

1
2
3
4
5 **The chromatin-associated 53BP1 ortholog, HSR-9, regulates recombinational**
6 **repair and X chromosome segregation in the *Caenorhabditis elegans* germ line**

7 Qianyan Li*^{1,2}, Sara Hariri*^{1,2}, Aashna Calidas¹, Arshdeep Kaur¹, Erica Huey¹, and
8 JoAnne Engebrecht^{1,2,3}

9
10 *Contributed equally
11 ¹Department of Molecular and Cellular Biology
12 ²Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group
13 University of California Davis
14 Davis, California 95616
15
16

17 ³Corresponding author: Department of Molecular and Cellular Biology, and
18 Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group,
19 University of California Davis, One Shields Ave., Davis, CA 95616. E-mail:
20 jengebrecht@ucdavis.edu

21 Running title: Role of HSR-9 in meiosis
22
23

24 **ABSTRACT**

25 53BP1 plays a crucial role in regulating DNA damage repair pathway choice and
26 checkpoint signaling in somatic cells; however, its role in meiosis has remained
27 enigmatic. In this study, we demonstrate that the *Caenorhabditis elegans* ortholog of
28 53BP1, HSR-9, associates with chromatin in both proliferating and meiotic germ cells.
29 Notably, HSR-9 is enriched on the *X* chromosome pair in pachytene oogenic germ cells.
30 HSR-9 is also present at kinetochores during both mitotic and meiotic divisions but does
31 not appear to be essential for monitoring microtubule-kinetochore attachments or
32 tension. Using cytological markers of different steps in recombinational repair, we found
33 that HSR-9 influences the processing of a subset of meiotic double strand breaks into
34 COSA-1-marked crossovers. Additionally, HSR-9 plays a role in meiotic *X* chromosome
35 segregation under conditions where *X* chromosomes fail to pair, synapse, and
36 recombine. Together, these results highlight that chromatin-associated HSR-9 has both
37 conserved and unique functions in the regulation of meiotic chromosome behavior.

38

39 **Article Summary**

40 While 53BP1 is known for its crucial role in DNA damage signaling and repair in somatic
41 cells, its role in meiosis is not well understood. Li, Hariri, et al., show that *C. elegans*
42 53BP1 not only functions in meiotic recombination and checkpoint signaling but also
43 regulates the transmission of sex chromosomes when meiosis is perturbed. These
44 results highlight the importance of 53BP1 in *C. elegans* meiosis and suggest that 53BP1
45 has both conserved and organism-specific functions.

46

47 **Introduction**

48 The tumor suppressor 53BP1 regulates several biological processes important for
49 genome integrity, including transcription, DNA repair, and chromosome segregation
50 (Mirza-Aghazadeh-Attari et al., 2019). It was originally identified as a p53 interacting
51 protein (53 Binding Protein 1) (Iwabuchi et al., 1994) and was subsequently shown to
52 promote p53-DNA interactions to enhance transcription and checkpoint signaling
53 (Cuella-Martin et al., 2016). Many studies have focused on the role of 53BP1 in DNA
54 repair. 53BP1 binds and protects DNA ends from resection in complex with RIF1, the
55 Shieldin complex, and PTIP, thereby promoting non-homologous end joining (NHEJ),
56 and antagonizes RAD51 filament formation post-resection to inhibit homologous
57 recombination (HR) (Callen et al., 2020; Chapman et al., 2013; Escribano-Diaz &
58 Durocher, 2013; Mirman et al., 2018; Noordermeer et al., 2018; Ward, Minn, van
59 Deursen, et al., 2003). Its role in promoting NHEJ was reinforced by the finding that
60 mutation of 53BP1 can partially suppress the embryonic lethality of *Brca1* mutant mice,
61 which is proposed to be due to the inappropriate use of NHEJ when homologous
62 recombination (HR) is inhibited by *Brca1* mutation (Bouwman et al., 2010; Bunting et al.,
63 2010; Cao et al., 2009; Chen et al., 2020; Li et al., 2016). 53BP1 has also been shown
64 to play important roles in class switch recombination and telomere protection
65 (Difilippantonio et al., 2008; Dimitrova et al., 2008; Rocha et al., 2016;
66 Sundaravinayagam et al., 2019; Ward et al., 2004). In addition, 53BP1 monitors
67 microtubule-kinetochore interactions or tension, which are important for proper
68 chromosome segregation (Jullien et al., 2002; Wang et al., 2017; Yim et al., 2017).

69 53BP1 is chromatin-associated and becomes enriched at double-stranded
70 breaks (DSBs) together with the histone variant, γ -H2AX (Ward, Minn, Jorda, et al.,
71 2003). In fact, 53BP1 is often used as a marker of DSB formation. At DSBs, 53BP1 has
72 been shown to bind to histone H4 lysine 20 dimethylation (H4K20me2) through its
73 conserved Tudor domain and H2A lysine 15 ubiquitination (H2AK15ub) (Botuyan et al.,
74 2006; Fradet-Turcotte et al., 2013). In yeast, the 53BP1 ortholog, Rad9, associates with
75 histone H3 lysine 79 methylation (H3K79me) at DSBs and regulates strand annealing
76 for crossover recombination (Ferrari et al., 2020). Recent work provides evidence that
77 53BP1 undergoes liquid-liquid phase separation both in the context of DNA repair and
78 transcriptional regulation (Kilic et al., 2019; Zhang et al., 2022), suggesting that 53BP1
79 has complex and incompletely understood chromatin interactions.

80 Recombinational repair in the context of unique chromatin structure is critical for
81 successful meiosis. Despite the known association of 53BP1 with specific chromatin
82 marks (Botuyan et al., 2006; Fradet-Turcotte et al., 2013) and its role in DNA repair
83 (Callen et al., 2020; Chapman et al., 2013; Escribano-Diaz & Durocher, 2013; Mirman et
84 al., 2018; Noordermeer et al., 2018; Ward, Minn, van Deursen, et al., 2003), very few
85 studies have explored the role of 53BP1 in meiosis. Meiotic recombination is initiated by
86 the intentional induction of DSBs by the conserved topoisomerase Spo11 (Dernburg et
87 al., 1998; Keeney et al., 1997). The broken ends are then processed by multiple
88 exonucleases to expose a 3' single-stranded tail for strand invasion mediated by the
89 recombinases Dmc1 and Rad51 (in many organisms), or RAD-51 alone (in *C. elegans*).
90 Following strand invasion, while both non-crossover and crossover repair outcomes are
91 possible, at least one DSB per chromosome pair must be converted into an

92 interhomolog crossover for proper chromosome segregation (Chen & Weir, 2024;
93 Gartner & Engebrecht, 2022).

94 53BP1 mutant mice exhibit growth retardation and increased cancer
95 susceptibility yet are fertile, suggesting that 53BP1 does not play an essential role in
96 meiosis (Ward, Minn, van Deursen, et al., 2003). Further, DNA end resection is not
97 affected in mouse spermatocytes lacking 53BP1 (Paiano et al., 2020). In yeast meiosis,
98 Rad9 binds to exogenously induced DSBs but not to Spo11-induced breaks (Usui &
99 Shinohara, 2021). In *C. elegans*, mutation of *hsr-9* (53BP1) enhances the phenotype of
100 *brc-1(BRCA1)* mutations, instead of suppressing lethality as in mammals, suggesting it
101 may not promote NHEJ (Hariri et al., 2023). HSR-9 has been shown to play a role in
102 repair and signaling of exogenous breaks in the germ line (Ryu et al., 2013); however,
103 its role in meiotic DSB repair or checkpoint signaling has not been reported. Thus, the
104 function of 53BP1 in meiosis remains unclear and may vary across organisms.

105 Here, we take advantage of the *C. elegans* system to examine the role of HSR-9
106 in the germ line. We find that HSR-9 is chromatin-associated, enriched on the X
107 chromosome pair in oogenic germ cells, and present at kinetochores in cells undergoing
108 mitotic and meiotic divisions. Mutant analyses reveal roles for HSR-9 in the processing
109 of meiotic DSBs into crossovers and in germline apoptosis. Additionally, HSR-9 is
110 important for segregation of the X chromosome pair in oogenic germ cells when pairing,
111 synapsis, and recombination are defective.

112
113
114

115 **Materials and Methods**

116

117 **Genetics**

118 *C. elegans* strains used in this study are listed in Table S1. Some nematode strains were
119 provided by the Caenorhabditis Genetics Center, which is funded by the National
120 Institutes of Health National Center for Research Resources (NIH NCRR). Strains were
121 maintained at 20°C except for *zyg-1(ts)*, which was maintained at 15°C.

122

123 **CRISPR-mediated allele construction**

124 *hsr-9(xoe17)* in *rad-54* and the Hawaiian background used for SNP mapping was
125 generated as previously reported (Hariri et al., 2023). *gfp::v5::hsr-9 (xoe45)* was
126 generated using the CRISPR-Cas9 ribonucleoprotein complexes based on the co-
127 CRISPR method (Paix et al., 2015). A 1324bp double strand DNA fragment was
128 synthesized (Gblock; IDT) and used as the repair template after PCR amplification. This
129 repair template contains sequences for GFP, V5 tag, and flexible linkers, flanked by 5'
130 and 3' homology arms of 175 and 198 bps, respectively. Insertion of GFP, V5 and the
131 flexible linkers upstream of the start codon disrupted the PAM sequence, eliminating the
132 need for point mutations to disrupt the guide RNA sequence. Briefly, the Cas9-crRNA-
133 tracrRNA ribonucleoprotein complex, along with the repair template, was microinjected
134 into the *C. elegans* gonad. F1 progenies exhibiting roller/dumpy phenotypes were
135 isolated and genotyped by PCR to confirm GFP insertion. Similarly, *gfp::hsr-9::3xHA*
136 (*xoe47*) was generated using a 1290bp double-strand DNA repair template to insert the
137 flexible linker-GFP-3xHA sequence before the stop codon. A silent mutation was

138 introduced at the junction of the 5' homology arm and the flexible linker sequence to
139 disrupt the PAM sequence in the repair template. Guide sequences, repair templates,
140 and genotyping primers for both fusions are provided in Table S2. All strains were
141 outcrossed for a minimum of three times before analyses.

142

143 ***Embryonic lethality and male self-progeny***

144 L4 stage hermaphrodites were placed on individual plates and allowed to lay eggs. After
145 24hrs, they were transferred to new plates and this process was repeated for 3 days.
146 Embryonic lethality was determined by counting eggs and hatched larvae 24hrs after
147 removing the adult hermaphrodite and percent was calculated as eggs/(eggs + larvae).
148 Males were scored 72hrs post adult removal and percent was calculated as males/(males
149 + hermaphrodites + eggs).

150

151 ***Cytological analyses***

152 For live cell imaging, hermaphrodites aged 18–24hrs post L4 stage were anesthetized in
153 1mM tetramisole (Sigma-Aldrich) and immobilized between a coverslip and a 2% agarose
154 pad on a glass slide. Z-stacks (0.33 μ m) were captured on a spinning-disk module of the
155 Marianas spinning-disk confocal real-time 3D Confocal-TIRF microscope (Intelligent
156 Imaging Innovations) equipped with an 63x, NA 1.46 objective lens using a Photometrics
157 QuantiEM electron multiplying charge-coupled device (EMCCD) camera, a Zeiss 980
158 LSM with Airyscan 2 equipped with a 63x 1.4NA objective and the Airyscan Multiplex
159 Super-Resolution-4Y mode, or an API Delta Vision Ultra deconvolution microscope
160 equipped with an 60x, NA 1.49 objective lens. Subsequent Airyscan processing was

161 performed with automatic settings. Z-projections of stacks were generated, cropped, and
162 adjusted for brightness in Fiji.

163 Immunostaining of germ lines was performed as described (Jaramillo-Lambert et al.,
164 2007) except slides were incubated in 100% ethanol instead of 100% methanol for
165 detection of direct fluorescence of GFP::COSA-1, mCherry::HIM-8, and GFP::RPA-1.
166 For fixed images of GFP::V5::HSR-9, dissected gonads were rapidly immersed in liquid
167 nitrogen and then fixed with 2% paraformaldehyde as in (Janisiw et al., 2020). Primary
168 antibodies are listed in Table S3. Life Technologies secondary donkey anti-rabbit
169 antibodies conjugated to Alexa Fluor 488 or 594 and goat anti-rabbit conjugated to
170 Alexa Fluor 647 were used at 1:500 dilutions. DAPI (2 μ g/ml; Sigma-Aldrich) was used to
171 counterstain DNA.

172 Collection of fixed images was performed using an API Delta Vision Ultra
173 deconvolution microscope. Z stacks (0.2 μ m) were collected from the entire gonad. A
174 minimum of three germ lines was examined for each condition. Images were
175 deconvolved using Applied Precision SoftWoRx batch deconvolution software and
176 subsequently processed and analyzed using Fiji (ImageJ) (Wayne Rasband, NIH).
177 Images show half-projections of gonads.

178 To determine the X/autosome ratio of GFP::V5::HSR-9 fluorescence, the GFP
179 fluorescence intensity was measured by drawing a region of interest (ROI) around the X
180 chromosomes in pachytene nuclei. The intensity was also measured using the same
181 ROI in an area within the same nucleus that excluded the X chromosomes. For H3S10P
182 quantification, nuclei positive for H3S10P signal were counted in the proliferative zone
183 of germ lines from age-matched 18hr post-L4 hermaphrodites grown at 25C to

184 inactivate *zyg-1*. GFP::RPA-1 fluorescence was quantified by measuring the mean
185 fluorescence intensity and standard deviation (SD) in Fiji for individual nuclei from
186 transition zone to mid-pachytene. Coefficient of variation (CV) was calculated as SD of
187 intensity divided by mean intensity (Bishop et al., 2015). For RAD-51 quantification,
188 germ lines were divided into the transition zone (leptotene/zygotene, from the first to last
189 row with two or more crescent-shaped nuclei), and pachytene (divided into 3 equal
190 parts: early, mid, and late pachytene). RAD-51 foci per nucleus was scored from half
191 projections of the germ lines for each divided region. CHK-1Ser345p foci were
192 quantified in early pachytene nuclei. GFP::COSA-1 foci were scored from deconvolved
193 3D z-stacks in mid-late pachytene nuclei individually to ensure that all foci within each
194 individual nucleus were counted. mCherry::HIM-8 foci were quantified from deconvolved
195 3D z-stacks throughout the germline.

196

197 ***Meiotic mapping***

198 Meiotic crossover frequencies and distribution were assayed utilizing single-nucleotide
199 polymorphism (SNP) markers as in (Nabeshima et al., 2004). The SNP markers located
200 at the boundaries of the chromosome domains were chosen based on data from
201 WormBase (WS231), (Bazan & Hillers, 2011), and (Saito et al., 2013) and are indicated
202 in Figure 5D. The SNP markers and primers used are listed in (Li et al., 2020). PCR and
203 restriction digests of single worm lysates were performed as described in (Li et al.,
204 2020).

205

206

207 **X chromosome nondisjunction**

208 Hybrid hermaphrodites expressing GFP::2xNLS and tdTomato::H2B (fusions inserted
209 into the same location on each of the X chromosomes) were mated to *fem-*
210 *3(e1996)/nT1GFP; lon-2(e678)* males. Parents were transferred every 24hrs for 3 days.
211 Progeny were scored for GFP and tdTomato on a fluorescent stereo microscope at 20x
212 magnification on day 3. Only worms with green-fluorescent pharynxes were scored for
213 X chromosome markers to ensure cross progeny were examined.

214

215 **Statistical analyses**

216 Statistical analyses and figures were prepared using GraphPad Prism version 10.0
217 (GraphPad Software). Statistical comparisons of embryonic lethality (Figure S1B, Figure
218 S2A, and Figure 6A), X/autosomal GFP::V5::HSR-9 fluorescence intensity (Figure 2E),
219 H3S10P nuclei/germ line (Figure 3D), GFP::RPA-1 fluorescence (Figure 4C and Figure
220 S2B), RAD-51 foci numbers (Figure 4E, G and Figure S2C), % male self-progeny,
221 pCHK-1 foci/nucleus and apoptotic nuclei/gonad (Figure 6B-E) were analyzed by Mann-
222 Whitney. Chi-squared test was used for statistical analyses on GFP::COSA-1, genetic
223 map distance, distribution, and % oocytes with X chromosome non-disjunction events
224 (Figure 5A, D, and Figure 7B). Detailed descriptions of statistical analyses are indicated
225 in figure legends.

