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Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease that predominantly
targets the motor system. Spread of pathology is thought to be driven by both local vulnerability
and network architecture. Namely, molecular and cellular features may confer vulnerability to specific
neuronal populations, while synaptic contacts may also increase exposure to pathology in connected
neuronal populations. However, these principles are typically studied in isolation and it remains un-
known how local vulnerability and network spreading interact to shape cortical atrophy. Here we
investigate how network structure and local biological features jointly shape the spatial patterning
of atrophy in ALS. We analyze the Canadian ALS Neuroimaging Consortium (CALSNIC) dataset and
estimate cortical atrophy using deformation-based morphometry (DBM). We find that structural con-
nectivity closely aligns with the course of atrophy. Atrophy is also more likely to occur in regions that
share similar transcriptomic, neurotransmitter receptor and metabolic profiles. We identify disease
epicenters in motor cortex. Epicenter probability maps show transcriptomic enrichment for biological
pathways involved in mitochondrial function as well as support cells, including endothelial cells and
pericytes. Finally, individual differences in epicenter location correspond to individual differences in
clinical and cognitive symptoms, and differentiate patient subtypes.

INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a terminal neu-
rodegenerative disease associated with progressive im-
pairment of motor functions [30]. Expected survival of
most patients diagnosed with ALS is 2–5 years after on-
set [4, 86]. The disease shows significant heterogene-
ity across individuals, and patients can be classified into
subtypes based on multiple features, including the famil-
ial or sporadic occurrence of the disease, age of disease
onset, symmetry of motor neuron involvement, and ini-
tial symptom location [129]. Most ALS patients experi-
ence a progression of symptom severity, which reflects
ALS pathology spread in the central nervous system.

Most modern accounts of ALS pathology revolve
around two non-exclusive notions. The first is network
spreading: that the spread of pathology, likely in the
form of pathogenic misfolded proteins, occurs via synap-
tic contacts [20, 21, 89, 94, 97, 98, 112, 142, 149]. Here
initial infiltration via the corticospinal tract introduces
pathogenic proteins in primary motor cortex, leading to
progressive cell death and atrophy. The second notion
is that of local vulnerability: that molecular and mor-
phological features of specific cells predispose them to
the disease [108, 121]. In addition, the involvement of
support cells has been noted in ALS, including astrocytes
and pericytes, implicating energy homeostatic and vas-
cular mechanisms [11, 81, 107, 109]. Importantly, the
two perspectives may both be true; namely, pathology
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may spread via synaptic contacts, but the spread may be
amplified in vulnerable neuronal populations, effectively
guiding the network spread of pathology.

What are the principles that shape the spatial pattern-
ing of atrophy in ALS? Here we address this question us-
ing the Canadian ALS Neuroimaging Consortium (CAL-
SNIC) dataset (http://calsnic.org) [66]. We first estab-
lish that cortical atrophy reflects white matter architec-
ture. We also assess the extent to which the spread of at-
rophy between brain regions depends on their molecular
and cellular similarity, including transcriptomic similar-
ity, neurotransmitter receptor similarity, and metabolic
similarity. We then use methods from epidemiology to
identify network epicenters of the disease process in the
cortex. We show that cortical epicenters of pathology
co-localize with markers of metabolic and mitochondrial
function. Finally, we show that individual differences in
epicenter location can distinguish subtypes of patients
(bulbar- versus spinal-onset) and correlate with clinical
and cognitive function.

RESULTS

Data were derived from the CALSNIC repository [66],
and comprised N = 192 patients and N = 175 healthy
age- and sex-matched control participants. Atrophy
was estimated using deformation-based morphometry
(DBM), a morphometric technique that has previously
been shown to be sensitive to tissue loss in both deep
and superficial structures [9], and across multiple neu-
rodegenerative syndromes [17, 36, 119, 132, 134]. For
details on data acquisition or preprocessing, see Methods.
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Figure 1. ALS-related atrophy | (a) Sagittal, coronal, and axial view of mean atrophy across individuals with ALS. Atrophy is
estimated as the group-average w-score across individuals with ALS. The map is thresholded to exclude voxels with atrophy values
smaller than 0. Data are displayed on a T1-weighted MNI template (MNI152-NonLinear2009cSym - 1 × 1 × 1mm; P = 118,
C = 117, A = 87). (b) Sagittal, coronal, and axial view of white matter tract parcels colored by mean atrophy. White matter tracts
are defined based on the JHU white matter tractography atlas (thresholded at 25% probability) [60, 146]. Significant atrophy
is observed in bilateral corticospinal tracts (FDR corrected; left: p = 8.83 × 10−16, t-statistic= 9.62; right: p = 4.13 × 10−16,
t-statistic= 9.84), anterior thalamocortical tracts (FDR corrected; left: p = 6.53 × 10−8, t-statistic= 6.44; right: p = 2.04 × 10−5,
t-statistic= 5.26) and superior longitudinal fasciculus-posterior limb tracts (FDR corrected; left: p = 7.39× 10−4, t-statistic= 4.34;
right: p = 1.68×10−4, t-statistic= 4.75). (c) Cortical atrophy map parcellated based on Schaefer-400 parcellation [111]; maps are
displayed on fs-LR inflated cortical surfaces. (d) Mean atrophy is calculated within each of the cytoarchitectonic classes defined
by Von Economo [39, 113, 145]. Statistical significance is estimated using a spatial autocorrelation-preserving spin test (1, 000
repetitions). Black borders shown on the fs-LR flat cortical surface correspond to the primary motor cortex borders defined by Von
Economo cytoarchitectonic parcellation [39, 113, 145].

Spatial distribution of atrophy

We initially identify differences between the ALS pa-
tients and healthy controls. Fig. 1a shows the group-
average atrophy map. Throughout the manuscript, we
use sign-inverted w-scores such that greater values cor-
respond to greater atrophy: a w-score is a morphometric
measure of atrophy that is corrected for differences in
age, sex and imaging site. Consistent with previous re-
ports, the map highlights pronounced atrophy through-
out the brain, including both grey matter (cortex and
subcortex) and white matter [36].

Given that most cortical atrophy is concentrated in pri-
mary motor cortex, we implement an initial sanity check:
whether atrophy can correspondingly be observed in the
corticospinal tract. We segment the voxel-wise atrophy
map using the Johns Hopkins University (JHU) white
matter tractography atlas [60, 146] (Fig.1b). Analysis
of white-matter tracts reveal significant involvement of

bilateral corticospinal tract, bilateral anterior thalamic
radiation, and bilateral superior longitudinal fasciculus
bundles (p < 0.05, False Discovery Rate (FDR) corrected;
Fig. 1b). These projections have previously been associ-
ated with ALS and suggest that cortical atrophy is related
to white matter atrophy [3, 18, 37, 90, 104]. In the sub-
sequent analyses we directly assess the relationship be-
tween local grey matter atrophy and network connectiv-
ity.

To cross-reference the atrophy map with network con-
nectivity data, we apply a high resolution functional par-
cellation, subdividing the atrophy map into 400 parcels
according to the Schaefer atlas [111] (Fig. 1c). In the
cortex, the most pronounced atrophy is observed near
the pre-central gyrus, a hub for motor function. At-
rophy also extends into the temporal and frontal cor-
tices (Fig. 1c). To test whether the disease selectively
targets primary motor cortical neurons, we compute
mean atrophy in each of the canonical cytoarchitectural
classes according to the histological Von Economo atlas

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.11.588760doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.11.588760
http://creativecommons.org/licenses/by/4.0/


3

Figure 2. Structural connectivity shapes ALS-related atrophy. | (a) Left: We test the hypothesis that local regional atrophy is
related to atrophy in its anatomically connected neighbours. The scatter plot shows the atrophy of a node (y-axis) and the mean
atrophy of that node’s structurally connected neighbours (Pearson correlation coefficient; r = 0.46). Grey circles indicate brain
regions. Right: The observed correlation coefficients between node and neighbour atrophy (red circles) are shown with respect to
three null models: (1) spatial autocorrelation preserving spin tests (p = 1.99×10−3, blue box plot), (2) degree-preserving rewired
networks (p = 9.99 × 10−4, green box plot), and (3) degree- and edge length-preserving rewired networks (p = 0.045, red box
plot). Asterisks indicate statistical significance with respect to each null model. (b) In the atrophy ranking method, epicenters
are defined as nodes that are both highly atrophied and structurally connected to other highly atrophied nodes. To estimate the
epicenter likelihood of a node, nodes are first ranked according to their atrophy and then ranked according to their neighbours’
atrophy. The epicenter likelihood ranking of each node is defined as its mean ranking in the two lists. Visualizations of the epicenter
maps, including the top-ranked nodes distinguished by black borders, are presented on both inflated and flat cortical fs-LR surface
representations. For completeness, we additionally plot the mean and standard deviation of epicenter maps across individual
ALS patients in Fig. S2. (c) Agent-based SIR model locates similar cortical epicenters. The model only considers the structural
connectome as the underlying network for pathology spread. The spreading process is initiated in every brain region and the
correlation between the simulated and empirical patterns of atrophy is computed at each simulation time point. The two largest
correlations are obtained by seeding regions within the motor cortex (indicated by a blue border on the left cortical surface (LH)
and by a yellow border on the right cortical surface (RH)). The epicenter likelihood maps obtained by the SIR modeling approach
are shown on both inflated and flat fs-LR cortical surfaces. The epicenter likelihood maps obtained via both the ranking method
and the SIR modeling lead to cortical patterns which are correlated with each other (Pearson correlation coefficient; r = 0.80,
pspin = 9.99× 10−4, nspin = 1, 000).

