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Abstract

Summary statistics derived from large-scale biobanks facilitate the sharing of genetic discoveries while
minimizing the risk of compromising individual-level data privacy. However, these summary statistics, such
as those from the UK Biobank (UKB) provided by Neale’s lab, are often adjusted by a fixed set of covari-
ates to all traits (12 covariates including 10 PCs, sex and age), preventing the exploration of trait-specific
summary statistics. In this study, we present a novel computational device UK BioCoin (UKC), which is
designed to provide an efficient framework for trait-specific adjustment for covariates. Without requiring
access to individual-level data from UKB, UKC leverages summary statistics regression technique and re-
sources from UKB (289 GB of 199 phenotypes and 10 million SNPs), to enable the generation of GWAS
summary statistics adjusted by user-specified covariates. Through a comprehensive analysis of height
under trait-specific adjustments, we demonstrate that the GWAS summary statistics generated by UKC
closely mirror those generated from individual-level UKB GWAS (p > 0.99 for effect sizes and p > 0.99
for p-values). Furthermore, we demonstrate the results for GWAS, SNP-heritability estimation, polygenic
score, and Mendelian randomization, after various trait-specific covariate adjustments as allowed by UKC,
indicating UKC a platform that harnesses in-depth exploration for researchers lacking access to UKB. The
whole framework of UKC is portable for other biobank, as demonstrated in Westlake Biobank, which can
equivalently be converted to a ‘UKC-like” platform and promote data sharing. UKC has its computational
engine fully optimized, and the computational efficiency of UKC is about 70 times faster than that of UKB.
We package UKC as a Docker image of 20 GB (https://github.com/Ttttt47/UKBioCoin), which can be

easily deployed on an average computer (e.g. laptop).

One sentence summary: We develop UK BioCoin (UKC), which allows fine-tuning of covariates for
each UK Biobank trait but does not relay on UK Biobank individual-level data. It will change the current

landscape of GWAS and reshape its downstream analyses.
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1 Introduction

Summary statistics, including estimated allelic effect sizes, standard errors of the estimates and other per-SNP
features, are increasingly generated from genome-wide association studies (GWAS) across thousands of human
traits [IL 2]. Compared to individual-level data, summary statistics raise fewer privacy concerns, making them
a useful intermediary for data-sharing. The availability of publicly accessible summary statistics databases
is expanding, in response to the growing demand for reproducibility and follow-up analysis of GWAS results
[B]. The utility of summary statistics, including meta-analysis, gene-based association analysis, polygenic
prediction, and more, provides insights of genetic architecture of complex human traits, particularly through
large-scale collaborations among biobanks [4 (2, [{].

However, the current data-sharing mode based on summary statistics has several limitations. While it is
common practice to adjust for covariates such as sex and age in GWAS, there is no universally applicable
set of covariates for all traits, and inappropriately chosen covariates may reduce the power of findings and
even introduce bias when they act as confounders [6]. For example, UK Biobank (UKB) is one of the most
cited data sources for GWAS [7], 8], and the available UKB GWAS summary statistics are trained under
a predefined model, such as released by Neale’s Lab (by adjusting 10 principal components, sex, and age;
https://nealelab.github.io). As demonstrated in our study of UKB data, the inclusion or exclusion of certain
covariates can lead to significantly different summary statistics, thereby influencing downstream analyses. An
ideal summary statistics analysis framework may permit efficient in-depth explorations of different covariates
setups for each trait. However, refinement of covariates is cumbersome and time-consuming for large-scale
collaboration, which usually involves several rounds of rerunning GWAS at up to dozens of different biobanks
[2, 5], highlighting the urgent need for a more efficient engine to generate GWAS summary statistics.

In this study, we propose a novel framework for summary statistics sharing and presents a working instance
called UK BioCoin (UKC, herein) corresponding to UKB, targeting both trait-specific and efficient generation
of summary statistics. The UKC framework promises highly efficient trait-specific covariates exploration while
maintaining the data-sharing virtue of summary statistics, thereby promoting collaborations, especially in the
context of large-scale biobank studies.

As demonstrated, summary statistics generated from UKC and the individual-level UKB is nearly identical
or practically consistent across a serial of models. Furthermore, the UKC computational kernel reduces com-
putational time complexity by nearly two orders compared to the UKB GWAS conducted in PLINK2 (PLINK
herein) [9], and this efficiency significantly facilitates the exploration of competitive GWAS models and in-
creases the robustness of a study even for researchers who do not directly access UKB resources. The whole
framework of UKC is comprehensively illustrated using UKB and can be readily applied to other biobanks,
such as demonstrated in the Westlake Biobank [10].

2 Results

2.1 Sketch for UK BioCoin

In this study, we allow UKC to train a trait-specific GWAS model under the choice of different covariates,
while anyone using UKC does not require to access UKB individual-level data. As a proof-of-principle study,
we focus on the analysis of 292,216 unrelated individuals of white British and Irish descent in the UK Biobank
(UKB Field ID 22021 and 21000). 10,531,641 quality-controlled single nucleotide polymorphisms (10M SNPs
herein) are included (Fig A). The effective number of SNPs is about m. = 161,688, or equivalently, the
genomic LD is about mi = 6.18¢7%. As expected, chromosomal LD is proportional to inversion of chromosome
length (Fig B). F: = 0.00014 indicates little population structure among UKB samples [I1]. We examine

129 conventional UKB phenotypes, comprising 60 continuous traits and 69 categorical traits. Each phenotype
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is scaled to have a mean of zero and a variance of one. FigfT] C illustrates the pairwise correlation between the
129 phenotypes, of which the overall missing rate is 4.1%. These 129 traits can be divided into 8 categories,
such as baseline characteristics and social demographics according to the UKB catalogue, and more detailed
information on these traits can be found in Supplementary Data I. We surrogate population structure
with the top 30 principal components directly estimated from 1 million sampled SNPs from the 10M SNPs
(UKC-PCs, default PCs for analysis otherwise specified); for comparison and compatibility, we also include
the top 40 PCs as originally provided by UKB (UKB Field ID 22009; UKB-PCs).

