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Abstract 

Introduction: The pathogenesis of gastric mucosa-associated tissue (MALT) lymphoma is 

associated with Helicobacter pylori infection. Although treatment strategies and 

responsiveness according to the stage of gastric MALT lymphoma have been widely reported, 

a detailed study of the biological carcinogenic process is still required. 

Method: Paired, fresh tumor-adjacent normal and gastric mucosal tissue samples from 13 

patients with gastric MALT lymphoma were prospectively collected. Whole exome sequencing 

(WES) and whole-transcriptome sequencing (WTS) data were generated. The analysis of 

mutations, gene fusion, gene expression, and the microbiome was stratified by H. pylori 

infection and disease status. 

Results: Somatic mutations in TRAF3 and TNFAIP3 were identified in H. pylori-negative 

gastric MALT lymphoma. Fusions involving BIRC3-MALT1 (2 samples) and TBL1XR1-TP63 

(1 sample with H. pylori infection) were detected. Stepwise comparative analysis of RNA 

expression revealed upregulation of immune response, inflammatory responses, and the NF-

κB signaling pathway in H. pylori-positive MALT lymphoma cases. Pathways associated with 

pathogens were upregulated in H. pylori-negative MALT lymphoma cases, suggesting that 

infections other than H. pylori may affect lymphomagenesis. Microbiome analysis revealed 

that genus_Rothia was negatively correlated with alpha diversity. 

Conclusion: A stepwise approach using diverse stages of WTS data revealed detailed 

pathogenic mechanisms of gastric MALT lymphoma. Chronic inflammation following 

infection contributes to gastric MALT lymphomagenesis in both H. pylori positive and negative 

cases. 

 

Keywords: Helicobacter pylori, MALToma, sequencing   
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Background 

 Gastric mucosa-associated lymphoid tissue (MALT) lymphoma is a low-grade non-Hodgkin 

lymphoma that originates from the post-germinal center B cells[1]. Gastric MALT lymphoma 

is the most common primary gastric lymphoma[2]. Helicobacter pylori (H. pylori) is associated 

with gastric MALT lymphoma; approximately 90% of patients with gastric MALT lymphoma 

are infected with H. pylori and 60–92% of cases respond to eradication therapy[3, 4]. 

 In patients infected with H. pylori, the stomach is exposed to a low-pH environment and 

chronic stimulation, leading to the development of chronic gastritis and the acquisition of 

MALT[1, 5]. The development of MALT lymphoma is induced by genetic alterations and/or 

proliferation of monoclonal B cells following stimulation of H. pylori[5]. Translocations of 

t(1;2)(p22;p12)/IGK-BCL10 and genetic alterations in TNFAIP3, CARD11, among other things, 

that indicate an abnormal activation of the NF-κB signaling pathway, play a fundamental role 

in driving gastric MALT lymphoma in both H. pylori-positive and H. pylori-negative cases[6].  

In the early stages, MALT lymphoma depends on H. pylori, thus it is expected to regress with 

eradication therapy. However, in the advanced stages of the disease, MALT lymphoma 

transforms into an H. pylori-independent cancer, exhibiting a poor response to eradication 

therapy[7, 8]. The treatment strategies and responsiveness according to the stage of H. pylori-

positive gastric MALT lymphoma have been reported[9-11]. However, detailed biological 

studies of this carcinogenic process are required. Although some studies have reported the 

results of microarray analysis of gastric MALT lymphoma, RNA-seq analysis using diverse 

stages of gastric mucosa samples would be helpful in elucidating the carcinogenesis of gastric 

MALT lymphoma by H. pylori[12-14]. 

 In addition, in cases of H. pylori-negative gastric MALT lymphoma, infection with other 

microbiota, autoimmune diseases, and genetic alterations are believed to contribute to 
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carcinogenesis[15]. The most common genetic alteration is the translocation of 

t(11;18)(q21;q21)/BIRC3-MALT1, which is also associated with poor response to eradication 

therapy in H. pylori-negative cases[8, 16]. Interestingly, some patients without translocations 

respond to eradication even though they were not infected with H. pylori[17]. Considering the 

pathophysiology of H. pylori-positive cases and their phenotypic similarity to H. pylori-

negative cases, a microbiome other than H. pylori may contribute to the development of H. 

pylori-negative gastric MALT lymphoma. Similarly, the differences in the microbiome 

between H. pylori-negative gastric MALT lymphoma and control patients have also been 

reported[18]. In summary, these findings highlight the importance of analyzing the microbiota 

of H. pylori-negative gastric MALT lymphomas. 

