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Abstract 

Background: The hippocampal-to-ventricle ratio (HVR) is a biomarker of medial temporal 

atrophy, particularly useful in the assessment of neurodegeneration in diseases such as 

Alzheimer’s disease (AD). To minimize subjectivity and inter-rater variability, an automated, 

accurate, precise, and reliable segmentation technique for the hippocampus (HC) and 

surrounding cerebro-spinal fluid (CSF) filled spaces — such as the temporal horns of the lateral 

ventricles — is essential.  

Methods: We trained and evaluated three automated methods for the segmentation of both HC 

and CSF (Multi-Atlas Label Fusion (MALF), Nonlinear Patch-Based Segmentation (NLPB), and 

a Convolutional Neural Network (CNN)). We then evaluated these methods, including the 

widely used FreeSurfer technique, using baseline T1w MRIs of 1,641 participants from the AD 

Neuroimaging Initiative study with various degree of atrophy associated with their cognitive 

status on the spectrum from cognitively healthy to clinically probable AD. Our gold standard 

consisted in manual segmentation of HC and CSF from 80 cognitively healthy individuals. We 

calculated HC volumes and HVR and compared all methods in terms of segmentation reliability, 

similarity across methods, sensitivity in detecting between-group differences and associations 

with age, scores of the learning subtest of the Rey Auditory Verbal Learning Test (RAVLT) and 

the Alzheimer’s Disease Assessment Scale 13 (ADAS13) scores. 

Results: Cross validation demonstrated that the CNN method yielded more accurate HC and 

CSF segmentations when compared to MALF and NLPB, demonstrating higher volumetric 

overlap (Dice Kappa = 0.94) and correlation (rho = 0.99) with the manual labels. It was also the 

most reliable method in clinical data application, showing minimal failures. Our comparisons 

yielded high correlations between FreeSurfer, CNN and NLPB volumetric values. HVR yielded 

higher control:AD effect sizes than HC volumes among all segmentation methods, reinforcing 

the significance of HVR in clinical distinction. 

Associations: The positive association with age was significantly stronger for HVR compared to 

HC volumes on all methods except FreeSurfer. Memory associations with HC volumes or HVR 
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were only significant for individuals with mild cognitive impairment. Finally, the HC volumes 

and HVR showed comparable negative associations with ADAS13, particularly in the mild 

cognitive impairment cohort.   

Conclusion: This study provides an evaluation of automated segmentation methods centered to 

estimate HVR, emphasizing the superior performance of a CNN-based algorithm. The findings 

underscore the pivotal role of accurate segmentation in HVR calculations for precise clinical 

applications, contributing valuable insights into medial temporal lobe atrophy in 

neurodegenerative disorders, especially AD. 

Keywords 

MRI, Hippocampus, Alzheimer’s Disease, Automatic segmentation, Memory, Cognitive decline. 

Abbreviations 

AD: Alzheimer’s disease. ADAS13: Alzheimer’s disease assessment scale 13. ADNI: 

Alzheimer’s disease neuroimaging initiative. CI: confidence interval. CH: cognitively healthy. 

CSF: cerebro-spinal fluid. CSFvol: perihippocampal ventricular space. CNN: convolutional 

neural network. HC: hippocampus. HCvol: hippocampal volume. HVR: hippocampal-to-

ventricle ratio. MALF: multi-atlas label fusion. MCI: mild cognitive impairment. MRI: magnetic 

resonance imaging. NLPB: non-local patch-based. RAVLT: Rey auditory verbal learning test.  
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1. Introduction 

The hippocampus (HC) is a medial temporal lobe structure located medially to the lateral horn of 

the lateral ventricles, posterior to the amygdala, and superior to the parahippocampal gyrus. 

Integral to the limbic system, the HC plays an important role in cognition, more specifically for 

declarative and semantic memory (Eichenbaum 2004). It is further implicated in a number of 

psychiatric disorders such as depression (Campbell et al. 2004; Videbech and Ravnkilde 2004), 

schizophrenia (Adriano, Caltagirone, and Spalletta 2012), and addiction (Morimoto et al. 2018), 

as well as neurological diseases such as Alzheimer’s disease (AD) (Jack et al. 2018), Parkinson’s 

disease (Kandiah et al. 2014), multiple sclerosis (Koenig et al. 2014), or temporal lobe epilepsy 

(Reyes et al. 2018). 

The HC is affected by normal and pathological effects related to aging. Its atrophy, measured by 

structural MRI, is one of the best documented pathological features in AD (Jack et al. 2018). The 

yearly rate of hippocampal volume reduction is reported as 1.4% in healthy populations and up 

to 4.7% in dementia due to AD (Barnes et al. 2009). This disparity in the rate of atrophy between 

cognitively healthy controls, individuals with mild cognitive impairment (MCI), a prodromal 

stage of AD, or patients with AD has been widely reported in other cross-sectional and 

longitudinal studies (Frankó, Joly, and Alzheimer’s Disease Neuroimaging Initiative 2013; 

Henneman et al. 2009; Shi et al. 2009). The rate of HC atrophy may even help to distinguish 

patients with cognitive impairment who progress to dementia from those who do not (Coupé et 

al. 2011; Zandifar et al. 2017).  

Although manual segmentation is considered the gold-standard in the volumetric assessment of 

the HC, it suffers from several drawbacks that impede its practical application in large datasets. 