The UKC framework, described in Fig D-G, comprises two main components. I) The naive summary
statistics (NSS) derived from UKB individual-level data. NSS is essentially a set of primary GWAS summary
statistics and is consistent with the data sharing policy for UKB. II) A highly efficient summary statistics
regression engine [12], [13]. For a GWAS model, the regression engine retrieves the required statistics from
the NSS to generate trait-specific summary statistics. We evaluate the quality of the UKC results by com-
paring them with those of individual-level UKB data via PLINK. Compared to PLINK, UKC offers superior
computational efficiency and demonstrates high consistency with PLINK, particularly when missing rates are
low. Furthermore, a single quality control metric, the variation of inflation (VIF), can safeguard high-quality
GWAS summary statistics (Fig. The calculation details are provided in the Methods section.
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Figure 1: Outline of UK BioCoin and its interface to other genetics applications. A) The distribution
of minor allele frequency of the QCed 10,531,641 SNPs included in UK BioCoin (UKC), and their MAF's are
greater than 0.001. B) Chromosome-wise linkage disequilibrium of 22 autosomes. The fitted regression line,
y = 0.00014 4+ 57z, indicates the linear correlation between chromosomal LD and the inversion of chromosomal
length. p = 0.847 quantifies the correlation between x and y; the intercept of 0.00014 represents genomic Fj;.
C) The correlation heatmap of 129 phenotypes used in UKC. D-F) UKC naive summary statistics (E) are
derived from UKB raw data (D). The UKC engine (F) utilizes the NSS to perform regression approximately
70 times more efficient than PLINK while requiring significantly reduced memory. G) UKC results enable
downstream genetic applications.

2.1.1 Generation of Naive Summary Statistics for UK BioCoin

The generation of UKC NSS mainly involves calculating Pearson’s correlation between each SNP and each
trait. This process incurs a significant computational cost, approximately O(n(K + Q)P) depending on the
number of SNPs (P), phenotypes (K), eigenvector (@), and sample size (n). In this study, it totals the
calculation for 10M x (129 + 30 + 40) Pearson’s correlation, which accounts for 129 traits, 30 UKC-PCs, and
40 UKB-PCs against each of the 10M SNPs. The main component of UKC NSS is a matrix that consequently
has dimensions of 199 x 10M, effectively compressing the UKB raw data from nearly 289 GB, encompassing
129 phenotypes and approximately 10 million QCed SNPs (referred to as 10M SNPs), to less than 20 GB of
NSS. The correlation between a SNP with each of the 129 traits is equivalent to estimate its effect size in a
GWAS model without any adjustment, and the correlation between a SNP with UKC-PCs or UKB-PCs is
known as EigenGWAS [I4]. Other complementary summary statistics are generated, such as the variance of
each SNP, correlation matrix between all traits, but they take much less storage and calculation than the main
NSS matrix.

It takes approximately 2 days to generate UKC NSS on a cluster with 60 threads. Although it seems
expensive to generate the NSS, it brings in significant efficiency in the downstream GWAS for complex traits.
The details of UKC NSS generation are described in the Methods section.

2.1.2 Computational Efficiency of UK BioCoin

The efficient performance of UKC is made possible by both algorithmic and programming advantages. The
computational complexity for a linear regression is approximately O(np® + p?) for a testing SNP, where n is
the sample size and p is the number of covariables in a GWAS. In particular, O(np?) is the cost to generate
the correlation matrix Q of p variables and O(p?) the inversion for €. On the contrary, UKC constructs £ by
accessing the corresponding elements in NSS matrices, so O(np?) is completely dismissed. Furthermore, when
UKC moves from the i" to the j* locus, only the first column and the first row of Q are updated (purple
blocks in green boxes and red block in red box in Fig F) and leave the submatrix Q_; 1 (2_1,_; refers
to the submatrix of 2 by dropping the first row and the first column, and corresponds to the green blocks
in red boxes in Fig the same for each locus. It enables the blockwise inversion technique, and since the
inversion of €_; _; is performed only once for the whole scanning of 10M SNPs, and the original O(p®) for
Q1 is reduced to O(p?) for each locus. So the computational cost of a test SNP is reduced from O(np? + p?)
to O(p?).

Secondly, the UKC computational engine is implemented in C++ and uses the Eigen library for efficient
and precise matrix computations [I5]. UKC leverages the efficient looping capabilities of the C++ language,
enabling accelerated program execution, particularly for a large-scale dataset containing millions of SNPs.
UKC adopts a stream processing strategy that minimizes memory consumption by loading only a fraction
of the data at any given time. Both pre-calculated NSS and advanced programming allow UKC to execute
multiple tasks simultaneously and efficiently, even on a personal laptop.

We compare the efficiency of UKC and UKB in conducting the 3 GWAS models for Standing height (UKB
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field ID: 50) with adjustment of 0, 5, and 10 PCs, respectively. As tested, using 16 threads on a cluster,
PLINK took about 3 hours to perform GWAS on 10M SNPs with 5 covariates; in contrast, UKC took 0.6
hours only using a single thread to complete the same task, a boost that improves computational efficiency
about 80 times. In terms of memory usage, PLINK required approximately 5 GB of peak memory, while UKC
required less than 5 MB (Tab/i)).

Phenotype Covariates Method Num. of threads Running time Memory used

N PLINK 16 0.79 h 4.89 GB
one UKC 1 0.17 h 2.64 MB

. . PLINK 16 3.05 h 5.11 GB
Standing height 5 PCs UKC T 060 h 571 MB
PLINK 16 449 h 529 GB

10 PCs UKC 1 0.98 I 977 MB

Table 1: Comparison of computational efficiency of PLINK and UKC.