 Therefore, the current study aimed to elucidate the pathways that contribute to the 

carcinogenesis of MALT lymphoma following microbial infection. Additionally, we aimed to 

identify the microbiome responsible for initiating carcinogenesis in H. pylori-negative cases. 

For this purpose, the genetic changes and RNA expression patterns of gastric MALT lymphoma, 

adjacent normal tissue, and follow-up gastric mucosal tissue were compared by prospectively 

collecting fresh samples from patients with newly diagnosed gastric MALT lymphoma.  

 

Methods 

Patients and samples 

 A total of thirteen patients diagnosed with gastric MALT lymphoma were included in this 

study. Paired fresh samples of tumors and adjacent normal gastric mucosal tissues were 

collected using endoscopy before treatment. Additionally, follow-up gastric mucosal tissue and 

saliva samples were collected. To identify whether patients were infected with H. pylori, we 

conducted an Immunoglobulin G test, Campylobacter-like organism test, Urea Breath Test, and 

pathological tests on patients and samples. This study was approved by the IRB (Institutional 
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Review Board) of Seoul National University Hospital (No. H-1704-070-845). 

 

Sequencing data generation 

 The DNA collected from the sample was used for whole exome sequencing (WES) and whole 

transcriptome sequencing (WTS). Library construction for WES data generation was 

performed using the SureSelect XT Human All Exon Kit V5 (Agilent, CA, USA), followed by 

sequencing on an Illumina HiSeq2500 platform with a 2 × 100 read length. To generate the 

WTS data, libraries were prepared using the TruSeq Stranded Total RNA Kit with Ribo-Zero 

Globin (Illumina, San Diego, CA). Paired-end sequencing of these libraries was conducted 

using the Illumina HiSeq2500 (Illumina, San Diego, CA) in accordance with the 

manufacturer’s instructions. Of the 13 cases, only 10 sets of WES and WTS data were 

generated; three patients provided only WTS data. 

 

Somatic mutation calling & filtering 

 To identify somatic mutations in cancer samples, whole-exome sequencing of cancer and 

saliva DNA samples was used. The quality of the sequenced reads was initially assessed using 

Fastqc (v.0.11.9)[19]. Low-quality reads were removed using Trimmomatic (version 1.39)[20]. 

The filtered sequencing reads were aligned to the human reference genome (GRCh37/hg19) 

using the Burrows–Wheeler Aligner[21]. Following alignment, somatic SNVs (Single 

Nucleotide Variations)/indels were identified using the Genome Analysis Tool Kit (GATK, 

v.4.2.0.0; https://software.broadinstitute.org/gatk/)[22]. The somatic mutations were identified 

using Mutect2 of GATK and the biological information was annotated using AnnoVar and 

VEP[23, 24]. Using these annotation tools, information from the 1000 Genomes Project, 

gnomAD, ClinVar, and Catalogue of Somatic Mutations in Cancers (COSMIC, version 96)[25-

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589001doi: bioRxiv preprint 

https://software.broadinstitute.org/gatk/
https://doi.org/10.1101/2024.04.12.589001
http://creativecommons.org/licenses/by-nd/4.0/


28] was added. To filter out sequencing artifacts, variants with a depth lower than 50 and 

variants with allelic fractions between 7% and 40% were excluded. Additionally, variants with 

strand bias between 0.25 and 4 were included. We removed variants reported in origins other 

than hematopoietic lymphoid tissue and stomach. In the gnomAD, variants with an allele 

frequency of 0.1 or more in the East Asian region were excluded.  

 

Subgroups of samples 

 The samples were divided into subgroups based on the identification of the presence of H. 

pylori. As mentioned previously, multiple tests were conducted on each sample. To judge the 

presence of H. pylori, an IgG test was prioritized, and other tests supported this decision. 