226

227 **Results**

228 **HSR-9 associates with chromatin in the germ line**

229 HSR-9 exhibits a domain structure similar to human 53BP1, with an intrinsically
230 disordered N-terminus and conserved BRCT domains at the C-terminus. The predicted
231 structure of HSR-9 as determined by AlphaFold is shown in Figure 1A (Jumper et al.,
232 2021) and the extent of disorder is shown in Figure 1B (Erdos et al., 2021). To examine
233 HSR-9 localization, we constructed GFP fusions to both the N and C-termini of HSR-9
234 using CRISPR genome editing (Figure S1A). Mutation of HSR-9 has no effect on
235 progeny viability (Ryu et al., 2013), and we confirmed this using the putative null allele
236 *hsr-9(xoe17)* (Hariri et al., 2023) (Figure S1A). We examined the functionality of the
237 GFP fusions to HSR-9 by monitoring embryonic lethality in the absence of the ortholog
238 of the tumor suppressor BRCA1/BRC-1, as the *hsr-9; brc-1* double mutant results in
239 enhanced embryonic lethality [(Hariri et al., 2023); Figure S1B]. The C-terminal HSR-
240 9::GFP::3xHA fusion in combination with *brc-1* showed similar embryonic lethality to the
241 *hsr-9; brc-1* double mutant, suggesting it is nonfunctional. On the other hand,
242 *gfp::v5::hsr-9; brc-1* double mutant exhibited embryonic lethality at levels between that
243 of wild type and *hsr-9; brc-1*, suggesting that GFP::V5::HSR-9 is partially functional
244 (Figure S1C). Both fusions showed similar localization in the *C. elegans* germ line
245 (Figure 1C and Figure S1C). We subsequently concentrated our localization studies on
246 worms expressing the GFP::V5::HSR-9 fusion.

247 We monitored HSR-9 localization by live imaging focusing on the *C. elegans*
248 germ line, which contains proliferating germ cells at the distal end and all stages of
249 meiotic prophase arranged in a spatial-temporal gradient towards the proximal end
250 (Figure 1C). Consistent with a previous study using an antibody directed against HSR-9
251 (Ryu et al., 2013), GFP fluorescence was enriched in the nucleus of proliferating germ

252 cells (Figure 1C). In metaphase and anaphase of mitosis, where the nuclear envelope
253 breaks down and chromosomes condense, HSR-9 was localized to the condensed
254 chromosomes (PZ, arrows; Figure 1C), suggesting that the protein is chromatin-
255 associated. In meiotic germ cells, HSR-9 was observed on chromatin throughout
256 prophase, first appearing in tracks as chromosomes synapse, and subsequently on
257 condensed chromosomes in diplotene/diakinesis (Figure 1C).

258 In contrast to observations from live imaging, the GFP::V5::HSR-9 signal in
259 dissected and fixed gonads did not show as tight an association with chromatin (Ryu et
260 al., 2013). This pattern held true regardless of whether we used antibodies directed
261 against GFP or V5, or imaged GFP fluorescence directly on samples prepared by
262 dissection in paraformaldehyde followed by ethanol fixation. Rapid freeze crack and
263 fixation in cold ethanol followed by paraformaldehyde treatment of dissected gonads
264 more closely but not entirely recapitulated the results by live imaging (Figure 1D). As
265 proteins containing intrinsically disordered regions have been shown to have different
266 localization patterns in fixed versus live cells, the difference we observed for HSR-9
267 localization is likely a consequence of rapid association/disassociation of HSR-9 with
268 chromatin (Irgen-Giorgi et al., 2022; Schmiedeberg et al., 2009; Teves et al., 2016).

269

270 **HSR-9 is enriched on the X chromosome pair in hermaphrodite germ cells**

271 We noted that GFP::V5::HSR-9 fluorescence in live hermaphrodite worms was more
272 intense in two nuclear domains in many mitotic germ cells where homologous
273 chromosomes are unpaired, and on one chromosome track in pachytene germ cells
274 where homologous chromosomes are paired and synapsed (asterisks, Figure 1C). We

275 hypothesized that the GFP::V5::HSR-9-enriched regions were the *X* chromosomes,
276 which have different chromatin properties compared to the autosomes (Bean et al.,
277 2004; Checchi & Engebrecht, 2011; Jaramillo-Lambert & Engebrecht, 2010; Kelly et al.,
278 2002; Reuben & Lin, 2002). To test this, we imaged live worms expressing
279 mCherry::HIM-8, the *X* chromosome-specific pairing center protein (Link et al., 2018;
280 Phillips et al., 2005), and found that mCherry::HIM-8 labelled the two GFP::V5::HSR-9
281 enriched domains in many proliferating germ cells as well as the single chromosome
282 track enriched for GFP::V5::HSR-9 in pachytene germ cells (Figure 2A). This result is
283 consistent with GFP::V5::HSR-9 being concentrated on *X* chromosomes. Interestingly,
284 while we observed a single HIM-8-associated GFP::V5::HSR-9 enriched region in
285 mitotic germ cells in the male germ line, consistent with enrichment on the single *X*
286 chromosome of males, we did not observe enrichment on the *X* chromosome in male
287 pachytene germ cells (Figure 2B). Thus, GFP::V5::HSR-9 is associated with chromatin,
288 and is enriched on the *X* chromosome(s) in both oogenic and spermatogenic
289 proliferating germ cells but only on the *X* chromosome pair in oogenic pachytene germ
290 cells.

291 Mammalian 53BP1 associates with histone H4 dimethylated on lysine 20
292 (H4K20me2). In *C. elegans* pachytene germ cells, H4K20me1 is enriched on
293 autosomes relative to the *X* chromosomes due to autosomal targeting of the DPY-21
294 demethylase, which converts H4K20me2 to H4K20me1 (Brejc et al., 2017; Vielle et al.,
295 2012). This suggests that *X* chromosomes are enriched for H4K20me2/3 and this
296 enrichment may contribute to HSR-9 accumulation on the *X* chromosomes. As we were
297 unable to identify antibodies specific for H4K20me2/3, we labelled germ lines with

298 antibodies against H4K20me1 and observed enrichment on autosomes relative to the X
299 chromosomes as previously reported (Brejc et al., 2017; Vielle et al., 2012) (Figure 2C).
300 We next examined the immunolocalization of H4K20me1 in two different deletion
301 mutants of the SET-4 methyltransferase, which adds methyl groups to H4K20me1 to
302 generate H4K20me2 and H4K20me3 (Kramer et al., 2015; Vielle et al., 2012; Wells et
303 al., 2012). *set-4(ok1481)* contains a 913bp C-terminal deletion that removes the last 17
304 amino acids and 3'UTR, while *set-4(n4600)* contains a 1146bp deletion that removes
305 upstream sequences and the first 165 of 288 amino acids. In both mutants, H4K20me1
306 was detectable on the X chromosome pair, consistent with the X chromosomes being
307 enriched for SET-4-dependent H4K20me2/me3 in wild-type animals (Figure 2C).
308 Analysis of GFP::V5::HSR-9 in *set-4* mutants revealed a reduced, but still detectable,
309 enrichment of GFP::V5::HSR-9 on the X chromosome pair (Figure 2D, E). These results
310 suggest that H4K20me2/me3 contributes to the enrichment of HSR-9 on the X
311 chromosome pair, but there are additional factors, likely including other chromatin
312 marks, that influence HSR-9 recruitment.

313

314 **HSR-9 localizes to kinetochores but does not play an essential role in monitoring
315 kinetochore-spindle attachments/tension**

316 In mammalian somatic cells, 53BP1 accumulates at kinetochores and centrosomes in
317 addition to being associated with chromatin (Jullien et al., 2002; Yim et al., 2017). *C.*
318 *elegans* chromosomes are holocentric, with kinetochore proteins binding along the
319 poleward face of each sister chromatid during mitosis and forming cup-shaped
320 structures on meiotic chromosomes (Albertson & Thomson, 1982; Monen et al., 2005).

321 While no centrosome localization was detected, we observed GFP::V5::HSR-9 in bar-
322 like structures on the poleward face of metaphase chromosomes in proliferating germ
323 cells and in embryos (Figure 3A). To confirm that GFP::V5::HSR-9 is enriched on
324 kinetochores, we performed immunolabeling with antibodies against the kinetochore-
325 associated CENP-A ortholog, HCP-3 (Gassmann et al., 2012) and imaged GFP
326 fluorescence. We observed both HCP-3 and GFP fluorescence in bar-like structures
327 that co-localized on the poleward face of metaphase chromosomes in proliferating germ
328 cells (Figure 3B), confirming that HSR-9 is enriched at kinetochores. GFP::V5::HSR-9
329 was also observed surrounding the outer edge of chromosomes at the -1 oocyte and at
330 the meiotic divisions (Figure 3A), consistent with kinetochore localization.

331 Mammalian 53BP1 at the kinetochore has been shown to play a role in
332 monitoring inappropriate microtubule attachments or tension (Jullien et al., 2002; Wang
333 et al., 2017). To determine whether HSR-9 plays a similar role in germ cells, we
334 disrupted metaphase using the *zyg-1(b1)* conditional mutant [referred to as *zyg-1(ts)*;
335 (O'Connell et al., 2001; Wood et al., 1980)], which we previously showed perturbed
336 spindle function in mitotically-dividing germ cells and activated the DNA damage
337 response and spindle assembly checkpoint (Lawrence et al., 2015). ZYG-1 is
338 functionally related to PLK4 and is required for centrosome duplication (O'Connell et al.,
339 2001). Its inactivation leads to the formation of monopolar spindles and disrupts spindle
340 attachments and tension. This results in a cell cycle delay, which is evidenced by an
341 increase in the number of nuclei enriched for phosphorylation of Serine 10 on Histone
342 H3 (H3S10P), a marker of prometaphase/metaphase (Lawrence et al., 2015; Prigent &
343 Dimitrov, 2003). As expected, we observed an increase in H3S10P-positive nuclei

344 following ZYG-1 inactivation at 25°C, indicative of a metaphase delay (Figure 3C, D).

345 Inactivation of *zyg-1(ts)* at the nonpermissive temperature in the *hsr-9(xoe17)* mutant

346 did not alter the number of H3S10P-positive nuclei, suggesting that HSR-9 is not

347 required for monitoring microtubule attachment/tension and checkpoint activation in the

348 *zyg-1(ts)* mutant (Figure 3C, D). We also examined the consequence of HSR-9

349 mutation on progeny viability at different temperatures in the *zyg-1(ts)* mutant. No

350 enhancement of progeny lethality was observed in the absence of HSR-9, consistent

351 with our findings that HSR-9 is not essential for cell cycle delay when monopolar

352 spindles are induced. Thus, HSR-9 is enriched at kinetochores in metaphase but does

353 not play a significant role in monitoring spindle attachments/tension at kinetochores in

354 *C. elegans*.

355

356 **HSR-9 regulates meiotic DSB processing**

357 In somatic cells, 53BP1 functions in the DNA damage response and repair choice

358 (Mirman & de Lange, 2020). Further, 53BP1 becomes enriched in nuclear foci following

359 DNA damage, and has been widely used as a marker of DSBs (Ward, Minn, Jorda, et

360 al., 2003). No obvious GFP::V5::HSR-9 foci were observed in meiotic cells, where DSBs

361 are induced by SPO-11 (Figure 1C). Further, no GFP::V5::HSR-9 foci were observed

362 following irradiation (IR) treatment, suggesting that HSR-9 does not accumulate at

363 DSBs in *C. elegans* germ cells (Ryu et al., 2013) (Figure 4A).

364 While HSR-9 does not accumulate at DSBs, HSR-9 has been reported to play a

365 role in repair of IR-induced breaks in the germ line when HR is impaired (Ryu et al.,

366 2013). To determine whether HSR-9 functions in repair of meiotic DSBs, we analyzed

367 meiotic recombination in *hsr-9(xoe17)* and the previously described *hsr-9(ok759)* allele,
368 which removes 1613 bps in the middle of the gene (Ryu et al., 2013) (Figure S1A).
369 Progeny viability was high (Figure S1B) and there was no increase in male self-progeny
370 in either *hsr-9(ok759)* or *hsr-9(xoe17)* mutants (wt = 0.02±0.01, *hsr-9(ok759)* =
371 0.01±0.05, *hsr-9(xoe17)* = 0.01±0.04% males), suggesting that HSR-9 is not essential
372 for meiotic recombination. Further, blocking apoptosis by mutation of CED-3, the
373 caspase essential for executing cell death (Ellis & Horvitz, 1986; Yuan et al., 1993), did
374 not increase the number of inviable progeny compared to the *ced-3* mutant alone,
375 suggesting that the lack of elevated progeny lethality is not due to culling by apoptosis
376 in the absence of HSR-9 (Figure S2A).

377 Meiotic DSBs are catalyzed by the conserved topoisomerase SPO-11 (Bergerat
378 et al., 1997; Dernburg et al., 1998; Keeney et al., 1997), and then processed for repair
379 predominately by HR. We monitored meiotic DSB repair by examining the appearance
380 and disappearance of the Replication Protein A (RPA) complex and RAD-51 in the
381 spatiotemporal organization of the *C. elegans* germ line. RPA coats single-stranded
382 DNA generated by end resection. In *C. elegans*, RPA is composed of RPA-1 and RPA-2
383 (Hefel et al., 2021) and GFP::RPA-1 is observed in foci from early prophase
384 (leptotene/zygotene) through pachytene, suggesting that it not only marks resected
385 ends but also recombination intermediates post-resection (Woglar & Villeneuve, 2018).
386 In live worms, GFP::RPA-1 is nucleoplasmic with some nuclear foci visible (Li et al.,
387 2020; Li et al., 2023). Live cell imaging of GFP::RPA-1 in wild type and *hsr-9(xoe17)*
388 revealed more intense foci in the *hsr-9(xoe17)* mutant (Figure 4B). To quantify this, we
389 measured the coefficient of variation (CV), which describes the dispersion of pixel

390 intensity values from a 2D region of interest around the mean pixel intensity such that
391 nuclei with more foci above the nucleoplasmic signal will have high CV values, whereas
392 nuclei with more uniform fluorescence will have low CV values (Bishop et al., 2015). We
393 observed a higher CV of GFP::RPA-1 in *hsr-9(xoe17)* compared to wild type in both
394 leptotene/zygotene and pachytene nuclei (Figure 4C). GFP::RPA-1 fluorescence also
395 had a higher CV in the *hsr-9(ok759)* mutant (Figure S2B).

396 We next examined the assembly and disassembly of RAD-51 (Rinaldo et al.,
397 2002) in the presence and absence of HSR-9 using antibodies against RAD-51 (Alpi et
398 al., 2003; Colaiacovo et al., 2003). RAD-51 replaces the RPA complex on resected
399 DSBs beginning in leptotene/zygotene (transition zone) and is largely removed by late
400 pachytene (Colaiacovo et al., 2003). While the overall pattern of RAD-51 is similar in
401 *hsr-9* mutant vs. wild-type germ lines, there was a significant increase in the number of
402 RAD-51 foci detected in early meiotic prophase (transition zone and early pachytene) in
403 both *hsr-9(xoe17)* and *hsr-9(ok759)* mutants (Figure 4D, E; Figure S2C). Elevated RPA-
404 1 and RAD-51 foci could be a consequence of a greater number of DSBs repaired by
405 HR, and/or a defect in processing of DSBs.