2.2  Quality Control for UK BioCoin
2.2.1 Influence of Phenotype Missing Rates

UKC generates identical results to those of UKB when there is no missing data (see Methods). However,
missing data occurs, leading to differences in €2 of different degree, and possibly introduces noise to UKC. We
incorporated 0, 5, and 10 PCs as the covariates for Standing height (UKB field ID: 50, of low missing rate < 1%)
for UKC, and for comparison an identical UKB model was then performed in PLINK. We compared the SNP
effects (Bukc, and Bukg;, and defined bias A; = |BUKCJ - BUKBj |) and their corresponding p-values between
UKC and UKB, and for all three GWASSs their respect Pearson’s correlation was greater than 0.999 (Fig@
A1-A4). Remarkably, in all 3 GWASs, UKC recovered > 99% significant SNPs (p-value < %) as found
in UKB (Supplementary Data II). We further decomposed the difference for the j' locus A; = §; - VIF;.
When the model was adjusted by 10 PCs, 1,104 inconsistency SNPs had A; > 0.01 on chromosomes 6 (HLA
cluster), 11, 12, and 17 (red points in Fig A2, A4, B1-B2), and all these SNPs had high VIF; in particular,
severe inconsistency (A; > 0.2) was associated with extremely high VIF (VIF; > 50, red triangles in Fig.@
A2, A4, B1-B2). In this example, the inclusion of too many covariates such as PCs was likely to lead to high
VIF, which amplified bias. As PCs were orthogonal to each other, we could derive an analytical result, Eq
[[4] in Methods, which characterized how biased SNPs were and how their effects were further amplified by
VIF. To minimize biases introduced by approximation in the UKC, one could use a stringent VIF threshold.
Excluding the SNPs with VIF > 50, as default in PLINK, removed those severe inconsistent loci (A; > 0.2).
Few SNPs had high VIF and that even adopting VIF > 10 as cutoff only removed less than 0.1% of the 10M
SNPs in the model with 10 PCs.

Furthermore, we directly examined UKC under exceptionally high missing rates. In this experiment, the
phenotype was Neuroticism score (UKB field ID: 20127, missing rate of 18.7%) and was adjusted by the top
five PCs and three covariates of high missing covariates: Exposure to tobacco smoke at home (UKB field
ID: 1269, missing rate of 9.3%), Snoring (UKB field ID: 1210, missing rate of 6.8%), and Alcohol usually
taken with meals (UKB field ID: 1618, missing rate of 20.7%). When incorporating additional covariates, the
inconsistency between BUKC and BUKB increased, suggesting that the missing pattern of phenotypes included
in the model was non-random (Fig, and the lowest correlations for 5 and log;y(p) were 0.819 and 0.797
respectively. In general, although UKC produced more conservative estimates when the missing rate was
high (Figl2] C2-C4, D2-D4), the significant genetic variants identified by UKC and UKB were generally
consistent. The details of the results are given in Supplementary Data II. To benchmark the influence

of missing data, we randomly sampled a phenotype and 3 covariates from the 129 traits, and its identical
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model was also analyzed using UKB data with PLINK. We repeated this procedure 50 times, and top 5 PCs
were always included in a model. The consequent correlation for BUKC and BUKB was 0.937 (s.d. 0.043) for
log;o(p) was 0.901 (s.d. 0.068), respectively. So the influence of missing rate on average was less severe than
the Neuroticism score example.

In general, UKC reproduced the GWAS results with remarkable precision when the missing rates of phe-
notypes were low. In situations with high overall missing rates, estimates might exhibit conservative bias but
were still closely consistent with results of individual-level data. As VIF was useful to exclude potentially
misleading GWAS signals, in the analysis below, we used VIF = 50 as the default threshold to remove poten-
tially abnormal GWAS signals. Synthesizing VIF metrics cost little because each VIF value was windfall for
its testing SNP (see the Methods section).
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Figure 2: Performance of UK BioCoin comparing to UK BioBank under various adjustments. A)
Comparison of regression coefficient (A1-A2) and —log;,(p) (A3-A4) generated by UK BioCoin and PLINK
for GWAS for Standing height, adjusted for 5 and 10 principal components accordingly. In the model
adjusted for 10 PCs (A2, A4), the SNPs with |BUKC — BUKB| > 0.01 are highlighted in red, and the SNPs
with ‘BUKC — BUKB| > 0.2 and VIF > 50 are labeled with triangles. B) Correlation (B1) and Miami plot
(B2) of VIF and bias (|fukc — fuks|). The included PCs are all UKC-PCs. C-D) Comparison of regression
coefficient (C) and —log,,(p-value) (D) generated by UK BioCoin and PLINK when missing rate is higher
than 10%. The target phenotype is Neuroticism score (missing rate ~ 18.7%), and from left to right the
covariates included were: C1 Exposure to tobacco smoke at home (missing rate ~ 9.3%), C2 Snoring
(missing rate =~ 6.8%), and C3 Alcohol usually taken with meals (missing rate ~ 20.7%) is subsequently
added to the model as covariates.

2.3 UK BioCoin for In-depth Genetic Exploration

As illustrated in Fig[T] UKC enables in-depth exploration for many genetic studies. We are going to illustrate
how our UKC can be flexibly integrated into downstream genetic studies, which have GWAS summary statistics
as input, and uncover the variation of these genetic studies due to trait-specific adjustment. Here, we present
four typical applications of UKC: I) GWAS of various adjustments; IT) SNP-heritability estimation by LD
score regression (LDSC, [16]); ITII) polygenic score as generated via “~score” in PLINK [9]); IV) Mendelian

randomization for exploring casual effects of waist circumference on rheumatoid arthritis.

2.3.1 Application 1: GWAS with Flexible Covariate Adjustment

For the subject matter of the presentation, the covariates for GWAS are divided into three categories: I)
covariates without or of little heritability but of biological significance, such as sex [I7]; II) covariates with
heritability, such as height and BMI, which are known to influence the outcome of GWAS due to genetic
correlation [6, [T8]; III) covariates for population structure, surrogated by principal components [19] 20, [21].
We demonstrate in traits Standing height and Weight (UKB field ID: 21002) how UKC provides additional
information than a conventional GWAS (Fig.

Sex (UKB field ID: 31), which was obviously not associated with 10M SNPs, explained R? ~ 0.5 of the
variation of height between men and women. With or without inclusion of Sex, the genetic effects were little
changed, but with the inclusion of Sex the statistical power increased significantly and the number of associated
loci increased from 47,790 to 128,730 SNPs before clumping. When Standing height was adjusted by BMI
(UKB field ID: 21001), which had h? = 0.24 itself but of little correlation with Standing height, it showed an
ignorable effect of the adjustment (Fig A).

On the contrary, the pattern differed significantly for Weight after adjustment. After adjustment for Sex,
which explained approximately R? ~ 0.21 for Weight, there was a slight increase in statistical power, and the
estimation of 8 was negligibly influenced. However, after adjustment for BMI, which was highly correlated
with Weight, statistical power was stratified for loci that influence both Weight and BMI, and in addition, the
genetic effects were significantly altered. On closer examination of the results, of 47,790 SNPs significantly
associated with Standing height, 47,176 remained significant with adjustment of BMI. On the contrary, of
20,912 SNPs significantly associated with Weight, only 7,450 remained significant after BMI adjustment.
Although covariates with certain heritability (such as BMI) were commonly included, they were likely act as
confounders in the study and would be considered to bias the effects estimates [6] (Fig{3] B). It was upon the
purpose of a study to justify the adjustment.