 

Differentially expressed genes & gene set enrichment analysis 

 The RNA expression levels were estimated using whole-transcriptome sequencing data. The 

sequenced reads were aligned to the human reference genome (GRCh37/hg19) using STAR 

(Spliced Transcript Alignment in Reference v.3.6)[29]. RNA expression normalization and read 

count calculations were performed using RSEM (RNA-seq by Expectation Maximization, 

v.1.3.2)[30]. Using the estimated RNA expression levels, differentially expressed genes (DEG) 

were analyzed across samples in multiple comparison groups and gene set enrichment analysis 

(GSEA) was performed using R software (version 4. 2. 2) and the R package, DESeq2 

(v.1.38.3)[31, 32]. 

 

Detection of genetic translocation 

 The Genetic translocations in the tumor samples were identified using three detection tools: 
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Fusioncatcher, STAR-Fusion, and Arriba[33-35]. Raw FASTQ files were used as input files for 

Fusioncatcher and STAR-Fusion, whereas Arriba was fed with BAM files generated using 

STAR-Aligner processing[29]. To remove possible false-positive variants, only variants 

detected by all three tools were retained. Furthermore, fusions with limited supporting evidence 

reads were filtered out and assessed as false positives using an integrative genomics viewer[36]. 

 

Detection & analysis of the mucosal microbiome 

 To identify the microbiome from the WTS data, a microbiome detection protocol was 

followed using Kraken software[37, 38]. Before classifying the microbiome, it was isolated 

from the transcriptome data by excluding reads mapped to the human reference genome 

(GRCh37/hg19). Subsequently, the reads were classified by mapping them to a reference 

sequence of the microbiota. During the process, the minimum hit groups were set to three, as 

recommended in the protocol, and a confidence score of 0.10 to filter out the reads with 

insufficient supporting evidence[37]. 

 

Results 

 The clinical characteristics of the 13 patients are shown in Table 1. Based on H. pylori status, 

location, and timing of the samples, the samples were categorized into six subgroups. As a 

result, 37 WTS data points from 13 patients with gastric MALT lymphoma were classified into 

H. pylori-positive cancer, H. pylori-positive normal, H. pylori-negative cancer, H. pylori-

negative normal, H. pylori-positive follow-up, and H. pylori-negative follow-up groups (Table 

1). 

 

Genetic translocation 
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 To identify recurrent or novel gene fusions in gastric MALT lymphoma, genetic translocations 

from the WTS data were detected using Fusioncatcher, STAR-Fusion, and Arriba. We 

identified two genetic translocations: t(11;18)(q21;q21)/BIRC3-MALT1 and 

inv(3)(q26q28)/TBL1XR1-TP63 (Figure 1B). BIRC3-MALT1 gene fusions were identified in 

H. pylori-negative samples, consistent with previous reports on recurrent cases of H. pylori-

negative gastric MALT lymphoma patients[39]. Additionally, an inversion between 

TBL1XR1–TP63 was found in H. pylori-positive samples. The TBL1XR1–TP63 gene fusion 

has been reported in a study of transcriptome data of diffuse large B-cell lymphoma cases[40]. 

 

Somatic mutation 

 From the 10 WES data, somatic mutations were identified and false-positive mutations were 

filtered out. Twenty gene mutations were identified in five samples (two H. pylori-positive and 

three H. pylori-negative samples). TNFAIP3, TRAF3, and KLHL6, which were mutated in H. 

pylori-negative gastric MALT lymphoma cases, were also mutated in H. pylori-negative 

samples (case 06). No somatic mutations were found in the cases (case 04 and case 07) with 

genetic translocations, t(11;18)(q21;q21)/BIRC3-MALT1 (Figure 1A). MUC4, TRIM, ALPG, 

and other genes found in other cancer types were detected in both H. pylori-negative and H. 

pylori-positive cancer samples. 