406 To provide insight into the nature of the elevated RAD-51 foci in *hsr-9* mutants,
407 we analyzed RAD-51 in the absence of RAD-54. *rad-54* mutants have been used to
408 distinguish between increased number of DSBs vs. a defect in processing of breaks as
409 RAD-54 is essential for RAD-51-mediated strand exchange during HR and is required
410 for RAD-51 disassembly; in its absence RAD-51 remains on processed breaks (Mets &
411 Meyer, 2009; Solinger et al., 2002). The number of RAD-51 foci per nucleus in *rad-54*
412 mutants in the presence or absence of HSR-9 was not statistically different (Figure 4F,

413 G and Figure S2D), suggesting that HSR-9 does not alter the number of DSBs formed
414 but rather regulates the processing of DSBs by HR.

415

416 **Not all crossovers accumulate COSA-1 in the absence of HSR-9**

417 To determine whether the defect in processing of DSBs alters crossovers in the *hsr-9*
418 mutants, we monitored the crossover site associated protein COSA-1/CNTD1 (Yokoo et
419 al., 2012). Wild-type hermaphrodites have six GFP::COSA-1 foci per nucleus, one on
420 each of the six pairs of homologous chromosomes, in mid-late pachytene. In *hsr-9*
421 mutants, while the average remained six, we observed ~9% of nuclei containing only
422 five GFP::COSA-1 foci (Figure 5A, B). These results suggest that HSR-9 regulates the
423 processing of DSBs into COSA-1-marked events.

424 Given HSR-9's enrichment on X chromosomes (Figure 2), we examined whether
425 those nuclei containing five COSA-1 foci were lacking GFP::COSA-1 on the X
426 chromosome pair. To that end, we labelled chromosomes with antibodies directed
427 against the synaptonemal complex central region component SYP-1 (MacQueen et al.,
428 2002) in worms expressing both GFP::COSA-1 and mCherry::HIM-8. Among nuclei with
429 five GFP::COSA-1 foci, where mCherry::HIM-8 could be detected, 17.4 % (4/23) lacked
430 a GFP::COSA-1 on the X chromosome pair (Figure 5C). If all six chromosome pairs
431 have an equal probability of not receiving a COSA-1 focus, 16.7% nuclei are predicted
432 to lack a GFP::COSA-1 foci on the X chromosome pair. Thus, the lack of a COSA-1
433 focus in nuclei containing five foci is not limited to the X chromosome pair in the *hsr-9*
434 mutant.

435 The reduction in COSA-1 foci in *hsr-9* mutants was surprising given the high
436 progeny viability and suggests that COSA-1 may not mark all crossovers in the absence
437 of HSR-9. To determine whether the alteration in GFP::COSA-1 foci reflects changes in
438 genetic crossovers, we monitored genetic linkage between SNP markers on
439 chromosomes *I* and *V* in Bristol/Hawaiian hybrid strains (Figure 5D). There was no
440 statistical difference between the genetic map distances in wild type and *hsr-9* for either
441 chromosome *I* or *V* (*I*: WT = 45.1cM; *hsr-9(xoe17)* = 50.39cM; *V*: WT= 47.36; *hsr-*
442 *9(xoe17)* = 40.86cM; Figure 5D, File S4), suggesting that genetic crossover numbers
443 are not altered in the absence of HSR-9. Alternatively, genetic SNP mapping is not
444 sensitive enough to detect subtle changes in crossover numbers distributed throughout
445 the genome.

446 In *C. elegans*, crossovers are not evenly distributed along the length of the
447 chromosomes but are enriched on the gene-poor arms and many meiotic mutants alter
448 crossover distribution (Barnes et al., 1995; Lim et al., 2008; Rockman & Kruglyak, 2009).
449 Analysis of crossover distribution revealed that mutation of HSR-9 had little effect, except
450 in the middle of chromosome *V* where there were statistically more crossovers in the left-
451 center compared to wild-type hermaphrodites (2.77% vs.14.13%; p=0.0405; Table S4,
452 Figure 5D). Together, these results suggest that HSR-9 does not alter crossover numbers
453 but plays a role in promoting COSA-1 accumulation at a subset of recombination events.

454

455 **HSR-9 in meiotic checkpoint signaling**

456 To determine whether HSR-9 functions in meiotic checkpoint signaling we analyzed the
457 consequence of removing HSR-9 in mutants defective in crossover recombination

458 leading to activation of the recombination checkpoint (Gartner & Engebrecht, 2022). To
459 that end, we constructed *hsr-9(xoe17); zim-2(tm574)* and *hsr-9(xoe17); him-8(me4)*
460 double mutants and analyzed progeny viability, male self-progeny, checkpoint signaling,
461 and apoptosis. ZIM-2 binds to the chromosome V pairing center, while HIM-8 binds to
462 the X chromosome pairing center. In *zim-2* or *him-8* mutants, chromosome Vs or X
463 chromosomes fail to pair, synapse, and form crossovers, leading to elevated embryonic
464 lethality or male progeny, respectively (Phillips & Dernburg, 2006; Phillips et al., 2005).
465 Embryonic lethality was similar in *zim-2(tm574)* and the *hsr-9(xoe17); zim-2(tm574)*
466 double mutant as well as in *him-8(me4)* and *hsr-9(xoe17); him-8(me4)* (Figure 6A).
467 Surprisingly, we observed fewer males in *hsr-9(xoe17); him-8(me4)* compared to *him-*
468 *8(me4)* (Figure 6B). A reduction in the number of males was also observed in *hsr-*
469 *9(xoe17); him-8(tm611); him-8(tm611)* is a deletion allele, and *hsr-9(ok759); him-*
470 *8(me4)* mutants, suggesting the phenotype is not allele-specific (Figure 6B). We next
471 examined checkpoint signaling by immunolabeling with an antibody that recognizes Ser
472 345 phosphorylation of the checkpoint kinase CHK-1, which is phosphorylated in
473 response to checkpoint activation and is dependent on ATR (Jaramillo-Lambert et al.,
474 2010). Similar levels of Ser345p, as indicated by the number of pCHK-1 foci per
475 nucleus, were observed both in the presence and absence of HSR-9 in the *him-8*
476 mutant background, suggesting that HSR-9 does not influence checkpoint activation in
477 response to unpaired chromosomes and their failure to establish a crossover (Figure
478 6C, D). On the other hand, apoptosis was reduced in the absence of HSR-9, consistent
479 with what was observed in response to IR (Figure 6E) (Ryu et al., 2013).

480 To determine the nature of the defect in production of male self-progeny, we first
481 examined whether HSR-9 plays a role in *X* chromosome pairing by monitoring
482 mCherry::HIM-8 in the presence and absence of HSR-9. As previously reported, in wild-
483 type hermaphrodites, pairing of *X* chromosomes is initiated at the leptotene/zygotene
484 (transition zone) stage of meiosis (Phillips et al., 2005). By early pachytene, stable
485 association of HIM-8 signals was achieved in nearly 100 percent of nuclei (Figure 7A).
486 The same pattern was observed in *hsr-9(xoe17)* mutants (Figure 7A). Thus, it is unlikely
487 that an earlier defect in pairing is altering *X* chromosome segregation.

488 We next monitored oocyte chromosome nondisjunction by constructing strains
489 containing *X*-linked GFP and tdTomato nuclear markers (El Mouridi et al., 2022). Hybrid
490 strains expressing both green and red nuclear fluorescence were crossed to males
491 carrying the *X*-linked *lon-2* mutation, allowing us to distinguish two types of non-
492 disjunction events: oocytes containing no *X* chromosome (nullo *X*) fertilized by *lon-2*
493 male sperm resulting in long males and *XX* oocytes fertilized by male sperm leading to
494 worms expressing both nuclear GFP and tdTomato. As expected, we observed
495 approximately equal numbers of green and red progeny from wild type and *hsr-9(xoe17)*
496 mutants (wt: 52.5 ± 4.4 green, 47.5 ± 4.4 red; *hsr-9(xoe17)*: 54.4 ± 4.0 green, 45.6 ± 4.0 red),
497 and recorded no nondisjunction events (Figure 7B). In *him-8(tm611)* we observed ~38%
498 nondisjunction events composed of $24.2 \pm 6.0\%$ nullo *X* and $13.8 \pm 2.8\%$ *XX* oocytes. In *hsr-*
499 *9(xoe17)*; *him-8(tm611)* we observed significantly fewer nondisjunction events (~19%;
500 $p > 0.02$) of which $10.5 \pm 2.1\%$ were nullo *X* and $8.5 \pm 3.9\%$ were *XX* oocytes (Figure 7B).
501 Thus, HSR-9 influences the segregation pattern of the *X* chromosomes in oocytes when
502 their pairing, synapsis, and recombination are disrupted.

503 Given the role of HSR-9 in *X* chromosome segregation in the *him-8* mutant
504 background and the enrichment of GFP::V5::HSR-9 on the *X* chromosome pair, we
505 monitored the localization of GFP::V5::HSR-9 in the *him-8* mutant. We observed
506 enrichment on two chromosome domains in many proliferative germ cells, as with wild
507 type. In meiosis, many nuclei had regions with more intense fluorescence, consistent
508 with enrichment on the unpaired *X*s, but as we could not label the *X* chromosomes (with
509 mCherry::HIM-8 or via methods that require fixation), we could not definitively conclude
510 these were the *X* chromosomes (Figure 7C). To gain further insight, we asked if the
511 GFP::V5::HSR-9 enrichment was a consequence of the pairing status of the *X*
512 chromosomes in meiosis. To that end, we examined localization of GFP::V5::HSR-9 in
513 the *tra-2* loss-of-function mutant, which transforms *XX* animals into males (Hodgkin &
514 Brenner, 1977). While GFP::V5::HSR-9 fluorescence was enriched on the *X*s as marked
515 by mCherry::HIM-8 in proliferating germ cells, no enrichment was observed in meiotic
516 cells similar to wild-type males containing a single *X* chromosome (Figure 7C). These
517 results suggest that it is not the pairing status *per se* that leads to accumulation of
518 GFP::V5::HSR-9 on the *X* chromosomes in oogenic germ cells.

519

520 **Discussion**

521 We show here that HSR-9, the *C. elegans* 53BP1 homolog, is chromatin-associated,
522 enriched on the *X* chromosome pair in oogenic germ cells, and on kinetochores at
523 metaphase of mitosis and meiosis. Mutant analysis revealed a subtle role for HSR-9 in
524 meiotic DSB processing, checkpoint signaling, and a previously unrecognized role in *X*
525 chromosome segregation when *X* chromosomes fail to pair, synapse, and recombine.

526 **HSR-9 is associated with a unique chromatin state**

527 As in mammals, HSR-9 is chromatin-associated and becomes enriched on kinetochores
528 in dividing cells, suggesting that HSR-9 associates with a particular chromatin state.
529 However, in contrast to mammals where 53BP1 marks DSBs in association with γ -
530 H2AX, HSR-9 does not become enriched at either meiotic or IR-induced breaks
531 (Figures 1 and 4A). Further, no γ -H2AX variant has been identified in *C. elegans*. In
532 many organisms, meiotic DSBs occur at hotspots, special chromosomal sites dictated
533 largely by the chromatin state (Tock & Henderson, 2018); however, this does not
534 appear to be the case in *C. elegans* (Bernstein & Rockman, 2016; Kaur & Rockman,
535 2014). Instead, DSBs (and crossovers) are enriched on chromosome arms, which have
536 a distinct chromatin landscape compared to the middle of the chromosomes (Lascarez-
537 Lagunas et al., 2023). The pattern of DSBs observed may be a consequence of the
538 holocentric nature of *C. elegans* chromosomes (Altendorfer et al., 2020). Together,
539 these results suggest that *C. elegans* has a unique, but as yet undefined, chromatin
540 state at DSBs sites, which does not include enrichment of HSR-9.

541 Although it is not enriched at DSBs, HSR-9 is enriched on X chromosome(s) in
542 spermatogenic and oogenic proliferating germ cells but only the X chromosome pair in
543 meiotic prophase oocytes (Figure 2). We provide evidence that HSR-9 interacts with
544 H4K20me2/3 as 53BP1 does in mammals. However, this interaction contributes, but is
545 not essential for, its enrichment on the X chromosome pair. 53BP1 has also been
546 shown to interact with H2AK15ub (Fradet-Turcotte et al., 2013; Wilson et al., 2016),
547 although there is no evidence that this chromatin modification is present in *C. elegans*.
548 Thus, it is likely that HSR-9 associates with a distinct chromatin state. We do show that

549 HSR-9, like 53BP1, has a highly disordered N-terminus, and based on results from
550 different fixation conditions, is likely to interact dynamically with chromatin. Further, our
551 findings that HSR-9 enrichment is specific to the *X* chromosomes in oogenic meiosis but
552 not in male meiosis, are also consistent with its association with a unique chromatin
553 state. That GFP::V5::HSR-9 is not enriched on the paired *X* chromosomes in male germ
554 cells in the sex determination mutant *tra-2*, which transforms *XX* worms into males,
555 suggests that the difference is not due to the pairing status of the *X*. This is also
556 consistent with our previous findings that the *X* of males has distinct chromatin
557 properties from the *X* chromosome pair in oogenesis independent of pairing status
558 (Checchi & Engebrecht, 2011).

559

560 ***The role of HSR-9 in meiotic recombination***

561 53BP1 orthologs have been shown to function in both early and late processing of
562 DSBs. In somatic cells, 53BP1 plays an early role in repair choice through its interaction
563 with RIF1, the Shieldin complex, and PTIP to bind at DSBs and block resection, thereby
564 promoting NHEJ (Chapman et al., 2013; Escribano-Diaz et al., 2013; Mirman et al.,
565 2018; Noordermeer et al., 2018). 53BP1 has also been suggested to play later roles in
566 both limiting RAD51 loading and stimulating strand annealing for repair by HR (Callen et
567 al., 2020; Ferrari et al., 2020). We find that HSR-9 plays a role in meiotic DSB repair as
568 shown by elevated levels of both RPA-1 and RAD-51 (Figure 4). This is unlikely due to
569 a defect in repair choice, as blocking RAD-51 at DSBs by mutation of RAD-54 does not
570 alter the number of RAD-51 foci, suggesting that the same number of DSBs are
571 processed by HR in the *hsr-9* mutant compared to wild type. Interestingly, we find that

572 although there appears to be a delay in the processing of DSBs in the *hsr-9* mutant,
573 there is no effect on progeny viability suggesting that DSBs are properly repaired and
574 establish crossovers for accurate chromosome segregation. A small subset of DSBs is
575 processed into crossovers without accumulating COSA-1, suggesting that either COSA-
576 1 is not required for a subset of crossovers, or more likely, that COSA-1 is required but
577 does not accumulate to cytological visible levels in the absence of HSR-9 as suggested
578 by Yokoo et al. (Yokoo et al., 2012). Whether this is a consequence of direct
579 interactions between HSR-9 and DSB processing machinery, and/or an indirect effect of
580 the chromatin state requires further investigation.

581

582 **Checkpoint signaling and sex chromosomes**

583 In yeast, Rad9, the 53BP1 homolog, was the first checkpoint protein to be discovered
584 and subsequent analyses of mammalian 53BP1 was consistent with a role in checkpoint
585 signaling (Schultz et al., 2000; Weinert & Hartwell, 1989). Our study suggests that HSR-
586 9 plays a subtle role in DNA damage checkpoint signaling. We found that in the
587 absence of HSR-9, the checkpoint kinase, CHK-1, is phosphorylated in response to
588 defects in chromosome pairing, synapsis, and recombination, suggesting that detection
589 and relay through the checkpoint pathway is not perturbed. However, checkpoint-
590 dependent apoptosis is diminished in the absence of HSR-9 as was previously shown in
591 response to IR-induced DNA breaks (Ryu et al., 2013). Further, we did not uncover a
592 checkpoint role for HSR-9 in response to unattached kinetochores even though HSR-9
593 is enriched at kinetochores. In contrast, mammalian 53BP1 has been shown to be both

594 enriched at kinetochores and to monitor spindle attachments/tension (Jullien et al.,
595 2002; Wang et al., 2017; Yim et al., 2017).