For both traits, with or without adjustment for the top 5 PCs made little difference for the estimation
of B and their statistical power, regardless of whether the PCs were either UKC-PCs or UKB-PCs. The
visible difference was observed, but only for SNPs of very small effect sizes, probably because of subtle local

population structure. The detailed underlying statistical mechanism are provided in the Methods section.
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For 129 traits, we applied five adjustment schemes (no adjustment at all, 5 PCs, 10 PCs, 5 PCs with sex and
5 PCs with BMI), and their summary results are given in Supplementary Data III.

While using covariates without heritability may increase power, this is only true when they are not con-
founding factors. In some case-control studies, the ascertainment for case/control samples may create correla-
tions between trait and covariates that are not presented in a natural population. Adjusting for these covariates
could decrease power and potentially introduce bias [22]. Since UKC runs on population data rather than
ascertained samples, this problem was less likely to arise. Researchers must consider covariate characteristics,
such as heritability and relevance to the trait under study, to fit the purpose of their studies.
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Figure 3: UKC conducts GWAS for Standing height and Weight under various adjustments. For
each trait, the first row is for -logio(p) and the second row for S, in each plot x and y axes compare with
and without adjustment for sex (first column), BMI (second column), 5 top UKC-PCs (third column) and
5 top UKB-PCs (forth column). Sex represents a covariate of low/no heritability, BMI a covariate of high
heritabiltity, and PCs for adjustment for population structure.

2.3.2 Application 2: Estimation for SNP-heritability

One windfall of GWAS summary statistics is the estimation of SNP heritage (h%, p) using LDSC [16]. For each
of the 129 traits, UKC generated eight GWAS summary statistics, which were adjusted by i) no covariates; ii)
5 PCs; iii) 10 PCs; iv) 5 PCs and Sex; v) 5 PCs and BMI; vi) Sex only; vii) BMI only; viii) 5 PCs, Sex and
Age (UKB field ID: 21022). These eight sets of GWAS summary statistics were fed into LDSC, which included
HapMap3 SNP variants with MAF > 0.001 totaling 1.17M SNPs. For most traits, their E%NP showed little
variation regardless of adjustment schemes, probably because these traits had little heritability (Fig A), and
the adjustments resulted in slight variations in the means of the heritability estimates of the 129 traits (Fig
B). However, for traits in category “Physical measure”, especially for those with visible differences between
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men and women such as Standing height and Weight, inclusion or exclusion of sex as a covariate resulted in
different heritability estimates. Subtle population stratification could have an impact on the estimation of
heritability, as evidenced by a significant increase fz?g np of Weight after correcting for 10 PCs. A complete
summary table of the results is provided in Supplementary Data I'V.

Furthermore, we also compared the estimated iAZQS yp using the UKC summary statistics after adjustment
scheme for 5 PCs, Sex, and Age, with fz% np directly downloaded from Neale’s Lab, which was adjusted by
sex and the top 10 PCs (UKB heritability, https://nealelab.github.io/UKBB_ldsc/index.html). Using LDSC,
the 112 matched traits had their ﬁ%. N p consistently estimated, a Pearson correlation of 0.97 (Fig C). Note
that these ﬁ% n p results were all on the observed scale. However, for an ascertainment trait, such as a trait of
the case-control design, the prevalence and the relationship between cases and controls should be provided to
transform the SNP-heritability from the observed scale to the liability scale [23].
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Figure 4: Heritability estimated under 8 sets of covariates corrected. A) the SNP-heritability esti-
mated with LD score regression. Eight groups of GWAS summary statistics are generated in UKC. The traits
that have different SNP-heritability under different models are annotated. B) Average SNP-heritability for
129 traits. C) SNP-heritability comparison for 112 traits. Their ﬁ% ~p were estimated using UKC, adjusted
by 5 PCs, sex and age, and using summary statistics from Neale’s Lab.

2.3.3 Application 3: Polygenic Score

Polygenic score (PGS), a weighted sum of the number of alleles, measures the risk of the disease based on
genetic information [24], 25]. As PGS relies on genetic effects estimated from a GWAS model, the adjustment
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scheme affects the performance of PGS. We demonstrated how the choice of either UKC-PC or UKB-PC would
lead to different results. From the 296,216 unrelated UKB individuals, we randomly selected 10,000 individuals
as the test dataset, and the remaining 286,216 individuals as the training dataset. The variants with MAF <
0.001, imputation quality score < 0.8 or VIF > 10 were excluded from the training dataset, and for the test
dataset variants with MAF < 0.01, missing rate > 0.05 or Hardy—Weinberg equilibrium test p-value < le-8,
and individuals who had their missing call rate higher than 0.05 were removed. Variants with palindromic
alleles between the training and the test datasets were removed. The training model included both Sex and
Age as covariates, and the population structure scheme was either corrected by the top 10 UKB-PCs (denoted
by M1) or the top 10 UKC-PCs (denoted by M2). Given the estimated effect Bj for each SNP X;, the
phenotype was predicted by ¥ = > ; BjX ; as implemented by “~score” in PLINK [J]. The prediction accuracy
was measured by Pearson’s correlation between true phenotype Y and Y (polygenic genetic score correlation,
denoted by R) across all test samples, and no further covariates were adjusted for R.

The prediction accuracy R was evaluated under different sets of 8 after applying p-value thresholds, totaling
15 categories ranging from le-7 (significant variants) to 1 (all common variants). For each of the 126 traits,
we picked the maximum R among the 15 categories for M1 or M2 adjustments, respectively. The mean R
were 0.0942 in M1 and 0.0914 in M2, showing no statistical difference (Fig A, Supplementary Data
V). However, the PGS results exhibited variation across phenotypic categories. For the phenotypes classified
into “Lifestyle and environment”, “Health outcome” and “Mental health”, R were stable under different PC
adjustments (FigJ5| B). In categories “Physical measurements”, “Family history”, and “Early life factors”,
M1 and M2 schemes resulted in different R. For example, the R for Weight was 0.1549 under M2 but 0.2299
under M1. In terms of ‘Family history”, Number of full siblings had a higher R under the M2 than those
under M1 (0.1464 v.s. 0.0659 for Number of full brothers, 0.1111 v.s. 0.0513 for Number of full sisters).

