

1 **Structure and rational engineering of the PglX methyltransferase and**
2 **specificity factor for BREX phage defence**

3 Sam C. Went^a, David M. Picton^a, Richard D. Morgan^b, Andrew Nelson^c, David T. F. Dryden^a, Darren L.
4 Smith^c, Nicolas Wenner^d, Jay C. D. Hinton^d, Tim R. Blower^{a,*}

5

6 ^aDepartment of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.

7 ^bNew England Biolabs, 240 County Road, Ipswich, MA 01938, USA.

8 ^cFaculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.

9 ^dInstitute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB,
10 UK.

11 *To whom correspondence may be addressed. Email: timothy.blower@durham.ac.uk, tel:
12 +44(0)1913343923.

13

14 Keywords: BREX, phage defence, PglX, methyltransferase, Ocr

15

16

17

18

19

20

21

22

23

24

25 **ABSTRACT**

26 Bacteria have evolved a broad range of systems that provide defence against their viral predators,
27 bacteriophages. Bacteriophage Exclusion (BREX) systems recognize and methylate 6 bp non-
28 palindromic motifs within the host genome, and prevent replication of non-methylated phage DNA
29 that encodes these same motifs. How BREX recognizes cognate motifs has not been fully understood.
30 We have characterised BREX from pathogenic *Salmonella* and generated the first X-ray
31 crystallographic structures of the conserved BREX protein, PglX. The PglX N-terminal domain encodes
32 the methyltransferase, whereas the C-terminal domain is for motif recognition. We also present the
33 structure of PglX bound to the phage-derived DNA mimic, Ocr, an inhibitor of BREX activity. Our
34 analyses propose modes for DNA-binding by PglX and indicate that larger BREX complexes are
35 required for methyltransferase activity and defence. Through rational engineering of PglX, we
36 broadened both the range of phages targeted, and the host motif sequences that are methylated by
37 BREX. Our data demonstrate that PglX is the sole specificity factor for BREX activity, providing motif
38 recognition for both phage defence and host methylation.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 INTRODUCTION

57 Bacteria have evolved a diverse range of defences to protect from bacteriophages (phages) and mobile
58 genetic elements ^{1,2}. Classic examples of host defence mechanisms include restriction-modification
59 (RM) ³, abortive infection ^{4,5} and CRISPR-cas ⁶. Genes encoding these systems tend to co-localise into
60 “defence islands” ⁷. Analysis of defence islands using a “guilt-by-association” approach have resulted
61 in significant expansion of predicted and validated defence systems ^{8,9}, including Bacteriophage
62 Exclusion (BREX) ¹⁰, CBASS ¹¹, BstA ¹², retrons ¹³, viperins ¹⁴, pycsar ¹⁵ and PARIS ¹⁶. Whilst the
63 combinations of phage defence systems encoded in any island can differ, there is evidence that
64 conserved regulatory systems, such as the BrxR family, control defence expression perhaps mediating
65 robust defence against a broad spectrum of invaders ¹⁷⁻¹⁹.

66

67 BREX genes are found in 10% of bacterial and archaeal genomes ¹⁰. BREX is related to Phage Growth
68 Limitation (Pgl) (22) and was first identified through analysis of genes neighbouring *pglZ*, performed
69 to locate likely defence genes ¹⁰. Together with *gmrS/gmrD*, which encode a Type IV restriction
70 enzyme, BREX genes form one of the most common defence island pairings ^{7,21}. We have recently
71 demonstrated that a defence island encoded on a multidrug-resistant plasmid of *Escherichia*
72 *fergusonii* provides complementary phage defence using BREX and a GmrSD homologue, BrxU ²².
73 There are six BREX sub-types, and type I BREX contains six genes: *brxA*, *brxB*, *brxC*, *pglX*, *pglZ* and *brxL*
74 ¹⁰. BrxA is a DNA-binding protein ²³, and BrxL is a DNA-stimulated AAA+ ATPase ²⁴. PglX has sequence
75 and structural homology to methyltransferases and is hypothesised to methylate non-palindromic 6
76 bp sequences (BREX motifs) on the N6 adenine at the fifth position of the motif ^{10,22,25}, allowing
77 discrimination between self and non-self DNA. Interestingly, it has been shown that Ocr from phage
78 T7, a protein that mimics dsDNA ²⁶, can inhibit BREX activity through binding to PglX ²⁷. Whilst
79 reminiscent of RM systems, the mechanism of BREX activity remains unclear.

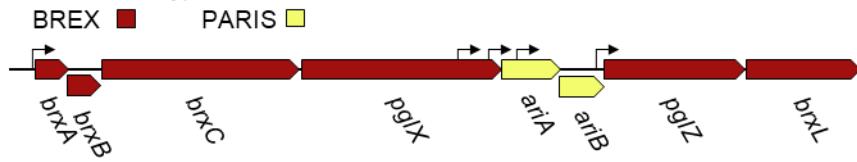
80

81 The *stySA* locus from *Salmonella enterica* serovar Typhimurium ²⁸, (also known as SenLT2III), was
82 recently re-constructed in an attenuated lab strain of *S. Typhimurium* (LT2) and shown to have BREX
83 activity ²⁹. In 2017, invasive non-typhoidal *Salmonella* (iNTS) disease was responsible for 77,500 deaths
84 globally, of which 66,500 deaths occurred in sub-Saharan Africa ³⁰. A high proportion of African iNTS
85 cases are caused by *S. Typhimurium* ST313 ^{31,32}. Representative ST313 strain D23580 ³¹ encodes a BREX
86 locus that is closely-related to the LT2 BREX locus (Fig. 1a), comprising a defence island formed from
87 an amalgamation of the type I BREX system and PARIS ¹⁶. The D23580 BREX defence island lacks the
88 additional upstream and regulatory genes observed in the *E. fergusonii* type I BREX defence island ²².

89

90 The relative simplicity of the *Salmonella* BREX system and the clinical relevance of the host strain
91 prompted us to test the effects of the D23580 BREX defence island against environmental *Salmonella*
92 phages. The D23580 BREX phage defence island was then characterised through systematic gene
93 deletions in an *E. coli* background, to allow use of the Durham phage collection ³³ in identifying the
94 determinants of phage defence and PglX-dependent host methylation. We present the first X-ray
95 crystallographic structural characterisation of PglX. We also present the first X-ray crystallographic

96 structural characterisation of PglX bound by the DNA mimic Ocr. Through rational engineering of PglX
97 it was possible to alter the BREX motif recognised for methylation and phage defence. Our structural
98 and biochemical analyses support PglX being the BREX methyltransferase and suggest modes of DNA-
99 binding. Our data also definitively show PglX is the sole specificity factor in BREX phage defence,
100 providing motif recognition for both phage targeting and host methylation.


101

102

103

104 **Figure 1**

105 **a** *Salmonella* Typhimurium str. D23580 FN424405.1 – 4758555:4774337

108

b

Phage	EOP
AWAQ	$1.14 \pm 2.84 \times 10^{-1}$
DA1	$0.98 \pm 2.57 \times 10^{-1}$
DB1	$0.13 \pm 4.79 \times 10^{-2}$
KMP	$3.82 \times 10^{-2} \pm 3.13 \times 10^{-2}$
LTE	$1.12 \pm 6.23 \times 10^{-2}$
SB58	$4.23 \times 10^{-2} \pm 5.14 \times 10^{-2}$
SGP	$0.71 \pm 8.99 \times 10^{-2}$
SL2K	$3.03 \times 10^{-2} \pm 3.04 \times 10^{-2}$

EOP $\geq 5 \times 10^{-1}$
 $5 \times 10^{-1} > EOP \geq 10^{-2}$
 $10^{-2} > EOP$

Figure 1. *Salmonella* BREX provides phage defence against environmentally isolated *Salmonella* phages. (a) Schematic of the 15.7 kb *Salmonella* BREX phage defence island. Promoters are denoted by arrows. (b) Efficiency of Plating (EOP) for *Salmonella* phages tested on *Salmonella* D23850 $\Delta\phi$ against a control of *Salmonella* D23580 $\Delta\phi\Delta$ BREX. Values are mean EOPs from triplicate data, shown with standard deviation.

109 **RESULTS**

110 *The Salmonella D23580 BREX phage defence island provides protection*
111 *against environmental Salmonella phages*

112 The BREX phage defence island from *Salmonella enterica* serovar Typhimurium ST313 strain D23580
113 (referred to as D23580 from now on) encodes two phage defence systems, type I BREX¹⁰, and PARIS
114¹⁶, collectively “BREX_{Sty}” (Fig. 1a). The SalComD23580 RNA-seq-based gene expression compendium
115 (http://bioinf.gen.tcd.ie/cgi-bin/salcom_v2.pl?HL) shows that the defence island is expressed
116 constitutively at the transcriptional level during exponential growth in LB and minimal media, and
117 within murine macrophages³⁴. Differential RNA-seq (dRNA-seq) was used to identify a promoter
118 upstream of *brxA* (STMMW_44431) at location 4773879 on the D23580 chromosome, which drives
119 transcription of the BREX-PARIS island³⁴ (Fig. 1a).

120

121 Also known as StySA²⁸, the ~15.7 kb D23580 BREX_{Sty} phage defence island has two synonymous point
122 mutations in *pglX* compared to the model *S. Typhimurium* ST19 strain LT2. The BREX island has
123 recently been studied in the *S. Typhimurium*-derived strain ER3625. Phage transduction was used to
124 construct ER3625 as a genetic hybrid between *S. Abony* 803 strain and *S. Typhimurium* in the 1960’s,
125 and the strain has recently been sequenced³⁵. In comparison to D23580, the defective BREX phage
126 defence island of *S. Typhimurium* strain ER3625 had a further 12 point mutations, of which 7 were
127 distributed throughout *pglZ*, and 5 in the 3'-terminal section of *brxC*²⁹.

128

129 The contiguous PARIS defence systems mediate an abortive infection response in the presence of the
130 anti-BREX and anti-restriction protein Ocr¹⁶. The co-localisation of the PARIS genes *ariAB* within
131 BREX_{Sty} raises the possibility that the BREX and PARIS defences work together in *S. Typhimurium*. Our
132 first aim was to confirm BREX_{Sty} activity in D23580.

133

134 To assess phage defence in D23580 we needed to isolate *Salmonella* phages. As phages isolated on
135 D23580 wild type (WT) would be inherently resistant to BREX_{Sty}, we first used a genetic approach to
136 generate a strain of D23580 that lacked BREX_{Sty}. The ST313 strain D23580 encodes 5 prophages that
137 encode their own antiphage systems, including the prophage BTP1-encoded BstA¹². To reduce
138 interference from other antiphage systems, we began with the D23580Δφ mutant strain that lacks the
139 five major prophages. The entire BREX_{Sty} defence island, including PARIS, was then removed from
140 D23580Δφ using scar-less λ red recombination (Fig. S1)³⁶, resulting in strain D23850ΔφΔBREX³⁷.

141

142 Sewage effluent was obtained direct from source with the assistance of Northumbrian Water, and was
143 used for phage enrichment on D23850ΔφΔBREX. A range of plaques were obtained after these
144 enrichments, and 8 phage lysates were prepared following rounds of purification from visually distinct
145 plaques. Activity of the D23580 BREX defence island was confirmed using EOP assays with the 8
146 *Salmonella* phage isolates, testing the ability of the phages to plaque on D23580Δφ, with

