

1 **Frontotemporal dementia patient-derived iPSC neurons show cell pathological hallmarks and**
2 **evidence for synaptic dysfunction and DNA damage**

3

4 Nadine Huber¹, Tomi Hietanen¹, Sami Heikkinen², Anastasia Shakirzyanova¹, Dorit Hoffmann¹,
5 Hannah Rostalski^{1,3,4}, Ashutosh Dhingra⁵, Salvador Rodriguez-Nieto⁵ Sari Kärkkäinen⁶, Marja
6 Koskuvi⁷, Eila Korhonen¹, Päivi Hartikainen⁸, Katri Pylkäs⁹, Johanna Krüger^{9,10,11,12}, Tarja Malm¹,
7 Mari Takalo², Mikko Hiltunen², Jari Koistinaho¹³, Anne M. Portaankorva¹⁴, Eino Solje^{6,8}, Annakaisa
8 Haapasalo¹

9

10 ¹ A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland

11 ² Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland

12 ³ Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark

13 ⁴ The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark

14 ⁵ German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany

15 ⁶ Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland

16 ⁷ Neuroscience Center, University of Helsinki, Helsinki, Finland

17 ⁸ Neuro center, Neurology, Kuopio University Hospital, Kuopio, Finland

18 ⁹ Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu,
19 University of Oulu, and Northern Finland Laboratory Centre Nordlab, Oulu, Finland

20 ¹⁰ Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland

21 ¹¹ Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland

22 ¹² Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland

23 ¹³ Helsinki Institute of Life Science, University of Helsinki, and Drug Research Program, Division of
24 Pharmacology and Pharmacotherapy, University of Helsinki

25 ¹⁴ University of Helsinki, Helsinki, Finland

26

27 ***Correspondence:**

28 Annakaisa Haapasalo

29 Professor of Molecular Neurodegeneration
30 A. I. Virtanen Institute for Molecular Sciences
31 University of Eastern Finland
32 Neulaniementie 2, Post Box 1627
33 70211 Kuopio, Finland
34 Email: annakaisa.haapasalo@uef.fi
35 Tel: +358 40 355 2768
36

37 **Abstract**

38 Frontotemporal dementia (FTD) is the second most common cause of dementia in patients under
39 65 years, characterized by diverse clinical symptoms, neuropathologies, and genetic background.
40 Synaptic dysfunction is suggested to play a major role in FTD pathogenesis. Disturbances in the
41 synaptic function can also be associated with the *C9orf72* repeat expansion (C9-HRE), the most
42 common genetic mutation causing FTD. C9-HRE leads to distinct pathological hallmarks, such as
43 *C9orf72* haploinsufficiency and development of toxic RNA foci and dipeptide repeat proteins (DPRs).
44 FTD patient brains, including those carrying the C9-HRE, are also characterized by neuropathologies
45 involving accumulation of TDP-43 and p62/SQSTM1 proteins. This study utilized induced pluripotent
46 stem cell (iPSC)-derived cortical neurons from C9-HRE-carrying or sporadic FTD patients and
47 healthy control individuals. We report that the iPSC neurons derived from C9-HRE carriers
48 developed typical C9-HRE-associated hallmarks, including RNA foci and DPR accumulation. All FTD
49 neurons demonstrated increased TDP-43 nucleus-to-cytosolic shuttling and p62/SQSTM1
50 accumulation, and changes in nuclear size and morphology. In addition, the FTD neurons displayed
51 reduced number and altered morphologies of dendritic spines and significantly altered synaptic
52 function indicated by a decreased response to stimulation with GABA. These structural and
53 functional synaptic disturbances were accompanied by upregulated gene expression in the FTD
54 neurons related to synaptic function, including synaptic signaling, glutamatergic transmission, and
55 pre- and postsynaptic membrane, as compared to control neurons. Pathways involved in DNA repair
56 were significantly downregulated in FTD neurons. Only one gene, *NUPR2*, potentially involved in

57 DNA damage response, was differentially expressed between the sporadic and C9-HRE-carrying
58 FTD neurons. Our results show that the iPSC neurons from FTD patients recapitulate pathological
59 changes of the FTD brain and strongly support the hypothesis of synaptic dysfunction as a crucial
60 contributor to disease pathogenesis in FTD.

61

62 **Introduction**

63 Frontotemporal dementia (FTD) is an umbrella term for a group of neurodegenerative disorders
64 characterized by frontotemporal lobar degeneration, distinct neuropsychological characteristics,
65 altered personality and behavior, (behavioral variant frontotemporal dementia, bvFTD), impairment
66 of speech and language comprehension (primary progressive aphasias, PPAs), and/or disturbances
67 in motor function [1, 2]. FTD is the second most common type of dementia in individuals below 65
68 years of age [3] and it shares clinical, pathological, molecular, and genetic features with amyotrophic
69 lateral sclerosis (ALS) [4], forming an FTD-ALS disease spectrum. The most common genetic cause
70 of these diseases is the hexanucleotide repeat expansion in the *C9orf72* gene (C9-HRE) [5–9].
71 Three potentially overlapping toxic mechanisms underlying the C9-HRE-associated diseases have
72 been proposed, including accumulation of nuclear RNA foci containing the C9-HRE RNA,
73 cytoplasmic inclusions of dipeptide repeat-containing (DPR) proteins, and *C9orf72*
74 haploinsufficiency leading to decreased expression of *C9orf72* mRNA and protein [8, 9]. In addition,
75 other pathological protein inclusions, such as those containing TAR DNA-binding protein 43 (TDP-
76 43) and p62/SQSTM1, are typically present in the brain of both genetic and sporadic (no clear genetic
77 background) FTD patients [10, 11].

78

79 Increasing evidence suggests that structural and functional alterations at synapses and changes in
80 different neurotransmitter systems, such as the glutamatergic, dopaminergic, GABAergic, and
81 serotonergic systems, may underlie the variety of clinical, neuropsychiatric, and cognitive symptoms
82 in FTD and ALS patients [12, 13]. For example, aggression, compulsive behavior, and altered eating
83 habits may arise from disturbances in these systems, suggesting that targeting them might offer new
84 therapeutic options for FTD [12, 14]. Especially, dysfunction in the glutamatergic and GABAergic

85 systems correlate best with disinhibition and behavioral changes in FTD, such as loss of empathy,
86 increasing impulsiveness, and risky decision-making [15, 16]. Both neurophysiological and brain
87 imaging studies have indicated synaptic loss and perturbances in the glutamatergic and GABAergic
88 systems in both sporadic and genetic FTD, including that associated with C9-HRE [17–20]. In C9-
89 HRE-associated FTD, early alterations are observable also in the dopaminergic and cholinergic
90 systems, whereas FTD patients carrying *MAPT* (microtubule associated protein tau) display changes
91 in dopamine and serotonin levels at early stages of disease [21, 22]. Moreover, studies in different
92 cellular and animal models further support the contribution of disturbed glutamatergic and
93 GABAergic neurotransmitter systems in FTD pathogenesis [14, 22–24]. Interestingly, no changes,
94 suggesting alterations in neurotransmitter systems, have been observed in *GRN* (progranulin)
95 mutation carriers in neuroimaging [21]. However, TDP-43 pathology, which is typically present in
96 *GRN* mutation carriers, has been suggested to cause disturbances in the dopaminergic system [16].
97 Excessive levels of glutamate can lead to synaptic disturbances and trigger excitotoxic neuronal
98 death, involving elimination of GABAergic inhibitory synapses, which subsequently leads to reduced
99 synaptic inhibition and enhanced circuit excitability [25]. Glutamate-mediated excitotoxicity has been
100 observed in C9-HRE-associated FTD, further underlining the involvement of synaptic perturbations
101 in FTD pathogenesis [12].

102

103 Synaptic dysfunction is proposed to occur well before symptom onset and to be a unifying early
104 hallmark in FTD and ALS [21]. In early disease stages, ALS patient motor neurons display altered
105 excitability [24, 26]. Similar abnormalities can be detected in FTD-ALS patients and, interestingly,
106 also in FTD patients without clinical evidence of motor symptoms [27, 28]. Moreover, induced
107 pluripotent stem cell (iPSC)-derived neuronal models of C9-HRE have displayed altered synaptic
108 function and neuronal networks [29, 30]. In line with these data, our previous study utilizing
109 overexpression of C9-HRE in mouse primary neurons indicated increased susceptibility of the
110 neurons to glutamate-mediated excitotoxicity, morphological alterations at dendritic spines, and a
111 hyperexcitation phenotype driven by extrasynaptic NMDA receptors [31]. Given all the current
112 information suggesting synaptic dysfunction as an important contributor to FTD pathogenesis,

113 understanding the molecular and cellular mechanisms underlying synaptic changes is crucial for the
114 development of novel therapies aiming at restoring proper synaptic function and improving the
115 clinical outcomes of patients.

116

117 Here, our aim was to generate iPSC-derived neurons from both C9-HRE-carrying and sporadic FTD
118 patients and compare their neuropathological and functional features with a special focus on synaptic
119 alterations. We describe both neuropathological as well as structural and functional synaptic
120 alterations in the neurons. The latter were associated with expressional changes in different genes
121 regulating synaptic structures and function as well as altered responses of the neurons to
122 neurotransmitter stimuli, particularly GABA. Moreover, especially the C9-HRE-carrying neurons
123 were found to display nuclear changes in accordance with increased DNA damage. These findings
124 altogether suggest that these patient-derived neurons are excellent models to further explore the
125 molecular mechanisms underlying synaptic disturbances in FTD and that they could potentially be
126 used as platforms for testing different neuromodulatory treatments targeting synaptic dysfunction.

127

128 **Materials and methods**

129 **Induced pluripotent stem cell lines and their culture**

130 The iPSC lines used in this study were generated from skin biopsies as described in [32] obtained
131 at the Neuro Center, Neurology, Kuopio University Hospital. All biopsy donors gave written informed
132 consent. The research in human subjects is performed in accordance with the ethical standards of
133 the Declaration of Helsinki and approved by the Research Ethics Committee of the Northern Savo
134 Hospital District, Kuopio, Finland with the ethical permit 16/2013. Studies on FTD patient-derived
135 iPSC-neurons are performed with permission 123/2016 from the Research Ethics Committee of the
136 Northern Savo Hospital District. In this study, iPSCs were generated and characterized from six
137 Finnish FTD patients (53-77 years) clinically diagnosed with bvFTD and three age-matched healthy
138 control individuals according to [33]. The FTD patient iPSCs were derived from three C9-HRE
139 carriers and three sporadic (non-genetic) FTD patients. In addition to those lines, a commercially
140 available line from an FTD patient carrying the C9-HRE was used in some experiments. The line

141 was purchased from EBiSC (cell line name: UCLi001-A, Biosamples ID: SAMEA3174431). EBiSC
142 bank acknowledges University College London and UCL Queen Square Institute of Neurology with
143 support from the NIHR UCLH Biomedical Research Centre, EFPIA companies and the European
144 Union (IMI-JU'). Repeat-primed PCR (AmplideX® PCR/CE C9orf72 Kit, Asuragen) was performed
145 on genomic DNA extracted from corresponding blood samples and iPSCs to confirm the presence
146 or absence of the *C9orf72* HRE in the carriers (C9+, 1 line > 60 repeats; 2 lines >145) and sporadic
147 FTD (C9-, < 30 repeats) and healthy controls (< 30 repeats). Patient data were pseudonymized and
148 handled using code numbers. All the iPSC lines were tested negative for mycoplasma regularly
149 (Lonza, LT07-418). iPSCs were maintained on Matrigel (Corning, 356230) coated 3.5 cm dishes
150 (Sarstedt) in E8 medium (Essential 8™ Medium; Gibco, 1517001), supplemented with, 1xE8
151 supplement (Gibco, A1517001) and 0.5% (v/v) penicillin/streptomycin (Pen/Strep; Gibco, 15140122)
152 at +37°C and 5% CO₂. Cell culture medium was replaced every second day. Once confluence of 60-
153 80% was reached, iPSCs were split by incubating for 3 min at +37°C in EDTA (Invitrogen, 15575020)
154 containing E8 medium and whole medium was changed on the following day. For freezing, iPSCs
155 were collected in E8 medium supplemented with 10% (v/v) heat inactivated FBS (Gibco, 10500) and
156 10% (v/v) DMSO (Sigma D2650) and stored long-term in liquid nitrogen. After thawing the iPSCs
157 were kept in E8 medium containing 5 µM Y-27632 2HCl (Selleckchem, S1049) for 24h.

158

159 **Differentiation of iPSCs to neuronal progenitor cells and cortical neurons**

160 To induce neuronal differentiation, the iPSCs were seeded onto Matrigel-coated 6-well plates in E8
161 medium. When the colonies reached appropriate size (~50% confluence), the medium was changed
162 to E8 medium containing the two dual SMAD inhibitors: 10 µM SB431542 (GF-βRI inhibitor,
163 Selleckchem, S1067) and 200 nM LDN193189 2HCl (BMP type I receptor inhibitor, Selleckchem,
164 S7507). The concentration of the dual SMAD inhibitors was kept the same for the whole
165 differentiation process and they were added to the medium every day. On day 1, to start neuronal
166 differentiation, the whole medium was changed containing two parts E8 medium and one part neural
167 differentiation medium (NDM) containing 1:1 DMEM F12 / Neurobasal medium supplemented with
168 1% B27 (Thermo Fisher, 12587010) 0.5% N2 (Thermo Fisher, 17502048), 2 mM Glutamax (Thermo

169 Fischer, 35050038), and 0.5% (v/v) Pen/Strep. On day two, a full medium change was performed
170 containing two parts NDM medium and one part E8 medium. Starting from day three, the whole
171 medium containing only NDM and the dual SMAD inhibitors was changed. When neuronal rosettes
172 containing differentiated neuroepithelial cells appeared after approximately day 10-12, the medium
173 was changed to NDM containing 25 ng/ml bFGF (100-18B, Peprotech) for about two days,
174 depending on the rosette size and appearance. On day 14, the colonies containing the neuronal
175 rosettes were manually scraped into small clusters and transferred onto ultra-low culture dish (ULA;
176 4615, Corning) with neuronal sphere medium (NSM) containing 1:1 DMEM F12 / Neurobasal
177 medium supplemented with 0.5% N2, 2 mM Glutamax and 0.5% (v/v) Pen/Strep. On the next day,
178 the whole medium was carefully changed without disturbing the neuronal spheres and from that on,
179 about 1/4 of the medium was changed three times a week with NSM supplemented with bFGF. The
180 spheres were manually dissected into smaller spheres to maintain a progenitor-state neural cell
181 population and expanded at least once every 2 weeks. The spheres were cultured for up to eight
182 months. The first experiments were performed after 30 days in culture, but most experiments were
183 performed after 180+ days in culture. The spheres were dissociated with Accutase (Thermo Fischer,
184 A1110501) and plated in NSM medium w/o bFGF onto plated double-coated with 0.1 mg/ml poly-L-
185 ornithine hydrobromide (Sigma, P3655) in Dulbecco's Phosphate-Buffered Saline (DPBS) overnight
186 at +37°C and 30 µg/ml laminin (Sigma-Aldrich, L2020) in DPBS for four hours (with density 1×10^6
187 cells/6-well plate or 100,000 cells/24-well plate) to allow acquirement of neuronal morphology. The
188 neurons were maintained for 14 days in NSM medium before performing experiments. Medium
189 samples were collected before fixing the neurons.