596 Although apoptosis is impaired when both autosomes and sex chromosomes are
597 unable to pair, synapse and recombine, we discovered a reduction in male self-progeny
598 in *hsr-9* mutants when sex chromosome pairing, synapsis and recombination are
599 impaired. Analysis of chromosome nondisjunction events in oogenesis suggests that
600 HSR-9 influences the pattern of X chromosome segregation under these conditions.
601 Perhaps HSR-9 enrichment on the X chromosomes alters how the unattached X
602 chromosomes align and segregate during meiosis I, leading to a higher likelihood of
603 generating nullo X gametes for production of males.

604

605 **Conclusion.** 53BP1 regulates several aspects of chromosome biology – presumably
606 through its chromatin association. There appears to be both commonalities and unique
607 properties of 53BP1 homologs across evolution and these differences may reflect
608 different chromatin environments in different organisms. In worms, its concentration on
609 the X chromosomes suggests that HSR-9 plays a role in influencing X chromosome
610 segregation in addition to its role in DSB processing.

611

612 **Acknowledgements**

613 We thank the Engebrecht laboratory for thoughtful discussions. We also acknowledge
614 the Caenorhabditis Genetic Center, which is funded by the National Institutes of Health
615 (NIH) Office of Research Infrastructure Programs (P40 OD010440) for providing

616 strains. This work was supported by NIH GM103860 and GM103860S1 to J.E. EH was
617 supported by the UC Davis OEOES Research Fellowship Program.

618

619 **Data availability**

620 Strains and reagents are available upon request. The authors affirm that all data
621 necessary for confirming the conclusions of this article are represented fully within the
622 article and its tables and figures. Supplemental material available at Figshare. Table S1
623 contains *C. elegans* strain information; Table S2 contains CRISPR information; Table
624 S3 contains antibody information and File S4 contains the raw meiotic mapping data.
625 Figure S1 shows *hsr-9* gene structure, embryonic lethality of mutants and fusions, and
626 localization of HSR-9::GFP::3xHA. Figure S2 shows the consequence of blocking
627 apoptosis to *hsr-9* progeny viability, recombination analyses of the *hsr-9(ok759)*, and full
628 gonad images of RAD-51 labelling.

629

630 **Figure legends**

631 **Figure 1. HSR-9 is a chromatin-associated protein with intrinsically disordered N-**
632 **terminal region.** A) Predicted structure of HSR-9 determined by AlphaFold (Jumper et
633 al., 2021). N-terminus is indicated in brown line. B) Predicted disordered regions of
634 HSR-9 using IUPred3 (Erdos et al., 2021). C) Images of GFP::V5::HSR-9 fluorescence
635 from indicated regions of the germ line. Red arrows mark condensing chromosomes in
636 prometaphase to anaphase, asterisks mark two domains with stronger fluorescence
637 intensity. PZ = proliferative zone; TZ = transition zone; EP = early pachytene; MP = mid
638 pachytene; LP = late pachytene; DP = diplotene; DK = diakinesis. Scale bar = 10µm. D)

639 Images of GFP::V5::HSR-9 fluorescence of the pachytene region of dissected gonads
640 following rapid freeze crack, fixation in cold ethanol and paraformaldehyde treatment
641 counterstained with DAPI. Scale bar = 10 μ m.

642

643 **Figure 2. GFP::V5::HSR-9 is enriched on X chromosomes in oogenesis and**
644 **associates with H4K20me2/me3.** Images of GFP::V5::HSR-9 (grey) and
645 mCherry::HIM-8 (magenta) from mitotic (PZ, proliferative zone) and meiotic (MP, mid-
646 pachytene) regions of the germ line in live A) hermaphrodites and B) males. C) Images
647 of fixed and dissected meiotic germ cells labelled with antibodies against H4K20me1
648 (cyan) in wild type and *set-4(ok1481)* expressing mCherry::HIM-8 (magenta) and
649 counter-stained with DAPI (grey). Arrows point to the X chromosomes. Scale bar =
650 5 μ m. D) GFP::V5::HSR-9 fluorescence of whole gonads from live worms from wild type,
651 *set-4(ok1481)*, and *set-4(n4600)*. Scale bar = 20 μ m. E) Quantification of the relative
652 fluorescence intensity of the X to autosome ratio (n=3 worms for each genotype). *** p <
653 0.001; ** p < 0.01 by Mann-Whitney.

654

655 **Figure 3. GFP::V5::HSR-9 is enriched on kinetochores but doesn't play an**
656 **essential role in monitoring microtubule-kinetochore attachments.** A) Live imaging
657 of GFP::V5::HSR-9 fluorescence in mitotic germ cells, -1 diakinesis oocyte, Meiosis I
658 fertilized oocyte and embryo showing structures consistent with enrichment on
659 kinetochores. B) Fixed images of mitotic germ cells labelled with CENPA ortholog, HCP-
660 3 (magenta) and direct GFP fluorescence (cyan). Scale bar = 5 μ m. C) Fixed images of
661 mitotic region of germ line labelled with antibodies directed against H3S10P and

662 counterstained with DAPI at indicated temperatures. Scale bar = 20 μ m. D)
663 Quantification of H3S10P nuclei/germ line in *zyg-1(ts)* and *hsr-9(xoe17)*; *zyg-1(ts)*
664 grown at 15° or 25°C. Number of germ lines examined: *zyg-1(ts)* 15°C = 21; *zyg-1(ts)*
665 25°C = 21; *hsr-9(xoe17)*; *zyg-1(ts)* 15°C = 21; *hsr-9(xoe17)*; *zyg-1(ts)* 15°C = 22; ** p <
666 0.01; by Mann-Whitney. E) % embryonic lethality of *zyg-1(ts)* and *hsr-9(xoe17)*; *zyg-*
667 *1(ts)*; 6 worms were examined at each temperature.

668

669 **Figure 4. HSR-9 plays a role in processing of meiotic DSBs.** A) Images of
670 GFP::V5::HSR-9 fluorescence from indicated regions of the germ line 1hr post 75Gys
671 IR. PZ = proliferative zone; TZ = transition zone; EP = early pachytene; MP = mid
672 pachytene; LP = late pachytene; DP = diplotene; DK = diakinesis. Scale bar = 10 μ m. B)
673 GFP-RPA-1 fluorescence in leptotene/zygotene and pachytene. Scale bar = 5 μ m. C)
674 Coefficient of Variation (CV) of GFP::RPA-1 fluorescence was measured from 3 germ
675 lines. Images of early pachytene nuclei immunolabelled with RAD-51 (red) and counter
676 stained with DAPI (blue) from wild type (WT) and *hsr-9(xoe17)* germ lines (D) and
677 corresponding quantification (E), and *rad-54(ok615)* and *hsr-9(xoe17); rad-54(ok615)*
678 (F) and corresponding quantification (G). Box whisker plots show number of RAD-51
679 foci per nucleus in the indicated regions. Horizontal line of each box represents the
680 median, top and bottom of each box represent medians of upper and lower quartiles,
681 lines extending above and below boxes indicate SD, and individual data points are
682 outliers from 5 to 95%. Statistically significant comparisons by Mann-Whitney of WT vs.
683 *hsr-9(xoe17)* are indicated; ***p< 0.0001. Complete germlines are shown in Figure S2.

684 **Figure 5. Reduced numbers of GFP::COSA-1, but not genetic crossovers in the**
685 **absence of HSR-9.** A) Percent of nuclei containing indicated GFP::COSA-1 foci in
686 *gfp::cosa-1(xoe44)* and *hsr-9(xoe17)*; *gfp::cosa-1(xoe44)*, which is at the endogenous
687 locus on chromosome *III* and *mels8[unc-119(+)] pie-1promoter::gfp::cosa-1* and *hsr-*
688 *9(ok759)*; *mels8[unc-119(+)] pie-1promoter::gfp::cosa-1* inserted on chromosome *II*. B)
689 Image of mid-late pachytene nuclei showing GFP::COSA-1(green) and counterstained
690 with DAPI (blue). Number of GFP::COSA-1 foci are indicated on each nucleus. Scale
691 bar = 5 μ m. C) Images of pachytene nuclei immunolabelled with SYP-1 antibodies
692 (blue), and imaged for mCherry::HIM-8 (magenta) and GFP::COSA-1 (green)
693 fluorescence. Scale bar = 1 μ m. D) Top: SNP markers (red) on Chromosome *I* and *V*.
694 Middle: crossover frequency on Chromosomes *I* and *V*. Bottom: crossover distribution
695 among recombinants on Chromosomes *I* and *V*. Total number of worms analyzed for
696 Chromosome *I* markers = wild type (n = 184), and *hsr-9(xoe17)* (n = 367); Chromosome
697 *V* markers = wild type (n = 228), and *hsr-9(xoe17)* (n = 230). Statistical analyses were
698 conducted using χ^2 on 2-by-2 contingency tables, * p<0.05.

699
700 **Figure 6. Apoptosis is reduced but checkpoint signaling appears intact in *hsr-9***
701 **mutants.** A) Embryonic lethality in *zim-2(tm574)*, *hsr-9(xoe17)*; *zim-2(tm574)*, *him-*
702 *8(me4)* and *hsr-9(xoe17)*; *him-8(me4)* mutants (n=10). B) % male self-progeny in *him-*
703 *8(me4)*, *hsr-9(xoe17)*; *him-8(me4)*, *hsr-9(ok759)*; *him-8(me4)*, *hsr-9(xoe17)*; *him-*
704 *8(tm611)* and *him-8(tm611)* mutants (n=10). C) Early pachytene germ cells
705 immunolabelled with CHK-1Ser345p (green) in WT, *hsr-9(xoe17)*, *him-8(me4)* and *hsr-*
706 *9(xoe17)*; *him-8(me4)*. Scale bar = 5 μ m. D) Number of CHK-1Ser345p foci per nuclei in

707 WT (n=187), *hsr-9(xoe17)* (n=200), *him-8(me4)* (n=75) and *hsr-9(xoe17); him-8(me4)*
708 n=87). E) Number of apoptotic nuclei/gonad by Acridine Orange staining in WT (n=44),
709 *hsr-9(xoe17)* (n=45) *zim-2(tm574)* (n=41), *hsr-9(xoe17); zim-2(tm574)* (n=24), *him-*
710 *8(me4)* (n=26) and *hsr-9(xoe17); him-8(me4)* (n=32). * p<0.05; ** p<0.001; *** p<0.0001
711 by Mann-Whitney.

712

713 **Figure 7. HSR-9 plays a role in X chromosome segregation in *him-8*.** A) % nuclei
714 with paired (1 focus) mCherry::HIM-8 foci in *mCherry::him-8* and *hsr-9(xoe17);*
715 *mCherry::him-8* worms at the indicated stages of meiotic prophase: PZ, proliferative
716 zone, TZ, transition zone; EP, early pachytene; MP, mid pachytene. Three gonads were
717 analyzed for each genotype. B) % oocytes with X chromosome expressing GFP::2xNLS
718 (green), tdTomato::H2B (red), both GFP::2xNLS and tdTomato::H2B (XX - yellow) or no
719 X chromosome (nullo-X - grey). Number of progeny examined: WT = 148, *hsr-9(xoe17)*
720 = 196, *him-8(tm611)* = 145, *hsr-9(xoe17); him-8(tm611)* = 163. * p<0.05 by χ^2 on 2-by-4
721 contingency tables C) Images of GFP::V5::HSR-9 (grey) in *him-8* (yellow asterisks
722 denote regions of more intense fluorescence) and GFP::V5::HSR-9 (grey) and
723 mCherry::HIM-8 (magenta) in *tra-2* XX males from mitotic and meiotic regions of the
724 germ line in live worms. Scale bar = 5 μ m.

725

726 **Literature cited**

727 Albertson, D. G., & Thomson, J. N. (1982). The kinetochores of *Caenorhabditis elegans*.
728 *Chromosoma*, 86(3), 409-428. <https://doi.org/10.1007/BF00292267>

729 Alpi, A., Pasierbek, P., Gartner, A., & Loidl, J. (2003). Genetic and cytological characterization
730 of the recombination protein RAD-51 in *Caenorhabditis elegans*. *Chromosoma*, 112(1),
731 6-16. <https://doi.org/10.1007/s00412-003-0237-5>

732 Altendorfer, E., Lascarez-Lagunas, L. I., Nadarajan, S., Mathieson, I., & Colaiacovo, M. P.
733 (2020). Crossover Position Drives Chromosome Remodeling for Accurate Meiotic

734 Chromosome Segregation. *Curr Biol*, 30(7), 1329-1338 e1327.
735 <https://doi.org/10.1016/j.cub.2020.01.079>

736 Barnes, T. M., Kohara, Y., Coulson, A., & Hekimi, S. (1995). Meiotic recombination, noncoding
737 DNA and genomic organization in *Caenorhabditis elegans*. *Genetics*, 141(1), 159-179.
738 <https://doi.org/10.1093/genetics/141.1.159>

739 Bazan, G. C., & Hillers, K. J. (2011). SNP-based mapping of crossover recombination in
740 *Caenorhabditis elegans*. *Methods Mol Biol*, 745, 207-222. https://doi.org/10.1007/978-1-61779-129-1_13

741 Bean, C. J., Schaner, C. E., & Kelly, W. G. (2004). Meiotic pairing and imprinted X chromatin
742 assembly in *Caenorhabditis elegans*. *Nat Genet*, 36(1), 100-105.
743 <https://doi.org/10.1038/ng1283>

744 Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P. C., Nicolas, A., & Forterre, P. (1997). An
745 atypical topoisomerase II from Archaea with implications for meiotic recombination.
746 *Nature*, 386(6623), 414-417. <https://doi.org/10.1038/386414a0>

747 Bernstein, M. R., & Rockman, M. V. (2016). Fine-Scale Crossover Rate Variation on the
748 *Caenorhabditis elegans* X Chromosome. *G3 (Bethesda)*, 6(6), 1767-1776.
749 <https://doi.org/10.1534/g3.116.028001>

750 Bishop, H. I., Guan, D., Bocksteins, E., Parajuli, L. K., Murray, K. D., Cobb, M. M., Misonou,
751 H., Zito, K., Foehrung, R. C., & Trimmer, J. S. (2015). Distinct Cell- and Layer-Specific
752 Expression Patterns and Independent Regulation of Kv2 Channel Subtypes in Cortical
753 Pyramidal Neurons. *J Neurosci*, 35(44), 14922-14942.
754 <https://doi.org/10.1523/JNEUROSCI.1897-15.2015>

755 Botuyan, M. V., Lee, J., Ward, I. M., Kim, J. E., Thompson, J. R., Chen, J., & Mer, G. (2006).
756 Structural basis for the methylation state-specific recognition of histone H4-K20 by
757 53BP1 and Crb2 in DNA repair. *Cell*, 127(7), 1361-1373.
758 <https://doi.org/10.1016/j.cell.2006.10.043>

759 Bouwman, P., Aly, A., Escandell, J. M., Pieterse, M., Bartkova, J., van der Gulden, H.,
760 Hiddingh, S., Thanasoula, M., Kulkarni, A., Yang, Q., Haffty, B. G., Tommiska, J.,
761 Blomqvist, C., Drapkin, R., Adams, D. J., Nevanlinna, H., Bartek, J., Tarsounas, M.,
762 Ganesan, S., & Jonkers, J. (2010). 53BP1 loss rescues BRCA1 deficiency and is
763 associated with triple-negative and BRCA-mutated breast cancers. *Nat Struct Mol Biol*,
764 17(6), 688-695. <https://doi.org/10.1038/nsmb.1831>

765 Brejc, K., Bian, Q., Uzawa, S., Wheeler, B. S., Anderson, E. C., King, D. S., Kranzusch, P. J.,
766 Preston, C. G., & Meyer, B. J. (2017). Dynamic Control of X Chromosome
767 Conformation and Repression by a Histone H4K20 Demethylase. *Cell*, 171(1), 85-102
768 e123. <https://doi.org/10.1016/j.cell.2017.07.041>

769 Bunting, S. F., Callen, E., Wong, N., Chen, H. T., Polato, F., Gunn, A., Bothmer, A., Feldhahn,
770 N., Fernandez-Capetillo, O., Cao, L., Xu, X., Deng, C. X., Finkel, T., Nussenzweig, M.,
771 Stark, J. M., & Nussenzweig, A. (2010). 53BP1 inhibits homologous recombination in
772 Brca1-deficient cells by blocking resection of DNA breaks. *Cell*, 141(2), 243-254.
773 <https://doi.org/10.1016/j.cell.2010.03.012>