Despite the availability of software tools with semi-automated guidance and/or 3D visualization, 

manual segmentation of the HC is a laborious and time-consuming task that can take up to two 

hours per subject (Schoemaker et al. 2019). It is affected by high intra- and inter-rater variability, 

even in experts (Dill, Franco, and Pinho 2015). As a response to these limitations, several 

automated segmentation methods have been proposed; for reviews see (Dill, Franco, and Pinho 

2015; Yi et al. 2021). 

The most common methods are based on label propagation, or segmentation using one or 

multiple templates, given their efficacy and accuracy. In a performance comparison done by 

Zandifar et al (2017) on four different methods (ANIMAL with template library and label fusion 

(Collins and Pruessner 2010), nonlocal patch-based segmentation with expert priors (Coupé et al. 

2011; Fonov et al. 2012), and FreeSurfer v5.3 (Fischl et al. 2002), the nonlocal patch-based 

method was shown as being the most accurate, based on overlap statistics with manually labeled 

ground truth data. 

The explosive development of deep learning has led to new methods and strategies for 

segmentation. Amongst the most successful, the U-net (Ronneberger, Fischer, and Brox 2015) is 
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a Convolutional Neural Network (CNN) with a U-shape network structure as its name indicates. 

It is characterized by a contraction path that captures context information while down-sampling 

the image and an expansion path that allows precise positioning on which image up-sampling 

and feature map fusion are repeated. It has shown to segment HC with Dice scores ranging 

between 0.89 and 0.92 (Yi et al. 2021).  

Even if one had access to the most accurate segmentation method, volumetric studies of the HC 

show limitations due to the structure’s high inter-subject variability in shape and volume, even in 

cognitively healthy populations (Lupien et al. 2007; Nobis et al. 2019). For this reason, 

researchers have explored different strategies to improve the reliability and robustness of the 

diagnostic or prognostic impact of HC volumetry. One such strategy is to normalize HC volume 

with the volume of the cerebrum. Using the HC/cerebrum ratio, investigators were able to 

successfully identify different AD subtypes based on the spatial distribution of tau pathology, as 

well as predict faster cognitive decline (Risacher et al. 2017; Whitwell et al. 2012). 

In addition to cortical atrophy, ventricular expansion is commonly present in neurodegenerative 

disorders, in particular in MCI and AD (Apostolova et al. 2006; 2013; Dalaker et al. 2011; Mak 

et al. 2017; Seif, Ziegler, and Freund 2018). Leveraging the idea of ex-vacuo dilation, the HC 

occupancy is a single biomarker of medial temporal atrophy consisting of the ratio of the volume 

of the HC to the sum of the volumes of the HC and inferior lateral ventricle (Heister et al. 2011). 

The median survival times in relation to conversion from MCI to AD were found to be 

significantly shorter for those subjects at risk due to atrophy measured by low HC occupancy 

than those at risk from any other measure or combination of measures from learning 

performance, CSF tau, amyloid and tau/amyloid ratio. 

The HC-to-ventricle ratio (HVR) as an extension of the original idea of a ratio combining in a 

single metric the estimation of HC volume with the surrounding ventricular enlargement in a 

similar manner to HC occupancy, but instead using the complete lateral horn of the ventricle 

(Schoemaker et al. 2019). When calculated in two cohorts of cognitively normal aging adults, the 

HVR showed stronger relationships to age and delayed memory than the raw hippocampal 

volumetric measure. 

The goal of this paper was to apply and compare available automatic segmentation techniques to 

automate HVR estimation (Pruessner et al. 2000; Schoemaker et al. 2019), explore potential 

variations introduced by the different segmentation methods, and then to use this automatic 

method to replicate and extend the earlier findings in a larger sample of AD, MCI and 

cognitively healthy individuals. 
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2. Materials and methods 

2.1. Data 

The data used in the preparation of this article was obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu). ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography, other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. Specifically for 

this study, we used baseline 3D T1w MRIs from the ADNI-1, ADNI-2, and ADNI-GO cohorts.  

Training of the segmentation algorithms was done using manual HC labels and the surrounding 

temporal horns of the lateral ventricles (N = 80). This data and the manual segmentation protocol 

are identical to those described in (Schoemaker et al. 2019). The labels were segmented by 

trained neuroanatomical experts and are considered as the ground-truth for HC volumes (HCvol) 

and perihippocampal ventricular space (CSFvol).  

Demographic, memory, and cognitive data for the included subjects were downloaded from the 

ADNI website. To assess memory, we used the scores from the Learning subtest of the Rey 

Auditory Verbal Learning Test (RAVLT). As a measure of global cognitive function, we used 

scores from the AD Assessment Scale-13 (ADAS-13).  

2.2. Image preprocessing 

Preprocessing consisted of denoising (Coupe et al. 2008), N3 image intensity inhomogeneity 

correction (Sled, Zijdenbos, and Evans 1998), linear intensity normalization based on histogram 

matching between the image and the average template, and affine registration to a stereotaxic 

space defined as a population-specific template created from the ADNI-1 cohort (Fonov et al. 

2011). 

2.3. Automated segmentation methods 

We trained three automatic segmentations methods described below using the HC and CSF 

manual labels. Additionally, we compared our trained methods with the output given by different 

versions of FreeSurfer with its preprocessing and processing pipelines (Fischl et al. 2002). 
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2.3.1. Multi-Atlas Label Fusion 

The first segmentation method consisted of a multi-atlas label fusion (MALF) approach. Using 

an augmented ANIMAL segmentation method (Collins et al. 1995; Collins and Evans 1997), this 

algorithm is enhanced with the use of a template library and label fusion (Collins and Pruessner 

2010). Training consisted in a Monte Carlo Cross-Validation strategy (Shao 1993), that is, for 

every potential segmentation a template library was built from a random subset of the manual 

labels (n=64).  

