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Abstract  24 

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐25 

related nuclease (Cas) system allows precise and easy editing of genes in many plant 26 

species. However, this system has not yet been applied to any fern species due to the 27 

complex characteristics of fern genomes, genetics and physiology. Here, we 28 

established, for the first time, a protocol for gametophyte-based screening single-29 

guide RNAs (sgRNAs) with high efficiency for CRISPR/Cas‐mediated gene editing 30 

in a model fern species, Ceratopteris richardii. We utilized the C. richardii Actin 31 

promoter to drive sgRNA expression and enhanced CaMV 35S promoter to drive the 32 

expression of Streptococcus pyogenes Cas9 in this CRISPR-mediated editing system, 33 

which was employed to successfully edit a few genes (e.g., nucleotidase/phosphatase 34 

1, CrSAL1; Cryptochrome 4, CRY4) and CrPDS, encoding a phytoene desaturase 35 

protein that resulted in an albino phenotype in C. richardii. Knockout of CrSAL1 36 

resulted in significantly reduced stomatal conductance (gs), leaf transpiration rate (E), 37 

stomatal/pore length, and abscisic acid (ABA)-induced reactive oxygen species (ROS) 38 

accumulation in guard cells. Moreover, CrSAL1 overexpressing plants showed 39 

significantly increased net photosynthetic rate (A), gs, E and intrinsic water use 40 

efficiency (iWUE) as well as most of the stomatal traits and ROS production in guard 41 

cells compared to those in the wild-type (WT) plants. Taken together, the optimized 42 

CRISPR/Cas9 system provides a useful tool for functional genomics in a model fern 43 

species, allowing the exploration of fern gene functions for evolutionary biology, 44 

herbal medicine discovery and agricultural applications. 45 

 46 

Keywords: CRISPR/Cas, genetic transformation, overexpression, gene function, 47 

Ceratopteris richardii  48 
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Introduction 50 

First appearing in the fossil record around 360 million years ago (MYA), true ferns 51 

form the second largest vascular plant lineage after angiosperms with more than 52 

10,500 species (https://www.worldfloraonline.org/). These numerous species have 53 

been instrumental in shaping plant biodiversity and many ecosystems on Earth, 54 

resulting in a breadth of adaptations and innovations that are fascinating for research 55 

in genomics, evolution, ecology, molecular biology, and physiology (Cai et al., 2021; 56 

Marchant et al., 2022). Compared to other vascular plants, distinct genes (e.g., 57 

phenolic acid decarboxylases, aerolysin-like, and 12-oxophytodienoic acid) might 58 

protect ferns from biotic (Pennisi, 2023; Wei et al., 2023) and abiotic stresses (Yan et 59 

al., 2019). Many fern species are used in traditional medicine for treating fevers, 60 

relaxing muscles, and relieving pain due to the active chemical compounds they 61 

produce (Cao et al., 2017; Kumar et al., 2023; Pohthmi and Sharma, 2023).  62 

CRISPR/Cas has been widely used in plant molecular research due to its 63 

simplicity, versatility, and efficiency for gene editing (Xie et al., 2015; Endo et al., 64 

2019; Wang et al., 2020; Cardi et al., 2023). The cellular repair of CRISPR/Cas-65 

mediated double-strand breaks by non-homologous end joining using sgRNA and Cas 66 

nuclease can lead to the modification of genes (Wang et al., 2018; Wang et al., 2020). 67 

The ability to reprogram CRISPR/Cas with engineered sgRNA to target any gene of 68 

interest allows plant scientists to develop new plant varieties with desired traits and 69 

reducing the regulatory complication of genetically modified organism (GMO) (He et 70 

al., 2022; Cardi et al., 2023; Pacesa et al., 2024). For instance, CRISPR/Cas-mediated 71 

inactivation significantly enhanced grain weight in rice (Oryza sativa) by targeting 72 