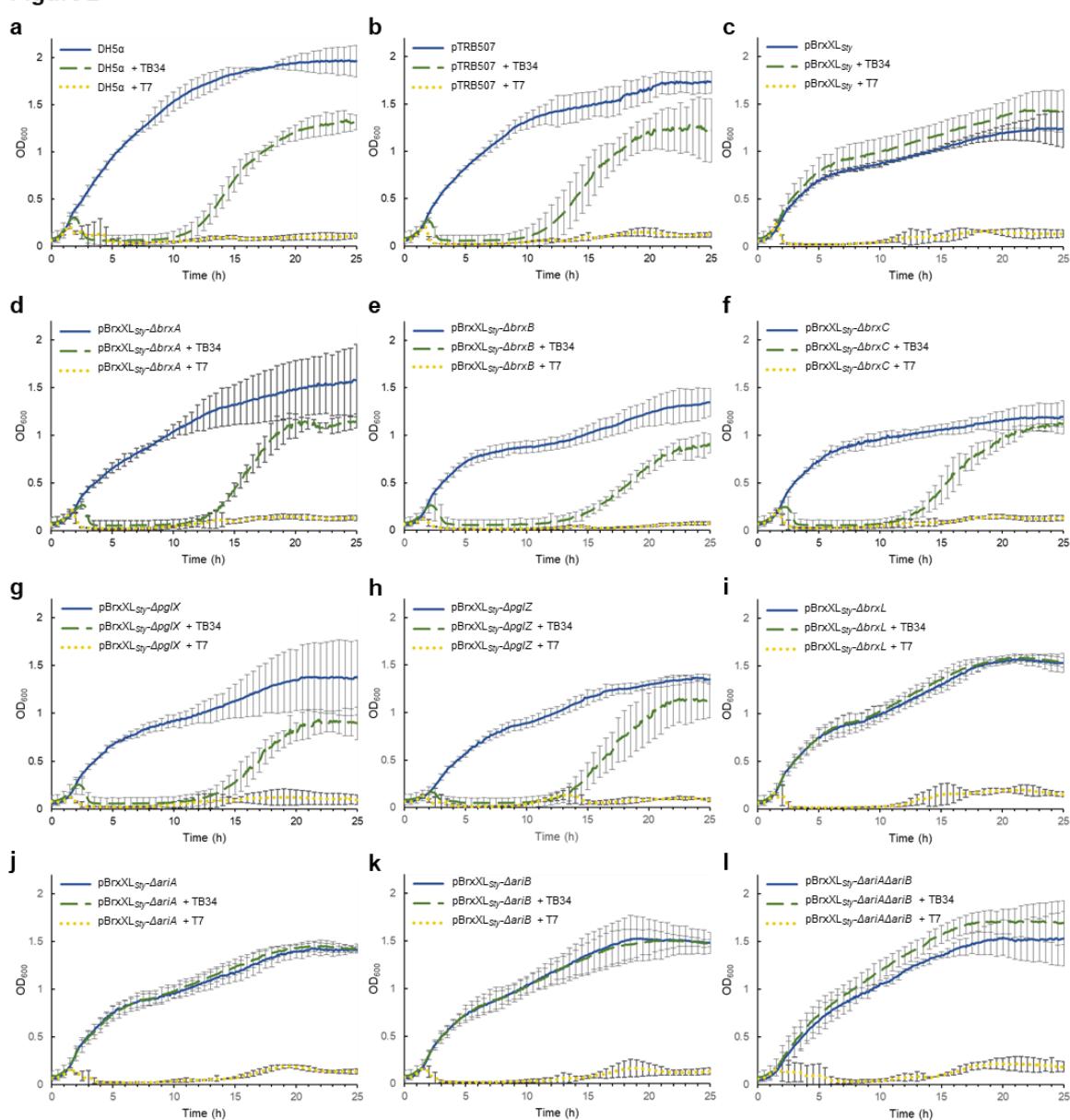
147 D23850ΔφΔBREX as the control (**Fig. 1b**). An EOP value of less than 1 indicates that a phage is less
148 efficient at forming plaques on the test strain compared to the control. Phages KMP, SB58 and SL2K
149 had an EOP of <1, with a reduction in plaquing of ~100-fold compared to controls, indicating
150 sensitivity to BREX_{Sty} (**Fig. 1b**). Phage DB1 was more weakly affected, with an EOP of 0.13 (**Fig. 1b**). The
151 remaining four phages appeared unaffected by activity of BREX_{Sty}, with EOPs ~1 (**Fig. 1b**). These data
152 confirm that the BREX_{Sty} defence island of D23580Δφ can provide active anti-phage activity in
153 *Salmonella*.

154

155 *Impact of Salmonella D23580 BREX phage defence island gene deletions on* 156 *phage defence and methylation*

157 Having investigated the impact of the D23580 BREX phage defence island, BREX_{Sty}, in the original
158 *Salmonella* host, we investigated BREX_{Sty} in an *E. coli* background. The motivation for using this
159 heterologous host was to allow direct comparison with the previously characterised BREX phage
160 defence island from *E. fergusonii*²², and use of our Durham collection of phages³³. *E. coli* is also a
161 more tractable experimental model for future experiments within this study. BREX_{Sty} was sub-cloned
162 in sections and then combined into plasmid pGGA by Golden Gate Assembly (GGA)³⁸, yielding plasmid
163 pBrxXL_{Sty} that contained the entire BREX and PARIS defence island, namely the eight genes from *brxA*
164 to *brxL* as depicted (**Fig. 1a**), under the control of the native promoters (**Fig. S2**). Plasmid pTRB507 is
165 an equivalent empty vector control. Liquid cultures of *E. coli* DH5α WT, or cultures transformed with
166 either pBrxXL_{Sty} or pTRB507, were infected with Durham phage TB34³³, or lab phage T7 (ATCC BAA-
167 1025-B2) (**Figs. 2a-c**). Infected control cultures were lysed by both phages; the T7-infected cultures
168 did not recover, whereas the TB34-infected cultures began to grow again at 10-12 hrs post-infection,
169 presumably due to the selection of spontaneous TB34-resistant mutants (**Figs. 2a and b**). In the
170 presence of pBrxXL_{Sty}, however, cultures infected with TB34 grew similarly to uninfected controls,
171 whilst cultures infected with T7 were lysed (**Fig. 2c**). These findings show that BREX_{Sty} is active in an *E.*
172 *coli* background, and demonstrates that pBrxXL_{Sty} provides defence against TB34, but not against T7.

173


174 To investigate the role of each phage defence gene in protection against TB34 infection, we generated
175 individual deletions of each D23580 BREX/PARIS gene in pBrxXL_{Sty}, and a double mutant that lacked
176 both the *ariA* and *ariB* genes of the PARIS system (**Fig. S2**). *E. coli* DH5α cells were transformed with
177 the mutant plasmids and liquid cultures of resulting strains were subsequently infected with TB34 and
178 T7 (**Figs. 2d-l**). Deletion of *brxA*, *brxB*, *brxC*, *pglX* and *pglZ* abolished defence against TB34 (**Figs. 2d-h**).
179 Our finding that deletion of *brxL* did not impact protection against TB34 revealed that BrxL is not
180 required for the phage defence activity of BREX_{Sty} against TB34 (**Fig. 2i**). Deletion of *aria* and *ariB*,
181 either singly or together, also did not alter defence against TB34 (**Figs. 2j-l**).

182

183

184

Figure 2

185
186
187
188

189 Protection from infection by TB34 and T7 was then monitored using the quantitative EOP assay (**Fig. 3a**). BREX_{Sty} encoded on pBrxXL_{Sty} provided a moderate 100-fold reduction in TB34 plating efficiency
190 and had no appreciable impact on T7 (**Fig. 3a**). The 100-fold reduction matches the scale of phage
191 defence observed in *Salmonella* D23580Δφ against *Salmonella* phages (**Fig. 1b**). Therefore, plasmid
192 pBrxXL_{Sty} and BREX_{Sty} in the natural host chromosome provide a similar level of defence. Consistent
193 with results obtained with liquid cultures, deletion of *brxA*, *brxB*, *brxC*, *pglX* and *pglZ* ablated phage
194 defence in the EOP assay (**Fig. 2; Fig. 3a**). However, whereas deletion of *brxL* did not appear to impact
195 protection in liquid cultures (**Fig. 2i**), the EOP measurements revealed 10,000-fold enhancement of
196 defence against TB34 in the absence of *brxL* compared to cells carrying pBrxXL_{Sty} WT (**Fig. 3a**).
197 Individual deletion of PARIS genes *ariA* and *ariB* caused a 10-fold increase in phage defence, while the
198 double *ariA*, *ariB* deletion had no additional impact (**Fig. 3a**). Collectively, these data demonstrate that
199 TB34 is targeted by type I BREX in the BREX_{Sty} D23580 BREX defence island, and that unlike the *E. coli*
200 and *Acinetobacter* BREX systems^{17,25}, BrxL is not necessarily a requirement for phage defence.
201

202

203 The EOP results of TB34 when tested against the *brxL* deletion and *ariA*, *ariB* double deletion strains
204 prompted us to test a wider range of phages. Using the Durham collection of 12 coliphages³³, we re-
205 tested all phages against pBrxXL_{Sty}, pBrxXL_{Sty}-Δ*brxL* and pBrxXL_{Sty}-Δ*ariA*Δ*ariB* (**Fig. S3**). Phages TB34,
206 Alma, BB1, CS16, Mav and Sipho had 10- to 100-fold reduced EOPs on pBrxXL_{Sty}, compared to empty
207 vector controls (**Fig. S3**). The *brxL* deletion caused a range of impacts. In some cases we observed
208 enhanced defence (TB34, Alma, Sipho), but in other cases there was no difference to an already
209 susceptible phage (BB1, CS16, Mav) (**Fig. S3**). With phage Pau, against which BREX_{Sty} WT had little
210 effect, the *brxL* deletion enhanced defence (**Fig. S3**). Other phages unaffected by the WT pBrxXL_{Sty}
211 plasmid were also not impacted by pBrxXL_{Sty}-Δ*brxL* (**Fig. S3**). In contrast, the pBrxXL_{Sty}-Δ*ariA*Δ*ariB*
212 construct generally produced similar EOP values compared to pBrxXL_{Sty} WT, though there was an
213 approximate ten-fold further reduction in EOP for phages Alma and Sip (**Fig. S3**), and there was one
214 major difference where the *ariA*, *ariB* double deletion massively reduced the EOP of BB1 compared to
215 pBrxXL_{Sty} WT (**Fig. S3**). These data show that the PARIS system was itself not active against any tested
216 phage, and that deletion of *brxL* has phage-dependent impacts on defence (**Fig. S3**).
217

218 Having performed systematic analysis of gene deletions on phage defence, we then investigated a
219 second BREX phenotype; DNA methylation. PglX methyltransferases from type I BREX loci generate
220 N6-methylated adenines (N6mA) at the fifth position within 6-bp non-palindromic motif sequences of
221 host DNA^{10,22,25}. Restoring active function of the *Salmonella* LT2 StySA BREX system identified GATCAG
222 as the target motif sequence²⁹. We explored the use of the MinION next-generation sequencing
223 system to detect N6mA methylation patterns. Previously, we performed this type of analysis using
224 methylation-deficient *E. coli* ER2796³⁹ in order to reduce background methylation. However, we were
225 unable to transform strain *E. coli* ER2796 with our pBrxXL_{Sty} constructs, perhaps because the defence
226 island impacted upon bacterial fitness in the absence of methylation. We therefore used *E. coli* DH5α
227 strains, noting that the background GATC methylation might interfere with detection of the proposed
228 GATCAG BREX methylation motif. Total genomic DNA was extracted from each strain and sequenced
229 by MinION. *E. coli* DH5α pBrxXL_{Ef}erg, encoding the BREX phage defence island from *E. fergusonii*, was

Figure 3

¹WGA, whole genome amplification

Figure 3. Gene deletions within *Salmonella* BREX impact both phage defence and methylation. (a) EOPs of TB34 and T7 tested against *E. coli* DH5α pBrxXL_{Sty} WT and mutants, with *E. coli* DH5α pTRB507 as control. Values are mean EOPs from triplicate data, shown with standard deviation. (b) Detection of GATC~~A~~G N6mA motifs from genomic DNA of *E. coli* DH5α pBrxXL_{Sty} WT and mutants, with *E. coli* DH5α pTRB507 (and whole genome amplified samples thereof) as controls. Data obtained using MinION and Pacific Biosciences (PacBio) sequencing.

230

231

232

233

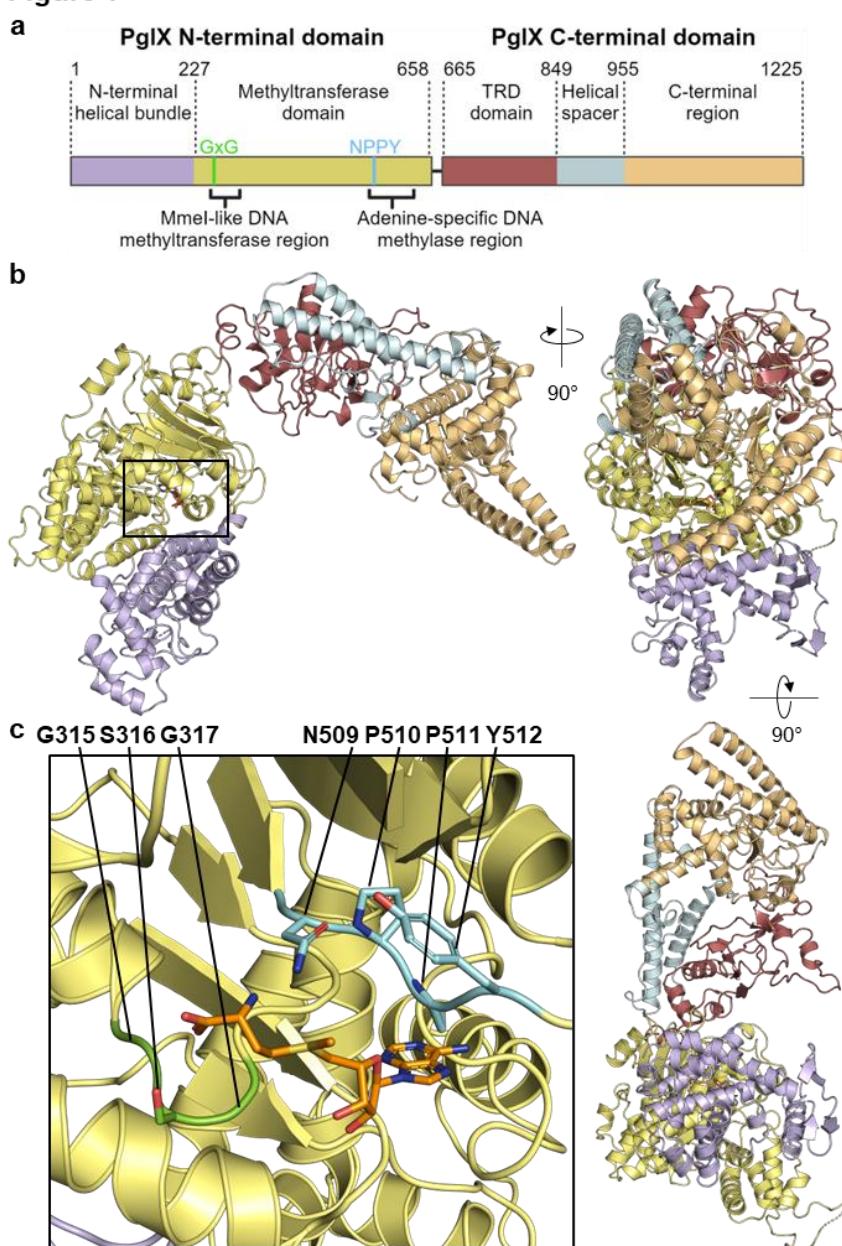
234 used as an initial positive control to ensure the methylation detection procedure was working. We
235 successfully identified the GCTAAT methylation motif (**Fig. S4a**), as previously reported²². To confirm
236 the *Salmonella* BREX motif we used a baseline control, wherein the pBrxXL_{Sty} WT sample was subjected
237 to whole genome amplification (WGA), which should remove DNA modifications. The WGA sample
238 contained the lowest detectable level of methylated GATCAG sequences, 12.87%, whilst pBrxXL_{Sty} WT
239 showed GATCAG methylation at 78.78% of sites, confirming that D23580 BREX produces N6mA at
240 GATCAG sequences (**Fig. 3b**; **Fig. S4b**). The *brxA*, *brxB*, *brxC*, *pglX* and *pglZ* mutants showed reduced
241 numbers of GATCAG methylation sites (**Fig. 3b**), indicating that all five gene products are required for
242 methylation. This finding is consistent with results involving the *Acinetobacter* BREX¹⁷, but differs from
243 those obtained with *E. coli* BREX; the *E. coli* *brxA* was not required for methylation in conditions of
244 arabinose-induced BREX expression²⁵. In *S. Typhimurium* BREX, deletion of *brxL* did not reduce
245 methylation (**Fig. 3b**) and the *ariA*, *ariB* and double mutants showed approximately WT levels of
246 methylation (**Fig. 3b**).