774 Callen, E., Zong, D., Wu, W., Wong, N., Stanlie, A., Ishikawa, M., Pavani, R., Dumitache, L.,
775 C., Byrum, A. K., Mendez-Dorantes, C., Martinez, P., Canela, A., Maman, Y., Day, A.,
776 Kruhlak, M. J., Blasco, M. A., Stark, J. M., Mosammaparast, N., McKinnon, P. J., &
777 Nussenzweig, A. (2020). 53BP1 Enforces Distinct Pre- and Post-resection Blocks on

778

779 Homologous Recombination. *Mol Cell*, 77(1), 26-38 e27.
780 <https://doi.org/10.1016/j.molcel.2019.09.024>

781 Cao, L., Xu, X., Bunting, S. F., Liu, J., Wang, R. H., Cao, L. L., Wu, J. J., Peng, T. N., Chen, J.,
782 Nussenzweig, A., Deng, C. X., & Finkel, T. (2009). A selective requirement for 53BP1 in
783 the biological response to genomic instability induced by Brca1 deficiency. *Mol Cell*,
784 35(4), 534-541. <https://doi.org/10.1016/j.molcel.2009.06.037>

785 Chapman, J. R., Barral, P., Vannier, J. B., Borel, V., Steger, M., Tomas-Loba, A., Sartori, A. A.,
786 Adams, I. R., Batista, F. D., & Boulton, S. J. (2013). RIF1 is essential for 53BP1-
787 dependent nonhomologous end joining and suppression of DNA double-strand break
788 resection. *Mol Cell*, 49(5), 858-871. <https://doi.org/10.1016/j.molcel.2013.01.002>

789 Checchi, P. M., & Engebrecht, J. (2011). *Caenorhabditis elegans* histone methyltransferase
790 MET-2 shields the male X chromosome from checkpoint machinery and mediates
791 meiotic sex chromosome inactivation. *PLoS Genet*, 7(9), e1002267.
792 <https://doi.org/10.1371/journal.pgen.1002267>

793 Chen, J., Li, P., Song, L., Bai, L., Huen, M. S. Y., Liu, Y., & Lu, L. Y. (2020). 53BP1 loss
794 rescues embryonic lethality but not genomic instability of BRCA1 total knockout mice.
795 *Cell Death Differ*, 27(9), 2552-2567. <https://doi.org/10.1038/s41418-020-0521-4>

796 Chen, L., & Weir, J. R. (2024). The molecular machinery of meiotic recombination. *Biochem
797 Soc Trans*, 52(1), 379-393. <https://doi.org/10.1042/BST20230712>

798 Colaiacovo, M. P., MacQueen, A. J., Martinez-Perez, E., McDonald, K., Adamo, A., La Volpe,
799 A., & Villeneuve, A. M. (2003). Synaptonemal complex assembly in *C. elegans* is
800 dispensable for loading strand-exchange proteins but critical for proper completion of
801 recombination. *Dev Cell*, 5(3), 463-474. [https://doi.org/10.1016/s1534-5807\(03\)00232-6](https://doi.org/10.1016/s1534-5807(03)00232-6)

802 Cuella-Martin, R., Oliveira, C., Lockstone, H. E., Snellenberg, S., Grolmusova, N., & Chapman,
803 J. R. (2016). 53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via
804 Distinct Mechanisms. *Mol Cell*, 64(1), 51-64.
805 <https://doi.org/10.1016/j.molcel.2016.08.002>

806 Dernburg, A. F., McDonald, K., Moulder, G., Barstead, R., Dresser, M., & Villeneuve, A. M.
807 (1998). Meiotic recombination in *C. elegans* initiates by a conserved mechanism and is
808 dispensable for homologous chromosome synapsis. *Cell*, 94(3), 387-398.
809 [https://doi.org/10.1016/s0092-8674\(00\)81481-6](https://doi.org/10.1016/s0092-8674(00)81481-6)

810 Difilippantonio, S., Gapud, E., Wong, N., Huang, C. Y., Mahowald, G., Chen, H. T., Kruhlak,
811 M. J., Callen, E., Livak, F., Nussenzweig, M. C., Sleckman, B. P., & Nussenzweig, A.
812 (2008). 53BP1 facilitates long-range DNA end-joining during V(D)J recombination.
813 *Nature*, 456(7221), 529-533. <https://doi.org/10.1038/nature07476>

814 Dimitrova, N., Chen, Y. C., Spector, D. L., & de Lange, T. (2008). 53BP1 promotes non-
815 homologous end joining of telomeres by increasing chromatin mobility. *Nature*,
816 456(7221), 524-528. <https://doi.org/10.1038/nature07433>

817 El Mouridi, S., Alkhaldi, F., & Frokjaer-Jensen, C. (2022). Modular safe-harbor transgene
818 insertion for targeted single-copy and extrachromosomal array integration in
819 *Caenorhabditis elegans*. *G3 (Bethesda)*, 12(9). <https://doi.org/10.1093/g3journal/jkac184>

820 Ellis, H. M., & Horvitz, H. R. (1986). Genetic control of programmed cell death in the nematode
821 *C. elegans*. *Cell*, 44(6), 817-829. [https://doi.org/10.1016/0092-8674\(86\)90004-8](https://doi.org/10.1016/0092-8674(86)90004-8)

822 Erdos, G., Pajkos, M., & Dosztanyi, Z. (2021). IUPred3: prediction of protein disorder enhanced
823 with unambiguous experimental annotation and visualization of evolutionary

824 conservation. *Nucleic Acids Res*, 49(W1), W297-W303.
825 <https://doi.org/10.1093/nar/gkab408>

826 Escribano-Diaz, C., & Durocher, D. (2013). DNA repair pathway choice--a PTIP of the hat to
827 53BP1. *EMBO Rep*, 14(8), 665-666. <https://doi.org/10.1038/embor.2013.99>

828 Escribano-Diaz, C., Orthwein, A., Fradet-Turcotte, A., Xing, M., Young, J. T., Tkac, J., Cook,
829 M. A., Rosebrock, A. P., Munro, M., Canny, M. D., Xu, D., & Durocher, D. (2013). A
830 cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP
831 controls DNA repair pathway choice. *Mol Cell*, 49(5), 872-883.
832 <https://doi.org/10.1016/j.molcel.2013.01.001>

833 Ferrari, M., Rawal, C. C., Lodovichi, S., Vietri, M. Y., & Pellicioli, A. (2020). Rad9/53BP1
834 promotes DNA repair via crossover recombination by limiting the Sgs1 and Mph1
835 helicases. *Nat Commun*, 11(1), 3181. <https://doi.org/10.1038/s41467-020-16997-w>

836 Fradet-Turcotte, A., Canny, M. D., Escribano-Diaz, C., Orthwein, A., Leung, C. C., Huang, H.,
837 Landry, M. C., Kitevski-LeBlanc, J., Noordermeer, S. M., Sicheri, F., & Durocher, D.
838 (2013). 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark.
839 *Nature*, 499(7456), 50-54. <https://doi.org/10.1038/nature12318>

840 Gartner, A., & Engebrecht, J. (2022). DNA repair, recombination, and damage signaling.
841 *Genetics*, 220(2). <https://doi.org/10.1093/genetics/iyab178>

842 Gassmann, R., Rechtsteiner, A., Yuen, K. W., Muroyama, A., Egelhofer, T., Gaydos, L., Barron,
843 F., Maddox, P., Essex, A., Monen, J., Ercan, S., Lieb, J. D., Oegema, K., Strome, S., &
844 Desai, A. (2012). An inverse relationship to germline transcription defines centromeric
845 chromatin in *C. elegans*. *Nature*, 484(7395), 534-537.
846 <https://doi.org/10.1038/nature10973>

847 Hariri, S., Li, Q., & Engebrecht, J. (2023). 53bp1 mutation enhances brca1 and bard1 embryonic
848 lethality in *C. elegans*. *MicroPubl Biol*, 2023.
849 <https://doi.org/10.17912/micropub.biology.000934>

850 Hefel, A., Honda, M., Cronin, N., Harrell, K., Patel, P., Spies, M., & Smolikove, S. (2021). RPA
851 complexes in *Caenorhabditis elegans* meiosis; unique roles in replication, meiotic
852 recombination and apoptosis. *Nucleic Acids Res*, 49(4), 2005-2026.
853 <https://doi.org/10.1093/nar/gkaa1293>

854 Hodgkin, J. A., & Brenner, S. (1977). Mutations causing transformation of sexual phenotype in
855 the nematode *Caenorhabditis elegans*. *Genetics*, 86(2 Pt. 1), 275-287.
856 <https://www.ncbi.nlm.nih.gov/pubmed/560330>

857 Irgen-Gioro, S., Yoshida, S., Walling, V., & Chong, S. (2022). Fixation can change the
858 appearance of phase separation in living cells. *Elife*, 11.
859 <https://doi.org/10.7554/elife.79903>

860 Iwabuchi, K., Bartel, P. L., Li, B., Marraccino, R., & Fields, S. (1994). Two cellular proteins that
861 bind to wild-type but not mutant p53. *Proc Natl Acad Sci U S A*, 91(13), 6098-6102.
862 <https://doi.org/10.1073/pnas.91.13.6098>

863 Janisiw, E., Raices, M., Balmir, F., Paulin, L. F., Baudrimont, A., von Haeseler, A., Yanowitz, J.
864 L., Jantsch, V., & Silva, N. (2020). Poly(ADP-ribose) glycohydrolase coordinates meiotic
865 DNA double-strand break induction and repair independent of its catalytic activity. *Nat
866 Commun*, 11(1), 4869. <https://doi.org/10.1038/s41467-020-18693-1>

867 Jaramillo-Lambert, A., Ellefson, M., Villeneuve, A. M., & Engebrecht, J. (2007). Differential
868 timing of S phases, X chromosome replication, and meiotic prophase in the *C. elegans*
869 germ line. *Dev Biol*, 308(1), 206-221. <https://doi.org/10.1016/j.ydbio.2007.05.019>

870 Jaramillo-Lambert, A., & Engebrecht, J. (2010). A single unpaired and transcriptionally silenced
871 X chromosome locally precludes checkpoint signaling in the *Caenorhabditis elegans*
872 germ line. *Genetics*, 184(3), 613-628. <https://doi.org/10.1534/genetics.109.110338>

873 Jaramillo-Lambert, A., Harigaya, Y., Vitt, J., Villeneuve, A., & Engebrecht, J. (2010). Meiotic
874 errors activate checkpoints that improve gamete quality without triggering apoptosis in
875 male germ cells. *Curr Biol*, 20(23), 2078-2089. <https://doi.org/10.1016/j.cub.2010.10.008>

876 Jullien, D., Vagnarelli, P., Earnshaw, W. C., & Adachi, Y. (2002). Kinetochore localisation of
877 the DNA damage response component 53BP1 during mitosis. *J Cell Sci*, 115(Pt 1), 71-
878 79. <https://doi.org/10.1242/jcs.115.1.71>

879 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
880 K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A.,
881 Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., . . .
882 Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold.
883 *Nature*, 596(7873), 583-589. <https://doi.org/10.1038/s41586-021-03819-2>

884 Kaur, T., & Rockman, M. V. (2014). Crossover heterogeneity in the absence of hotspots in
885 *Caenorhabditis elegans*. *Genetics*, 196(1), 137-148.
886 <https://doi.org/10.1534/genetics.113.158857>

887 Keeney, S., Giroux, C. N., & Kleckner, N. (1997). Meiosis-specific DNA double-strand breaks
888 are catalyzed by Spo11, a member of a widely conserved protein family. *Cell*, 88(3), 375-
889 384. [https://doi.org/10.1016/s0092-8674\(00\)81876-0](https://doi.org/10.1016/s0092-8674(00)81876-0)

890 Kelly, W. G., Schaner, C. E., Dernburg, A. F., Lee, M. H., Kim, S. K., Villeneuve, A. M., &
891 Reinke, V. (2002). X-chromosome silencing in the germline of *C. elegans*. *Development*,
892 129(2), 479-492. <https://doi.org/10.1242/dev.129.2.479>

893 Kilic, S., Lezaja, A., Gatti, M., Bianco, E., Michelena, J., Imhof, R., & Altmeyer, M. (2019).
894 Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments.
895 *EMBO J*, 38(16), e101379. <https://doi.org/10.15252/embj.2018101379>

896 Kramer, M., Kranz, A. L., Su, A., Winterkorn, L. H., Albritton, S. E., & Ercan, S. (2015).
897 Developmental Dynamics of X-Chromosome Dosage Compensation by the DCC and
898 H4K20me1 in *C. elegans*. *PLoS Genet*, 11(12), e1005698.
899 <https://doi.org/10.1371/journal.pgen.1005698>

900 Lascarez-Lagunas, L. I., Martinez-Garcia, M., Nadarajan, S., Diaz-Pacheco, B. N., Berson, E., &
901 Colaiacovo, M. P. (2023). Chromatin landscape, DSB levels, and cKU-70/80 contribute
902 to patterning of meiotic DSB processing along chromosomes in *C. elegans*. *PLoS Genet*,
903 19(1), e1010627. <https://doi.org/10.1371/journal.pgen.1010627>

904 Lawrence, K. S., Chau, T., & Engebrecht, J. (2015). DNA damage response and spindle
905 assembly checkpoint function throughout the cell cycle to ensure genomic integrity. *PLoS
906 Genet*, 11(4), e1005150. <https://doi.org/10.1371/journal.pgen.1005150>

907 Li, M., Cole, F., Patel, D. S., Misenko, S. M., Her, J., Malhowski, A., Alhamza, A., Zheng, H.,
908 Baer, R., Ludwig, T., Jasin, M., Nussenzweig, A., Serrano, L., & Bunting, S. F. (2016).
909 53BP1 ablation rescues genomic instability in mice expressing 'RING-less' BRCA1.
910 *EMBO Rep*, 17(11), 1532-1541. <https://doi.org/10.15252/embr.201642497>

911 Li, Q., Hariri, S., & Engebrecht, J. (2020). Meiotic Double-Strand Break Processing and
912 Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1-BARD1 in
913 *Caenorhabditis elegans*. *Genetics*, 216(2), 359-379.
914 <https://doi.org/10.1534/genetics.120.303292>

915 Li, Q., Kaur, A., Okada, K., McKenney, R. J., & Engebrecht, J. (2023). Differential requirement
916 for BRCA1-BARD1 E3 ubiquitin ligase activity in DNA damage repair and meiosis in
917 the *Caenorhabditis elegans* germ line. *PLoS Genet*, 19(1), e1010457.
918 <https://doi.org/10.1371/journal.pgen.1010457>

919 Lim, J. G., Stine, R. R., & Yanowitz, J. L. (2008). Domain-specific regulation of recombination
920 in *Caenorhabditis elegans* in response to temperature, age and sex. *Genetics*, 180(2), 715-
921 726. <https://doi.org/10.1534/genetics.108.090142>

922 Link, J., Paouneskou, D., Velkova, M., Daryabeigi, A., Laos, T., Labella, S., Barroso, C.,
923 Pacheco Pinol, S., Montoya, A., Kramer, H., Woglar, A., Baudrimont, A., Markert, S. M.,
924 Stigloher, C., Martinez-Perez, E., Dammermann, A., Alsheimer, M., Zetka, M., &
925 Jantsch, V. (2018). Transient and Partial Nuclear Lamina Disruption Promotes
926 Chromosome Movement in Early Meiotic Prophase. *Dev Cell*, 45(2), 212-225 e217.
927 <https://doi.org/10.1016/j.devcel.2018.03.018>

928 MacQueen, A. J., Colaiacovo, M. P., McDonald, K., & Villeneuve, A. M. (2002). Synapsis-
929 dependent and -independent mechanisms stabilize homolog pairing during meiotic
930 prophase in *C. elegans*. *Genes Dev*, 16(18), 2428-2442.
931 <https://doi.org/10.1101/gad.1011602>

