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Abstract

Rabies spread by domestic dogs continues to cause tens of thousands of human deaths
every year in low- and middle-income countries. Nevertheless rabies is often neglected,
perhaps because it has already been eliminated from high-income countries through
dog vaccination. Estimates of canine rabies’s intrinsic reproductive number (R),
a metric of disease spread, from a wide range of times and locations are relatively
low (values < 2), with narrow confidence intervals. Given rabies’s persistence, this
consistently low and narrow range of estimates is surprising. We combined inci-
dence data from historical outbreaks of canine rabies from around the world with
in-depth contact-tracing data from Tanzania to investigate initial growth rates (r9),
generation-interval distributions (G), and reproductive numbers (Ry). We improved
on earlier estimates by choosing outbreak windows algorithmically; fitting ry using a
more appropriate statistical method that accounts for decreases through time; and

incorporating uncertainty from both 7y and G in our confidence intervals on R,.
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Our Ry estimates are larger than previous estimates, with wider confidence intervals.
These revised Rg estimates suggest that a greater level of vaccination effort will be
required to eliminate rabies than previously thought, but that the level of coverage
required remains feasible. Our hybrid approach for estimating R and its uncertainty
is applicable to other disease systems where researchers estimate Ry by combining

data-based estimates of ry and G.

Introduction

Canine rabies, primarily spread by domestic dogs, is a vaccine-preventable disease
that continues to cause tens of thousands of human deaths every year in low- and
middle-income countries (LMICs) (Taylor et al., 2017, Minghui et al. 2018). Ca-
nine rabies has been eliminated from high-income countries by mass dog vaccination
(Rupprecht et all 2008)). Despite the effectiveness of dog vaccination, rabies con-
tinues to cause many human deaths and large economic losses in LMICs due to the
limited implementation of rabies control strategies (Hampson et al., 2015)). The past
two decades have seen an increase in rabies control efforts, including dog vaccination
campaigns and improvements in surveillance (Kwoba et al.,|2019; Mtema et al., [2016;
Gibson et al., [2018; Mazeri et al. 2018; [Wallace et al., [2015). The World Health Or-
ganization (WHO) and partners (OIE, FAO, GARC) joined forces to support LMICs
in eliminating human deaths from dog-mediated rabies by 2030 (Minghui et al., [2018;
Abela-Ridder et all 2016). Mass dog vaccination campaigns have begun in some
LMICs and are being scaled up (Castillo-Neyra et al., 2019; |[Evans et all [2019).
However, the emergence of SARS-CoV-2 pandemic disrupted rabies control and elim-
ination efforts (Nadal et al| 2022). As the SARS-CoV-2 pandemic is transitioning
out of global emergency, rabies control programmes are resuming. An understanding

of rabies epidemiology — in particular, reliable estimates of the basic reproductive
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number (Ry), a quantitative measure of disease spread that is often used to guide
vaccination strategies — could inform rabies control efforts.

The basic reproductive number Ry is defined as the expected number of secondary
cases generated from each primary case in a fully susceptible population (Macdonald,
1952). Estimates of Ry for rabies have been made using various methods including
direct estimates from infection histories, epidemic tree reconstruction, and epidemic
curve methods. These R estimates based on historical outbreaks of rabies that span
a variety of regions and time periods have generally been surprisingly low, typically
between 1 and 2 with narrow confidence intervals (Hampson et al., 2009; Kurosawa
et al., 2017; Kitala et al.; 2002). With such a low Ry one might expect rabies to fade
out due to a combination of behavioural control measures and stochastic fluctuations,
even in the absence of vaccination. In contrast to diseases that have already been
eradicated, but that have a large R (e.g., rinderpest, with Ry ~ 4 (Mariner et al.,
2005))), Ro estimates for rabies suggest that control through vaccination should be
relatively easy.

Here we revisit and explore why rabies, with its low R, nonetheless persists in
many countries around the world. Such persistence suggests that rabies’s potential for
spread, and therefore the difficulty of rabies control, may have been underestimated.
In this paper, we combine information derived from epidemic curves with a high-
resolution contact tracing data set that provides large numbers of observed generation

intervals (which is rare for infectious disease studies) to estimate R,.