2.3.2. Nonlinear Patch-Based Segmentation 

The second segmentation method was the Nonlinear Patch-Based Segmentation (NLPB) with a 

population-specific template (Coupé et al. 2011; Fonov et al. 2012; H. Wang et al. 2013). Similar 

to MALF, this algorithm was trained using Monte Carlo Cross-Validation where a template 

library was created from a random subset of the manual labels (n=64). Additionally, manual 

labels were non-linearly aligned to a template space constructed from the ADNI-1 database 

(Fonov et al. 2011). 

2.3.3. Convolutional Neural Network 

Lastly, we trained a deep learning CNN based on a 3D version of the U-Net architecture 

(Ronneberger, Fischer, and Brox 2015). It uses a combination of the Dice kappa overlap and a 

multi-label Hausdorff-like distance approximation as loss function. Further details were reported 

previously (Fonov, Rosa-Neto, and Collins 2022). To train the network, we used a 5-Fold cross 

validation strategy (i.e., split the data into a training set of 64 images with their manual labels 

and a validation set consisting of the remaining unlabeled 16 images). The training data was 

augmented with geometric transformations, random signal shift, amplification, and addition of 

voxel-level additive noise by a factor of 16 before training the network for 200 epochs for each 

cross-validation split. 

2.3.4. FreeSurfer 

We compared the output of our trained segmentations with those obtained from FreeSurfer 

(https://surfer.nmr.mgh.harvard.edu). First, we used the values of HCvol from UCSF from either 

version 4.3 (N=545) or version 5.1 (N=701) of the cross-sectional FreeSurfer pipeline reported 

by ADNI on the files UCSFFSX_11_02_15.csv and UCSFFSX41_11_08_19.csv respectively, 

and our own results using cross-sectional FreeSurfer pipeline version 6.0 with default 

parameters. Since ADNI does not report inferior lateral ventricle volumes for the earlier 

FreeSurfer results, we calculated HVR using only FreeSurfer version 6.0. 
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2.4. Hippocampal measures 

Using the output from the automatic segmentations we obtained HCvol and calculated HVR for 

each of the different methods. HVR was calculated using HCvol and CSFvol: 

𝐻𝑉𝑅 =
𝐻𝐶𝑣𝑜𝑙

𝐻𝐶𝑣𝑜𝑙 + 𝐶𝑆𝐹𝑣𝑜𝑙
, 

When calculating HVR using the FreeSurfer volumes, CSFvol was defined as the volume of the 

inferior lateral ventricle. For both HCvol and HVR, we use the mean of both sides in all our 

analyses.  

We also normalized HCvol by head size for each technique, using the same volumetric scale 

factor obtained from the affine registration to stereotaxic space.  

2.5. Segmentation performance assessment 

2.5.1. Cross-validation 

After training the automatic segmentation methods using manual labels, we assessed their 

performance segmenting the HC and surrounding temporal horns of the lateral ventricles. The 

measures of performance were: 1) volumetric overlap between segmentations from the automatic 

methods and the manual segmentation calculated using Dice’s Kappa metric, and 2) Spearman’s 

rank correlation coefficients between computed volumes from the automatic methods and 

volumes from the manual segmentations. Note Spearman’s rank correlation was used because 

the volume data was not Gaussian distributed, evidenced by a significant Shapiro-Wilk test. 

We compared the difference in overlap with manual labels for each side of all segmentation 

methods using Kruskal-Wallis one-way analysis of variance by ranks. We then did post-hoc 

analyses on the significant results using the Dunn’s test for multiple comparisons with 

Bonferroni correction. 

2.5.2. Application on clinical data 

We evaluated the different automatic segmentation techniques by applying them to the baseline 

data from ADNI. The first comparison was the percentage of failure for the different methods. 

An expert visually inspected the output of the trained automatic methods and discarded any 

segmentation that did not pass quality control. For the HC volumes from FreeSurfer versions 4.3 

& 5.1, we assumed failure for any missing value on the UCSF volumes files reported by ADNI.  

We then compared the different methods by evaluating for both HCvol and HVR: 1) the 

similarity across segmentations, and 2) the sensitivity of the different methods in detecting 

between-group differences. To measure the similarity between methods we used the Spearman's 
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rank correlation coefficient between the computed hippocampal measures—stratified by clinical 

label. For the sensitivity comparison, we computed the standardized effect size estimates and 

their robust confidence intervals (CIs) of the difference between the hippocampal measures 

between the patients with dementia and the cognitively normal subjects. We used Glass’ 𝛥, 

where the comparison of the means is standardized only by the control’s group standard 

deviation: 

𝛥 =
𝑀𝐴𝐷−𝑀𝐶𝑁

𝜎𝐶𝑁
. 

The CIs were calculated using the bias-corrected-and-accelerated bootstrap method (Efron 1987) 

with the default setting of 2,000 resamples.  

2.6. Associations of hippocampal volumetrics with age, memory, and 

global cognition 

We also measured the associations of the HCvol and HVR obtained from the automatic 

segmentation methods with age, memory and global cognition using Spearman’s rank correlation 

coefficients, given the non-Gaussian distribution of the data. To test the hypothesis that HVR 

would better associate with these covariates than HCvol, we used single-tailed permutation tests 

on the difference between the correlation coefficients of these two hippocampal measures. The 

permutation tests were run with 10,000 repetitions each. The p-values for the correlations and the 

permutation tests were adjusted using the Bonferroni correction for multiple comparisons. 