190

191 **Immunocytochemistry and fluorescence *in situ* hybridization**

192 For immunocytochemistry (ICC), the neurons were fixed with 4% PFA for 20 min at RT and
193 permeabilized in 0.25% Triton X-100 for 60 min at RT and washed twice with DPBS. The cells were
194 blocked in 1% bovine serum albumin (BSA; Sigma) in DPBS for 60 min at RT and incubated with
195 primary antibodies against MAP2 (1:100, Sigma, 9942), GFAP (1:400, Dako, Z0334), vGlut1 (1:300,
196 Sigma, V0389), C9orf72 (1:400, Genetex, GT1553), MAP2 conjugated to CoraLite®594 Fluorescent

197 Dye (1:400, Proteintech, CL594-17490), p62/SQSTM1 (1:200, Santa Cruz, sc-28359), TDP-43
198 conjugated to CoraLite® Plus 488 Fluorescent Dye (1:100, Proteintech, CL488-80002), or anti-
199 phospho-histone γH2A.X Ser139 (1:400, Sigma, 05-636) overnight at +4°C. The cells were then
200 incubated with fluorescently labelled secondary antibodies Alexa Fluor 647, Alexa Fluor 594, or
201 Alexa Fluor 488 (Invitrogen) for 1 h at RT. Afterwards, the coverslips were washed with DPBS and
202 mounted with Vectashield Vibrance Antifade mounting medium containing 4, 6-diamidino-2-
203 phenylindole (DAPI, Vector Laboratories) and imaged with Zeiss Axio Observer inverted microscope
204 equipped with a Zeiss LSM 800 confocal module (Carl Zeiss Microimaging GmbH, Jena, Germany)
205 or Olympus BX-51 fluorescent microscope with 40X or 60X objective.
206 For fluorescence in situ hybridization (FISH), diethyl pyrocarbonate DPBS (DEPC-DPBS) and
207 DEPC-treated H₂O were used. FISH was performed in an RNase-free environment and fluorescently
208 labelled locked nucleic acid (LNA) TYE™ 563-(CCCCGG)₃ probe (C₄G₂; Exiqon) was used to detect
209 the sense foci. TYE™ 563-(CAG)₆ (CAG; Exiqon) was used as a negative control probe. The cells
210 on coverslips were permeabilized in 0.2% Triton X-100 for 15 min at RT and washed three times in
211 DEPC-DPBS. The coverslips were handled through an ethanol series (70%, 70%, and 100%, 1 min
212 each) followed by drying the coverslips for 10 min at RT. Next, pre-hybridization was performed in
213 hybridization buffer containing 10% dextran sulfate (Millipore, 3730-100ML), 10 mM Ribonucleoside
214 Vanadyl Complex (NEB # S1402S - 200 mM), formamide (Midsci, IB72020), 20 x SSC (Ambion,
215 AM9763), and 1 M sodium phosphate buffer, pH 7, in DEPC-H₂O, at +66°C for 30 min. The probes
216 were denatured at +85°C for 1 min 15 s and added to hybridization buffer at a concentration of 40
217 nM C₄G₂ or CAG probe and incubated with the coverslips at +55°C for 4 h. Then, after washing in
218 washing buffer 1 (0.1% Tween in 2 X SSC) for 5 min at RT and washing buffer 2 (0.2 X SSC) for 3
219 x 10 min at +60°C, the coverslips were mounted with Vectashield Vibrance Antifade mounting
220 medium containing DAPI and imaged with Zeiss LSM800 Airyscan confocal microscope.
221

222 **Neurofilament light chain Simoa measurements**

223 Neurofilament light chain (NfL) levels in the culture medium were quantified with the Quanterix single
224 molecule array (Simoa, Billerica, MA, USA) HD-X analyzer, using the Simoa® NF-light™ V2

225 Advantage kit (104073) according to the manufacturer's instructions. Briefly, frozen medium samples
226 were slowly thawed on ice, mixed, and centrifuged at 10,000 x g for 5 min at RT, and loaded to a
227 96-well plate. Samples were measured in duplicate and using 1:4 dilution. The Lower Limit of
228 Detection of NfL was reported at 0.038 pg/ml and the Lower Limit of Quantification at 0.174 pg/ml.

229

230 **Dipeptide repeat protein measurements**

231 iPSC neurons were cultured for 14 days, then medium was collected and the cells snap frozen. The
232 Mesoscale DPR immunoassay was performed as described in [34]. Briefly, the frozen cell pellets
233 were thawed on ice for 10 min and lysed in RIPA buffer. DPR immune assay was performed on the
234 MSD platform using streptavidin plates (MSD Gold 96-well Streptavidin SECTOR: #L15SA). The
235 plates were coated overnight with biotinylated capture antibody in blocking buffer (PBS with 0.05%
236 Tween-20, 1% BSA) at +4°C. After washing (DPBS with 0.05% Tween-20), the plates were
237 incubated for 2 h at RT on a shaking platform (140 rpm). After washing, sulfo-tag-labeled detection
238 antibody diluted in blocking buffer was added and the plates were incubated for 2 h at RT on a
239 shaking platform (140 rpm), followed by washing. The electrochemiluminescent signal was
240 measured using a MESO QuickPlex SG120 instrument. Antibodies used for poly-GP measurement
241 were biotinylated 18H8 (0.13 mg/ml) and sulfo-tagged 3F9 (1 mg/ml). Antibodies for poly-GA
242 measurement were biotinylated 1A12 (1 mg/ml) and sulfo-tagged 1A12 (1 mg/ml). Total protein
243 levels in all lysates were quantified using PierceTM BCA Protein Assay Reagents (Thermo Fisher:
244 #23222 and #23224). After the incubation step for the poly-GP immunoassay, a fraction of the lysed
245 sample was used to measure total protein concentration. The DPR antibodies were a kind gift from
246 Prof. Dr. Dieter Edbauer.

247

248 **3D culture and dendritic spine analysis**

249 For dendritic spine analysis, the 10-mm microwell in a 3.5-cm glass-bottom microwell dishes
250 (MatTek, P35G-1,5-10-C) were coated with 0.1 mg/ml poly-L-ornithine hydrobromide for two hours at
251 +37°C. Then, the coating was removed, and the dish left to dry overnight in the laminar at RT.
252 Neuronal spheres were collected and dissociated using Accutase (~500,000 cells/0.5ml) and mixed

253 with green fluorescent protein (GFP) adeno-associated virus with multiplicity of infection (MOI) 5,000.
254 The GFP construct was packaged in AAV9 virus particles at the BioCenter Finland National Virus
255 Vector Laboratory, University of Eastern Finland, Kuopio, Finland. Matrigel and cell/virus suspension
256 was mixed in a ratio of 1:8 and a 100- μ l drop was added to the coated microwells and incubated at
257 +37°C and 5% CO₂ for at least 24 h to harden the Matrigel. Then NSM medium was carefully added.
258 Half of the medium was changed three times per week. The cultures were cultured for additional up
259 180 days for dendritic spine analysis. Dendritic spines from GFP-positive neurons were imaged with
260 LSM 800 Airyscan confocal microscope. Serial Z-stacks of optical sections from dendritic segments
261 were analyzed by NeuronStudio software (Computational Neurobiology and Imaging Center Mount
262 Sinai School of Medicine, New York, Version 0.9.92 64-bit). Settings were adjusted as following:
263 Volume: pixel dimensions were set to X = 0.066 μ m (pixel width), Y = 0.066 μ m (pixel height), and Z
264 = 0.390 μ m (voxel depth); Dendrite detection: attach ratio was set to 1.5, minimum length to 3 μ m,
265 discretization ratio to 1, and realign junctions to yes; Spine detection: maximum height of spines was
266 set to 5.0 μ m and minimum height to 0.2 μ m, maximum width to 3 μ m, maximum stubby size to 10
267 voxels, and minimum non-stubby size to 5 voxels; Spine classifier: neck ratio (headneck ratio) was
268 set 1.1, thin ratio to 2.5, and mushroom size to 0.35 μ m. To obtain a clear image, the image filter
269 Blur-MP was run before the analysis and the dendritic spines were sub-grouped according to their
270 morphology to mushroom, stubby, or thin spines according to Neuron studio's automatic settings
271 using the Rayburst algorithm.

272

273 **Calcium imaging**

274 iPSC neurons were loaded with calcium-sensitive fluorescent Fluo-4 dye (1 \times , Direct Calcium Assay
275 Kit, Invitrogen, USA) in humidified incubator (5% CO₂, +37°C) for 30 - 40 min following by washout
276 for 10 min at +37°C and then for 5 min at RT in basic solution (BS) containing 152 mM NaCl, 2.5
277 mM KCl, 10 mM HEPES, 10 mM glucose, 2 mM CaCl₂, 1 mM MgCl₂, pH adjusted to 7.4. Then,
278 coverslips with the loaded cells were transferred to the recording chamber with constant BS
279 perfusion (flow rate 2.5 ml/min, RT). Fluo-4 loaded cells were imaged using monochromatic light
280 source (TILL Photonics GmbH) with an excitation light wavelength of 495 nm (exposure time 100

281 ms) and registered emission intensity at ≥ 520 nm. Fluorescence was visualized with 10 \times objective
282 in Olympus IX-70 microscope equipped with CCD camera (SensiCam, PCO imaging, Kelheim,
283 Germany) and recorded with TILL Photonics Live Acquisition at 1-Hz sampling frequency (1 frame
284 per second). Setup was equipped with Rapid Solution Changer RSC-200 (BioLogic Science
285 Instruments, Grenoble, France) allowing local application of various solutions, with fast exchange
286 between them (~ 30 ms). The cells were sequentially treated with short (2 s) applications (separated
287 by 2 min BS washout) of 100 μ M GABA (Sigma), 100 μ M glutamate (together with 30 μ M NMDA
288 receptor co-agonist glycine; both from Sigma), 50 mM KCl (depolarizing agent, to differentiate
289 neuronal cells from glia), and 10 μ M ionomycin (membrane-permeable calcium ionophore, to define
290 the cells' viability; Tocris).

291

292 **Analyses of C9orf72 protein levels, TDP-43 nucleus-to-cytoplasmic translocation, and**
293 **p62/SQSTM1 vesicles**

294 iPSC neurons were stained with antibodies against MAP2, C9orf72, and with DAPI, as described
295 above. C9orf72 images were acquired using Zeiss LSM800 Airyscan confocal microscope. For the
296 C9orf72 analysis, binary MAP2 masks were created by applying the Li thresholding method to the
297 MAP2 images. Particles smaller than 2 μ m were removed and holes within the cell bodies of a size
298 between 0-4 μ m² were filled. To capture C9orf72 signal from the full cytoplasm, nuclear masking
299 was applied. DAPI images were used to create nuclear masks by using the Otsu thresholding
300 method, followed by removal of particles with a radius smaller than 5 μ m. The C9orf72 signal was
301 quantified as sum intensities of the fluorescence signal originating from the fluorescently labeled
302 secondary antibody within MAP2-positive and DAPI-positive areas (defining the neuronal
303 boundaries) per image. Sum intensities were normalized to MAP2-positive area per image. Images
304 were processed using Fiji (2.3.0/1.53f51; [35]). Neurons were stained with MAP2 and TDP-43 or
305 p62/SQSTM1 antibodies and DAPI, as described above. TDP-43 images were acquired using Zeiss
306 LSM800 Airyscan confocal microscope. p62/SQSTM1 images were acquired using Olympus BX-51
307 fluorescent microscope. Images were processed using Fiji (2.3.0/1.53f51; [35]). For both analyses,
308 MAP2 images were used to outline neurons and measure the total cell body area per image of

309 neurons only. For TDP-43 analysis, MAP2 images were processed by enhancing the local contrast
310 (blocksize=127, histogram=256, maximum=3.10). Next, Otsu thresholding method was applied,
311 followed by removal of particles with a radius smaller than 5 μm . To fill holes within cell bodies,
312 particles of a size between 0-4 μm^2 were included. After watershed segmentation, regions of interest
313 were outlined without further area or shape exclusion. Sum intensity values of depicted area from
314 TDP-43 images were acquired. Then, DAPI images were analyzed including only the nuclei of
315 MAP2-positive cells. DAPI images were used to indicate nuclei and measure nuclear areas per
316 image (for TDP-43 analysis). To segment nuclei, thresholding (Renyi's entropy method) was applied,
317 followed by the fill holes command. Finally, sum intensity values of DAPI-positive areas were
318 extracted from TDP-43 images. TDP-43 signals were quantified as sum intensities of the
319 fluorescence signal originating from the fluorescently labeled antibody targeted against TDP-43
320 within nuclear (DAPI-positive) and cytosolic areas (nuclear signal subtracted from signal within whole
321 cell body [MAP2-positive areas]) respectively for each image. Sum intensities were normalized to
322 nuclear and cytosolic area sizes respectively for each image. Cytosolic to nuclear TDP-43 signal
323 ratio was calculated for each image of each cell line.

324 For p62/SQSTM1 image analysis, MAP2 images were converted into binary images using the Li
325 thresholding method, and further processed by removing small objects ($\leq 5 \mu\text{m}$ radius) and using
326 watershed segmentation. Next, p62/SQSTM1-positive vesicles were analyzed from MAP2-positive
327 regions by converting images into binary images using thresholding (Renyi's entropy method). Only
328 particles with a minimum area of 0.01 μm^2 to 1 μm^2 in size were included in the analysis. Number of
329 p62/SQSTM1-positive vesicles per image was normalized to total MAP2 area of the same image.
330 Average size and integrated density of p62/SQSTM1-positive vesicles per image and cell line were
331 extracted from Fiji.

332

333 **Nuclear morphology and DNA damage analysis**

334 iPSC neurons were stained with $\gamma\text{H2A.X}$ antibody and DAPI as described above. Nuclear masking
335 used in $\gamma\text{H2A.X}$ analysis was created in Fiji based on the DAPI staining by applying unsharp mask

336 (radius = 1, mask = 0.60), followed by enhancing local contrast (CLAHE) (blocksize = 127, histogram
337 = 256, maximum = 3) and adding a median filter (radius = 3). After converting the image to binary,
338 particles with a radius smaller than 5 μm were removed. Total nuclear area per image was acquired
339 by measuring masked regions with an area of 1.5 μm^2 or higher. For $\gamma\text{H2A.X}$ masking, any signal in
340 the $\gamma\text{H2A.X}$ channel outside of the DAPI mask was removed. The remaining signal was measured
341 as sum intensity of the fluorescence signal from the fluorescently labeled secondary antibody, and
342 the sum intensity from one image was normalized to the total nuclear area in the image. To acquire
343 $\gamma\text{H2A.X}$ -positive particle number and size, the remaining $\gamma\text{H2A.X}$ signal was transformed into binary
344 by auto thresholding (MaxEntropy algorithm), followed by analyzing the particles with an area higher
345 than 0.00001 μm^2 . Particle number per image was normalized to the total nuclear area in the image,
346 and particle size was measured as the mean particle area (μm^2) per image.

347 For the analysis of nuclear morphology, the neurons were stained with DAPI as described above
348 and imaged with Zeiss LSM800 Airyscan confocal microscope. To segment the nuclei, the Fiji plugin
349 StarDist [36] was utilized. From StarDist, the Versatile (fluorescent nuclei) built-in model was used,
350 with the non-maximum suppression postprocessing parameters of 0.5 (Probability/Score threshold)
351 and 0.6 (Overlap threshold). The acquired nuclear regions-of-interest were copied to the non-
352 segmented image, and morphological parameters of each DAPI-positive particle were measured.
353 The following morphological parameter was calculated per DAPI-positive particle: eccentricity
354 [$\sqrt{a^2-b^2}/a$], where a = major axis length and b = minor axis length.

355 The images were divided into two most similar groups based on the mean area of the DAPI-positive
356 particles per image using K-means clustering. Python version 3.11.8 and the following libraries were
357 used for clustering. The data from each group was reshaped with the NumPy (version 1.26.2) module
358 “reshape” using `numpy.reshape(-1,1)` prior to clustering. Data points from each group separately
359 were clustered into two groups using the KMeans algorithm from the scikit-learn [27][45], (version
360 1.4.1) module “`sklearn.cluster`”.

361 To study the DNA damage response, iPSC-derived neurons were treated with 10 μl topotecan
362 (Topotecan hydrochloride, Tocris, 4562) or DMSO vehicle for 1h. The cells were fixed with 4% PFA

363 and stained with conjugated MAP2 and γ H2A.X antibody as described above. Images were
364 processed using Fiji (2.3.0/1.53f51). The nuclear masking used for γ H2A.X analysis was based on
365 the DAPI staining. It was created by applying unsharp mask (radius = 1, mask = 0.60), followed by
366 enhancing local contrast (CLAHE) (blocksize = 127, histogram = 256, maximum = 3) and a median
367 filter (radius = 3). The image was converted to binary and particles with a radius smaller than 5 μ m
368 were removed. The total nuclear area per image was quantified by measuring masked regions with
369 an area of 1.5 μ m² or higher. To mask the γ H2A.X, only signals within the DAPI area were used.
370 The remaining signal was measured as sum intensity of the fluorescence signal from the
371 fluorescently labeled secondary antibody, and the sum intensity from one image was normalized to
372 the total nuclear area in the image. To acquire γ H2A.X-positive particle number and size, the
373 remaining γ H2A.X signal was transformed into binary by auto thresholding (MaxEntropy algorithm),
374 followed by analyzing the particles with an area higher than 0.00001 μ m². Particle number per image
375 was normalized to the total nuclear area in the image, and particle size was measured as the mean
376 particle area (μ m²) per image.