[39, 113, 145] (Fig. S1). We observe significant enrich-
ment of atrophy in the primary motor cytoarchitectonic
class (FDR corrected, pspin = 6.99×10−3; Fig 1d). Collec-
tively, these results suggest that the present morphomet-
ric approach is sensitive to the pathophysiology of ALS.

Structural connectivity shapes cortical atrophy

We next assess the extent to which the spatial pat-
terning of atrophy is related to structural connectivity.
We compute the correlation between a node’s atrophy
value and the mean atrophy of its structurally connected
neighbours, weighted by streamline density estimated
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Figure 3. Inter-regional biological similarity shapes atrophy | Inter-regional similarity networks reflect the similarity of brain
regions according to multiple biological features. We analyze transcriptomic (gene expression) similarity, receptor similarity, lami-
nar similarity, metabolic similarity, and hemodynamic similarity [56]. (a) The heatmaps in the first row visualize these networks.
Negative-valued elements are excluded from all analyses. Similarity matrices are masked based on the structural connectome
(using structural connections and weights from each of the inter-regional similarity matrices), resulting in heatmaps shown in the
second row. (b) The node-neighbour atrophy correlations are estimated for each masked inter-regional similarity network. The sig-
nificance of node-neighbour correlations are assessed with respect to spatial autocorrelation preserving spin tests (nspin = 10, 000).
Red dots depict node-neighbour correlations, and boxplots depict the corresponding spin test-estimated null distributions.

using diffusion MRI (Fig. 2a). To ensure that connec-
tivity estimates reflect the healthy connectome prior to
disease onset and deafferentation, we estimated struc-
tural connectivity in a sample of N = 326 healthy young
adults from the Human Connectome Project (S900-HCP;
[136]). Fig. 2a shows a positive correlation between the
two (Pearson correlation coefficient; r = 0.46), suggest-
ing that pathology in a brain region is correlated with
greater exposure to pathology in anatomically connected
regions, an effect that has been demonstrated in other
neurodegenerative syndromes [56, 117, 119, 120, 153].

To demonstrate that atrophy patterns are mainly
driven by network topology and not by spatial proxim-
ity among regions or the spatial autocorrelation of the
atrophy patterns, we apply three null models [138]. The
first null model is a spatial autocorrelation-preserving
randomization that tests whether the correlation be-
tween node and neighbour atrophy is passively due to
spatial autocorrelation in the atrophy map (“spin test”;

[5, 84]. This model generates a null distribution for
node-neighbour correlation values by projecting the atro-
phy map to a sphere, applying random angular rotations,
bringing the rotated map back to the cortical surface, and
re-calculating the node-neighbour atrophy correlations
using the values from the rotated atrophy maps. We ob-
serve significantly greater correlations for the empirical
map compared to the rotated maps (pspin = 1.99×10−3),
suggesting that the effect cannot be attributed to spatial
autocorrelation. Moreover, the correlation between node
and neighbour atrophy is also significantly greater when
using the empirical structural brain network compared to
rewired null structural networks that randomize network
topology, including both degree-preserving and degree-
and edge length-preserving nulls (p = 9.99 × 10−4, p =
0.045; respectively) [14]. Collectively, these null models
show that the correlation between node and neighbour
atrophy is specifically due to network topology.
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Epicenters of cortical atrophy

Given that the structural connectome shapes the
spread of ALS-related pathology, we next sought to
identify the putative cortical epicenter of the pathol-
ogy. We apply two methods – one empirical and one
computational – to back-reconstruct the spreading tra-
jectory and infer the most likely cortical location of the
epicenter: (1) a network-based node ranking method,
and (2) a susceptible-infected-removed (SIR) dynamical
model. Both methods have previously been applied to
understand the course of multiple neurological diseases
[1, 54, 55, 119, 120, 157]. The ranking method iden-
tifies an epicenter as a region that is severely impacted
by disease-related atrophy, and whose structurally con-
nected regions also exhibit extensive atrophy. In this ap-
proach, brain regions are ranked based on both their own
atrophy values and their neighbours’ atrophy values in
two separate lists. Each cortical node is then assigned a
value reflecting the node’s average rank across these two
lists. Fig. 2b showcases the final mean ranking values
across brain regions; in this map, higher values indicate
higher probability of a node being an epicenter. The two
most probable epicenter locations are within the right
and left pre-central gyrus (primary motor cortex).

In the second approach, we build an SIR model using
the structural connectome as the only underlying foun-
dation for the spread of pathogenic agents, and hence
atrophy. The model works by simulating the misfold-
ing of normal proteins in the cortex and their trans-
neuronal spread through the structural connections be-
tween brain regions. The similarity between real atro-
phy maps and simulated atrophy maps is computed at
each time point (Fig. 2c). Each trajectory in the plot cor-
responds to the similarity of real and simulated atrophy
when a specific parcel is chosen as the epicenter for the
spread of misfolded proteins. Brain parcels are ranked
based on parcels’ maximal correlation value across all
simulation time-points. The top two parcels which can
best reproduce the atrophy pattern, are indicated in blue
and yellow in Fig.2c, and again are located within the
motor cortex. Altogether, both methods yield similar epi-
center probability maps (Pearson correlation coefficient;
r = 0.80, pspin = 9.99 × 10−4, nspin = 1, 000). Both maps
suggest high probability of being an epicenter for parcels
across the motor and premotor cortices, as well as dor-
solateral prefrontal cortex, posterior parietal cortex, and
superior temporal gyrus.

Local biological features guide pathogenic spread

We next investigate the potential contribution of multi-
ple biological features in guiding disease spread. We con-
sider the hypothesis that, while disease spread occurs via
axonal projections, spread may be more likely between
regions that display or share specific biological features.
Specifically, we reconstruct five inter-regional similarity

networks that describe the biological similarity of pairs
of brain regions. The networks include: (1) gene expres-
sion similarity, (2) neurotransmitter receptor similarity,
(3) laminar differentiation similarity, (4) metabolic sim-
ilarity, and (5) hemodynamic similarity (i.e. functional
connectivity) (Fig. 3a) [56].

To assess whether regions with similar biological fea-
tures are also more likely to experience atrophy, we com-
pute node-neighbour similarity as in Fig. 2a. Namely,
we define the “exposure” that region i has to region j’s
atrophy as the product between the edge weight (cij if
cij > 0) and the extent of atrophy in the neighbour-
ing nodes. Here we use the connection weights derived
from each of the five inter-regional similarity networks
masked by the structural connectome (using structural
connections and weights from each of the inter-regional
similarity matrices). If the weights from a network yield
a high value for node-neighbour atrophy, this suggests
that the biological feature encoded by that network con-
tributes to the spread of pathology [56]. We assess signif-
icance with respect to spatial autocorrelation-preserving
spin tests and apply FDR correction to the resulting p-
values.

We find that all networks of inter-regional biological
similarity yield significant correlations between node and
neighbour atrophy values, suggesting that ALS pathol-
ogy is more likely to spread between regions with simi-
lar biological features (Fig. 3b). Interestingly, metabolic
similarity – estimated using dynamic FDG PET – yields
the greatest node-neighbour similarity (Pearson correla-
tion coefficient; r = 0.52, pspin = 1.25 × 10−3). This
is consistent with numerous reports that ALS is asso-
ciated with metabolic dysfunction, including abnormal
mitochondrial physiology leading to a decreased level
of adenosine triphosphate (ATP) and oxidative stress, as
well as dysfunction of astrocyte mitochondrial and glu-
tamate transporters leading to increased capture of free
glutamate and excitotoxicity [37, 130, 137]. The results
show that the addition of biological similarity informa-
tion results in increased node-neighbour correlation val-
ues (gene expression similarity, r = 0.48; neurotrans-
mitter receptor similarity, r = 0.48; metabolic similarity,
r = 48; metabolic similarity, r = 0.52; hemodynamic
similarity, r = 0.46) compared to using structural con-
nectivity alone (r = 0.46), suggesting that network struc-
ture and local biological features jointly contribute to the
spatial patterning of atrophy.