2.7. Data, materials, and software availability 

MRI, neuropsychological, and demographic data are available from the ADNI database 

(https://adni.loni.usc.edu). All of the statistical analyses were done using R version 4.2.2. We 

used the BootES package (Kirby and Gerlanc 2013) to calculate the effect size estimates and 

their CIs. All code required to reproduce the analyses is available on GitHub: 

https://github.com/soffiafdz/hvr_validation. 
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3. Results 

Our sample consisted of 1,641 participants in ADNI-1, ADNI-Go and ADNI 2: 501 cognitively 

healthy participants (CH), 819 individuals with MCI and 321 patients with clinically probable 

AD. All demographic and clinical measures were significantly different among the three groups 

(Table 1). The Chi-squared test showed significant differences of sex for the CH (p = 0.002) and 

MCI (p = 0.004) groups, but not for AD (p = 1). The post-hoc analysis using Dunn’s test showed 

that participants in the MCI group were significantly younger than those of the CH group (Z = 

2.6, p = 0.014) and the AD group (Z = 4.03, p < 0.001). However, the age difference between the 

CH and AD groups was non-significant (Z = 1.65, p = 0.15). The CH group also appeared to be 

on average slightly more educated compared to both the MCI group (Z = 2.64, p = 0.012), and 

the AD group (Z = -5.59, p < 0.001). The difference between the MCI and AD groups was also 

significant (Z = -3.8, p < 0.001).  

Table 1: Demographic data 

 Clinical Label   

Variable N CH, N = 5011 MCI, N = 8191 AD, N = 3211 p-value2 

Sex 1,641    <0.001 

Female  260 (52%) 336 (41%) 146 (45%)  

Male  241 (48%) 483 (59%) 175 (55%)  

Age (years) 1,641 74 (6) 73 (8) 75 (8) <0.001 

Education (years) 1,641 16 (3) 16 (3) 15 (3) <0.001 

ADAS13 1,619 9 (4) 17 (7) 30 (8) <0.001 

Missing  2 9 11  

RAVLT (learning) 1,629 5.85 (2.30) 4.07 (2.59) 1.81 (1.79) <0.001 

Missing  4 4 4  

1n (%); Mean (SD) 

2Pearson's Chi-squared test; Kruskal-Wallis rank sum test 

Table 1. Sex, age, education, and the scores for ADAS13 and the learning subtest of the RAVLT 

for the CH, MCI and AD groups of the baseline data obtained from the ADNI dataset. 
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3.1. Training of the automatic segmentation methods 

We trained three automatic segmentation methods—MALF, NLPB, and CNN—using a set of 

manually segmented labels of HC and CSF. Figure 1 shows the results of this training in the 

form of violin plots of the volumetric overlap with the manual labels and one example subject’s 

manual and computed labels from all three methods. 

 

Figure 1. Automatic segmentation performance. Left: violin plots of the Kappa’s distributions of 

the overlap between manual and computed segmentations of the HC and CSF from the left and 

right hemispheres using CNN, MALF and NLPB. The median and standard deviation are 

represented in red inside the violin plots and marked as labels. Right: Mosaic images of the 

manual and computed segmentations of the HC and CSF for an example subject. 

The CNN-based method showed the best performance in both HC and CSF segmentations with a 

median Kappa value K = 0.96 for both HC sides, with K = 0.92 and K = 0.91 for left and right 

CSF in the temporal horns of the lateral ventricles, respectively. The Kruskal-Wallis test of 

Kappa values showed significant differences between the different segmentation methods for the 

HC (left: X2 = 141.32, p < 0.001; right: X2 = 132.06, p < 0.001) and CSF regions (left: X2 = 

167.4, p < 0.001; right: X2 = 173.04, p < 0.001). Post-hoc analyses showed that, for both sides, 

CNN was better than NLPB and MALF in segmenting HC (p < 0.001), while the performance of 

NLPB and MALF were comparable (left: p = 0.892; right: p = 0.14). When segmenting CSF, all 

comparisons between the three methods were statistically significant (p < 0.001).  
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Figure 2 shows correlations between volumes obtained from the original manual labels and those 

from computed segmentations. All associations were significant (p < 0.001). The Spearman’s rho 

values for the CNN method were almost 1 for both HCvol and CSFvol on both left and right 

sides. While the correlations were lower for NLPB, they still showed strong associations with the 

manual labels (HCvol, rho = 0.93; CSFvol, rho = 0.85). MALF showed the lowest correlations 

among the three methods (HCvol, rho = 0.87; CSFvol, rho = 0.48).  

Figure 2. Relationship between manual and computed values of HCvol and CSFvol. Scatter plots 

of the volumes (measured in cc) of the left and right HC and CSF from the manual 

segmentations against those obtained from CNN (orange), MALF (blue) and NLPB methods 

(green). The Spearman’s rho coefficients and their significance are added for each automatic 

method. 

The Bland-Altman plots in Fig. 3 show that in addition to having larger error, MALF had a 

systematic bias of over-segmenting smaller HC and under-segmenting the larger HC. While 

NLPB had a moderate variance in error, we did not find a significant pattern of bias in its 

segmentations. All three methods tended to underestimate CSFvol on average, with MALF also 

showing a bias of under-segmenting larger ventricles compared to the smaller ones.  
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Figure 3. Bland-Altman plots. Bland-Altman plots for the volumetric comparison between mean 

HCvol and CSFvol (in cc) resulting from the automatic segmentation methods and manual 

labels. The dashed lines represent the mean difference (orange) and the upper and lower limits of 

agreement (blue). All volumes are reported in cubic centimeters. 