377

378 **RNA sequencing and data processing**

379 RNA was extracted using the Direct-zol RNA Miniprep Plus (Zymo, R2072, USA, California). Bulk
380 RNA sequencing (RNA-seq) was performed using RNA extracts from iPSCs and iPSC neurons.
381 Library preparation and RNA sequencing was conducted by Novogene (UK) Company Limited. In
382 brief, mRNA enrichment was performed with oligo(dT) bead pulldown, from where pulldown material
383 was subjected to fragmentation, followed by reverse transcription, second strand synthesis, A-tailing,
384 and sequencing adaptor ligation. The final amplified and size selected library comprised of 250-300
385 base pair (bp) insert cDNA and paired-end 150 bp sequencing was executed with an Illumina high-
386 throughput sequencing platform. Sequencing yielded 22.3–27.1 million sequenced fragments per
387 sample.

388 The 150-nucleotide pair-end RNA-seq reads were quality-controlled using FastQC (version 0.11.7)
389 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Reads were then trimmed with

390 Trimmomatic (version 0.39) [38] to remove Illumina sequencing adapters and poor quality read ends,
391 using as essential settings: ILLUMINACLIP:2:30:10:2:true, SLIDINGWINDOW:4:10, LEADING:3,
392 TRAILING:3, MINLEN:50. Reads aligning to mitochondrial DNA or ribosomal RNA, phiX174
393 genome, or composed of a single nucleotide, were removed using STAR (version 2.7.9a) [39]. The
394 remaining reads were aligned to the Gencode human transcriptome version 38 (for genome version
395 hg38) using STAR (version 2.7.9a) [39] with essential non-default settings: --seedSearchStartLmax
396 12, --alignSjoverhangMin 15, --outFilterMultimapNmax 100, --outFilterMismatchNmax 33, --
397 outFilterMatchNminOverLread 0, --outFilterScoreMinOverLread 0.3, and --outFilterType BySJout.
398 The unstranded, uniquely mapping, gene-wise counts for primary alignments produced by STAR
399 were collected in R (version 4.1.0) using Rsubread::featureCounts (version 2.8.2) [40], ranging from
400 17.2 to 20.7 million per sample. Differentially expressed genes (DEGs) between experimental groups
401 were identified in R (version 4.2.0) using DESeq2 (version 1.36.0) [41] by employing Wald statistic
402 and IfcShrink for FC shrinkage (type="apeglm") [42], and correcting for sequencing batch. Pathway
403 enrichment analysis was performed on the gene lists ranked by the pairwise DEG test log2FCs in R
404 using clusterProfiler::GSEA (version 4.4.4) [43] with Molecular Signatures Database gene sets
405 (MSigDB, version 2022.1) [44].

406

407 **Data processing, visualization, and statistical analyses**

408 To test whether data points within the experimental groups were normally distributed, Shapiro-Wilk
409 test was used. To test for significance between two different experimental groups, two-tailed
410 independent samples t-test was used for normally distributed data and Mann Whitney U test for not
411 normally distributed data. To test for significance between more than two groups, one-way analysis
412 of variance (ANOVA) followed by Tukey's multiple comparisons test or Sidak's multiple comparison
413 test was used if data points were normally distributed. Otherwise, Kruskal-Wallis test followed by
414 Dunn's multiple comparisons test was used. For grouped variables, two-way analysis of variance
415 (ANOVA) followed by Tukey's multiple comparisons test was used. To assess statistical
416 independence between categorical variables, the Chi-Square test was used. All tests were
417 performed using GraphPad Prism software (version 8.4.3 for Windows, GraphPad Software, San

418 Diego, California USA, www.graphpad.com). To check for and remove potential outliers in the data,
419 GraphPad Prism's Outlier Identification (ROUT method, Q = 1%) was used. The data are shown as
420 mean \pm standard deviation (SD) or median \pm interquartile range.
421 For calcium imaging, the data were post-processed using FEI offline analysis (TILL Photonics
422 GmbH, Germany) and pre-analyzed offline with Image J (Rasband, W.S., Image J, U.S. National
423 Institutes of Health, Bethesda, Maryland, USA). Final analysis and plotting were performed using
424 Origin 2019b software (OriginLab Corporation, Northampton, Massachusetts, USA). To quantify the
425 amplitude of calcium responses, the ratio of the transient fluorescence response to baseline
426 fluorescence was determined ($\Delta F/F_0$, the signal-to-baseline ratio; $\Delta F/F_0 = (F-F_0)/F_0$, where F is the
427 calcium-transient peak, and F_0 is the averaged baseline fluorescence under resting conditions).
428 Quantitative data are expressed as means \pm standard error of mean (SEM), unless otherwise stated.
429 Number of batches and cells within each batch were indicated by n. Significance was assessed with
430 Student's paired t-test and one-way ANOVA followed by Tukey post hoc test for parametric and non-
431 parametric data, respectively.
432 P-values ≤ 0.05 were considered significant. Statistically significant differences are shown as *p <
433 0.05, **p < 0.01, and ***p < 0.001. Graphs were created using the GraphPad Prism software (version
434 8.4.3 for Windows. Total number of statistical units per group is indicated as "n". Statistical units are
435 depicted as individual data points.

436

437 **Results**

438 In this study, we differentiated iPSCs from healthy donors (controls) and sporadic as well as C9-
439 HRE-carrying FTD patients to cortical neurons using the dual SMAD inhibitors. Synaptic dysfunction
440 has been implicated in FTD pathogenesis, but it has remained unclear whether the neurons and
441 synapses are similarly affected in all FTD patients or whether there are specific alterations depending
442 on the genetic background of the patient. Here, we report our findings related to the cell pathological
443 phenotypes and synaptic alterations at the structural, functional, and gene expression level.
444 Prompted by the global RNA-seq data, we also compared the potential nuclear alterations between
445 the sporadic and C9-HRE FTD and control neurons.

446

447 **Characterization of the iPSC-derived cortical neuron cultures**

448 First, we characterized the obtained iPSC-derived neuronal cultures. Morphologically, there were no
449 obvious differences between the neuronal cultures from sporadic and C9-HRE-carrying FTD patient
450 neurons and those from the healthy control individuals (**Figure 1A**). ICC staining indicated that the
451 cultures after 180 days contained glutamatergic and GABAergic MAP2-positive neurons as well as
452 GFAP-positive astrocytes. We also evaluated the success of the neuronal differentiation process by
453 comparing gene expression of specific marker genes between iPSCs and iPSC-derived neurons
454 from the global RNA-seq data (**Figure 1B**). Stem cell markers, such as NANOG and POU5F1, which
455 play a key role in embryonic development and stem cell pluripotency, were downregulated in the
456 neurons as compared to iPSCs. The expression levels of SOX2, a key factor regulating pluripotency
457 and neural differentiation [45], were similar in iPSCs and the neurons. PAX6, a marker for both stem
458 cells and neuroectodermal differentiation has previously been reported to be upregulated after dual
459 SMAD inhibition [46, 47]. Here, it was also expressed at higher levels in the differentiated neurons
460 than in the iPSCs. The neuronal marker MAP2, essential for neurogenesis, was upregulated in the
461 iPSC-derived neurons as compared to the iPSCs. In addition, the neuronal cultures expressed
462 markers from all six cortical layers of the human brain and these markers were low in the iPSCs
463 (**Figure 1B**). BLC11B represents neurons from layers 5-6, SATB2 marks a distinctive subpopulation
464 of upper layer neurons, POU3F2 is found in layer 2/3, 4 and 5 neurons, TUBB3 is related to
465 glutamatergic synapse function, EOMES supports cortical neurogenesis expansion, and TBR1 is
466 found in layer 6 cortical neurons. [48–52]. In addition, astrocyte markers GFAP and S100B showed
467 upregulated levels after 180 days in culture (**Figure 1B**). Measurement of released NfL, a generally
468 clinically used biomarker of neurodegeneration, in the conditioned media of the neurons using Simoa
469 indicated undetectable levels of NfL, suggesting that there was no observable neuronal cell death in
470 any of the cultures (data not shown).

471

472 **The C9-HRE-carrying FTD iPSC neurons exhibit C9-HRE-associated pathological hallmarks**

473 Next, we studied if the C9-HRE FTD patient derived neurons presented the typical C9-HRE-
474 associated gain and loss-of-function pathological hallmarks. FISH analysis using the TYE™ 563-
475 (CCCCGG)₃ probe, recognizing the sense strand-derived expanded GGGGCC repeat-containing
476 RNA, revealed that only the C9-HRE-carrying but not the control or sporadic FTD neurons displayed
477 nuclear RNA foci (**Figure 2A**). Importantly, no RNA foci were detected in C9-HRE neurons using the
478 TYE™ 563-(CAG)₆ negative control probe, indicating specificity of the TYE™ 563-(CCCCGG)₃ probe
479 against the expanded GGGGCC repeats (data not shown). Mesoscale-based DPR immunoassay
480 revealed that the poly-GP (**Figure 2B**) and poly-GA (**Figure 2C**) DPR proteins were specifically
481 detected in all C9-HRE-carrying neurons. Quantitative image analysis of C9orf72 ICC indicated that
482 the sporadic FTD neurons had the highest levels of C9orf72 protein, and these were significantly
483 higher than those in the control or C9-HRE FTD neurons. There were no statistically significant
484 differences in the C9orf72 protein levels between the C9-HRE FTD and control neurons, suggesting
485 that the C9-HRE neurons do not show signs of C9orf72 haploinsufficiency, although the levels
486 appeared the lowest in the C9-HRE-carrying neurons (**Figure 2D**).

487

488 **iPSC-derived FTD neurons display altered intracellular TDP-43 localization and enlarged**
489 **p62/SQSTM1-positive vesicles**

490 TDP-43 pathology indicated by the accumulation of TDP-43 in cytoplasmic inclusions is a major
491 hallmark of FTD brain, especially in FTD associated with the C9-HRE. ICC revealed that the FTD
492 patient-derived neurons did not display cytosolic TDP-43 inclusions (**Figure 3A**). However,
493 quantitative image analysis revealed that in the FTD neurons, regardless of their C9-HRE carriership
494 status, the cytosolic-to-nuclear ratio of TDP-43 was significantly increased compared to the control
495 neurons (**Figure 3B**), suggesting increased nucleus-to-cytosolic shuttling of TDP-43. Moreover, we
496 observed that the size of the p62/SQSTM1-positive vesicles was significantly enlarged and their
497 intensity was stronger in both sporadic and C9-HRE-carrying FTD neurons compared to controls
498 (**Figure 3C-E**). However, the FTD neurons displayed a trend towards a lower number of
499 p62/SQSTM1-positive vesicles compared to controls, but this remained statistically non-significant

500 (Figure 3F). These results suggest that in the FTD neurons, there are fewer, but larger vesicles
501 containing increased levels of p62/SQSTM1 compared to neurons of healthy controls.

502

503 **iPSC-derived FTD neurons show altered dendritic spine number and morphology as well as**
504 **decreased response to GABA stimulus**

505 Our previous studies in mouse primary neurons overexpressing C9-HRE showed altered dendritic
506 spine morphologies [31]. Thus, we next explored whether morphological changes in the dendritic
507 spines of the FTD patient-derived neurons can be observed by transducing neurons with GFP-
508 labeled AAV9 virus (**Figure 4A**). Quantitative analysis of the number and morphology of the dendritic
509 spines revealed that the total spine density was significantly reduced in both sporadic and C9-HRE-
510 carrying FTD neurons compared to control neurons (**Figure 4B**). In addition, both sporadic and C9-
511 HRE FTD neurons exhibited a significant decrease in the number of mushroom-type spines
512 compared to control neurons (**Figure 4C**), while the stubby spine density was significantly increased
513 only in the C9-HRE-carrying FTD neurons (**Figure 4E**). The density of thin spines was not affected
514 in the FTD neurons (**Figure 4D**). Interestingly, the head diameter of the mushroom and thin spines
515 was not affected, implicating that the remaining spines may function normally (**Figure 4F-H**). iPSC-
516 derived neurons from sporadic FTD patients displayed a slightly smaller head diameter of the stubby
517 spines (**Figure 4H**). Altogether, these results indicate loss of dendritic spines and significant
518 alterations in the dendritic spine morphologies in iPSC-derived neurons from FTD patients and
519 suggest that alterations in the structure and function of synapses is a common feature in FTD patient-
520 derived neurons.

521

522 Loss of dendritic spines might indicate disturbed synaptic function. Therefore, we next investigated
523 if the structural changes and reduced spine density were associated with altered neuronal
524 functionality. We performed calcium imaging in the iPSC-derived neurons and assessed their
525 responses to short application of glutamate, GABA, and KCl. Both sporadic and C9-HRE-carrying
526 FTD neurons displayed a significantly lower response to GABA compared to control neurons (**Figure**
527 **4I**). Also, the FTD neurons showed a weaker response to glutamate and reacted less strongly to

528 depolarizing KCl as compared to control neurons, but these changes did not reach statistical
529 significance.

530

531 **Global RNA sequencing reveals several altered biological pathways in iPSC-derived FTD**
532 **neurons as compared to control neurons but only one differentially expressed gene between**
533 **sporadic and C9-HRE FTD neurons**

534 Global RNA-seq was performed to study the potential gene expression changes in the FTD patient
535 neurons. The results indicated that the C9-HRE and sporadic FTD neurons displayed largely similar
536 gene expression patterns (**Figure 5A**). However, the gene expression signature of the FTD neurons
537 was dramatically different from that in the control neurons. Several pathways were significantly
538 downregulated in the FTD neurons when compared to control neurons. A more detailed pathway
539 analysis indicated prominent changes in pathways related to synaptic function and signaling
540 (upregulation) as well as DNA repair mechanisms (downregulation) in FTD neurons when compared
541 to control neurons (**Figure 5B**). The most significant changes in upregulated DEGs were observed
542 in genes associated with synaptic function, such as GABA receptors 1 and 2 (*GABRG1* and
543 *GABRG2*), voltage-gated potassium channel subfamilies (*KCND*, *KCNN3*, *KCNK2*), AMPA receptor
544 subunit (*GRIA2*), NMDA receptor subunit (*GRIN2B*), cell-surface receptor neurexin 1 (*NRXN1*), and
545 genes related to neural growth, differentiation, cell adhesion, and signal transduction (*CSPG5* and
546 *CD38*). Significantly downregulated DEGs in the DNA repair mechanism pathway included
547 methyltransferases involved in transfer of methyl groups (*PRMT5*), pro-apoptotic genes, such as
548 (*PMAIP1*), response to DNA damage (*CHEK2*), and genes encoding mitochondrial proteins
549 (*PRELID1*).