For completeness, we repeated the analysis using the
unmasked inter-regional similarity matrices (using con-
nectomes shown in the first row of Fig. 3a, and Fig. S3).
In this case, we also observe significant node-neighbour
atrophy using gene expression similarity (Pearson corre-
lation coefficient; r = 0.35, pspin = 1.33 × 10−2), neuro-
transmitter receptor similarity (Pearson correlation coef-
ficient; r = 0.35, pspin = 1.25 × 10−2), metabolic simi-
larity (Pearson correlation coefficient; r = 0.43, pspin =
4.99× 10−3), and hemodynamic similarity (Pearson cor-
relation coefficient; r = 0.25, pspin = 2.75× 10−2). In the

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.11.588760doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.11.588760
http://creativecommons.org/licenses/by/4.0/


6

Figure 4. Enrichment analyses of the genes associated with cortical atrophy in ALS | (a) Upper: top 30 biological process terms
from the GO Consortium knowledge base associated with gene sets correlated with the ALS epicenter likelihood map [10]. Lower:
All cellular components terms from the GO Consortium knowledge base that are significantly enriched in gene sets correlated
with the ALS epicenter likelihood map [10]. Terms in both categories are ordered by their category scores (c-scores). (b) Cell
type enrichment analysis of ALS epicenter map reveals significant hits for pericytes and endothelial cells [73]. The graphical
representation of pericytes and endothelial cells is created with (https://www.biorender.com).

next subsection, we investigate the molecular and cellu-
lar features associated with atrophy in greater detail.

Molecular and cellular signatures of epicenters

Up to now, we find that atrophy patterns reflect net-
work organization and are centered on a compact set
of epicenters. We next ask whether the network epi-
centers of ALS atrophy are enriched for specific molec-
ular pathways and cell types. We cross-reference the ALS
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Figure 5. Relating individual epicenter maps with clinical and behavioural measures | (a) The first latent variable from a
PLS analysis relating individual epicenter maps and clinical-behavioural measurements. Brain loadings are shown on the fs-LR
inflated and flat cortical surfaces. Regions demarcated by the black border are those with the greatest effect sizes (Cohen’s d
effect size greater than 1) in the group-average activation map from S1200 Human Connectome Project package for the movement
task contrasts [12]. Regions demarcated by green borders showcase areas 44 and 45 from the Glasser parcellation [51]. These
regions, specifically in the left hemisphere [105], correspond the Broca’s area [16]. (b) The scatter plot visualizes the individual
participants’ brain scores versus behavioral PLS scores (Pearson correlation coefficient, r = 0.50; Spearman correlation coefficient,
r = 0.51); each participant’s score is colored based on the revised-ALSFRS total score. The total ALSFRS score quantifies the
degree of functional disability resulting from the disease (greater values correspond to lower disease severity) [27]. (c) The bar
plot visualizes the behavioral/clinical measures’ loadings. The contribution (effect size) of individual variables is assessed by
bootstrap resampling (1, 000 repetitions).

epicenter probability map with microarray gene expres-
sion from the Allen Human Brain Atlas [57]. We sub-
mitted the gene list to Gene Category Enrichment Anal-
ysis (GCEA) to isolate Gene Ontology (GO) categories in
which the constituent genes are significantly more cor-
related with atrophy than a population of random at-

rophy maps with preserved spatial autocorrelation [44]
(see Methods).

Consistent with the intuition developed in the previ-
ous subsection – suggesting involvement of metabolic
features in disease spread – the top GO categories are
mainly associated with metabolic processes and ener-
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getic homeostasis (Fig. 4a). These terms include ‘ATP
metabolic process’ [114], ‘gluconeogenesis’, ‘mitochon-
drial calcium ion transport’ [69, 96], ‘glycolytic process’
[131], ‘glycosphingolipid metabolic process’ [19, 58],
‘mitophagy’ [41, 79, 122], ‘positive regulation of mito-
chondrial fission’ [6, 71], ‘mitochondrial matrix’ [125],
‘mitochondrial membrane’ [25, 125], ‘integral compo-
nent of mitochondrial inner membrane’ [25], ‘integral
component of mitochondrial outer membrane’ [25], ‘pro-
tein import into mitochondrial matrix’ [75, 76], ‘neg-
ative regulation of amino acid transport’, ‘branched-
chain amino acid catabolic process’ [155], ‘peroxisome’
[43, 53], ‘peroxisomal matrix’ [43, 53], all of which
point toward altered energy metabolism and mitochon-
drial dysfunction. Additionally, categories related to
cells’ cytoskeletal structure, such as ‘actin filament-based
movement’, ‘apical dendrite’ [50], ‘microtubule associ-
ated complex’ [50, 147], and ’anchored component of
membrane’ are also implicated in the disease, which
point to the structural dysregulations happening in the
cells causing axonal transport disturbance [77], impair-
ment of information integration in cells [50], and im-
pairing cell adhesion. A comprehensive list of significant
terms can be found in the supplementary material.

In addition, we estimated cell type enrichment asso-
ciated with ALS epicenters using genetic markers of dif-
ferent cell types, as determined through single-nucleus
droplet-based sequencing and single-cell transposome
hypersensitive site sequencing of human brain cells [73]
(Fig. 4b). We find significant enrichment for pericytes
[31, 110, 150, 152] and endothelial cells [91]. This
observation points to possible vascular dysfunction in
ALS, potentially explaining the consistent enrichment of
metabolic categories. The finding is consistent with pre-
vious reports that show a reduction in pericytes in the
spinal cord in ALS [46, 65], and interestingly, that these
changes occur even prior to the initial clinical manifes-
tations of the disease [128]. Collectively, these findings
show that the spatial patterning of atrophy in ALS de-
pends on both network structure as well as local molecu-
lar and cellular features that confer greater vulnerability
to the disease. In other words, axonal projections are the
physical conduit for disease spread, but the trajectory of
spreading is guided by local biological features.

Epicenter location is correlated with clinical presentation
and symptom severity

If cortical epicenters reflect the spatial focus of ALS
pathology, do they also correlate with the clinical mani-
festation? To address this question, we analyzed the co-
variance between individual patient epicenter maps and
individual differences across a variety of clinical, cogni-
tive, and demographic variables. We used a multivariate
pattern learning algorithm – partial least squares (PLS) –
to identify epicenter locations and clinical subtypes that
maximally covary with each other [70, 88, 156] (see

Methods).
The analysis revealed two latent variables that ac-

counted for 27.85% and 13.54% of covariance between
epicenter maps and clinical scores (Fig. 5, Fig. S4). Both
latent variables were statistically significant using per-
mutation tests (p = 9.99×10−4, 1.30×10−2), but only the
first latent variable could be cross-validated (p = 0.030).
The first latent variable captures a mainly primary motor
cortical epicenter pattern. Individuals who display this
epicenter pattern tend to have worse motor function, in-
cluding abnormal index finger and foot tapping scores,
daily physical functions (Revised Amyotrophic Lateral
Sclerosis Functional Rating Scale; ALSFRS scores), and
muscle tone. Interestingly, pathology in these epicen-
ters is uncorrelated with most cognitive scores, except for
worse spelling, cube counting, and visuo-spatial scores.
In other words, atrophy load in this cortical location is
linked with worse motor symptoms and a higher level of
disability.

Despite statistical significance and a large effect size,
the second latent variable could not be cross-validated.
We therefore relegate the figure to the supplement (Fig.
S4) and only describe this latent variable for complete-
ness. The second latent variable captures mainly a dor-
solateral prefrontal cortical epicenter pattern. Individ-
uals who display this epicenter pattern tend to have
worse ALSFRS speech and worse ALSFRS swallowing
scores, as well as respiratory insufficiency (i.e. worse
ALSFRS-respiratory insufficiency score). The clinical pat-
tern also captures covariance between atrophy in me-
dial prefrontal cortex and lower scores in multiple cogni-
tive measures. Collectively, these patterns suggest that
individual differences in epicenter location are closely
linked with clinical presentation. Importantly, the two la-
tent variables are reminiscent of spinal-onset and bulbar-
onset ALS clinical subtypes, which we examine in detail
next.