932 Mets, D. G., & Meyer, B. J. (2009). Condensins regulate meiotic DNA break distribution, thus
933 crossover frequency, by controlling chromosome structure. *Cell*, 139(1), 73-86.
934 <https://doi.org/10.1016/j.cell.2009.07.035>

935 Mirman, Z., & de Lange, T. (2020). 53BP1: a DSB escort. *Genes Dev*, 34(1-2), 7-23.
936 <https://doi.org/10.1101/gad.333237.119>

937 Mirman, Z., Lottersberger, F., Takai, H., Kibe, T., Gong, Y., Takai, K., Bianchi, A.,
938 Zimmermann, M., Durocher, D., & de Lange, T. (2018). 53BP1-RIF1-shieldin
939 counteracts DSB resection through CST- and Polalpah-dependent fill-in. *Nature*,
940 560(7716), 112-116. <https://doi.org/10.1038/s41586-018-0324-7>

941 Mirza-Aghazadeh-Attari, M., Mohammadzadeh, A., Yousefi, B., Mihanfar, A., Karimian, A., &
942 Majidinia, M. (2019). 53BP1: A key player of DNA damage response with critical
943 functions in cancer. *DNA Repair (Amst)*, 73, 110-119.
944 <https://doi.org/10.1016/j.dnarep.2018.11.008>

945 Monen, J., Maddox, P. S., Hyndman, F., Oegema, K., & Desai, A. (2005). Differential role of
946 CENP-A in the segregation of holocentric *C. elegans* chromosomes during meiosis and
947 mitosis. *Nat Cell Biol*, 7(12), 1248-1255. <https://doi.org/10.1038/ncb1331>

948 Nabeshima, K., Villeneuve, A. M., & Hillers, K. J. (2004). Chromosome-wide regulation of
949 meiotic crossover formation in *Caenorhabditis elegans* requires properly assembled
950 chromosome axes. *Genetics*, 168(3), 1275-1292.
951 <https://doi.org/10.1534/genetics.104.030700>

952 Noordermeer, S. M., Adam, S., Setiaputra, D., Barazas, M., Pettitt, S. J., Ling, A. K., Olivieri,
953 M., Alvarez-Quilon, A., Moatti, N., Zimmermann, M., Annunziato, S., Krastev, D. B.,
954 Song, F., Brandsma, I., Frankum, J., Brough, R., Sherker, A., Landry, S., Szilard, R. K., .
955 . . Durocher, D. (2018). The shieldin complex mediates 53BP1-dependent DNA repair.
956 *Nature*, 560(7716), 117-121. <https://doi.org/10.1038/s41586-018-0340-7>

957 O'Connell, K. F., Caron, C., Kopish, K. R., Hurd, D. D., Kemphues, K. J., Li, Y., & White, J. G.
958 (2001). The *C. elegans* zyg-1 gene encodes a regulator of centrosome duplication with
959 distinct maternal and paternal roles in the embryo. *Cell*, 105(4), 547-558.
960 [https://doi.org/10.1016/s0092-8674\(01\)00338-5](https://doi.org/10.1016/s0092-8674(01)00338-5)

961 Paiano, J., Wu, W., Yamada, S., Sciascia, N., Callen, E., Paola Cotrim, A., Deshpande, R. A.,
962 Maman, Y., Day, A., Paull, T. T., & Nussenzweig, A. (2020). ATM and PRDM9 regulate
963 SPO11-bound recombination intermediates during meiosis. *Nat Commun*, 11(1), 857.
<https://doi.org/10.1038/s41467-020-14654-w>

964 Paix, A., Folkmann, A., Rasoloson, D., & Seydoux, G. (2015). High efficiency, homology-
965 directed genome editing in *Caenorhabditis elegans* using CRISPR-Cas9
966 ribonucleoprotein complexes. *Genetics*, 201(1), 47-54.
<https://doi.org/10.1534/genetics.115.179382>

967 Phillips, C. M., & Dernburg, A. F. (2006). A family of zinc-finger proteins is required for
968 chromosome-specific pairing and synapsis during meiosis in *C. elegans*. *Dev Cell*, 11(6),
969 817-829. <https://doi.org/10.1016/j.devcel.2006.09.020>

970 Phillips, C. M., Wong, C., Bhalla, N., Carlton, P. M., Weiser, P., Meneely, P. M., & Dernburg,
971 A. F. (2005). HIM-8 binds to the X chromosome pairing center and mediates
972 chromosome-specific meiotic synapsis. *Cell*, 123(6), 1051-1063.
<https://doi.org/10.1016/j.cell.2005.09.035>

973 Prigent, C., & Dimitrov, S. (2003). Phosphorylation of serine 10 in histone H3, what for? *J Cell
974 Sci*, 116(Pt 18), 3677-3685. <https://doi.org/10.1242/jcs.00735>

975 Reuben, M., & Lin, R. (2002). Germline X chromosomes exhibit contrasting patterns of histone
976 H3 methylation in *Caenorhabditis elegans*. *Dev Biol*, 245(1), 71-82.
<https://doi.org/10.1006/dbio.2002.0634>

977 Rinaldo, C., Bazzicalupo, P., Ederle, S., Hilliard, M., & La Volpe, A. (2002). Roles for
978 *Caenorhabditis elegans* rad-51 in meiosis and in resistance to ionizing radiation during
979 development. *Genetics*, 160(2), 471-479. <https://doi.org/10.1093/genetics/160.2.471>

980 Rocha, P. P., Raviram, R., Fu, Y., Kim, J., Luo, V. M., Aljoufi, A., Swanzey, E., Pasquarella, A.,
981 Balestrini, A., Miraldi, E. R., Bonneau, R., Petrini, J., Schotta, G., & Skok, J. A. (2016).
982 A Damage-Independent Role for 53BP1 that Impacts Break Order and Igh Architecture
983 during Class Switch Recombination. *Cell Rep*, 16(1), 48-55.
<https://doi.org/10.1016/j.celrep.2016.05.073>

984 Rockman, M. V., & Kruglyak, L. (2009). Recombinational landscape and population genomics
985 of *Caenorhabditis elegans*. *PLoS Genet*, 5(3), e1000419.
<https://doi.org/10.1371/journal.pgen.1000419>

986 Ryu, J. S., Kang, S. J., & Koo, H. S. (2013). The 53BP1 homolog in *C. elegans* influences DNA
987 repair and promotes apoptosis in response to ionizing radiation. *PLoS One*, 8(5), e64028.
<https://doi.org/10.1371/journal.pone.0064028>

988 Saito, T. T., Lui, D. Y., Kim, H. M., Meyer, K., & Colaiacovo, M. P. (2013). Interplay between
989 structure-specific endonucleases for crossover control during *Caenorhabditis elegans*
990 meiosis. *PLoS Genet*, 9(7), e1003586. <https://doi.org/10.1371/journal.pgen.1003586>

991 Schmiedeberg, L., Skene, P., Deaton, A., & Bird, A. (2009). A temporal threshold for
992 formaldehyde crosslinking and fixation. *PLoS One*, 4(2), e4636.
<https://doi.org/10.1371/journal.pone.0004636>

993 Schultz, L. B., Chehab, N. H., Malikzay, A., & Halazonetis, T. D. (2000). p53 binding protein 1
994 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. *J
995 Cell Biol*, 151(7), 1381-1390. <https://doi.org/10.1083/jcb.151.7.1381>

996 Solinger, J. A., Kianitsa, K., & Heyer, W. D. (2002). Rad54, a Swi2/Snf2-like recombinational
997 repair protein, disassembles Rad51:dsDNA filaments. *Mol Cell*, 10(5), 1175-1188.
[https://doi.org/10.1016/s1097-2765\(02\)00743-8](https://doi.org/10.1016/s1097-2765(02)00743-8)

1007 Sundaravinayagam, D., Rahjouei, A., Andreani, M., Tupina, D., Balasubramanian, S., Saha, T.,
1008 Delgado-Benito, V., Coralluzzo, V., Daumke, O., & Di Virgilio, M. (2019). 53BP1
1009 Supports Immunoglobulin Class Switch Recombination Independently of Its DNA
1010 Double-Strand Break End Protection Function. *Cell Rep*, 28(6), 1389-1399 e1386.
1011 <https://doi.org/10.1016/j.celrep.2019.06.035>

1012 Teves, S. S., An, L., Hansen, A. S., Xie, L., Darzacq, X., & Tjian, R. (2016). A dynamic mode of
1013 mitotic bookmarking by transcription factors. *Elife*, 5.
1014 <https://doi.org/10.7554/elife.22280>

1015 Tock, A. J., & Henderson, I. R. (2018). Hotspots for Initiation of Meiotic Recombination. *Front
1016 Genet*, 9, 521. <https://doi.org/10.3389/fgene.2018.00521>

1017 Usui, T., & Shinohara, A. (2021). Rad9, a 53BP1 Ortholog of Budding Yeast, Is Insensitive to
1018 Spo11-Induced Double-Strand Breaks During Meiosis. *Front Cell Dev Biol*, 9, 635383.
1019 <https://doi.org/10.3389/fcell.2021.635383>

1020 Vielle, A., Lang, J., Dong, Y., Ercan, S., Kotwaliwale, C., Rechtsteiner, A., Appert, A., Chen, Q.
1021 B., Dose, A., Egelhofer, T., Kimura, H., Stempor, P., Dernburg, A., Lieb, J. D., Strome,
1022 S., & Ahringer, J. (2012). H4K20me1 contributes to downregulation of X-linked genes
1023 for *C. elegans* dosage compensation. *PLoS Genet*, 8(9), e1002933.
1024 <https://doi.org/10.1371/journal.pgen.1002933>

1025 Wang, H., Peng, B., Pandita, R. K., Engler, D. A., Matsunami, R. K., Xu, X., Hegde, P. M.,
1026 Butler, B. E., Pandita, T. K., Mitra, S., Xu, B., & Hegde, M. L. (2017). Aurora kinase B
1027 dependent phosphorylation of 53BP1 is required for resolving merotelic kinetochore-
1028 microtubule attachment errors during mitosis. *Oncotarget*, 8(30), 48671-48687.
1029 <https://doi.org/10.18632/oncotarget.16225>

1030 Ward, I. M., Minn, K., Jorda, K. G., & Chen, J. (2003). Accumulation of checkpoint protein
1031 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. *J Biol
1032 Chem*, 278(22), 19579-19582. <https://doi.org/10.1074/jbc.C300117200>

1033 Ward, I. M., Minn, K., van Deursen, J., & Chen, J. (2003). p53 Binding protein 53BP1 is
1034 required for DNA damage responses and tumor suppression in mice. *Mol Cell Biol*,
1035 23(7), 2556-2563. <https://doi.org/10.1128/MCB.23.7.2556-2563.2003>

1036 Ward, I. M., Reina-San-Martin, B., Olaru, A., Minn, K., Tamada, K., Lau, J. S., Cascalho, M.,
1037 Chen, L., Nussenzweig, A., Livak, F., Nussenzweig, M. C., & Chen, J. (2004). 53BP1 is
1038 required for class switch recombination. *J Cell Biol*, 165(4), 459-464.
1039 <https://doi.org/10.1083/jcb.200403021>

1040 Weinert, T., & Hartwell, L. (1989). Control of G2 delay by the rad9 gene of *Saccharomyces
1041 cerevisiae*. *J Cell Sci Suppl*, 12, 145-148.
1042 https://doi.org/10.1242/jcs.1989.supplement_12.12

1043 Wells, M. B., Snyder, M. J., Custer, L. M., & Csankovszki, G. (2012). *Caenorhabditis elegans*
1044 dosage compensation regulates histone H4 chromatin state on X chromosomes. *Mol Cell
1045 Biol*, 32(9), 1710-1719. <https://doi.org/10.1128/MCB.06546-11>

1046 Wilson, M. D., Benlekbir, S., Fradet-Turcotte, A., Sherker, A., Julien, J. P., McEwan, A.,
1047 Noordermeer, S. M., Sicheri, F., Rubinstein, J. L., & Durocher, D. (2016). The structural
1048 basis of modified nucleosome recognition by 53BP1. *Nature*, 536(7614), 100-103.
1049 <https://doi.org/10.1038/nature18951>

1050 Woglar, A., & Villeneuve, A. M. (2018). Dynamic Architecture of DNA Repair Complexes and
1051 the Synaptonemal Complex at Sites of Meiotic Recombination. *Cell*, 173(7), 1678-1691
1052 e1616. <https://doi.org/10.1016/j.cell.2018.03.066>

1053 Wood, W. B., Hecht, R., Carr, S., Vanderslice, R., Wolf, N., & Hirsh, D. (1980). Parental effects
1054 and phenotypic characterization of mutations that affect early development in
1055 *Caenorhabditis elegans*. *Dev Biol*, 74(2), 446-469. [https://doi.org/10.1016/0012-1606\(80\)90445-5](https://doi.org/10.1016/0012-1606(80)90445-5)

1056 Yim, H., Shin, S. B., Woo, S. U., Lee, P. C., & Erikson, R. L. (2017). Plk1-mediated
1058 stabilization of 53BP1 through USP7 regulates centrosome positioning to maintain
1059 bipolarity. *Oncogene*, 36(7), 966-978. <https://doi.org/10.1038/onc.2016.263>

1060 Yokoo, R., Zawadzki, K. A., Nabeshima, K., Drake, M., Arur, S., & Villeneuve, A. M. (2012).
1061 COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps
1062 governing meiotic crossovers. *Cell*, 149(1), 75-87.
1063 <https://doi.org/10.1016/j.cell.2012.01.052>

1064 Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., & Horvitz, H. R. (1993). The *C. elegans* cell
1065 death gene *ced-3* encodes a protein similar to mammalian interleukin-1 beta-converting
1066 enzyme. *Cell*, 75(4), 641-652. [https://doi.org/10.1016/0092-8674\(93\)90485-9](https://doi.org/10.1016/0092-8674(93)90485-9)

1067 Zhang, L., Geng, X., Wang, F., Tang, J., Ichida, Y., Sharma, A., Jin, S., Chen, M., Tang, M.,
1068 Pozo, F. M., Wang, W., Wang, J., Wozniak, M., Guo, X., Miyagi, M., Jin, F., Xu, Y.,
1069 Yao, X., & Zhang, Y. (2022). 53BP1 regulates heterochromatin through liquid phase
1070 separation. *Nat Commun*, 13(1), 360. <https://doi.org/10.1038/s41467-022-28019-y>

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085 **Figure S1. Localization and phenotype of HSR-9 fusions and mutants. A)** Cartoon
1086 of *hsr-9* gene structure indicating position of fusions, and mutant alleles. **B)** %
1087 embryonic lethality of wild type (WT) (26), *hsr-9(xoe17)* (23), *brc-1(xoe4)* (12), *hsr-*
1088 *9(xoe17)*; *brc-1(xoe4)* (25), *gfp::V5::hsr-9* (11), *hsr-9::gfp::3xHA* (10), *gfp::V5::hsr-9; brc-*
1089 *1(xoe4)* (12); *hsr-9::gfp::3xHA; brc-1(xoe4)* (11). Number of animals examined are in
1090 parentheses. Mean and 95% Confidence Interval shown; *** p < 0.001; ** p < 0.01; * p <
1091 0.05 by Mann-Whitney. **C)** Images of HSR-9::GFP fluorescence from indicated regions
1092 of the germ line. PZ = proliferative zone; TZ = transition zone; EP = early pachytene;
1093 MP = mid pachytene; LP = late pachytene; DP = diplotene; DK = diakinesis. Scale bar =
1094 10 μ m.

