

1 **Molecular responses of chicken embryos to maternal heat stress through DNA**
2 **methylation and gene expression**

3

4 Keyvan Karami¹, Jules Sabban², Chloé Cerutti¹, Guillaume Devailly¹, Sylvain Foissac¹, David
5 Gourichon³, Alexandre Hubert⁴, Jean-Noël Hubert¹, Sophie Leroux¹, Tatiana Zerjal⁵, Sandrine
6 Lagarrigue^{4*} and Frédérique Pitel^{1*}

7 1 GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France

8 2 GeT-PlaGe - Génome et Transcriptome - Plateforme Génomique, US1426 GET - INRAE,
9 31326, Castanet-Tolosan, France

10 3 PEAT, UE1295 - INRAE Centre Val de Loire, 37380, Nouzilly, France

11 4 PEGASE UMR 1348, INRAE, Institut Agro, 35590 Saint-Gilles, France 590 Saint-Gilles,
12 France

13 5 GABI, UMR 1313, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas,
14 France

15

16 Corresponding authors:

17 FP: frederique.pitel@inrae.fr

18 SLA: sandrine.lagarrigue@agrocampus-ouest.fr

19

20

21

22

23

24 **Abstract**

25 Climate change, with its repercussions on agriculture, is one of the most important adaptation
26 challenges for livestock production. Poultry production is a major source of proteins for human
27 consumption all over the world. With a growing human population, improving poultry's adaptation
28 to environmental constraints becomes critical. Extensive evidence highlights the influence of
29 environmental variations on epigenetic modifications. The aim of this paper is therefore to explore
30 chickens' molecular response to maternal heat stress. We employed Reduced Representation
31 Bisulfite Sequencing (RRBS) to generate genome-wide single-base resolution DNA methylation
32 profiling and RNA sequencing (RNA-seq) to profile the transcriptome of the brains of embryos
33 hatched from dams reared under either heat stress (32 °C) or thermoneutrality (22°C). We detected
34 289 significant differentially methylated CpG sites (DMCs) and one differentially methylated
35 region (DMR) between heat stressed and control groups. These DMCs were associated with 357
36 genes involved in processes such as cellular response to stimulus, developmental processes and
37 immune function. In addition, we identified 11 genes differentially expressed between the two
38 groups of embryos, and identified ATP9A as a target gene of maternal heat stress on offspring.
39 This study provides a body of fundamental knowledge on adaptive mechanisms concerning heat
40 tolerance in chickens.

41

42 **Keywords** *heat stress, epigenetics, DNA methylation, chicken, embryos*

43

44

45

46 Introduction

47 Climate change and its direct and indirect consequences represent one of the most important
48 adaptation challenges for livestock production, as unpredictable and rapid environmental changes
49 are a source of stress. Chicken meat and eggs are major sources of proteins for human food
50 worldwide, but their production is affected by global warming. Rising temperatures have adverse
51 effects on poultry growth, production and survival. It has been shown that heat stress causes a
52 decrease in productivity in many species¹⁻³. Heat stress in chickens, as in other species, leads to
53 reduced feed consumption, resulting in decreased energy and nutrient intake. This ultimately leads
54 to compromised growth and reduced quality of broiler products, as well as decreased egg quantity
55 and quality in layers⁴⁻⁹. The increased demand for animal products worldwide combined with a
56 growing human population urges the need to improve the ability of animals to respond to heat
57 stress¹⁰. Research has demonstrated that the environment exerts influence on gene expression in
58 both plants and animals, resulting in phenotypic plasticity; this phenomenon leads to the
59 emergence of different phenotypes from the same genotype in response to different environmental
60 conditions, and can even affects the phenotype of future generations through transgenerational
61 plasticity¹¹⁻¹³. Some of these effects are mediated by epigenetics phenomena: in response to the
62 environment, epigenetic mechanisms can induce changes in gene expression, linking
63 environmental changes to the physiology and health of animals^{14,15}. These mechanisms may act as
64 catalysts and trigger the adaptation of organisms to their environment.

65 Epigenetics covers all mechanisms that modify gene expression in a reversible and transmissible
66 way through mitosis or meiosis, without modifying the DNA sequence¹⁶. These phenomena
67 include DNA methylation, histone modification, remodeling of chromatin, and regulation of gene

68 expression by non-coding RNAs (ncRNAs). Numerous studies, particularly in humans and
69 mammals, showed that maternal stress can lead to epigenetic alterations in offspring, which
70 ultimately may affect their phenotype^{17,18}.

71 In avian species, Tzschenk and Basta (2002) reported that, in ducks, prenatal temperature
72 experience has a clear influence on postnatal neural hypothalamic thermosensitivity and could be
73 the result of epigenetic temperature adaptation¹⁹. In chickens, research focused on the effect of
74 thermal manipulations during embryogenesis on post-hatch heat tolerance and showed an
75 increased heat tolerance in broilers within the first 5 weeks of life, when exposed to an acute heat
76 stress^{20,21}. In Japanese quails, a study by Vitorino Carvalho et al. (2020) reported that thermal
77 manipulation during embryogenesis significantly reduced the hatching rate and increased mortality
78 during the first four weeks of life²². Subsequent research (Vitorino Carvalho et al., 2021) reported
79 that thermal manipulation during embryogenesis had little to no effect on gene expression
80 regulation in the hypothalamus of 35-day-old quails²³. On the contrary, exposure to a heat
81 challenge before this sampling resulted in an increase in the number of differentially expressed
82 genes, reinforcing the hypothesis that embryonic thermal conditioning has a beneficial effect and
83 increases thermotolerance later in life^{10,21,24}.

84 The response to heat stress can also be triggered by heat exposure in the previous generation. For
85 example, Ahmed et al., (2017) reported that maternal heat stress during late gestation increased
86 acute thermal tolerance of the calf at maturity²⁵. In birds several studies have also tried to elucidate
87 the effect of the environmental experience of mothers on their offspring. In Japanese quails, it has
88 been reported that maternal stress may affect and prepare future generations to cope with later
89 environmental difficulties^{26,27}. Santana et al. (2021) reported that maternal stress led to lower
90 laying rate, egg mass and higher chick mortality rate at the 1–15 days of age. They observed that

91 the performance and oxidative metabolism of offspring raised in thermoneutral conditions were
92 unaffected by maternal heat stress, while offspring subjected to heat stress during growth showed
93 increased levels of protein oxidation¹⁸. In a recent study²⁷, it was shown that thermal manipulation
94 repeated during 4 generations in Japanese quail had a transgenerational effect on body weight and
95 egg weight, suggesting non-genetic inheritance mechanisms. The hypothesis made to justify the
96 improved resistance was that heat stress-induced epigenetic modifications were occurring as a
97 consequence of the embryonic thermal manipulation, leading to increased thermal tolerance and
98 adaptability in adults. A recent study confirmed the epigenetic nature of the transmission of heat-
99 induced effects between generations through epigenetic mechanisms in chicken²⁸.

100 Unlike mammals, birds have not been extensively studied for the effect of maternal heat stress on
101 offspring heat tolerance. In this study, we explored this aspect by analyzing the genome-wide
102 methylation and transcriptomic profiling of embryos whose mothers were reared under high
103 ambient temperatures or under thermoneutral conditions. The underlying hypothesis is that
104 maternal heat stress induces changes in DNA methylation in chicken embryos leading to changes
105 in gene expression.

106 **Results**

107 In order to assess the epigenomic response to maternal heat stress on the DNA methylation levels
108 in 13-day-old embryos, 22 embryos (10 controls and 12 stressed) were analysed. The results
109 showed that heat stress of hens can mediate changes in the methylation patterns and also
110 differential expression of some genes in offspring.

111 **DNA methylation changes**

112 Some general statistics of RRBS sequencing results are summarized in Table S2. An average of
113 20 million reads per sample were obtained.. The average mapping efficiency was 64.84%, in
114 accordance with what is expected from this type of data²⁹. We have assessed 1,075,291 CpG sites
115 (after preprocessing; Fig 2A) with an average depth of 18.34. The distribution of methylation level
116 around the transcription start site (TSS) showed a decreased value in this region (Fig 2B). Among
117 the analysed CpGs, we detected a total of 289 DMCs between HS and CT groups, of which 138
118 were hypermethylated and 151 were hypomethylated in the HS group (Fig 3). The DMCs were
119 present along most chromosomes (Fig 4 and Fig S2). Their distribution was not constant along the
120 genome and some regions had a high density of DMCs. Notably, one region on chromosome 4
121 (Chr4:2858109,2858165) was identified as a DMR. This region harbored two lncRNA genes
122 (LOC121110553, LOC121110554) with unknown functions. As shown in Fig 5 these two genes
123 have contrasted expression patterns across 47 tissues³⁰, and only LOC121110553 was expressed
124 in embryo.

125 **Annotation of differentially methylated cytosine**

126 DMCs were annotated according to gene features. From the detected DMCs, 28.85% were located
127 in promoter regions, 40.28% in introns and 18.42% in exons (Fig 6). Chi2 test showed that these
128 distributions among CpGs and DMCs (p-value < 2.2e-16) and among hyper and hypo DMCs (p-
129 value < 2.2e-16) were significantly different. The fraction of the DMCs located in the promoter
130 region was more frequently hypermethylated (37.25%) than hypomethylated (19.98%), while
131 hypomethylation was more frequent in exons and introns.

132 **Gene ontology functional analysis**

133 Based on the DMCs location, we identified 357 differentially methylated genes (DMGs) that
134 harbored at least one DMC in one of the gene features considered (Table S3) out of 35,995 genes
135 with at least one CpG. The functional analysis of these genes has enabled us to identify as enriched
136 several biological processes (BP) linked to the development stage. The gene ontology ViSEAGO
137 output showed also the significance of embryo development, metabolic process, cellular response
138 to stimulus, immune function (Fig 7).