247

248 The observed changes in methylation levels identified the genetic requirements for BREX-mediated
249 methylation. However, the data did not agree with quantitative data on BREX methylation obtained
250 previously from Pacific Biosciences (PacBio) sequencing²². To perform a direct comparison, we used
251 the same 12 strains to generate samples for PacBio sequencing (**Fig. 3b**). The PacBio results were more
252 robust than those from MinION, with 0% of motifs modified in the WGA sample and 100% of motifs
253 modified with pBrxXL_{Sty} WT. The BREX mutants also showed either no, or near-saturated, methylation
254 (**Fig. 3b**). The PARIS deletions resulted in close to WT levels of methylation by PacBio (**Fig. 3b**),
255 indicating that PARIS is not involved in the observed methylation. These data show the genetic
256 requirements for D23580 BREX-dependent host methylation and demonstrate the utility of two
257 sequencing platforms when examining N6mA modifications.

258

259 *Structure of PglX shows SAM binding for methyltransferase activity*


260 It has not been understood how BREX systems recognize their cognate motifs. The likely candidate
261 protein, shown to be essential for methylation and defence, was the conserved PglX putative
262 methyltransferase. The closest structural homologue to the Alphafold predicted structure of PglX in
263 the PDB database is the Type IIL RM enzyme, Mmel⁴⁰, though domains are missing. As a result, in
264 order to learn more about BREX motif recognition, the structure of *Salmonella* PglX was sought
265 through X-ray crystallography. Following crystallization and data collection, an Alphafold model of PglX
266 was used as a search model for molecular replacement, assisting the solution and refinement of the
267 crystallographic structure of *Salmonella* PglX bound to S-adenosyl-L-methionine (SAM), a co-factor for
268 methylation, to 3.4 Å (**Fig. 4**; **Table 1**).

269

270 The crystal structure contains two copies of PglX in the asymmetric unit, the smallest repeating unit
271 of the crystal. However, the arrangement of the two copies allows only weak interactions that are
272 likely formed due to interactions within the crystal rather than being biologically significant. The

273

Figure 4

Figure 4. PgIX crystal structure shows methyltransferase and target recognition domains, with bound co-factor SAM. (a) Schematic of PgIX domain organisation with predicted Mmel-like DNA methyltransferase and adenine-specific DNA methylase regions denoted by square brackets. The methyltransferase domain (yellow) contains GxG (bright green) and NPPY (cyan) amino acid motifs responsible for S-adenosyl-L-methionine (SAM) binding and transfer of methyl group to an adenine residue, respectively, indicative of a γ -class amino-methyltransferase. The C-terminal region (light orange) is separated from the target recognition domain (TRD, red), by a long double helical spacer (light blue). The N-terminal domain contains an additional helical bundle (light purple) upstream of the methyltransferase domain. (b) Orthogonal views of PgIX, shown as cartoon and colored as per schematic in (a). (c) Close-up of the SAM binding region shown by box in (b). The SAM molecule sits between GSG and NPPY γ -class amino-methyltransferase amino acid motifs and is shown as orange sticks. Sidechains of the GSG and NPPY motifs are shown as sticks.

274 architecture of PglX presents two distinct domains, N-terminal and C-terminal, linked by a central
275 short hinge region (residues 659 – 654) (**Figs. 4a and b**). Due to absence of available density, two short
276 loop regions were unable to be modelled (residues 53 – 56 and 418 – 420), but otherwise the full PglX
277 protein was resolved. SAM was also resolved bound within PglX (**Fig. 4c**).

278

279 The closest structural homologue for the solved PglX structure, as designated by the DALI server ⁴¹,
280 remains the Type IIL restriction-modification system, Mmel (PDB 5HR4; Z-score 20.3). Mmel
281 demonstrates both N6mA DNA methyltransferase and DNA restriction activity ⁴⁰ but the Mmel
282 structure only has 60.8% sequence coverage against PglX, (1225 residues and 745 residues for PglX
283 and Mmel, respectively), and aligns to PglX with an RMSD of 7.13 Å (**Fig. S5a**). The majority of this
284 alignment falls within the N-terminal domain of PglX and bridges the hinge region, extending into the
285 C-terminal domain. The Mmel structure shows a methyltransferase domain bound to the SAM analog
286 sinefungin ⁴⁰, and in our PglX structure SAM binds within the same pocket (**Fig. 4**). Within this
287 homologous domain of PglX (residues 227 – 661) sit the amino-methyltransferase motif I GxG residues
288 implicated in SAM binding (residues 315 – 317), and adenine specific motif IV responsible for
289 interacting with a flipped-out adenine base from the target DNA (NPPY; residues 509-512) (**Fig. 4; Fig.**
290 **S5b**). The presence and organisation of these motifs around the SAM molecule (**Fig. 4c**) is indicative
291 of a γ-class amino-methyltransferase ⁴², consistent with its homology to Mmel ⁴⁰. Though Mmel has
292 both methyltransferase and restriction activities the Mmel nuclease domain (residues 1-155) was not
293 resolved in the Mmel structure ⁴⁰. The nuclease domain of Mmel is separated by a helical linker. The
294 N-terminal domain of PglX contains a similar linker and an N-terminal helical bundle (residues 1 – 227),
295 but no nuclease domain (**Figs. 4a and b**). Assessing conservation between homologs in the UniRef
296 database using ConSurf ⁴³, the Mmel-like DNA methyltransferase region of PglX appears highly
297 conserved compared to the N-terminal helical bundle domain (**Fig. S5c**). Using DALI to search for
298 structural homologues of the C-terminal domain alone (residues 672 – 1221) returns Type I RM
299 specificity subunits. The immediate section of the C-terminal domain of PglX aligns with target
300 recognition domains (TRD) required for motif binding (residues 662 – 849). This is followed by two
301 long spacer helices (residues 850 – 960) that mimic dimerized spacers found in specificity factors of
302 Type I DNA methyltransferases such as EcoKI ⁴⁴ (**Fig. 4a and b**). The spacers lead to a final C-terminal
303 region of unknown function (residues 961 – 1225). Interestingly, the spacer and C-terminal regions
304 extend 320 residues beyond the end of the alignment with Mmel and show a high degree of
305 conservation (**Fig. 4a and b; Fig. S5a and c**). This might suggest a specialised function conserved to
306 allow BREX activity, perhaps as a binding surface for other BREX components. As a result, the PglX
307 structure, and lack of nuclease motifs and potential aligned catalytic residues, supports PglX acting as
308 a methyltransferase only, and not acting as a restriction enzyme.

309

310 With expression and purification methods established, and the structure supporting PglX as the BREX
311 methyltransferase (**Fig. 4**), a SAM-dependent methyltransferase assay was performed to assess the
312 ability of purified PglX to methylate DNA *in vitro*. Using *E. coli* DH5α genomic DNA known to contain
313 the target BREX_{Sty} motif as a substrate, PglX was added and incubated for 30 min at room temperature
314 in a buffer containing SAM. Methyltransferase activity was measured indirectly via the reaction
315 product, S-adenosyl-L-homocysteine (SAH). No methylation was apparent from PglX under these

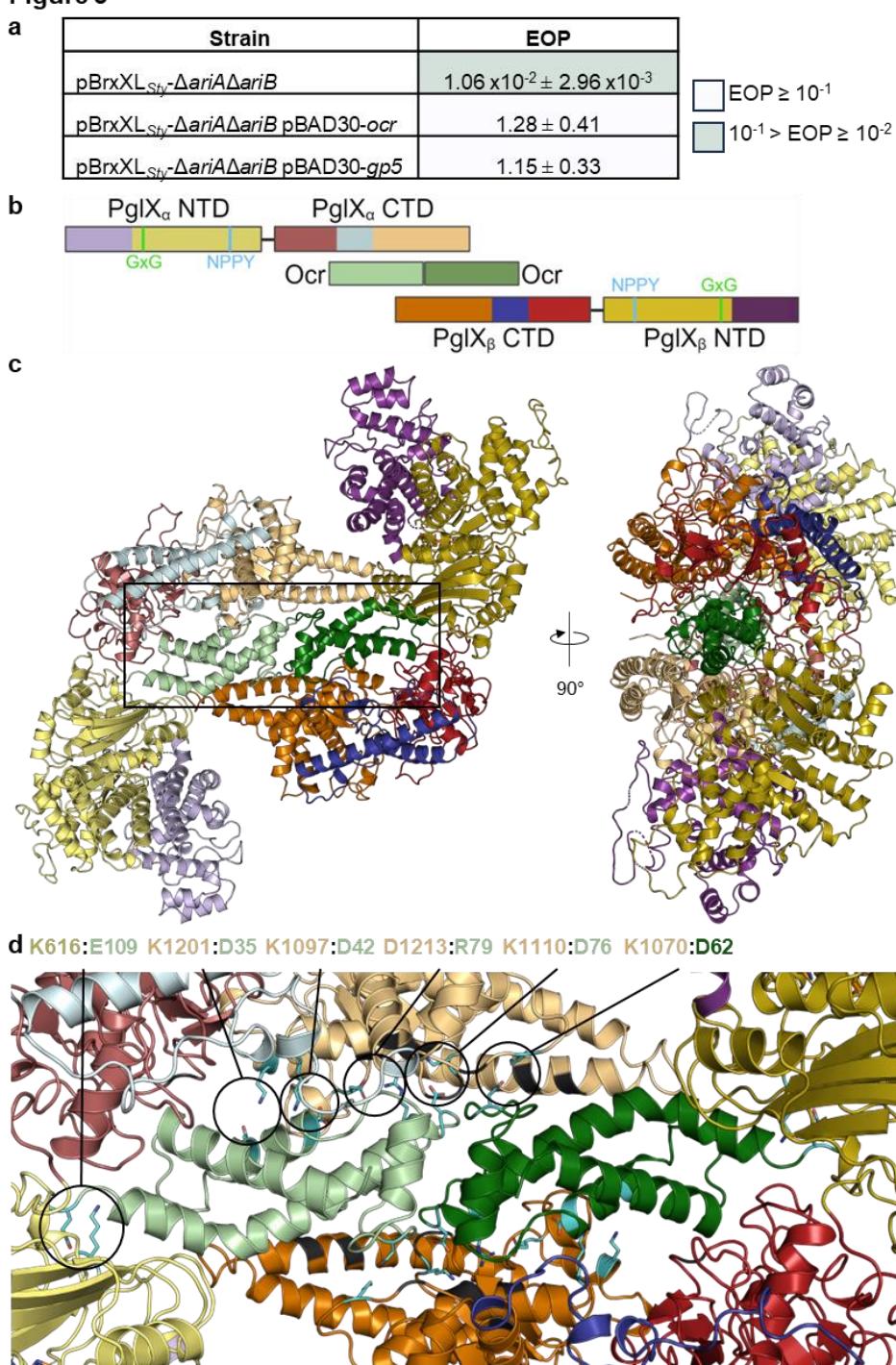
316 conditions (**Fig. S6**). We hypothesize that PglX methyltransferase activity likely requires the presence
317 of other BREX components.