Furthermore, R displayed varying trends along the p-value thresholds across different phenotypes (Fig
C). The R of BMI exhibited a consistent increase with larger p-value thresholds under both adjustment
schemes. On the contrary, Weight, which was highly correlated with BMI, displayed an increasing R trend
under M1 but reached its maximum R near the p-value cutoff at 0.2 under M2; a similar trend was observed
for Seated height (UKB field ID: 51). For Neuroticism score, its maximum R under both adjustment schemes
were found near p-value thresholds of 0.3. For the Education score (UKB field ID: 26414), its maximum R
was achieved at p-value threshold of 0.4 under the M1. Number of full brothers (UKB field ID: 1873) showed
a much higher R under M2.

In this demonstration, the local population structures and cryptic relatedness remained elusive and might
influence the performance of PGS. Other factors could also be further investigated using the UKC platform.
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Figure 5: UKC conducts PGS analysis of 126 phenotypes under UKB-PC or UKC-PC adjust-
ments. A) Polygenic genetic score correlation (R) of all phenotypes corrected by different PCs. The 126
UKB phenotypes were classified into eight categories based on their descriptions. Vertical and horizontal dot-
ted lines for the mean of the 126 R. The size of each point is proportional to the difference between two R B)
The distributions of R differences (M1-R minus M2-R) under different categories. C) Variation of R for the
representative traits using variants under different p-value thresholds.

Mendelian randomization (MR) is a method used to infer causal effects between exposures and outcomes using
genetic variants as instrumental variables (IV) [26]. Two-sample Mendelian randomization is a MR method
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that utilize estimates of genetic association of outcomes and exposure derived from different samples [27]. In
the absence of original data, researchers must rely on existing GWAS summary results that have been adjusted
for certain covariates, potentially introducing bias into MR analyzes [2§].

To investigate how the adjustment of covariates in GWAS summary statistics could perturb MR results, we
used UKC to perform an extensive MR analysis. This involved adjusting for various combinations of covariates
to gain a comprehensive understanding of their effects.

We performed covariate-adjusted two-sample MR to investigate the causal relationship between Waist
circumference (UKB field ID: 48, WC) and rheumatoid arthritis (RA). We obtained the RA summary statistics
from a previous meta-GWAS that included 18 cohorts, consisting of 14,361 RA cases and 43,923 controls of
European ancestry [29]. WC summary statistics are generated with UKC adjusting for various combinations
of covariates. SNPs with p-values < 5 x 10~® underwent linkage disequilibrium clumping(r? < 0.01 within
the distance of clumping 250 kb) were used as IVs in the MR analysis. The inverse-variance weighted (IVW)
method as the primary method was used to obtain the estimated effect size, supplemented by other three
methods (weighted median estimation, simple median estimation, and MR-Egger regression). We provided an
example where MR estimates differed substantially when WC summary statistics were adjusted for different
sets of covariates (Fig@7 Tab. In Fig.@ A, the associations between genetic variants and WC were adjusted
for BMI and Alcohol intake frequency (UKB field ID: 1558), while in Fig.@ B, the adjustments included Weight,
Body fat percentage (UKB field ID: 23099), Smoking status (UKB field ID: 20116), and 10 PCs. Notably, the
results revealed a reversal in the direction of estimated effects using IVW and simple median when covariates
vary-a phenomenon that had received limited scrutiny but was accessible for thorough investigation through
tools like UKC.
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Figure 6: Casual effects of Waist circumference (WC) on rheumatoid arthritis (RA) for different
covariates-adjusted two-sample MR studies. A) Results adjusted for BMI and Alcohol intake frequency.
B) Results adjusted for Weight, Body fat percentage, Smoking status and 10 PCs. The x-axis plots the 3
estimates of each SNP on WC. The y-axis plots the 8 estimates of each SNP on RA. The lines in different
colors indicate the causal effect estimates by inverse variance weighted, MR-Egger regression, simple median
and weighted median methods.

ibiCasual effects of Waist circumference (WC) on rheumatoid arthritis (RA) for different covariates-
adjusted two-sample MR studies.j/b; ibjAj/b;) Results adjusted for BMI and Alcohol intake frequency.
ibiBi/bi) Results adjusted for Weight, Body fat percentage, Smoking status and 10 PCs. The x-axis plots the
iigj/1i estimates of each SNP on WC. The y-axis plots the jijj/i; estimates of each SNP on RA. The lines in

different colors indicate the causal effect estimates by inverse variance weighted, MR-Egger regression, simple
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median and weighted median methods.

Table 2: Summary of casual effects of waist circumference (WC) on rheumatoid arthritis (RA)
with different covariates adjusted.

Covariates Method Num. of QTLs B ] p-values
Inverse-variance weighted (random) 138 0.423654 0.179907  0.01853

BMI & MR-Egger 138 1.363478 0.673006  0.04277

Alcohol intake frequency Weighted median 138 0.614955 0.240209 0.010465
Simple median 138 0.245338 0.238348 0.303326

Weight & Inverse-variance weighted (random) 247 -0.43919  0.170062  0.009807

Body fat percentage & MR-Egger 247 0.075531 0.570881 0.894743
Smoking status & Weighted median 247 -0.07439  0.225956  0.74201

10 PCs Simple median 247 -0.12095  0.226027  0.592575

As a proof-of-principle study, we only demonstrate the basic utility of the four applications, and there are

other methods to improve their performance [4].

3 Availability and Portability

3.1 Availability of UK BioCoin

Both the UKC NSS and the UKC computational engine are integrated into a Docker image (20 GB), which can
be downloaded from the GitHub repository (https://github.com/Ttttt47/UKBioCoin). As the UKC Docker
image has been deployed onto Docker image servers worldwide, it can be successfully downloaded in about an
hour as tested in various regions, including Melbourne (Victoria, Australia), Nashville (Tennessee, US), Tokyo
(Japan), and Stockholm (Sweden); in mainland China, it takes about 20 minutes to download the UKC Docker
image. It should be noted that NSS has been sealed into the UKC image, and the substantial computational
cost for NSS (about 2 days for UKB) should not be concerned.