550

551 When comparing the C9-HRE and sporadic FTD neurons, it was interesting to note that only one
552 gene was differentially expressed (**Figure 6A**). This was *NUPR2*, which is related to p53 pathway
553 and DNA damage responses. Thus, we next examined if there were specific changes in the nuclei
554 of the FTD neurons. We found that the shape of the nuclei in the FTD neurons was significantly
555 rounder, indicated by decreased eccentricity, as well as significantly smaller size compared to

556 healthy control neuron nuclei (**Figure 6B**). Interestingly, both C9-HRE and sporadic FTD neurons
557 displayed a significantly higher number of micronuclei, which are small nuclei next to the actual
558 cellular nuclei that are considered to indicate chromosomal instability and caused by incorrectly
559 repaired or unrepaired DNA breaks (**Figure 6C**). In addition, the distribution of larger and smaller
560 sized nuclei was different in FTD neurons than in the control neurons so that a larger portion of the
561 FTD neurons had smaller nuclei (**Figure 6H-J**). When treated with Topotecan, which interacts with
562 topoisomerase I and causes the formation of DNA double-strand breaks, there was a significant
563 increase in the number of γ H2A.X-positive foci inside the nuclei in all neurons, indicating that
564 Topotecan increased DNA damage. However, there were no evident differences between the DNA
565 damage response between the FTD neurons as compared to control neurons, nor were there
566 differences in the response between the sporadic and C9-HRE neurons. At baseline, C9-HRE-
567 carrying neurons appeared to display a slightly higher number of γ H2A.X foci compared to control
568 neurons, although this difference was not significant (**Figure 6H-J**).
569

570 **Discussion**

571 In the present study, the major aim was to contribute to the better understanding of the underlying
572 mechanisms of neurodegeneration in FTD with a special focus on synaptic dysfunction. We
573 investigated whether the synapses are impacted in the FTD patient-derived iPSC neurons and
574 whether the synaptic function and dendritic spine morphologies in C9-HRE and sporadic FTD
575 neurons are similarly or differentially affected.
576

577 The C9-HRE leads to several distinct pathogenic mechanisms, including C9orf72 protein loss-of
578 function related to C9orf72 haploinsufficiency, accumulation of toxic RNA foci, containing the C9-
579 HRE RNA that disturbs RNA metabolism, and accumulation of the harmful DPR proteins [8, 9, 53].
580 It is suggested that these events occur simultaneously and lead to a cascade of other downstream
581 alterations, including changes in autophagy, stress responses, vesicular trafficking, mitochondrial
582 function, RNA metabolism, synaptic function, and DNA damage [54]. We did not observe differential
583 expression of C9orf72 proteins in C9-HRE-carrying neurons, although they showed a mild but non-

584 significant trend towards lower C9orf72 protein levels compared to control and sporadic FTD
585 neurons. Interestingly, the highest C9orf72 protein levels were detected in the sporadic FTD
586 neurons, which showed significantly higher C9orf72 levels as compared to both control and C9-HRE
587 FTD neurons. The reason for this remains unclear and the underlying mechanisms warrant further
588 examination in future studies. These findings suggest that the C9-HRE-carrying iPSC neurons, at
589 least in the present study, do not show indications of *C9orf72* haploinsufficiency in a similar manner
590 to e.g., patient brain or blood cells. Despite this, the iPSC-derived neurons from C9-HRE carriers
591 displayed the gain-of-toxic-function C9-HRE-associated pathological hallmarks, the RNA foci as well
592 as poly-GP and poly-GA DPR proteins, which were not present in the sporadic FTD or control
593 neurons. Even though previous studies have reported cell toxicity caused by the RNA foci and DPR
594 proteins [55–58], our studies did not validate this. The absence of cell toxicity was confirmed by
595 measurements of secreted NfL levels, a clinically used biomarker of neurodegeneration in patient
596 blood and CSF samples, which indicated undetectable levels of this biomarker in both sporadic and
597 C9-HRE FTD patient neurons. This could be partially due to the missing *C9orf72* haploinsufficiency
598 as it is suggested that haploinsufficiency may potentiate the toxic functions of RNA and DPR
599 accumulations [59]. However, so far, studies have not shown a correlation between DPR pathology
600 and the degree of neurodegeneration or clinical symptoms [60]. It is also suggested that the iPSCs
601 might lose ageing-related characteristics, such as epigenetic modifications including methylation,
602 during cellular reprogramming and, therefore, might not exhibit completely similar pathological
603 features to those observed in patient brains [61]. Additionally, the relatively short culture period of
604 the iPSC neurons might not allow the long-term pathological effects of the C9-HRE to take place.
605
606 One of the main pathological alterations in the brain of FTD patients is accumulation of TDP-43
607 aggregates in cytosolic protein inclusions [5, 6]. Approximately half of all FTD patients display
608 pathological TDP-43 depositions in the brain [62]. Under physiological conditions, TDP-43 shuttles
609 between the nucleus and cytosol, but it is mainly present in the nucleus where it is crucial for RNA
610 regulation, including transcription, alternative splicing, and mRNA stabilization. TDP-43 also
611 partakes in stress granule formation and their maintenance [63, 64]. Under pathological conditions,

612 the shuttling of TDP-43 is disturbed by several post-translational modifications leading to its
613 accumulation and aggregation in the cytoplasm [64]. TDP-43 pathology can be correlated to
614 cognitive decline and neurodegeneration [65] and it occurs downstream of DPR pathology. A
615 previous study has shown that even though the DPR inclusions in the patient brain are typically TDP-
616 43-negative, poly-GP co-localizes with TDP-43 in neurites [66]. We observed that the iPSC-derived
617 neurons from FTD patients, regardless of their C9-HRE status, displayed altered TDP-43 nucleus-
618 to-cytosolic shuttling. The FTD neurons showed a significant increase in the levels of cytoplasmic
619 TDP-43, but no TDP-43-positive cytoplasmic inclusions were detected. This could indicate that
620 alterations in TDP-43 subcellular localization may represent an early feature in FTD pathogenesis,
621 but the accumulation of insoluble pathological TDP-43 inclusions requires time and appears later
622 during the disease. This hypothesis is further supported by other studies showing that disturbed
623 TDP-43 nuclear clearance is sufficient to cause loss of normal TDP-43 function in the neurons
624 without cytoplasmic inclusions present [67, 68]. TDP-43 dysfunction impairs several downstream
625 mechanisms, including protein degradation and autophagy [69]. Several studies show p62/SQSTM1
626 accumulation in different brain regions in FTD and ALS patients [70] as well as cellular models of
627 TDP-43 pathology [69]. The accumulation of p62 protein is an indicator of defective autophagy [71].
628 Dysfunctional autophagy and impaired protein clearance may increase the accumulation of TDP-43
629 aggregates and exacerbate neuronal pathologies. Also, iPSC-derived cortical neurons have
630 previously been reported to show increased p62 levels [72, 73]. Agreeing with these findings, our
631 study also suggests that p62/SQSTM1 accumulates in both the sporadic and the C9-HRE-carrying
632 FTD neurons as indicated by a significant increase in the size and intensity of p62/SQSTM1-positive
633 vesicles. The fact that the number of p62/SQSTM1-positive vesicles was not increased at the same
634 time with the enlarged size and intensity, but rather showed a trend towards a decrease in the FTD
635 neurons, could suggest that the clearance of the p62/SQSTM1-containing vesicles is defective and
636 the vesicles may fuse together. Interestingly, our previous studies in the skin fibroblasts from the
637 same patients, from which the iPSCs were generated for this study, indicated similar results [32].
638 Thus, autophagy function and protein degradation might be altered in the iPSC-derived neurons from

639 FTD patients, regardless of the C9-HRE status. Whether this is the case can be explored in the
640 future examinations of these neurons.

641

642 Besides characterization of the different neuropathologies and their pathological mechanisms,
643 research has focused on structural and functional alterations at synapses and changes in different
644 neurotransmitter systems related to C9-HRE and FTD. Our previous study indicated alterations in
645 dendric branching and spine morphologies as well as compromised neuronal function and altered
646 NMDA receptor function associated with overexpression of the C9-HRE in mouse neurons [31]. Also,
647 studies by us and others have indicated that the C9orf72 proteins as well as poly-GP DPRs locate
648 at synapses [31, 74, 75]. Thus, we assessed dendritic spine number and morphology the iPSC-
649 derived neurons from FTD patients in the present study. The total number of dendritic spines was
650 significantly decreased with a significant reduction especially in the mushroom spines in both C9-
651 HRE and sporadic FTD neurons, suggesting loss of mature, functional spines. In the C9-HRE
652 neurons, these changes were accompanied with a significant increase in the stubby spines, a spine
653 type often associated with neurodegeneration. No changes in the spine head sizes were detected,
654 proposing that the remaining spines are functional and that their strength of synaptic transmission is
655 not altered. These findings suggest that pathological changes in dendritic spine number and
656 morphology and the associated synaptic dysfunction represent common mechanisms underlying
657 both sporadic and C9-HRE-associated FTD.

658

659 Functionally, the iPSC neurons derived from sporadic and C9-HRE FTD patients showed a
660 significantly weaker response to GABA stimulus when compared to healthy controls. In addition, a
661 non-significant trend towards diminished responses to glutamate and KCl were detected. Notably,
662 functional changes in the GABAergic and glutamatergic systems have been observed in FTD patient
663 brains [81, 82]. It has been reported that the changes in synaptic transmission correspond with
664 decreased expression of several AMPA and NMDA receptor subunits as well as hyperexcitability in
665 layer V excitatory neurons [83]. Also, it is suggested that neurochemical and functional GABAergic
666 deficits are commonly seen in FTD, especially in bvFTD and PSP [84]. Altogether, our results support

667 the previous findings of impairments in both excitatory and inhibitory systems in FTD patients, which
668 may lead to an imbalanced neurotransmission in their brains. Further supporting synaptic
669 dysfunction, the RNA-seq analysis revealed upregulated DEGs impacting synaptic functions,
670 including synaptic signaling, glutamatergic transmission, and pre- and postsynaptic membrane in
671 the iPSC-derived neurons from FTD patients in comparison to control neurons. Dysregulated
672 synaptic gene expression appeared to be involved in FTD neurons regardless of the C9-HRE
673 carriership. The fact that we observed upregulation instead of downregulation of these synapse-
674 associated genes might implicate potential compensatory mechanisms related to the dysfunctional
675 synaptic neurotransmission in these neurons. Several other studies have reported that the C9-HRE
676 leads to a dysregulation of genes involved in vesicular transport, endosomal trafficking, lysosomal
677 function, proteostasis, DNA damage, synaptic transmission, and neural differentiation [29, 85–88].
678 One study focused on those changes in C9-HRE carriers without TDP-43 pathology and showed
679 that the C9-HRE is responsible for the alterations in the expression and splicing of genes involved
680 in synaptic vesicle fusion or formation, vesicle transport, endosomal trafficking, chaperone-
681 associated protein aggregation, and DNA repair [85], results that are highly in accordance with our
682 findings in the present study.

683

684 Interestingly, the RNA-seq studies revealed only one DEG between the sporadic and C9-HRE FTD
685 neurons. *NUPR2* gene, encoding nuclear protein 2, was upregulated in the C9-HRE-carrying as
686 compared to sporadic FTD neurons. *NUPR2* is a parologue of *NUPR1*, which is activated in a
687 p53/TP53-dependent manner in response to DNA damage [89]. *NUPR1* is also associated with
688 transcriptomic regulation of mitochondria [90]. It is suggested that ER stress is another factor
689 upregulating the expression of *NUPR1* [91]. In line with these findings, potentially suggesting
690 alterations in the nuclei and DNA damage response, was the significantly altered nuclear morphology
691 observed in the FTD neurons. The nuclei were significantly smaller and rounder in appearance. In
692 addition, we observed a significantly larger number of micronuclei, which are associated with
693 genomic instability leading to drastic DNA re-arrangements [87–89]. However, these changes were
694 detected in both sporadic and C9-HRE FTD neurons, suggesting that the upregulated *NUPR2*

695 expression in the C9-HRE neurons may reflect some other, yet unrecognized, cellular alterations
696 specifically taking place in these neurons. Although we did not observe obvious signs of
697 neurodegeneration in the FTD patient neurons, our findings indicate that they do show pathological
698 changes in the nuclei, which might render the neurons more vulnerable to neurodegeneration if
699 challenged by additional cellular stress. The nuclear alterations might also be related to disturbed
700 DNA damage response. The C9-HRE neurons showed a trend towards a slightly higher number of
701 γH2A.X-positive foci in their nuclei in the untreated baseline conditions, although the difference was
702 not statistically significant. Both the C9-HRE-carrying and sporadic FTD neurons showed
703 significantly increased intensity and size of γH2A.X-positive foci in their nuclei in response to
704 Topotecan, a drug inducing DNA damage. However, the response was similar to the increase in
705 control neurons, suggesting that the FTD neurons do not show clear impairments in their DNA
706 damage response. γH2A.X is phosphorylated upon double-strand break formation, leading to
707 several downstream effects, such as the activation of p53 pathway, which mediates several other
708 cellular responses, such as apoptosis and cell death, cell cycle arrest, or DNA repair [90]. Most
709 interestingly, TDP-43 pathology can be linked to DNA damage and TDP-43 inclusions are suggested
710 to induce p53-dependent apoptosis of iPSC-derived cortical neurons leading to increased neuronal
711 death [91]. A previous study utilizing iPSC-derived brain organoid slice cultures from C9-HRE
712 carriers indicated increased genomic instability and DNA damage in the neurons [87], suggesting
713 that the potential nuclear changes and altered DNA damage response should be further investigated
714 in the iPSC-derived models from FTD patients.

715
716 Taken together, our present study shows that the sporadic and C9-HRE-carrying FTD patient-
717 derived iPSC cortical neurons recapitulate the main cellular pathologies and similar structural and
718 functional synaptic disturbances as detected in the patient brains, suggesting imbalanced excitatory
719 and inhibitory neurotransmission. The underlying molecular-level mechanisms may be linked to
720 altered expression and function of several genes regulating synaptic structures and function, which
721 provide specific targets to be investigated in future studies. All in all, our data suggest that the
722 synaptic deficits are a common feature in FTD neurons, regardless of whether they carry the C9-

723 HRE or not and that synaptic dysfunction is an important target for upcoming therapeutic
724 interventions and biomarker development in FTD. Moreover, the present study proposes that FTD
725 patient-derived iPSC neurons represent a valid model for discovering and testing different
726 neuromodulatory approaches aiming at alleviating synaptic dysfunction in FTD.

727

728 **Availability of data and materials**

729 The datasets used and/or analyzed during the current study are available from the corresponding
730 author upon reasonable request.

731

732 **Acknowledgements**

733 The authors would like to thank University of Eastern Finland Cell and Tissue Imaging Unit (Kuopio,
734 Finland) for providing the infrastructure and help for microscopy and the Biocenter Kuopio National
735 Virus Vector Laboratory at University of Eastern Finland (Kuopio, Finland) for packaging the GFP-
736 AAV vector. Part of the computational analyzes were performed on servers provided by UEF
737 Bioinformatics Center, University of Eastern Finland, Finland, supported by the Biocenter Finland.

738

739

740 **Conflict of interest**

741 All authors have approved the final version of the manuscript and give their consent for publication.
742 The authors declare no potential conflicts of interest with respect to the research, authorship, and/or
743 publication of this article.

744

745 **References**

- 746 1. Bang J, Spina S, Miller BL. Frontotemporal dementia. *The Lancet*. 2015;386:1672–1682.
- 747 2. Onyike CU, Diehl-Schmid J. The epidemiology of frontotemporal dementia. *International*
748 *Review of Psychiatry*. 2013;25:130–137.
- 749 3. Hendriks S, Peetoom K, Bakker C, Van Der Flier WM, Papma JM, Koopmans R, et al.
750 Global Prevalence of Young-Onset Dementia: A Systematic Review and Meta-analysis.
751 *JAMA Neurol*. 2021;78:1.

752 4. Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein L, et al.
753 Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes
754 in amyotrophic lateral sclerosis. *Amyotrophic Lateral Sclerosis*. 2009;10:131–146.

755 5. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al.
756 Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes
757 Chromosome 9p-Linked FTD and ALS. *Neuron*. 2011;72:245–256.

758 6. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A
759 hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked
760 ALS-FTD. *Neuron*. 2011;72:257–268.

761 7. Majounie E, Renton AE, Mok K, Dopper EGP, Waite A, Rollinson S, et al. Frequency of the
762 C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and
763 frontotemporal dementia: a cross-sectional study. *Lancet Neurol*. 2012;11:323–330.

764 8. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72
765 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS.
766 *Science* (1979). 2013;339:1335–1338.

767 9. Gendron TF, Bieniek KF, Zhang YJ, Jansen-West K, Ash PEA, Caulfield T, et al. Antisense
768 transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and
769 undergo repeat-associated non-ATG translation in c9FTD/ALS. *Acta Neuropathol*.
770 2013;126:829.

771 10. Sellier C, Campanari M, Corbier CJ, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M, et
772 al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor
773 neuron dysfunction and cell death. *EMBO J*. 2016;35:1276.

774 11. Olszewska DA, Lonergan R, Fallon EM, Lynch T. Genetics of Frontotemporal Dementia.
775 *Curr Neurol Neurosci Rep*. 2016;16.

776 12. Benussi A, Alberici A, Buratti E, Ghidoni R, Gardoni F, Di Luca M, et al. Toward a Glutamate
777 Hypothesis of Frontotemporal Dementia. *Front Neurosci*. 2019;13:1–9.

778 13. Huber N, Korhonen S, Hoffmann D, Leskelä S, Rostalski H, Remes AM, et al. Deficient
779 neurotransmitter systems and synaptic function in frontotemporal lobar degeneration—
780 Insights into disease mechanisms and current therapeutic approaches. *Molecular Psychiatry*
781 2021 27:3. 2021;27:1300–1309.

782 14. Shimojo M, Takuwa H, Takado Y, Tokunaga M, Tsukamoto S, Minatohara K, et al. Selective
783 Disruption of Inhibitory Synapses Leading to Neuronal Hyperexcitability at an Early Stage of
784 Tau Pathogenesis in a Mouse Model. *The Journal of Neuroscience*. 2020;40:3491.