 

Gene expression analysis 

 To analyze the differentially expressed genes among the sample subgroups, we conducted 

multiple statistical tests using R statistical software. Our objective was to understand the 

transcriptional differences between the following samples at various stages of gastric MALT 

lymphoma carcinogenesis: 1) H. pylori-positive normal samples versus H. pylori-negative 
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normal samples; 2) H. pylori-positive cancer samples versus H. pylori-positive normal samples; 

3) H. pylori-positive cancer samples versus H. pylori-negative cancer samples; and 4) H. 

pylori-negative cancer samples & H. pylori-negative normal samples.  

 

1) H. pylori-positive normal samples & H. pylori-negative normal samples 

 The differences in gene expression between H. pylori-positive and H. pylori-negative normal 

samples were investigated to identify biological changes in the gastric mucosa when infected 

with H. pylori. Eleven down-regulated and two upregulated genes were statistically significant 

in the H. pylori-positive group. Of these, MUC4, CXCL5, RNU4-2, NLRP7 and IGKV2-24, 

associated with regulating pH in the gastric environment and the proton pump, were down-

regulated (Figure 2B; Table 2). From the results of the GSEA using Gene Ontology (GO) terms, 

the response to bacteria, immune response-regulating signaling pathway, inflammatory 

response, T cell activation, and B cell activation were upregulated in H. pylori-positive normal 

samples. TNF-α signaling and interferon gamma response were upregulated in H. pylori-

positive normal samples, which was similar to the study that reported increased levels of 

cytokine, interferon-γ, and tumor necrosis factor-α in the H. pylori-infected human stomach 

[41]. Furthermore, upregulated B cell-mediated immunity and B cell receptor signaling 

pathways were found, which could develop into the oncogenic pathway of gastric MALT 

lymphoma.  

2) Comparison of H. pylori-positive cancer & H. pylori-positive normal samples 

 When comparing H. pylori-positive cancer and H. pylori-positive normal samples, we 

anticipated discovering oncogenic dysregulation of genes and pathways, such as the NF-κB 

and the B cell signaling pathways, as previously reported[42, 43].  

From the DEG analysis, 263 upregulated and 128 down-regulated genes were observed. Of the 
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significantly dysregulated genes in H. pylori-positive cancer samples, SELL, HLA-DMB, 

CXCR4 and EIF3CL were upregulated, whereas NKX6-3, GAST, and MEIS1 were down-

regulated (Table 2). Following GSEA, upregulated immune and inflammatory responses in H. 

pylori-positive cancer samples were observed. Upregulation of the NF-κB signaling pathway, 

B cell proliferation, B cell signaling pathway via JAK-STAT, and hematopoietic cell lineage in 

cancer samples were found, all of which are considered as oncogenic pathways. These results 

are consistent with those of a previous study showing that dysregulation of oncogenic pathways 

following chronic inflammation induced by H. pylori plays a significant role in the 

development of gastric MALT lymphoma[2, 5, 6]. 

3) H. pylori-positive & H. pylori-negative cancer samples 

 The analysis of DEGs revealed 22 upregulated and 12 down-regulated genes between H. 

pylori-positive and H. pylori-negative cancer samples. In that set, CXCL5, CXCL8 and 

CXCL2 were up-regulated (Figure 2A). Gene set enrichment analysis indicated that immune 

response, inflammatory response, and pathogen infection were upregulated in the H. pylori-

positive cancer group; this supports inflammation-related carcinogenesis in H. pylori-infected 

cases. The absence of a difference in the carcinogenic pathways, such as the NF-κB signaling 

pathway, suggests common carcinogenesis at the molecular level regardless of H. pylori 

infection status. Moreover, the causes of H. pylori-negative gastric MALT lymphoma may 

include gene fusion events, infections with other microbiota, and autoimmune diseases. Of the 

H. pylori-negative samples, two exhibited the t(11;18)(q21;q21)/BIRC3-MALT1 gene fusion. 

None of the samples showed characteristics of an autoimmune disease.  