139 **Gene expression analysis**

140 RNA sequencing analysis was performed to investigate the impact of heat stress on embryo gene
141 expression. Among the 17,939 genes identified as expressed in embryos, eleven DEGs were
142 detected between HS and CT groups as listed in Table 1, all being protein coding genes. Among
143 these, four genes were upregulated and seven genes were down regulated. ATP9A (ATPase
144 phospholipid transporting 9A), one of the upregulated genes in the HS embryos, was also in the
145 list of DMGs, with 4 DMCs in the introns and exon regions, all of them being hypermethylated
146 (Fig 8).

147 **Pyromark validation**

148 Pyrosequencing validation of seven DMCs with PyroMark confirmed all the positions as DMCs.
149 Fig 9 shows the methylation level obtained with RRBS and PyroMark.

150 **Discussion**

151 The livestock industry faces a growing number of challenges due to climate change and global
152 warming, which have a direct impact on animal growth, reproduction, health, and welfare. The
153 exposure of animals to climate changes and other associated stressors has both short- and long-

154 term effects over the course of the animal's life. There is growing evidence that epigenetics, in
155 interaction with the environment, may also contribute to the phenotypic diversity of animals³¹. In
156 addition, these effects can be passed across generations with multigenerational inheritance and
157 perhaps provide the ability to adapt to climate change for the subsequent generations^{32,33}.

158 Our study aimed to elucidate the effect of maternal heat exposure on DNA methylation and gene
159 expression in chicken embryos. The results revealed a slight influence of maternal heat stress on
160 embryo transcriptomic levels, with eleven differentially expressed genes. We detected a total of
161 289 DMCs between HS and CT groups, consistent with findings from previous studies in
162 chicken²⁸, cow³⁴ or guinea pig³⁵, which have demonstrated changes in DNA methylation linked to
163 parental heat exposure.

164 We observed that promoter DMCs were more frequently hypermethylated than hypomethylated in
165 contrast with what was observed in exon and intron regions. This suggests that the promoter region
166 may be more prone to hypermethylation in response to the mother heat stress than the other parts
167 of the genes. A slight similar trend was observed in rainbow trout sperm after heat exposure of
168 males during spermatogenesis³⁶.

169 We identified 357 DMGs containing at least one DMC in various gene features, with a number of
170 6 DMCs per gene on average. In contrast, only 11 genes exhibited significant differential
171 expression. This highlighted the observation that the majority of differential methylation sites are
172 not simultaneously associated with changes in gene expression. Such finding is consistent with the
173 well-established knowledge that gene expression is highly context dependent, presenting a very
174 fine tissue and stage specificity³⁷. The lack of association at this developmental stage does not
175 exclude a potential functional impact of methylation marks on gene expression later in life, which

176 could facilitate responses to heat stress exposures. It is indeed expected that during embryogenesis,
177 some epigenetic marks are programmed and largely maintained throughout development,
178 contributing to better cope with environmental stressors later in life³⁸ (Skinner, 2011).

179 Among the identified DMGs, ERBB4 (Erb-B2 Receptor Tyrosine Kinase 4), NFATC2 (Nuclear
180 Factor Of Activated T-Cells 2) and ATP9A (ATPase Phospholipid Transporting 9A) have been
181 linked to GWAS signals associated with thermotolerance in pigs, as reported by Kim et al.,
182 (2018)³⁹. Another study by Ramírez-Ayala et al., (2021) linked the ATP9A gene to thermogenesis
183 in cattle⁴⁰. Interestingly, in our study, ATP9A emerged as both DMG and DEG, and harbored
184 numerous DMCs in both its intronic and exonic regions. This observation suggests the existence
185 of temperature regulation pathways potentially shared between mammals and birds.

186 The DMR on chromosome 4 is associated with two long non-coding RNAs whose function has
187 yet to be characterized: LOC121110553 is weakly expressed but not differentially expressed
188 between the two groups, while LOC121110554 does not appear to be expressed.

189 The gene ontology analysis of DMGs identified important biological processes including cellular
190 response to stimulus, embryo development, and telencephalon development. Cellular response to
191 stimulus encompasses any process that alters the state or activity of a cell, such as movement,
192 secretion, enzyme production, or gene expression. Indeed, cellular reaction to stress is diverse,
193 ranging from activation of pathways involved in survival strategies to programmed cell death,
194 which eliminate damaged cells⁴¹. Cellular apoptosis was reported as upregulated after a longer
195 period of heat stress in highland and lowland chicken¹⁰. The cell's initial reaction to a stressful
196 stimulus tends to support its defense and recover from injury. However, if distressing stimuli
197 persist without resolution, cells activate signaling pathways leading to programmed cell death⁴¹.

198 Adaptive immune response is another pathway that was associated with DMGs. Heat stress in
199 commercial laying hens has been shown to reduce production performance and inhibit immune
200 function leading to an increase in mortality⁴². Similarly, a study showed that HS causes immune
201 abnormalities in broiler chickens by impairing T and B cell development and maturation in primary
202 and secondary lymphoid tissues⁴³. In another study, transcriptome analysis revealed the genes and
203 pathways involved in bursal responses to heat stress and lipopolysaccharide, showing that the
204 combined treatments had the greatest effect⁴⁴. The negative link between heat stress and immune
205 function was also observed in cattle. For example, Dahl et al., (2020) reported that lactating cows
206 often exhibit higher disease incidence in summer (metritis, mastitis, respiratory disease), possibly
207 linked to compromised immune cell activity due to heat stress⁴⁵. Additionally, calves born to
208 mothers experiencing heat stress and dry period during the late gestation had lower weight at birth
209 and through puberty⁴⁶⁻⁴⁸.

210 Epigenetics has the capability of conveying information to next generations without DNA
211 sequence alteration. Epigenetic marks may represent the signature of environment stresses and
212 specific physiological states acquired by the parental generation that could enhance adaptability of
213 next generations to new situations. The outcome of the current study illustrates that maternal
214 exposure to heat stress has an effect on the DNA methylation pattern of offspring. However, even
215 with the exclusion of observed SNPs at CpG sites, we cannot rule out the hypothesis that some of
216 the identified DMCs may be caused by genetic polymorphisms. Although these methylome
217 changes were not associated with extensive transcriptional changes at the embryonic level, the
218 affected genes and pathways identified from differentially methylated genes suggest a potential
219 foundation for adaptive responses in progeny. This aligns with the studies of McGuigan et al.
220 (2021) and Weyrich et al. (2016), indicating that under conditions of climate change and stressful

221 environments, epigenetic factors, through intergenerational and transgenerational effects, play a
222 role in promoting adaptability of exposed populations^{33,35}. This has been observed in chicken, with
223 an intergenerational inheritance of heat resilience after fathers' embryonic heat conditioning,
224 associated with DNA methylation changes in anterior preoptic hypothalamus²⁸.

225 This study shows that maternal exposure to heat stress can induce hundreds of changes in
226 methylation level and minor changes in transcriptome level in offspring. These DNA methylation
227 modifications during the embryonic development as a consequence of their mother's heat stress
228 may provide the capability of an adaptive response to subsequent heat stress exposure.

229 **Materials and Methods**

230 **Sample preparation and experimental design**

231 A total of 4 hens (2 controls and 2 heat-stressed) from an experimental layer population (R-) issued
232 from selection for feed efficiency⁴⁹ were used. All birds were reared under standard conditions
233 (22°C, *ad libitum* feeding) at the INRAE UE 1295 PEAT Poultry Experimental Unit (Nouzilly).
234 In the heat stress group (Fig 1), hens were reared at 22°C until 28 weeks of age. Between 28 and
235 32 weeks of age, the hens were kept at 32°C (increasing by 2°C per hour for 5 hours). The four
236 hens were inseminated by the same male at week 30. Their eggs were collected between 31 and
237 32 weeks and incubated for 13 days.

238 The experiments were carried out at the PEAT experimental unit under license number C37-175-
239 1 for animal experimentation, in compliance with European Union legislation, and were approved
240 by the local ethics committee for animal experimentation (Val de Loire) and by the French

241 Ministries of Higher Education and Scientific Research, and Agriculture and Fisheries (n°2873-
242 2015112512076871), complying with the ARRIVE guidelines.

243 **DNA and RNA extraction**

244 DNA and RNA from brain of 13-day-old embryos were extracted, according to the manufacturer's
245 instructions, with AllPrep DNA/RNA Mini Kit (Qiagen catalog No. / ID: 80204). Total RNA and
246 DNA were quantified with a NanoDrop ND-1000 spectrophotometer (Thermo Scientific). The
247 dsDNA concentration was measured using the Quant-iT PicoGreen dsDNA (Invitrogen) assay
248 according to the manufacturer instructions. The fluorometric measurements were performed using
249 ABI7900HT (Applied Biosystem).

250 The RNA quality was controlled using an Agilent 2100 bioanalyzer (Agilent Technologies France)
251 with the Eukaryote Total RNA Nano Assay. Results were analysed with the 2100 Expert Software.
252 RNA integrity (RIN) was 9.9 on average.

253 **Reduced representation bisulfite sequencing**

254 We obtained Reduced Representation Bisulfite Sequencing (RRBS) data from whole brains of 22
255 embryos of unknown sex (10 controls and 12 stressed) at 13 days of age, derived from R- hens
256 with or without heat stress. RRBS libraries were prepared using the Premium RRBS Kit
257 (Diagenode, #C02030033), according to the manufacturer's instructions. Briefly, the protocol
258 consisted in the digestion of 100 ng of genomic DNA by the *Msp*I enzyme followed by fragment
259 end repair, and addition of adaptors. A size selection step was performed with AMPure XP Beads
260 (Beckman Coulter). Next, samples were quantified by qPCR and the Ct values were used to pool
261 samples by equimolarity. Then the bisulfite conversion was realized on the pool and the final

262 libraries were amplified using MethylTaq Plus Master Mix (Diagenode kit). After a clean-up with
263 AMPure XP Beads, the RRBS library pools were analysed with the Qubit dsDNA HS Assay Kit
264 (Thermo Fisher Scientific), and the profile of the pools was verified using the High Sensitivity
265 DNA chip for 2100 Bioanalyzer (Agilent) or DNF-474 NGS fragment kit on a Fragment Analyzer
266 (Agilent). Libraries were sequenced in single-end mode of 50 bp on an Illumina HiSeq 4000 on
267 the GenomEast platform ([https://www.igbmc.fr/en/platforms-and-
268 services/platforms/genomeast](https://www.igbmc.fr/en/platforms-and-services/platforms/genomeast)).