Atrophy epicenters in spinal- and bulbar-onset ALS

So far, we focused the analysis on a common atrophy
pattern across the patient sample. However, ALS is het-
erogeneous, and in clinical practice individuals are often
stratified according to the initial body region of onset
[106]. Most individuals experience spinal (limb) onset
of the disease where the first symptoms appear in the
legs and/or hands, while a third of patients report the
first symptoms being in bulbar areas [86], citing diffi-
culties in salivation, swallowing, and speaking [59, 72].
The present dataset (CALSNIC) provides stratification for
both bulbar- (N = 38) and spinal-onset (N = 140)
ALS subtypes (see Methods). There are also rare cases
of patients who report respiratory difficulties in the ini-
tial stages of the disease [123], but these were not in-
cluded in the dataset. Neither were patients with mixed
spinal- and bulbar-onset, nor those with frontotemporal
dementia-onset.
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Figure 6. Atrophy epicenters in spinal- and bulbar-onset ALS | (a) Epicenter likelihood maps for spinal-onset ALS and bulbar-
onset ALS. Maps are obtained for each subtype using two methodologies: agent-based SIR modeling and a ranking approach. The
maps derived by the two methods are correlated with each other, for both subtypes (Pearson correlation coefficient; r = 0.80).
(b) The brain maps depict the t-statistics derived from contrasting the bulbar- versus spinal-onset ALS epicenter maps. Regions
demarcated by the black border are those with the greatest effect sizes (Cohen’s d effect size greater than 1) in the group-average
activation map from S1200 Human Connectome Project package for the movement task contrasts [12]. Regions demarcated by
green borders showcase areas 44 and 45 from the Glasser parcellation [51]. These regions, specifically in the left hemisphere
[105], correspond the Broca’s area [16]. Cyan borders highlight two parcels that retain significance following FDR correction. We
further contrasted the behavioral/clinical measures for spinal- and bulbar-onset ALS patients. Bar plots show measures that are
significantly different between the two subtypes (FDR corrected) and error bars represent the standard deviation. Atrophy maps
for each subtype are shown in Fig. S5.

Here we investigate whether cortical network epicen-
ters are related to spinal- and bulbar-onset of the dis-
ease. We estimate epicenter probability maps for spinal
and bulbar ALS with the two methods presented in the
Epicenters of cortical atrophy subsection (ranking and
the SIR modeling). The two methods yield similar epi-
center likelihood maps (Pearson correlation coefficient;
r = 0.80, pspin = 9.99 × 10−4) for both disease onset
types (Fig. 6a). Importantly, epicenter probability maps
in spinal and bulbar ALS are different: in spinal-onset
ALS atrophy is mainly confined to primary motor cortex,

and paracentral lobule; conversely, in the bulbar-onset
ALS atrophy infiltrates areas in lower paracentral gyrus
and inferior frontal gyrus. To highlight epicenter differ-
ences between these two subtypes, we contrast cortical
epicenter maps for individuals with spinal and bulbar
ALS using t-tests. The obtained t-statistic map identi-
fies regions that are more likely to be epicenters in one
type compared to the other (Fig.6b). For reference, we
use the Human Connectome Project motor task group
average effect size maps to delineate and overlay bor-
ders of cortical regions associated with movement of the
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tongue, hands and feet. Consistent with their clinical
subtypes, bulbar-onset individuals show cortical disease
epicenters in regions linked to tongue movement and in
Broca’s area, accounting for increased speech deteriora-
tion in the bulbar group compared to the spinal group
[80]. Conversely, the spinal-onset individuals predomi-
nantly have more likely epicenters in regions associated
with movement of feet. Additionally, assessing behav-
ioral measures in CALSNIC dataset show that individuals
with the bulbar-onset ALS have severe inability in their
speech, salivation, and swallowing, and they have in-
creased jaw and upper limb reflexes compared to the in-
dividuals with spinal-onset ALS; meanwhile, those with
spinal-onset ALS displayed more significant weakness in
writing, walking, and stair climbing abilities. These re-
sults show how network epicenters of cortical atrophy
align with the clinical manifestation of the disease.

DISCUSSION

The present report explores how network structure
and local biological features jointly shape the spatial pat-
terning of atrophy in ALS. We find that structural connec-
tivity, together with inter-regional similarity of molec-
ular and cellular features, closely aligns with the spa-
tial patterning of atrophy and clinical expression of ALS.
We identify consistent and prominent disease epicenters
in motor cortex. Epicenter probability maps show tran-
scriptomic enrichment for biological pathways involved
in mitochondrial function as well as support cells, such
as endothelial cells and pericytes. Finally, individual dif-
ferences in epicenter location correspond to individual
differences in clinical and cognitive symptoms and dif-
ferentiate patient subtypes.

We consistently find that atrophy in a brain region is
correlated with the atrophy of anatomically connected
regions, suggesting that atrophy spreads via white matter
projections. This is consistent with the notion that ALS
pathology is related to misfolding and network spreading
of TAR-DNA binding protein (TDP)-43 [26, 115, 148].
According to this account, pathological changes in con-
formation (misfolding) of endogenous TDP-43 induce ag-
gregation and further misfolding. Trans-synaptic spread
of pathogenic misfolded TDP-43 results in patterns of
cell death and atrophy that ultimately resemble brain
network architecture. Our results support this account
in two ways. First, the corticospinal tract exhibits the
most pronounced atrophy (consistent with findings in
[36, 40, 42, 118]), as does primary motor cortex, sug-
gesting that cortical regions with strong physical connec-
tions to the corticospinal tract experience the greatest
pathology. Second, a region’s atrophy and the atrophy
of its neighbours are correlated, suggesting that network-
based exposure to the pathology confers increased risk of
pathology. This correlation is significantly greater than in
rewired null models that preserve degree sequences and
edge lengths, suggesting that the effect is not trivially

due to spatial proximity or the total number of connec-
tions in a given region, but rather due to the arrange-
ment of connections and the overall topology of the net-
work. Altogether, these results emphasize the role of
structural network architecture as the mediator of the
pathological protein spread in ALS [89, 98, 112, 142].

In addition to structural connectivity, we find that
the local biological features of brain regions contribute
to disease spread. Numerous theories posit that the
propagation of ALS may also be due to genetic mu-
tations [28, 34, 67, 68] and atypical metabolic func-
tion [38, 137]. Consistent with this work, we find that
other types of inter-regional similarity, such as gene ex-
pression, neurotransmitter receptor, laminar, metabolic,
and hemodynamic similarity also contribute to the pat-
terning of atrophy. Augmenting white matter connec-
tions with connection weights from these similarity ma-
trices, we observe increased correlations between re-
gional atrophy and atrophy of connected regions. In
other words, pathology is mediated by structural connec-
tivity, but spreading is more likely to take place between
neuronal populations that share similar molecular and
cellular characteristics.

Given that disease spread appears to follow network
structure, we next sought to identify the most likely cor-
tical epicenters. We assessed the likelihood of various
brain regions acting as cortical disease epicenters using
two methods: (1) data-driven ranking, and (2) agent-
based SIR modeling. Both methods identified regions
located in the primary motor area to be the likeliest epi-
centers, as well as regions in frontal and temporal cortex,
such as the temporoparietal junction. These results are
in line with histopathological findings, showing TDP-43
pathology in motor cortex (Brodmann areas 4 and 6) in
the initial stages of the disease [20]. The involvement of
frontal and temporal areas in later stages of the disease
is also well-documented [20, 36, 143].

What biological features predispose regions to act as
disease epicenters? The epicenter probability map is
correlated with the spatial expression of genes involved
in metabolic pathways, pointing toward mitochondrial
functions such as ATP production, as well as the struc-
tural organization of mitochondrial membrane and ma-
trix, and disruption of mitochondrial calcium ion trans-
port. This finding is in line with the idea of mitochondrial
stress in ALS. Namely, dysregulation of mitochondrial
calcium transport, potentially driven by increased exci-
tatory cytosolic calcium uptake or changes in the func-
tion of mitochondrial calcium transporters, results in mi-
tochondrial injury and triggers mitophagy. In addition,
mitochondrial dysfunction is thought to cause further
structural abnormalities in multiple cell types; for exam-
ple, deletion of mitochondrial calcium uniporter changes
dendritic spine morphometry [100].

In addition, the epicenter likelihood map overlaps with
transcriptomic signatures of pericytes and endothelial
cells. Endothelial cells are single-layer cells lining the
blood vessels [64]. Pericytes surround the endothelial
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cells by extending their long cytoplasmic processes on
the surface of endothelial tubes. The interaction be-
tween endothelial cells and pericytes is needed in for-
mation and maintenance of blood-brain barrier (BBB),
and blood-spinal cord barrier (BSCB); which contribute
to maintaining the controlled chemical composition of
the neuronal milieu [159, 160]. Multiple studies point
to a breakdown in both BBB and BSCB in ALS [32, 151].
In mouse models of ALS, damage to BSCB, BBB, and en-
dothelial cells are observed early in the disease [45, 48],
and often precede the onset of motor symptoms [158].
Similar vascular deficits have also been reported in hu-
man patients [92]. Indeed, cerebrospinal fluid abnor-
malities in ALS are thought to at least partly originate
from the increase in BBB permeability [8, 74]. Post-
mortem histology confirms the loss of integrity of BBB
and SCSB due to endothelial cell damage and pericyte
degeneration [46, 150]. Our findings corroborate that
the scope of inquiry for studying ALS should be broad-
ened beyond motor neurons, and that support cells –
such as vascular cells – should also be considered as
therapeutic targets. Interestingly, recent findings sug-
gest that treatment of ALS mice models with unmodi-
fied human bone marrow CD34+ (hBM34+) cells ac-
celerates BSCB repair, leading to differentiation into en-
dothelial cells, reduced astrogliosis and microgliosis, and
improved perivascular integration, ultimately promoting
survival of motor neurons [47]; likewise, treatment with
pericytes improves overall survival in SOD1 mutant ALS
mice [33].

