 349 
concentrated carbon tended to have cytosolic pH at or above the pH where bicarbonate 350 
predominates (cytosol pH above 6), and tended to have a lower ATP cost of pumping 351 
bicarbonate (low Pumpcost), as well as faster and higher-affinity bicarbonate pumps (high 352 
Vmaxpump, low Kmpump).   353 

Other features enriched in parameter sets meeting output criteria were a cell radius in the 354 
middle of the input range (moderate Radiuscell), and a lower CO2 membrane permeability (low 355 
PlipCO2, Figure 5, Figures S4 – S9). This suggested an important relationship between the 356 
volumes where metabolism occurs and the surface areas which present diffusion barriers 357 
between compartments.  As the radius of the cell increases, CO2 loss from RL may overcome the 358 
ability of the cell to acquire carbon through passive diffusion into the cell. Conversely, as the 359 
radius of the cell decreases, less absolute bicarbonate pumping would be necessary to achieve 360 
high rubisco saturation, especially when rubisco is slow (low Vc). In low-radius scenarios, “over-361 
pumping” bicarbonate could reduce energy efficiency. 362 
 363 
In silico knockouts identified experimental targets for further characterization of the C. 364 
merolae CCM 365 

 366 
The modeling also suggested interesting directions for investigating enzymatic components of 367 
the CCM. Alternative models with CCM enzymes removed (carbonic anhydrases or bicarbonate 368 
pumping not functional) were less likely to meet the criterion of a ΓCO2 indicative of functional 369 
carbon concentration, but tended to have lower ATP per CO2 cost than the model with all 370 
enzymes present (Figure 4, Figures S1 – S2).  371 

The modeled CCM functioned without fine details of cellular structure that support 372 
photosynthesis in other organisms, such as rubisco aggregation into an area smaller than the 373 
stroma, recapture of mitochondrially-respired CO2, and perforations or interconnections in 374 
concentric thylakoids (9, 49, 50). It may still be of interest to explore whether similar structures 375 
exist in C. merolae, and to investigate the biochemical and molecular basis for this novel CCM. 376 
 377 
Further applications of surrogate modeling and uncertainty quantification 378 
 379 
More broadly, the statistical approach adopted in this paper represents an advance in metabolic 380 
and biochemical modeling. By training a surrogate model on the parameter space of mechanistic 381 
biological models, we can understand and account for high-dimensional uncertainty in model 382 
parameters.  Metabolic modeling in general has been highlighted as a particularly promising 383 
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application of surrogate modeling, since metabolic modeling has biotechnological potential but is 384 
challenged by the complexity of metabolism and by the “trial and error” process which is often 385 
required to produce a working metabolic model (21). Surrogate modeling has found uses in 386 
dynamic flux balance analysis and process modeling for bioprocesses (51, 52). Our work 387 
expands on these investigations by demonstrating what is to our knowledge the first application 388 
of surrogate modeling to ODE-based compartmental modeling of biological systems. Our 389 
methods may be particularly valuable for models that have poorly-defined parameters or are 390 
extremely computationally expensive. For example, the implementation of surrogate modeling 391 
described here could alleviate current limitations in interpreting reaction-diffusion models and 392 
genome-scale metabolic models (21).  393 

Effective parameter exploration and analysis may generally be useful in confronting 394 
global challenges. Here, we used statistical sampling, surrogate modeling, and uncertainty 395 
quantification methods to investigate how aquatic organisms achieve the high photosynthetic 396 
efficiency that enables them to be responsible for approximately half of global photosynthetic 397 
CO2 consumption (53). Similar modeling techniques may be applied effectively to any system: 398 
for example, as part of engineering efforts for bioproduction, crop resilience, and other goals, it 399 
may be useful to determine which features of a system are essential or inflexible in silico before 400 
devoting resources to in vivo experimentation.  401 

