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Abstract23

Summary statistics derived from large-scale biobanks facilitate the sharing of genetic discoveries while24

minimizing the risk of compromising individual-level data privacy. However, these summary statistics, such25

as those from the UK Biobank (UKB) provided by Neale’s lab, are often adjusted by a fixed set of covari-26

ates to all traits (12 covariates including 10 PCs, sex and age), preventing the exploration of trait-specific27

summary statistics. In this study, we present a novel computational device UK BioCoin (UKC), which is28

designed to provide an efficient framework for trait-specific adjustment for covariates. Without requiring29

access to individual-level data from UKB, UKC leverages summary statistics regression technique and re-30

sources from UKB (289 GB of 199 phenotypes and 10 million SNPs), to enable the generation of GWAS31

summary statistics adjusted by user-specified covariates. Through a comprehensive analysis of height32

under trait-specific adjustments, we demonstrate that the GWAS summary statistics generated by UKC33

closely mirror those generated from individual-level UKB GWAS (ρ ≥ 0.99 for effect sizes and ρ ≥ 0.9934

for p-values). Furthermore, we demonstrate the results for GWAS, SNP-heritability estimation, polygenic35

score, and Mendelian randomization, after various trait-specific covariate adjustments as allowed by UKC,36

indicating UKC a platform that harnesses in-depth exploration for researchers lacking access to UKB. The37

whole framework of UKC is portable for other biobank, as demonstrated in Westlake Biobank, which can38

equivalently be converted to a ‘UKC-like” platform and promote data sharing. UKC has its computational39

engine fully optimized, and the computational efficiency of UKC is about 70 times faster than that of UKB.40

We package UKC as a Docker image of 20 GB (https://github.com/Ttttt47/UKBioCoin), which can be41

easily deployed on an average computer (e.g. laptop).42

43

One sentence summary: We develop UK BioCoin (UKC), which allows fine-tuning of covariates for44

each UK Biobank trait but does not relay on UK Biobank individual-level data. It will change the current45

landscape of GWAS and reshape its downstream analyses.46
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1 Introduction47

Summary statistics, including estimated allelic effect sizes, standard errors of the estimates and other per-SNP48

features, are increasingly generated from genome-wide association studies (GWAS) across thousands of human49

traits [1, 2]. Compared to individual-level data, summary statistics raise fewer privacy concerns, making them50

a useful intermediary for data-sharing. The availability of publicly accessible summary statistics databases51

is expanding, in response to the growing demand for reproducibility and follow-up analysis of GWAS results52

[3]. The utility of summary statistics, including meta-analysis, gene-based association analysis, polygenic53

prediction, and more, provides insights of genetic architecture of complex human traits, particularly through54

large-scale collaborations among biobanks [4, 2, 5].55

However, the current data-sharing mode based on summary statistics has several limitations. While it is56

common practice to adjust for covariates such as sex and age in GWAS, there is no universally applicable57

set of covariates for all traits, and inappropriately chosen covariates may reduce the power of findings and58

even introduce bias when they act as confounders [6]. For example, UK Biobank (UKB) is one of the most59

cited data sources for GWAS [7, 8], and the available UKB GWAS summary statistics are trained under60

a predefined model, such as released by Neale’s Lab (by adjusting 10 principal components, sex, and age;61

https://nealelab.github.io). As demonstrated in our study of UKB data, the inclusion or exclusion of certain62

covariates can lead to significantly different summary statistics, thereby influencing downstream analyses. An63

ideal summary statistics analysis framework may permit efficient in-depth explorations of different covariates64

setups for each trait. However, refinement of covariates is cumbersome and time-consuming for large-scale65

collaboration, which usually involves several rounds of rerunning GWAS at up to dozens of different biobanks66

[2, 5], highlighting the urgent need for a more efficient engine to generate GWAS summary statistics.67

In this study, we propose a novel framework for summary statistics sharing and presents a working instance68

called UK BioCoin (UKC, herein) corresponding to UKB, targeting both trait-specific and efficient generation69

of summary statistics. The UKC framework promises highly efficient trait-specific covariates exploration while70

maintaining the data-sharing virtue of summary statistics, thereby promoting collaborations, especially in the71

context of large-scale biobank studies.72

As demonstrated, summary statistics generated from UKC and the individual-level UKB is nearly identical73

or practically consistent across a serial of models. Furthermore, the UKC computational kernel reduces com-74

putational time complexity by nearly two orders compared to the UKB GWAS conducted in PLINK2 (PLINK75

herein) [9], and this efficiency significantly facilitates the exploration of competitive GWAS models and in-76

creases the robustness of a study even for researchers who do not directly access UKB resources. The whole77

framework of UKC is comprehensively illustrated using UKB and can be readily applied to other biobanks,78

such as demonstrated in the Westlake Biobank [10].79

2 Results80

2.1 Sketch for UK BioCoin81

In this study, we allow UKC to train a trait-specific GWAS model under the choice of different covariates,82

while anyone using UKC does not require to access UKB individual-level data. As a proof-of-principle study,83

we focus on the analysis of 292,216 unrelated individuals of white British and Irish descent in the UK Biobank84

(UKB Field ID 22021 and 21000). 10,531,641 quality-controlled single nucleotide polymorphisms (10M SNPs85

herein) are included (Fig.1 A). The effective number of SNPs is about me = 161, 688, or equivalently, the86

genomic LD is about 1
me

= 6.18e−6. As expected, chromosomal LD is proportional to inversion of chromosome87

length (Fig.1 B). Fst ≈ 0.00014 indicates little population structure among UKB samples [11]. We examine88

129 conventional UKB phenotypes, comprising 60 continuous traits and 69 categorical traits. Each phenotype89

3

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589273doi: bioRxiv preprint 

https://nealelab.github.io
https://doi.org/10.1101/2024.04.12.589273
http://creativecommons.org/licenses/by/4.0/


is scaled to have a mean of zero and a variance of one. Fig.1 C illustrates the pairwise correlation between the90

129 phenotypes, of which the overall missing rate is 4.1%. These 129 traits can be divided into 8 categories,91

such as baseline characteristics and social demographics according to the UKB catalogue, and more detailed92

information on these traits can be found in Supplementary Data I. We surrogate population structure93

with the top 30 principal components directly estimated from 1 million sampled SNPs from the 10M SNPs94

(UKC-PCs, default PCs for analysis otherwise specified); for comparison and compatibility, we also include95

the top 40 PCs as originally provided by UKB (UKB Field ID 22009; UKB-PCs).96

The UKC framework, described in Fig.1 D-G, comprises two main components. I) The naive summary97

statistics (NSS) derived from UKB individual-level data. NSS is essentially a set of primary GWAS summary98

statistics and is consistent with the data sharing policy for UKB. II) A highly efficient summary statistics99

regression engine [12, 13]. For a GWAS model, the regression engine retrieves the required statistics from100

the NSS to generate trait-specific summary statistics. We evaluate the quality of the UKC results by com-101

paring them with those of individual-level UKB data via PLINK. Compared to PLINK, UKC offers superior102

computational efficiency and demonstrates high consistency with PLINK, particularly when missing rates are103

low. Furthermore, a single quality control metric, the variation of inflation (VIF), can safeguard high-quality104