Finally, the locations of individual network epicenters
map onto individual differences in clinical manifestation.
Overall, individuals with greater epicenter probability in
motor cortex had worse motor symptoms and signs, in-
cluding poorer finger and foot tapping, increased muscle
tone and reflexes, and lesser capability to perform daily
functions involving the limbs. The multivariate clinical
subtype also included lower scores in naming, sentence
completion, and verbal fluency tasks, presumably corre-
sponding to greater epicenter probability in left inferior
frontal cortex (Broca’s area; Fig. 5). Interestingly, dis-
ease epicenters in patients with bulbar- and spinal-onset
of the disease evolve in different trajectories. Specifi-
cally, patients with bulbar-onset ALS displayed cortical
epicenters located in areas that overlapped with parts
of somatomotor area involved in tongue movement. In
contrast, the likeliest epicenters for the spinal-onset pa-
tients were near areas involved in limb movements. Col-
lectively, these results demonstrate that studying ALS
pathology from a network perspective can help to trace
the spatial origin of the disease, to identify the molec-
ular and cellular contributions to pathology, and, ulti-
mately, to map individual differences in brain-behaviour
relationships and clinical subtypes.

The present results should be considered with respect
to several methodological limitations. First, we esti-
mated atrophy using in vivo MRI deformation-based mor-
phometry, a technique that is well-validated but that

does not directly measure pathology (e.g. neuronal
loss, TDP-43 deposition). Despite this limitation, the re-
sults recapitulate numerous histopathological hallmarks
of the disease. Second, all network spreading effects
were estimated using an independent high-resolution
diffusion MRI dataset, rather than individual patient
connectomes. This methodological decision was made
to compensate for potential inaccuracies in individual-
level diffusion tractometry, and highlights the need for
more multimodal imaging in patient samples. Likewise,
inter-regional transcriptomic similarity, receptor similar-
ity, laminar similarity, metabolic similarity and hemody-
namic similarity matrices are estimated from non-ALS
participants. Third, all results are based on a single
dataset. Although we used multiple methods whenever
possible (e.g. when identifying epicenters), as well as
cross-validation (e.g. for the PLS model), ideally the re-
sults should be independently confirmed using a differ-
ent ALS dataset.

In conclusion, we reveal that network structure and
local biological features leave an indelible mark on the
course and expression of neurodegeneration in ALS.
These two factors are closely related and should be stud-
ied simultaneously, rather than in isolation. Conceptual-
izing neurodegeneration as a multiscale spreading pro-
cess may help to identify molecular, cellular and regional
targets for therapies that slow or divert the course of
pathology.

METHODS

All codes used to perform the analyses are available at
https://github.com/netneurolab/Farahani_ALS.

CALSNIC dataset

Data were retrieved from the Canadian ALS Neu-
roimaging Consortium (CALSNIC) dataset (http://
calsnic.org). The dataset comprises data from individ-
uals diagnosed with possible, probable, or definite ALS,
according to the revised El Escorial Criteria [22], along-
side data from age-matched healthy controls. All par-
ticipants underwent magnetic resonance imaging (MRI),
yielding 1 mm isotropic T1-weighted (T1w) data for
each individual. We use data acquired from eight
different imaging sites, including: University of Cal-
gary (CAL), University of Alberta (EDM), McGill Uni-
versity (MON), University of Toronto (TOR), University
of British Columbia (VAN), University of Miami (MIA),
Université Laval (QUE), and University of Utah (UTA).
We exclude data from participants if they had other CNS
abnormalities or reported psychiatric illness. The CAL-
SNIC dataset provides longitudinal neuroimaging data
with approximately four-month intervals between ses-
sions for some but not all participants. We only keep
individuals with a scan acquired at baseline for further
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analysis, resulting in 192 individuals with ALS (70 fe-
male; mean age: 59.62 ± 10.20) and 175 healthy con-
trol participants (96 female; mean age: 55.41 ± 10.00).
Note that data used in this study comes from two phases
of the CALSNIC dataset launched to date, which have
slight changes in the structural MR imaging paradigm.
Consequently, when building the ordinary least square
model to estimate disease-related atrophy, if data from
the same imaging site is acquired during different project
phases, we treat the data from each phase as a separate
entity. This assumption leads to considering twelve imag-
ing sites in total when building the model (CAL: phase 1,
2; EDM: phase 1, 2; MON: phase 1, 2; TOR: phase 1, 2;
VAN: phase 1; MIA: phase 2; QUE: phase 2; UTA: phase
2). The detailed data description is provided in the orig-
inal publication [66].

Behavioral/clinical measures

The CALSNIC dataset, in addition to the magnetic res-
onance imaging data, provides behavioral/clinical as-
sessments for individuals. These encompass ALS-related
motor and cognitive evaluations, including Revised Amy-
otrophic Lateral Sclerosis Functional Rating Scale (ALS-
FRS), Edinburgh Cognitive and Behavioural ALS Screen
(ECAS), finger/foot tapping test, and evaluations for ab-
normal muscle tone and reflexes. Data on individuals’
sex, age, symptom duration, years of education, and
handedness is also provided. Below is a brief overview
of each measure.

ALSFRS is a rating measure that quantifies the level
of disability in ALS patients. Higher values of this scale
(with a maximum of 48), indicate lower disease sever-
ity. Specifically, ALSFRS assesses the participants’ func-
tional capability in speech, salivation, swallowing, hand-
writing, gastrostomy, cutting food and handling utensils,
dressing and hygiene, turning in bed and adjusting bed
clothes, walking, climbing stairs, dyspnea, orthopnea,
and respiratory insufficiency [27]. ECAS is a cognitive
screening assessment measuring executive function, let-
ter and semantic fluency, attention, memory, language,
and visuospatial function of individuals [2]. A higher to-
tal score for ECAS (up to 136) signifies better cognitive
performance. The tapping score, which is a clinical mo-
tor symptom severity indicator, quantifies the number of
taps a participant can perform in 10 seconds by their fin-
gers or feet. A higher count in this test reflects better
motor function. In CALSNIC dataset, the tapping scores
for both index-finger, and foot are measured two times
per participant. Muscle tone and reflex measures are also
included, with lower scores signifying normal tone and
reflex conditions.

In this study, we use behavioral/clinical measures to
relate the cortical epicenter locations to the behavioral
manifestations of individuals with ALS. Of the 192 pa-
tients included in the study, 8 individuals have incorrect
ECAS administration; these participants are therefore ex-

cluded from analyses relating brain and behavior data.

Deformation based morphometry

T1w data are preprocessed and Deformation-Based
Morphometry (DBM) maps are derived per participant
using the Montreal Neurological Institute Medical Imag-
ing NetCD (MNI-MINC) tools, publicly available at https:
//github.com/BIC-MNI/minc-tools. The pre-processing
steps include image denoising [35], intensity inhomo-
geneity correction [124], and image intensity normaliza-
tion into range (0–100) using histogram matching; next,
each T1w image is first linearly and then nonlinearly reg-
istered into the MNI152-NonLinear2009cSym standard
brain. DBM maps are derived by estimating the local
deformation needed in each voxel in an individual’s T1w
image to nonlinearly match it to the standard template.
The required deformation is estimated by the Jacobian
determinant of the inverse nonlinear deformation field
and can be used as an indirect estimate of brain atro-
phy [29, 49]. DBM values lower than 1 indicate that the
corresponding region is smaller in the participant than
in the template (atrophy in the participant compared
to the template). Conversely, DBM values greater than
1 indicate that the corresponding region in the partici-
pant space is larger than the same region in the template
space (expansion in the participant compared to the tem-
plate). Collectively, the DBM maps encode the morpho-
logical differences between the T1w data of a given par-
ticipant and the standard brain defined by the MNI tem-
plate.

Atrophy maps

The Jacobian determinant from the DBM analysis
serves as a dependent variable, influenced not only by
the diagnosis but also by factors such as age, sex, and
imaging site. To isolate factors unrelated to diagnosis
from the DBM maps of ALS patients and to obtain a
more accurate measure of disease-specific atrophy, we
compute w-score maps per individual [61]. The w-score
value at each voxel quantifies the normalized deviation
of the observed DBM value from its expected DBM value,
adjusted for age, sex, and imaging site. The expected
value for DBM at each voxel is estimated using an ordi-
nary least squares model constructed based on control
participants’ data. Greater absolute disparity between
the observed and expected value of DBM indicates more
severe atrophy or expansion in a given voxel. The for-
mula to calculate the w-score is provided in the follow-
ing:

w-score =
DBMobserved-ALS − DBMexpected-ALS

std(DBMobserved-HC − DBMexpected-HC)
(1)

where std stands for standard deviation. A negative w-
score in this context signifies greater atrophy than the
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mean value expected for a healthy participant. After cal-
culating the w-score maps of all ALS participants under
study, w-score maps are averaged across ALS patients to
create a single collective atrophy map. To simplify inter-
pretation, the w-score maps are multiplied by −1 so that
the larger numerical values correspond to more atrophy.
Throughout the manuscript, the w-score maps (post-
inversion) will be referred to as the “atrophy map”. The
group-average ALS atrophy map is visualized in Fig. 1a.