1095

1096 **Figure S2. Meiotic Recombination in *hsr-9* mutants. A)** Percent embryonic lethality
1097 in the apoptosis-defective *ced-3(ok2734)* mutant and *hsr-9(xoe17); ced-3(ok2734)*
1098 double mutant, n = 10 worms for each genotype. **B)** Coefficient of Variation (CV) of
1099 GFP::RPA-1 fluorescence was measured from 6 germlines in the pachytene region of
1100 the germ line in *gfp::rpa-1* and *hsr-9(ok759); gfp::rpa-1* worms using the 3i spinning disc
1101 microscope. **C)** Box whisker plots show number of RAD-51 foci per nucleus in the
1102 indicated regions. Horizontal line of each box represents the median, top and bottom of
1103 each box represents medians of upper and lower quartiles, lines extending above and
1104 below boxes indicate SD, and individual data points are outliers from 5 to 95%.
1105 Statistical significant comparisons by Mann-Whitney of WT vs. *hsr-9(ok759)* and *hsr-*
1106 *9(xoe17)* are indicated; ***p< 0.0001. **D)** Dissected germ lines immunolabelled with

1107 RAD-51 (red) and counterstained with DAPI (blue) in WT, *hsr-9(xoe17)*, *rad-54(ok615)*

1108 and *hsr-9(xoe17)*; *rad-54(ok615)* worms.