GWAS summary statistics (Fig.2). The calculation details are provided in the Methods section.105
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Figure 1: Outline of UK BioCoin and its interface to other genetics applications. A) The distribution
of minor allele frequency of the QCed 10,531,641 SNPs included in UK BioCoin (UKC), and their MAFs are
greater than 0.001. B) Chromosome-wise linkage disequilibrium of 22 autosomes. The fitted regression line,
y = 0.00014+57x, indicates the linear correlation between chromosomal LD and the inversion of chromosomal
length. ρ = 0.847 quantifies the correlation between x and y; the intercept of 0.00014 represents genomic Fst.
C) The correlation heatmap of 129 phenotypes used in UKC. D-F) UKC naive summary statistics (E) are
derived from UKB raw data (D). The UKC engine (F) utilizes the NSS to perform regression approximately
70 times more efficient than PLINK while requiring significantly reduced memory. G) UKC results enable
downstream genetic applications.

2.1.1 Generation of Naive Summary Statistics for UK BioCoin107

The generation of UKC NSS mainly involves calculating Pearson’s correlation between each SNP and each108

trait. This process incurs a significant computational cost, approximately O(n(K + Q)P ) depending on the109

number of SNPs (P ), phenotypes (K), eigenvector (Q), and sample size (n). In this study, it totals the110

calculation for 10M × (129 + 30 + 40) Pearson’s correlation, which accounts for 129 traits, 30 UKC-PCs, and111

40 UKB-PCs against each of the 10M SNPs. The main component of UKC NSS is a matrix that consequently112

has dimensions of 199 × 10M , effectively compressing the UKB raw data from nearly 289 GB, encompassing113

129 phenotypes and approximately 10 million QCed SNPs (referred to as 10M SNPs), to less than 20 GB of114

NSS. The correlation between a SNP with each of the 129 traits is equivalent to estimate its effect size in a115

GWAS model without any adjustment, and the correlation between a SNP with UKC-PCs or UKB-PCs is116

known as EigenGWAS [14]. Other complementary summary statistics are generated, such as the variance of117

each SNP, correlation matrix between all traits, but they take much less storage and calculation than the main118

NSS matrix.119

It takes approximately 2 days to generate UKC NSS on a cluster with 60 threads. Although it seems120

expensive to generate the NSS, it brings in significant efficiency in the downstream GWAS for complex traits.121

The details of UKC NSS generation are described in the Methods section.122

2.1.2 Computational Efficiency of UK BioCoin123

The efficient performance of UKC is made possible by both algorithmic and programming advantages. The124

computational complexity for a linear regression is approximately O(np2 + p3) for a testing SNP, where n is125

the sample size and p is the number of covariables in a GWAS. In particular, O(np2) is the cost to generate126

the correlation matrix Ω of p variables and O(p3) the inversion for Ω. On the contrary, UKC constructs Ω by127

accessing the corresponding elements in NSS matrices, so O(np2) is completely dismissed. Furthermore, when128

UKC moves from the ith to the jth locus, only the first column and the first row of Ω are updated (purple129

blocks in green boxes and red block in red box in Fig.1 F) and leave the submatrix Ω−1,−1 (Ω−1,−1 refers130

to the submatrix of Ω by dropping the first row and the first column, and corresponds to the green blocks131

in red boxes in Fig.1) the same for each locus. It enables the blockwise inversion technique, and since the132

inversion of Ω−1,−1 is performed only once for the whole scanning of 10M SNPs, and the original O(p3) for133

Ω−1 is reduced to O(p2) for each locus. So the computational cost of a test SNP is reduced from O(np2 + p3)134

to O(p2).135

Secondly, the UKC computational engine is implemented in C++ and uses the Eigen library for efficient136

and precise matrix computations [15]. UKC leverages the efficient looping capabilities of the C++ language,137

enabling accelerated program execution, particularly for a large-scale dataset containing millions of SNPs.138

UKC adopts a stream processing strategy that minimizes memory consumption by loading only a fraction139

of the data at any given time. Both pre-calculated NSS and advanced programming allow UKC to execute140

multiple tasks simultaneously and efficiently, even on a personal laptop.141

We compare the efficiency of UKC and UKB in conducting the 3 GWAS models for Standing height (UKB142
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field ID: 50) with adjustment of 0, 5, and 10 PCs, respectively. As tested, using 16 threads on a cluster,143

PLINK took about 3 hours to perform GWAS on 10M SNPs with 5 covariates; in contrast, UKC took 0.6144

hours only using a single thread to complete the same task, a boost that improves computational efficiency145

about 80 times. In terms of memory usage, PLINK required approximately 5 GB of peak memory, while UKC146

required less than 5 MB (Tab.1).147

Phenotype Covariates Method Num. of threads Running time Memory used

Standing height

None
PLINK 16 0.79 h 4.89 GB
UKC 1 0.17 h 2.64 MB

5 PCs
PLINK 16 3.05 h 5.11 GB
UKC 1 0.60 h 2.74 MB

10 PCs
PLINK 16 4.49 h 5.29 GB
UKC 1 0.98 h 2.77 MB

Table 1: Comparison of computational efficiency of PLINK and UKC.

2.2 Quality Control for UK BioCoin148

2.2.1 Influence of Phenotype Missing Rates149

UKC generates identical results to those of UKB when there is no missing data (see Methods). However,150

missing data occurs, leading to differences in Ω of different degree, and possibly introduces noise to UKC. We151

incorporated 0, 5, and 10 PCs as the covariates for Standing height (UKB field ID: 50, of low missing rate < 1%)152

for UKC, and for comparison an identical UKB model was then performed in PLINK. We compared the SNP153

effects (βUKCj and βUKBj , and defined bias ∆j = |β̂UKCj − β̂UKBj |) and their corresponding p-values between154

UKC and UKB, and for all three GWASs their respect Pearson’s correlation was greater than 0.999 (Fig.2155

A1-A4). Remarkably, in all 3 GWASs, UKC recovered > 99% significant SNPs (p-value < 0.05
10,531,641 ) as found156

in UKB (Supplementary Data II). We further decomposed the difference for the jth locus ∆j = δj ·VIFj .157

When the model was adjusted by 10 PCs, 1,104 inconsistency SNPs had ∆j > 0.01 on chromosomes 6 (HLA158

cluster), 11, 12, and 17 (red points in Fig.2 A2, A4, B1-B2), and all these SNPs had high VIF; in particular,159

severe inconsistency (∆j > 0.2) was associated with extremely high VIF (VIFj > 50, red triangles in Fig.2160