3.2 Portablility for Other Biobanks

UKC is not only available as an encapsulated package but is portable to other biobanks, and it is straitforward
to build a UKC-like platform. For example, we have successfully applied the entire UKC framework in the
Westlake Biobank cohort (WBBC) [10], and have brought out Westlake BioCoin (WBC). In this test, WBBC
used 5,440 chipped GWAS samples and 14,242,187 QCed SNPs (locus genotyping rate > 0.05, HWE > 0.00001,
MAF > 0.001), and it took approximately 42 minutes to convert its original individual-level data (5.06 GB)
into the corresponding NSS (1.43 GB). As a validation, WBBC performed individual-level GWAS for height
with the inclusion of the top 5 PCs, age, and sex as covariates, and WBC yielded, as expected, nearly identical
results for the matched 8 and p-values. Obviously, the demonstrated four UKC applications, as well as other
utilities, can be equivalently conducted for WBC. We provide scripts for the conversion of other datasets to
establish their own BioCoin like UKC.

4 Discussion

Privacy concerns about individual-level data have limited the data availability, precluding the reproducibility of
genetic studies and collaboration between biobanks. Public released summary statistics promote data-sharing
but lack of flexibility to explore trait-specific covariates, thus narrowing the scope of downstream studies.
To address these challenges, we propose a novel framework that facilitates flexible summary statistics data-

sharing. Given its pivotal role in providing ingredients for other studies, we select UKB as a working instance
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and developed UKC, a summary statistics generator integrating UKB and the summary statistics regression
technique into a single device. We only cover UKB GWAS analysis, but it can profoundly determine the
performance of the estimation of heritability, PGS, and Mendelian randomization, which are highly subject to
UKB output.

In order to make UKC highly consistent to UKB GWAS analyses, we require the summary statistics to
be generated in the form of naive summary statistics, which are synthesized to carry out nearly exact linear
model analysis as individual-level UKB data. As demonstrated, when there is no, low, or even substantially
high missing data, UKC continues to deliver high-quality results. Additionally, the quality control metric VIF,
which is calculated for each testing SNP, further eliminates the possible bias. After compressing 289 GB UKB
source data into 20 GB NSS, UKC is sealed into a portable Docker image, which can be downloaded to a
local site in one hour, as tested worldwide. As the computational kernel of UKC works on summary statistics
regression, which is further optimized in algorithm and C++ programming, its computational speed is boosted
approximately 70 times while requiring little RAM. Therefore, the working environment of UKC can be an
average personal laptop.

For UKB GWAS, principal components are most commonly employed covariates. As the correlation matrix
of PCs is diagonal, using decomposed inversion of a matrix enables us to derive analytical results for SNP
effects and their sampling variance under various possible combinations of PCs. As observed for height, local
selection, as captured by EigenGWAS, can lead to high VIF and eventually very obscure GWAS signals. There
is no clear clue which set of PCs are suitable for precise mapping of a QTL, but our UKC provides such a device
for in-depth evaluation of the stability of GWAS signals, in particular if follow-up experiments are planned to
rely on those results. Various adjustments, such as inclusion of sex and age, can be made and their influence
has been demonstrated in the application I-IV.

As a proof-of-principle study, we only include phenotypes commonly employed in UKB studies, and it is
possible to include even more phenotypes. For phenotypes of interest but bearing high missing rates, phenotype
imputation can be used to improve data quality [30]. The inquiry of GWAS summary statistics can be other
emerging biobanks than UKB. The presented framework can be seamlessly applied to Westlake biobank [10],
and possibly for other cohorts such as STROMICS [31], ChinaMap [32], All of US cohort [33], and even
proteomic data [34]. As enclosed in UKC are summary statistics, it offers a novel route for data-sharing,
without hampering data security but harnessing reproducibility and collaboration.
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5 Materials & Methods

5.1 UK Biobank Overview

The UK Biobank (UKB) is a comprehensive database that contains genetic and health information from more
than 500,000 participants in the United Kingdom [§]. As a proof-of-principle study, we focus only on the
292,216 unrelated white British for 129 phenotypes, 60 continuous traits, such as height and BMI, and 69
categorical traits, such as sex. Genomic data of about 805,000 markers are collected on all individuals in the
cohort, genotype data are then phased and imputed using computationally efficient methods combined with
the Haplotype Reference Consortium (HRC) and UK10K haplotype resource. The imputation protocol has
increased the number of variants by more than 50 times, to 96 million variants. The genotype data is first
imputed and filtered using a minor allele frequency (MAF) cutoff of 0.001 and palindromic SNPs (A/T, G/C
biallelic loci), resulting in retention of 10,531,641 SNPs (Fig A denoted as 10M SNPs), and 488,007 overlap
with the chipped SNPs. The phenotype correlation is shown in Fig C, and the average missing rate is 4.1%.
It should be noted that the UKB phenotype data may consist of multiple samplings and array data containing
multiple data items. To minimize potential biases, we only use the first sampling and, where applicable, the
first element of the array for each phenotype. The principal components are generated using 1 million SNPs,
which are randomly sampled from the 10M SNPs (UKC-PC); in contrast, the principal components directly
downloaded from UKB (UKB-PC) are also included. Otherwise specified, UKC-PC is included for analysis by
default.

5.2 Westlake Biobank Overview

The Westlake BioBank for Chinese (WBBC) project is a population-based prospective study that recruited a
total of ~35,000 participants, comprising ~28,000 late adolescents with a mean age of 19 and ~ 7,000 adults
older than 65 years, covering 31 provincial administrative regions in China [10} 35, B6]. In this study, 5,492
participants with health (e.g., sex, age, and height) information and SNP array data were included. Specifically,
these participants were first genotyped by the high-density Infinium Asian Screening Array. Genotype data
were then imputed using the South and East Asian Reference Database (SEAD) reference panel [I0]. After
phenotype and genotype quality control (-geno 0.05; ~hwe 0.00001; —maf 0.001; —mind 0.05), a total of
14,242,187 SNPs and 5,492 participants were retained in the follow-up analysis.