In conclusion, the extremophilic red microalga C. merolae operates a CCM, as evidenced 402 
by this alga having gas-exchange behavior which was not explained by its rubisco properties. 403 
Mathematical modeling suggested that this CCM could consist of a minimal mechanism which 404 
includes thylakoid membranes as diffusion barriers. Robust parameter exploration and statistical 405 
analysis, aided by the use of a surrogate model, allowed us to quantify the sensitivity of our 406 
model to parameter uncertainties, identify important parameter interactions, and identify key 407 
determinants of CCM efficiency. Therefore, in addition to supporting the presence of a novel 408 
CCM in C. merolae, our results shed light on what conditions must be met for this CCM to 409 
function and the essential elements of biophysical CCMs in general. 410 
 411 
Code availability 412 

 413 
Model code used in this study can be accessed via GitHub: https://github.com/anne-414 
steensma/Cmerolae_CCM_model. 415 
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 469 

 470 

 471 
Figure 1. Cross-section of model structure. This model describes fluxes (indicated by arrows) 472 
and pools (indicated by molecular formulas) of a simplified dissolved inorganic carbon system 473 
(CO2, HCO3-) and of oxygen (O2). Molecule pools can be present in several well-mixed 474 
compartments: the bulk external medium surrounding the cell, an unstirred boundary layer of 475 
medium around the cell, the cytosol, or a central stromal space of the chloroplast. Circles mark 476 
enzymatically-catalyzed fluxes. Compartments are not drawn to scale. PR = photorespiratory 477 
CO2 release, RL = respiration in the light. All fluxes are reversible and are assigned an arbitrary 478 
direction, except those fluxes which represent producing or consuming material. 479 
 480 
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 481 
Figure 2. Experimental data incorporated into the model. (A,B). Response of net assimilation in 482 
C. merolae to (A) CO2 availability and (B) light availability. Points are mean ± SE (n = 3), and 483 
parameters calculated from the data are indicated in the upper left corner of each plot as mean ± 484 
SE. Dashed lines indicate trend fits used to determine Kc and RL. The linear fit used to determine 485 
ΓCO2 is not pictured. (C) Kinetic properties of C. merolae rubisco. Rubisco turnover rate for CO2 486 
fixation (kcatC), Michaelis-Menten constant of CO2 fixation (KC), and Michaelis-Menten 487 
constant of O2 fixation (KO) were measured at 25 and 45 °C. Data is mean ± SE, n = 4. 488 
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 494 
Figure 3. (A) Values of key model outputs. Parameter sets are organized into a 2-dimensional 495 
histogram according to their output values of ΓCO2 and ATP per CO2, with dashed lines 496 
indicating bounds for acceptable values of these outputs. 80 parameter sets (0.03% of total) are 497 
not pictured on the figure, as they produced negative ATP per CO2 values and could not be log-498 
transformed. (B) Percentages of parameter sets meeting various combinations of output criteria. 499 
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 506 
Figure 4. (A, B) Effect of model input parameter Membranes (x-axis) on key model outputs. 507 
Distribution of parameter set outputs for each value of Membranes is represented by a box plot 508 
overlaid on a violin plot. Shaded areas represent unacceptable values of outputs. (A) Effect of 509 
Membranes on model output ΓCO2. (B) Effect of Membranes on model output ATP per CO2. 80 510 
parameter sets (0.03% of total) are not pictured in this panel, as they produced negative ATP per 511 
CO2 values and could not be log-transformed. (C, D) Effect on key model outputs when 512 
bicarbonate transport or carbonic anhydrases (CAs) are removed from the model. Distribution of 513 
parameter set outputs for each scenario is represented by a box plot overlaid on a violin plot. 514 
Shaded areas represent out-of-bounds values of outputs. The same sampling of input parameter 515 
sets was run through models representing each scenario. (C) ΓCO2 in model scenarios where 516 
various model features removed, with indication of how many parameter sets met output criteria 517 
in each scenario. (D) ATP per CO2 in model scenarios where bicarbonate transport activity at the 518 
chloroplast boundary is removed. 6,991 parameter sets producing negative ATP per CO2 values 519 
(0.6% of total) are not pictured in this panel. 520 
 521 
 522 
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 523 
Figure 5. (upper right bar plots) Mean absolute SHapley Additive exPlanations (SHAP)  plots 524 
for each output criterion. (lower left density plots) Density plots of parameter sets meeting all 525 
output criteria, organized by selected pairwise input parameter (input parameters pictured are 526 
those input parameters with high SHAP values for all output criteria). Darker areas indicate areas 527 
where more parameter sets meeting criteria occur. Scales of color vary for each plot). 528 
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SUPPLEMENTAL MATERIAL 539 
 540 
Supplemental Methods 541 