Materials and Methods

Ry is often estimated by combining two other epidemiological quantities: the initial
growth rate of an epidemic (r¢) and the generation interval (G) distribution, where

the generation interval is defined as the time between successive infections along a
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transmission chain (Park et al., [2018]). The initial growth rate ry is often estimated
by fitting a model to time series data from the early stages of epidemics. G is
an individual-level quantity that measures the time between an individual getting
infected to infecting another individual. The generation interval distribution is the
natural way to link rg and Ry (Wallinga and Lipsitch) 2006; |Champredon and Dushoft]
2015). Rp can be estimated from ry and the G distribution by the Euler-Lotka

equation (Wallinga and Lipsitch, 2006))

1

Ro= S Gije

(1)

where ¢ is time, and G(t) is the generation interval distribution. This formula is
convenient to calculate point estimates of Ry; however, researchers rarely propagate

uncertainty from the estimates of 7y and the G distribution through this formula.

Initial growth rate

Disease incidence typically increases approximately exponentially during the early
stages of an epidemic. The initial growth rate rq is often estimated by fitting expo-
nential curves from near the beginning to near the peak of an epidemic. However,
growth rates estimated from an exponential model can be biased downward, overcon-
fident, and sensitive to the choice of fitting windows (Ma et al., 2014). Here we used
logistic rather than exponential curves to more robustly estimate ry (Ma et al., [2014;
Chowell, |2017).

We selected fitting windows algorithmically for each outbreak as follows: (1) we
break each time series into “phases”: a new phase starts after a peak with a height of
at least minPeak (16) for this MS) cases, followed by a proportional decline in cases
of at least declineRatio (0.25); (2) In each phase, we identify a prospective fitting

window starting after the last observation of 0 cases and extending one observation
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past the highest value in the phase (unless the highest value is itself the last observa-
tion); (3) we then fit our model to the cases in the fitting window if (and only if) it
has a peak of at least minPeak cases, a length of at least minLength (4) observations,
and a ratio of at least minClimb (1.5) between the highest and lowest observations.
We tried a handful of parameter combinations before settling on a final set during an

expert consultation. These explorations are detailed in our code repository.

Observed Generation intervals

An earlier rabies study constructed generation intervals by summing two quantities:
a latent period (the time from infection to infectiousness), and a wait time (time
from infectiousness to transmission) (Hampson et al., [2009)). Since clinical signs and
infectiousness appear at nearly the same time in rabies, the incubation period (the
time from infection to clinical signs) is routinely used as a proxy for the latent period.
Hampson et al.| randomly and independently resampled latent (really, incubation) pe-
riods and infectious periods from empirically observed distributions (Hampson et al.|
2009)), and then sampled waiting times uniformly from the selected infection periods.

However, constructing G values by summing independently resampled values of
incubation and infectious periods accounts neither for the possibility of multiple trans-
missions from the same individual, nor for correlations between time distributions and
biting behaviour. Figure[l]illustrates the generation intervals of a single transmission
event from a rabid animal (comprising a single incubation period plus a waiting time)
and multiple transmission events from a rabid animal (comprising a single incubation
period and three waiting times). In cases where transmission links are not directly
observed, one should consider reweighting incubation-period observations to account
for unequal transmission from different infectors. In our case, we can account for these

effects directly by relying on generation intervals observed through contact tracing.
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Figure 1: Decomposing generation intervals. Generation intervals start when
a focal animal acquires infection (open red circle) and end after a period of viral
replication (dashed line) when an animal shows clinical signs (blue star), becomes
infectious (solid black circle) and infects another animal — in rabies, the onset of
clinical signs and of infectiousness are closely synchronized. Once the infectious period
(grey block) starts, there is a wait time (solid black line) until a susceptible host (solid
red circles) is bitten. The infectious period ends with the death of the focal host (black
X). The generation interval is the interval between the focal animal getting infected,
and when it infects a new case (red interval between open and solid circles). If a
single biter transmits multiple times (right), the wait times generally vary, but the
incubation period is the same for each transmission event.

Correcting for vaccination

In a population where some animals are not susceptible, calculations based on esti-
mates of ry and the G distribution do not estimate R, but instead estimate the
realized average number of cases per case, also known as the effective reproductive
number R.. In the case of rabies, vaccination is the only known cause of immu-
nity (case fatality in dogs is believed to be 100%). For a given population with v

vaccination proportion, the estimated R with correction for vaccination is
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Data

We used data from December 2002 — November 2022, from an ongoing contact trac-
ing study in Tanzania (Hampson et al., 2008, 2009). The data set contains 8636
domestic dog recorded events (i.e., domestic dogs bitten by an animal), and 3552 sus-
pected rabid dogs in the Serengeti District of northern Tanzania. Transmission events
were documented through retrospective interviews with witnesses, applying diagnos-
tic epidemiological and clinical criteria from the six-step method (Tepsumethanon
et al} |2005). Each dog was given a unique identifier, and date of the bite and clinical
signs were recorded if applicable and available. 2132 of the dog transmissions were
from unidentified domestic animals or wildlife. We restricted our analysis to domestic
dog transmissions (i.e., dog to dog), and obtained 293 directly observed generation
intervals (i.e. both biter and secondary case have “time bitten” records). There
were four observed dogs with multiple exposures (i.e., bitten by different identified
biters), generating extra generation intervals, but it is unclear which transmission
event transmitted rabies to these dogs. For simplicity, we omitted these four dogs

and their generation intervals from our analysis.