4) H. pylori-negative cancer & H. pylori-negative normal samples 

To investigate the potential drivers of H. pylori-negative gastric MALT lymphoma, DEG and 

GSEA were performed on H. pylori-negative cancer and H. pylori-negative normal samples. A 
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total of 766 genes were differentially expressed between the groups. The upregulated genes in 

cancer tissues included CNR1, RUBCNL, C3, AIM2, CD37 and CCL19, whereas C11orf86, 

EDN3, CHGB, and SST were down-regulated in cancer samples (Table 2). GSEA revealed that 

the GO terms (B cell receptor signaling pathway, B cell proliferation, and immune responses) 

and the KEGG (NF-κB and JAK-STAT signaling pathways) were upregulated in cancer 

samples (Figure 2C). Additionally, the activation of pathways related to Staphylococcus aureus 

infection, tuberculosis, and toxoplasmosis in KEGG terms was detected, suggesting that some 

of the H. pylori-negative samples may be related to infections other than H. pylori.  

 

Microbiome analysis 

 Using kraken2, a k-mer-based taxonomic classification, sequencing reads not aligned to the 

human reference genome, including follow-up samples, were classified. A total of 37 WTS data 

points were used to detect microbiomes. Initially, the relative abundance of the microbiome at 

the genus level was analyzed. Some cases that were H. pylori-positive had no g_Helicobacter, 

whereas some H. pylori-negative cases had g_Helicobacter. Across all samples, various 

microbiomes were detected, but certain genera consistently exhibited high abundance: 

g_Helicobacter, g_Rothia, g_Veillonella, and g_Porphyromonas (Figure 3A).  

As previously reported, patients infected with H. pylori have a lower alpha diversity than H. 

pylori-negative cases[44]. The alpha diversities of the samples were investigated using the 

Shannon and Simpson indices, and no difference between H. pylori-positive and H. pylori-

negative samples was found (p = 0.4). Therefore, a linear regression analysis was conducted to 

determine whether H. pylori was associated with alpha diversity, and to assess the impact of 

other microbiomes on alpha diversity. The quantified counts of the sequenced microbiome 

reads were used as independent variables and alpha diversity was used as the response variable. 
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In the univariate linear regression, among the four genera (g_Helicobacter, g_Rothia, 

g_Veillonella, and g_Porphyromonas) only g_Helicobacter was correlated with alpha diversity 

(Shannon: beta= 0.017826, p = 1.64ｘ10-7 / Simpson: beta= -0.004026, p = 6.56ｘ10-8).  

As alpha diversity decreased with an increase in g_Helicobacter reads, a multivariate linear 

regression with the four genera was conducted to identify linearly-related and independent 

variables. Both g_Rothia and g_Helicobacter were negatively correlated with alpha diversity 

(Figure 3B–C). In general, low alpha diversity is associated with unfavorable gut microbiome 

conditions related to chronic illnesses. Considering the correlation between g_Helicobacter 

and g_Rothia, and alpha diversity, we suggest that g_Rothia may be a potential factor 

contributing to H. pylori-negative gastric MALT lymphoma. 

 

Discussion 

 In this study, we prospectively collected samples and generated next-generation sequencing 

(NGS) data from patients with gastric MALT lymphoma and divided them into two groups for 

further analysis: H. pylori-positive and H. pylori-negative. WES and WTS data were produced 

and utilized to analyze genetic alteration, DEGs, GSEA, and microbiome detection.  

 Using fusion gene analysis, the BIRC3–MALT1 gene fusion in H. pylori-negative cases was 

identified, consistent with previous findings[15-17]. Additionally, we discovered an inversion 

of TBL1XR1–TP63 in H. pylori-positive cases. The TBL1XR1–TP63 gene fusion has been 

reported as a recurrent somatic gene fusion in high-grade lymphomas, such as diffuse large B 

cell lymphoma (DLBCL) and is known to drive tumor survival through EZH2 and upregulate 

MYC, EZH2, and EED[40, 45]. Indeed, the sample with the TBL1XR1–TP63 gene fusion in the 

current study showed high expression of MYC, EZH2, and EED (supplemental Figure 1). In 
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addition, patients with the TBL1XR1–TP63 gene fusion showed a poor response to H. pylori 

eradication therapy. We speculate that the TBL1XR1–TP63 fusion is one of the drivers of the 

high-grade transformation of gastric MALT lymphoma. Biological studies suggest B-cell 

lymphoma with TBL1XR1–TP63 gene fusion might be susceptible to EZH1/2 inhibition[45].  