269 **Bioinformatics analyses**

270 The nf-core/methylseq pipeline⁵⁰ version 2.1.0 was used for analysing methylation bisulfite
271 sequencing data. Bismark version 0.24.2 with Bowtie2 as an alignment tool was used for mapping
272 on the *Gallus gallus* genome GRCg7b obtained from Ensembl ([bGalGal1.mat.broiler.GRCg7b,
273 https://ftp.ensembl.org/pub/release-
274 109/fasta/gallus_gallus/dna/Gallus_gallus.bGalGal1.mat.broiler.GRCg7b.dna.toplevel.fa.gz](https://ftp.ensembl.org/pub/release-109/fasta/gallus_gallus/dna/Gallus_gallus.bGalGal1.mat.broiler.GRCg7b.dna.toplevel.fa.gz)).

275 Pipeline's default parameters were used, with the option --clip_r1 3 for adapter trimming
276 (trimming 3 bases from the 5' end of each read).

277 **Differential methylation analyses**

278 The Bioconductor package edgeR v3.28.1⁵¹ was used to detect differentially methylated CpGs
279 sites (DMCs), The callDMR function from the DSS package v2.38.0⁵² was used to call DMRs
280 (differentially methylated regions) from the edgeR outputs. A DMR was defined as a region with
281 a minimum number of 3 CpGs and a percentage of CpG sites with significant p-values (less than
282 0.05) greater than 50% between Heat Stress (HS) and Control (CT) groups. Here a two-step

283 process has been implemented: preprocessing and differential methylation analysis. During the
284 preprocessing step, CpGs that overlapped with C-T single nucleotide polymorphisms (SNPs) were
285 filtered out to avoid erroneous identification of C-T polymorphisms as methylation changes. SNPs
286 were detected by gemBS v4.053 with option “bs_call”, CpGs were further filtered using other
287 criteria (maximum Coverage: 200, minimum coverage: 5 and minimum fraction of samples present
288 per position: 0.8). Differential methylation analysis was performed with edgeR using a multifactor
289 model (HS/CT and Sex) with False Discovery Rate (FDR) ≤ 0.05 . Identification of the sex of
290 embryos was performed through the average of read mapped on sex chromosomes (Fig S1).

291 Genomic features annotation was done with the GenomeFeatures package version 1.3
292 (<https://forgemia.inra.fr/aurelien.brionne/GenomeFeatures>) with default defined promoter region
293 upstream:3000 bp and downstream:500 bp. An in-house enriched annotation file was used in this
294 study⁵⁴.

295 **Functional enrichment analysis**

296 We analyzed all the genes that had at least one DMC in their genomic features (promoter, UTR5,
297 introns, UTR3, downstream). Functional enrichment analysis was done with the R package
298 ViSEAGO v1.14.0⁵⁵, and the full list of genes having at least one CpG in genomic features was
299 used as background.

300 **RNA-seq data acquisition**

301 Paired-end sequencing was performed using an Illumina HiSeq3000 (Illumina, California, USA)
302 system, with 2×150 bp, as in Jehl et al, 2019⁵⁶. FASTQ files were mapped on the GRCg7b
303 reference genome (GCF_016699485.2) and the nf-co.re/rnaseq⁵⁰ pipeline version 3.8.1 was used

304 for providing raw count and transcript per kilobase million (TPM) normalized expression per gene
305 and sample.

306 **RNA-seq analysis**

307 The normalized expression level was obtained using the trimmed mean of M-values (TMM)
308 scaling factor method, implemented in Bioconductor package edgeR version 3.32.1, with the
309 functions of “calcNormFactors” and “rpkm” used to scale the raw library sizes and scale of gene
310 model size respectively. In situations where TPM and TMM normalized expressions were ≥ 0.1
311 and read counts ≥ 6 in at least 80% of the samples, the gene was considered as expressed. For
312 differential expression analysis we used the raw counts from the expressed genes previously
313 selected and normalized by the TMM method. The Bioconductor package edgeR was used to
314 perform the differential expression analysis, which is based on a generalized negative binomial
315 model for model fitting. The method of “edgeR-Robust” was used to account for potential outliers
316 when estimating per gene dispersion parameters. P-values were corrected for multiple testing using
317 the Benjamini-Hochberg approach to control the false discovery rate (FDR), and $FDR < 0.05$ was
318 used to identify significant DEG (Differentially Expressed Gene).

319 **Pyromark validation**

320 For the DMC validation, the Pyrosequencing method was used to perform a quantitative
321 methylation analysis of bisulfite-converted DNA for each individual. The pyrosequencing was
322 performed using PyroMark Q24 (QIAGEN). All the primers (forward, reverse and sequencing
323 primers) were designed with the PyroMark Assay Design software (Version 2.0.1.15, Qiagen)
324 using the assay type "Methylation Analysis" (CpG) (Table S1).

325 The PCR reaction contained 2 μ l of bisulfite treated DNA sample (EZ DNA Methylation-Gold kit,
326 Zymo Research), 2.5 μ l of buffer + 0.05 μ l of Taq Polymerase (PCR BIO Classic Taq, Eurobio),
327 2.5 μ l of dNTP (2mM, Promega), 1 μ l of each primer (10 μ M), and 5.95 μ l of water. The program
328 on the thermal cycler (Thermocycler ABI2720, Applied Biosystem) was: 95 °C for 5 min; followed
329 by 35 cycles of: 95 °C for 30 sec, hybridization temperature for 30 sec, and 72 °C for 30 sec; and
330 a final extension at 72 °C for 5 min.

331 Ten μ l of PCR product were then mixed with 1 μ l of Streptavidin sepharose™ high performance
332 (GE Healthcare) and 40 μ l of PyroMark binding buffer (Qiagen). The mix was shaken at 1400 rpm
333 on a microplate mixer for at least 10 min. The immobilized PCR products were purified using
334 PyroMark Q24 vacuum workstation (manufacturer instructions, QIAGEN), mixed with 1 μ l of a
335 sequencing primer (5 μ M) and 24 μ l of Pyromark annealing buffer, and heated at 80 °C for 5 min
336 to anneal the sequencing primer before analysis on the PyroMark Q24. Results were analysed with
337 the PyroMark Q24 software (version 2.0.8, build 3, Qiagen). DNA methylation values obtained
338 via pyrosequencing were compared between the HS and Control groups using a Wilcoxon test.

339 **References**

- 340 1. Lara, L. & Rostagno, M. Impact of Heat Stress on Poultry Production. *Animals* **3**, 356–369
341 (2013).
- 342 2. Harrison, P. & Biellier, H. Physiological response of domestic fowl to abrupt changes of
343 ambient air temperature. *Poultry science* **48**, 1034–1045 (1969).
- 344 3. Fuquay, J. Heat stress as it affects animal production. *Journal of animal science* **52**, 164–174
345 (1981).
- 346 4. Song, D. & King, A. Effects of heat stress on broiler meat quality. *World's Poultry Science
347 Journal* **71**, 701–709 (2015).

348 5. Renaudeau, D. *et al.* Adaptation to hot climate and strategies to alleviate heat stress in
349 livestock production. *Animal* **6**, 707–728 (2012).

350 6. Mack, L., Felver-Gant, J., Dennis, R. & Cheng, H. Genetic variations alter production and
351 behavioral responses following heat stress in 2 strains of laying hens. *Poultry science* **92**,
352 285–294 (2013).

353 7. Smith, A. Changes in the average weight and shell thickness of eggs produced by hens
354 exposed to high environmental temperatures—A review. *Tropical Animal Health and*
355 *Production* **6**, 237–244 (1974).

356 8. Ebeid, T., Suzuki, T. & Sugiyama, T. High ambient temperature influences eggshell quality
357 and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens.
358 *Poultry Science* **91**, 2282–2287 (2012).

359 9. Ma, X. *et al.* Heat stress impairs the nutritional metabolism and reduces the productivity of
360 egg-laying ducks. *Animal reproduction science* **145**, 182–190 (2014).

361 10. te Pas, M. F. W. *et al.* Transcriptomic and epigenomic network analysis reveals chicken
362 physiological reactions against heat stress. in *Transcriptome Profiling* 333–359 (Elsevier,
363 2023). doi:10.1016/B978-0-323-91810-7.00002-9.

364 11. Lafuente, E. & Beldade, P. Genomics of developmental plasticity in animals. *Frontiers in*
365 *genetics* **10**, 720 (2019).

366 12. Sultan, S. E. Developmental plasticity: re-conceiving the genotype. *Interface Focus* **7**,
367 20170009 (2017).

368 13. Pigliucci, M., Murren, C. J. & Schlichting, C. D. Phenotypic plasticity and evolution by
369 genetic assimilation. *Journal of Experimental Biology* **209**, 2362–2367 (2006).

370 14. Thompson, R. P., Nilsson, E. & Skinner, M. K. Environmental epigenetics and epigenetic
371 inheritance in domestic farm animals. *Animal Reproduction Science* **220**, 106316 (2020).

372 15. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome
373 integrates intrinsic and environmental signals. *Nature genetics* **33**, 245–254 (2003).

374 16. Riggs, A.D., Martienssen, R.A., Russo, V.E.A. *Epigenetic Mechanisms of Gene*
375 *Regulation*. Cold Spring Harbor Laboratory Press, New York, NY, USA, Pp. 1–4.
376 10.1101/0.1-4. (1996).

377 17. Daxinger, L. & Whitelaw, E. Transgenerational epigenetic inheritance: more questions
378 than answers. *Genome research* **20**, 1623–1628 (2010).