785 15. Murley AG, Rouse MA, Simon Jones P, Ye R, Hezemans FH, O'Callaghan C, et al. GABA
786 and glutamate deficits from frontotemporal lobar degeneration are associated with
787 disinhibition. *Brain*. 2021;143:3449–3462.

788 16. Funkiewiez A, Bertoux M, de Souza LC, Lévy R, Dubois B. The SEA (Social cognition and
789 emotional assessment): A clinical neuropsychological tool for early diagnosis of frontal
790 variant of frontotemporal lobar degeneration. *Neuropsychology*. 2012;26:81–90.

791 17. Benussi A, Dell'Era V, Cantoni V, Cotelli MS, Cosseddu M, Spallazzi M, et al. TMS for
792 staging and predicting functional decline in frontotemporal dementia. *Brain Stimul*.
793 2020;13:386–392.

794 18. Benussi A, Grassi M, Palluzzi F, Cantoni V, Cotelli MS, Premi E, et al. Classification
795 accuracy of TMS for the diagnosis of mild cognitive impairment. *Brain Stimul.* 2021;14:241–
796 249.

797 19. Malpetti M, Holland N, Jones PS, Ye R, Cope TE, Fryer TD, et al. Synaptic density in
798 carriers of C9orf72 mutations: a [11C]UCB-J PET study. *Ann Clin Transl Neurol.*
799 2021;8:1515.

800 20. Malpetti M, Jones PS, Cope TE, Holland N, Naessens M, Rouse MA, et al. Synaptic Loss in
801 Frontotemporal Dementia Revealed by [11C]UCB-J Positron Emission Tomography. *Ann
802 Neurol.* 2023;93:142–154.

803 21. Premi E, Pengo M, Mattioli I, Cantoni V, Dukart J, Gasparotti R, et al. Early
804 neurotransmitters changes in prodromal frontotemporal dementia: A GENFI study. 2023.
805 2023. <https://doi.org/10.1016/j.nbd.2023.106068>.

806 22. Bowles KR, Silva MC, Whitney K, Bertucci T, Berlind JE, Lai JD, et al. ELAVL4, splicing,
807 and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids.
808 *Cell.* 2021;184:4547–4563.e17.

809 23. Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and
810 molecular changes provide insights into mechanisms of disease. *Front Mol Neurosci.*
811 2022;15.

812 24. Vucic S, Kiernan MC. Axonal excitability properties in amyotrophic lateral sclerosis. *Clin
813 Neurophysiol.* 2006;117:1458–1466.

814 25. Garcia JD, Gookin SE, Crosby KC, Schwartz SL, Tiemeier E, Kennedy MJ, et al. Stepwise
815 disassembly of GABAergic synapses during pathogenic excitotoxicity. *Cell Rep.*
816 2021;37:110142.

817 26. Marchand-Pauvert V, Peyre I, Lackmy-Vallee A, Querin G, Bede P, Lacomblez L, et al.
818 Absence of hyperexcitability of spinal motoneurons in patients with amyotrophic lateral
819 sclerosis. *J Physiol.* 2019;597:5445–5467.

820 27. Burrell JR, Kiernan MC, Vucic S, Hodges JR. Motor Neuron dysfunction in frontotemporal
821 dementia. *Brain.* 2011;134:2582–2594.

822 28. Coon EA, Sorenson EJ, Whitwell JL, Knopman DS, Josephs KA. Predicting survival in
823 frontotemporal dementia with motor neuron disease. *Neurology.* 2011;76:1886.

824 29. Perkins EM, Burr K, Banerjee P, Mehta AR, Dando O, Selvaraj BT, et al. Altered network
825 properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction.
826 *Mol Neurodegener.* 2021;16.

827 30. Devlin AC, Burr K, Borooh S, Foster JD, Cleary EM, Geti I, et al. Human iPSC-derived
828 motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite
829 maintaining viability. *Nat Commun.* 2015;6.

830 31. Huber N, Hoffmann D, Giniatullina R, Rostalski H, Leskelä S, Takalo M, et al. C9orf72
831 hexanucleotide repeat expansion leads to altered neuronal and dendritic spine morphology
832 and synaptic dysfunction. *Neurobiol Dis.* 2022;162.

833 32. Leskelä S, Hoffmann D, Rostalski H, Huber N, Wittrahm R, Hartikainen P, et al. FTLD
834 Patient-Derived Fibroblasts Show Defective Mitochondrial Function and Accumulation of
835 p62. *Mol Neurobiol.* 2021;58:5438.

836 33. Singh S, Plotnikova L, Karvonen K, Ryytty S, Hyppönen J, Kälviäinen R, et al. Generation of
837 a human induced pluripotent stem cell line (UEFi004-A) from a patient with progressive
838 myoclonic epilepsy type 1 (EPM1). *Stem Cell Res.* 2023;73:103248.

839 34. Czuppa M, Dhingra A, Zhou Q, Rizzu P, Heutink P, Correspondence DE, et al. Drug screen
840 in iPSC-Neurons identifies nucleoside analogs as inhibitors of (G 4 C 2) n expression in
841 C9orf72 ALS/FTD II Drug screen in iPSC-Neurons identifies nucleoside analogs as inhibitors
842 of (G 4 C 2) n expression in C9orf72 ALS/FTD An intronic (G 4 C 2 . 2022. 2022.
843 https://doi.org/10.1016/j.celrep.2022.110913.

844 35. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an
845 open-source platform for biological-image analysis. *Nature Methods* 2012 9:7. 2012;9:676–
846 682.

847 36. Schmidt U, Weigert M, Broaddus C, Myers G. Cell detection with star-convex polygons.
848 Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
849 Intelligence and Lecture Notes in Bioinformatics). 2018;11071 LNCS:265–273.

850 37. Pedregosa F, Michel V, Grisel O, Blondel M, Prettenhofer P, Weiss R, et al. Scikit-learn:
851 Machine Learning in Python. vol. 12. 2011.

852 38. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
853 *Bioinformatics*. 2014;30:2114–2120.

854 39. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
855 universal RNA-seq aligner. *Bioinformatics*. 2013;29:15–21.

856 40. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for
857 alignment and quantification of RNA sequencing reads. *Nucleic Acids Res.* 2019;47.

858 41. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
859 seq data with DESeq2. *Genome Biol.* 2014;15:1–21.

860 42. Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data:
861 removing the noise and preserving large differences. *Bioinformatics*. 2019;35:2084–2092.

862 43. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment
863 tool for interpreting omics data. *Innovation (Cambridge (Mass))*. 2021;2.

864 44. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular
865 Signatures Database (MSigDB) hallmark gene set collection. *Cell Syst.* 2015;1:417–425.

866 45. S Z, W C. Sox2, a key factor in the regulation of pluripotency and neural differentiation.
867 *World J Stem Cells.* 2014;6:305.

868 46. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly
869 efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling.
870 *Nature Biotechnology* 2009 27:3. 2009;27:275–280.

871 47. Hoffman GE, Hartley BJ, Flaherty E, Ladran I, Gochman P, Ruderfer DM, et al.
872 Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are
873 concordant with post-mortem adult brains. *Nat Commun.* 2017;8.

874 48. Lv X, Ren SQ, Zhang XJ, Shen Z, Ghosh T, Xianyu A, et al. TBR2 coordinates
875 neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the
876 mammalian cortex. *Nature Communications* 2019 10:1. 2019;10:1–15.

877 49. Handel AE, Chintawar S, Lalic T, Whiteley E, Vowles J, Giustacchini A, et al. Assessing
878 similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived
879 cortical neurons through single-cell transcriptomics. *Hum Mol Genet*. 2016;25:989–1000.

880 50. Hevner RF, Shi L, Justice N, Hsueh YP, Sheng M, Smiga S, et al. *Tbr1* Regulates
881 Differentiation of the Preplate and Layer 6. *Neuron*. 2001;29:353–366.

882 51. Cera I, Whitton L, Donohoe G, Morris DW, Dechant G, Apostolova G. Genes encoding
883 SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability.
884 *PLoS Genet*. 2019;15.

885 52. Dominguez MH, Ayoub AE, Rakic P. POU-III Transcription Factors (Brn1, Brn2, and Oct6)
886 Influence Neurogenesis, Molecular Identity, and Migratory Destination of Upper-Layer Cells
887 of the Cerebral Cortex. *Cerebral Cortex* (New York, NY). 2013;23:2632.

888 53. Gagliardi D, Costamagna G, Taiana M, Andreoli L, Biella F, Bersani M, et al. Insights into
889 disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral
890 sclerosis/frontotemporal dementia. *Ageing Res Rev*. 2020;64:101172.

891 54. Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. *Nat*
892 *Rev Neurol*. 2018;14:544.

893 55. Freibaum BD, Taylor JP. The role of dipeptide repeats in C9ORF72-related ALS-FTD. *Front*
894 *Mol Neurosci*. 2017;10:1–9.

895 56. Haeusler AR, Donnelly CJ, Periz G, Simko EAJ, Shaw PG, Kim MS, et al. C9orf72
896 nucleotide repeat structures initiate molecular cascades of disease. *Nature*. 2014;507:195–
897 200.

898 57. Stopford MJ, Higginbottom A, Hautbergue GM, Cooper-Knock J, Mulcahy PJ, De Vos KJ, et
899 al. C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell
900 model, which is rescued by partial depletion of Pten. *Hum Mol Genet*. 2017;26:1133–1145.

901 58. Jovičić A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB, et al. Modifiers of
902 C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS.
903 *Nat Neurosci*. 2015;18:1226–1229.

904 59. Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, et al. Gain of
905 toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense
906 oligonucleotides targeting GGGGCC-containing RNAs. *Neuron*. 2016;90:535.

907 60. MacKenzie IR, Arzberger T, Kremmer E, Troost D, Lorenzl S, Mori K, et al. Dipeptide repeat
908 protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. *Acta*
909 *Neuropathol*. 2013;126:859–879.

910 61. Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, et al. Reprogramming
911 iPSCs to study age-related diseases: Models, therapeutics, and clinical trials. *Mech Ageing*
912 *Dev*. 2023;214:111854.

913 62. Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R. Genetics of FTLD:
914 overview and what else we can expect from genetic studies. *J Neurochem*. 2016;138:32–53.

915 63. Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43
916 misfolding and pathology in amyotrophic lateral sclerosis. *Front Mol Neurosci*.
917 2019;12:436464.

918 64. Jo M, Lee S, Jeon YM, Kim S, Kwon Y, Kim HJ. The role of TDP-43 propagation in
919 neurodegenerative diseases: integrating insights from clinical and experimental studies.
920 *Experimental & Molecular Medicine* 2020 52:10. 2020;52:1652–1662.

921 65. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, et al. The
922 C9orf72 repeat expansion disrupts nucleocytoplasmic transport. *Nature*. 2015;525:56–61.

923 66. Saberi S, Stauffer JE, Jiang J, Garcia SD, Taylor AE, Schulte D, et al. Sense-encoded poly-
924 GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with
925 TDP-43 in dendrites of repeat expanded C9orf72 amyotrophic lateral sclerosis. *Acta
926 Neuropathol*. 2018;135:459.

927 67. Chang K, Ling JP, Redding-Ochoa J, An Y, Li L, Dean SA, et al. Loss of TDP-43 splicing
928 repression occurs early in the aging population and is associated with Alzheimer's disease
929 neuropathologic changes and cognitive decline. *Acta Neuropathol*. 2024;147:1–21.

930 68. Nana AL, Sidhu M, Gaus SE, Hwang JHL, Li L, Park Y, et al. Neurons selectively targeted in
931 frontotemporal dementia reveal early stage TDP-43 pathobiology. *Acta Neuropathol*.
932 2019;137:27–46.

933 69. Keating SS, San Gil R, Swanson MEV, Scotter EL, Walker AK. TDP-43 pathology: From
934 noxious assembly to therapeutic removal. *Prog Neurobiol*. 2022;211:102229.

935 70. Davidson JM, Chung RS, Lee A. The converging roles of sequestosome-1/p62 in the
936 molecular pathways of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia
937 (FTD). *Neurobiol Dis*. 2022;166:105653.

938 71. Webster CP, Smith EF, Grierson AJ, De Vos KJ. C9orf72 plays a central role in Rab
939 GTPase-dependent regulation of autophagy. *Small GTPases*. 2018;9:399.

940 72. Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S, et al. Modeling key
941 pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-
942 derived human neurons. *Acta Neuropathol*. 2013;126:385.

943 73. Dafinca R, Scaber J, Ababneh N, Lalic T, Weir G, Christian H, et al. C9orf72 Hexanucleotide
944 Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and
945 Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients
946 with Amyotrophic Lateral Sclerosis and Frontotemporal Demen. *Stem Cells*. 2016;34:2063–
947 2078.

948 74. Xiao S, McKeever PM, Lau A, Robertson J. Synaptic localization of C9orf72 regulates post-
949 synaptic glutamate receptor 1 levels. *Acta Neuropathol Commun*. 2019;7:161.

950 75. Bauer CS, Cohen RN, Sironi F, Livesey MR, Gillingwater TH, Highley JR, et al. An
951 interaction between synapsin and C9orf72 regulates excitatory synapses and is impaired in
952 ALS/FTD. *Acta Neuropathol*. 2022;144:437.

953 76. Benussi A, Di Lorenzo F, Dell'Era V, Cosseddu M, Alberici A, Caratozzolo S, et al.
954 Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal
955 dementia. *Neurology*. 2017;89:665–672.

956 77. Padovani A, Benussi A, Cantoni V, Dell'Era V, Cotelli MS, Caratozzolo S, et al. Diagnosis of
957 mild cognitive impairment due to Alzheimer's disease with transcranial magnetic stimulation.
958 *Journal of Alzheimer's Disease*. 2018;65:221–230.

959 78. Dyer MS, Reale LA, Lewis KE, Walker AK, Dickson TC, Woodhouse A, et al. Mislocalisation
960 of TDP-43 to the cytoplasm causes cortical hyperexcitability and reduced excitatory
961 neurotransmission in the motor cortex. *J Neurochem.* 2021;157:1300–1315.

962 79. Adams NE, Hughes LE, Rouse MA, Phillips HN, Shaw AD, Murley AG, et al. GABAergic
963 cortical network physiology in frontotemporal lobar degeneration. *Brain.* 2021;144:2135–
964 2145.

965 80. Liu EY, Russ J, Lee EB. Neuronal Transcriptome from C9orf72 Repeat Expanded Human
966 Tissue is Associated with Loss of C9orf72 Function. *Free Neuropathol.* 2020;1.

967 81. Sommer D, Rajkumar S, Seidel M, Aly A, Ludolph A, Ho R, et al. Aging-Dependent Altered
968 Transcriptional Programs Underlie Activity Impairments in Human C9orf72-Mutant Motor
969 Neurons. *Front Mol Neurosci.* 2022;15.

970 82. Szebényi K, Wenger LMD, Sun Y, Dunn AWE, Limegrover CA, Gibbons GM, et al. Human
971 ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable
972 neuronal pathology. *Nat Neurosci.* 2021;24:1542–1554.

973 83. Prudencio M, Belzil V V., Batra R, Ross CA, Gendron TF, Pregent LJ, et al. Distinct brain
974 transcriptome profiles in C9orf72-associated and sporadic ALS. *Nat Neurosci.*
975 2015;18:1175–1182.

976 84. Lopez MB, Garcia MN, Grasso D, Bintz J, Molejon MI, Velez G, et al. Functional
977 Characterization of Nupr1L, A Novel p53-Regulated Isoform of the High-Mobility Group
978 (HMG)-Related Protumoral Protein Nupr1. *J Cell Physiol.* 2015;230:2936–2950.

979 85. Lee YK, Jee BA, Kwon SM, Yoon YS, Xu WG, Wang HJ, et al. Identification of a
980 mitochondrial defect gene signature reveals NUPR1 as a key regulator of liver cancer
981 progression. *Hepatology.* 2015;62:1174–1189.

982 86. Wójcik P, Jastrzębski MK, Zięba A, Matosiuk D, Kaczor AA. Caspases in Alzheimer's
983 Disease: Mechanism of Activation, Role, and Potential Treatment. *Molecular Neurobiology*
984 2023. 2023;1:1–20.

985 87. Janssen AFJ, Breusegem SY, Larrieu D. Current Methods and Pipelines for Image-Based
986 Quantitation of Nuclear Shape and Nuclear Envelope Abnormalities. *Cells* 2022, Vol 11,
987 Page 347. 2022;11:347.