 542 
Model optimization and estimation of simulated compensation point 543 
In order to characterize the response of key outputs and robustness of conclusions to a wide 544 
range of possible parameterizations of the model, we used Latin Hypercube Sampling to explore 545 
240,000 parameter combinations according to the bounds specified in (Table S1). These 546 
simulations were run on Michigan State University’s High Performance Computing Cluster. 547 
Compensation point estimates were generated for every parameter set by running the model at 548 
external CO2 concentrations ranging from 0.0001 to 1000 µM, constructing a cubic spline from 549 
the resulting curve of net CO2 assimilation vs. external CO2 concentration, and identifying the 550 
root of this spline to find the compensation point. Each simulation was verified to reach steady-551 
state (metabolite concentration solutions changing 0.01% or less from previous value). 552 
 553 
Definition of reasonable output values  554 
CO2 compensation point (ΓCO2) 555 
We accepted ΓCO2 values less than or equal to 2.70 µM, corresponding to no more than twice the 556 
mean measured value (Figure 2). 557 
 558 
Ratio of ATP consumption flux to net CO2 assimilation flux (ATP per CO2) 559 
We accepted ATP per CO2 values which were less than or equal to 25 and greater than 0. 560 
Measured light response curves indicated how much additional light absorption drives additional 561 
CO2 assimilation (Figure 2) We used this data to estimate how much additional ATP production 562 
drives an additional CO2 assimilation, using the photon per ATP values for various light-reaction 563 
pathways (53), the cylindrical geometry of the gas-exchange sample chamber, and the measured 564 
density of cells in the sample. The resulting estimated values were: 13.8 ± 2.19 ATP 565 
produced/CO2 assimilated (mean ± SE, assuming cyclic and linear electron flow operating 566 
equally) or 17.4 ± 2.76 ATP produced/CO2 assimilated (mean ± SE, assuming linear electron 567 
flow only operating). This suggests that ATP per CO2 values of up to roughly 25 are supported 568 
by photosynthetic electron flow. The lower bound of the acceptable range excludes a few 569 
parameter sets outputting negative ATP per CO2, since these parameter sets represent 570 
particularly non-functional CCM scenarios with negative net assimilation values under ambient 571 
CO2 conditions. 572 
 573 
Steady-state CO2 concentration in the chloroplast stroma (stromal CO2)  574 
We accepted chloroplast CO2 concentration values of greater than or equal to the CO2 575 
concentration in the medium under 400 ppm CO2 atmosphere, by the logic that a functional CCM 576 
should result in rubisco accessing a greater CO2 concentration than is available from ambient 577 
medium.  578 
 579 
Ratio of oxygen fixation flux to carbon fixation flux (vo/vc) 580 
We accepted vo/vc values less than or equal to 0.3, based on data and models indicating that 581 
plants without CCMs are unlikely to achieve vo/vc less than approximately 0.3 (54). 582 
 583 
Experimental data collection: gas-exchange measurements 584 
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Cyanidioschyzon merolae 10D was grown as cultures in Erlenmeyer flasks in 50 mL of medium 585 
containing 40 mM (NH4)2SO4, 4 mM MgSO4 × 7H2O, 8 mM KH2PO4, 0.75 mM CaCl2 × 2H2O, 1 586 
mL L-1 Hutner’s Trace Elements solution, and H2SO4 to pH 2.7 (recipe modified from MA2 587 
medium recipe of (55)). Cultures were maintained at 40 °C under 100 µmol m-2 s-1 white light, 588 
with aeration by shaking at 100 rpm. For gas-exchange measurements, cultures of OD750 1.0 – 589 
1.2 were resuspended in growth medium to OD750 0.6 (1.60x107 – 3.68x107 cells/mL). Gas-590 
exchange parameters were measured in a LI-6800-18 Aquatic Chamber (LI-COR Biosciences) at 591 
45 °C, following the procedures of (10). 592 
 593 
Experimental data collection: rubisco kinetics measurements 594 
We purified rubisco from C. merolae biomass with a  protocol adapted from (2, 56). 595 
Approximately 60 grams of biomass were lysed by freeze-thawing followed by mechanical 596 
homogenization. Crude rubisco was polyethylene-glycol-precipitated from clarified homogenate 597 
and purified by FPLC. FPLC fractions eluting under the major UV trace peak were assayed by 598 
SDS-PAGE and by spectrophotometric rubisco activity assay (procedures adapted from (57, 58)) 599 
(Figure S3). Fractions containing active semi-pure rubisco were pooled, concentrated with a 100 600 
kDa centrifugal concentration filter, and snap-frozen for use in rubisco assays. 601 