Fitting and Propagating Parameter Uncertainties

To propagate uncertainties for both ry and G, we used a hybrid approach. We first
fit logistic models, with negative binomial observation error, to incidence data to
estimate ry implemented in the R package epigrowthfit |Jagan et al| (2024). We
then compute a sample of 1000 Ro values using equation . For each value of
7@0, we first draw a value of 7y from a Normal distribution matching the estimated
sampling distribution of the logistic fit parameters and an independent sample of G
from the empirical contact tracing data. To sample G from the empirical contact
tracing data, we first take a weighted sample of 100 biters, which accounts for biter-

level variation, and for each biter, we sample a G from its respective transmission
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event, to account for individual variation. We then matched samples of G to the
ro samples to produce a range of estimates for Rg. This hybrid sampling approach
incorporates the uncertainties in both rg and G into the distribution of Ry estimates.
Finally, we use the 2.5, 50, and 97.5 percentiles of the distribution of Ry estimates to

get point estimates and confidence limits for Ry for each rabies outbreak.

Results
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Figure 2: Time intervals and biting empirical distributions from contact
tracing data. Panel A is the distribution of observed incubation periods. Panel
B is the distribution of incubation periods weighted by each dog’s biting frequency
(Panel C). The weighted distribution corresponds to the contribution of incubation
periods to generation intervals (Panel D). Black vertical lines show the means of each
time-interval distribution; red vertical lines show the mean incubation period and
generation interval (22.3 and 24.9 days, respectively) reported by [Hampson et al.
(2009).

Figure [2| shows the empirical distributions of the observed incubation periods,
rabid dog biting frequency, and generation intervals from the contact tracing data.
The mean observed incubation period is 27.5 days (n = 1109 dogs), the mean biting
frequency is 1.65 bites per rabid dog, and the weighted mean incubation period is

36.6 days (n = 143 biting dogs). The mean observed generation interval is 37.9 days

(n = 143 primary infections resulting in 293 secondary cases), which is substantially
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larger than the mean generation interval constructed from summing independently
sampled incubation periods and wait times (24.9 days (Hampson et al., 2009))). The
weighted incubation period distribution is a better approximation of the generation

interval distribution than the unweighted incubation period of all dogs.
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Figure 3: Growth rate estimates for global historical outbreaks of rabies.
Estimates and 95% confidence intervals of rq in global historical outbreaks estimated
from exponential (dotted) and logistic (solid) model fits.

Different colors represent different phases from the times series data.

We estimated 7o from historical outbreak data (Figure[3). For a direct comparison
of the method used in (Hampson et al. [2009)), we also estimated ry from an exponen-

tial model. Both methods (exponential and logistic) were applied to all phases of the
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global historical outbreaks. Overall, ry estimates from the logistic model are larger
with wider confidence intervals compared to ry estimates from the exponential model

(as used in (Hampson et al., 2009)).
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Figure 4: Reproductive number estimates for global historical outbreaks of
rabies

Previous estimates of R are shown in blue highlights; R, estimates and confidence
interval (95% quantiles from the estimated R, sample) from our hybrid approach
using the logistic model. Ry values are corrected for vaccination coverage.

We combined our estimates of ry from the logistic model with the empirical G
from our detailed Tanzanian data to produce R estimates. Of the listed historical
outbreaks, four occurred in locations with prior rabies vaccination coverage: Mem-

phis and Shelby County, Tennessee, US (“Memphis”: 1947, 10% vaccine coverage);

11
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Serengeti, Tanzania (2003, 20% coverage); Ngorongoro, Tanzania (2003, 20% cov-
erage); and Sultan Hamad, Kenya (1992, 24% coverage). Figure || shows the R,
estimates using various approaches along with estimates from [Hampson et al.| (2009).
Our estimates of R, using the logistic model and corrected G are larger than those
previously reported (Hampson et al.| [2009)), with 3 locations (Java, Memphis, and
Mexico) having Ry greater than 2. The hybrid approach provides larger values of
Ry and wider confidence intervals after propagating uncertainty from both ry and
generation interval distributions with upper confidence limits greater than 2 for most

locations.
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Figure 5: Effects of r, estimation methods and corrected G on the esti-
mates of Ry in Mexico outbreak. “Exponential” represents a fitting method
similar to that used by [Hampson et al.| (2009)), but using our algorithmic windowing
selection; “Logistic” uses a logistic model instead. “Naive GI” uses the G estimates
from Hampson et al.| (2009); “Corrected GI” uses the resampling method described
above. Both switching from exponential to logistic fitting, and using the corrected
G estimate, lead to increases in the estimated Ry. Propagating the uncertainty of rg
and G estimates increases uncertainty in Ry.