5.3 Genome-wide Association Studies

A genome-wide association study (GWAS) executes a regression between the genetic variant X and a contin-

uous phenotype Y using a linear regression model:
Y=b+p5X+e (1)

Here, 3 represents the regression coefficient of X, b represents the intercept, and e constitutes noise following
a normal distribution. When Y is discrete, a generalized linear model is used to estimate the genetic effect
of X on Y. Assuming {Y;}£, are phenotypes (covariates) measured in a population such as sex and BMI,
and {X; }le are the numbers of copies of a reference allele with X; € {0,1,2},1 < j < P. Without loss of
generality, X;’s are centered to have a mean of zero, while Y;’s are normalized to have a mean of zero and a
variance of 1. Generally, the effects of covariates on the phenotype are adjusted to reveal conditional genetic
effects, that is, the following model is used to evaluate the genetic effect,

k

Yi=8X;+ Y. wYi+e (2)
t=1,i,#i
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where {Yit}f:ut 2 is the set of trait-specific covariates one wants to adjust, and ~; is the effect of covariate
Y;, on phenotype Y;.

Furthermore, the population structure is commonly adjusted by including principal components as covari-
ates [I9, 20]. Thus, we finally estimate the genetic effect of the SNP using the following model:

k q
Y, =BX;+ Y. wYi+) aw+e (3)
t=1,i,7 =1

where {v;}]_, are the top principal components of genetic structure and oy denotes the regression coefficients of

~ ~ T
v;. The Ordinary Least Squares (OLS) estimator of the regression coefficient 8 = (Bj, V172, -+ oy Viey Q1, Qg . .. ,&q)

417

418

419

420

421

422

423

424

425

426

427

428

429

and its estimated variance are given by

6’2

~ -1
6,=(272) 2"y,

52 =" <(ZTZ>_1> ,

1

nlf(kJqurl)

11

(v-28) (v-28).

where Z constitutes an ny x (k + ¢ + 1) matrix containing genotype and covariate data of n; complete

samples, with the s'!' row representing the information of the s sample: (z; s, ¥i, - - -

and y = (Yi,1,-** , Yin, ) is the observation of phenotype Y;.

5.4 UK BioCoin Algorithm

s 7Uq,s)a

The estimator in Eq[4]is widely used in GWAS. However, it is not applicable when Z and y are not available.

We observe that the OLS estimator in Eq relies on the matrix products Z7Z, ZTy, and yTy, rather than

the original data Z and y. This fact motivates us to use summary statistics regression to get 6; based on

summary statistics Z7 Z, Z"y, and yTy. Specifically, denote

/\2 ~ R =R N
UXj IX5, Y IX;.Ya, | 9X;0 0Xj,0q
G ~2 = — -
0Y;, X, Oy, 0Y;, .Y, | OYiy 01 0Yi, v
~ ~ . ,\2 R -
Qj = O_Yvik,,Xj U}/ikvilil O-lek U}/ik,’ul G'Y'ik’vq (5)
o o G ~2 =
Ov1,X; Ov1,Y; Ov1,Y;, o Gor o,
g o o ol 52
vg, X vq,Yiy vg,Yi, Vg V1 2
a T
aj = (JY},X]’;O—}/-L,Y;'l g e 70%’1/‘% s U}/—LKU17 e 70-}/1'7’0,;) .
We have A
ZTZ =n- ij

T ~
VA y:n1~aj,

yTy = ny (by normalization).

(6)

Herein, axmk denotes the estimated covariance between X; and Y;,, Eg(j represents the estimated variance

of X, and oy, x, and ay,hyik are analogously understood.

Substituting the estimators described in EqJ6] into Eqf4] and following a series of elementary calculations,
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we arrive at the estimators: .
0j = Qj a]‘,

T

1-6.a; ~\—1
~2 J I
L= —2 = Q. . 7
O.ﬁj ny —(k+q+1) << J) )11 ( )

Although these estimators appear to be concise in form, it is important to recognize that in the presence of
missing SNP and phenotype data, it is not feasible to obtain ﬁj and a@;. This is due to the fact that the set
of complete samples depends on the specific model established, which is unknown beforehand.

Let S = {S; = (x14, .., TP Y1,i, -, YK,i) - © = 1, ...,n} be the entire set of observations, where some of them

may contain missing value. At first sight, we can estimate ﬁj and a; based on Sy, where
Sp = {5; € §: S; contains no missing value.} (8)

is obtained by discarding all samples that have missing values. However, after quality control we find that
none of the samples have complete observations in all SNPs and phenotypes, i.e. Sg = @, which makes
this approach impracticable. Looking inside the problem, we note that the elements of ﬁj and a; depend
only on pairs of variables rather than all of them. This fact suggests to estimate the element o4 (a,b €
{X;,Yi

(Gap). Vector @; can be estimated in a similar way, denoted by a;.

Ly Yig, U1, 0,0 }) Of ﬁj based on samples with complete observations on (a,b), which gives ; =

It should be recognized that the (complete) samples for estimating ﬁj (@;) constitute only a subset of
samples used in calculating any entries in ﬁj (a;) and the distribution of SNPs or phenotypes may differ
between these two sets. Therefore, we need to control the missing rates of the covariates included in the
analysis to reduce the effects of unbalanced missing pattern and thus the risk of biased estimation of ﬁj (a;).

Subsequently, we approximate the complete sample size n; with 1 = ¢xn, where ¢ is a constant that pro-
vides a rough approximation of the overall non-missing rate, and n is the known total sample size. In practice,
one can choose ¢ as the product of non-missing rates of phenotypes/SNPs selected in the model, assuming

that the absence of these variables is independent of each other, or simply set ¢ = 1 when the data is nearly

complete. In our implementation, we adopt the former method, that is, ¢ = Hae{xj YooY Vi) (1 —m(a)),
stig s tig i
where m(a) is the missing rate of variable a.
Substituting 71, Q; and a; into the Eq yields the final estimators:
~ ~—1_
0j = Qj a;,
~T
~ 1-6;a, 1 9)
UL NP
Bi n—(k+q+1) 11
We now examine all conceivable models that could emerge in Eq where X, € {X; }le, Y; € {V;}K,

and v; € {vl}lQ:l. Following the identical estimation procedure delineated above, we discern that the entries
of ﬁj and a; for estimating each model are, in fact, reusable. Indeed, for any potential model in the form of
EqJ3] UK BioCoin relies exclusively on a set of these entries. To simplify the notation. we logically reorganize
it into the subsequent three components:

I) 6x = (0%,.0%,+ - 0x,), & vector of length P that represents the estimated variances of the P SNPs.