379 18. Santana, T. P. *et al.* Effect of prenatal ambient temperature on the performance
380 physiological parameters, and oxidative metabolism of Japanese quail (*Coturnix coturnix*
381 *japonica*) layers exposed to heat stress during growth. *Scientific Reports* **11**, 9809 (2021).

382 19. Tzschenke, B. & Basta, D. Early development of neuronal hypothalamic
383 thermosensitivity in birds: influence of epigenetic temperature adaptation. *Comparative*
384 *Biochemistry and Physiology Part A: Molecular & Integrative Physiology* **131**, 825–832
385 (2002).

386 20. Piestun, Y. *et al.* Thermal manipulations during broiler embryogenesis: effect on the
387 acquisition of thermotolerance. *Poultry science* **87**, 1516–1525 (2008).

388 21. Loyau, T. *et al.* Thermal manipulation of the chicken embryo triggers differential gene
389 expression in response to a later heat challenge. *BMC genomics* **17**, 1–15 (2016).

390 22. Vitorino Carvalho, A. *et al.* Embryonic thermal manipulation has short and long-term
391 effects on the development and the physiology of the Japanese quail. *Plos one* **15**, e0227700
392 (2020).

393 23. Vitorino Carvalho, A. *et al.* Embryonic thermal manipulation impacts the postnatal
394 transcriptome response of heat-challenged Japanese quails. *BMC Genomics* **22**, 488 (2021).

395 24. Vinoth, A. *et al.* Evaluation of DNA methylation and mRNA expression of heat shock
396 proteins in thermal manipulated chicken. *Cell Stress and Chaperones* **23**, 235–252 (2018).

397 25. Ahmed, B. *et al.* Cows exposed to heat stress during fetal life exhibit improved thermal
398 tolerance. *Journal of animal science* **95**, 3497–3503 (2017).

399 26. Zimmer, C., Larriva, M., Boogert, N. J. & Spencer, K. A. Transgenerational transmission

400 of a stress-coping phenotype programmed by early-life stress in the Japanese quail.

401 *Scientific Reports* **7**, 46125 (2017).

402 27. Hennequet-Antier, C. *et al.* Thermal conditioning of quail embryos has transgenerational

403 and reversible long-term effects. *Journal of Animal Science and Biotechnology* **14**, 124–124

404 (2023).

405 28. Rosenberg, T. *et al.* Embryonic heat conditioning in chicks induces transgenerational

406 heat/immunological resilience via methylation on regulatory elements. *The FASEB Journal*

407 **36**, e22406 (2022).

408 29. Doherty, R. & Couldrey, C. Exploring genome wide bisulfite sequencing for DNA

409 methylation analysis in livestock: a technical assessment. *Frontiers in genetics* **5**, 126 (2014).

410 30. Degalez, F., Bardou, P., Lagarrigue, S. GEGA (Gallus Enriched Gene Annotation): an

411 online tool gathering genomics and functional information across 47 tissues for protein-

412 coding genes and lncRNA enriched atlas including Ensembl & Refseq genome annotations.

413 (2024).

414 31. Triantaphyllopoulos, K. A., Ikonomopoulos, I. & Bannister, A. J. Epigenetics and

415 inheritance of phenotype variation in livestock. *Epigenetics & chromatin* **9**, 1–18 (2016).

416 32. Crino, O. L., Bonduriansky, R., Martin, L. B. & Noble, D. W. A conceptual framework for

417 understanding stress-induced physiological and transgenerational effects on population

418 responses to climate change. *Evolution Letters* **8**, 161–171 (2024).

419 33. McGuigan, K., Hoffmann, A. A. & Sgrò, C. M. How is epigenetics predicted to contribute

420 to climate change adaptation? What evidence do we need? *Philosophical Transactions of the*

421 *Royal Society B* **376**, 20200119 (2021).

422 34. Skibiel, A. *et al.* In utero heat stress alters the offspring epigenome. *Scientific reports* **8**,

423 14609 (2018).

424 35. Weyrich, A. *et al.* Paternal intergenerational epigenetic response to heat exposure in

425 male Wild guinea pigs. *Molecular Ecology* **25**, 1729–1740 (2016).

426 36. Brionne, A. *et al.* EPIGENETIC LANDSCAPE OF HEAT STRESS
427 INTERGENERATIONAL INHERITANCE IN A TELEOST FISH. *bioRxiv* 2022–10 (2022).

428 37. Buchberger, E., Reis, M., Lu, T.-H. & Posnien, N. Cloudy with a chance of insights:
429 context dependent gene regulation and implications for evolutionary studies. *Genes* **10**, 492
430 (2019).

431 38. Skinner, M. K. Role of epigenetics in developmental biology and transgenerational
432 inheritance. *Birth Defects Research Part C: Embryo Today: Reviews* **93**, 51–55 (2011).

433 39. Kim, K.-S. *et al.* Characterization of the acute heat stress response in gilts: III. Genome-
434 wide association studies of thermotolerance traits in pigs. *Journal of animal science* **96**,
435 2074–2085 (2018).

436 40. Ramírez-Ayala, L. C. *et al.* Whole-genome sequencing reveals insights into the
437 adaptation of French Charolais cattle to Cuban tropical conditions. *Genetics Selection
438 Evolution* **53**, 1–11 (2021).

439 41. Fulda, S., Gorman, A. M., Hori, O. & Samali, A. Cellular stress responses: cell survival
440 and cell death. *International journal of cell biology* **2010**, (2010).

441 42. Mashaly, M. *et al.* Effect of heat stress on production parameters and immune
442 responses of commercial laying hens. *Poultry science* **83**, 889–894 (2004).

443 43. Hirakawa, R. *et al.* Heat stress causes immune abnormalities via massive damage to
444 effect proliferation and differentiation of lymphocytes in broiler chickens. *Frontiers in
445 veterinary science* **7**, 46 (2020).

446 44. Monson, M. S. *et al.* Immunomodulatory effects of heat stress and lipopolysaccharide on
447 the bursal transcriptome in two distinct chicken lines. *BMC genomics* **19**, 1–15 (2018).

448 45. Dahl, G. E., Tao, S. & Laporta, J. Heat stress impacts immune status in cows across the
449 life cycle. *Frontiers in veterinary science* **7**, 116 (2020).

450 46. Tao, S., Monteiro, A., Hayen, M. & Dahl, G. Maternal heat stress during the dry period
451 alters postnatal whole-body insulin response of calves. *Journal of Dairy Science* **97**, 897–901

452 (2014).

453 47. Tao, S., Monteiro, A., Thompson, I., Hayen, M. & Dahl, G. Effect of late-gestation
454 maternal heat stress on growth and immune function of dairy calves. *Journal of dairy science*
455 **95**, 7128–7136 (2012).

456 48. Monteiro, A., Tao, S., Thompson, I. & Dahl, G. Effect of heat stress during late gestation
457 on immune function and growth performance of calves: Isolation of altered colostral and calf
458 factors. *Journal of dairy science* **97**, 6426–6439 (2014).

459 49. Bordas, A., Tixier-Boichard, M. & Mérat, P. Direct and correlated responses to divergent
460 selection for residual food intake in Rhode Island Red laying hens. *British poultry science* **33**,
461 741–754 (1992).

462 50. Ewels, P. A. *et al.* The nf-core framework for community-curated bioinformatics
463 pipelines. *Nature biotechnology* **38**, 276–278 (2020).

464 51. Chen, Y., Pal, B., Visvader, J. E. & Smyth, G. K. Differential methylation analysis of
465 reduced representation bisulfite sequencing experiments using edgeR. *F1000Research* **6**,
466 (2017).

467 52. Park, Y. & Wu, H. Differential methylation analysis for BS-seq data under general
468 experimental design. *Bioinformatics* **32**, 1446–1453 (2016).

469 53. Merkel, A. *et al.* gemBS: high throughput processing for DNA methylation data from
470 bisulfite sequencing. *Bioinformatics* **35**, 737–742 (2019).

471 54. Degalez, F. *et al.* Enriched atlas of lncRNA and protein-coding genes for the GRCg7b
472 chicken assembly and its functional annotation across 47 tissues. *bioRxiv* 2023–08 (2023).

473 55. Brionne, A., Juanchich, A. & Hennequet-Antier, C. ViSEAGO: a Bioconductor package
474 for clustering biological functions using Gene Ontology and semantic similarity. *BioData*
475 *mining* **12**, 1–13 (2019).

476 56. Jehl, F. *et al.* Chicken adaptive response to low energy diet: main role of the
477 hypothalamic lipid metabolism revealed by a phenotypic and multi-tissue transcriptomic

478 approach. *BMC genomics* **20**, 1–16 (2019).

479 **Acknowledgments**

480 We are grateful to the entire staff of the UE1295 PEAT (Nouzilly, France, doi:
481 10.15454/1.5572326250887292E12) for their excellent animal care. We are grateful to the
482 genotoul bioinformatics platform Toulouse Occitanie (Bioinfo Genotoul,
483 <https://doi.org/10.15454/1.5572369328961167E12>) for providing help, computing, and storage
484 resources. RRBS sequencing was performed by the GenomEast platform, a member of the
485 “France Génomique” consortium (ANR-10-INBS-0009). This work was funded by the French
486 National Agency of Research (ChickStress project, ANR-13-ADAP). KK also thanks the French
487 National Program MOPGA (Make Our Planet Great Again) for funding and support.

488

489 **Author contribution**

490 FP, TZ and SLa conceived the experimental design and secured the funding. KK, JS and SLa
491 performed the analyses. KK, CC, GD, SF, AH and JNH participated in the bioinformatic and
492 statistical analyses. DG performed animal breeding. SLe performed molecular experiments. KK
493 drafted the manuscript, FP, SLa and TZ revised the manuscript draft. All authors read and
494 approved the final version.

495 **Data availability**

496 The DNA methylation and RNA-seq datasets analyzed in the current study are available at ENA
497 (<https://www.ebi.ac.uk/ena/browser/home>) with accession numbers PRJEB70935 and
498 PRJEB28745, respectively.