318

319 *Salmonella BREX can be inhibited by Ocr homologues through binding PglX*

320 Ocr is the T7-encoded restriction system inhibitor that blocks phage defence activity of the *E. coli* BREX
321 system²⁷. Additionally, Ocr triggers Abi by the type II PARIS phage defence system¹⁶. BREX_{Sty} also
322 encodes a homolog of PARIS (**Fig. 1a**). Though notably, no activity was observed for BREX_{Sty} against
323 phage T7 (**Fig. 2** and **Fig. 3a**). Following the production of individual gene knockouts, it was possible
324 to individually assay inhibition of BREX and activation of PARIS by Ocr. To determine whether Ocr
325 inhibited BREX, vector pBAD30-*ocr* was generated. EOP assays were then carried out with *E. coli* DH5 α
326 pBrxXL_{Sty}- Δ *ariA* Δ *ariB* pBAD30-*ocr* and showed that expression of Ocr fully inhibited BREX defence (**Fig.**
327 **5a**). As Ocr is a product of T7, a coliphage, this experiment was also repeated using an Ocr homologue,
328 Gp5, encoded by *Salmonella* phage Sp6⁴⁵. Homology was inferred by protein sequence searches using
329 BLAST (NP_853565.1: 78.6% sequence similarity, 88% coverage) followed by predictive modelling
330 from protein sequence using AlphaFold⁴⁶. The structures of Ocr and Gp5 aligned with an RMSD of
331 0.91 Å. We again selected TB34 as a model phage and tested Gp5 activity. Results showed that Gp5
332 also fully inhibited the phage defence mediated by pBrxXL_{Sty} (**Fig. 5a**).

333


334 As we had demonstrated inhibition of BREX by overexpression of the inhibitors Ocr and Gp5, it was
335 postulated that the same experimental system might elicit phage defence mediated by the PARIS
336 system. This time, the pBrxXL_{Sty}- Δ *pglX* strain was used for co-expression of Ocr or Gp5, as this strain is
337 deficient for BREX phage defence but retains the PARIS system. The resulting EOP assays did not show
338 PARIS-dependent defence activity against TB34 (**Fig. S7**). We are therefore yet to find conditions that
339 stimulate activity of the *Salmonella* PARIS system.

340

341 We then aimed to recreate a PglX:Ocr complex²⁷, using our purified *Salmonella* PglX. The solution
342 state of native PglX was determined using analytical SEC. PglX eluted from the SEC column at 15.55 ml
343 (**Fig. S8a**), which indicated a size of ~150 kDa, matching the 143 kDa calculated weight of PglX. These
344 data indicate that PglX exists as a monomer in solution, supporting our conclusions from the PglX-SAM
345 structure (**Fig. 4**). Analytical SEC was then performed to determine whether Ocr directly interacts with
346 the *Salmonella* PglX. The Ocr sample was first examined by analytical SEC in isolation (**Fig. S8a**). Whilst
347 the Ocr SEC profile appeared to have multiple species, there was a dominant peak at 15.9 ml and a
348 shoulder at 18 ml. Ocr is known to be a dimer in solution^{26,47}, which would be 27.6 kDa and correspond
349 to the 18 ml peak, leaving the 15.9 ml peak unidentified. Purity of the Ocr sample had previously been
350 confirmed by mass spectrometry and SDS-PAGE (**Fig. S8b and c**). PglX and Ocr were then combined at
351 a 1:2 molar ratio prior to SEC (**Fig. S8a**). The combined sample produced additional peaks beyond
352 those from the individual PglX and Ocr samples (**Fig. S8a**). Of particular interest was the peak at an
353 elution volume of 14.2 ml that indicated a large complex of approximately ~379 kDa, potentially
354 comprised of at least two copies of PglX, and Ocr dimers (**Fig. S8a**). Elution volume is dependent on

355

Figure 5

Figure 5. Ocr inhibits BREX defence by forming a heterotetrameric complex with PglIX. (a) EOPs of TB34 against *E. coli* DH5 α strains carrying pBxXL_{Sty}-ΔariAΔariB and induced plasmids for Ocr and Gp5, with *E. coli* DH5 α pTRB507 as control. Values are mean EOPs from triplicate data, shown with standard deviation. (b) Schematic showing PglIX domains relative to bound Ocr dimer in a heterotetrameric complex. The two Ocr protomers in the dimer are shown in pale green and dark green. Domain colorings of PglIX are as described in Fig. 4, with darker shades of respective colors used for each domain within the second PglIX molecule in the complex. (c) Orthogonal views of the PglIX-SAM:Ocr complex structure, shown as cartoons and colored as per (b). (d) Interactions between PglIX and Ocr, close-up of the boxed region in (c). Residues involved in the formation of salt bridges between PglIX and Ocr molecules are labelled and shown in cyan, with sidechains. Residues forming hydrogen bond interactions are shown in black.

356 protein molecular weight, and can also reflect the shape and size of the protein molecule itself. The
357 hydrodynamic radius of the PglX-Ocr complex seen by analytical SEC can be calculated from the
358 observed K_{av} value⁴⁸, allowing comparison to the calculated hydrodynamic radius of predicted
359 PglX:Ocr complex models produced by AlphaFold⁴⁹. A model of two monomers of PglX and one Ocr
360 dimer produced by AlphaFold produced a predicted hydrodynamic radius of 58.3 Å, compared to a
361 calculated hydrodynamic radius of 63.9 Å for the observed A-SEC peak. This suggested that the
362 additional peak eluting at 14.2 ml represented a PglX-Ocr heterotetramer in solution.

363

364 *PglX forms a heterotetrameric complex with inhibitor Ocr*

365 To investigate the mechanism of BREX inhibition by Ocr, efforts were made to produce a structural
366 model via X-ray crystallography. PglX-SAM and Ocr were mixed at a 1:2 molar ratio and incubated
367 prior to setting crystallisation trials. After data collection and merging, and using our previously
368 derived PglX-SAM structure (Fig. 4) and the PDB structure of Ocr (1S7Z) as search models, the PglX-
369 SAM:Ocr structure was solved to 3.5 Å (Figs. 5b and c; Table 1).

370

371 Within the asymmetric unit, PglX-SAM binds to a protomer of Ocr as a 1:1 complex, with the single
372 protomer of Ocr binding along the negatively charged region of the C-terminal domain of PglX. Data
373 on the solution state of Ocr (a dimer), coupled with our predictions of complex size by analytical SEC,
374 indicated that PglX:Ocr should form a larger complex. Indeed, when we searched for crystallographic
375 symmetry mates that showed packing of PglX-SAM:Ocr, the predicted complex was visible (Figs. 5b
376 and c). In this complex, the Ocr protomers perfectly align and abut each other, forming the equivalent
377 of a solution state dimer, and the size matches our analytical SEC. We therefore concluded that this
378 heterotetrameric form represented the solution state of the PglX-SAM:Ocr complex (Figs. 5b and c).

379

380 Within PglX, there were again two regions of the sequence which could not be modelled due to
381 insufficient density (residues 54 – 55 and 413 – 420). The latter is an extended gap in the same region
382 as a smaller gap in the PglX-SAM structure (D418 – F420), suggesting flexibility in this region. Also
383 visible in the PglX-SAM:Ocr structure is a bound SAM molecule, in the same ligand binding position as
384 seen in the PglX-SAM structure (Figs. 4 and 5). The exact orientation of ribose and methionine
385 components of the molecule varied slightly, though this is likely due to variation in manual positioning
386 of the molecule during refinement, as well as the resolution. The PglX molecules from the PglX-SAM
387 and PglX-SAM:Ocr structures align closely with an RMSD of 1.34 Å, suggesting that binding of Ocr does
388 not elicit any substantive domain movement (Fig. S9). Important residue interactions for Ocr binding
389 were inferred using EMBL PISA⁵⁰. The complex is stabilised by a number of hydrogen bonds between
390 Ocr and the C-terminal domain of PglX (Fig. 5d). Six salt bridges are produced between R79, N35, N42,
391 N62, N76 and Q109 of Ocr and N1213, K1201, K1097, K1070, K1110, and K516 of PglX, respectively
392 (Fig. 5d). Though no movement is observed in PglX, the binding of Ocr to Type I RM complexes elicits
393 domain movement similar to DNA binding, suggesting either that PglX domain movement is reliant on
394 interactions with other BREX components, or that DNA binding occurs along the C-terminal domain

395 prior to movement towards the methyltransferase N-terminal domain. If other BREX components are
396 required for such movement, the finding would be consistent with the lack of methyltransferase
397 activity *in vitro* in the absence of other BREX components (Fig. S6) or the lack of methyltransferase
398 activity from PglX alone *in vivo*²⁵. Collectively, these data suggest that Ocr acts as a DNA mimic,
399 capable of sequestering PglX and therefore blocking BREX activity by preventing recognition of target
400 DNA.

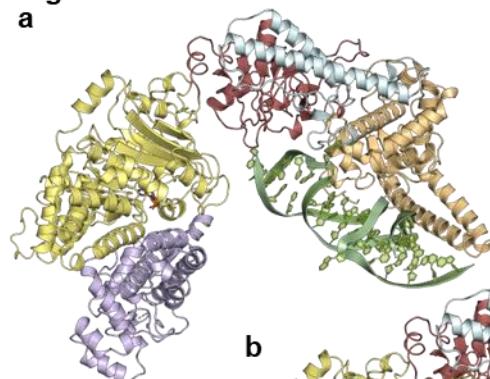
401

402 *Structural comparisons show multiple potential modes of DNA binding by*

403 *PglX*

404 Ocr mimics the structure of 20-24 bp of bent B-form DNA²⁶, as shown by the binding of both molecules
405 to the EcoKI methyltransferase complex⁴⁴. Using the DNA-bound (PDB 2Y7H) and Ocr-bound (PDB
406 2Y7C) complexes of EcoKI, the Ocr and DNA molecules were superimposed onto each other. As a
407 result, the Ocr molecule in the PglX-SAM:Ocr structure was aligned with the Ocr molecule in 2Y7C,
408 effectively aligning the B-form DNA from 2Y7H to the Ocr molecule in PglX-SAM:Ocr structure (Fig.
409 S10a). There does appear to be enough space for an extended DNA molecule to pass through the
410 groove in the hinge region in this orientation, but Ocr is not long enough to extend through this region
411 (Figs. 6a and b; Fig. S10b). This implicates the C-terminal domain in DNA binding, though raises the
412 possibility of an alternative DNA binding orientation.

413


414 The surface charge of PglX was calculated using APBS software plugin⁵¹ and modelled in PyMOL⁵² to
415 attempt to predict alternate DNA binding positions (Fig. S11a). Notably, PglX displayed a large
416 positively charged surface area in the hinge region between the N-and C-terminal domains, extending
417 further along the inside of the C-terminal domain. As Mmel was solved in a DNA-bound state (PDB
418 5HR4), we could superpose these two structures and remove Mmel, leaving the DNA molecule sat
419 within the positively charged hinge region of PglX (Fig. 6b; Fig. S11b). Notably, the angle of the
420 superimposed DNA molecule from the Mmel structure (PDB 5HR4) differs from the previously
421 identified angle of the 2Y7C DNA molecule (Fig. 6b). Further to this, the DNA molecule from the Mmel
422 structure contained an adenine base which had been flipped out of the DNA molecule, in preparation
423 for methyl transfer. Looking at the position of the superimposed Mmel DNA molecule, this adenine
424 base is positioned close to the SAM molecule in PglX (Fig. S11b). Together, these data suggest that
425 PglX might bind DNA within the hinge region in a similar conformation to that seen with Mmel, though
426 the exact orientation of the DNA molecule may shift around the position of the adenine base. In
427 support of this prediction, the donated methyl group of the SAM is not quite positioned correctly for
428 transfer to the flipped adenine (Fig. S11b). In this model, unlike for Ocr mimicking DNA, the distal C-
429 terminal region of PglX remains largely removed from the DNA molecule, though binding of DNA may
430 require, or produce, a conformational change in PglX that brings this domain closer to the DNA.

431

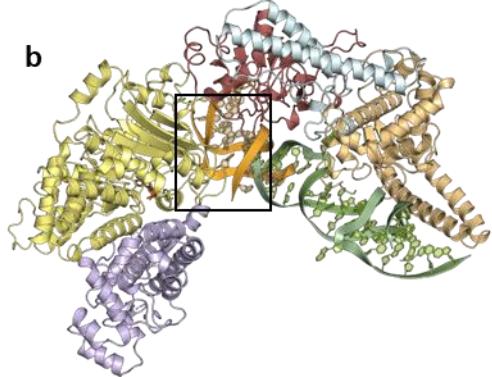
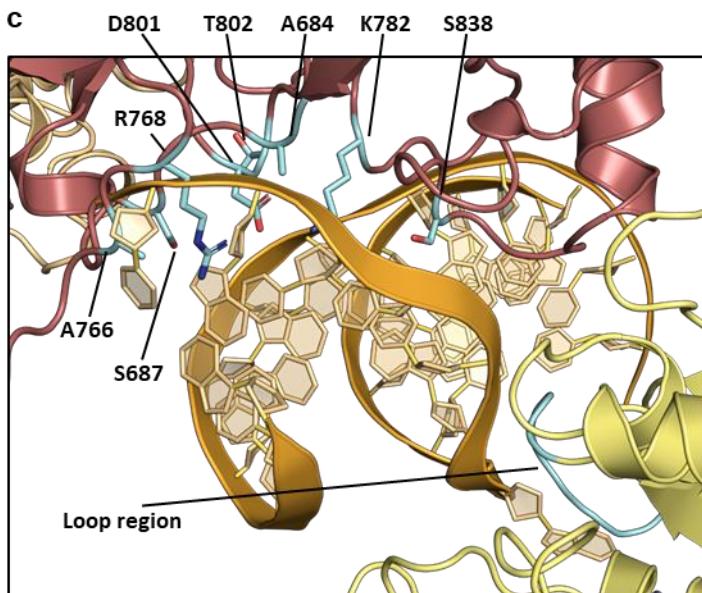

432

Figure 6


a

b

c

Figure 6. Structural comparisons with Ocr-bound complexes and Mmel suggest differing PglX DNA binding modes. (a) DNA molecule (green) representative of Ocr dimer (PDB codes 2Y7C and 2Y7H) superimposed onto the bound Ocr dimer within the PglX-SAM:Ocr complex. (b) The DNA molecule (orange) from Mmel (5HR4) superimposed onto PglX, showing a different potential binding position and angle to that implied by Ocr DNA (green) in (a). (c) Positions of residues aligning with those targeted for mutation when altering Mmel DNA motif specificity (cyan) relative to the superimposed Mmel DNA molecule (orange) from (b). PglX domains colored as per Fig. 4.