A2, A4, B1-B2). In this example, the inclusion of too many covariates such as PCs was likely to lead to high161

VIF, which amplified bias. As PCs were orthogonal to each other, we could derive an analytical result, Eq162

14 in Methods, which characterized how biased SNPs were and how their effects were further amplified by163

VIF. To minimize biases introduced by approximation in the UKC, one could use a stringent VIF threshold.164

Excluding the SNPs with VIF > 50, as default in PLINK, removed those severe inconsistent loci (∆j > 0.2).165

Few SNPs had high VIF and that even adopting VIF > 10 as cutoff only removed less than 0.1% of the 10M166

SNPs in the model with 10 PCs.167

Furthermore, we directly examined UKC under exceptionally high missing rates. In this experiment, the168

phenotype was Neuroticism score (UKB field ID: 20127, missing rate of 18.7%) and was adjusted by the top169

five PCs and three covariates of high missing covariates: Exposure to tobacco smoke at home (UKB field170

ID: 1269, missing rate of 9.3%), Snoring (UKB field ID: 1210, missing rate of 6.8%), and Alcohol usually171

taken with meals (UKB field ID: 1618, missing rate of 20.7%). When incorporating additional covariates, the172

inconsistency between β̂UKC and β̂UKB increased, suggesting that the missing pattern of phenotypes included173

in the model was non-random (Fig.2), and the lowest correlations for β and log10(p) were 0.819 and 0.797174

respectively. In general, although UKC produced more conservative estimates when the missing rate was175

high (Fig.2 C2-C4, D2-D4), the significant genetic variants identified by UKC and UKB were generally176

consistent. The details of the results are given in Supplementary Data II. To benchmark the influence177

of missing data, we randomly sampled a phenotype and 3 covariates from the 129 traits, and its identical178
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model was also analyzed using UKB data with PLINK. We repeated this procedure 50 times, and top 5 PCs179

were always included in a model. The consequent correlation for β̂UKC and β̂UKB was 0.937 (s.d. 0.043) for180

log10(p) was 0.901 (s.d. 0.068), respectively. So the influence of missing rate on average was less severe than181

the Neuroticism score example.182

In general, UKC reproduced the GWAS results with remarkable precision when the missing rates of phe-183

notypes were low. In situations with high overall missing rates, estimates might exhibit conservative bias but184

were still closely consistent with results of individual-level data. As VIF was useful to exclude potentially185

misleading GWAS signals, in the analysis below, we used VIF = 50 as the default threshold to remove poten-186

tially abnormal GWAS signals. Synthesizing VIF metrics cost little because each VIF value was windfall for187

its testing SNP (see the Methods section).188
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Figure 2: Performance of UK BioCoin comparing to UK BioBank under various adjustments. A)
Comparison of regression coefficient (A1-A2) and −log10(p) (A3-A4) generated by UK BioCoin and PLINK
for GWAS for Standing height, adjusted for 5 and 10 principal components accordingly. In the model
adjusted for 10 PCs (A2, A4), the SNPs with |β̂UKC − β̂UKB| > 0.01 are highlighted in red, and the SNPs

with |β̂UKC − β̂UKB| > 0.2 and VIF > 50 are labeled with triangles. B) Correlation (B1) and Miami plot

(B2) of VIF and bias (|β̂UKC − β̂UKB|). The included PCs are all UKC-PCs. C-D) Comparison of regression
coefficient (C) and −log10(p-value) (D) generated by UK BioCoin and PLINK when missing rate is higher
than 10%. The target phenotype is Neuroticism score (missing rate ≈ 18.7%), and from left to right the
covariates included were: C1 Exposure to tobacco smoke at home (missing rate ≈ 9.3%), C2 Snoring
(missing rate ≈ 6.8%), and C3 Alcohol usually taken with meals (missing rate ≈ 20.7%) is subsequently
added to the model as covariates.

2.3 UK BioCoin for In-depth Genetic Exploration190

As illustrated in Fig.1, UKC enables in-depth exploration for many genetic studies. We are going to illustrate191

how our UKC can be flexibly integrated into downstream genetic studies, which have GWAS summary statistics192

as input, and uncover the variation of these genetic studies due to trait-specific adjustment. Here, we present193

four typical applications of UKC: I) GWAS of various adjustments; II) SNP-heritability estimation by LD194

score regression (LDSC, [16]); III) polygenic score as generated via “–score” in PLINK [9]); IV) Mendelian195

randomization for exploring casual effects of waist circumference on rheumatoid arthritis.196

2.3.1 Application 1: GWAS with Flexible Covariate Adjustment197

For the subject matter of the presentation, the covariates for GWAS are divided into three categories: I)198

covariates without or of little heritability but of biological significance, such as sex [17]; II) covariates with199

heritability, such as height and BMI, which are known to influence the outcome of GWAS due to genetic200

correlation [6, 18]; III) covariates for population structure, surrogated by principal components [19, 20, 21].201

We demonstrate in traits Standing height and Weight (UKB field ID: 21002) how UKC provides additional202

information than a conventional GWAS (Fig.3).203

Sex (UKB field ID: 31), which was obviously not associated with 10M SNPs, explained R2 ≈ 0.5 of the204

variation of height between men and women. With or without inclusion of Sex, the genetic effects were little205

changed, but with the inclusion of Sex the statistical power increased significantly and the number of associated206

loci increased from 47,790 to 128,730 SNPs before clumping. When Standing height was adjusted by BMI207

(UKB field ID: 21001), which had h2 = 0.24 itself but of little correlation with Standing height, it showed an208

ignorable effect of the adjustment (Fig.3 A).209

On the contrary, the pattern differed significantly for Weight after adjustment. After adjustment for Sex,210

which explained approximately R2 ≈ 0.21 for Weight, there was a slight increase in statistical power, and the211

estimation of β was negligibly influenced. However, after adjustment for BMI, which was highly correlated212

with Weight, statistical power was stratified for loci that influence both Weight and BMI, and in addition, the213

genetic effects were significantly altered. On closer examination of the results, of 47,790 SNPs significantly214

associated with Standing height, 47,176 remained significant with adjustment of BMI. On the contrary, of215

20,912 SNPs significantly associated with Weight, only 7,450 remained significant after BMI adjustment.216

Although covariates with certain heritability (such as BMI) were commonly included, they were likely act as217

confounders in the study and would be considered to bias the effects estimates [6] (Fig.3 B). It was upon the218

purpose of a study to justify the adjustment.219

For both traits, with or without adjustment for the top 5 PCs made little difference for the estimation220

of β and their statistical power, regardless of whether the PCs were either UKC-PCs or UKB-PCs. The221

visible difference was observed, but only for SNPs of very small effect sizes, probably because of subtle local222

population structure. The detailed underlying statistical mechanism are provided in the Methods section.223
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For 129 traits, we applied five adjustment schemes (no adjustment at all, 5 PCs, 10 PCs, 5 PCs with sex and224