499

500 **Competing interests**

501 The authors declare no competing interests.

502

503 **Figure legend**

504 Fig 1: Experimental design

505 Fig 2: Preprocessed data A) Number of CpGs kept after each step of the pre-processing
506 workflow. B) Average methylation level around TSS regions.

507 Fig 3: Volcano plot of CpG methylation and DMCs between HS and CT.

508 *Hyper=hypermethylated; Hypo=hypomethylated, FDR=False Discovery Rate,*
509 *DMC=differentially methylated CpG site*

510 Fig 4: Manhattan plot of differential methylation analysis between HS and CT groups. The above
511 dashed line represents $FDR \leq 0.05$ and solid line represents $FDR \leq 0.01$.

512 *FDR=False Discovery Rate*

513 Fig 5: Expression pattern of two lncRNA genes (LOC121110553, LOC121110554) across 47
514 tissues (<https://gega.sigenae.org/>)

515 Fig 6: Distribution of total CpGs and DMCs (hypermethylated and hypomethylated) across the
516 different genomic regions.

517 Fig 7 : Gene Ontology functional analysis of the genes related to DMCs. The clustering heat map
518 plot of the functional sets of gene ontology (GO) terms was obtained using ViSEAGO. Gene
519 Ontology functional analysis with count showing information content and a dendrogram on
520 enriched GO terms based on BMA semantic similarity distance and Ward's clustering criterion.

521 Fig 8: Expression and methylation level of the 4 DMCs per group (CT and HS) for ATP9A.

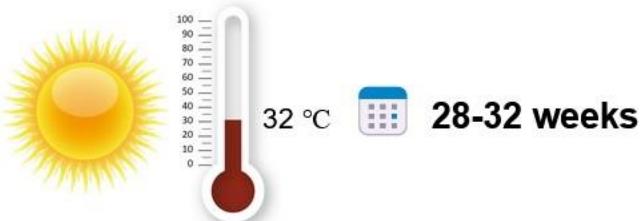
522

523

524

525

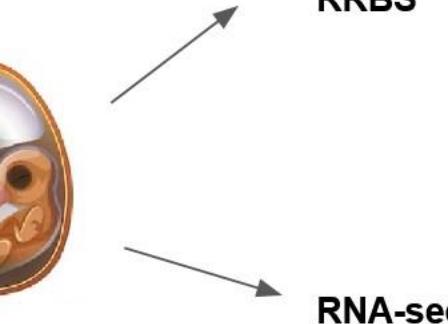
526

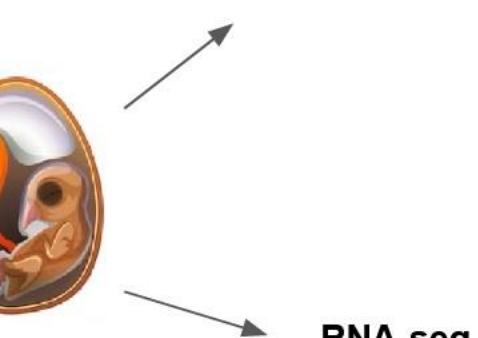

527 Table 1. Differentially expressed genes between Heat Stress and Control groups.

Gene id	Gene Name	Chr	start	end	strand	Expression*	padj	fc	lfc
LOC100858942	LOC100858942	34	2198709	2201885	+	UP	0.01	242.44	7.92
LOC112531412	LOC112531412	JAENSK010000420.1	8859	18598	-	UP	0.03	98.82	6.63
LOC396217	MBP	2	90091375	90199666	+	UP	0.02	12.92	3.69
LOC419345	ATP9A	20	13450938	13503307	+	UP	0.01	2.57	1.36
LOC107054346	LOC107054346	12	1193659	1196336	+	DOWN	0.04	0.04	-4.48
LOC121108245	LOC121108245	Z	169136	201956	-	DOWN	0.01	0.08	-3.69
LOC100857335	LOC100857335	34	1513723	1516547	-	DOWN	0.01	0.1	-3.34
LOC107057116	ZNFY4	16	1583937	1595533	+	DOWN	0.01	0	-12.35
LOC121108653	LOC121108653	MU179258.1	33562	38085	+	DOWN	0.01	0.33	-1.62
LOC100502566	TMSB15B	4	1940045	1942512	+	DOWN	0.00	0.34	-1.57
LOC417488	CLIP2	19	3258667	3318184	-	DOWN	0.00	0.41	-1.28


528 *Up: more expressed in HS than in CT, Down: less expressed in HS than in CT. fc: fold change, lfc: \log_2 (fold change)