Purified rubisco was used to determine catalytic properties as described previously (43), 602 
with some alterations to protein desalting and activation: concentrated protein aliquots were first 603 
diluted with activation mix containing 100 mM Bicine-NaOH pH 8.0, 20 mM MgCl2, 10 mM 604 
NaHCO3, and 1 % (v/v) Plant Protease Inhibitor cocktail (Sigma-Aldrich, UK). Rubisco was then 605 
activated at 45 °C for 15 min before being used in 14CO2 consumption assays at either 25 °C or 45 606 
°C with CO2 concentrations of 8, 16, 24, 36, 68, and 100 µM. To determine KO, these CO2 607 
concentrations were combined with concentrations of either 0, 21, 40, or 70 % (v/v) O2. kcatC was 608 
determined using measurements with 0% O2. An aliquot of the activated protein was used for 609 
determination of Rubisco active sites via 14C-CABP binding using the method of (59). For 14C-610 
CABP binding, protein aliquots were incubated at 45°C for 15 mins with 14C-CABP to maximize 611 
binding, prior to application to Sephadex columns as previously described (60). Aliquots were also 612 
analyzed via SDS-PAGE alongside known concentrations of plant type Rubisco to strengthen 613 
estimates of Rubisco content.  614 
 615 
ODE System 616 
 617 
#[.B4]!:;/./#

#2
=
W3 + W= + W3E + W3F − W4 − WE − WG

W/D%XC!:;/./#
 618 

#[.B4]%/-(*'&:
#2

=
W3H − W3

W/D%XC%/-(*'&:
 619 

#[M.B=
5]!:;/./#
#2

=
W4 + WE + WI − W= − WF − WH

W/D%XC!:;/./#
 620 

#[.B4]!9#/&/A#'.;
#2

=
WG + W3J − W33 − W34 − WK

W/D%XC!9#/&/A#'.;
 621 

#[M.B=
5]!9#/&/A#'.;
#2

=
WF + WH + WK + W33 − W3J

W/D%XC!9#/&/A#'.;
 622 
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#[B4]!9#/&/A#'.;
#2

=
W3I − W3= − W3G
W/D%XC!9#/&/A#'.;

 623 

#[B4]%/-(*'&:
#2

=
W3K + W3G

W/D%XC%/-(*'&:
 624 

 625 
Model fluxes 626 
See Table S1 and main text for parameter sources, values, and definitions. 627 
 628 
Diffusion of inorganic carbon through membranes or boundary layer (V1, V5, V6, V7, V15, 629 
V18, V19) 630 
Implemented as described in Methods. 631 

W3 = .B4	./0#%12$3$24%/-(*'&:	;/	!:;/./#([.B4]%/-(*'&: − [.B4]!:;/./#) 632 
WG = .B4	./0#%12$3$24!:;/./#	;/	!9#/&/A#'.;(m.B4]!:;/./# − [.B4]!9#/&/A#'.;h 633 