988 88. Terradas M, Martín M, Genescà A. Impaired nuclear functions in micronuclei results in
989 genome instability and chromothripsis. *Arch Toxicol.* 2016;90:2657–2667.

990 89. Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, et al. Chromothripsis from
991 DNA damage in micronuclei. *Nature* 2015;522:7555. 2015;522:179–184.

992 90. Mah LJ, El-Osta A, Karagiannis TC. γH2AX: a sensitive molecular marker of DNA damage
993 and repair. *Leukemia* 2010;24:4. 2010;24:679–686.

994 91. Vogt MA, Ehsaei Z, Knuckles P, Higginbottom A, Helmbrecht MS, Kunath T, et al. TDP-43
995 induces p53-mediated cell death of cortical progenitors and immature neurons. *Sci Rep.*
996 2018;8:8097.

997

998 **Figure legends**

999 **Figure1: Characterization of the iPSC-derived neurons derived from sporadic and C9-HRE-
1000 carrying FTD patients and healthy control individuals.**

1001 Immunocytochemical staining of the iPSC neurons indicated that the cultures after 180 days
1002 encompass MAP2-positive neurons (green) and GFAP-positive astrocytes (red) (**A**). Also, the
1003 neurons are positive for vGLUT1 and GABA staining, indicating the presence of glutamatergic and
1004 GABAergic neurons, respectively (A). Representative microscopy images are shown. RNA
1005 sequencing confirmed successful differentiation of the iPSCs to cortical neurons (**B**). Stem cell
1006 markers NANOG and POU5F1 decreased in the iPSC neurons. Neuronal marker expression, such
1007 as that of MAP2 and PAX6, a marker for both stem cells and neuroectodermal differentiation,
1008 increased in the iPSC-derived neurons. The neuronal cultures expressed markers from all six cortical
1009 layers of the human brain (BLC11B, SATB2, POU3F2, TUBB3, EOMES and TBR1) and these
1010 markers remained low in the iPSCs. Astrocyte markers GFAP and S100B also increased in the
1011 cultures after 180 days.

1012

1013 **Figure 2: iPSC-derived neurons from C9-HRE-carrying FTD patients express typical C9-HRE-
1014 associated pathological hallmarks.**

1015 Fluorescence *in situ* hybridization (FISH) shows that C9-HRE neurons but not sporadic FTD or
1016 control neurons exhibit sense RNA foci (red) as detected using the TYE™ 563-(CCCCGG)₃ probe
1017 (**A**). Representative microscopy images are shown. Also, C9-HRE carrying neurons specifically
1018 produce poly-GP (**B**) and poly-GA (**C**) DPR proteins. One-way ANOVA followed by Tukey's multiple
1019 comparisons test was used. n [Control] = 11; n [C9-] = 8; n [C9+] = 5. C9-HRE-carrying neurons do
1020 not present with C9orf72 protein haploinsufficiency but a slight non-significant trend towards lower
1021 C9orf72 protein levels as compared to controls (**D**). One-way ANOVA followed by Tukey's multiple
1022 comparisons test was used. n [Control] = 35; n [C9-] = 61; n [C9+] = 46. Statistically significant
1023 differences are shown as * p < 0.05, ** p < 0.01, and *** p < 0.001.

1024

1025 **Figure 3: iPSC-derived neurons from C9-HRE-carrying as well as sporadic FTD patients show
1026 altered intracellular TDP-43 shuttling and enlarged p62/SQSTM1-positive vesicles.**

1027 Representative microscopy images of TDP-43-stained (green) neuronal cultures are shown (**A**).
1028 Quantification of cytosolic-to-nuclear ratio of TDP-43 based on immunofluorescence imaging (**B**).
1029 Each data point represents cytosolic-to-nuclear TDP-43 signal from one image. For each group,
1030 descriptive statistics are shown as mean \pm standard deviation. One-way ANOVA followed by Tukey's
1031 multiple comparisons test was used. n [Control] = 14; n [C9-] = 9; n [C9+] = 12. DAPI (blue) and
1032 MAP2 (red) signals were used to outline neuronal nuclei and cell boundaries, respectively, and to
1033 distinguish the TDP-43 signal in the nucleus and in the cytosol. Quantification of p62/SQSTM1 based
1034 on immunofluorescence imaging. Each data point represents size of p62/SQSTM1 vesicles (**D**),
1035 fluorescence intensity of p62/SQSTM1 vesicles (**E**), and p62/SQSTM1-positive vesicles per MAP2-
1036 positive area per image (**F**). For each group, descriptive statistics are shown as median \pm interquartile
1037 range. Kruskal-Wallis test followed by Dunn's multiple comparisons test was used. n [Control] = 17;
1038 n [C9-] = 17; n [C9+] = 21. Representative microscopy images of p62/SQSTM1-stained neuronal
1039 cultures are shown (**C**). MAP2 signal was used to outline the neuronal cell boundaries, and to
1040 normalize the number of p62/SQSTM1-positive vesicles to neuronal cell area. Statistically significant
1041 differences are shown as * p < 0.05, ** p < 0.01, and *** p < 0.001.

1042

1043 **Figure 4: iPSC-derived FTD neurons show altered dendritic spine number and morphology**
1044 **as well as a decreased response to GABA stimulus**

1045 Representative images of dendrites and their spines of control, sporadic and C9-HRE neurons are
1046 shown (**A**). The neurons expressing GFP (green) and imaged with Zeiss LSM 800 confocal
1047 microscope and analyzed with NeuronStudio program. Dendritic spine analysis shows that the total
1048 spine number is significantly reduced in iPSC-derived FTD neurons compared to control neurons
1049 (**B**). The FTD neurons exhibit significantly fewer mushroom-type spines, but the number of other
1050 spine types remains the same, except for the number of stubby spines, which increased only in C9-
1051 HRE carriers (**C-E**). The number of each spine type was normalized to total spine number. The head
1052 diameter is not altered in any dendritic spine type (**F-G**), except for the sporadic FTD neurons, which
1053 display a slight decrease in stubby spine head diameter (**H**). One-way ANOVA followed by Tukey's
1054 multiple comparisons test was used or for not normally distributed data Kruskal-Wallis test followed

1055 by Dunn's multiple comparisons test was used n [Control] = 28-30; n [C9-] = 21-29; n [C9+] = 23-29.
1056 Calcium imaging revealed that both sporadic and C9-HRE-carrying FTD neurons display a
1057 significantly lower response to GABA compared to control neurons (**I**). Also, the FTD neurons show
1058 a non-significant trend to a weaker response to glutamate and depolarizing KCl as compared to
1059 control neurons. Quantitative data are expressed as means \pm SEM (standard error of mean), unless
1060 otherwise stated. Number of batches and cells within each batch were indicated by n . Significance
1061 was assessed with Student's paired t-test and one-way ANOVA followed by Tukey post hoc test for
1062 parametric and non-parametric data, respectively. n [Control] = 2 (2 lines included per batch); n [C9-]
1063] = 3 (3 lines included per batch); n [C9+] = 3 (3-4 lines included per batch), n indicated averaged
1064 numbers from different batch measurements. Statistically significant differences are shown as * p <
1065 0.05, ** p <0.01, and *** p <0.001.

1066

1067 **Figure 5: Global RNA sequencing reveals several altered biological pathways in iPSC-derived**
1068 **FTD neurons as compared to control neurons.** Global RNA sequencing indicates that the C9-
1069 HRE and sporadic FTD neurons display largely similar gene expression patterns (**A**). However, the
1070 gene expression signatures of both the sporadic and C9-HRE-carrying FTD neurons are dramatically
1071 different from those in the control neurons. The dot plot displays, for the three differently colored
1072 comparisons, the gene set enrichment analysis (GSEA) results for the MSigDB gene set collections
1073 GO Biological Processes (C5 GO BP) and Canonical Pathways (C2 CP). Normalized enrichment
1074 score (NES) is shown in the x-axis whereas the categorical statistical significance (FDR) is indicated
1075 by the size of the marker. Several pathways are significantly downregulated in the FTD neurons
1076 when compared to control neurons. A more detailed pathway analysis indicated prominent changes
1077 in pathways related to synaptic function and signaling (upregulation) as well as DNA repair
1078 mechanisms (downregulation) in FTD neurons when compared to control neurons (**B**). Heatmap
1079 shows the row-wise Z-scored vst-normalized expression in individual samples for genes that were
1080 highly significant up or down-regulated C9+ vs. HC DEGs (P-adj. < 0.01) and among the GSEA core
1081 enrichment of either select synaptic (for up-regulated DEGs) or DNA repair related (for down-
1082 regulated DEGs) GO or Canonical pathways.

1083

1084 **Figure 6: *NUPR2* is the only differentially expressed gene between sporadic and C9-HRE FTD**
1085 **neurons and the neurons display altered nuclear morphologies and presence of micronuclei.**
1086 *NUPR2*, potentially related to the DNA damage pathway, is the only differentially expressed gene
1087 when comparing the C9-HRE and sporadic FTD neurons (**A**). Both sporadic and C9-HRE-carrying
1088 FTD neurons display nuclei, which are significantly rounder in shape as well as significantly smaller
1089 compared to healthy neuron nuclei, indicated by altered nuclear eccentricity (**B**), and a higher
1090 number of micronuclei (**C**). A representative image of a micronucleus next to the nucleus is shown
1091 (arrow). Kruskal-Wallis test followed by Dunn's multiple comparisons test was used. n [Control] = 74;
1092 n [C9-] = 17; n [C9+] = 21. In addition, the distribution of larger and smaller sized nuclei is different
1093 in FTD neurons than that in control neurons (**D-F**). Topotecan treatment significantly increases the
1094 number of γ H2A.X-positive foci in the nuclei in all neurons, indicating increased DNA damage. At
1095 baseline, C9+ neurons display a slightly higher number of γ H2A.X foci compared to HC neurons,
1096 although this difference is not statistically significant (**H-J**). Kruskal-Wallis test followed by Dunn's
1097 multiple comparisons test was used. n [Control] = 26-28; n [C9-] = 15-18; n [C9+] = 44-64. Statistically
1098 significant differences are shown as * p < 0.05, ** p <0.01, and *** p <0.001.

1099

1100 **Declarations**

1101 **Ethics approval and consent to participate**

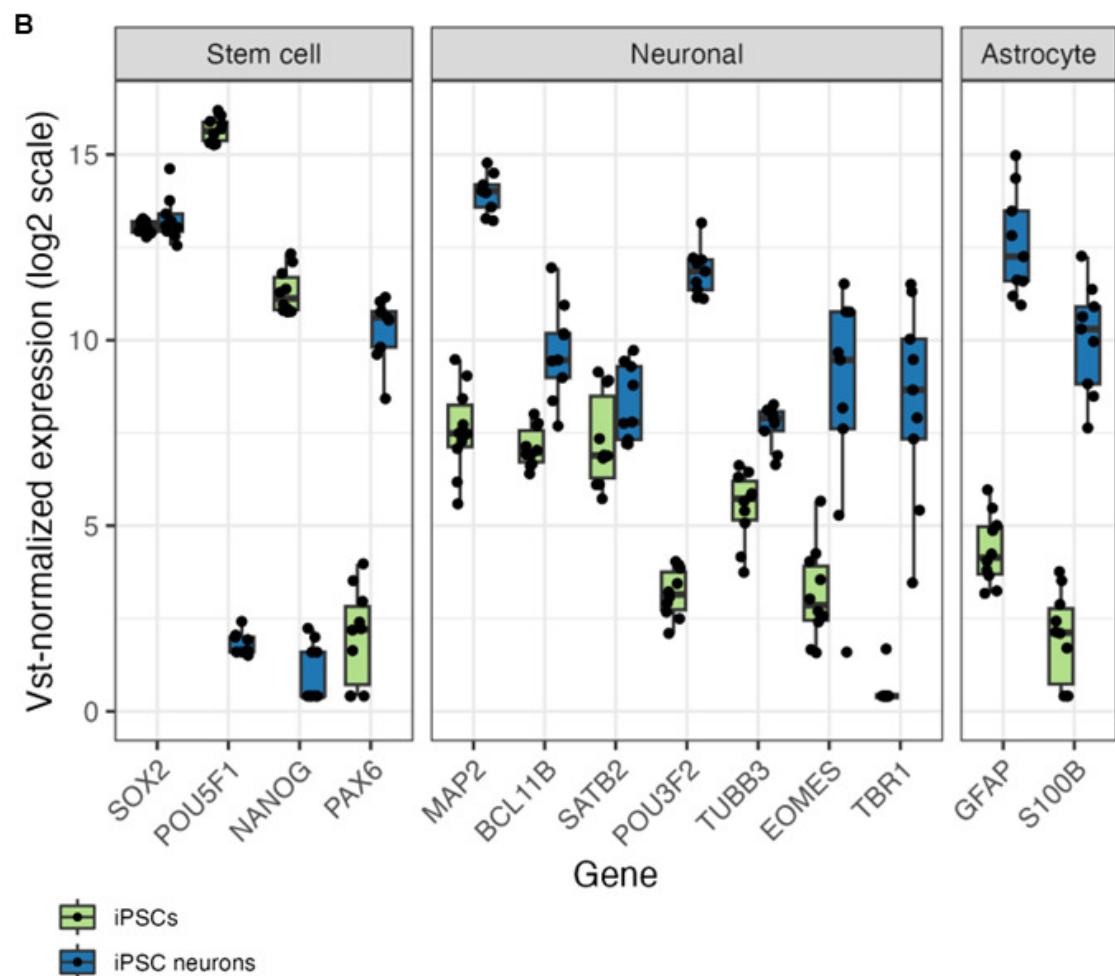
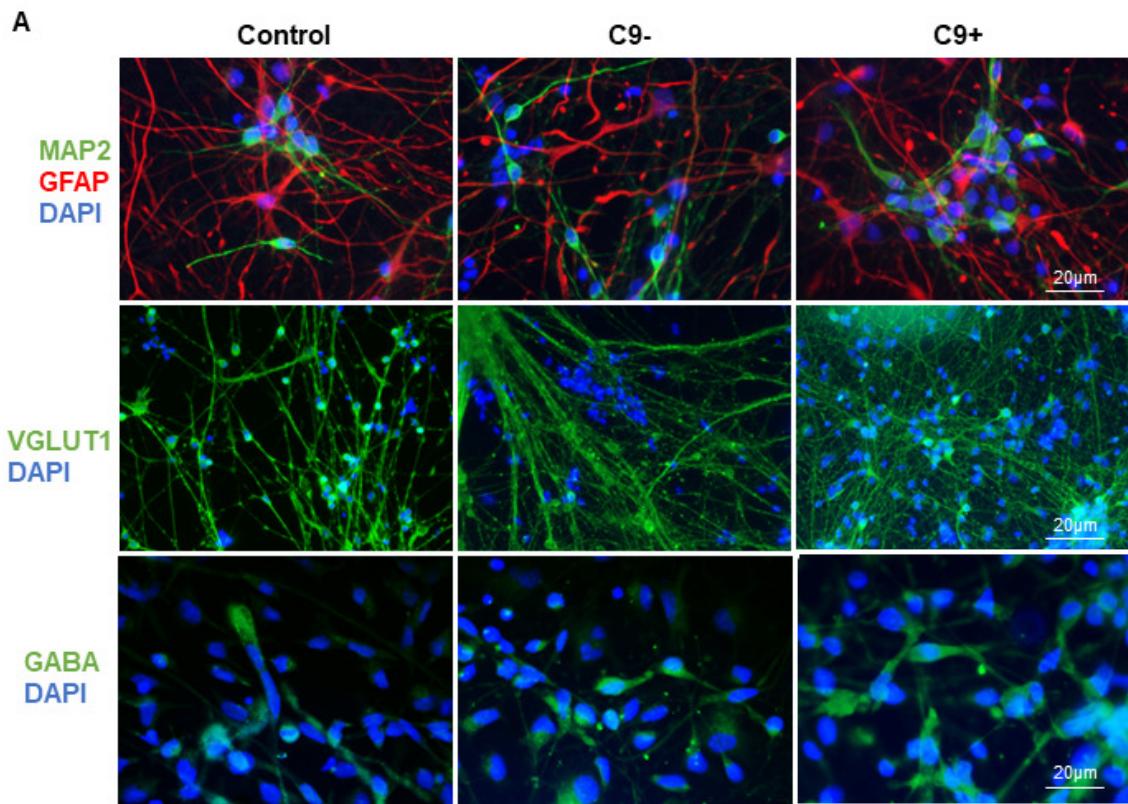
1102 All the participants gave written informed consent. The research in human subjects is performed in
1103 accordance with the ethical standards of Declaration of Helsinki and approved by the Research
1104 Ethics Committee of the Northern Savo Hospital District, Kuopio, Finland (ethical permit 16/2013).
1105 Studies on FTD patient-derived iPSC-neurons are performed with the permission 123/2016 from the
1106 Research Ethics Committee of the Northern Savo Hospital District.