 Using RNA sequencing data from the fresh gastric mucosa of various clinical statuses, the 

biological phenomena associated with gastric MALT lymphomagenesis were successfully 

revealed. A multi-step, comparative analysis was conducted to detail the mechanism of gastric 

MALT lymphoma caused by H. pylori. First, by comparing H. pylori-positive and negative 

normal groups, the biological changes that occurred in the gastric mucosa upon infection with 

H. pylori were identified. It was expected that immune and inflammatory responses would be 

upregulated in the H. pylori-positive group due to the infection with H. pylori, which was 

indeed the case. The TNF-α signaling pathway was upregulated in the H. pylori-positive group, 

consistent with the studies that H. pylori induces TNF-α in the gastric mucosa[46, 47]. When 

comparing the H. pylori-positive cancer and H. pylori-positive normal groups, upregulation of 

oncogenic pathways, such as the NF-κB and B cell signaling pathways, was observed in the 

cancer group. Furthermore, in H. pylori-infected patients, the cancer group exhibited 

upregulation of chronic inflammation, immune response, and other pathways associated with 

the bacterial response in comparison with the normal group. The elevated expression of CXCL5 

and CXCL8, which had been studied as being upregulated by the inflammatory response after 

H. pylori infection, is also observed in the cancer group infected with H. pylori[48]. This 

suggests that inflammation triggered by H. pylori continues to occur in the cancer group. The 

upregulation of the immune response and other factors in H. pylori-positive compared to H. 

pylori-negative gastric MALT lymphoma further support this hypothesis. In summary, our 

stepwise approach confirmed that chronic inflammation and immune responses play critical 

roles in H. pylori lymphomagenesis. These findings suggest that for the treatment of gastric 
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MALT lymphoma with H. pylori infection, immunotherapy agents may yield benefits. 

It is also worth mentioning the pathophysiology of H. pylori-negative gastric MALT 

lymphomas using the stepwise approach. In the comparison of cancer and normal samples 

within the H. pylori-negative cases, aberrant NF-κB and B cell signaling pathways were 

dominant in lymphoma samples. This concurs with the studies that identified the upregulated 

NF-κB signaling pathway induced by some recurrent translocations [t(1;14)(p22;q32), 

t(14;18)(q32;q21), and t(11;18)(q21;q21)] in MALT lymphoma[49, 50]. Furthermore, 

upregulated biological pathways associated with pathogen infection were identified in the H. 

pylori-negative cancer compared to the H. pylori-negative normal group. These findings 

deepen our understanding of the molecular pathogenesis of H. pylori-negative gastric MALT 

lymphomas.  

Based on the dysregulated pathways potentially influenced by specific microbiomes, we 

explored whether microbiomes other than H. pylori could be linked to gastric MALT 

lymphoma. There was a time when it was believed that no microorganisms could survive in the 

stomach; however, the discovery of H. pylori confirmed that microorganisms can thrive in the 

gastric environment. With advancements in NGS and analytical technologies, it has become 

evident that, in addition to H. pylori, various other microorganisms can interact within the 

gastric milieu. Studies have been conducted in Korean cohorts to analyze the stomach 

microbiome[51, 52]. Apart from the g_Helicobacter, diverse microbiota have been identified. 

In the current study, reads that were not mapped to the human reference genome in the WTS 

data were reclassified as part of the microbiome analysis, facilitating the detection of the 

microbiome present in each sample. Relative abundance and species diversity were 

investigated. The g_Rothia generally exhibited high abundance at the genus level, but several 

other genera also displayed noteworthy abundance. As observed in previous studies, H. pylori-
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infected patients exhibited lower alpha diversity at the genus level, as confirmed by linear 

regression. Moreover, multivariate linear regression suggested an association between 

g_Rothia and low alpha diversity, particularly in conjunction with g_Helicobacter. Low alpha 

diversity is considered indicative of an unhealthy microbial environment and has been studied 

in relation to chronic diseases. Although a direct association between low diversity and gastric 