5 PCs with BMI), and their summary results are given in Supplementary Data III.225

While using covariates without heritability may increase power, this is only true when they are not con-226

founding factors. In some case-control studies, the ascertainment for case/control samples may create correla-227

tions between trait and covariates that are not presented in a natural population. Adjusting for these covariates228

could decrease power and potentially introduce bias [22]. Since UKC runs on population data rather than229

ascertained samples, this problem was less likely to arise. Researchers must consider covariate characteristics,230

such as heritability and relevance to the trait under study, to fit the purpose of their studies.231

Standing heightA

B Weight

Figure 3: UKC conducts GWAS for Standing height and Weight under various adjustments. For
each trait, the first row is for -log10(p) and the second row for β, in each plot x and y axes compare with
and without adjustment for sex (first column), BMI (second column), 5 top UKC-PCs (third column) and
5 top UKB-PCs (forth column). Sex represents a covariate of low/no heritability, BMI a covariate of high
heritabiltity, and PCs for adjustment for population structure.

2.3.2 Application 2: Estimation for SNP-heritability232

One windfall of GWAS summary statistics is the estimation of SNP heritage (h2
SNP ) using LDSC [16]. For each233

of the 129 traits, UKC generated eight GWAS summary statistics, which were adjusted by i) no covariates; ii)234

5 PCs; iii) 10 PCs; iv) 5 PCs and Sex; v) 5 PCs and BMI; vi) Sex only; vii) BMI only; viii) 5 PCs, Sex and235

Age (UKB field ID: 21022). These eight sets of GWAS summary statistics were fed into LDSC, which included236

HapMap3 SNP variants with MAF > 0.001 totaling 1.17M SNPs. For most traits, their ĥ2
SNP showed little237

variation regardless of adjustment schemes, probably because these traits had little heritability (Fig.4 A), and238

the adjustments resulted in slight variations in the means of the heritability estimates of the 129 traits (Fig.4239

B). However, for traits in category “Physical measure”, especially for those with visible differences between240
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men and women such as Standing height and Weight, inclusion or exclusion of sex as a covariate resulted in241

different heritability estimates. Subtle population stratification could have an impact on the estimation of242

heritability, as evidenced by a significant increase ĥ2
SNP of Weight after correcting for 10 PCs. A complete243

summary table of the results is provided in Supplementary Data IV.244

Furthermore, we also compared the estimated ĥ2
SNP using the UKC summary statistics after adjustment245

scheme for 5 PCs, Sex, and Age, with ĥ2
SNP directly downloaded from Neale’s Lab, which was adjusted by246

sex and the top 10 PCs (UKB heritability, https://nealelab.github.io/UKBB ldsc/index.html). Using LDSC,247

the 112 matched traits had their ĥ2
SNP consistently estimated, a Pearson correlation of 0.97 (Fig.4 C). Note248

that these ĥ2
SNP results were all on the observed scale. However, for an ascertainment trait, such as a trait of249

the case-control design, the prevalence and the relationship between cases and controls should be provided to250

transform the SNP-heritability from the observed scale to the liability scale [23].251
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Figure 4: Heritability estimated under 8 sets of covariates corrected. A) the SNP-heritability esti-
mated with LD score regression. Eight groups of GWAS summary statistics are generated in UKC. The traits
that have different SNP-heritability under different models are annotated. B) Average SNP-heritability for

129 traits. C) SNP-heritability comparison for 112 traits. Their ĥ2
SNP were estimated using UKC, adjusted

by 5 PCs, sex and age, and using summary statistics from Neale’s Lab.

2.3.3 Application 3: Polygenic Score252

Polygenic score (PGS), a weighted sum of the number of alleles, measures the risk of the disease based on253

genetic information [24, 25]. As PGS relies on genetic effects estimated from a GWAS model, the adjustment254
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scheme affects the performance of PGS. We demonstrated how the choice of either UKC-PC or UKB-PC would255

lead to different results. From the 296,216 unrelated UKB individuals, we randomly selected 10,000 individuals256

as the test dataset, and the remaining 286,216 individuals as the training dataset. The variants with MAF <257

0.001, imputation quality score < 0.8 or VIF > 10 were excluded from the training dataset, and for the test258

dataset variants with MAF < 0.01, missing rate > 0.05 or Hardy–Weinberg equilibrium test p-value < 1e-8,259

and individuals who had their missing call rate higher than 0.05 were removed. Variants with palindromic260

alleles between the training and the test datasets were removed. The training model included both Sex and261

Age as covariates, and the population structure scheme was either corrected by the top 10 UKB-PCs (denoted262

by M1) or the top 10 UKC-PCs (denoted by M2). Given the estimated effect β̂j for each SNP Xj , the263

phenotype was predicted by Ŷ =
∑

j β̂jXj as implemented by “–score” in PLINK [9]. The prediction accuracy264

was measured by Pearson’s correlation between true phenotype Y and Ŷ (polygenic genetic score correlation,265

denoted by R) across all test samples, and no further covariates were adjusted for R.266

The prediction accuracy R was evaluated under different sets of β after applying p-value thresholds, totaling267

15 categories ranging from 1e-7 (significant variants) to 1 (all common variants). For each of the 126 traits,268

we picked the maximum R among the 15 categories for M1 or M2 adjustments, respectively. The mean R269

were 0.0942 in M1 and 0.0914 in M2, showing no statistical difference (Fig.5 A, Supplementary Data270

V). However, the PGS results exhibited variation across phenotypic categories. For the phenotypes classified271

into “Lifestyle and environment”, “Health outcome” and “Mental health”, R were stable under different PC272

adjustments (Fig.5 B). In categories “Physical measurements”, “Family history”, and “Early life factors”,273

M1 and M2 schemes resulted in different R. For example, the R for Weight was 0.1549 under M2 but 0.2299274

under M1. In terms of ‘Family history”, Number of full siblings had a higher R under the M2 than those275

under M1 (0.1464 v.s. 0.0659 for Number of full brothers, 0.1111 v.s. 0.0513 for Number of full sisters).276

Furthermore, R displayed varying trends along the p-value thresholds across different phenotypes (Fig.5277

C). The R of BMI exhibited a consistent increase with larger p-value thresholds under both adjustment278

schemes. On the contrary, Weight, which was highly correlated with BMI, displayed an increasing R trend279

under M1 but reached its maximum R near the p-value cutoff at 0.2 under M2; a similar trend was observed280

for Seated height (UKB field ID: 51). For Neuroticism score, its maximum R under both adjustment schemes281

were found near p-value thresholds of 0.3. For the Education score (UKB field ID: 26414), its maximum R282

was achieved at p-value threshold of 0.4 under the M1. Number of full brothers (UKB field ID: 1873) showed283

a much higher R under M2.284

In this demonstration, the local population structures and cryptic relatedness remained elusive and might285

influence the performance of PGS. Other factors could also be further investigated using the UKC platform.286
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Figure 5: UKC conducts PGS analysis of 126 phenotypes under UKB-PC or UKC-PC adjust-
ments. A) Polygenic genetic score correlation (R) of all phenotypes corrected by different PCs. The 126
UKB phenotypes were classified into eight categories based on their descriptions. Vertical and horizontal dot-
ted lines for the mean of the 126 R. The size of each point is proportional to the difference between two R B)
The distributions of R differences (M1-R minus M2-R) under different categories. C) Variation of R for the
representative traits using variants under different p-value thresholds.