OsGW5 (Liu et al., 2017) and OsMADS1 (MADS-BOX TRANSCRIPTION FACTOR 1) 73 

(Wang et al., 2024), production of low-gluten wheat (Triticum aestivum) through 74 

editing the α-gliadin gene array (Sánchez-León et al., 2018), and powdery mildew 75 

resistance of tomato (Solanum lycopersicum) (Nekrasov et al., 2017). In the past 76 

decade, CRISPR/Cas technology has been successfully utilized to modify more than 77 
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130 green plant species based on a recent review (Cardi et al., 2023), including 110 78 

angiosperms (mostly agricultural and horticultural crops with significant economic 79 

values) (Kis et al., 2019; Wang et al., 2023), and 7 gymnosperms (Ren et al., 2021; Ye 80 

et al., 2023), 3 mosses (Tansley et al., 2023; Tavernier et al., 2023; Yuan et al., 2023), 81 

and 12 algae (Belshaw et al., 2023; Patel et al., 2023; Zhang et al., 2023) without any 82 

species of ferns or lycophytes.  83 

Ceratopteris richardii is a fast-growing, small, tropical homosporous fern that 84 

has been used for decades as the model fern species (Marchant et al., 2019). Genetic 85 

transformation has been performed in C. richardii for functional genomics (Plackett et 86 

al., 2014; Plackett et al., 2015) such as discovering the roles of genes in sex 87 

determination (Youngstrom et al., 2019), genome structure, developmental biology 88 

(Plackett et al., 2018; Geng et al., 2022), hybridization and reproductive barriers 89 

(Youngstrom et al., 2022; Withers et al., 2023), and apogamy (Bui et al., 2017). In 90 

addition, the molecular function of some C. richardii genes have been studied through 91 

RNA interference (RNAi) (Plackett et al., 2018; Withers et al., 2023) and 92 

overexpression methods (Youngstrom et al., 2022). While the genetic transformation 93 

of fern gametophytes as the explant usually has a low success rate, it should be noted 94 

that the majority of these methods were developed and optimized according to the 95 

well-established protocols targeting to angiosperm flowers, immature embryos, and 96 

calli (Bui et al., 2015; Bui et al., 2017). Efficient gene editing protocol for fern species 97 

has not been developed, but an efficient and fast verification system in C. richardii 98 

will facilitate the analysis of gene function in ferns (Frangedakis et al., 2023).  99 

Nucleotidase/phosphatase SAL1, also known as FIERY1 (FRY1) (Ishiga et al., 100 

2017), has dual enzymatic activity of nucleotidase and inositol phosphatase, which 101 

functions largely in responses to abiotic stresses through inositol signaling and 102 

nucleotide metabolism (Jia et al., 2019). Transient silencing of SAL1 and loss-of-103 

function mutants led to enhanced drought tolerance in T. aestivum (Manmathan et al., 104 

2013; Abdallah et al., 2022) and Arabidopsis thaliana (Wilson et al., 2009; Estavillo 105 
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et al., 2011), while OsSAL1 overexpression plants were severely impaired in drought 106 

tolerance of rice (Liu et al., 2023). Additionally, GhSAL1 improved cold tolerance via 107 

inositol 1,4,5-triphosphate-Ca2+ signaling pathway in cotton (Gossypium hirsutum) 108 

(Shen et al., 2023). Our previous study showed that C. richardii SAL1 (CrSAL1) and 109 

its byproduct 3'-phosphoadenosine-5'-phosphate (PAP) function as chloroplast stress 110 

signals and participated in the abscisic acid (ABA) signaling pathway for drought 111 

response and stomatal regulation (Zhao et al., 2019), but CrSAL1 was not functionally 112 

verified through genetic engineering in C. richardii. 113 

Here, we established an efficient gene‐editing platform for C. richardii 114 

transformation using gametophytes. We improved targeting and editing efficiency of 115 