3.2. Application on clinical data 

We applied the three trained automatic segmentation methods and compared them to the values 

obtained using the widely used FreeSurfer labels. On Table 2 we report the number of successful 

HC segmentations for the different methods and the mean HCvol for each of the clinical groups.  

Table 2: HCvols and segmentation failures 

 Clinical Label 

Automatic Method N CH, N = 5011 MCI, N = 8191 AD, N = 3211 

CNN 1,639 4.18 (0.55) 3.73 (0.71) 3.16 (0.65) 

Failures  0 1 1 

NLPB 1,627 4.14 (0.49) 3.79 (0.61) 3.38 (0.53) 

Failures  2 9 3 

MALF 1,617 4.37 (0.39) 4.19 (0.42) 4.06 (0.41) 

Failures  3 8 13 
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 Clinical Label 

Automatic Method N CH, N = 5011 MCI, N = 8191 AD, N = 3211 

FreeSurfer (v4.3 & v5.1) 1,414 5.16 (0.71) 4.63 (0.92) 3.90 (0.72) 

Failures  47 122 58 

FreeSurfer (v6.0) 1,616 5.04 (0.68) 4.50 (0.90) 3.85 (0.71) 

Failures  8 9 8 

1Mean (SD) 

Table 2. Summary of HCvols and segmentation failures. Mean and standard deviation of the 

HCvol obtained and the number of failed cases by the different automatic segmentation methods. 

Note that for v4.3 & v5.1 of FreeSurfer we report the missing data from ADNI rather than 

explicit failures for the algorithm. 

The method with the least number of successful segmentations was FreeSurfer v4.3/v5.1, with 

ADNI reporting the HC values for only 86% of the data. FreeSurfer v6.0 and MALF had a 

similar number of successful segmentations (98.5%), nonetheless MALF tended to fail more on 

AD and MCI participants while FreeSurfer’s errors were equally distributed between all groups. 

From all methods, CNN was the most reliable, failing on only two cases (one MCI and one AD).  

The comparisons between segmentation methods in terms of volumetric correlation and effect 

size between CH individuals and patients with AD are presented in Fig. 4. HC volumes obtained 

from the FreeSurfer, CNN and NLPB segmentations were all highly correlated with each other 

(rho > 0.9, p < 0.001), with the FreeSurfer versions being the most similar between each other 

(rho = 0.99). The correlations coefficients for MALF, the least similar method, ranged between 

0.67-0.78. Even after stratifying the comparisons by clinical groups, we still found high 

similarity between FreeSurfer versions and CNN (rho > 0.97, between FreeSurfer versions; rho > 

0.91, CNN & FreeSurfer). Across all methods, the lowest correlation coefficients were found on 

the AD group (rho = 0.4 – 0.98). 
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Figure 4. Similarity of segmentation and clinical effect sizes of HCvol. The lower triangle of the 

matrix plot shows scatter plots of the HCvol values across the different automatic segmentation 

methods stratified by the clinical group (CH: orange, MCI: blue, and AD: green). The upper 

triangle of the matrix plots lists the correlation coefficients between the automatic segmentation 

methods using Spearman’s rho. The correlation coefficients include the values for the whole 

sample in gray and by clinical group. The diagonal of the matrix plot shows the density plots of 

the HCvol by clinical group. Dashed lines represent the mean of each cohort. Inside each density 

plot, the inlaid box shows calculated effect sizes between the CH and AD groups using Glass’ 

Delta and their robust 95% confidence intervals. 

Effect sizes calculated using Glass’ delta follow the conventional interpretation of Cohen’s d 

small, medium, and large effect sizes defined as d < 0.5, 0.5 < d < 0.8, and d > 0.8, respectively. 

We found large effect sizes on the HCvol difference between CH and AD groups for all 

segmentation methods except MALF. The methods, from worst to best, were MALF (Δ = -0.78), 

NLPB (Δ = -1.54), FreeSurfer (Δ = -1.76 – -1.78), and CNN (Δ = -1.85). Comparing the CH:AD 

effect sizes between the segmentation methods, the only significant differences (based on the 

calculated confidence intervals) were observed on the ones from MALF which were lower 

compared to the other three automatic methods. 

Using the values for HCvol and CSFvol, we calculated the HVR for all segmentation methods; 

the mean and standard deviation for the HVR values by clinical group are given in Table 3. HVR 

values were larger for the FreeSurfer-based estimates. The correlations between methods and the 

comparison of effect sizes between CH and AD are presented in Fig. 5. The similarity across 

methods was higher for HVR (compared to HCvol) with the correlation coefficients ranging 

from 0.89 (MALF & FreeSurfer) to 0.97 (CNN & FreeSurfer). As with HCvol, the lower 
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correlations were found on the AD group (rho = 0.77 – 0.97). All four segmentation methods had 

large effect sizes between CH and AD when using HVR. The magnitudes of the effect size from 

HVR were larger than those calculated with HCvol, nonetheless, the HVR vs HCvol difference 

in effect size only reached significance for MALF. Ordered from lowest to highest value, the 

methods were MALF (Δ = -1.24), NLPB (Δ =-1.73), CNN (Δ = -1.86), and FreeSurfer (Δ = -

2.02). The effect size obtained with MALF was significantly lower than the other methods. None 

of the other differences across methods were significant. 