2.3.4 Application 4: Mendelian Randomization287

Mendelian randomization (MR) is a method used to infer causal effects between exposures and outcomes using288

genetic variants as instrumental variables (IV) [26]. Two-sample Mendelian randomization is a MR method289
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that utilize estimates of genetic association of outcomes and exposure derived from different samples [27]. In290

the absence of original data, researchers must rely on existing GWAS summary results that have been adjusted291

for certain covariates, potentially introducing bias into MR analyzes [28].292

To investigate how the adjustment of covariates in GWAS summary statistics could perturb MR results, we293

used UKC to perform an extensive MR analysis. This involved adjusting for various combinations of covariates294

to gain a comprehensive understanding of their effects.295

We performed covariate-adjusted two-sample MR to investigate the causal relationship between Waist296

circumference (UKB field ID: 48, WC) and rheumatoid arthritis (RA). We obtained the RA summary statistics297

from a previous meta-GWAS that included 18 cohorts, consisting of 14,361 RA cases and 43,923 controls of298

European ancestry [29]. WC summary statistics are generated with UKC adjusting for various combinations299

of covariates. SNPs with p-values < 5 × 10−8 underwent linkage disequilibrium clumping(r2 < 0.01 within300

the distance of clumping 250 kb) were used as IVs in the MR analysis. The inverse-variance weighted (IVW)301

method as the primary method was used to obtain the estimated effect size, supplemented by other three302

methods (weighted median estimation, simple median estimation, and MR-Egger regression). We provided an303

example where MR estimates differed substantially when WC summary statistics were adjusted for different304

sets of covariates (Fig.6, Tab.2). In Fig.6 A, the associations between genetic variants and WC were adjusted305

for BMI and Alcohol intake frequency (UKB field ID: 1558), while in Fig.6 B, the adjustments includedWeight,306

Body fat percentage (UKB field ID: 23099), Smoking status (UKB field ID: 20116), and 10 PCs. Notably, the307

results revealed a reversal in the direction of estimated effects using IVW and simple median when covariates308

vary-a phenomenon that had received limited scrutiny but was accessible for thorough investigation through309

tools like UKC.310
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Figure 6: Casual effects of Waist circumference (WC) on rheumatoid arthritis (RA) for different
covariates-adjusted two-sample MR studies. A) Results adjusted for BMI and Alcohol intake frequency.
B) Results adjusted for Weight, Body fat percentage, Smoking status and 10 PCs. The x-axis plots the β
estimates of each SNP on WC. The y-axis plots the β estimates of each SNP on RA. The lines in different
colors indicate the causal effect estimates by inverse variance weighted, MR-Egger regression, simple median
and weighted median methods.

¡b¿Casual effects of Waist circumference (WC) on rheumatoid arthritis (RA) for different covariates-311
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median and weighted median methods.316

Table 2: Summary of casual effects of waist circumference (WC) on rheumatoid arthritis (RA)
with different covariates adjusted.

Covariates Method Num. of QTLs β σβ p-values

BMI &
Alcohol intake frequency

Inverse-variance weighted (random) 138 0.423654 0.179907 0.01853
MR-Egger 138 1.363478 0.673006 0.04277

Weighted median 138 0.614955 0.240209 0.010465
Simple median 138 0.245338 0.238348 0.303326

Weight &
Body fat percentage &

Smoking status &
10 PCs

Inverse-variance weighted (random) 247 -0.43919 0.170062 0.009807
MR-Egger 247 0.075531 0.570881 0.894743

Weighted median 247 -0.07439 0.225956 0.74201
Simple median 247 -0.12095 0.226027 0.592575

As a proof-of-principle study, we only demonstrate the basic utility of the four applications, and there are317

other methods to improve their performance [4].318

3 Availability and Portability319

3.1 Availability of UK BioCoin320

Both the UKC NSS and the UKC computational engine are integrated into a Docker image (20 GB), which can321

be downloaded from the GitHub repository (https://github.com/Ttttt47/UKBioCoin). As the UKC Docker322

image has been deployed onto Docker image servers worldwide, it can be successfully downloaded in about an323

hour as tested in various regions, including Melbourne (Victoria, Australia), Nashville (Tennessee, US), Tokyo324

(Japan), and Stockholm (Sweden); in mainland China, it takes about 20 minutes to download the UKC Docker325

image. It should be noted that NSS has been sealed into the UKC image, and the substantial computational326

cost for NSS (about 2 days for UKB) should not be concerned.327

3.2 Portablility for Other Biobanks328

UKC is not only available as an encapsulated package but is portable to other biobanks, and it is straitforward329

to build a UKC-like platform. For example, we have successfully applied the entire UKC framework in the330

Westlake Biobank cohort (WBBC) [10], and have brought out Westlake BioCoin (WBC). In this test, WBBC331

used 5,440 chipped GWAS samples and 14,242,187 QCed SNPs (locus genotyping rate > 0.05, HWE > 0.00001,332

MAF > 0.001), and it took approximately 42 minutes to convert its original individual-level data (5.06 GB)333

into the corresponding NSS (1.43 GB). As a validation, WBBC performed individual-level GWAS for height334

with the inclusion of the top 5 PCs, age, and sex as covariates, and WBC yielded, as expected, nearly identical335

results for the matched β and p-values. Obviously, the demonstrated four UKC applications, as well as other336

utilities, can be equivalently conducted for WBC. We provide scripts for the conversion of other datasets to337

establish their own BioCoin like UKC.338

4 Discussion339

Privacy concerns about individual-level data have limited the data availability, precluding the reproducibility of340

genetic studies and collaboration between biobanks. Public released summary statistics promote data-sharing341

but lack of flexibility to explore trait-specific covariates, thus narrowing the scope of downstream studies.342

To address these challenges, we propose a novel framework that facilitates flexible summary statistics data-343

sharing. Given its pivotal role in providing ingredients for other studies, we select UKB as a working instance344
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and developed UKC, a summary statistics generator integrating UKB and the summary statistics regression345

technique into a single device. We only cover UKB GWAS analysis, but it can profoundly determine the346

performance of the estimation of heritability, PGS, and Mendelian randomization, which are highly subject to347