Anatomical parcellation

ALS atrophy maps are parcellated using two differ-
ent atlases. For cortical regions, we apply the Schaefer-
400 parcellation [111], and to examine the sub-cortex,
specifically the white matter tracts, we use the Johns
Hopkins University (JHU) white matter tractography at-
las (thresholded at 25% probability) [60, 146].

Network reconstruction

Brain networks (structural connectivity and inter-
regional similarity networks) are retrieved from netneu-
rolab [13, 56]. Below we briefly describe how each net-
work is reconstructed.

1 Structural connectome: Structural connectivity is
a matrix that provides information regarding the white
matter connections across pairs of brain regions. In
this study, the dataset used for building the connec-
tome comes from 327 unrelated healthy participants (145
males; age: 22–35) in the Human Connectome Project
(HCP-S900 release), scanned using a 3T Connectome
Skyra scanner. Diffusion MRI data is preprocessed using
the HCP minimal preprocessing pipeline. For detailed
acquisition information and preprocessing steps refer to
these references [52, 136]. Structural connectome is re-
constructed from the diffusion MRI using the MRtrix3
package (https://www.mrtrix.org) [133]. Grey matter is
parcellated based on the Schaefer-400 atlas, and fiber ori-
entation distributions are generated using a multi-shell
multi-tissue constrained spherical deconvolution algo-
rithm [63, 111]. Initially, a tractogram is generated with
40 million streamlines, with a maximum tract length of
250 and a fractional anisotropy cut-off of 0.06. Spherical-
deconvolution informed filtering of tractograms (SIFT2)
is used to reconstruct whole brain streamlines weighted
by cross-section multipliers [126]. For further insights
into individual network reconstructions, please consult
the reference provided [103]. A group consensus struc-
tural network is then created such that the mean density
and edge length distribution observed across individual
participants is preserved [15]. The weights of the edges
in the consensus networks represent the log-transform of
the number of streamlines in the parcels, averaged across
participants for whom these are present [13].

2 Hemodynamic similarity: Hemodynamic similarity,
often referred to as functional connectivity, summarizes
the similarity across brain regions in terms of the syn-
chronization and similarity of their co-fluctuation in the
BOLD signal. The data incorporated to build the connec-
tome comes from 326 unrelated healthy participants (145
males; age: 22–35) in the Human Connectome Project
(HCP-S900 release), scanned using a 3T Connectome
Skyra scanner [136]. In this dataset, each participant has
undergone four 15-minute resting-state functional MRI
scans, each with a TR of 720 ms. Data is preprocessed
using the HCP minimal preprocessing pipeline. For de-
tailed preprocessing steps, refer to the cited reference
[52]. The voxel-wise functional MRI data is parcellated
using the Schaefer-400 atlas [111]. The parcellated time-
series are then used to construct functional connectivity
matrices, computed as Pearson correlation coefficient be-
tween pairs of regional time-series for each of the four
scans per participant. To obtain a group-level functional
connectivity matrix, mean functional connectivity across
all participants and scans is computed. This matrix is
normalized using Fisher’s r-to-z transformation [56].

3 Metabolic similarity: Metabolic similarity estimates
the similarity between brain regions in terms of glu-
cose metabolism or, in other words, in terms of en-
ergy consumption. This network is reconstructed us-
ing positron emission tomography (PET) images of the
[F18]-fluordoxyglucose tracer. The dataset includes 26
healthy participants (77% female; age: 18–23) who par-
ticipated in a 95-minute simultaneous MR-PET scan ac-
quired using a 3T molecular MR scanner [62]. PET im-
ages are preprocessed according to [144]. Each volume
of the PET time-series is registered to the MNI152 tem-
plate space and is parcellated according to the Schaefer-
400 atlas [111]. Parcellated time-series from pairs of
brain regions are then correlated (Pearson’s correlation
coefficient) to construct a metabolic connectivity matrix
for each participant. Subsequently, by averaging connec-
tivity matrices across all participants, a group-average
metabolic connectome is obtained. This matrix is nor-
malized using Fisher’s r-to-z transformation [56].

4 Gene expression similarity: Correlated gene ex-
pression quantifies the transcriptomic similarity between
pairs of brain regions. The underlying data to con-
struct this connectome comes from the bulk tissue mi-
croarray expression data collected from six post-mortem
brains (1 female; age: 24–57, mean age: 42.50±13.38).
This data is provided by the Allen Human Brain Atlas
(https://human.brain-map.org) [57] and is processed
using the abagen toolbox, publicly available at https:
//github.com/rmarkello/abagen [82], yielding a map
for each gene in the parcellated MNI template (Schaefer-
400 [111]). Genes with high differential stability across
donors (threshold of 0.1) are considered for the analysis,
resulting in 8, 687 stable genes. A region×region corre-
lated gene expression matrix is constructed by correlat-
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ing normalized gene expression profiles between pairs
of brain regions (Pearson correlation coefficient). This
matrix is then normalized using Fisher’s r-to-z transfor-
mation for subsequent analysis [56].

5 Receptor similarity: Receptor similarity measures
how correlated the receptor density profiles are between
brain regions. To construct this network, PET tracer im-
ages for 18 neurotransmitter receptors and transporters
are used [54, 83]. These receptors/transporters cover
nine neurotransmitter systems, including dopamine
(D1, D2, DAT), norepinephrine (NET), serotonin (5-
HT1A, 5-HT1B, 5-HT2, 5-HT4, 5-HT6, 5-HTT), acetyl-
choline (α4β2, M1, VAChT), glutamate (mGluR5), GABA
(GABAA), histamine (H3), cannabinoid (CB1), and mu-
opioid (MOR). Each of these PET tracer images is parcel-
lated based on the Schaefer-400 atlas [111] and normal-
ized using z-scores. A region×region receptor similar-
ity matrix is constructed by correlating receptor profiles
across all pairs of brain regions (Pearson correlation co-
efficient). This matrix is then normalized using Fisher’s
r-to-z transform [56].

6 Laminar similarity: Laminar similarity, estimated
from histological data, assesses the similarity in cellu-
lar distributions across cortical layers within pairs of
brain regions [56, 102]. Data were recovered from the
high-resolution (20 µm) BigBrain atlas, a postmortem
Merker-stained histological atlas of a 65-year-old male
[7]. Staining intensity profiles are sampled across 50
equi-volumetric surfaces within the cortical grey matter,
enabling the assessment of neuronal density and soma
size variations across cortical layers. These intensity pro-
files also help delineate boundaries among cortical lay-
ers, such as supragranular (layers I–III), granular (layer
IV), and infragranular (layers V–VI). The BigBrainWarp
toolbox [101] was used to transform the data to the
surface-based fs-LR template, which is then parcellated
based on the Schaefer-400 atlas [111]. A laminar simi-
larity matrix is estimated by computing the partial corre-
lation between regional intensity profiles. The matrix is
then normalized using Fisher’s r-to-z transform [56].

Disease exposure

In this section, our objective is to assess how a spe-
cific biological brain connectome affects the spread of
pathology across the cortex in ALS. We initially apply a
threshold to the connectome under study (e.g. metabolic
similarity) to retain only positive values; the thresh-
olded connectome is considered as a “network”, whose
“nodes” correspond to the Schaefer-400 parcels [111]
and the “edges” are defined based on the values in the
off-diagonal elements of the connectivity (similarity) ma-
trix. We assume that these edges provide potential path-
ways for pathology propagation. At each node, we de-
fine the global disease “exposure” as a measure quanti-

fying the extent of atrophy its neighbouring nodes are
experiencing, weighted according to the strength of the
edges that connect the node with its neighbours. Here,
“neighbours” are defined as nodes directly connected to
the node in focus. The following is a mathematical for-
mulation of disease exposure at a given node, denoted as
node i:

Di =
1

Ni

d∑
j ̸=i,j=1

dj · cij (2)

Here Di represents the disease exposure at node i; which
is calculated as the weighted average of atrophy across
the neighbours of node i. The atrophy values of neigh-
bours are denoted by dj , where j is the neighbour’s iden-
tifier. Each neighbour atrophy value, dj , is multiplied
by the edge strength between region i and node j, rep-
resented by cij . Ni in the formula represents the num-
ber of connections made by node i within the network.
To assess whether connectome architecture is related to
the spatial patterning of atrophy, we correlate the de-
gree of atrophy in individual nodes and their respective
disease exposures. This analysis is repeated while con-
sidering various brain connectomes (including structural
connectivity, gene-expression similarity, receptor similar-
ity, laminar similarity, metabolic similarity, and hemody-
namic similarity).