WI = M.B=
5	./0#%12$3$24%/-(*'&:	;/	!:;/./#([M.B=

5]%/-(*'&: − [M.B=
5]!:;/./#) 634 

WF = M.B=
5	./0#%12$3$24!:;/./#	;/	!9#/&/A#'.;([M.B=

5]!:;/./# − [M.B=
5]!9#/&/A#'.;) 635 

W3G = ./0#%12$3$24%/-(*'&:	;/	!9#/&/A#'.;([B4]!9#/&/A#'.; − [B4]%/-(*'&:) 636 
W3H = .B4	./0#%12$3$24"@;"&+/&	;/	%/-(*'&:([.B4]"@;"&+/& − [.B4]%/-(*'&:) 637 
W3K = B4	./0#%12$3$24"@;"&+/&	;/	%/-(*'&:([B4]"@;"&+/& − [B4]%/-(*'&:) 638 

 639 
 640 
Spontaneous interconversion of dissolved inorganic carbon species (V2, V3, V9, V10) 641 
Implemented as described in Methods. 642 

W4 = .B4!:;/./# ∗ K4 ∗ W/D%XC!:;/./# 643 

W= = [M.B=
5]!:;/./# ∗ [M>]!:;/./# ∗ K54 ∗ W/D%XC!:;/./# 644 

WK = .B4!9#/&/A#'.; ∗ K4 ∗ W/D%XC!9#/&/A#'.; 645 

W3J = [M.B=
5]!9#/&/A#'.; ∗ [M>]!9#/&/A#'.; ∗ K54 ∗ W/D%XC!9#/&/A#'.; 646 

 647 
Carbonic-anhydrase-mediated interconversion of inorganic carbon (V4, V11) 648 
Implemented as described in Methods. 649 

WE =

[.O]!:;/./# ∗ .O?!'; ∗ T[.B4]!:;/./# −	
[M.B=

5]!:;/./#[M>]!:;/./#
Q'

U

Q$4
78! + [M.B=]!:;/./# T

Q$
78!

Q$
<78"#U + [.B4]!:;/./#

 650 

W33 =

[.O]!9#/&/A#'.; ∗ .O?!'; ∗ T[.B4]!9#/&/A#'.; −	
[M.B=

5]!9#/&/A#'.;[M>]!9#/&/A#'.;
Q'

U

Q$4
78! + [M.B=]!9#/&/A#'.; T

Q$
78!

Q$
<78"#U + [.B4]!9#/&/A#'.;

 651 

 652 
Active transport (pumping) of bicarbonate from cytosol to stroma (V8) 653 
Implemented as described in Methods. 654 

WH =
WX"YA-$A[M.B=

>]!:;/./#
[M.B=

>]!:;/./# + QXA-$A
 655 
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 656 
Carbon dioxide fixation by rubisco (V12) 657 
Implemented as described in Methods. 658 

W34 =
WX"Y!'&%/@:#';+/([.B4]!9#/&/A#'.;

Z[.B4]!9#/&/A#'.; + Q$
78! T1 +

[B4]!9#/&/A#'.;
Q$
8! U\

 659 

 660 
Oxygen fixation by rubisco (V13) 661 
Implemented as described in Methods. 662 

W3= =
W34

n
3!
3/
o
 663 

 664 
Evolution of carbon dioxide in cytosol as a result of photorespiration (V14) 665 
This flux is determined based on the stoichiometry of photorespiration.  666 

W3E =
1
2
W3= 667 

 668 
Evolution of oxygen into stroma from thylakoid action (V16) 669 
This flux is determined based on the stoichiometry of photosynthesis. 670 

W3I = W34 671 
 672 
Evolution of carbon dioxide in cytosol as a result of respiration in the light (V17) 673 
Implemented as described in Methods. 674 