UKB output.348

In order to make UKC highly consistent to UKB GWAS analyses, we require the summary statistics to349

be generated in the form of naive summary statistics, which are synthesized to carry out nearly exact linear350

model analysis as individual-level UKB data. As demonstrated, when there is no, low, or even substantially351

high missing data, UKC continues to deliver high-quality results. Additionally, the quality control metric VIF,352

which is calculated for each testing SNP, further eliminates the possible bias. After compressing 289 GB UKB353

source data into 20 GB NSS, UKC is sealed into a portable Docker image, which can be downloaded to a354

local site in one hour, as tested worldwide. As the computational kernel of UKC works on summary statistics355

regression, which is further optimized in algorithm and C++ programming, its computational speed is boosted356

approximately 70 times while requiring little RAM. Therefore, the working environment of UKC can be an357

average personal laptop.358

For UKB GWAS, principal components are most commonly employed covariates. As the correlation matrix359

of PCs is diagonal, using decomposed inversion of a matrix enables us to derive analytical results for SNP360

effects and their sampling variance under various possible combinations of PCs. As observed for height, local361

selection, as captured by EigenGWAS, can lead to high VIF and eventually very obscure GWAS signals. There362

is no clear clue which set of PCs are suitable for precise mapping of a QTL, but our UKC provides such a device363

for in-depth evaluation of the stability of GWAS signals, in particular if follow-up experiments are planned to364

rely on those results. Various adjustments, such as inclusion of sex and age, can be made and their influence365

has been demonstrated in the application I-IV.366

As a proof-of-principle study, we only include phenotypes commonly employed in UKB studies, and it is367

possible to include even more phenotypes. For phenotypes of interest but bearing high missing rates, phenotype368

imputation can be used to improve data quality [30]. The inquiry of GWAS summary statistics can be other369

emerging biobanks than UKB. The presented framework can be seamlessly applied to Westlake biobank [10],370

and possibly for other cohorts such as STROMICS [31], ChinaMap [32], All of US cohort [33], and even371

proteomic data [34]. As enclosed in UKC are summary statistics, it offers a novel route for data-sharing,372

without hampering data security but harnessing reproducibility and collaboration.373
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5 Materials & Methods374

5.1 UK Biobank Overview375

The UK Biobank (UKB) is a comprehensive database that contains genetic and health information from more376

than 500,000 participants in the United Kingdom [8]. As a proof-of-principle study, we focus only on the377

292,216 unrelated white British for 129 phenotypes, 60 continuous traits, such as height and BMI, and 69378

categorical traits, such as sex. Genomic data of about 805,000 markers are collected on all individuals in the379

cohort, genotype data are then phased and imputed using computationally efficient methods combined with380

the Haplotype Reference Consortium (HRC) and UK10K haplotype resource. The imputation protocol has381

increased the number of variants by more than 50 times, to 96 million variants. The genotype data is first382

imputed and filtered using a minor allele frequency (MAF) cutoff of 0.001 and palindromic SNPs (A/T, G/C383

biallelic loci), resulting in retention of 10,531,641 SNPs (Fig.1 A, denoted as 10M SNPs), and 488,007 overlap384

with the chipped SNPs. The phenotype correlation is shown in Fig.1 C, and the average missing rate is 4.1%.385

It should be noted that the UKB phenotype data may consist of multiple samplings and array data containing386

multiple data items. To minimize potential biases, we only use the first sampling and, where applicable, the387

first element of the array for each phenotype. The principal components are generated using 1 million SNPs,388

which are randomly sampled from the 10M SNPs (UKC-PC); in contrast, the principal components directly389

downloaded from UKB (UKB-PC) are also included. Otherwise specified, UKC-PC is included for analysis by390

default.391

5.2 Westlake Biobank Overview392

The Westlake BioBank for Chinese (WBBC) project is a population-based prospective study that recruited a393

total of ∼35,000 participants, comprising ∼28,000 late adolescents with a mean age of 19 and ∼ 7,000 adults394

older than 65 years, covering 31 provincial administrative regions in China [10, 35, 36]. In this study, 5,492395

participants with health (e.g., sex, age, and height) information and SNP array data were included. Specifically,396

these participants were first genotyped by the high-density Infinium Asian Screening Array. Genotype data397

were then imputed using the South and East Asian Reference Database (SEAD) reference panel [10]. After398

phenotype and genotype quality control (–geno 0.05; –hwe 0.00001; –maf 0.001; –mind 0.05), a total of399

14,242,187 SNPs and 5,492 participants were retained in the follow-up analysis.400

5.3 Genome-wide Association Studies401

A genome-wide association study (GWAS) executes a regression between the genetic variant X and a contin-402

uous phenotype Y using a linear regression model:403

Y = b+ βX + ϵ. (1)

Here, β represents the regression coefficient of X, b represents the intercept, and ϵ constitutes noise following404

a normal distribution. When Y is discrete, a generalized linear model is used to estimate the genetic effect405

of X on Y . Assuming {Yi}Ki=1 are phenotypes (covariates) measured in a population such as sex and BMI,406

and {Xj}Pj=1 are the numbers of copies of a reference allele with Xj ∈ {0, 1, 2}, 1 ≤ j ≤ P . Without loss of407

generality, Xj ’s are centered to have a mean of zero, while Yi’s are normalized to have a mean of zero and a408

variance of 1. Generally, the effects of covariates on the phenotype are adjusted to reveal conditional genetic409

effects, that is, the following model is used to evaluate the genetic effect,410

Yi = βjXj +
k∑

t=1,it ̸=i

γtYit + ϵ, (2)

18

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589273doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589273
http://creativecommons.org/licenses/by/4.0/


where {Yit}kt=1,it ̸=i is the set of trait-specific covariates one wants to adjust, and γt is the effect of covariate411

Yit on phenotype Yi.412

Furthermore, the population structure is commonly adjusted by including principal components as covari-413

ates [19, 20]. Thus, we finally estimate the genetic effect of the SNP using the following model:414

Yi = βjXj +
k∑

t=1,it ̸=i

γtYit +

q∑
l=1

αlvl + ϵ, (3)

where {vl}ql=1 are the top principal components of genetic structure and αl denotes the regression coefficients of415

vl. The Ordinary Least Squares (OLS) estimator of the regression coefficient θ̂j =
(
β̂j , γ̂1, γ̂2, . . . , γ̂k, α̂1, α̂2, . . . , α̂q

)T

416

and its estimated variance are given by417

θ̂j =
(
ZTZ

)−1

ZTy,

σ̂2
β̂j

= σ̂2 ·
((

ZTZ
)−1

)
11

,

σ̂2 =
1

n1 − (k + q + 1)

(
y −Zθ̂j

)T (
y −Zθ̂j

)
,

(4)

where Z constitutes an n1 × (k + q + 1) matrix containing genotype and covariate data of n1 complete418

samples, with the sth row representing the information of the sth sample: (xj,s, yi1,s, . . . , yik,s, v1,s, . . . , vq,s),419

and y = (yi,1, · · · , yi,n1) is the observation of phenotype Yi.420

5.4 UK BioCoin Algorithm421

The estimator in Eq.4 is widely used in GWAS. However, it is not applicable when Z and y are not available.422

We observe that the OLS estimator in Eq.4 relies on the matrix products ZTZ,ZTy, and yTy, rather than423

the original data Z and y. This fact motivates us to use summary statistics regression to get θ̂j based on424

summary statistics ZTZ,ZTy, and yTy. Specifically, denote425

Ω̂j =



σ̂2
Xj

σ̂Xj ,Yi1
· · · σ̂Xj ,Yik

σ̂Xj ,v1 · · · σ̂Xj ,vq

σ̂Yi1
,Xj σ̂2

Yi1
· · · σ̂Yi1

,Yik
σ̂Yi1

,v1 · · · σ̂Yi1
,vq

...
...