529


Heat Stress



28-32 weeks

31-32 weeks

Control

CpG filtering

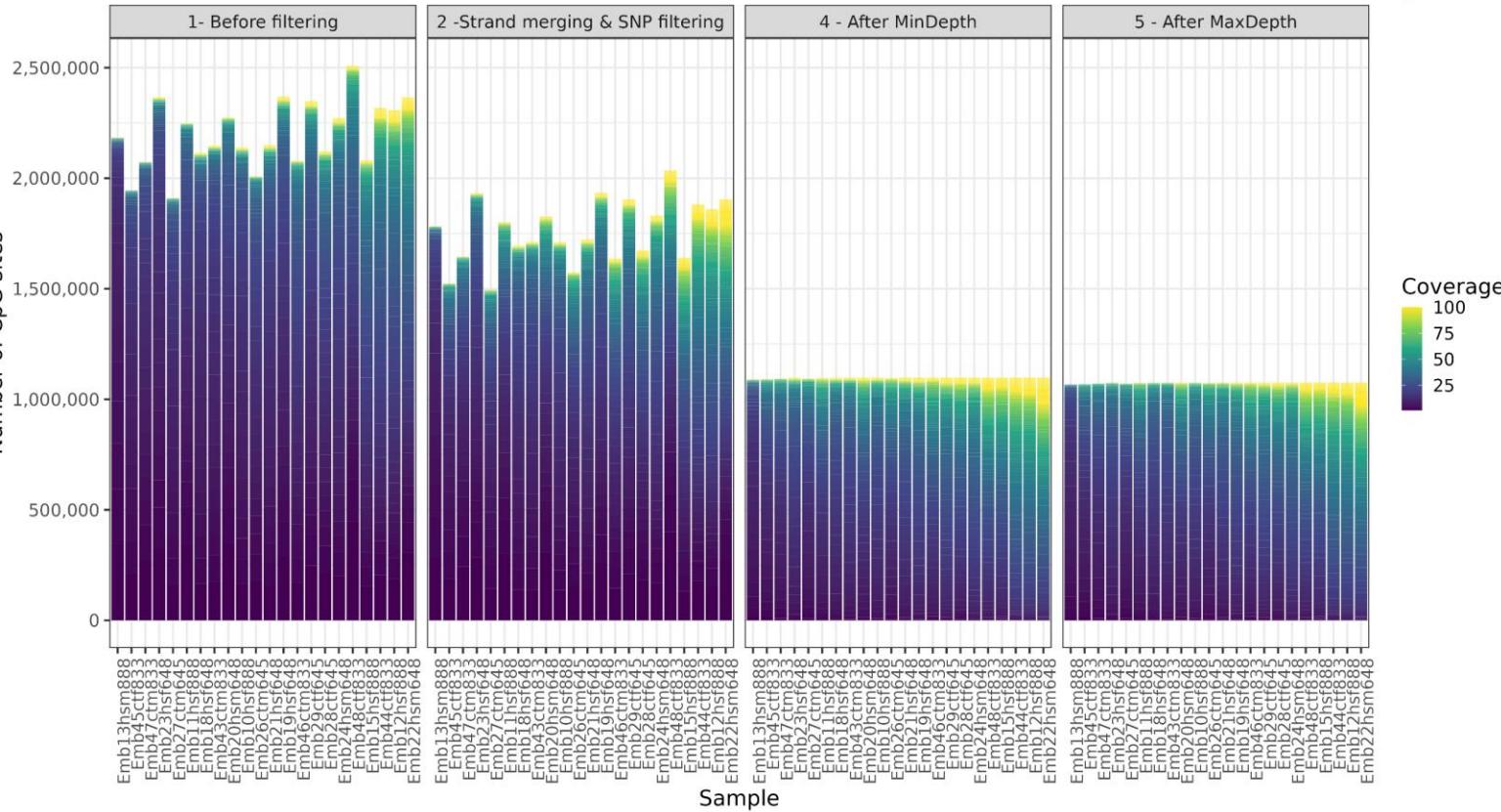
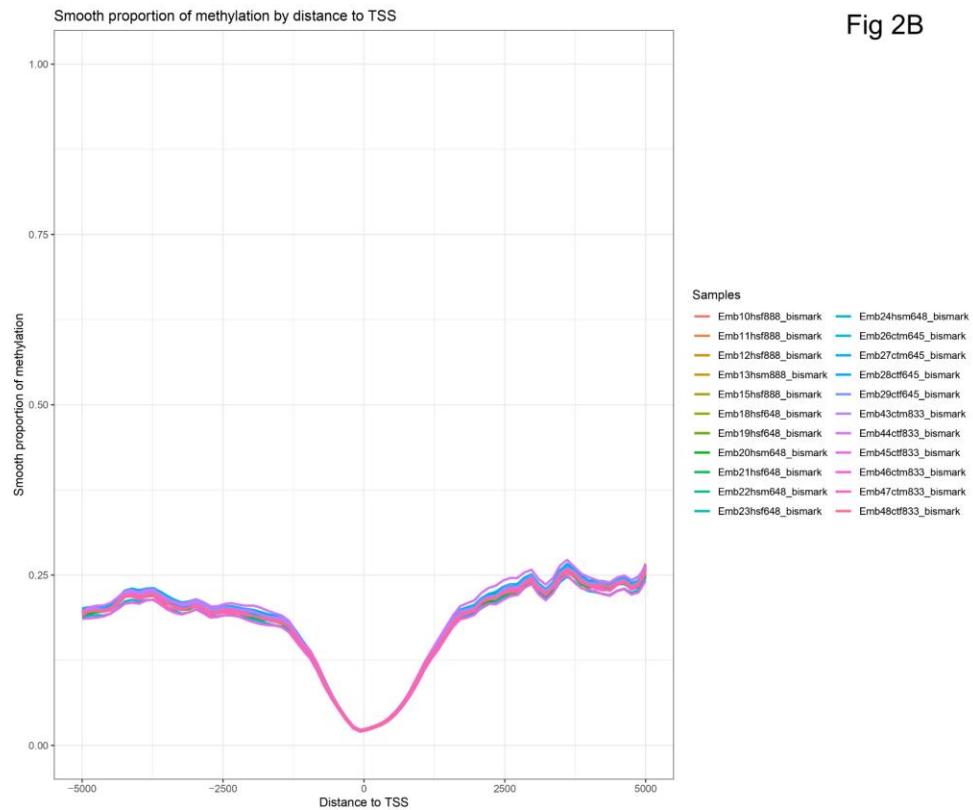
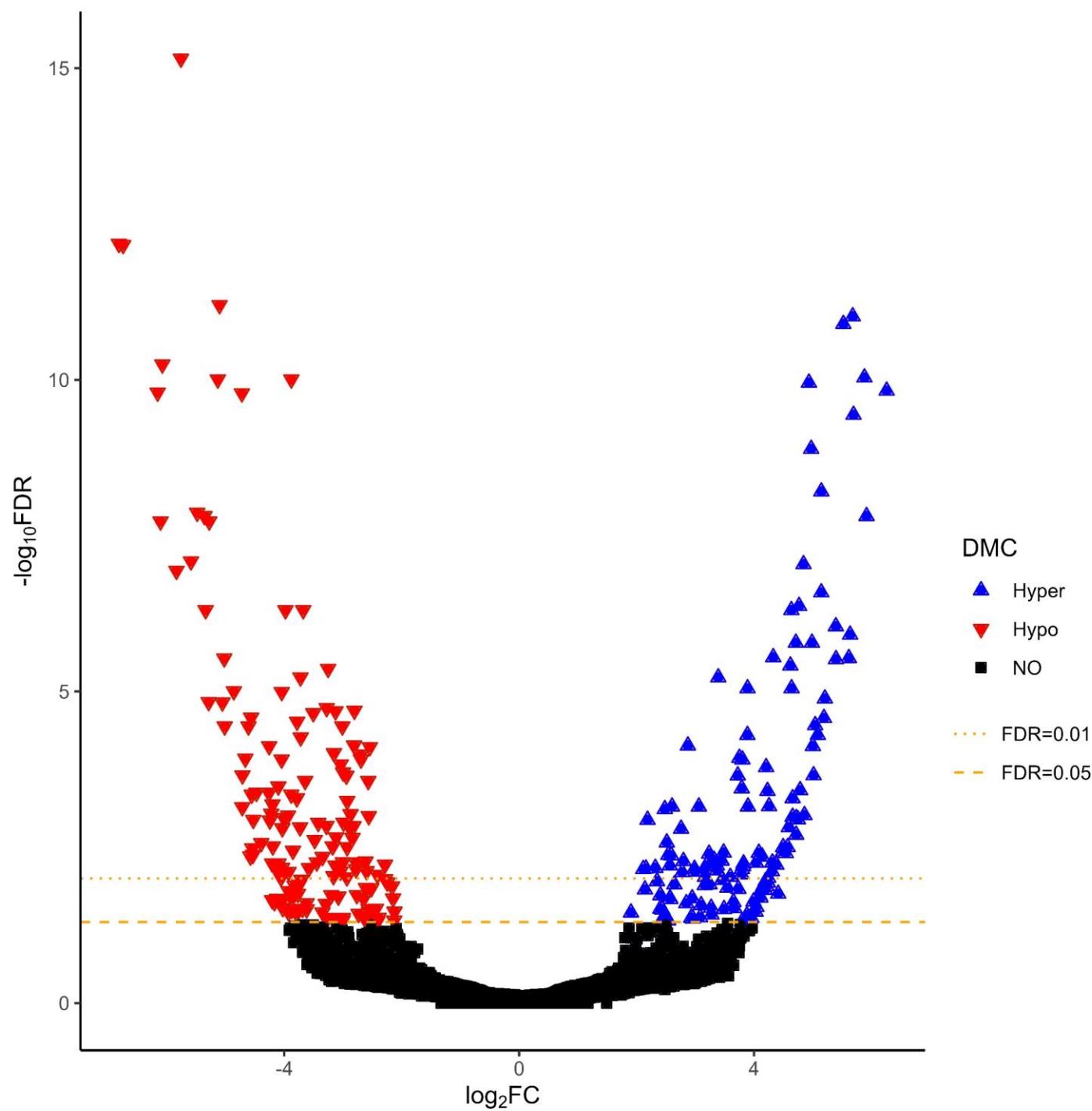
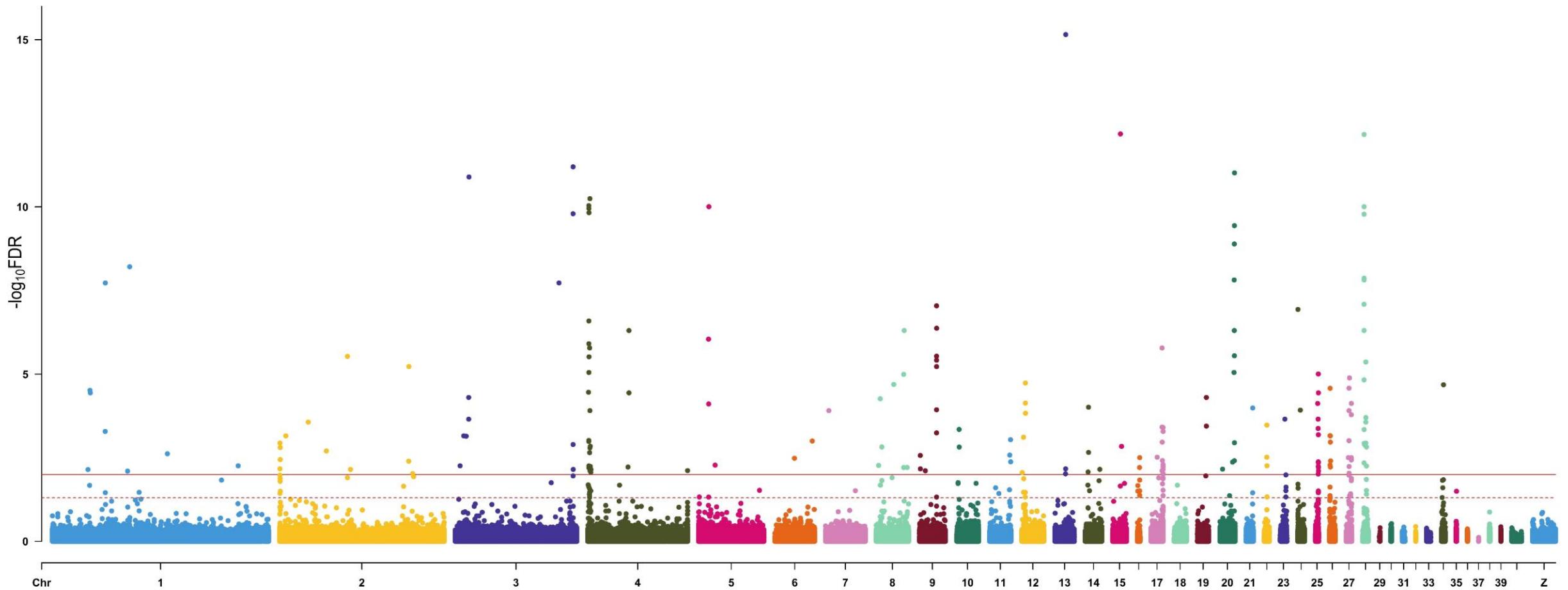