Epicenter mapping: data-driven method

With an atrophy map and an underlying connectome,
it is possible to identify putative disease epicenters using
either epidemiological data-driven methods, or compu-
tational modeling [119, 120]. The data-driven approach
is based on the notion that one of the main factors of
disease spread is the existence of structural connectiv-
ity across brain regions (nodes). Here an epicenter is
defined as a node that is both highly atrophied, and
physically connected to nodes that are also highly at-
rophied (Fig. 2b). Epicenters are identified using two
separate ranking procedures. In the first ranking pro-
cedure, nodes are ranked in ascending order according
to their mean atrophy. The second ranking procedure is
performed on the array containing the weighted neigh-
bour atrophy values (nodes’ exposure values). The dis-
ease exposure value at each node is calculated as pre-
viously described in Disease Exposure. This new set of
values per node is also ranked in ascending order, quan-
tifying the involvement of node’s neighbours in pathol-
ogy. Finally, we calculate the average ranking of a node
in the two lists, reflecting its likelihood as a disease
epicenter[23, 55, 99, 116, 119, 120].
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Epicenter mapping: agent-based spreading model

Disease epicenters can also be identified using a mod-
eling approach known as the agent-based Susceptible-
Infected-Removed (SIR) model [157]. In brief, this
model simulates the brain spread of pathology consid-
ering the structural connectome as a network through
which misfolded proteins (agents) can propagate [21].
In the case of ALS, these agents may represent TDP-43
[26, 115, 148].

We apply this methodology to find epicenters (model
parameters outlined in Table S1). The epicenters are
identified as the nodes that—if chosen as the disease’s
initial point of pathology (seed region)—will lead to the
highest Pearson correlation coefficient value between the
simulated and observed cortical atrophy pattern during
the spread of the agent. Here, the disease spread sim-
ulation is performed over a total of 10, 000 time steps.
Nodes are then ranked based on the maximum correla-
tion value between the observed patterns of cortical atro-
phy and the simulated atrophy patterns when each node
is used as the initial seed.

Gene category enrichment analysis

Biological pathways that are correlated with the ALS
epicenter likelihood map were identified using a gene
category enrichment analysis (GCEA). Cortical maps for
biological pathways were defined according to the gene
expression data coming from the Allen Human Brain At-
las [57]. The data was preprocessed and mapped to
parcellated brain regions using the abagen toolbox, pub-
licly available at https://github.com/rmarkello/abagen
[82]. To perform the enrichment analysis, we use the
ABAnnotate Matlab-based toolbox, publicly available at
https://github.com/LeonDLotter/ABAnnotate [78]. The
package is adapted from the toolbox developed by
Fulcher and colleagues https://github.com/benfulcher/
GeneCategoryEnrichmentAnalysis [44]. The GCEA pro-
cedure assesses whether genes in a particular category
are more correlated with a given brain phenotype than a
random phenotype with comparable spatial autocorrela-
tion (ensemble-based null model) [44].

To address spatial auto-correlation effects, 30, 000 spa-
tially auto-correlated null maps are generated from the
epicenter likelihood map using the neuromaps toolbox
(method = “vasa” [83, 139]) and are inputted to ABAn-
notate package for the testing procedure. After matching
category and Allen Human Brain genes based on gene
symbols, and removing the genes with differential sta-
bility lower than 0.1, the Pearson correlations between
the epicenter map, the null maps, and all gene expres-
sion maps are calculated. For each null map and each
category, null category scores are obtained as the mean
z-transformed correlation coefficients. Positive-sided p-
values, indicative of the relationship between the epi-
center map and each category, are determined by com-

paring the actual category scores to the null distribution,
with subsequent False Discovery Rate (FDR) correction
applied. For gene-category annotations, we use the GO
biological and cellular processes [10] as well as the cell-
type categories introduced by [73].

Null models

Reported associations among brain maps and/or net-
works are assessed with respect to three null models
[138]. Here we briefly outline the logic and implementa-
tion of each. First, to assess the effect of spatial autocor-
relation on spatial associations between brain maps, we
use the so-called spatial auto-correlation preserving per-
mutation tests, commonly referred to as “spin tests” [5].
Briefly brain phenotypes (e.g. cortical atrophy maps) are
projected to spherical projection of the fsaverage surface.
This involves selecting the coordinates of the vertex clos-
est to the center of mass for each parcel. These parcel co-
ordinates are then randomly rotated, and original parcels
are reassigned to the value of the closest rotated parcel
(n repetitions). For parcels where the medial wall is the
closest, we assign the value of the next closest parcel in-
stead. Following these steps, we obtain a series of ran-
domized brain maps that have the same values and spa-
tial autocorrelation as the original map but where the re-
lationship between values and their spatial location has
been permuted. These maps are then used to generate
null distributions of desired statistics, such as null node-
neighbour correlation values [141].

When evaluating the role of the structural connectome
in disease spread, we use two additional network ran-
domization methods [138]. One approach constructs
degree-preserving randomized networks [85, 138]. In
this case, the atrophy map is unchanged, but the struc-
tural connectome itself is randomized 1, 000 times. In
each randomization realization, each edge is rewired 10
times to generate a randomized network with the same
size, density and degree sequence as the actual network
[85]. Using these null networks, the Pearson correla-
tion coefficient between node and its neighbours’ is re-
calculated, and a two-sided p-value is estimated in a non-
parametric manner.

Finally, the most conservative approach to test the role
of structural connectome in disease spread involves us-
ing degree- and edge length-preserving randomized net-
works. In this approach, the atrophy map is kept un-
changed, but the structural connectome is randomized
1, 000 times to create randomized networks with pre-
served size, density, degree sequence and edge length
(sometimes referred to as “cost”) [14, 138]. To achieve
this, edges within the structural connectome are catego-
rized based on Euclidean distance into 10 bins. Within
each bin, pairs of edges are selected randomly and
swapped, with the total number of swaps equaling the
number of regions in the network multiplied by 20. This
process is repeated 1, 000 times, yielding 1, 000 random-
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ized structural networks. These randomized networks
are then used to construct a null distribution for the
node-neighbour Pearson correlation coefficient, and a
two-sided p-value.

Partial least squares

The goal of partial least squares (PLS) analysis is to
relate two data matrices to each other [87, 88]. In
the present case, the two matrices represent epicen-
ter likelihood maps (participants×regions) and clinical-
behavioural data (participants×measures). The analysis
is initialized by computing the covariance between brain
(X) and behaviour features (Y). The resulting covari-
ance matrix is subjected to singular value decomposition:

X′Y = USV′ (3)

where U and V are orthonormal matrices of left and
right singular vectors and S is a diagonal matrix of sin-
gular values. Each combination of a left singular vec-
tor, a right singular vector, and a singular value consti-
tutes a latent variable. The elements of each singular
vector weight the contribution of individual features to
the overall multivariate pattern. In the present analysis,
these weights correspond to a spatial pattern of cortical
epicenters and clinical phenotypes that optimally covary
with each other. To estimate the extent to which indi-
vidual patients express these atrophy or behavioural pat-
terns, patient-specific brain and behavioural scores are
calculated. Scores are computed by projecting the origi-
nal data onto the respective singular vector weights, such
that each individual is assigned a brain and a behavioral
score, indicating the degree to which a patient expresses
each atrophy pattern and behavioural phenotype [88].

The proportion of covariance accounted for by each la-
tent variable is a measure of effect size and is quantified
as the ratio of the squared singular value to the sum of
all squared singular values. The statistical significance of
each latent variable is estimated by permutation testing.
This involves randomly permuting the order of observa-
tions (i.e. rows) of data matrix X for a total of 1, 000
repetitions, followed by constructing a set of “null” brain-
behavior correlation matrices for the permuted brain and
unchanged clinical data matrices. These “null” correla-
tion matrices are then subjected to SVD, to generate a
distribution of singular values under the null hypothe-
sis that there is no association between brain epicenters
and behavioral measures. A non-parametric p-value can
be estimated for a given latent variable as the probabil-
ity that a permuted singular value exceeds the original,
non-permuted singular value.

The contribution of individual features to the model is
estimated using bootstrap resampling. Participants (rows
of data matrices X and Y are randomly sampled with
replacement (1, 000 repetitions), resulting in resampled
correlation matrices that are then subjected to SVD. This

bootstrapping procedure generates a sampling distribu-
tion for each singular vector weight. A bootstrap ratio for
each behavioral measure is then computed, defined as
the ratio of its singular vector weight and its bootstrap-
estimated standard error. High bootstrap ratios are in-
dicative of features that make a large contribution to the
latent variable and are consistent across samplings.