. . .
...

...
...

...

σ̂Yik
,Xj σ̂Yik

,Yi1
· · · σ̂2

Yik
σ̂Yik

,v1 · · · σ̂Yik
,vq

σ̂v1,Xj σ̂v1,Yi1
· · · σ̂v1,Yik

σ̂2
v1

· · · σ̂v1,vq

...
... . . .

...
...

. . .
...

σ̂vq,Xj
σ̂vq,Yi1

· · · σ̂vq,Yik
σ̂vq,v1 · · · σ̂2

vq


, (5)

âj =
(
σ̂Yi,Xj

, σ̂Yi,Yi1
, . . . , σ̂Yi,Yik

, σ̂Yi,v1 , . . . , σ̂Yi,vq

)T

.

We have426

ZTZ = n1 · Ω̂j ,

ZTy = n1 · âj ,

yTy = n1 (by normalization).

(6)

Herein, σ̂Xj ,Yik
denotes the estimated covariance betweenXj and Yik , σ̂

2
Xj

represents the estimated variance427

of Xj , and σ̂Yi,Xj
and σ̂Yi,Yik

are analogously understood.428

Substituting the estimators described in Eq.6 into Eq.4 and following a series of elementary calculations,429
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we arrive at the estimators:430

θ̂j = Ω̂
−1

j âj ,

σ̂2
β̂j

=

 1− θ̂
T

j âj

n1 − (k + q + 1)

((
Ω̂j

)−1
)

11

. (7)

Although these estimators appear to be concise in form, it is important to recognize that in the presence of431

missing SNP and phenotype data, it is not feasible to obtain Ω̂j and âj . This is due to the fact that the set432

of complete samples depends on the specific model established, which is unknown beforehand.433

Let S = {Si = (x1,i, ..., xP,i, y1,i, ..., yK,i) : i = 1, ..., n} be the entire set of observations, where some of them434

may contain missing value. At first sight, we can estimate Ω̂j and âj based on S0, where435

S0 = {Si ∈ S : Si contains no missing value.} (8)

is obtained by discarding all samples that have missing values. However, after quality control we find that436

none of the samples have complete observations in all SNPs and phenotypes, i.e. S0 = ∅, which makes437

this approach impracticable. Looking inside the problem, we note that the elements of Ω̂j and âj depend438

only on pairs of variables rather than all of them. This fact suggests to estimate the element σ̂a,b (a, b ∈439

{Xj , Yi1 , ..., Yik , v1, ..., vq}) of Ω̂j based on samples with complete observations on (a, b), which gives Ω̃j =440

(σ̃a,b). Vector âj can be estimated in a similar way, denoted by ãj .441

It should be recognized that the (complete) samples for estimating Ω̂j (âj) constitute only a subset of442

samples used in calculating any entries in Ω̃j (ãj) and the distribution of SNPs or phenotypes may differ443

between these two sets. Therefore, we need to control the missing rates of the covariates included in the444

analysis to reduce the effects of unbalanced missing pattern and thus the risk of biased estimation of Ω̂j (âj).445

Subsequently, we approximate the complete sample size n1 with n̂1 = c ∗n, where c is a constant that pro-446

vides a rough approximation of the overall non-missing rate, and n is the known total sample size. In practice,447

one can choose c as the product of non-missing rates of phenotypes/SNPs selected in the model, assuming448

that the absence of these variables is independent of each other, or simply set c = 1 when the data is nearly449

complete. In our implementation, we adopt the former method, that is, c =
∏

a∈{Xj ,Yi1
,...,Yik

,Yi} (1−m(a)),450

where m(a) is the missing rate of variable a.451

Substituting n̂1, Ω̃j and ãj into the Eq.7 yields the final estimators:452

θ̃j = Ω̃
−1

j ãj ,

σ̃2
β̂j

=

 1− θ̃
T

j ãj

n̂1 − (k + q + 1)

((
Ω̃j

)−1
)

11

.
(9)

We now examine all conceivable models that could emerge in Eq.3, where Xj ∈ {Xj}Pj=1, Yi ∈ {Yi}Ki=1453

and vl ∈ {vl}Ql=1. Following the identical estimation procedure delineated above, we discern that the entries454

of Ω̃j and ãj for estimating each model are, in fact, reusable. Indeed, for any potential model in the form of455

Eq.3, UK BioCoin relies exclusively on a set of these entries. To simplify the notation. we logically reorganize456

it into the subsequent three components:457

I) σ̃X =
(
σ̃2
X1

, σ̃2
X2

, ..., σ̃2
XP

)
, a vector of length P that represents the estimated variances of the P SNPs.458

II) Σ̃Y =

(
σ̃Yi,Yj

)
i,j

(σ̃Yi,vl)i,l(
σ̃Yk,Yj

)
k,j

(σ̃Yk,vl)k,l

, a (K +Q) × (K +Q) matrix represents the correlation coefficients459

between the K phenotype and Q principal components.460

III) Σ̃XY =
((

σ̃Xi,Yj

)
i,j

(σ̃Xi,vl)i,l

)
, a P × (K + Q) matrix represents the covariance between the P461
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SNPs and (K +Q) phenotype and principal components.462

In addition, if one wants to estimate the overall non-missing rate c, a vector describing missing rate of all463

P SNPs and K phenotypes is required:464

m = (mX1 ,mX2 , ...,mXP
,mY1 ,mY2 , ...,mYK

).