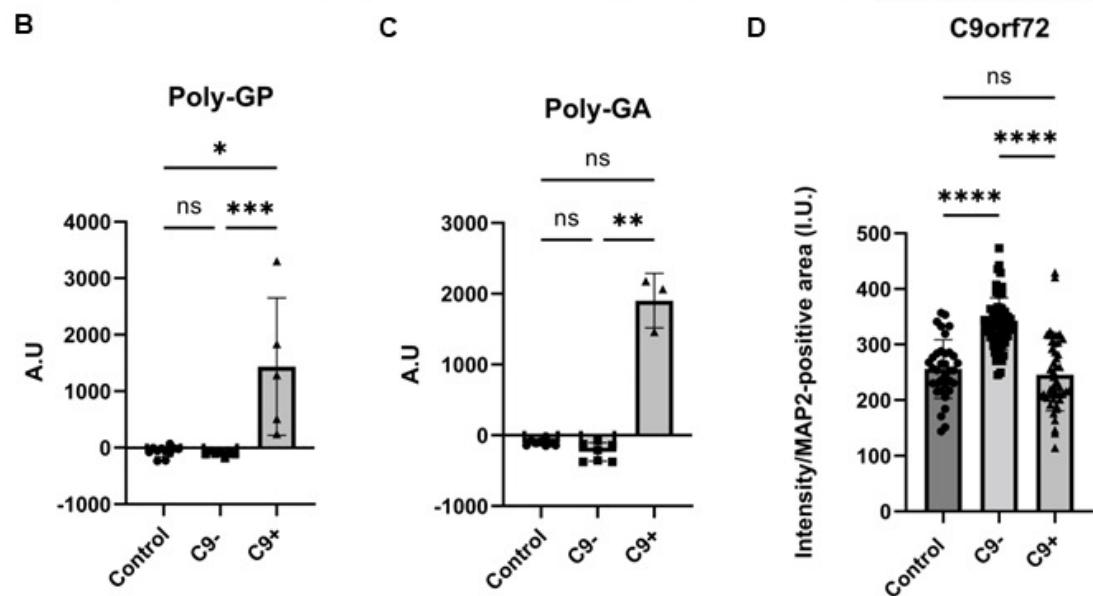
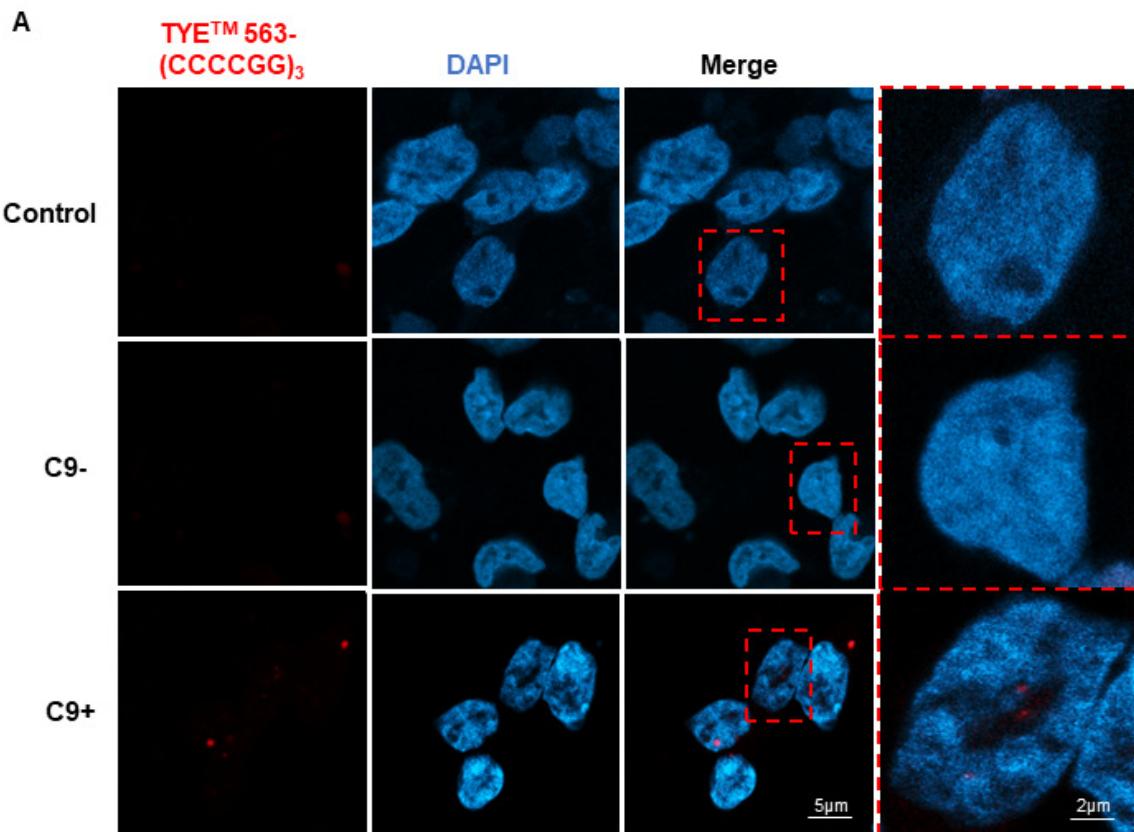
1107

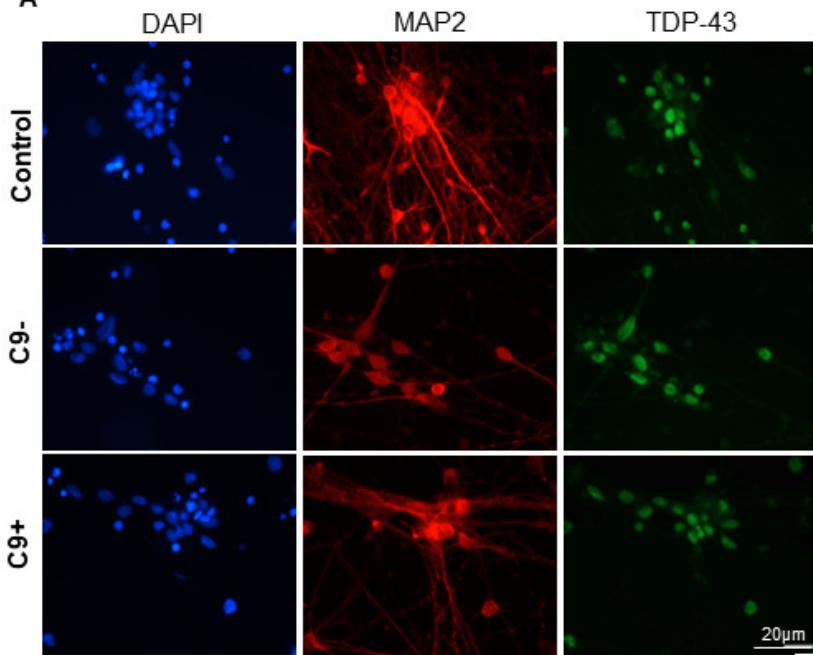
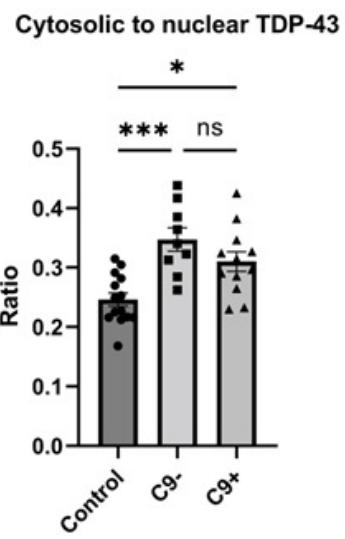
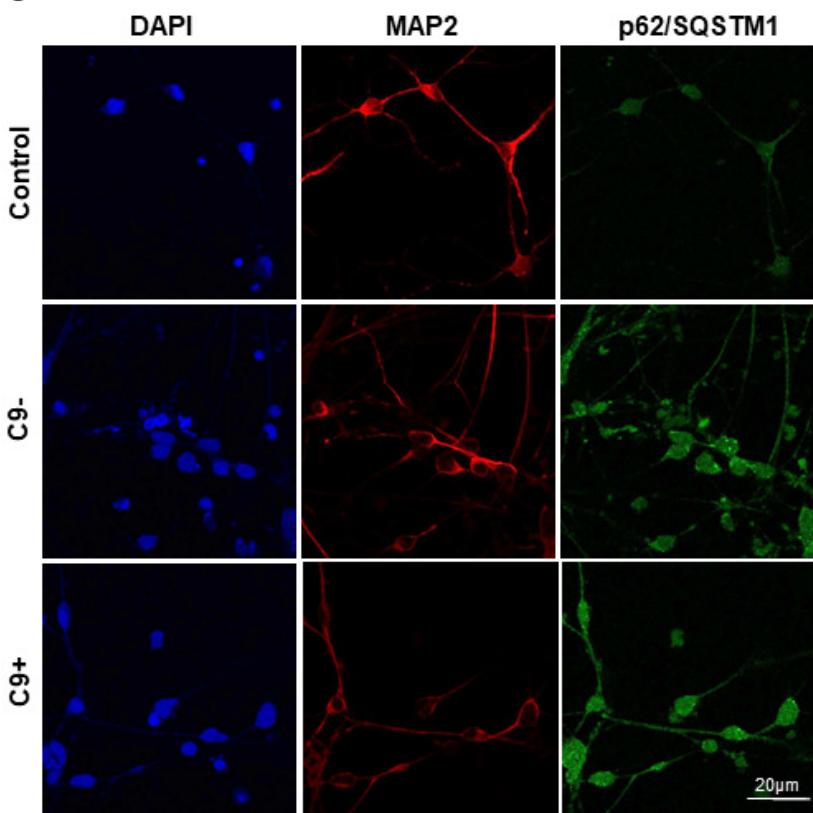
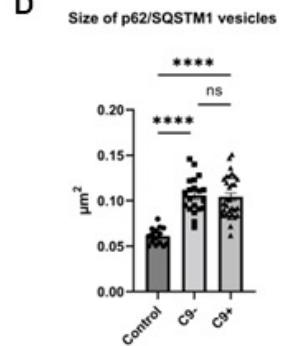
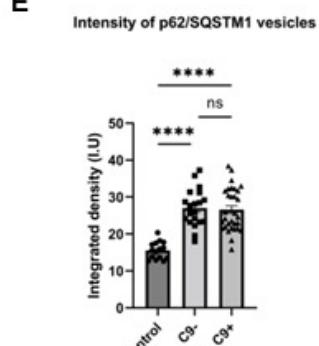
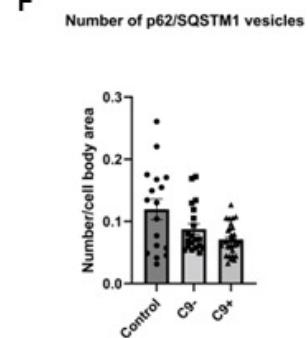
1108 **Funding**

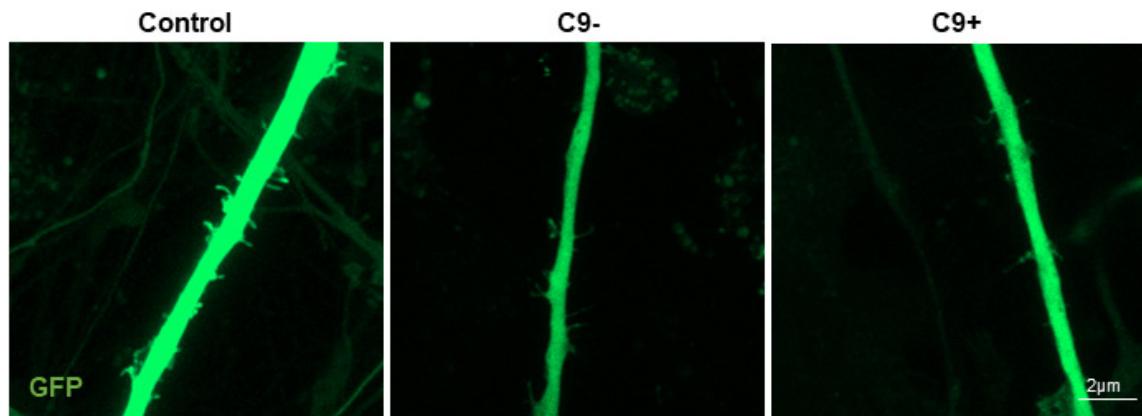
1109 This study is part of the research activities of the Finnish FTD Research Network (FinFTD) and
1110 supported by grants from the Academy of Finland, grant nos. 315459 (AH), 315460 (AMP), 330178

1111 (MT), 338182 (MH) and Sigrid Jusélius Foundation (AH, ES, MT). This research is also part of an
1112 EU Joint Programme - Neurodegenerative Disease Research (JPND) project SynaDeg. The project
1113 is supported through the following funding organizations under the aegis of JPND: Research Council
1114 of Finland, Finland (grant no. 351841) and Federal Ministry of Education and Research, Germany.
1115 It is also supported by the Instrumentarium Foundation (NH), The State Research Funding (ES),
1116 Finnish Cultural Foundation (NH), ALStuttu ry. (NH), and the Strategic Neuroscience Funding of the
1117 University of Eastern Finland (MH, AH, TM). NH and HR are or were PhD students in the Doctoral
1118 Program of Molecular Medicine (DPMM) and/ or GenomMed (HR) of the University of Eastern
1119 Finland (Kuopio, Finland).