433 *PglX can be rationally engineered to alter phage target and methylation*

434 *motif*

435 Rational engineering of PglX could potentially allow for a BREX system to be targeted against a
436 different set of phages, and for the generation of specific methylation patterns. To this end, protein
437 sequences from BREX-related methyltransferases with assigned DNA recognition motifs were
438 collected and added to the sequences of BREX methyltransferases identified in the REBASE RM
439 database ⁵³. BLASTp was then used to find 32 distinct sequences that displayed high sequence
440 similarity scores to PglX (<E100) ([Fig. S12](#)). Most of the predicted motifs from REBASE were inferred
441 by matching the BREX methyltransferase to an N6mA modification observed in genomic sequencing
442 data. Mmel is the closest structural homologue of PglX and the residues essential for motif recognition
443 have been identified from structural data ⁴⁰. As with PglX, Mmel recognises a 6 bp motif (TCCRAC) and
444 produces N6mA modifications at the 5th adenine base. Structural alignments of Mmel and PglX
445 allowed identification of the residues of PglX that aligned with the residues involved in Mmel motif
446 recognition and suggested regions in which to focus the search for covariation in BREX
447 methyltransferase sequence alignments. Candidate residues and alterations were then chosen based
448 on these alignments. For example, for motif position -1 (relative to the modified adenine base); lysine
449 was conserved at residue 802 for enzymes recognising cytosine at this position, or histidine was
450 conserved at residue 838 for enzymes recognising guanosine at this position, or asparagine was
451 conserved at residue 838 for enzymes recognising adenine at this position ([Fig. S12](#)). We designed 23
452 mutants that altered all five of the non-modified base positions in the PglX recognition motif
453 ([Supplementary Table S1](#)). The regions targeted for mutation were overlaid on our structures and
454 shown to gather mainly within the TRD of PglX (between residues 684 – 838), with one additional loop
455 (residues 591 – 600) within the methyltransferase domain ([Fig. 6c](#)).

456

457 Following the design of the PglX mutants, an assay system was required to test function. Generating
458 each of the mutants individually in the 17.9 kb pBrxXL_{sty} plasmid would have been costly and time
459 consuming. Instead, a complementation system was designed that utilized the pBrxXL_{sty}- Δ p_{glX}
460 construct. The BREX_{sty} *pglX* gene was cloned into pBAD30. Complementation of the pBrxXL_{sty}- Δ p_{glX}
461 construct with the pBAD30-*pglX* plasmid in EOP assays provided phage defence against TB34, albeit
462 slightly lower than that seen from the *E. coli* DH5 α pBrxXL_{sty} construct ([Fig. 7a](#)). Next, a marker was
463 required to indicate whether the recognition motif had been modified. Again, it was preferable to
464 initially test this through functional EOP assays as sequencing for methylation changes caused by all
465 23 mutants would be laborious and expensive. Fortunately, the activity of pBrxXL_{sty} had already been
466 characterised against the Durham Phage Collection and phages in this collection had been sequenced
467 to allow enumeration of BREX recognition motifs ³³. This allowed the identification of one phage, Trib,
468 which was susceptible to *E. coli* and *E. fergusonii* BREX systems but contained no native *Salmonella*
469 D23580 BREX recognition motifs and therefore was not impacted by BREX_{sty} ([Fig. 7a](#)) ³³. Trib did,
470 however, encode all of the predicted re-engineered motifs ([Supplementary Table S1](#)). This finding
471 allowed us to first screen all mutants for phage defence activity against phage Trib before
472 determination of the recognition motif of any active mutants by sequencing.

Figure 7

a

# Genomic Motifs		TB34	Trib
		Wild type (GAT <u>C</u> AG)	120
WT EOP	<i>pglX</i> mut.3 (GATA <u>A</u> G)	93	83
	DH5 α pBrxXL _{Sty}	$2.86 \times 10^{-2} \pm 1.54 \times 10^{-2}$	1.19 ± 0.11
	DH5 α pBrxXL _{Sty} - $\Delta pglX$ + pBAD30- <i>pglX</i>	$9.63 \times 10^{-2} \pm 6.14 \times 10^{-2}$	$7.52 \times 10^{-1} \pm 0.035$
	DH5 α pBrxXL _{Sty} - $\Delta pglX$ + pBAD30- <i>pglX</i> (mut.3)	$1.45 \times 10^{-1} \pm 1.33 \times 10^{-1}$	$9.98 \times 10^{-2} \pm 1.02 \times 10^{-1}$
Mut.3 EOP	DH5 α pBrxXL _{Sty} (<i>pglX</i> mut.3)	$1.03 \times 10^{-1} \pm 9.13 \times 10^{-2}$	$4.28 \times 10^{-2} \pm 4.33 \times 10^{-2}$

b

Construct	Motif	Motif Sites in DH5 α genome	Percentage Methylated(%)
DH5 α pBrxXL _{Sty}	GAT <u>C</u> AG	2947	97.8
DH5 α pBrxXL _{Sty} - $\Delta pglX$ + pBAD30- <i>pglX</i>			99.4
DH5 α pBrxXL _{Sty} - $\Delta pglX$ + pBAD30- <i>pglX</i> (mut.3)	GAT <u>M</u> AG	5293	99.6
DH5 α pBrxXL _{Sty} (<i>pglX</i> mut.3)			99.8

Figure 7. *PglX* is the sole specificity factor for BREX and can be rationally engineered to re-target BREX methylation and phage defence. (a) EOP results of phages TB34 and Trib tested against *E. coli* DH5 α pBrxXL_{Sty} WT and *PglX* mut.3 in the context of BREX_{Sty}, or against DH5 α pBrxXL_{Sty}- $\Delta pglX$ with complementation plasmid pBAD30-*pglX* (WT) or pBAD30-*pglX* (mut.3). Values are mean EOPs from triplicate data, shown with standard deviation. (b) PacBio sequencing results showing genomic methylation in strains as described in (a).

473

474

475

476

477

478

479

480

481

482 EOP assays were carried out in triplicate for all 23 pBAD30-*pglX* mutants co-expressed with the
483 pBrxXL_{Sty}- Δ *pglX* construct in *E. coli* DH5 α (data not shown). Mutant 3 appeared to provide around 10-
484 fold protection against Trib (**Fig. 7a**), similar to phage defence levels provided by BREX_{Efeng} against this
485 phage ³³. Mutants 8, 10, 15 and 22 showed sporadic reductions in EOP, usually around two-fold.
486 Mutant 4 consistently produced poor overnight growth and failed to provide sufficient bacterial lawns
487 for plaque enumeration, even after increasing the inoculum volume. Remaining mutants
488 demonstrated no noticeable reduction in plaquing efficiency. To confirm the BREX system remained
489 functional against other targets, mutants 3, 8, 10, 15 and 22 were also assayed against phage TB34.
490 Mutant 3 caused a reduction in EOP for TB34 similar to that shown against Trib, though around two-
491 fold higher than produced by the *E. coli* DH5 α pBrxXL_{Sty} strain (**Fig. 7a**). The remaining 18 mutants did
492 not show any reduction in EOP against TB34, despite TB34 encoding the expected re-engineered
493 motifs, and were deemed to be inactive. There was also a small reduction in BREX activity in the
494 complemented system (**Fig. 7a**). Accordingly, the T802A and S838N mutations of mutant 3 were also
495 generated directly within the *pglX* gene of pBrxXL_{Sty}, resulting in pBrxXL_{Sty}(*pglX* mut.3) that did not
496 require complementation. This new construct was assayed against both TB34 and Trib. Now in context
497 within the BREX locus, EOP values were reduced further for both TB34 and Trib against *E. coli* DH5 α
498 pBrxXL_{Sty}(*pglX* mut.3), though still not quite as low as shown by the activity of the WT BREX system
499 against TB34 (**Fig. 7a**).

500

501 Next, the host genomes of *E. coli* DH5 α pBrxXL_{Sty}(*pglX* mut.3) and *E. coli* DH5 α pBrxXL_{Sty}- Δ *pglX* +
502 pBAD30-*pglX*(mut.3) strains were sequenced and genomic methylation levels were assessed by PacBio
503 sequencing, alongside the WT strains (**Fig. 7b**). The *E. coli* DH5 α pBrxXL_{Sty}- Δ *pglX* + pBAD30-*pglX* control
504 had almost 100% methylation at GATCAG sites, demonstrating that the complementation system
505 mediated efficient methylation in comparison to pBrxXL_{Sty} (**Fig. 7b**). Analysis of the mutant 3 strains
506 revealed methylation at almost 100% of GATMAG motifs (**Fig. 7b**). This indicated that the mutations
507 of mutant 3, T802A and S838N, had not altered the recognised motif to GATAAG as predicted, but had
508 broadened recognition to include both the original GATCAG motif and also GATAAG. These data
509 collectively demonstrate the successful re-engineering of PglX to target BREX against new phages, and
510 to methylate altered DNA sequence motifs. The experiments also demonstrated that PglX is the sole
511 specificity factor in the BREX phage defence system, providing motif recognition for both phage
512 targeting and host methylation.

513

514

515

516

517

518

519 **DISCUSSION**

520 This study provides microbiological, genetic and epigenomic characterisation of the BREX phage
521 defence island within *Salmonella* D23580. We present the first structures of the putative PglX
522 methyltransferase, bound to SAM and in complex with the phage-derived inhibitor Ocr. Finally, we
523 demonstrate successful rational engineering of BREX, opening up the potential for tailored phage
524 targeting and generation of specific N6mA motifs. This work identifies PglX as the sole specificity factor
525 for methylation and phage defence within BREX.

526

527 Clustered phage defence systems can provide additive ²² or even synergistic ⁵⁴ protection. The
528 *Salmonella* D23580 BREX phage defence island has an embedded PARIS system (Fig. 1a), suggesting a
529 complementary relationship; PARIS has been shown to cause abortive infection upon encountering
530 the phage encoded anti-restriction protein, Ocr, which in turn inhibits BREX defence in *E. coli* ^{16,27}.
531 Using an *E. coli* model, we saw no activity from the *Salmonella* BREX phage defence island against Ocr-
532 encoding phage T7 (Fig. 2). The reason that BREX_{sty} had no impact was because T7 does not encode
533 any GATCAG motifs. PARIS also did not respond to Ocr (Fig. 2). Using an Ocr homolog from a
534 *Salmonella* phage also did not activate PARIS (Fig. S7), and so we can only conclude that the PARIS
535 system may provide protection, but that a susceptible phage has not yet been tested.

536

537 As with previous studies, *Salmonella* *brxB*, *brxC*, *pglX* and *pglZ* proved essential for both restriction
538 and methylation (Fig. 3) ^{17,25}. However, *brxA* was required for phage defence and methylation in
539 *Salmonella* BREX (Fig. 3) and *Acinetobacter* BREX ¹⁷, but was shown to be dispensable for both
540 activities in *E. coli* BREX ²⁵. BrxA is a DNA-binding protein ²³ with an unknown role in BREX activity, so
541 we are yet to understand the variable requirement for *brxA*. *Salmonella* *brxL* was demonstrated to be
542 dispensable for host methylation (Fig. 3b) and this matches the observed phenotype in *Acinetobacter*
543 and *E. coli* ^{17,25}. Curiously, whilst *brxL* was essential for phage defence in both *E. coli* and *Acinetobacter*
544 BREX systems ^{17,25}, it was not required for *Salmonella* BREX (Fig. 3a). BrxL was recently shown to form
545 a dimer of hexameric rings, forming a barrel-like structure that binds and translocates along DNA ²⁴.
546 Thus, BrxL had been considered to have an essential role as the “effector” for BREX phage defence.
547 Clearly this is not the case in the *Salmonella* BREX system, which is made more apparent by EOP results
548 for *E. coli* DH5α pBrxXL_{sty}-Δ*brxL* tested against the Durham phage collection (Fig. S3) ³³. Deletion of
549 *brxL* enhanced protection by several orders of magnitude for certain phages (Fig. S3). It is possible
550 that *Salmonella* BrxL modulates or regulates BREX activity in some way. RM systems are often
551 associated with restriction alleviation proteins that activate in times of stress, reducing restriction
552 activity and increasing methylation activity; a phenotype characteristic of Type I RM systems ⁵⁵⁻⁵⁷. It is
553 possible that BrxL plays an analogous role to restriction alleviation proteins within BREX and that
554 defence activity increases in the absence of BrxL. However, if that were the case, why is this phenotype
555 not observed for *brxL* deletions in *E. coli* or *Acinetobacter* BREX systems? Overexpression of a C-
556 terminal fragment of BrxL has been shown to upregulate several genes elsewhere in the *Salmonella*
557 genome, including certain prophage genes ²⁹. It was postulated that because the corresponding Lon-

558 like domain in the C-terminal BrxL fragment has similarity to the Lon-related C-terminal domain of
559 RadA that is required for DNA branch migration in homologous recombination⁵⁸, BrxL may inhibit
560 phage DNA replication at DNA forks. This would be somewhat in keeping with the model of BrxL
561 complexes translocating along DNA. The *brxL* deletion data provide additional insight to this model as
562 they suggest that whilst BrxL-dependent BREX defence may interrupt replication forks, other BREX
563 components have another activity sufficient to prevent phage DNA replication.