W3F = !B T
W/D%XC!"##

W/D%XC!"##	L+;9	3M$	&'*+-.
U 675 

 676 
 677 
Supplemental Figures 678 

 679 
 680 
Table S1. Parameter values or ranges used in the model. Values are known or assumed to be at 681 
25 °C, unless otherwise specified. 682 

Parameter 
name 

Parameter 
definition 

Parameter 
value or 
range of 
values 

Source or rationale  

[CA] carbonic 
anhydrase 
concentratio
n, used for 
both 
chloroplast 
and 
cytosolic 

0.04 – 0.69 
mol m-3 

range of stromal CA concentrations calculated 
by (61) 
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carbonic 
anhydrases 

[H+]chloroplast proton 
concentratio
n in the 
chloroplast 
stroma, 
from pH in 
chloroplast  

10-6.35 – 10-8 
M 

range based on generic stroma in light pH to 
average C. merolae intracellular pH reported 
by (11) 

[H+]cytosol proton 
concentratio
n in the 
cytosol, 
from pH in 
cytosol  

10-4.7 – 10-7 

M 
range based on 
neutral pH down to lowest C. merolae 
cytosolic pH implied by (11) 
 

[HCO3
-]boundary HCO3

- 

concentratio
n in 
medium 
boundary 
layer 

0 µM assumption that HCO3
- concentrations are 

negligible at typical growth pH of C. merolae 

CAkcat carbonic 
anhydrase 
hydration 
rate 
constant 

0.16x106 – 
0.3x106 s-1 

range of values reported and cited by (62) 

CO2ppm air 
concentratio
n of CO2, 
used for 
calculation 
of ambient 
medium 
CO2 
concentratio
n 

400 ppm generic air CO2 concentration 

HenryCO2 standard-
temperature 
Henry's law 
constant for 
CO2, used 
for 
calculation 
of ambient 
medium 
CO2 
concentratio
n 

0.035 mol kg-

1 bar-1 
NIST 

HenryO2 standard-
temperature 

0.0013 mol 
kg-1 bar-1 

NIST 
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Henry's law 
constant for 
O2, used for 
calculation 
of ambient 
medium O2 
concentratio
n 

HenrytempCO2 Henry's law 
temperature 
dependence 
constant for 
CO2, used 
for 
calculation 
of ambient 
medium 
CO2 
concentratio
n 

2400 K NIST 

HenrytempO2 Henry's law 
temperature 
dependence 
constant for 
O2, used for 
calculation 
of ambient 
medium O2 
concentratio
n 

1700 K NIST 

k-2 rate 
constant for 
uncatalyzed 
CO2 
hydration 

13.7 s-1 (63) 

k2 rate 
constant for 
uncatalyzed 
CO2 
dehydration  

0.062 s-1 (64) 

KC affinity of 
rubisco for 
CO2 

18.5 – 31.3 
µM 

this study (measured value at 45 °C, range is 
mean ± 2 SEs) 

Km
CO2 in 

carbonic 
anhydrase 
equations 

carbonic 
anhydrase 
affinity for 
CO2 

1.0 – 17.9 
mol m-3 

range of values from (65) 

Km
HCO3- carbonic 

anhydrase 
26.6 – 98.0 
mol m-3 

range of values from (66) 
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affinity for 
HCO3

- 
Kmpump bicarbonate 

transporter 
affinity for 
bicarbonate 

2 – 350 µM range based on values for high- and low-
affinity bicarbonate transporters from 
cyanobacteria (summarized in (67, 68)) 

KO affinity of 
rubisco for 
CO2 

394.0 – 564.6 
µM 

this study (measured value at 45 °C, range is 
mean ± 2 SEs) (Figure 2) 

Membranes number of 
lipid 
bilayers 
around the 
chloroplast, 
including 
outer 
envelope 

1 – 7 bilayers 
(integer 
values only) 

see “Methods: Model geometry” 

O2percent air 
concentratio
n of O2, 
used for 
calculation 
of medium 
O2 
concentratio
n 

21% generic air O2 concentration 

pKa CO2 and 
HCO3

- 
system 
overall pKa 

5.97 (30) 