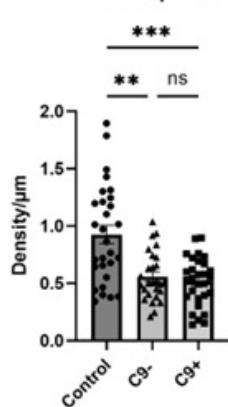


1120

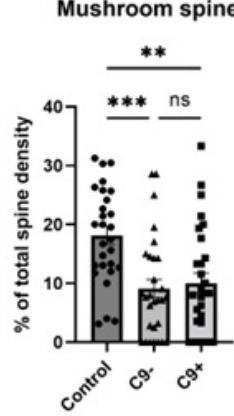


1121 **Authors' contributions**







1122 **NH**: conceptualization, methodology, investigation, validation of methods, data acquisition, analysis
1123 of results, writing original draft, writing review, editing and funding acquisition. **TH**: methodology,
1124 validation of methods, analysis. **SH**: investigation, data analysis, review and editing. **AS**:
1125 investigation, data acquisition analysis, review and editing. **DH**: investigation, data acquisition,
1126 writing-review and editing. **HR**: investigation, methodology, validation of methods, writing-review and
1127 editing. **AD**: investigation, data acquisition, analysis, review and editing. **SRN**: investigation, data
1128 acquisition, analysis, review and editing. **SK**: data acquisition and analysis, review and editing. **MK**:
1129 methodology, validation of methods, review and editing. **EK**: methodology, validation of methods,
1130 review and editing. **KP**: methodology, validation of methods, data acquisition, review and editing.
1131 **JK**: methodology, validation of methods, data acquisition, review and editing. **TM**: resources,
1132 supervision, writing-review and editing. **MT**: methodology, supervision, writing-review and editing.
1133 **MH**: conceptualization, funding acquisition, resources, supervision, writing-review and editing. **JKo**:
1134 resources, supervision, writing-review and editing. **AMP**: funding acquisition, resources. **ES**:
1135 resources, writing-review and editing. **AH**: conceptualization, data curation, writing original draft,
1136 writing review, editing, funding acquisition, supervision, project administration, resources

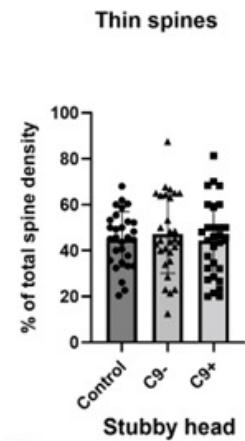

1137

1138 **All authors read and approved the final manuscript.**

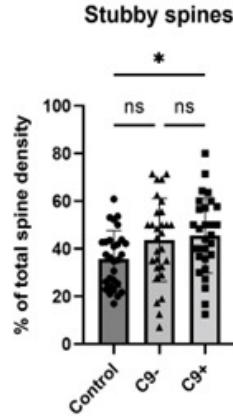



A**B****C****D****E****F**

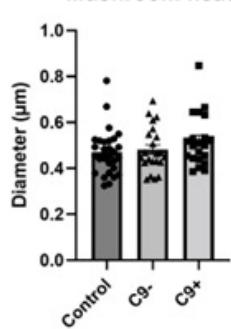
A**B**


Total spines

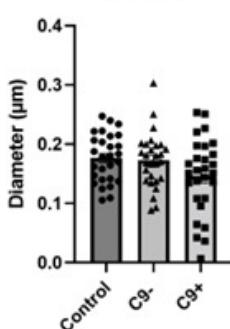
C


Mushroom spines

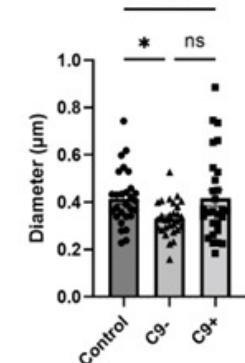
D


Thin spines

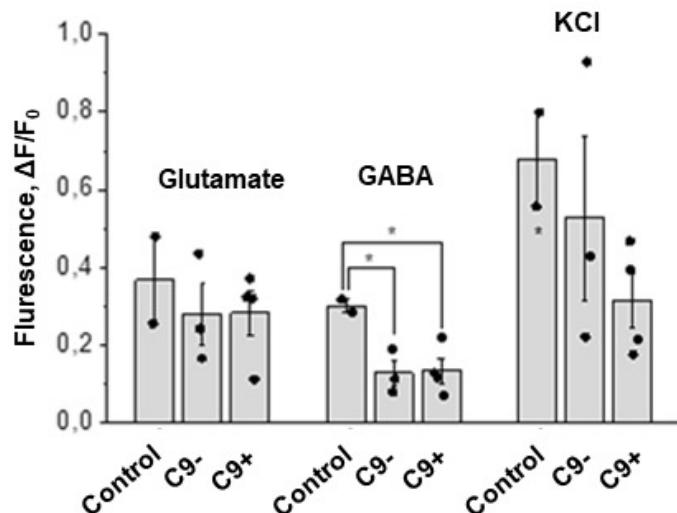
E

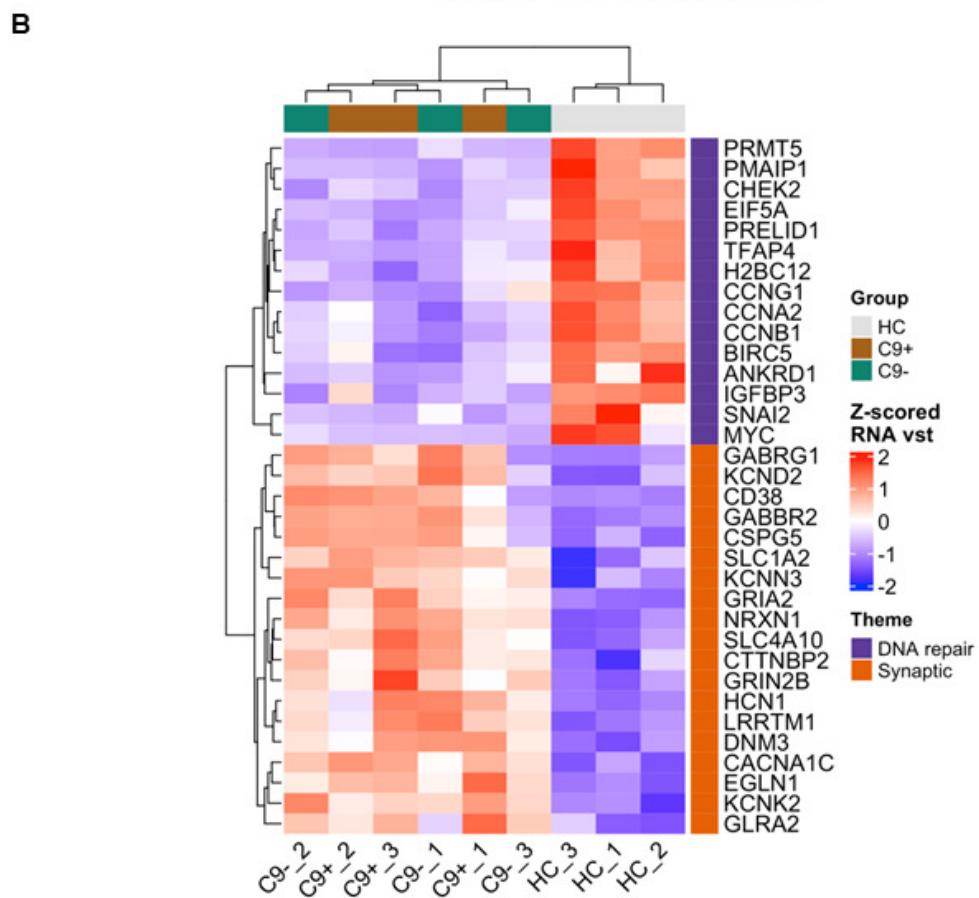
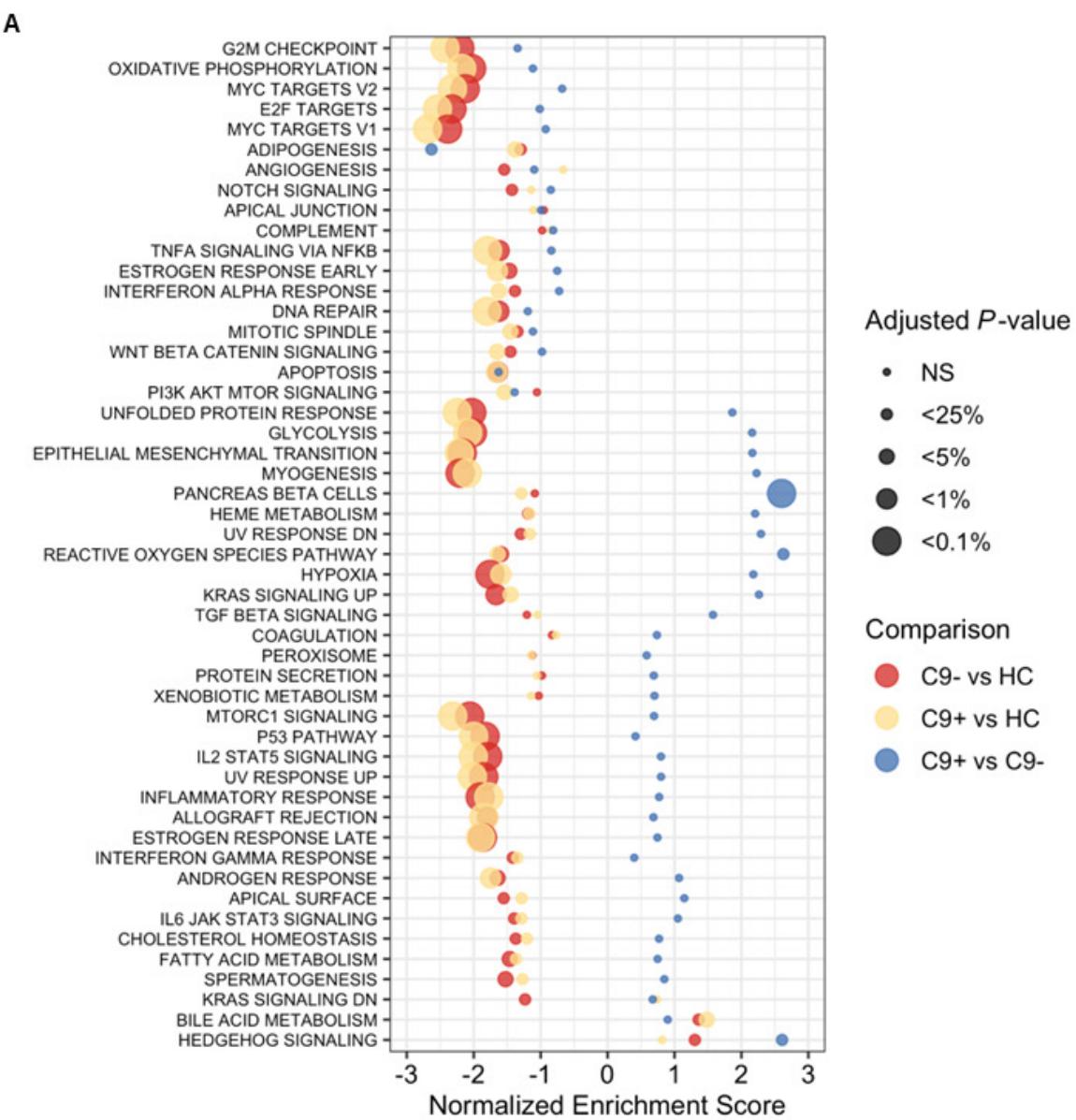

Stubby spines

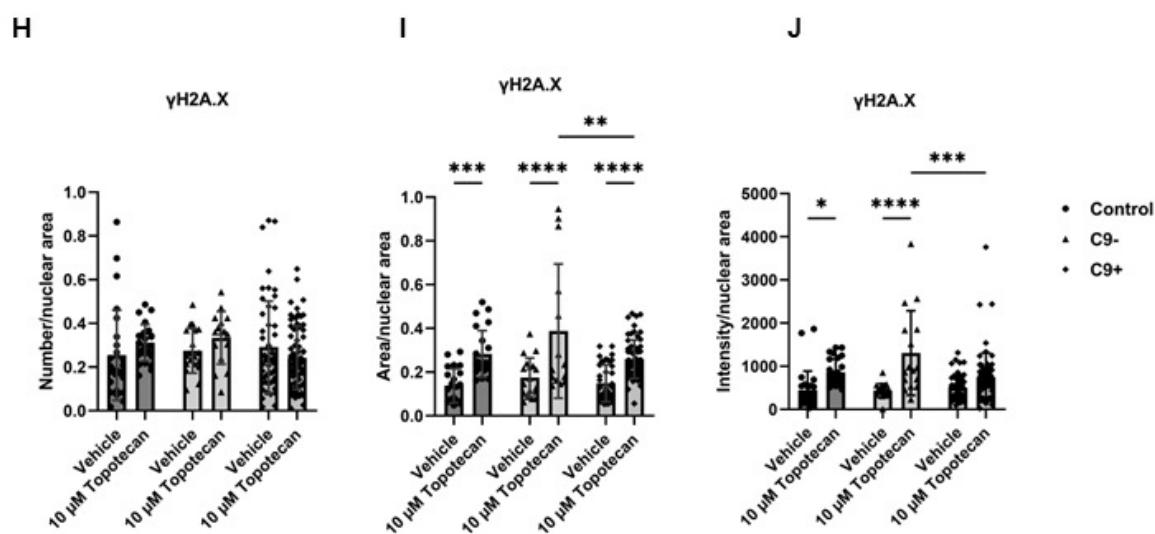
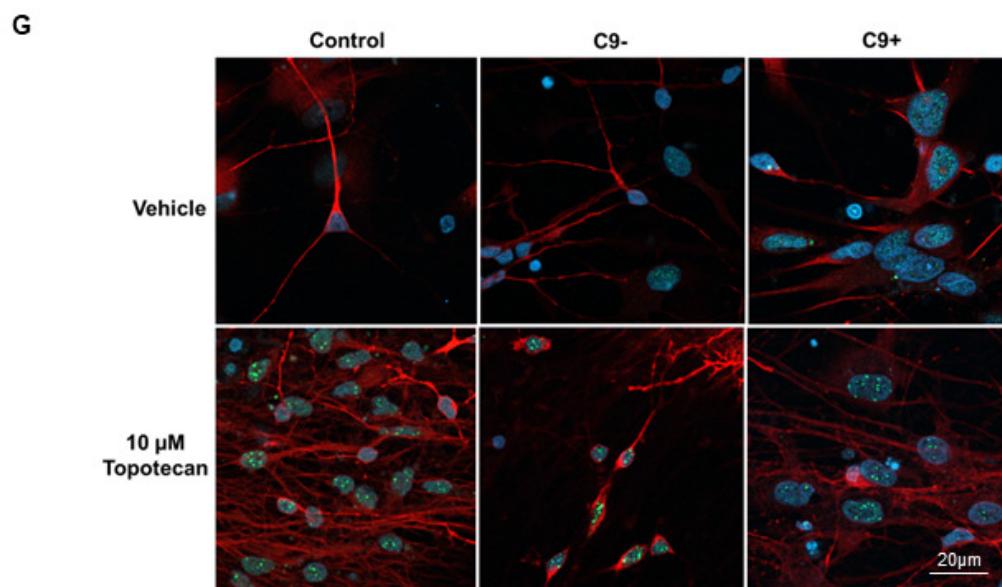
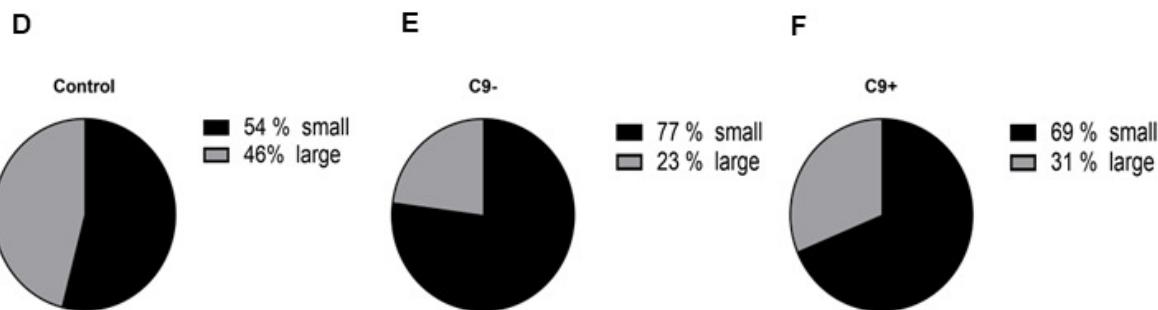
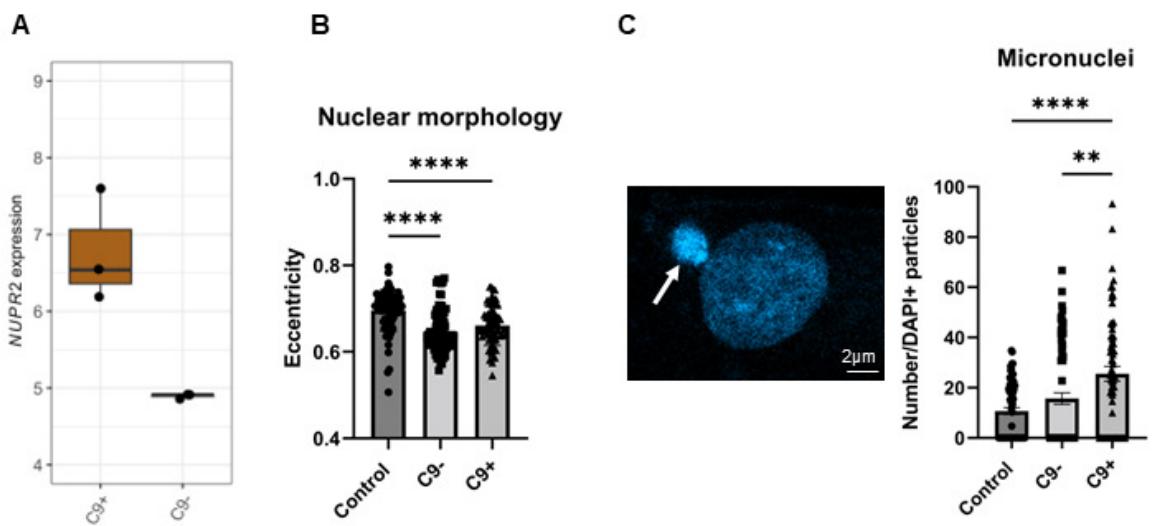
F


Mushroom head

G


Thin head



H





Stubby head

I

Calcium imaging