564

565 To better understand the activity of other BREX components we produced the first structure of PglX,
566 demonstrating that the N-terminal domain has a methyltransferase fold, and binds SAM (**Fig. 4**). In
567 contrast, fold, conserved residues, and surface properties of the C-terminal domain suggest a role in
568 DNA recognition and binding. Despite repeated efforts we could not crystallize PglX with DNA. We
569 hypothesised that Ocr binding might provide insight into DNA binding by PglX. We showed that Ocr
570 and *Salmonella* homolog Gp5 both impacted BREX phage defence (**Fig. 5a**), and produced stable
571 complexes of PglX:Ocr (**Fig. S8a**). The resulting structure involved the interaction of an Ocr dimer with
572 two PglX monomers (**Figs. 5b and c**). The structure of PglX in the Ocr-bound complex varied little in
573 comparison to the PglX-SAM structure, and there was no movement of domains upon Ocr binding.
574 Using these two structures, we developed two models for DNA binding by PglX, via (i) alignment with
575 a 20 bp DNA molecule represented by Ocr and (ii) alignment via DNA bound to Mmel (**Figs. 6a and b**;
576 **Fig. S10**). As the Ocr-bound structure only allows placement of a short, 20 bp, DNA molecule, it
577 interacts with the C-terminal domain but does not enter the hinge region between N-terminal and C-
578 terminal domains. The Mmel-bound DNA is positioned to interact with the hinge and TRD. Our data
579 should aid the design of oligos for future structural studies of PglX bound to DNA, and supported
580 efforts to engineer BREX activity (**Fig. 6c**).

581

582 Rational engineering of PglX broadened motif recognition, allowing the *Salmonella* BREX to target new
583 phages and methylate new BREX motifs (**Fig. 7**). We were able to switch recognition for position -1
584 (relative to the point of methylation). Mmel recognises guanine at this position using R810 to form a
585 hydrogen bond with guanine in the major groove, and an A774L mutant was shown to prevent binding
586 of an A-T base pairing at position -1 through steric interference, switching specificity from R:Y to G:C
587^{40,59}. The T802A and S838N mutations in PglX mutant 3 correspond to the positions of the A774 and
588 R810 residues in Mmel, respectively, and are within the TRD. As rapid adaptability and evolution are
589 vital factors in the phage-bacteria arms race that increase survivability of the local population⁶⁰, it
590 follows that PglX would be the target of variability as a means to alter BREX defence specificity. Indeed,
591 phase variation is common in *pglX* genes, but not other BREX components^{10,61}.

592

593 The inability of PglX to perform methylation during our *in vitro* reaction, nor when recombinantly
594 expressed in the absence of other BREX genes *in vivo*²⁵, implies higher order BREX complexes might
595 be required. Such complexes could induce domain movements that would provide agreement with

596 both proposed models of DNA binding. The arrangement of PglX monomers in the Ocr-bound
597 structure is also potentially interesting, as a larger BREX complex might scan both sides of a dsDNA for
598 the non-palindromic BREX motif by employing two PglX monomers, akin to the use by Type III and
599 some dimeric Type II RM systems. Clearly, further work is needed on BREX components and complexes
600 to uncover mechanistic details. The current study demonstrates that PglX is the sole BREX specificity
601 factor, responsible for both the recognition and targeting of individual BREX motifs for host
602 methylation and the resulting prevention of phage replication.

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624 **MATERIALS AND METHODS**

625 *Bacterial strains*

626 Strains used in this study are shown in **Supplementary Table 2**. We have described the *Salmonella*
627 D23850Δφ strain previously⁶². The *Salmonella* D23850ΔφΔBREX strain was generated as described
628 previously³⁷, using scarless lambda red recombination (**Fig. S1**). Unless stated otherwise, *E. coli* strains
629 DH5α (Invitrogen), BL21 (λDE3, Invitrogen) and ER2796 (NEB) were grown at 37 °C, either on agar
630 plates or shaking at 220 rpm for liquid cultures. Luria broth (LB) was used as the standard growth
631 media for liquid cultures, and was supplemented with 0.35% w/v or 1.5% w/v agar for semi-solid and
632 solid agar plates, respectively. Growth was monitored using a spectrophotometer (WPA Biowave
633 C08000) measuring optical density at 600 nm (OD₆₀₀). When necessary, growth media was
634 supplemented with ampicillin (Ap, 100 µg/ml) or chloramphenicol (Cm, 25 µg/ml). Protein was
635 expressed from pSAT1 or pBAD30 plasmid backbones by addition of 0.5 mM isopropyl-β-D-
636 thiogalactopyranoside (IPTG) or 0.1% L-arabinose, respectively.

637

638

639 *Use of environmental phages*

640 Phages used in this study are shown in **Supplementary Table 2**. Coliphages in the Durham phage
641 collection have been described previously³³. For *Salmonella* phages, sewage effluent was collected
642 from a sampling site in Durham, courtesy of Northumbrian Water Ltd. Filtrates were supplemented
643 with 10 ml of LB, and inoculated with 10 ml of D23580ΔφΔBREX. Cultures were grown for 3 days before
644 a 1 ml aliquots were transferred to sterile microcentrifuge tubes and centrifuged at 12000 x g for 5
645 min at 4 °C. The supernatants were transferred to new microcentrifuge tubes and 100 µl of chloroform
646 was added to kill any remaining bacteria. Phage isolation was then carried out as previously described
647³³.

648

649 *Plasmid constructs and cloning*

650 Primers used in this study are shown in **Supplementary Table 3**, and plasmids used in this study are
651 shown in **Supplementary Table 4**. Ligation independent cloning (LIC) was utilized to create protein
652 overexpression plasmids from pSAT1-LIC and pBAD30-LIC, as described previously⁶³. This allowed the
653 expression of fusion proteins with cleavable tags for efficient purification of recombinant proteins.
654 The pBrxXL_{Sty} plasmid was created previously³³ and contains the entire *Salmonella* D23580 BREX
655 coding region, including the region 508 bp directly upstream of the *brxA* start codon to ensure that
656 any promoters and transcriptional regulatory sites required for BREX expression and function were
657 included. The creation of individual gene knockouts utilized Gibson Assembly (Gibson Assembly)⁶⁴.
658 Individual gene knockouts were designed within the context of the pBrxXL_{Sty} vector to allow direct
659 comparison on the same plasmid backbone. PCR primers were designed to amplify the pBrxXL_{Sty}
660 plasmid sequence either side of the gene to be removed (**Supplementary Table 3**). Primers were
661 designed with overlapping regions to allow ligation of the amplicons via GA. GA designs consisted of

662 2-3 fragments of pBrxXL_{sty} produced by PCR with primers containing 20 bp homologous overlaps from
663 upstream and downstream of the gene to be removed. Knockouts were designed for each of the six
664 BREX genes, each of the two PARIS system genes, *ariA* and *ariB*, alongside an additional double
665 knockout of both PARIS system genes. PCR-amplified and gel-purified fragments were pooled in an
666 equimolar ratio to a final volume of 5 µl and added to 15 µl of assembly master mix. Reaction mixtures
667 were incubated at 50 °C for 1 hr, then visualized on and gel purified from agarose gels. Resulting
668 products which displayed the correct size were used to transform *E. coli* DH5α and cells were plated
669 on Cm agar plates and incubated at 37 °C overnight. Plasmids from resulting colonies were extracted
670 and sequenced (DBS Genomics) to confirm correct assembly. Gene knockouts for which GA was not
671 successful were instead synthesised by Genscript. Primers for GA protocols were synthesised by IDT
672 and were designed using the Benchling cloning design software, available online (benchling.com).

673

674 *DNA sequencing*

675 All genomic DNA extraction steps in this study were carried out using either a Zymo Miniprep Plus kit
676 (Cambridge Biosciences) or a Monarch gDNA extraction kit (NEB). Bacterial genomic sequencing was
677 performed by either MinION Mk1C nanopore sequencing or PacBio sequencing.

678

679 For MinION sequencing, DNA repair and end prep, barcode ligation and adapter ligation steps were
680 carried out according to Oxford Nanopore protocols (available at: community.nanopore.com) using
681 the NEBNext Companion Module (New England Biolabs), Native Barcoding Expansions (EXP-NBD104
682 and EXP-NBD114) and ligation sequencing kit (SQK-LSK109), respectively. Sequencing was carried out
683 using a MinION Flow cell (R9.4.1) on a MinION Mk1C. Following generation of raw sequencing data,
684 basecalling was performed by the Guppy basecalling package
685 (github.com/nanoporetech/pyguppyclient) either during sequencing or post sequencing and data was
686 deconvoluted using the ont_fast5_api package (github.com/nanoporetech/ont_fast5_api).
687 Megalodon was used for the detection of modified bases and the estimation of genomic methylation
688 levels, with a 0.75 probability threshold for both modified and canonical bases for read selection and
689 average percentage methylation calculations.

690

691 Libraries for sequencing were prepared using the SMRTbell Template Prep kit 3.0 (Pacific Biosciences).
692 Bacterial gDNA was sheared using gTubes (Covaris) to produce DNA fragments with a mean size of 5–
693 10 kb. The DNA was damage repaired and end repaired. SMRT-bell adapters were then ligated.
694 Exonuclease treatment removed Non SMRT-bell DNA. Sequencing was performed on a PacBio Sequel
695 IIe (Pacific Biosciences). Data were analysed using PacBio SMRTAnalysis on SMRTLink_9.0 software
696 Base Modification Analysis for Sequel data, to identify DNA modifications and their corresponding
697 target motifs.

698

699 *Growth and infection curves*

700 Phage growth and infection curves were carried out to monitor phage resistance conferred by
701 pBrxXL_{Sty} WT and pBrxXL_{Sty} mutants in liquid culture. Growth was carried out in 200 μ l culture volumes
702 at 37 °C with shaking in a 96-well plate format, with OD₆₀₀ measurements taken every 5 min. Initial
703 screening of inoculation and infection conditions produced optimal results with initial inoculation
704 from overnight culture to OD₆₀₀ 0.1 and phage multiplicity of infection (MOI) of 10⁻⁶. As well as
705 infection with phage TB34, a negative control – phage T7 – and a positive control (uninfected culture)
706 were also run for each strain. All strains other than *E. coli* DH5 α WT were grown with 25 μ g/ml Cm.

707

708 *Efficiency Of Plating assays.*

709 Efficiency of plating (EOP) assays were carried out to assess the plaquing ability of phages in the
710 Durham Phage Collection against *E. coli* DH5 α pBrxXL_{Sty} and BREX knockout strains relative to control
711 strains. We used serial dilutions of high titre lysates in phage buffer and dilutions were mixed with
712 overnight culture and molten 0.3% w/v agar, poured onto a 1% agar plate, dried and incubated
713 overnight at 37 °C. For strains containing pBAD30 vectors, overnight cultures were induced with 0.2%
714 w/v L-arabinose and incubated at 37 °C for 30 min prior to plating and both top and bottom agar layers
715 included 0.2% w/v L-arabinose to induce continuous expression over the course of lawn growth. The
716 EOP was calculated by dividing the pfu (plaque forming units) of the test strain by the pfu of the control
717 strain. Data shown are the mean and the standard deviation of at least 3 biological and technical
718 replicates.

719

720 *Protein expression and purification*

721 All large-scale protein expression was performed in 1 L volumes of 2x YT broth in 2 L flasks with shaking
722 at 180 rpm. In all cases, colonies from fresh transformation plates were used to inoculate 5 ml of 2x
723 YT broth and grown overnight at 37 °C. This culture was then used to seed a 65 ml volume of 2x YT
724 broth at 1 : 100 v/v and grown overnight at 37 °C to produce a second overnight culture. This culture
725 was then used to seed 1 L of 2x TY at a 1 : 200 ratio, cultures were grown at 37 °C until exponential
726 growth phase (OD₆₀₀ 0.3 – 0.7), induced, and protein was expressed at 18 °C overnight.