Table 3: HVR values 

 Clinical Label 

Automatic Method N CH, N = 5011 MCI, N = 8191 AD, N = 3211 

CNN 1,639 0.64 (0.08) 0.58 (0.11) 0.49 (0.11) 

NLPB 1,627 0.67 (0.08) 0.62 (0.10) 0.54 (0.11) 

MALF 1,617 0.69 (0.03) 0.67 (0.04) 0.65 (0.03) 

FreeSurfer (v6.0) 1,616 0.84 (0.08) 0.77 (0.12) 0.67 (0.13) 

1Mean (SD) 

Table 3. Summary of HVR values. Mean and standard deviation of the HVR values obtained 

from the different automatic segmentation methods. 
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Figure 5. Similarity of values of HVR and their derived clinical effect sizes. The lower triangle 

of the matrix plot shows scatter plots of the HVR values across the different automatic 

segmentation methods stratified by the clinical group (CH: orange, MCI: blue, and AD: green). 

The upper triangle of the matrix plots lists the correlation coefficients between the automatic 

segmentation methods using Spearman’s rho. The correlation coefficients include the values for 

the whole sample in gray and by clinical group. The diagonal of the matrix plot shows the 

density plots of the HVR by clinical group. Dashed lines represent the mean of each cohort. 

Inside each density plot, the inlaid box shows calculated effect sizes between the CH and AD 

groups using Glass’ Delta and their robust 95% confidence intervals. 

3.3 Associations of hippocampal volumetrics with age, memory, and 

global cognition 

The correlation coefficients between HCvol with age, the subscores of learning from RAVLT 

and the scores of ADAS13 for all four segmentation methods are presented in Figure 6.  The 

correlation coefficients for HVR are presented as well. All correlations and comparisons were 

corrected for multiple comparisons. We found a significant positive association (p < 0.001) 

between HCvol and Age across all clinical groups for FreeSurfer (N = 1,589), CNN (1,612), and 

NLPB (N = 1,600); for MALF (1,590), the correlation was significant only on the CH (p = 

0.002) and MCI groups (p < 0.001). The association between HVR and age was significant for 

all groups and methods (p < 0.001). The correlations of age with HVR were higher compared to 

correlations with HCvol. This difference was significant on the CH and MCI cohorts for the 

CNN (CH, rho: -0.4 vs -0.53, p = 0.012; MCI, rho: -0.46 vs -0.57, p = 0.01) and NLPB (CH, rho: 

-0.34 vs -0.49, p = 0.006; MCI, rho: -0.39 vs -0.54, p = 0.001), and all clinical groups of MALF 

(CH, rho: -0.19 vs -0.5; MCI, rho: -0.2 vs -0.52; AD, rho: -0.03 vs -0.38; all p < 0.001).  
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Figure 6. Associations between hippocampal measures and age, memory, and global cognition. 

Summary of the correlation coefficients measured by Spearman’s rho, between HCvol (HCv in 

the legend), HVR, and age, memory (measured by RAVLT learning subscore), and global 

cognition (measured by ADAS13). Colored asterisks mark the significance of the correlation (* 

= p < 0.05; ** = p <0.01, *** = p < 0.001). Gray asterisks mark the significance comparing 

HCvol and HVR. All p-values are corrected for multiple comparisons. 

There was a positive association with the RAVLT learning subscore on both HCvol and HVR 

with all four methods, but this association was significant only for the MCI cohort (HCvol: 0.24 

– 0.37; HVR: 0.25 – 0.31; p < 0.001). None of the differences in correlations of HCvol and HVR 

with memory were statistically significant.  
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Lastly, we noted a negative association between both HCvol and HVR with the ADAS13 scores 

across groups. The correlations of HCvol with cognitive decline were significant in the CH 

group segmented with FreeSurfer (rho = -0.22, p < 0.001), CNN (rho = -0.22, p < 0.001) and 

NLPB (rho = -0.2, p <0.001), but not MALF (rho = -0.1, p = 1); and the MCI group on all four 

methods (FreeSurfer: rho = -0.48; CNN: rho = -0.46; NLPB: rho = -0.43; and MALF: rho = -

0.25; p < 0.001). For the AD group, the only significant correlations between HCvol and 

ADAS13 were found on the FreeSurfer (rho = -0.22, p = 0.01) and CNN methods (-0.22, p = 

0.01).. The association between HVR and ADAS13 was significant in all three groups of the four 

segmentation methods (rho = -0.21 – -0.44, p < 0.001). The magnitude of these associations was 

comparable to those of HCvol on all segmentation methods except for MALF. The correlation 

between ADAS13 and the HVR obtained from the MALF was stronger on all groups (CH, rho: -

0.1 vs -0.21, p = 0.048; MCI, rho: -0.25 vs -0.37, p = 0.009; AD, rho: 0.04 vs -0.3, p < 0.001).   
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4. Discussion 

In this article, our goal was to automate the estimation of the HVR, a robust measure of 

hippocampal integrity (Schoemaker et al. 2019), to extend the preliminary evidence of its 

validity as a measure of hippocampal atrophy in a much larger clinical sample.  

To fulfill our goal, we evaluated the viability of various automatic segmentations to calculate the 

HVR. Ensuring a fair assessment of performance when comparing different automatic 

segmentation methods is not a trivial task. Segmentation accuracy is affected by several factors, 

including the quality of the MRI data, the segmentation protocol used for the ground-truth, the 

particularities of the sample tested, and the metric used to evaluate the performance (Collins and 

Pruessner 2010). A practical example of this issue is the use of Dice Kappa as a measurement for 

segmentation accuracy. Given the metrics dependance on the surface to volume ratio, Dice 

Kappa measurements are stricter on smaller regions. This can be significant when evaluating the 

automatic segmentations that comprise the HVR: the hippocampus, a small and highly variable 

structure (Lupien et al. 2007; Nobis et al. 2019), and the even smaller surrounding ventricular 

space.  