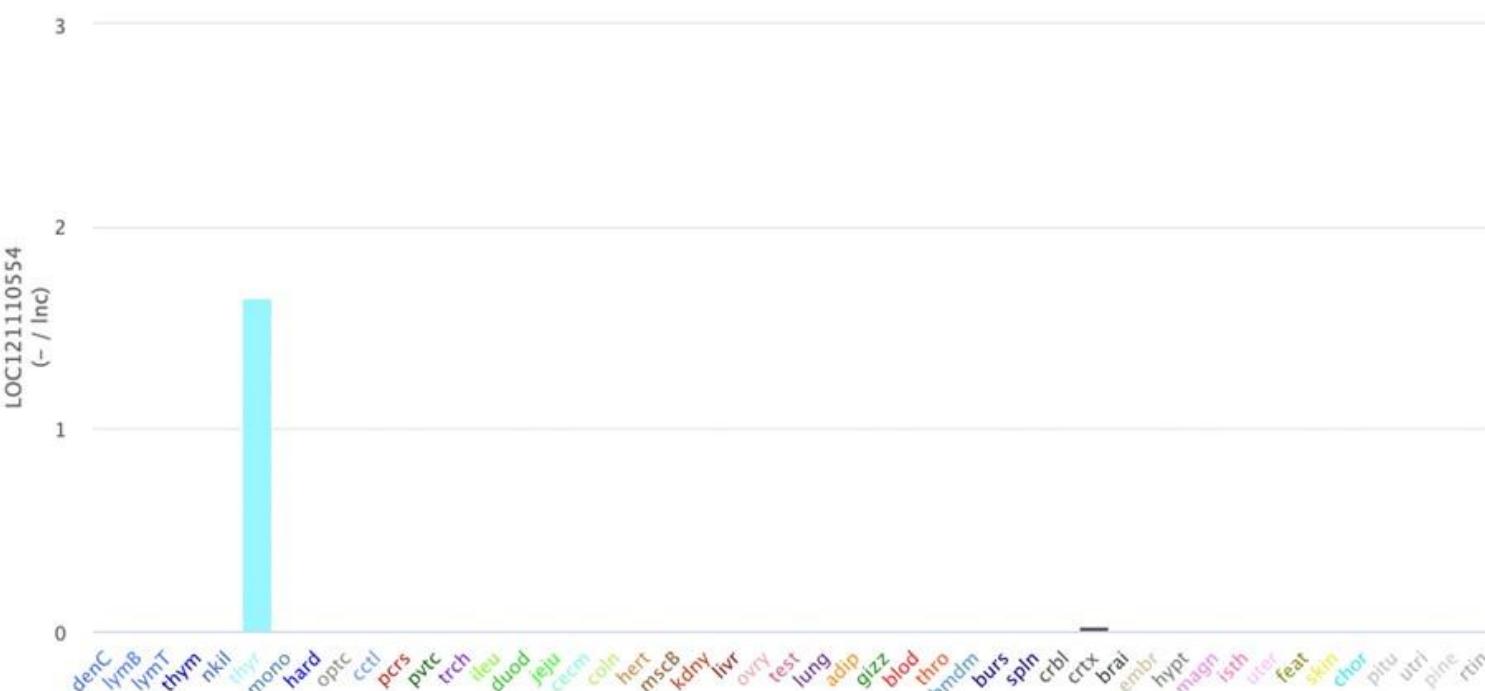
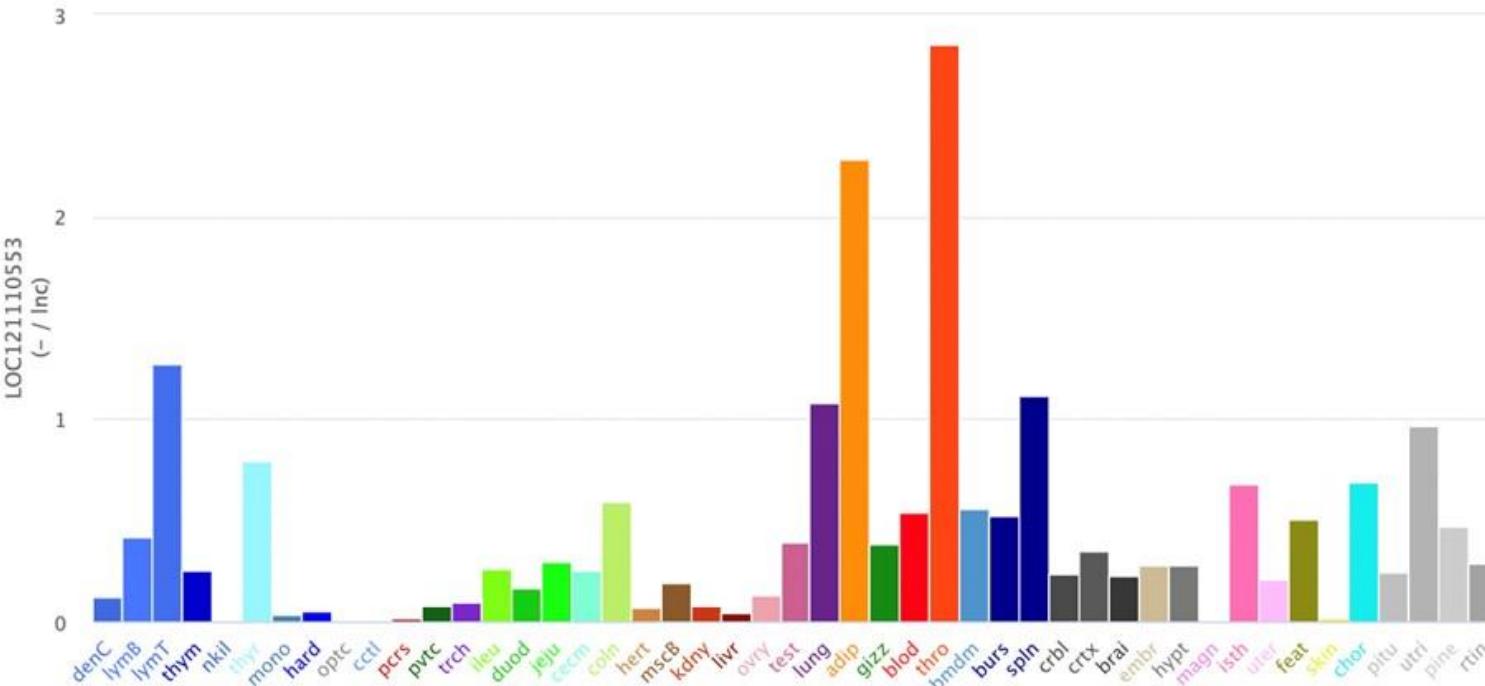
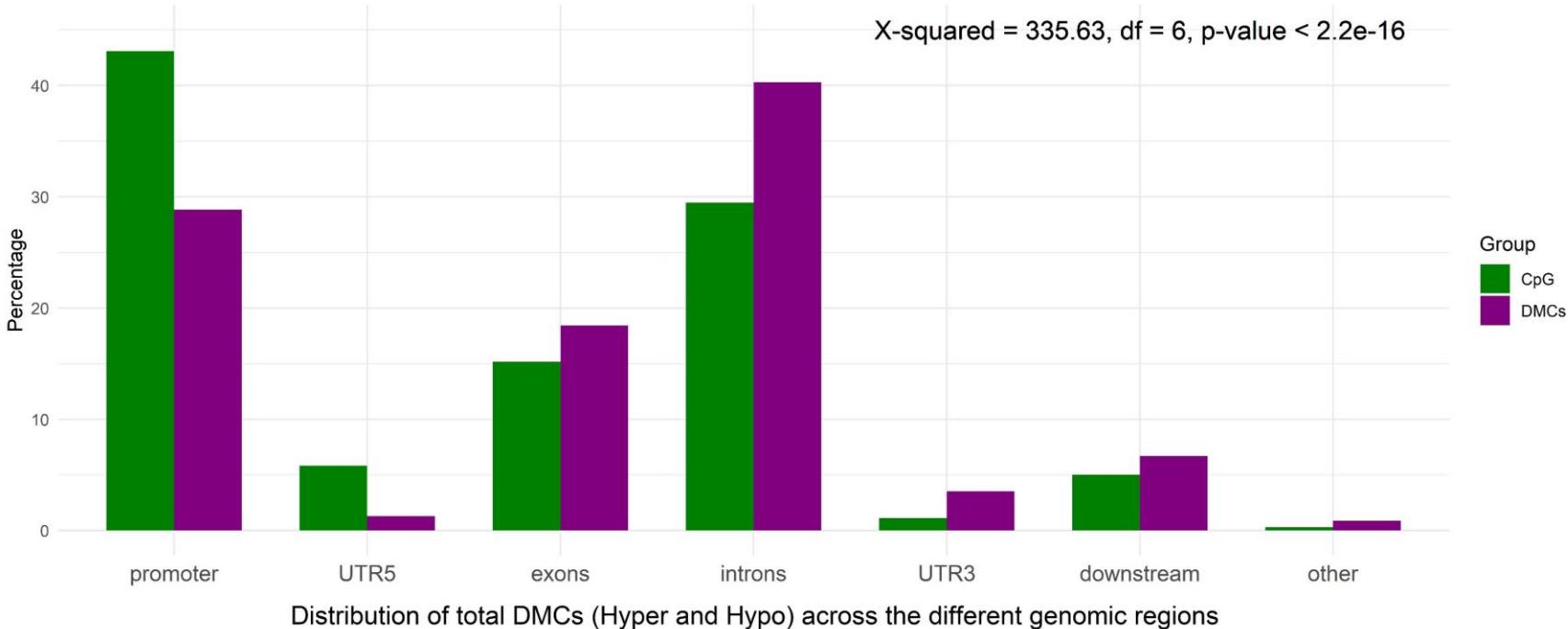
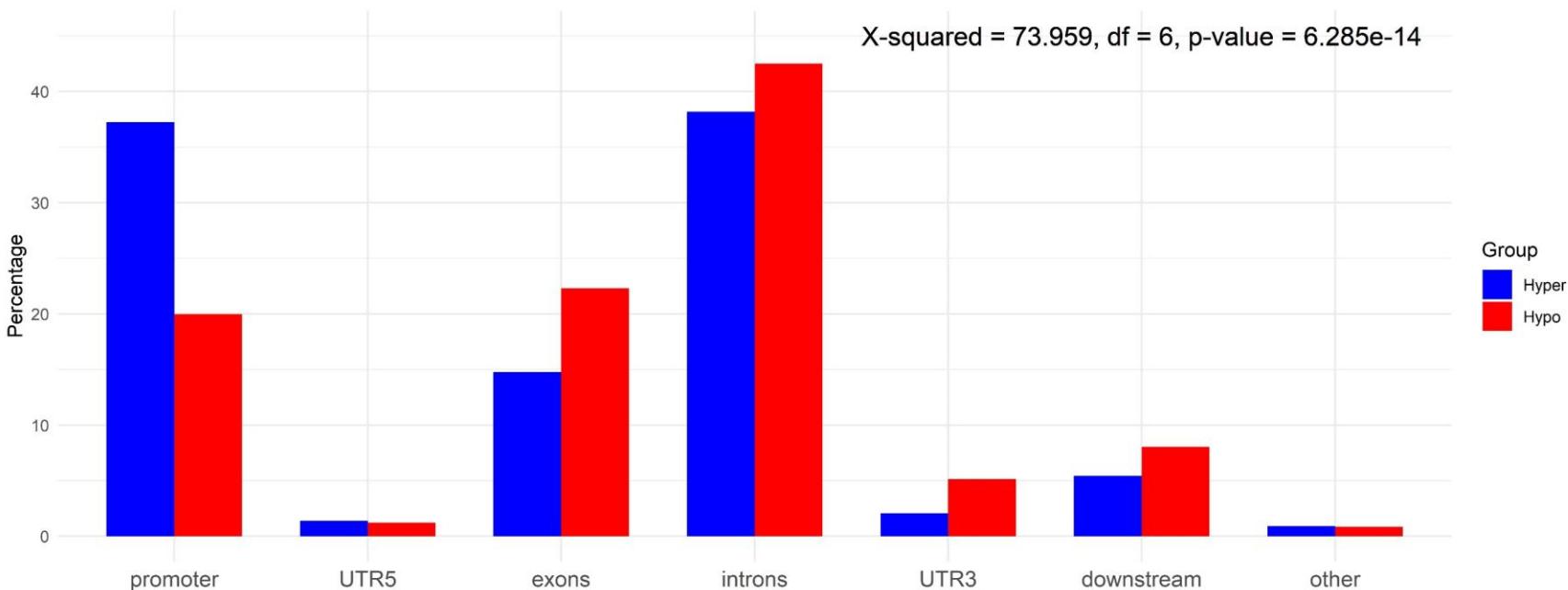
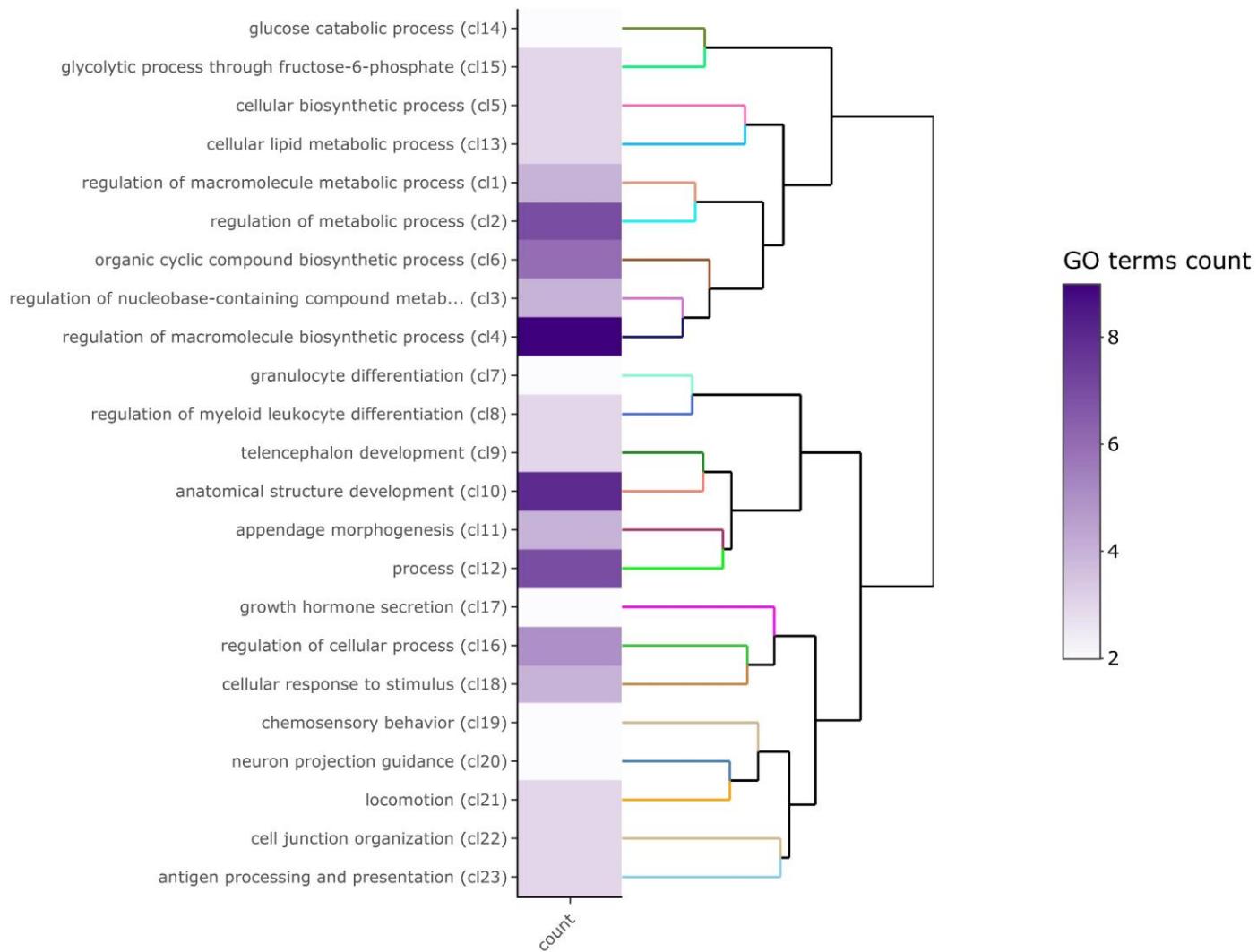