sgRNAs for an optimized Agrobacterium‐mediated CRISPR/Cas9 system via the 116 

successful editing of CrSAL1 (Ceric.25G052000.1), CrPDS (Ceric.08G066500.1), 117 

CrCRY4 (Ceric.03G029200.1), and CrYSL (Ceric.20G086500.1) in C. richardii. 118 

Knockout and overexpression of CrSAL1 resulted in distinctive phenotypes in gas 119 

exchange parameters and stomatal traits in the transgenic plants compared to those in 120 

the WT. Our study suggests that the CRISPR/Cas system and the potentially 121 

expanded toolkit for gene editing in ferns will facilitate more rapid gene discovery 122 

and functional validation for evolutionary biology, herbal medicine, and agricultural 123 

applications. 124 

 125 

Results 126 

Selection of fern species and developmental stages for transformation 127 

Several reference genome of ferns have been assembled in recent years, including 128 

Azolla filiculoides (0.75 Gb, n = 22), Salvinia cucullata (0.26 Gb, n = 9) (Li et al., 129 

2018), Alsophila spinulosa (6.27 Gb, n = 69) (Huang et al., 2022), Adiantum capillus-130 

veneris (4.83 Gb, n = 30) (Fang et al., 2022), Ceratopteris richardii (7.46 Gb, n = 39) 131 

(Marchant et al., 2022), and Marsilea vestita (1.0 Gb, n = 20) (Rahmatpour et al., 132 
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2023) (Table 1). These high-quality genome sequences enable future research into the 133 

functional genomics and applications of ferns (Chen, 2022; Kinosian and Wolf, 2022; 134 

Frangedakis et al., 2023). In the available transformation methods, particle 135 

bombardment and Agrobacterium-mediated stable transformation have been 136 

successfully applied to C. richardii (Plackett et al., 2014; Bui et al., 2015) and Pteris 137 

vittata (Muthukumar et al., 2013). These robust transformation methods have paved 138 

the way for developing of gene editing in ferns. While Pteris vittata lacks the 139 

necessary genomic information for extensive genetic manipulation (Petlewski and Li, 140 

2019), the recent publication of the C. richardii genome led us to select C. richardii as 141 

the most suitable fern species for establishing a gene editing protocol.  142 

Unlike seed plants, homosporous ferns, including C. richardii, possess 143 

morphologically and developmentally distinct free-living haploid gametophytes and 144 

diploid sporophytes (Figure 1A). The germination of a haploid spore to produce a 145 

photosynthetic thallus initiates the gametophytic generation. Hormonal sex 146 

determination of C. richardii differentiates individual gametophytes into distinct male 147 

or hermaphrodite sexes (Conway and Di Stilio, 2020). Archegonia (female 148 

gametangia) and antheridia (male gametangia) develop to produce motile sperm and 149 

eggs, respectively (Figure 1A). Only one archegonium is fertilized, resulting in a 150 

single diploid zygote per gametophyte. This first step in the diploid sporophyte 151 

generation is crucial for genetic transformation (Muthukumar et al., 2013; Bui et al., 152 

2015; Bui et al., 2017). Extrapolating from the successful transformation of the 153 

liverwort Marchantia polymorpha (Ishizaki et al., 2008) and C. richardii (Bui et al., 154 

2015) gametophytes via Agrobacteria, we developed an Agrobacterium-mediated 155 

gametophyte system for gene knockout in C. richardii. The life cycle of C. richardii 156 

is completed with the production of haploid spores (Figure 1A). 157 

Identification and cloning of U6 promoter and Actin promoter from C. richardii 158 