1109

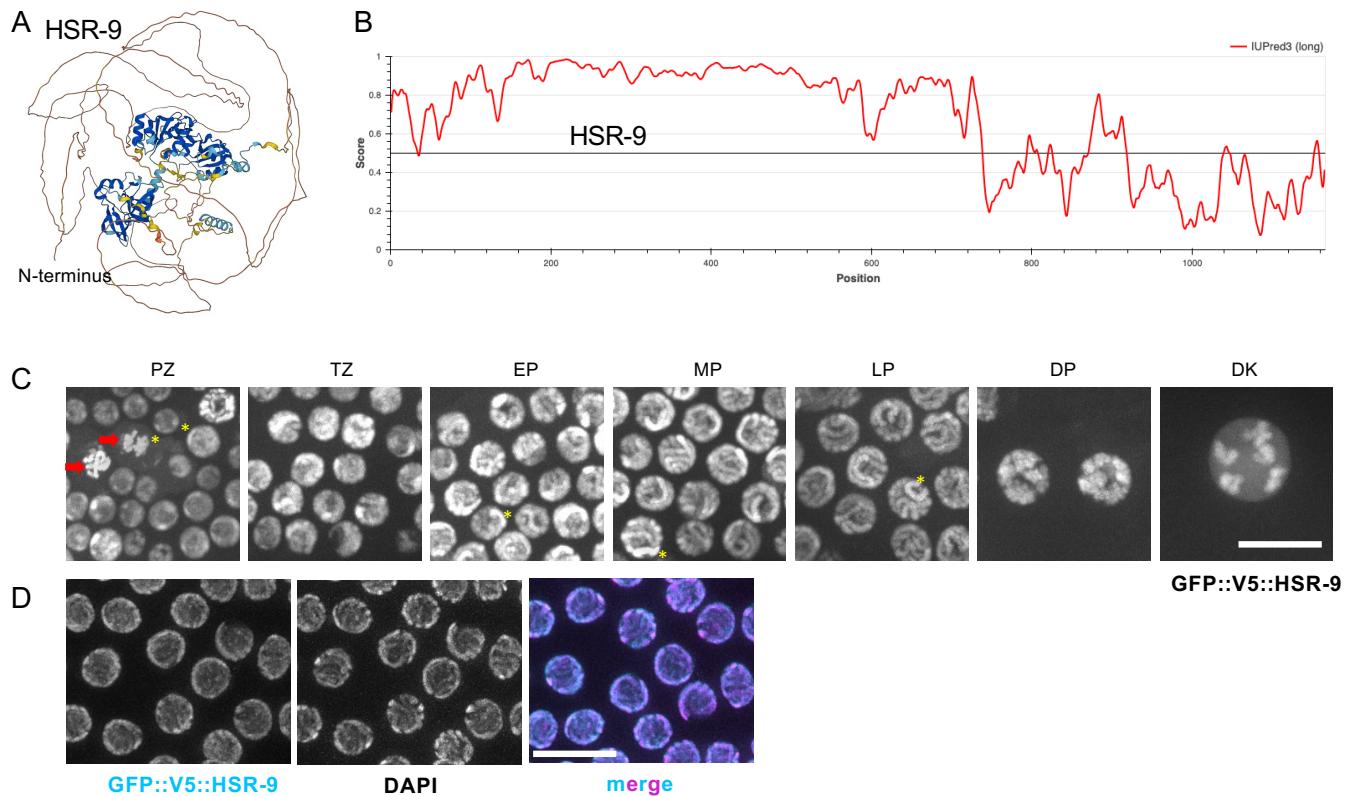


Figure 2

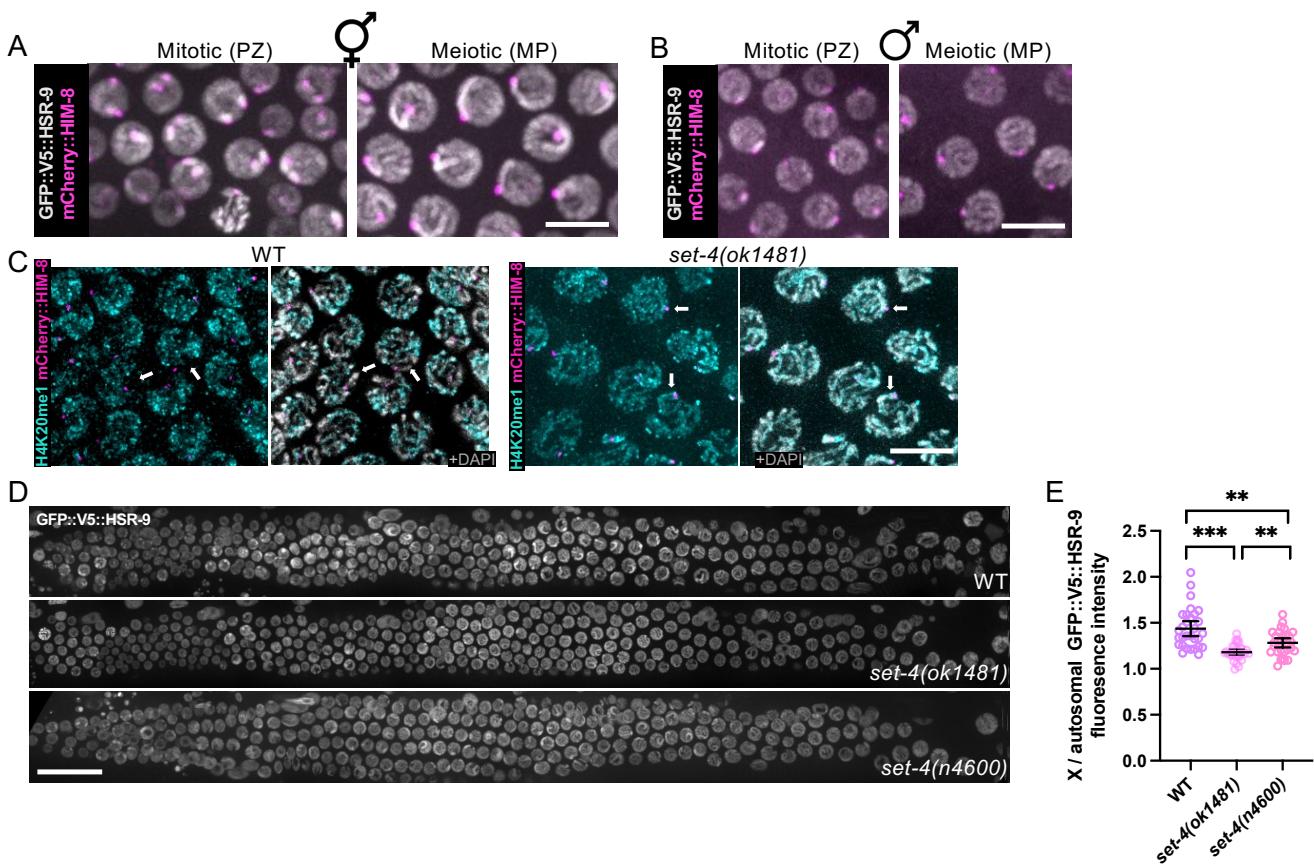


Figure 3

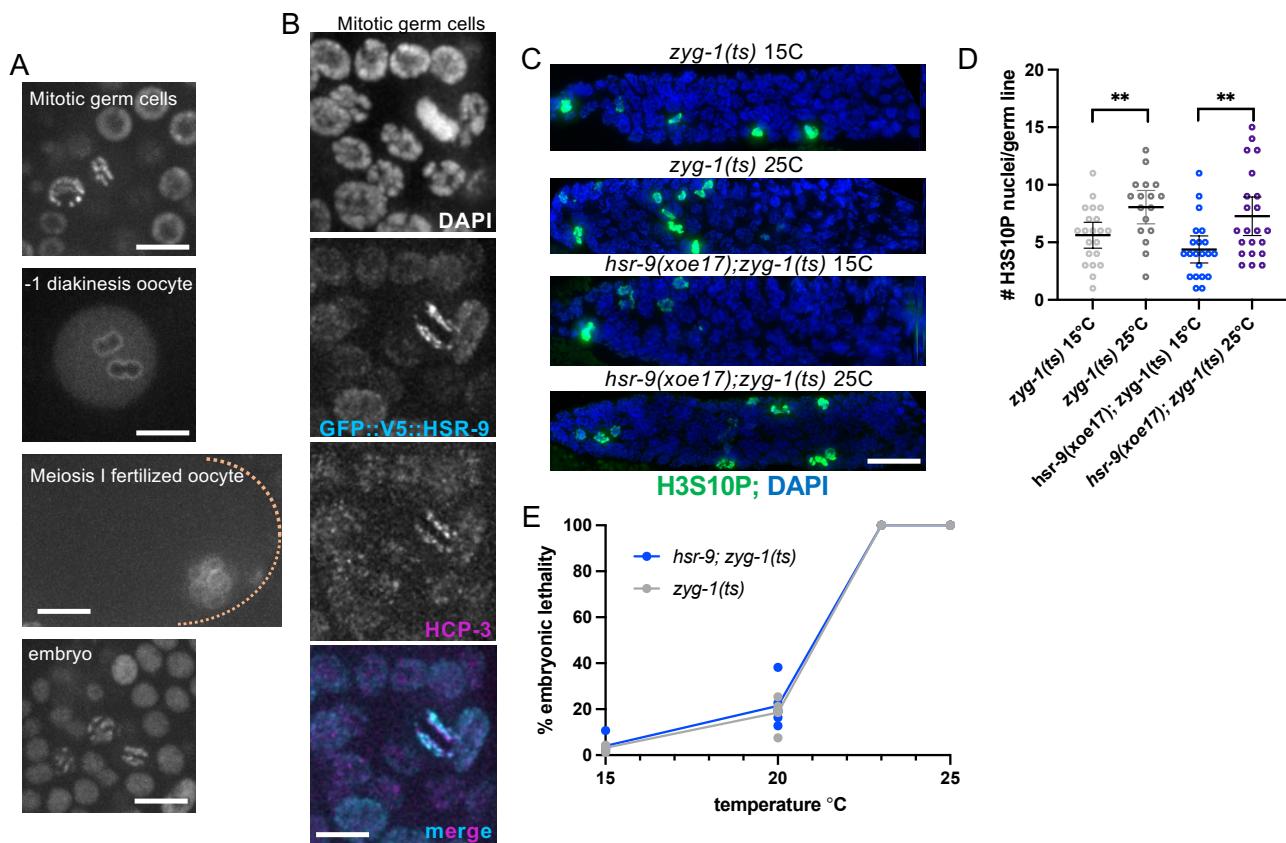


Figure 4

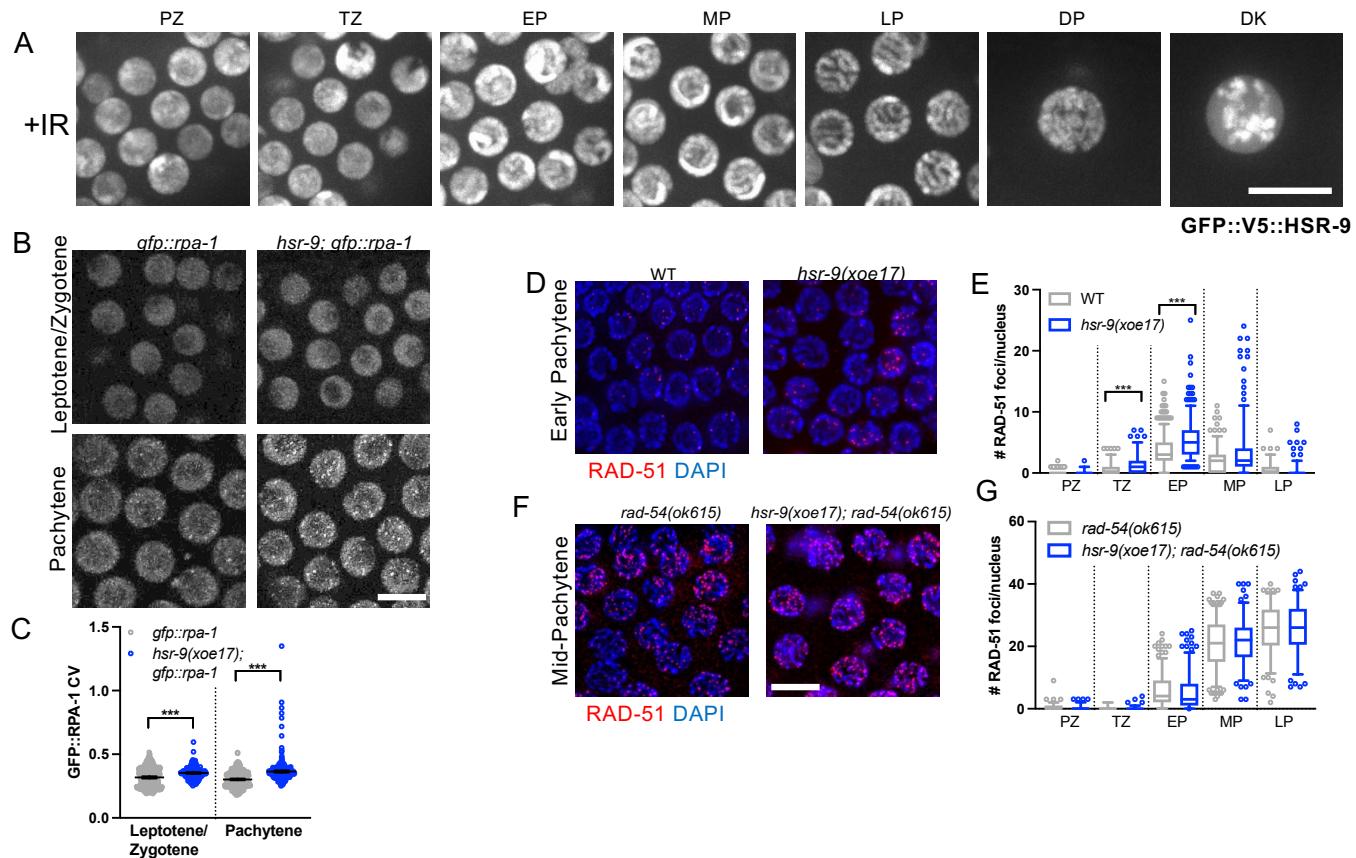


Figure 5

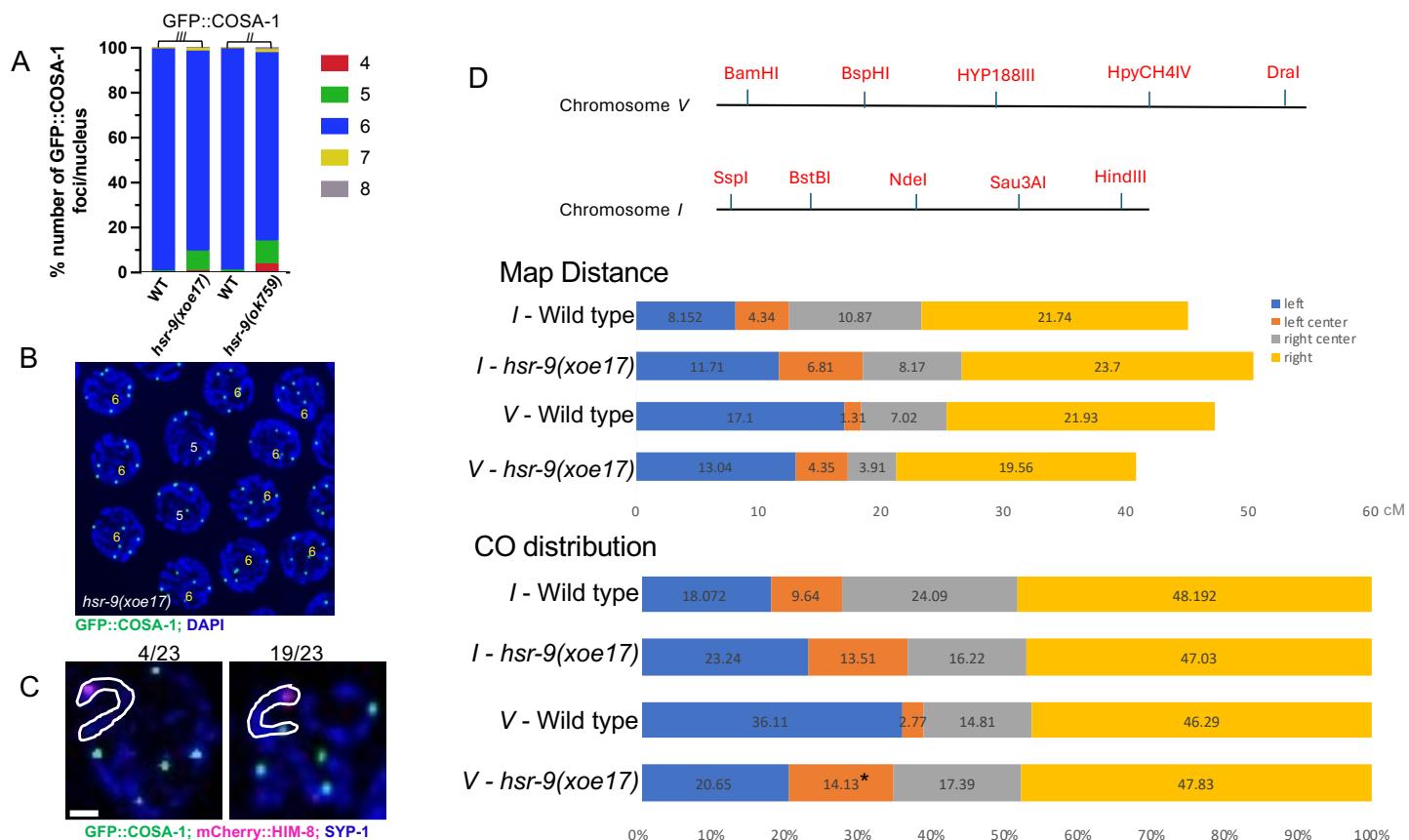
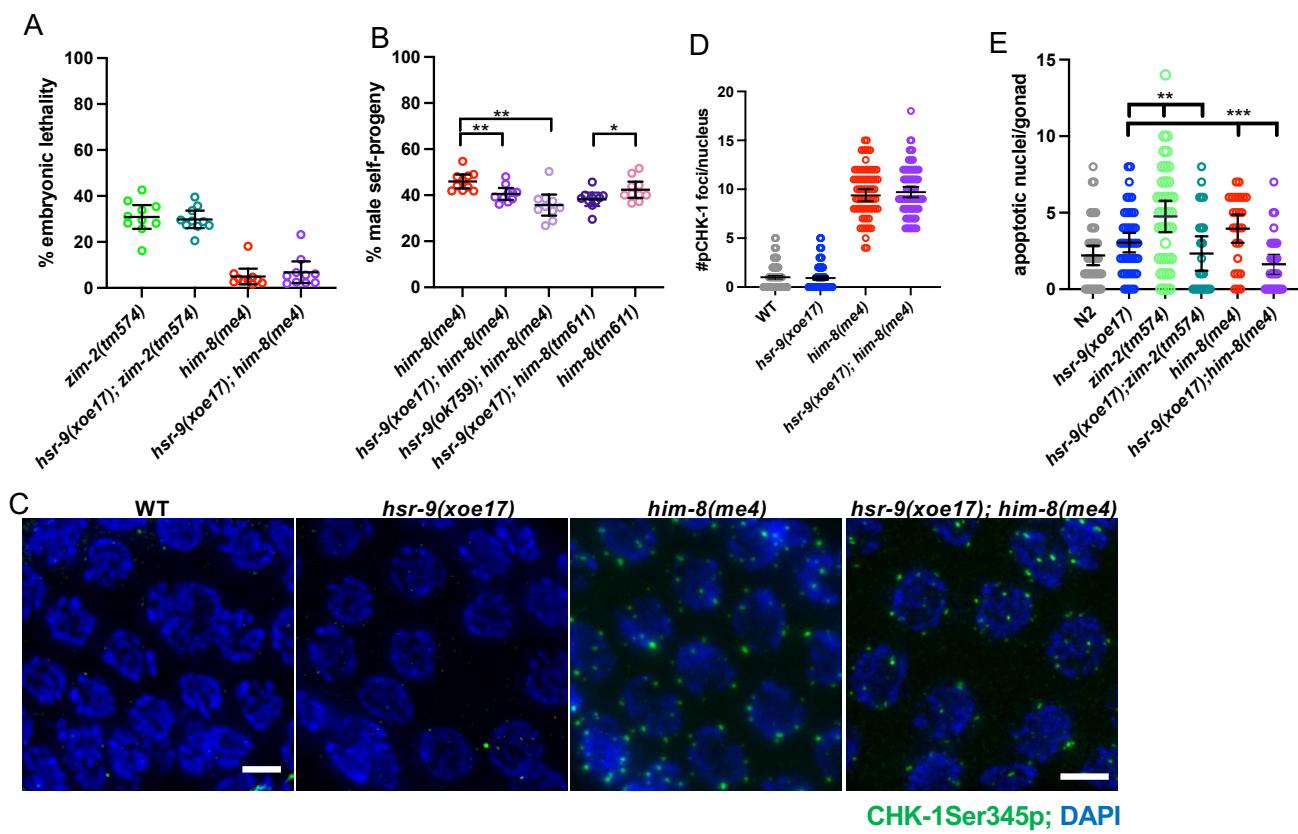



Figure 6

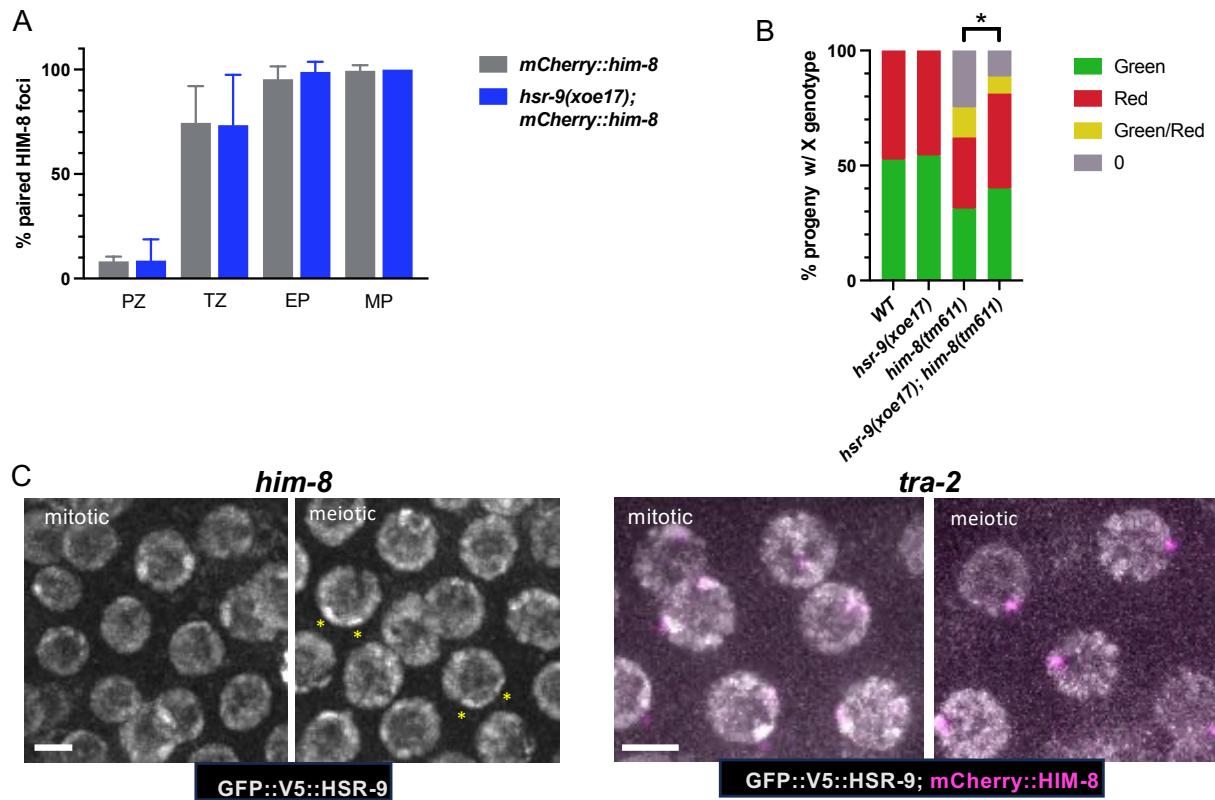
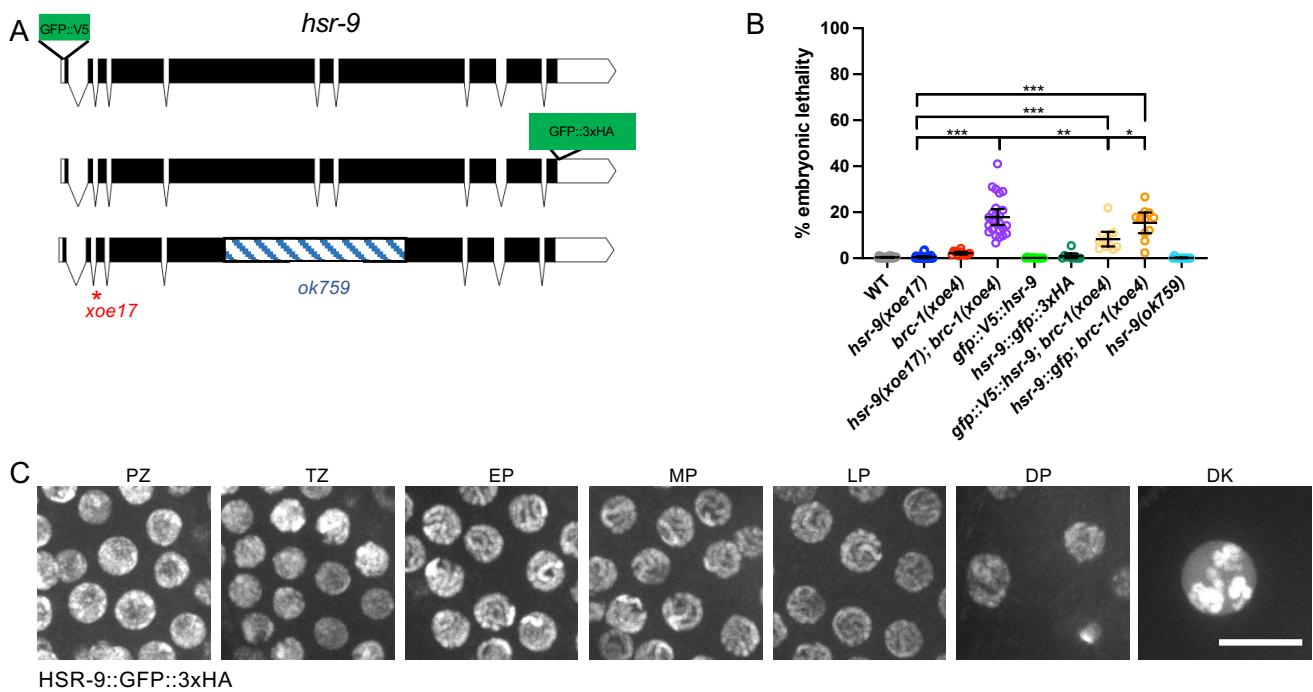
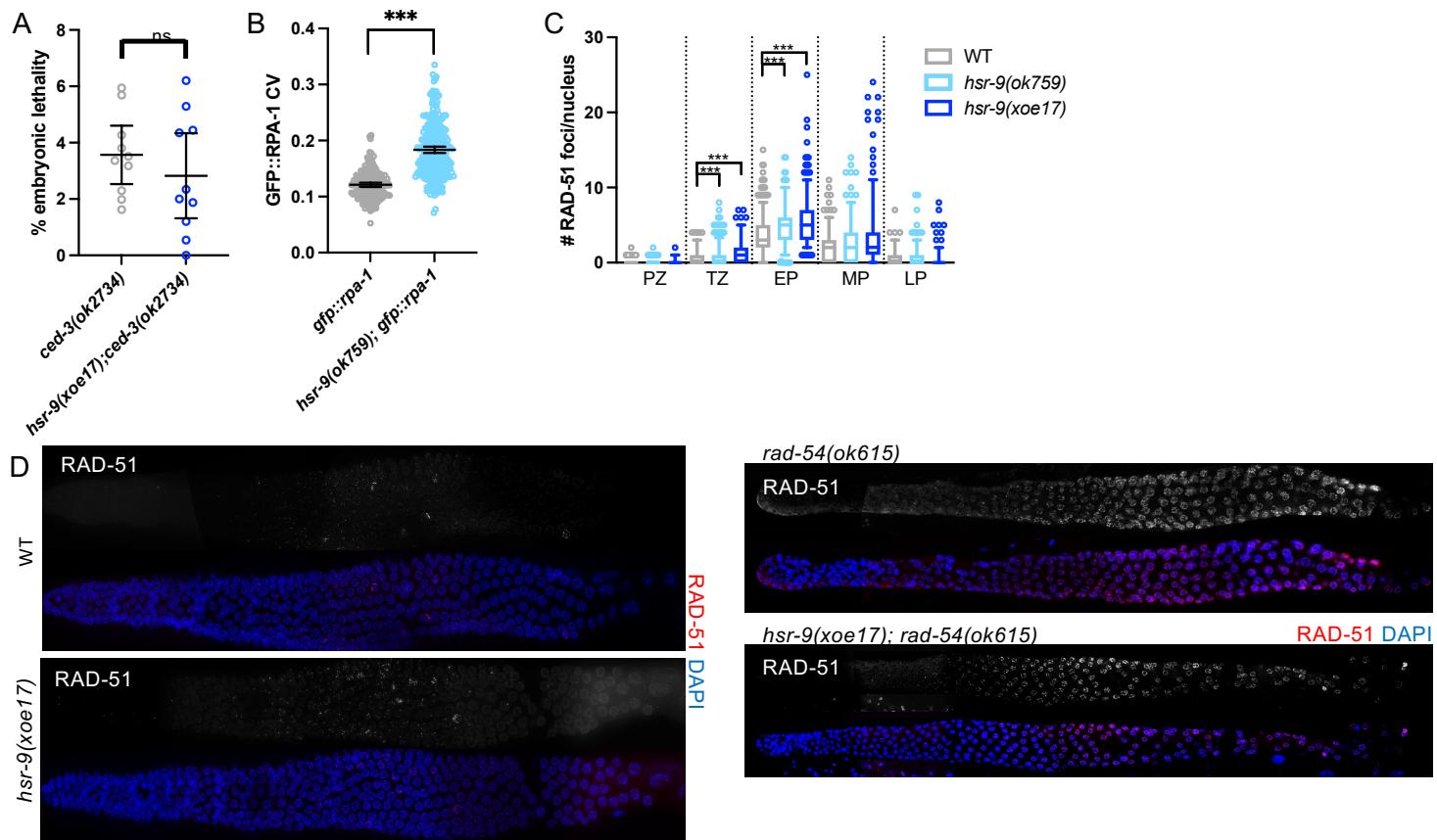




Figure S1