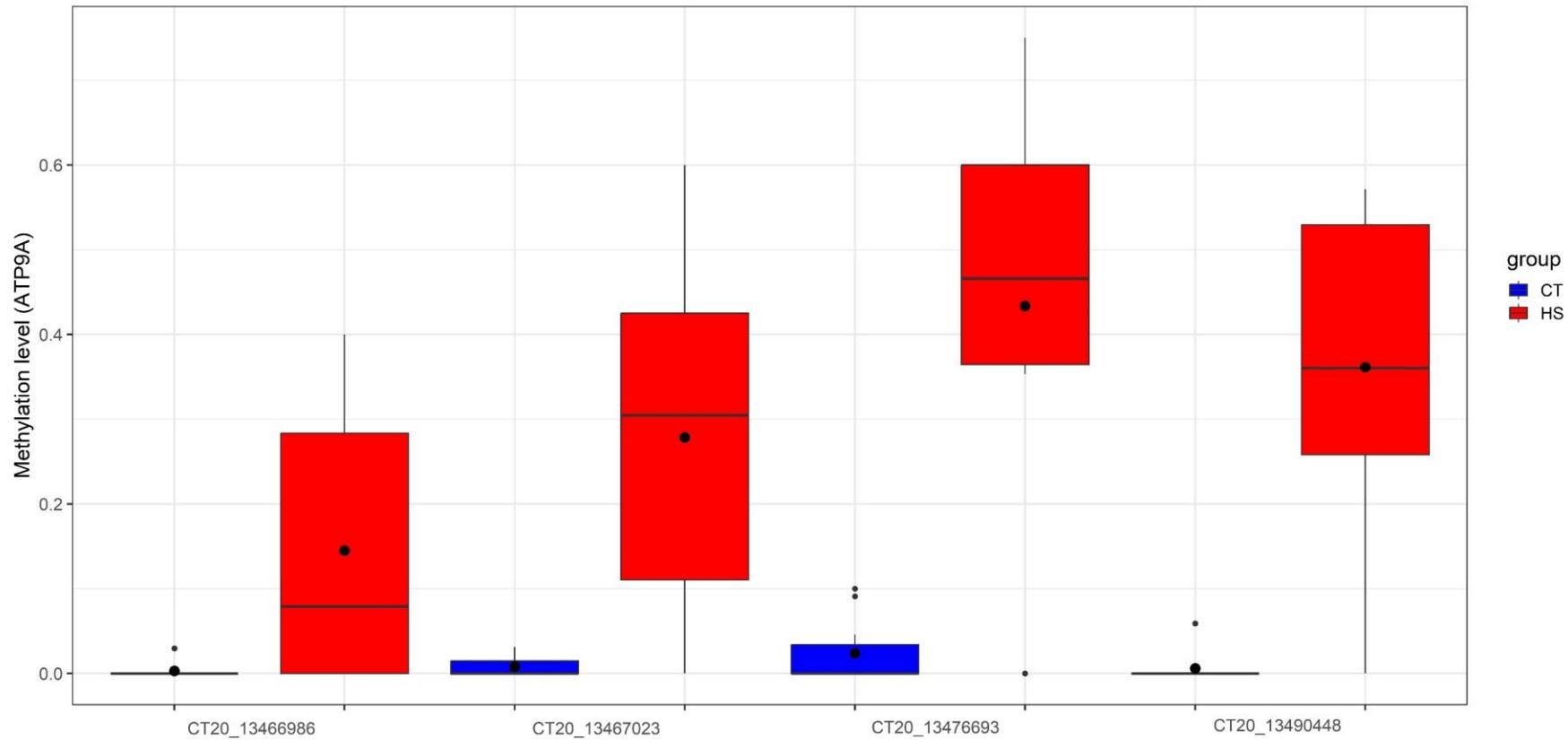
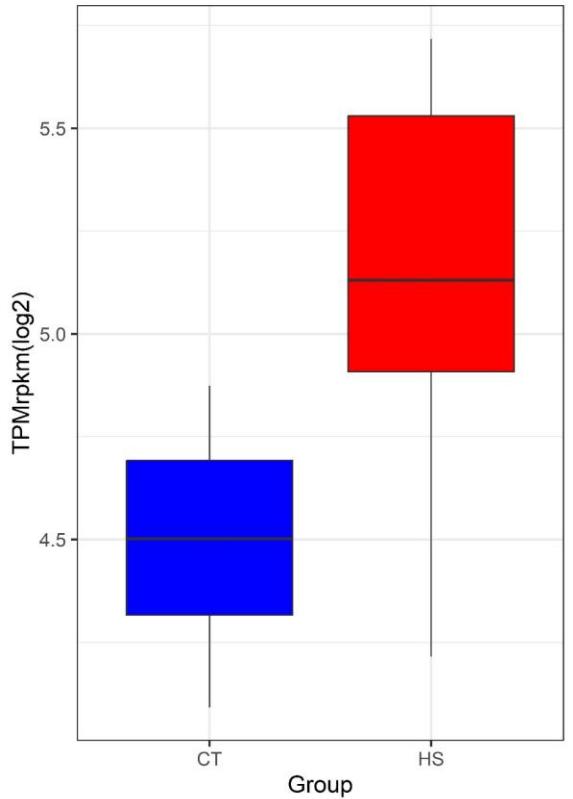
Fig 2A


Fig 2B




Distribution of total CpGs and DMCs across the different genomic regions

Distribution of total DMCs (Hyper and Hypo) across the different genomic regions

BMA GOclusters distance heatmap