727

728 All purification steps were performed either on ice or at 4 °C. Fast protein liquid chromatography
729 (FPLC) steps were carried out at 4 °C using an Akta Pure protein chromatography system (Cytiva).
730 Protein purity was assessed using SDS-PAGE. Cells were harvested by centrifugation at 4000 rpm for
731 15 min at 4 °C and then resuspended in ice-cold A500 buffer (20 mM Tris HCl pH 7.9, 500 mM NaCl,
732 30 mM imidazole, 10% glycerol). Cells were lysed by sonication using a Vibracell VCX500
733 ultrasonicator, the soluble fraction was separated from insoluble cell material by centrifugation at
734 20000 x g for 45 minutes at 4 °C and the supernatant was removed to a fresh, chilled tube for
735 purification. Soluble cell lysate was applied to a 5 ml pre-packed Ni-NTA His-Trap HP column (Cytiva)
736 using a benchtop peristaltic pump at around 1.5 ml/min to allow binding of the 6xHis tag to the nickel

737 resin. Columns were then washed with between 5 – 10 column volumes (CVs) of A500 to remove
738 residual unbound protein and isocratic elution steps were performed using A500 buffer with imidazole
739 concentrations adjusted to 30 mM, 50 mM, 90 mM, 150 mM and 250 mM. Clean samples were pooled,
740 dialysed into low salt A100 buffer (20 mM Tris HCl pH 7.9, 100 mM NaCl, 10 mM imidazole, 10%
741 glycerol) and applied to a 5 ml HiTrap Heparin HP column (Cytiva), allowing separation of proteins with
742 affinity for DNA. Bound protein was then washed with 5 – 10 CV of A100 and eluted using a salt
743 gradient with C1000 buffer (20 mM Tris HCl pH 7.9, 1 M NaCl, 10% glycerol). Clean fractions were then
744 pooled and digested with of human sentrin/SUMO-specific protease 2 (hSEN2P) overnight at 4 °C to
745 remove purification tags. Samples were then applied to a second Ni-NTA His-Trap HP column, this time
746 allowing the now untagged protein of interest to flow through and removing remaining nickel binding
747 contaminants. Successful tag cleavage and subsequent protein purity was assessed by SDS-PAGE, with
748 tag cleavage visible as a noticeable reduction in protein molecular weight relative to tagged protein.
749 Finally, size exclusion chromatography (SEC) was used to separate proteins by size, using a HiPrep
750 16/60 Sephadryl S-200 SEC column (Cytiva) connected to the FPLC system. Protein samples were
751 dialysed overnight at 4 °C into S500 buffer (50 mM Tris HCl pH 7.9, 500 mM KCl, 10% glycerol) and
752 concentrated to a 500 µl volume. The column was pre-equilibrated in S500, and the sample was loaded
753 through a 500 µl volume capillary loop at 0.5 ml/min. Sample was eluted over 1.2 CVs at 0.5 ml/min
754 and fractionated into 2 ml volumes for analysis by SDS-PAGE. Purified protein from SEC was
755 concentrated to around 6 mg/ml and diluted in storage buffer (50 mM Tris HCl pH 7.9, 500 mM KCl,
756 70% glycerol) at a 1 : 2 ratio of protein to buffer, respectively, giving a final concentration of around 2
757 mg/ml. Samples were split into appropriately sized aliquots, snap frozen in liquid nitrogen and stored
758 at -80 °C for future use.

759

760 *Protein crystallization and structure determination*

761 Highly pure protein samples were used for crystallisation screening. Samples were either used
762 immediately following purification or thawed on ice from -80 °C storage. Samples were dialysed into
763 crystal buffer (20 mM Tris HCl pH 7.9, 150 mM NaCl, 2.5 mM DTT) and concentrated to 12 mg/ml.
764 Protein concentration determination was performed using Nanodrop One (Thermofisher). Crystal
765 screens were set using the sitting drop vapour diffusion method either by hand or using a Mosquito
766 Xtal3 liquid handling robot (SPT Labtech). Crystal screens were incubated at 18 °C. All commercially
767 available crystal screens were produced by Molecular Dimensions. For PgIX and SAM samples, PgIX
768 was incubated with 1 mM SAM (Sigma) for 30 minutes on ice prior to addition to screens. For PgIX-
769 SAM:Ocr samples, PgIX underwent the SAM incubation as above plus an additional 30 minute
770 incubation on ice with 2.74 mg/ml of Ocr. Ocr was recombinantly expressed and purified as previously
771 described^{26,47}. PgIX-SAM crystallized in 0.2 M potassium bromide, 0.1 M Tris pH 7.5, 8% w/v PEG
772 20000, 5% w/v PEG 500. PgIX-SAM:Ocr crystallized in 0.1 M sodium/potassium phosphate pH 6.2, 14%
773 w/v PEG 4000, 6% MPD. Crystallization was confirmed by microscopy, with larger crystals extracted
774 for X-ray diffraction. To harvest, 20 µl of screen condition was mixed with 20 µl of cryo buffer (25 mM
775 Tris HCl pH 7.9, 187.5 mM NaCl, 3.125 mM DTT, 80% glycerol) and the solution was mixed thoroughly
776 by vortexing. This solution was then added directly to the crystal drop at a 1 : 1 ratio. Crystals were
777 extracted using nylon cryo loops and stored in liquid nitrogen until shipment. Data collection was

778 carried out remotely at Diamond Light Source, Oxford, UK on beamlines I04 and I24, using their
779 “Generic Data Acquisition” software (opengda.org).

780

781 Initial data processing was performed by automated processes on iSpyB (Diamond Light Source) using
782 the Xia2-DIALS X-ray data processing and integration tool ⁶⁵. The same program was used to merge
783 multiple datasets and provide initial data on the space groups and unit cell sizes. Further data
784 reduction and production of dataset statistics was carried out using AIMLESS within CCP4i2 ⁶⁶. Merged
785 datasets were first processed in CCP4i2 using BUCCANEER and REFMAC ⁶⁶, and then iteratively built
786 and refined in Coot ⁶⁷ and Phenix ⁶⁸, respectively. Quality of the final model was assessed using a
787 combination of CCP4i2, Phenix, Coot and the wwPDB validation server. Visualisation and structural
788 figure generation was performed in PyMol ⁵². For PglX, the crystal structure was solved by molecular
789 replacement in Phaser ⁶⁹ using the PglX predicted model produced by AlphaFold ⁴⁶. The SAM molecule
790 was downloaded from the PDB ligand repository and placed manually in Coot and similarly iteratively
791 built and refined. The structure of the PglX-SAM:Ocr heterodimer complex was solved by molecular
792 replacement in Phaser ⁶⁹ using the PglX structure solved previously and the structure of Ocr (PDB
793 1S7Z).

794

795 *Analytical Size Exclusion Chromatography*

796 Analytical SEC was performed on a Superose 6 10/300 GL SEC column (Cytiva, discontinued) connected
797 to an Akta Pure protein chromatography system (Cytiva). The column, system and loading loop were
798 washed between each run and equilibrated with 1.2 CVs of A-SEC buffer (20 mM Tris-HCl pH 7.9, 150
799 mM NaCl). Protein samples were buffer exchanged into A-SEC buffer and concentrated. Final
800 concentration ranged between 1 µM and 5 µM, as required to give a distinct measurable elution peak.
801 Protein was loaded onto the system via a 100 µl capillary loop loaded using a 100 µl Hamilton syringe.
802 For PglX-SAM:Ocr samples, PglX was incubated with each on ice in the same process as that used for
803 crystallisation screening. Protein in capillary loops was injected onto the column with 1.5 ml of A-SEC
804 buffer and eluted over 1.2 CVs with A-SEC buffer at 0.5 ml/min. For estimation of protein molecular
805 weight, relative to elution volume (V_e), a calibration curve was produced from commercially available
806 high and low molecular weight protein calibration kits (Cytiva). Peaks were identified using the
807 Unicorn 7 software package (Cytiva).

808

809 V_e values were converted into the partitioning coefficient (K_{av}) for each sample using the equation:

810

811

$$K_{av} = \frac{V_e - V_o}{V_c - V_o}$$

812

813 The molecular weight calibration curve is then plotted as K_{av} against $\log_{10}(M_r, \text{kDa})$. The Stokes radius
814 calibration curve plotted as $\log_{10}(R_{st}, \text{\AA})$ against K_{av} , allowing calculation of sample Stokes radius
815 measurements. Estimated stokes radius calculations were carried out using the HullRad Stokes radius
816 estimation server⁴⁹.

817

818 *Methyltransferase assay*

819 SAM-dependant N6mA DNA methylation activity of PglX was probed *in vitro* using an MTase-Glo
820 Methyltransferase Assay kit (Promega). The kit allows indirect measurement of SAM-dependent
821 methyltransferase activity via production of the SAH reaction product. Through a proprietary two step
822 reaction, SAH is used to produce ADP then ATP, which in turn is used by a luciferase reporter enzyme
823 to generate a measurable luminescence signal. Signal can then be correlated to that produced by a
824 SAH standard curve. The methyltransferase assay was carried out as per manufacturer's instructions
825 in a 96-well plate format. PglX was buffer exchanged into the methyltransferase assay reaction buffer
826 (80 mM Tris pH 8.8, 200 mM NaCl, 4 mM EDTA, 12 mM MgCl₂, 4 mM dithiothreitol (DTT) and
827 concentrated to 1 μ M. As a substrate, 100 ng of *E. coli* DH5 α genomic DNA was used per reaction as
828 this should provide ample *Salmonella* BREX recognition motifs for methylation. The reaction mix was
829 then combined with the protein samples at a 1 : 1 ratio with 10 μ M of SAM and the reaction was
830 incubated at room temperature for 30 minutes. The SAH standard curve was prepared by two-fold
831 serial dilutions of a 1 μ M SAH stock in methyltransferase reaction buffer. Luminescence was measured
832 on a Biotek Synergy 2 plate reader.

833 **DATA AVAILABILITY**

834 The crystal structures of PgIX-SAM and PgIX-SAM:Ocr have been deposited in the Protein Data Bank
835 under accession numbers 8C45 and 8Q56, respectively. All other data needed to evaluate the
836 conclusions in the paper are present in the paper and/or Supplementary Data. MinION and PacBio
837 data that support the findings of this study have been deposited in the European Nucleotide Archive
838 (ENA) at EMBL-EBI under accession number PRJEB71369.

839

840 **FUNDING**

841 This work was supported by an Engineering and Physical Sciences Research Council Molecular Sciences
842 for Medicine Centre for Doctoral Training studentship [grant number EP/S022791/1] to S.C.W., a
843 Biotechnology and Biological Sciences Research Council Newcastle-Liverpool-Durham Doctoral
844 Training Partnership studentship [grant number BB/M011186/1] to D.M.P., and a Lister Institute Prize
845 Fellowship to T.R.B. This work was supported in part by a Wellcome Trust Senior Investigator award
846 [grant number 106914/Z/15/Z] to J.C.D.H. For the purpose of open access, the authors have applied a
847 CC BY public copyright licence to any Author Accepted Manuscript version arising from this
848 submission.

849

850 **ACKNOWLEDGEMENTS**

851 We gratefully acknowledge Diamond Light Source for time on beamlines I04 and I24 under proposal
852 MX24948.

853

854 **COMPETING INTERESTS**

855 The authors declare no competing interests.

856

857 **CONTRIBUTIONS**

858 Analysed data: S.C.W., D.M.P., R.D.M., A.N., N.W. and T.R.B. Designed research: S.C.W., D.M.P.,
859 R.D.M., A.N., D.T.F.D., D.L.S., N.W., J.C.D.H. and T.R.B. Performed research: S.C.W., D.M.P., R.D.M.,
860 A.N., N.W. AND T.R.B. Wrote the paper: S.C.W., D.M.P., A.N., D.T.F.D., J.C.D.H and T.R.B. Funding
861 acquisition: J.C.D.H. and T.R.B. Supervised the study: D.L.S., J.C.D.H. and T.R.B.

862

863

864 **REFERENCES**

865 1. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their
866 phage foes. *Nature* **577**, 327–336 (2020).

867 2. Stern, A. & Sorek, R. The phage-host arms race: shaping the evolution of microbes. *Bioessays*
868 **33**, 43–51 (2011).

869 3. Tock, M. R. & Dryden, D. T. F. The biology of restriction and anti-restriction. *Current Opinion*
870 *in Microbiology* vol. 8 466–472 (2005).

871 4. Blower, T. R. *et al.* Mutagenesis and functional characterisation of the RNA and protein
872 components of the *toxIN* abortive infection and toxin-antitoxin locus of *Erwinia*. *J Bacteriol*
873 **191**, 6029–6039 (2009).

874 5. Fineran, P. C. *et al.* The phage abortive infection system, *ToxIN*, functions as a protein-RNA
875 toxin-antitoxin pair. *Proc Natl Acad Sci U S A* **106**, 894–899 (2009).

876 6. Barrangou, R. *et al.* CRISPR provides acquired resistance against viruses in prokaryotes.
877 *Science* **315**, 1709–12 (2007).

878 7. Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense islands in bacterial and archaeal
879 genomes and prediction of novel defense systems. *J Bacteriol* **193**, 6039–6056 (2011).

880 8. Doron, S. *et al.* Systematic discovery of antiphage defense systems in the microbial
881 pangenome. *Science (80-.).* **359**, eaar4120 (2018).

882 9. Vassallo, C. N., Doering, C. R., Littlehale, M. L., Teodoro, G. I. C. & Laub, M. T. A functional
883 selection reveals previously undetected anti-phage defence systems in the *E. coli*

884 pangenome. *Nat. Microbiol.* **7**, 1568–1579 (2022).

885 10. Goldfarb, T. *et al.* BREX is a novel phage resistance system widespread in microbial genomes.

886 *EMBO J.* **34**, 169–83 (2015).

887 11. Lau, R. K. *et al.* Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial

888 Endonuclease Mediating Bacteriophage Immunity. *Mol. Cell* **77**, 723-733.e6 (2020).

889 12. Owen, S. V. *et al.* Prophages encode phage-defense systems with cognate self-immunity. *Cell*

890 *Host Microbe* **29**, 1620-1633.e8 (2021).