/(51@,16')1”‘ ‘ (EYiﬂ)l)iJ\ . . )
} ,a (K + Q) x (K 4 Q) matrix represents the correlation coefficients

) 3y = [ —
(UYij)k,j ‘ (Ukaz)kJ
between the K phenotype and () principal components.

IIT) ¥xy = ((gxi,)fj)i’j ‘ (5Xi,vl)u), a P x (K + Q) matrix represents the covariance between the P
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SNPs and (K + Q) phenotype and principal components.
In addition, if one wants to estimate the overall non-missing rate ¢, a vector describing missing rate of all

P SNPs and K phenotypes is required:

m = (le,mXZ, e, MXpy My, MY, ...,myK).

We refer to these statistics {&X, f]y, ixy, m} as UKB Naive Summary Statistics (NSS) in the sense that

the UKC estimation are solely based on these statistics. The comprehensive process of UKC is delineated in

Figli]

5.5 Generating Naive Summary Statistics

We will now outline the process of generating the NSS for a given dataset, which serves as a prerequisite for
the UKC platform. It is important to note that this procedure needs to be executed only once for a specific
dataset.

To generate NSS, we first perform quality control on the raw data and then generate principal components
(PCs) from the genotype data to approximate the population structure. These PCs, combined with phenotypes,
are subsequently scaled to have unit variance and a zero mean. It should be emphasized that while we also
assumed in the previous section that every X; has a mean of zero, centering the genetic data is not required
for generating NSS because the NSS is invariant to mean shifting.

The second step is to calculate the variance for all SNPs presented in the genotype data. To achieve this,
for each SNP, we count the frequencies of the three genotypes: paa,paa, and pye. The variance of a SNP is

calculated as 5?9 =4paa +Ppaa — (2D + Paq)?. Subsequently, we compute §~]y element-wise. The estimate

Ov,y, is given by -1 3" y; oy, where y; s denotes the i phenotype value of the s™
ij

sample and n;;
denotes the number of complete pairs of observations. The estimates oy, v, 0v,y;, and 7, ., are calculated
analogously.

Lastly, we need to compute ¥ xy. Although this can be achieved by directly estimating the covariance
between X; and Y; in the same way as the estimation procedure for iy, the computational burden for datasets
with tens of millions of SNPs, such as UKB, is considerable. To improve computational efficiency, we choose
an indirect method to calculate Y. xvy- In particular, we first need to perform a single-variable linear regression

on every phenotype and principal component. Specifically, we use the following model in PLINK [9]:

Y;‘ = bl +,8inj + €.

Here, Y; € {v1,v9,...,v0, Y1,.... Y&}, X; € {X1,Xo,...,X,}, b; is the intercept and € is the noise. We now
obtain the estimated regression coefficient 3;;, from which ox; v, is calculated by

~ _ D=2

ox,y; = Bijox,-
By synthesizing these elements and the missing rates profile, we construct the naive summary statistics:
{{ax,zy,x)(y,m}
5.6 Estimation of VIF

The variance inflation factor (VIF) for testing the j* SNP is defined as VIF; = =&, where R? stands for
the proportion of variance in X; that could be explained by the other covariates. VIF reflects the degree of

variance inflation of the regression coeflicient estimator Ej in the sense that it is a factor in the estimated
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variance 5% [37]:
B;

G2 1 G2

1
52 =52 (ZTZ) ) - R - € .VIF;. (10)
ﬁJ ( 11 (n1 — 1)0’%] 1 — R? (Tll — 1)0’%9, J

This suggests VIF as a measure of sensitivity of estimate Ej to the variation in the data. SNPs with high VIF
are often removed from the results in the sense that they have rather unstable estimates.
In practice, we substitute 8%_ by 5% in Eqﬁ and the VIF of the j** SNP is given by
J J

52

VIF; = 6% |
5 - %,

where G2 is the mean squared error and the estimator of the variance of the error term e:

~ ~ =T _
nlfm@jaj
-kt at)

The principal components are widely used covariates in GWAS. When all covariates are PCs {v;}{_,, the
relationship between VIF and regression is more straightforward. In such a case, since the PCs are independent

from each other, R? is essentially the sum of squared correlations between X; and the PCs,

q
=> P (13)
=1

Such correlations between genetic variants and PCs can be revealed by EigenGWAS analysis. EigenGWAS is
a flexible genomic scan method to find loci under natural selection[14} [38], which is done in the same manner

as GWAS, replacing the phenotype Y with PC v, as the response variable,

Vq :bj+ﬂij+€.

A significant EigenGWAS signal corresponds to a significant correlation px; ,, between the SNP and the
specific PC, which eventually leads to inflated Rjz and VIF when adding this PC as covariates in a GWAS. It
is worth noting that all PCs form an orthonormal basis of span (X1, X», ..., Xp), allowing X; to be represented
as a linear combination of v;’s. Consequently, we view p%j)vl as the inner product of X; and v;, implying
that as more PCs are added as covariates, R? tends toward 1 and VIF tends to 4+oc. This leads to severe
multicollinearity and obscure results. Therefore, the selection of the number of PCs is a trade-off between
avoiding multicollinearity and correcting for population structure.

When all covariates are PCs, one can also derive the OLS estimator for the regression coefficient for the
j™ SNP 3; as well as the t-statistic ¢; as

B\_ _ 3X Y — Zl 1 3X v,3y v 3Xj,Y*ZlA21 an,vlaY,vl . VIF,
J —Zz 1 X g 7, (14)
) Ox;y— Z Gx;.v,0Y, =
t; = 7{’3 — =L S VIF, - (g — 1),
‘Téj UEO'X .

Again, these equations suggest VIF as a measure of stability in the sense that small errors in estimation of

O'X Y UXNJL, Oy, Oc and & ox; will be amplified by large VIF:

q ~ ~ ~ q ~ ~
Y = Zl 19X;,u%u  0X;Y — Zl 19X;,09Yu
=2 =2
9X; Ix;

Aj= ]@ - Bj\ = -VIF, =§; - VIF;.  (15)
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516 Due to the approximations used in UKC, more errors are introduced compared to individual-level data-
si7 - based methods. We suggest using a stringent VIF threshold to exclude estimates that not only have high

sis  variation but also have a high risk of amplifying the errors introduced by UKC approximation.

= 6 Data Availability
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