Despite this inherent drawback, all three of the evaluated locally developed methods could 

successfully segment the hippocampus with high accuracy, with the CNN (U-Net based) method 

showing a clear advantage over the other two. Still, the MALF and NLPB segmentations results 

were comparable to the accuracy reported in their original papers (Collins and Pruessner 2010; 

Coupé et al. 2011; Fonov et al. 2012), and even similar to some U-net based methods (Brusini et 

al. 2020; Cao et al. 2018; Goubran et al. 2020; Liu et al. 2020; Yao, Wang, and Fu 2019). We did 

not estimate Dice Kappa with Freesurfer as it uses a different anatomical definition for the HC 

and CSF spaces. 

The segmentation of the temporal horn of the lateral ventricle, being a much smaller region with 

somewhat arbitrary limits in its anterior and posterior borders, was a significantly harder task 

compared to the extraction of the hippocampus. This increased difficulty was notable in the 

lower Dice Kappa values compared to the hippocampal segmentation across all methods. 

However, when measuring the segmentation quality by the volumetric correlation, the results for 

both CSF and HC segmentation tasks were comparable to the CNN method.  

The Bland-Altman plots in Figure 3 confirmed the superior performance of the CNN technique, 

highlighting minimal errors and a lack of bias. This stands in contrast to the wider limits of error 

observed in NLPB and the bias exhibited by MALF in the form of a regression to the mean.  

When applied to the baseline data of ADNI, the CNN method demonstrated superior reliability 

amongst all segmentation methods, with less than 0.2% failed segmentations. We found the 

earliest versions of FreeSurfer to be the least dependable method of our comparisons, given the 

absence of ~14% of the values for hippocampal volume reported by ADNI. It is important to 
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note that the assumption that all missing values are due to segmentation failures may be unfair. 

In addition, the FreeSurfer team likely uses QC criteria different than ours. Nonetheless, this 

assumed failure rate would align with a recent QC evaluation of the output of a more recent 

version of FreeSurfer (v6.0), on which 5% of the segmentations were manually marked as 

failures and 20% were marked as having doubtful quality (Klapwijk et al. 2019). Notably, in our 

own use, FreeSurfer v6.0 had a comparable failure rate to the other label-fusion based methods. 

Despite expected improved results from the updated release of FreeSurfer, the hippocampal 

segmentations were not drastically different as our implementation of v6.0 yielded segmentations 

that were highly correlated to the UCSF volumes reported by ADNI. For both versions, 

FreeSurfer tended to yield higher HCvol values compared to the three other methods evaluated. 

This difference is not surprising. First, the training library used for FreeSurfer was not the same 

as that of the template library of Schoemaker (2019) used in our training. Second, the underlying 

anatomical definition of the hippocampus is different between FreeSurfer and the labels of 

Schoemaker. Additionally, the tendency of FreeSurfer to over segment larger hippocampus has 

already been noted in the literature (Pipitone et al. 2014; Zandifar et al. 2017).  

Regardless of this over segmentation of HC from FreeSurfer, its volumetric measurements were 

highly correlated to those obtained from the CNN method and, to a slightly lesser extent, from 

the NLPB method. These three methods also had larger effect sizes between healthy and AD 

cohorts that were comparable to each other and significantly different to the medium effect size 

obtained from the underperforming MALF.  

HVR was proposed as a more robust measure of hippocampal atrophy compared to HCvol. Our 

experiments showed increased similarity of the HVR calculation compared to HCvol among the 

different segmentation techniques. Furthermore, the CH:AD HVR effect sizes were larger than 

CH:AD HCvol effect sizes for all methods tested (Figs 4 & 5). This improvement was 

particularly more evident on the previously underperforming MALF method, for which the 

similarity to the other algorithms increased by a magnitude of ~ 0.2 in rho and the CH:AD effect 

size improved from 0.78 to 1.24 (a 57% improvement) in the Glass’ delta. It would seem that 

HVR is more useful for poorer quality segmentations. 

FreeSurfer's combination of some over segmentation of larger hippocampi with the use of only 

the inferior portion of the temporal horn of the lateral ventricle resulted in much higher HVR 

values compared to the three other methods. These greater values led to a more pronounced 

separation of healthy and atrophied HC, which resulted in the largest effect size of 2.02 between 

CH and AD across all methods.  

There is an expected hippocampal atrophy due to aging even in healthy individuals (Bettio, 

Rajendran, and Gil-Mohapel 2017). The age-related declines in hippocampal volume found in 

our healthy cohort (Fig. 6) were in the upper ranges of what has been found in previous reports 

(for reviews see: (Raz 2000; Van Petten 2004). The rho values for HVR tended to be stronger 
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compared to HCvol across all cohorts and all methods, except for FreeSurfer, as FreeSurfer 

displayed strong correlations for HCvol with age already. Incidentally, for HCvol, FreeSurfer’s 

tendency to over-segment larger hippocampi and under-segment smaller ones might have played 

a role in the higher sensitivity of this method in capturing the effect of aging, as the magnitude of 

this relationship even surpassed HVR’s association with age reported in the original Schoemaker 

paper (2019).  