13


https://doi.org/10.1101/2024.04.11.589097
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.11.589097; this version posted April 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Lastly, we compare the effects of different estimation techniques of ry and G on
estimates of Ry (Figure . For illustrative purposes, we used the 1987 outbreak in
Mexico where there was no vaccination. Propagating uncertainty from both rq and
G generally leads to wider confidence intervals compared to previous R, estimates
in [Hampson et al.| (2009). The R, estimate increases when we estimate ry via the
logistic model, or when we sample the full distribution of G, rather than plugging
in the naively constructed interval as in Hampson et al| (2009). Combining the
two corrections (in 79 and G) boosts the Ry estimates even more, with even wider

confidence intervals.

Discussion

Our study helps to explain why rabies persists despite estimates of Ry from histor-
ical outbreaks being consistently low, by showing that revised higher estimates are
compatible with historical outbreak data. Here, we reanalyzed historical rabies epi-
demics with improved model assumptions and uncertainty propagation, showing that
historical estimates of Ry were downward biased and overconfident.

The basic reproductive number, Ry, is commonly used to summarize the risk
of infectious disease and to inform control measures. Here, we used a relatively
simple approach to estimating Ry by combining initial growth rate (ry) estimates
from incidence data and generation intervals from contact tracing data. By assuming
rabies generation intervals are similar across time and space, this method allows us
to combine generation intervals from the detailed Tanzania contact tracing data with
growth rates estimated from incidence data from various regions across the globe. We
improved on earlier work by correcting for curbed epidemic growth when estimating
ro, and by developing an approach to propagate uncertainty from both rq and G,

resulting in higher Ry estimates with wider confidence intervals.
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Estimates of R are strongly affected by estimates of the growth rate during the
initial phase of the epidemic. The logistic model gives a better approximation of
the initial phase of the epidemic resulting in a larger estimate of ry compared to the
exponential model (Ma et al., [2014). Our estimates of 7y account for observation
error (measurements may not perfectly match reality), but not for process error (the
fundamental stochasticity of the system itself). Thus we may still be underestimating
the uncertainty in ro, and hence in Ry (King et al., 2015). Likewise, our approach
may overestimate R since epidemic growth models can only be applied to distinct
outbreaks rather than to stuttering transmission chains that are typical for diseases
with low Ry like rabies. Our approach also does not account for uncertainties that
arise from choices about window selection, including which “phases” of outbreaks are
included at all.

Re-analysis of these data also allowed us to identify an overlooked fact about ra-
bies generation intervals: observed generation intervals are longer, on average, than
intervals constructed by naively adding incubation periods and waiting times, because
of within-individual correlations in time distributions and biting behaviour. The un-
expected importance of these correlations could have implications for other infectious
disease analyses that depend on the generation interval, as such correlations can bias
the estimation of generation intervals, as shown in this study. Further investigation
of how these correlations affect the overall dynamics of rabies is warranted.

In any case, our estimates suggest that the R, of rabies is larger, and more un-
certain, than previously estimated. This finding may explain some of the formerly
unexplained variations in the success of rabies-control programs (e.g., low levels of
coverage (30-50%) have succeeded in some settings while high coverage 75% was in-
sufficient to control rabies in others (Eng et al., [1993)). Nonetheless, our revised
Ry estimates still suggest that coverage required to control rabies should be feasible

even in settings where Ry is relatively high and that this should not be abarrier to
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initiating large-scale dog vaccination required for elimination.

While our primary goal was to understand why estimates of rabies Ry were small
with narrow confidence intervals, our analysis also revealed an interesting biological
process through the lens of generation intervals from contact tracing data: the need to
account for biting behaviour in the incubation period distribution, in order to match
the generation interval distribution.

Ry is typically used as a first approximation for interventions such as vaccination
to determine herd immunity thresholds. However, both heterogeneity in contacts and
the correlations between incubation periods and transmission that we observed here
through the generation interval suggest that simple Ry estimation methods should
be used with caution. Rabies is particularly useful for exploring this effect because
transmission events and latent periods are directly observable via contact tracing.
The correlation effect highlighted here is likely to apply in other disease systems, but

hard to detect because generation intervals are so rarely directly observable.
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