PlipCO2 CO2 
permeabilit
y coefficient 
of a double 
lipid layer 
membrane, 
used in 
conductivity 
calculations 

3.5x102 – 
1.6x104 µm / 
s 

range from 1/10th of value of (69) to value of 
(70)  

PlipHCO3- HCO3
- 

permeabilit
y coefficient 
of a double 
lipid layer 
membrane, 
used in 
conductivity 
calculations 

2x10-9 – 
1.2x10-6 m/s 

range of values summarized in (61) 

pressureatm atmospheric 
pressure 

1.01325 bar standard atmospheric pressure 
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Pumpcost the assumed 
cost of 
pumping a 
single 
HCO3

- ion 
across a 
lipid bilayer  

0.25 – 2 ATP range from lowest estimated value of (71) to 
twice a generic value 1   

PwaterO2 O2 diffusion 
coefficient 
of water, 
used in 
conductivity 
calculations 

3050 m2 s-1 O2 diffusion coefficient at  45.1 °C (72) 

Q10 CAkcat Q10 for 
parameter 
CAkcat 

2 generic value 

Q10 k-2 Q10 for 
parameter k-

2 

2 generic value 

Q10 k2 Q10 for 
parameter k2 

2 generic value 

Q10 Km
CO2 Q10 for 

parameter 
Km

CO2 

2 generic value 

Q10 Km
HCO3- Q10 for 

parameter 
Km

HCO3- 

2 generic value 

Q10 Kmpump Q10 for 
parameter 
Kmpump 

2 generic value 

Q10 PlipCO2 Q10 for 
parameter 
PlipCO2 

1 - 2 range from generic value 2 to assuming that 
organisms fully maintain membrane 
permeability across temperature 

Q10 PlipHCO3- Q10 for 
parameter 
PlipHCO3- 

1 - 2 range from generic value 2 to assuming that 
organisms fully maintain membrane 
permeability across temperature 

Q10 Sco Q10 for 
parameter 
Sco 

0.6 measured value for a thermophile red algae 
rubisco (40) 

Q10 Vc Q10 for 
parameter 
Vc 

4.5 this study (ratio between kcatC measured at 
45 °C and kcatC measured at 25 °C) (Figure 
2) 

Q10 Vmaxpump Q10 for 
parameter 
Vmaxpump 

2 generic value 

Radiuscell radius of a 
C. merolae 
cell 

0.5 – 2.5 µM (1, 73–77) 
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RL rate of 
respiration 
in the light 

4.95x10-19 
mol s-1 cell-1 

this study (estimated and normalized from 
gas-exchange data as described in Methods) 
(Figure 2) 

Sc/o specificity 
of rubisco 
for CO2 
over O2  

129 – 238 
(molar ratio) 

range of mean specificities Sc/o for 
"taxonomy=Red algae" or 
"taxonomy=Rhodophyte" in rubisco kinetics 
meta-analysis (78) 

temperature temperature 
at which the 
model is run 

45 °C a typical growth temperature of C. merolae 
(2) 

VC maximum 
rate of CO2 
fixation by 
rubisco 

15 – 
44 
mM/
s 

range of ± 50% of the value used by (15) 

Vmaxpump maximum 
rate of 
bicarbonate 
pumping 

185x10-6 – 
22.48x10-6 

mol µm-2 s-1 

range between maximum rates of two 
different cyanobacterial bicarb transporters, 
calculated by (16)  

 683 
Table S2. The test root-mean-square errors (RMSEs) and normalized RMSEs (NRMSEs) of four 684 
machine-learning surrogate models: eXtreme Gradient Boosting (XGBoost), Local approximate 685 
Gaussian Process (laGP), single-layer Neural Network (NN), and Deep Neural Network (DNN). 686 
RMSE XGBoost laGP NN DNN 
ΓCO2 0.1982 1.5054 0.7899 0.1458 
stromal CO2 15.7500 73.2884 66.0004 15.6920 
vo/vc 0.0132 0.1248 0.0547 0.0613 
ATP per CO2 49.8090 173.7715 161.0012 72.2325 
NRMSE XGBoost laGP NN DNN 
ΓCO2 0.0142 0.1080 0.0567 0.0105 
stromal CO2 0.0043 0.0201 0.0181 0.0043 
vo/vc 0.0086 0.0813 0.0356 0.0400 
ATP per CO2 0.0084 0.0293 0.0271 0.0121 