891 13. Millman, A. *et al.* Bacterial Retrons Function In Anti-Phage Defense. *Cell* **183**, 1551-1561.e12

892 (2020).

893 14. Bernheim, A. *et al.* Prokaryotic viperins produce diverse antiviral molecules. *Nature* **589**, 120–

894 124 (2021).

895 15. Tal, N. *et al.* Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. *Cell* **184**,

896 5728-5739.e16 (2021).

897 16. Rousset, F. *et al.* Phages and their satellites encode hotspots of antiviral systems. *Cell Host*

898 *Microbe* **30**, 740-753.e5 (2022).

899 17. Luyten, Y. A. *et al.* Identification and characterization of the WYL BrxR protein and its gene as

900 separable regulatory elements of a BREX phage restriction system. *Nucleic Acids Res.* **50**,

901 5171–5190 (2022).

902 18. Picton, D. M. *et al.* A widespread family of WYL-domain transcriptional regulators co-localizes

903 with diverse phage defence systems and islands. *Nucleic Acids Res.* **50**, 5191–5207 (2022).

904 19. Blankenchip, C. L. *et al.* Control of bacterial immune signaling by a WYL domain transcription

905 factor. *Nucleic Acids Res.* **50**, 5239–5250 (2022).

906 20. Hoskisson, P. A., Sumby, P. & Smith, M. C. M. The phage growth limitation system in

907 *Streptomyces coelicolor A(3)2* is a toxin/antitoxin system, comprising enzymes with DNA

908 methyltransferase, protein kinase and ATPase activity. *Virology* **477**, 100–109 (2015).

909 21. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Comparative genomics of defense systems in

910 archaea and bacteria. *Nucleic Acids Res.* **41**, 4360–77 (2013).

911 22. Picton, D. M. *et al.* The phage defence island of a multidrug resistant plasmid uses both BREX

912 and type IV restriction for complementary protection from viruses. *Nucleic Acids Res.* **49**,

913 11257–11273 (2021).

914 23. Beck, I. N., Picton, D. M. & Blower, T. R. Crystal structure of the BREX phage defence protein

915 BrxA. *Curr. Res. Struct. Biol.* **4**, 211–219 (2022).

916 24. Shen, B. W. *et al.* Structure, substrate binding and activity of a unique AAA+ protein: the BrxL

917 phage restriction factor. *Nucleic Acids Res.* (2023) doi:10.1093/nar/gkad083.

918 25. Gordeeva, J. *et al.* BREX system of *Escherichia coli* distinguishes self from non-self by

919 methylation of a specific DNA site. *Nucleic Acids Res.* **47**, 253–265 (2019).

920 26. Walkinshaw, M. D. *et al.* Structure of Ocr from bacteriophage T7, a protein that mimics b-

921 form DNA. *Mol. Cell* **9**, 187–194 (2002).

922 27. Isaev, A. *et al.* Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. *Nucleic
923 Acids Res.* **48**, 5397–5406 (2020).

924 28. Hattman, S., Schlagman, S., Goldstein, L. & Frohlich, M. *Salmonella typhimurium* SA host
925 specificity system is based on deoxyribonucleic acid-adenine methylation. *J. Bacteriol.* **127**,
926 211–7 (1976).

927 29. Zaworski, J. *et al.* Reassembling a cannon in the DNA defense arsenal: Genetics of StySA, a
928 BREX phage exclusion system in *Salmonella* lab strains. *PLOS Genet.* **18**, e1009943 (2022).

929 30. Stanaway, J. D. *et al.* The global burden of non-typhoidal salmonella invasive disease: a
930 systematic analysis for the Global Burden of Disease Study 2017. *Lancet Infect. Dis.* **19**, 1312–
931 1324 (2019).

932 31. Kingsley, R. A. *et al.* Epidemic multiple drug resistant *Salmonella* Typhimurium causing
933 invasive disease in sub-Saharan Africa have a distinct genotype. *Genome Res.* **19**, 2279–2287
934 (2009).

935 32. Okoro, C. K. *et al.* Intracontinental spread of human invasive *Salmonella* Typhimurium
936 pathovariants in sub-Saharan Africa. *Nat. Genet. 2012 4411* **44**, 1215–1221 (2012).

937 33. Kelly, A. *et al.* Diverse Durham collection phages demonstrate complex BREX defense
938 responses. *Appl. Environ. Microbiol.* **89**, (2023).

939 34. Canals, R. *et al.* Adding function to the genome of African *Salmonella* Typhimurium ST313
940 strain D23580. *PLOS Biol.* **17**, e3000059 (2019).

941 35. Zaworski, J. *et al.* Genome archaeology of two laboratory *Salmonella enterica* enterica sv

942 Typhimurium. *G3 (Bethesda)*. **11**, (2021).

943 36. Blank, K., Hensel, M. & Gerlach, R. G. Rapid and Highly Efficient Method for Scarless
944 Mutagenesis within the *Salmonella enterica* Chromosome. *PLoS One* **6**, e15763 (2011).

945 37. Rodwell, E. V. *et al.* Isolation and Characterisation of Bacteriophages with Activity against
946 Invasive Non-Typhoidal *Salmonella* Causing Bloodstream Infection in Malawi. *Viruses* **2021**,
947 *Vol. 13, Page 478* **13**, 478 (2021).

948 38. Engler, C., Kandzia, R. & Marillonnet, S. A One Pot, One Step, Precision Cloning Method with
949 High Throughput Capability. *PLoS One* **3**, e3647 (2008).

950 39. Anton, B. P. *et al.* Complete Genome Sequence of ER2796, a DNA Methyltransferase-Deficient
951 Strain of *Escherichia coli* K-12. *PLoS One* **10**, e0127446 (2015).

952 40. Callahan, S. J. *et al.* Structure of Type IIL Restriction-Modification Enzyme Mmel in Complex
953 with DNA Has Implications for Engineering New Specificities. *PLOS Biol.* **14**, e1002442 (2016).

954 41. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. *J Mol*
955 *Biol* **233**, 123–138 (1993).

956 42. Malone, T., Blumenthal, R. M. & Cheng, X. Structure-guided analysis reveals nine sequence
957 motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism
958 for these enzymes. *J. Mol. Biol.* **253**, 618–32 (1995).

959 43. Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize
960 evolutionary conservation in macromolecules. *Nucleic Acids Res.* **44**, W344-50 (2016).

961 44. Kennaway, C. K. *et al.* The structure of M.EcoKI Type I DNA methyltransferase with a DNA
962 mimic antirestriction protein. *Nucleic Acids Res.* **37**, 762–770 (2009).

963 45. Dobbins, A. T. *et al.* Complete Genomic Sequence of the Virulent *Salmonella* Bacteriophage
964 SP6. *J. Bacteriol.* **186**, 1933–1944 (2004).

965 46. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nat.* **2021**
966 **5967873** **596**, 583–589 (2021).

967 47. Ye, F. *et al.* Structural basis of transcription inhibition by the DNA mimic protein Ocr of
968 bacteriophage T7. *Elife* **9**, (2020).

969 48. La Verde, V., Dominici, P. & Astegno, A. Determination of Hydrodynamic Radius of Proteins by
970 Size Exclusion Chromatography. *Bio-protocol* **7**, e2230 (2017).

971 49. Fleming, P. J. & Fleming, K. G. HullRad: Fast Calculations of Folded and Disordered Protein
972 and Nucleic Acid Hydrodynamic Properties. *Biophys. J.* **114**, 856–869 (2018).

973 50. Krissinel, E. & Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. *J.*
974 *Mol. Biol.* **372**, 774–797 (2007).

975 51. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of
976 nanosystems: Application to microtubules and the ribosome. *Proc. Natl. Acad. Sci.* **98**, 10037–
977 10041 (2001).

978 52. Schrödinger, L. *The PyMOL Molecular Graphics System, Version~1.3r1.* (2010).

979 53. Roberts, R. J., Vincze, T., Posfai, J. & Macelis, D. REBASE: a database for DNA restriction and

980 modification: enzymes, genes and genomes. *Nucleic Acids Res.* **51**, D629–D630 (2023).

981 54. Wu, Y. *et al.* Synergistic anti-phage activity of bacterial defence systems. *bioRxiv*
982 2022.08.21.504612 (2023) doi:10.1101/2022.08.21.504612.

983 55. Makovets, S., Powell, L. M., Titheradge, A. J. B., Blakely, G. W. & Murray, N. E. Is modification
984 sufficient to protect a bacterial chromosome from a resident restriction endonuclease? *Mol.*
985 *Microbiol.* **51**, 135–147 (2003).

986 56. Thoms, B. & Wackernagel, W. Expression of ultraviolet-induced restriction alleviation in
987 *Escherichia coli* K-12. Detection of a lambda phage fraction with a retarded mode of DNA
988 injection. *Biochim. Biophys. Acta* **739**, 42–7 (1983).

989 57. Thoms, B. & Wackernagel, W. Genetic control of damage-inducible restriction alleviation in
990 *Escherichia coli* K12: an SOS function not repressed by *lexA*. *Mol. Gen. Genet.* **197**, 297–303
991 (1984).

992 58. Cooper, D. L. & Lovett, S. T. Recombinational branch migration by the RadA/Sms paralog of
993 RecA in *Escherichia coli*. *Elife* **5**, (2016).

994 59. Morgan, R. D. & Luyten, Y. A. Rational engineering of type II restriction endonuclease DNA
995 binding and cleavage specificity. *Nucleic Acids Res.* **37**, 5222–5233 (2009).

996 60. Bikard, D. & Marraffini, L. A. Innate and adaptive immunity in bacteria: mechanisms of
997 programmed genetic variation to fight bacteriophages. *Curr. Opin. Immunol.* **24**, 15–20
998 (2012).

999 61. Sumbay, P. & Smith, M. C. M. Genetics of the phage growth limitation (Pgl) system of

1000 10000 Streptomyces coelicolor A3(2). *Mol. Microbiol.* **44**, 489–500 (2002).

1001 62. 10010 Owen, S. V. *et al.* Characterization of the Prophage Repertoire of African *Salmonella*

1002 10020 *Typhimurium* ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1.

1003 10030 *Front. Microbiol.* **8**, 235 (2017).

1004 63. 10040 Cai, Y. *et al.* A nucleotidyltransferase toxin inhibits growth of *Mycobacterium tuberculosis*

1005 10050 through inactivation of tRNA acceptor stems. *Sci. Adv.* **6**, eabb6651 (2020).

1006 64. 10060 Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred kilobases.

1007 10070 *Nat. Methods* **6**, 343–345 (2009).

1008 65. 10080 Winter, G. *xia2* : an expert system for macromolecular crystallography data reduction. *J. Appl.*

1009 10090 *Crystallogr.* **43**, 186–190 (2010).

1010 66. 10100 Winn, M. D. *et al.* Overview of the CCP4 suite and current developments. *Acta Crystallogr. D.*

1011 10110 *Biol. Crystallogr.* **67**, 235–42 (2011).

1012 67. 10120 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr D*

1013 10130 *Biol Crystallogr* **60**, 2126–2132 (2004).

1014 68. 10140 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular

1015 10150 structure solution. *Acta Crystallogr. D. Biol. Crystallogr.* **66**, 213–21 (2010).

1016 69. 10160 McCoy, A. J. *et al.* Phaser crystallographic software. *J. Appl. Crystallogr.* **40**, 658–674 (2007).

1017 10170

1018 10180

1019 **TABLE**

1020

Table 1. X-Ray data collection and refinement statistics

	PgIX-SAM	PgIX-SAM:Ocr	1021
Structure			
PDB Code	8C45	8Q56	1022
Wavelength	0.9795	0.9795	
Resolution range	48.98 - 3.402 (3.523 - 3.402)	59.61 - 3.5 (3.625 - 3.5)	1023
			1024
Space group	P 41 21 2	C 1 2 1	
Unit cell, a b c (Å), α β γ (°)	138.539 138.539 407.956 90 90 90	238.458 60.786 90 114.889 90	144.625
Total reflections	104405	47094 (8532)	1026
Unique reflections	55611 (5460)	24556 (2426)	1027
Multiplicity	1.9	1.9	
Completeness (%)	87.15 (15.55)	97.84 (80.53)	1028
Mean I/sigma(I)	8 (0.1)	3.8 (0.3)	
R_{merge}	0.047	0.028	1029
R_{meas}	0.067 (2.142)	0.092 (0.756)	
CC_{1/2}	0.99 (0.214)	0.995 (0.378)	1030
Reflections used in refinement	48492 (849)	24038 (1957)	1031
Reflections used for R_{free}	2444 (43)	1922 (144)	
R_{work}	0.2745 (0.4253)	0.2462 (0.4074)	1032
R_{free}	0.2992 (0.4026)	0.2917 (0.4202)	
Number of non-hydrogen atoms	19848	10776	1033
macromolecules	19848	10747	
ligands	98	49	1034
solvents	0	2	
Protein residues	2432	1318	
RMS (bonds, Å)	0.005	0.004	1036
RMS (angles, °)	0.91	0.78	
Ramachandran favored (%)	90.36	91.6	1037
Ramachandran allowed (%)	9.64	8.4	
Ramachandran outliers (%)	0	0	1038
Average B-factor	169.33	138.5	1039
macromolecules	169.33	138.54	
ligands	104	139	1040
solvent	N/A	113.43	

Values in parenthesis are for the highest resolution shell

1041

1042