While this is the first time that HVR is applied to a clinical sample, the study of hippocampal 

atrophy in MCI and AD compared to normal aging has been heavily studied over the years (den 

Heijer et al. 2010; Ikram et al. 2010; Jack et al. 1997; Pol et al. 2006), noting smaller 

hippocampal volumes compared to controls (Frankó, Joly, and Alzheimer’s Disease 

Neuroimaging Initiative 2013; Jack et al. 1997; 2000; Morra et al. 2009), and even the potential 

of using hippocampal rates of decline to differentiate stable and progressive MCI (Ikram et al. 

2010; P.-N. Wang et al. 2009). These results coincide with our slightly stronger associations with 

age in the MCI cohort compared to the healthy subjects for both hippocampal measures, again 

with a significant advantage of HVR for all segmentations methods except FreeSurfer. 

Meanwhile, for the AD patients, HVR showed a statistical advantage only for MALF which, in 

addition to having the lowest rho values overall, was the only method not sensitive enough to 

find a significant association between HCvol and age in this cohort, likely because the MALF 

estimated volumes regress to the mean. 

An assumed relationship between hippocampal volume and memory exists, with larger 

hippocampi associated with better scores on neuropsychological testing. We found such a 

relation in our MCI subgroup for all segmentation methods, but not in the cognitively normal or 

AD groups. These results contrasted with previous reported relationships in AD between the 

delayed subtest of RAVLT with HOC in a Brazilian sample (Sudo et al. 2019) and with HCvol 

within ADNI (X. Wang et al. 2019). 

Further, HVR associations with memory were comparable to those of HCvol among all 

segmentations and subgroups. While these results contrast with the preliminary report of HVR 

surpassing an already high association between HCvol and memory measured by the same test, 

they fit with the heterogeneous and highly variable existing evidence for the relationship 

between HCvol and memory performance (Van Petten 2004). Another potential source of 

difference between our results and those reported by Schoemaker (2019) is that our groups were 

on average a decade older, and greater individual variability in episodic memory has been found 

for older adults (Morse 1993; Nelson and Dannefer 1992; Verhaeghen and Marcoen 1990; 

Wilson et al. 2002). Additionally, given the clinical nature of our sample, we also explored the 

association between our hippocampal measures and a more global evaluation of cognition in the 

form of the ADAS13, which, in addition to memory, assesses other domains like language and 

praxis (Kueper, Speechley, and Montero-Odasso 2018). Previous studies have found a 

relationship between the hippocampus and global cognitive functioning measured with the mini-

mental status examination (MMSE) in only AD (Vipin et al. 2018), or AD and MCI but not 
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normal controls (Peng et al. 2015). Despite these results and the fact that ADAS13 being 

designed to evaluate cognitive dysfunction in early stages of AD, we did find a significant 

association with HCvol in our healthy cohorts. For cognitively normal and MCI subjects, the 

associations with global cognition of both HVR and HCvol were comparable. Contrary to the 

abundant evidence of the relationship between hippocampus and general cognition in AD 

(Morrison, Dadar, Shafiee, and Collins 2023; Morrison, Dadar, Shafiee, Collins, et al. 2023; 

Peng et al. 2015; Vipin et al. 2018), the correlations in our AD cohort were lower compared to 

the other subgroups, with only HVR’s reaching statistical significance across all segmentation 

methods. This advantage of HVR over HCvol was statistically significant for the MALF 

segmentations of the MCI and AD cohorts, further suggesting that HVR might be particularly 

superior when only lower quality segmentations are available. 

Our study is not without limitations. First, although this is the first time that HVR has been 

applied to a sample of this magnitude, by using the ADNI data which consists mostly of highly 

educated white people, our results might not generalize to other more diverse populations. We 

used only the baseline data available, and future work will explore longitudinal changes in 

hippocampal degradation. In addition, we did not look into the effects of laterality or sex, even 

though there were substantial sex differences reported in the original paper on HVR 

(Schoemaker et al., 2019). This omission was deliberate to avoid increasing the already large 

number of statistical comparisons. Future research could further validate the HVR measure by 

evaluating these potential sources of variability. Another limitation is related to the choice of 

segmentation methods we evaluated. Given the wide use of the FreeSurfer pipeline, we decided 

to include it in our selection of evaluated methods even though it was impossible to evaluate its 

accuracy without its gold standards, and unfair to compare it to our gold standards. Relatedly, its 

comparison of calculated HVR values to our trained methods was tainted by different anatomical 

definitions of the hippocampus and the surrounding ventricles compared to the other methods. 

Despite these differences, the high correlation to our proposed CNN method together with the 

comparable CH:AD effect size and associations with age and global cognition support its use as 

a viable alternative to our proposed CNN method. 

4.1 Conclusions 

In conclusion, after evaluating various automatic segmentation methods, with Dice Kappas of 

0.96 and rho values of 0.99 against high quality manually segmented labels, the CNN method 

yields the best HC segmentations among the three methods, with results that are comparable to 

the best in the literature. The high HCvol correlations between FreeSurfer, CNN and NLPB 

methods show that these methods agree fairly well for the segmentation of the HC, and thus all 

are viable choices to compute the HVR in large samples. HVR, when compared against HCvol, 

showed greater consistency across segmentation methods, a larger effect size when 

distinguishing between individuals with AD and healthy controls, and stronger associations with 

age and global cognition, particularly improving the performance of the MALF method. These 
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findings support the promise of HVR as a measure of hippocampal integrity, specifically for 

neurodegenerative disease research and the study of age-related cognitive decline. 
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