We refer to these statistics
{
σ̃X , Σ̃Y , Σ̃XY ,m

}
as UKB Näıve Summary Statistics (NSS) in the sense that465

the UKC estimation are solely based on these statistics. The comprehensive process of UKC is delineated in466

Fig.1.467

5.5 Generating Naive Summary Statistics468

We will now outline the process of generating the NSS for a given dataset, which serves as a prerequisite for469

the UKC platform. It is important to note that this procedure needs to be executed only once for a specific470

dataset.471

To generate NSS, we first perform quality control on the raw data and then generate principal components472

(PCs) from the genotype data to approximate the population structure. These PCs, combined with phenotypes,473

are subsequently scaled to have unit variance and a zero mean. It should be emphasized that while we also474

assumed in the previous section that every Xj has a mean of zero, centering the genetic data is not required475

for generating NSS because the NSS is invariant to mean shifting.476

The second step is to calculate the variance for all SNPs presented in the genotype data. To achieve this,477

for each SNP, we count the frequencies of the three genotypes: pAA, pAa, and paa. The variance of a SNP is478

calculated as σ̃2
Xj

= 4pAA + pAa − (2pAA + pAa)
2. Subsequently, we compute Σ̃Y element-wise. The estimate479

σ̃Yi,Yj
is given by 1

nij

∑nij

s=1 yi,syj,s, where yi,s denotes the ith phenotype value of the sth sample and nij480

denotes the number of complete pairs of observations. The estimates σ̃Yi,vl , σ̃vk,Yj , and σ̃vk,vl are calculated481

analogously.482

Lastly, we need to compute Σ̃XY . Although this can be achieved by directly estimating the covariance483

between Xj and Yi in the same way as the estimation procedure for Σ̃Y , the computational burden for datasets484

with tens of millions of SNPs, such as UKB, is considerable. To improve computational efficiency, we choose485

an indirect method to calculate Σ̃XY . In particular, we first need to perform a single-variable linear regression486

on every phenotype and principal component. Specifically, we use the following model in PLINK [9]:487

Yi = bi + βijXj + ϵ.

Here, Yi ∈ {v1, v2, . . . , vQ, Y1, . . . , Yk} , Xj ∈ {X1, X2, . . . , Xp}, bj is the intercept and ϵ is the noise. We now

obtain the estimated regression coefficient β̂ij , from which σ̃Xj ,Yi
is calculated by

σ̃Xj ,Yi
= β̂ij σ̃

2
Xj

.

By synthesizing these elements and the missing rates profile, we construct the näıve summary statistics:488 {
{σ̃X , Σ̃Y , Σ̃XY ,m

}
.489

5.6 Estimation of VIF490

The variance inflation factor (VIF) for testing the jth SNP is defined as VIFj = 1
1−R2

j
, where R2

j stands for491

the proportion of variance in Xj that could be explained by the other covariates. VIF reflects the degree of492

variance inflation of the regression coefficient estimator β̂j in the sense that it is a factor in the estimated493
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variance σ̂2
β̂j

[37]:494

σ̂2
β̂j

= σ̂2
ϵ ·

((
ZTZ

)−1
)

11

=
σ̂2
ϵ

(n1 − 1)σ̂2
Xj

· 1

1−R2
j

=
σ̂2
ϵ

(n1 − 1)σ̂2
Xj

·VIFj . (10)

This suggests VIF as a measure of sensitivity of estimate β̂j to the variation in the data. SNPs with high VIF495

are often removed from the results in the sense that they have rather unstable estimates.496

In practice, we substitute σ̂2
β̂j

by σ̃2
β̂j

in Eq.9 and the VIF of the jth SNP is given by497

VIFj ≈ σ̃2
β̂j
/

σ̃2
ϵ

(n̂1 − 1)σ̃2
Xj

, (11)

where σ̃2
ϵ is the mean squared error and the estimator of the variance of the error term ϵ:498

σ̃2
ϵ =

 n̂1 − n̂1θ̃
T

j ãj

n̂1 − (k + q + 1)

 . (12)

The principal components are widely used covariates in GWAS. When all covariates are PCs {vl}ql=1, the499

relationship between VIF and regression is more straightforward. In such a case, since the PCs are independent500

from each other, R2
j is essentially the sum of squared correlations between Xj and the PCs,501

R2
j =

q∑
l=1

ρ2Xj ,vl
. (13)

Such correlations between genetic variants and PCs can be revealed by EigenGWAS analysis. EigenGWAS is502

a flexible genomic scan method to find loci under natural selection[14, 38], which is done in the same manner503

as GWAS, replacing the phenotype Y with PC vq as the response variable,504

vq = bj + βjXj + ϵ.

A significant EigenGWAS signal corresponds to a significant correlation ρXj ,vq between the SNP and the505

specific PC, which eventually leads to inflated R2
j and VIF when adding this PC as covariates in a GWAS. It506

is worth noting that all PCs form an orthonormal basis of span (X1, X2, ..., XP ), allowing Xj to be represented507

as a linear combination of vl’s. Consequently, we view ρ2Xj ,vl
as the inner product of Xj and vl, implying508

that as more PCs are added as covariates, R2
j tends toward 1 and VIF tends to +∞. This leads to severe509

multicollinearity and obscure results. Therefore, the selection of the number of PCs is a trade-off between510

avoiding multicollinearity and correcting for population structure.511

When all covariates are PCs, one can also derive the OLS estimator for the regression coefficient for the512

jth SNP βj as well as the t-statistic tj as513 
β̂j =

σ̂Xj,Y
−
∑q

l=1 σ̂Xj,vl
σ̂Y,vl

σ̂2
Xj

−
∑q

l=1 σ̂2
Xj,vl

=
σ̂Xj,Y

−
∑q

l=1 σ̂Xj,vl
σ̂Y,vl

σ̂2
Xj

·VIFj ,

tj =
β̂j

σ̂β̂j

=
σ̂Xj,Y

−
∑q

l=1 σ̂Xj,vl
σ̂Y,vl

σ̂ϵσ̂Xj
·
√

VIFj · (n̂1 − 1).
(14)

Again, these equations suggest VIF as a measure of stability in the sense that small errors in estimation of514

σ̂Xj ,Y , σ̂Xj ,vl , σ̂Y,vl , σ̂ϵ and σ̂Xj will be amplified by large VIF:515

∆j =
∣∣∣β̃j − β̂j

∣∣∣ = ∣∣∣∣∣ σ̃Xj ,Y −
∑q

l=1 σ̃Xj ,vl σ̃Y,vl

σ̃2
Xj

−
σ̂Xj ,Y −

∑q
l=1 σ̂Xj ,vl σ̂Y,vl

σ̂2
Xj

∣∣∣∣∣ ·VIFj = δj ·VIFj . (15)
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Due to the approximations used in UKC, more errors are introduced compared to individual-level data-516

based methods. We suggest using a stringent VIF threshold to exclude estimates that not only have high517

variation but also have a high risk of amplifying the errors introduced by UKC approximation.518

6 Data Availability519

Westlake Biobank: https://wbbc.westlake.edu.cn520

UK Biobank: http://www.ukbiobank.ac.uk/521

Neale’s Lab: https://nealelab.github.io/UKBB ldsc/index.html522

LDSC: https://github.com/bulik/ldsc523

PLINK: http://www.cog-genomics.org/plink2/524

7 Code Availability525

UK BioCoin: https://github.com/Ttttt47/UKBioCoin526
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