 687 
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 688 
Figure S1. Effect of model input parameter Membranes (x-axis) on CO2 leakage from the 689 
chloroplast (represented as log10(Leak %): the log-transformed percentage relationship between 690 
the CO2 flux from the chloroplast to cytosol and the CO2 assimilation flux). (A) Results for 691 
parameter sets with CO2 diffusing out of the chloroplast (V5 steady-state flux towards cytosol, 692 
rather than towards chloroplast) (n = 191,345). (B) Results for parameter sets concentrating CO2 693 
(low ΓCO2, high stromal CO2 concentration, low vo/vc) (n = 92,764). (C) Results for parameter 694 
sets meeting all output criteria (low ΓCO2, high stromal CO2 concentration, low vo/vc, low ATP 695 
per CO2) (n = 13,998).  696 
 697 
 698 
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 699 
Figure S2. Effect on key model outputs when bicarbonate transport or carbonic anhydrases 700 
(CAs) are removed from the model, looking only at the 13,998 parameter sets that met all four 701 
output criteria in the base model. Distribution of parameter set outputs for each scenario is 702 
represented by a box plot overlaid on a violin plot. Shaded areas represent unacceptable values of 703 
outputs. The same sampling of input parameter sets was run through models representing each 704 
scenario. (A) ΓCO2 in model scenarios where various model features removed, with indication of 705 
how many parameter sets met output criteria in each scenario. (B) ATP per CO2 in model 706 
scenarios where bicarbonate transport activity at the chloroplast boundary is removed. 2,083 707 
parameter sets producing negative ATP per CO2 values (3% of total) are not pictured in this 708 
panel due to log-transformation. 709 
 710 
 711 
 712 
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 713 
Figure S3. SDS-PAGE analysis of rubisco preparation. Lane 1: protein standards (BioRad 714 
Precision Plus Protein Dual Color Standards). Lanes 2 - 10 : fractions from fast protein liquid 715 
chromatography (FPLC) rubisco preparation. Three major bands are observable on the gel, 716 
which are believed to correspond to the rubisco large subunit (expected molecular weight 54 717 
kDa), the rubisco small subunit (expected molecular weight 16 kDa), and the accessory pigment 718 
phycocyanin (composed of two subunits with reported molecular weights of about 15 – 18 kDa 719 
each). Arrows indicate fractions with rubisco activity detectable by a spectrophotometric assay, 720 
which were pooled for further preparation and analysis (see Methods for details). Molecular 721 
weights of rubisco were predicted from amino acid sequences CMV013C and CMV014C 722 
(Cyanidioschyzon merolae Genome Project v3, http://czon.jp/) (75, 79) using the Protein 723 
Molecular Weight Tool from the bioinformatics.org Sequence Manipulation Suite. Molecular 724 
weights of phycocyanin were reported by (4, 80). 725 
 726 
 727 
 728 
 729 
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 730 
Figure S4. Partial dependence (PD) plots of first-order effects for ΓCO2. 731 
 732 
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 733 
Figure S5. Partial dependence (PD)  plots of first-order effects for stromal CO2. 734 
 735 
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 736 
Figure S6. Partial dependence (PD) plots of first-order effects for vo/vc. 737 
 738 
 739 
 740 
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 741 
Figure S7. Partial dependence (PD) plots of first-order effects for ATP per CO2. 742 
 743 
 744 
 745 
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 746 
Figure S8. Ranges of parameters in all parameter sets (pink shaded areas) versus in parameter 747 
sets meeting all output criteria (black points with error bars indicating ± one standard deviation.  748 
 749 
 750 
 751 
 752 
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