Finally, we use cross-validation to evaluate the out-of-
sample correlation between cortical epicenter patterns
and behavioral features. We use 100 random divisions
of the dataset, allocating half of the data for training
and the other half for testing. In each repetition, we
apply PLS to the training data and estimate singular vec-
tor weights. Subsequently, each realization of the test
data is projected onto the derived weights derived from
the training set. We then estimate patient-specific scores
and their correlation in the test sample. The procedure
is repeated 100 times to establish a distribution of out-of-
sample correlation values. To assess the statistical signif-
icance of these out-of-sample correlation values, we con-
duct permutation tests (100 repetitions). During each
permutation, we shuffle the epicenter matrix rows and
repeat the analysis to create a null distribution of corre-
lation coefficients between epicenter and clinical scores
in the test sample. This null distribution is then used to
estimate a non-parametric p-value.

Somatotopic map from the HCP movement task

To localize the cortical activation boundaries associ-
ated with different body part movements, we utilize the
Human Connectome Project’s group-average activation
maps from the HCP-S1200 release. The group-average ac-
tivation maps include the average strength of functional
activation across 997 healthy young adults (532 female;
age: 22–35) who completed 3T task fMRI runs (for de-
tailed information on fMRI acquisition parameters and
the preprocessing steps, refer to [12, 52, 135]). Here,
we incorporate a set of group-average motor task activa-
tion maps, which reveal the somatotopic organization of
the sensorimotor cortex. These motor tasks are originally
developed by Buckner et al. [24] and Yeo et al. [154]
and involve participants responding to visual prompts
to execute specific movements. These movements in-
clude finger tapping (left and right), toe squeezing (left
and right), and tongue moving. Each movement type is
performed in a 12-second block, encompassing 10 move-
ments, and is preceded by a 3 second cue. There are two
runs per participant in total, each containing 13 blocks:
two for tongue movements, four for hand movements
(split evenly between right and left), four for foot move-
ments (also evenly split), and three 15-second fixation
blocks. We parcellate the Cohen’s d group-average maps
according to the Schaefer-400 atlas [111]. The parcel-
lated map is then thresholded to highlight regions with
significant effect sizes (Cohen’s d greater than 1), en-
abling us to associate the cortical parcels with specific

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.11.588760doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.11.588760
http://creativecommons.org/licenses/by/4.0/


17

motor functions.

Contrasting spinal- and bulbar-onset ALS

To compare cortical epicenter likelihood maps be-
tween spinal- and bulbar-onset ALS subtypes, we con-
duct a t-test for each cortical brain parcel. This analysis
allows us to identify cortical areas that differ across the
two disease subtypes in terms of their capacity to spread
the disease. Here, individuals are assigned to the spinal
subtype (N = 140) when the onset region is specified as
either “upper motor neurons”, “lower motor neurons”,
or a combination of both. Conversely, individuals re-
porting an onset region of “bulbar”, “bulbar-speech”, or
“bulbar-speech and bulbar-swallowing” are categorized
under the bulbar ALS subtype (N = 38). We use indi-
vidual epicenter likelihood maps as inputs for the t-test
models, resulting in a map of t-statistics that illustrates
the cortical epicenter differences between ALS subtypes.
To ensure the reliability of the differences in epicenter
locations between the two groups, we apply FDR cor-
rection to the p-values from the t-tests (n = 400). This
correction signifies two cortical parcels in the right mo-
tor area, involved in the tongue movement, as the re-
gions that are statistically different across the subtypes
in terms of their epicenter likelihood.

We also examine the behavioral/clinical differences
across the disease subtypes. We compare groups (bulbar-
and spinal-onset ALS) using t-tests for each metric, fol-
lowed by adjustment for multiple comparisons using

FDR. 64 different metrics are included for assessment
in total, after removing the metrics which are not re-
ported for more than 20 participants. If missing data
is available, it is imputed with the median of the mea-
sure. We find significant differences in metrics includ-
ing “ALSFRS-Speech” (FDR corrected, p = 4.21 × 10−9);
“ALSFRS-Salivation” (FDR corrected, p = 4.91 × 10−5);
“ALSFRS-Swallowing” (FDR corrected, p = 4.28× 10−6);
“ALSFRS-Handwriting” (FDR corrected, p = 0.012);
“ALSFRS-Walking” (FDR corrected, p = 0.028); “ALSFRS-
Climbingstairs” (FDR corrected, p = 0.020); “Reflexes-
Jaw” (FDR corrected, p = 2.46 × 10−3); “Reflexes-
RightArm” (FDR corrected, p = 1.09 × 10−5); “Reflexes-
LeftArm” (FDR corrected, p = 0.02); and “Symptom-
Duration” (FDR corrected, p = 0.023) (Fig. 6b).
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Figure S1. Von Economo’s cytoarchitectonic classes | Von Economo cytoarchitectonic parcellation [39, 113, 145] is shown on
the fs-LR inflated (left) and flat (right) cortical surfaces.

Figure S2. Map of mean and standard deviation of epicenter maps across individuals with ALS | Here the w-score map
(after multiplying by −1) is used as a participant-specific atrophy map. Each cortical node is then assigned an epicenter likelihood
value using the atrophy ranking method (see Methods). After estimating the epicenter likelihood map per participant, the map is
normalized so that the highest-probability epicenter parcel scores 1, and the lowest scores 0. We average these normalized maps
across all ALS participants to produce a mean epicenter map. The standard deviation for each parcel is also calculated based on
these normalized values. The mean and standard deviation maps are shown on the fs-LR inflated and flat cortical surfaces.
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Figure S3. Inter-regional biological similarity shapes atrophy | The heatmaps show each biologically defined network according
to the Schaefer-400 parcellation [111]. Negative-valued elements are excluded from all analyses. The networks are then used to
calculate the node-neighbour atrophy correlations. The significance of node-neighbour correlation values is assessed with respect to
spatial autocorrelation preserving spin tests. All networks except laminar similarity lead to significant node-neighbour correlation
values (10, 000 repetitions; FDR corrected; gene expression similarity: pspin = 1.33× 10−2, receptor similarity: pspin = 1.25× 10−2,
metabolic similarity: pspin = 4.99× 10−3, hemodynamic similarity: pspin = 2.75× 10−2).
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Figure S4. Second latent variable from a PLS analysis to relate individual epicenter maps with clinical and behavioral
measures | (a) Brain loadings are shown on the fs-LR inflated and flat cortical surfaces. Regions demarcated by the black border
are those with the greatest effect sizes (Cohen’s d effect size greater than 1) in the group-average activation map from S1200
Human Connectome Project package for the movement task contrasts [12]. Regions demarcated by green borders showcase areas
44 and 45 from the Glasser parcellation [51]. These regions, specifically in the left hemisphere [105], correspond the Broca’s area
[16]. (b) The scatter plot visualizes the individual participants’ brain scores versus behavioral PLS scores (Pearson correlation
coefficient, r = 0.52; Spearman correlation coefficient, r = 0.48); each participant’s score is colored based on the ECAS total
score. (c) The bar plot visualizes the behavioral/clinical measures’ loadings. The contribution (effect size) of individual variables
is assessed by bootstrap resampling (1, 000 repetitions).
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Figure S5. Map of ALS atrophy stratified by type of disease onset | Measuring the atrophy within atlas-based defined tracts
[60, 146] showed that while corticospinal tract is involved in both spinal- (FDR corrected; left: p = 1.45× 10−9, t-statistic= 7.50;
right: p = 7.72 × 10−10, t-statistic= 7.74) and bulbar-onset ALS (FDR corrected; left: p = 1.72 × 10−3, t-statistic= 5.26; right:
p = 5.52×10−4, t-statistic= 4.40). For patients with the spinal-onset of the disease, the anterior thalamic region is also significantly
atrophied (FDR corrected; left: p = 4.31 × 10−5, t-statistic= 5.34; right: p = 9.62 × 10−4, t-statistic= 4.55). The involvement
of anterior thalamic radiation in ALS has been reported in the cited references [37, 93]. In patients with the bulbar-onset of the
disease, significant atrophy is also observed in the superior longitudinal fasciculus tract (FDR corrected; left: p = 1.72 × 10−3,
t-statistic= 4.88; right: p = 5.34× 10−3, t-statistic= 4.40). This tract is known to play role in speech [140] and language functions
[95]. Decrease in fractional anisotropy of the superior longitudinal fasciculus tract in bulbar-onset ALS patients has been reported
in previous studies [18, 127].
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Notation Name Expression or value Explanation
∆t time step ∆t = 0.02 Time increments in the simulations
ρi the probability of remain-

ing in region i
ρi = 0.99 for all i Agents in region i have equal proba-

bility of remaining in region i or ex-
iting region i per unit time

k1 weight of atrophy accrual
due to accumulation of
misfolded agents

k1 = k2 = 0.5 The contribution of native misfolded
agents to total atrophy growth

k2 weight of atrophy accrual
due to deafferentation

k1 = k2 = 0.5 The contribution of deafferentation
to total atrophy growth

wij Connection strength be-
tween regions i and j

Log-transform of stream-
line density

lij Connection length be-
tween regions i and j

Euclidean length of
streamline fibers

TABLE S1. Parameters of the agent-based SIR model | For more information on the model equations refer to [157].
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