MALT lymphoma has not been firmly established, given the confirmed association with 

g_Helicobacter, it is plausible that the g_Rothia plays a significant role in the gastric 

environment and may contribute to gastric MALT lymphoma. 
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List of abbreviations 

DEG differentially expressed gene 

GO Gene Ontology  

GSEA gene set enrichment analysis  

KEGG Kyoto Encyclopedia of Genes and Genomes  

MALT gastric mucosa-associated tissue  

NGS next-generation sequencing 

WES whole exome sequencing  

WTS whole-transcriptome sequencing  
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Tables 

No Age Gender Location H. pylori 

1 69 M MBPW positive 

2 37 M Angle Positive 

3 37 F AntrumGC Negative 

4 57 M AntrumGC Negative 

5 71 F AntrumAW Positive 

6 68 F MBPW Negative 

7 67 F AntrumGC Negative 

8 47 F MBGC Positive 

9 71 F LBPW Positive 

10 53 F LBLC Positive 

11 52 F AntrumGC Positive 

12 60 M MBGC Positive 

13 57 F LBAW Positive 

Table 1. Clinicopathologic features of gastric MALT lymphoma. MB: mid body, LB: lower body, PW: 

post wall, GC: great curvature, AW: ant wall, LC: less curvature 
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GENE log2FoldChange padj 

H. pylori-positive normal vs H. pylori-negative normal 

MUC4 4.768  1.900E-17 

CXCL5 6.539  2.089E-09 

RNU4-2 -3.316  2.179E-05 

NLRP7 4.434  3.245E-04 

IGKV2-24 3.369  6.311E-04 

H. pylori-positive cancer vs H. pylori-positive normal 

SELL 2.241  1.035E-06 

HLA-DMB 1.241  2.269E-06 

NKX6-3 -4.902  5.988E-06 

IRF8 1.189  3.295E-05 

TMEM178B 1.453  3.476E-05 

EIF3CL 7.380  3.869E-05 

CXCR4 1.577  3.878E-05 

H. pylori-positive cancer vs H. pylori-negative cancer 

CXCL5 7.085  1.843E-08 

CXCL8 6.188  1.425E-04 

FCGR2C -2.382  1.425E-04 

ABCA12 4.532  2.719E-04 

FCGR3B 5.330  6.975E-04 

FFAR2 4.352  2.534E-03 

CXCL2 2.633  2.631E-03 

H. pylori-negative cancer vs H. pylori-negative normal 

CNR1 4.750  2.195E-06 

RUBCNL 4.350  6.220E-06 

C3 4.167  6.220E-06 

AIM2 4.766  6.220E-06 

CD37 4.089  6.431E-06 

CCL19 4.952  6.430E-06 

 

Table 2. A table displays the results of DEG analysis from multiple comparisons. The genes in this 

table were selected by log2FoldChange and padj values and the full set of genes which were 

statistically significant are listed in the supplemental Table S1- 
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Figures 

 

Figure 1 A-B. A. An oncoplot represents the somatic mutations from WES data including genetic translocations from WTS data. B. A schematic 

diagram represents the inversion of TBL1XR1 and TP63. Inversion of TBL1XR1 and TP63. A schematic diagram shows detailed breakpoints of the 

genetic translocations. The screenshot of IGV shows the evidence sequencing reads from the cancer sample. 
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Figure 2 A-C. A. A volcano plot shows the results of DEG analysis between H. pylori-positive cancer samples and H. pylori-negative cancer samples. 

Genes that have the following range of fold changes are marked with blue and red colors and the dashed line shows a cut-off of adjusted p-value 

and fold changes. B-C. The two plots show the results of GSEA from “H. pylori-positive normal samples & H. pylori-negative normal samples” and 

“H. pylori-negative cancer samples & H. pylori-negative normal samples.” 
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Figure 3. A-C : A. A stacked bar shows a relative abundance of the microbiome from all WTS 

data. The designation of each group means the presence of H. pylori and tissue type. B. Each dot 

represents an index value matching the quantified read count of H. pylori. C. The dots and lines 

represent the estimate and error term from multivariate linear regression. 
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