The core competent for CRISPR/Cas9 system contains the expression cassettes of 159 

sgRNA and the SpCas9 nuclease. Guide RNAs for genome editing have been 160 
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produced using a range of Pol III promoters (Xie et al., 2015; Kor et al., 2022). We 161 

found seven U6 small nuclear ribonucleoprotein genes (Ceric.17G074700, 162 

Ceric.33G040100, Ceric.09G088700, Ceric.02G026900, Ceric.1Z290000, 163 

Ceric.03G070800, Ceric.03G071600) in the C. richardii genome (https://phytozome-164 

next.jgi.doe.gov/info/Crichardii_v2_1), which showed high expression in 165 

gametophyte, leaf, stem, and root (Supplemental Figure S1A). However, the 166 

promoters of these C. richardii genes do not contain the upstream sequence element 167 

(USE) and TATA elements, which are the typical structural properties of the Pol III 168 

promoters (Kor et al., 2022). Therefore, we used the sequences of the A. thaliana U6-169 

26 snRNA (X52528, AT3G13857) and the T. aestivum U6 gene (X52528, 170 

ENSRNA050022746-T1) (Poovaiah et al., 2021) sequences to compare with the 171 

upstream U6 promoter regions in C. richardii. We identified three promoters 172 

including CrU6-1 (Ceric.13G012200), CrU6-2 (Ceric.13G012300), and CrU6-3 173 

(Ceric.1Z176900), which possess the USE and TATA elements (Supplemental Figure 174 

S1B). However, these genes were not highly expressed in root, stem, leaf, or 175 

gametophyte of C. richardii (Supplemental Figure S1A).  176 

Previous studies showed that a single Pol II promoter (either constitutive or 177 

inducible) can also achieve effective gene editing (Hassan et al., 2021; Cardi et al., 178 

2023) in O. sativa (Tang et al., 2016; Ren et al., 2019), T. aestivum (Luo et al., 2021), 179 

Hordeum vulgare, S. lycopersicum, Medicago truncatula (Čermák et al., 2017), and 180 

the diatom Phaeodactylum tricornutum (Taparia et al., 2022). The Actin promoter 181 

isolated from P. vittata was able to function efficiently in both P. vittate and 182 

Ceratopteris thalictroides (Muthukumar et al., 2013). A 916 bp fragment, located at 183 

the upstream of the CrActin was isolated and considered as the putative promoter 184 

(Supplemental Figure S2A), which was instead of the OsU3 promoter in pRGEB32 185 

(Xie et al., 2015) to drive the expression cassettes of sgRNA (Luo et al., 2021). The 186 

Cas9 protein also reported to be driven by the enhanced CaMV 35S promoter (Li et 187 

al., 2013; Awasthi et al., 2021; Cui et al., 2021). Therefore, the native maize ubiquitin 188 
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promoter (ZmUbi) promoter in the original construct pRGEB32 was replaced by the 189 

enhanced 35S promoter (Supplemental Figure S2B), which was designated as 190 

pRGEB32-CrActin. 191 

An efficient Agrobacterium-mediated transformation of C. richardii using 192 

hygromycin selection 193 

To get positive transformants with gene editing or overexpression, the transformation 194 

protocol of C. richardii was optimized through adjusting the time for enzyme 195 

treatment, co-incubation and the concentrations with hygromycin for positive 196 

selection (Table 2). Subsequently, CrSAL1 was selected to establish the 197 

Agrobacterium-mediated transformation of C. richardii. SAL1-PAP retrograde 198 

signaling is involved stomatal opening and closure through ROS, Ca2+, and nitric 199 

oxide (NO) pathways and ion channel (Pornsiriwong et al., 2017; Zhao et al., 2019) 200 

(Figure 1B). Here, we found that key component of the SAL1-PAP retrograde 201 

signaling pathway such as CrSAL1, CrCAT1, ion channels (CrKAT1, CrALMT1, 202 

CrCNGC) and protein kinases (CrCIPK11, CrCIPK23) displayed high levels of 203 

expression in most of the tissues, particularly leaves (Figure 1C).  204 

The pRGEB32-CrActin (Figure 2A), and pCAMBIA1300 (Figure 2B) were 205 

employed for gene editing and overexpression C. richardii, respectively. The 206 

transformation construct used for stable overexpression transformation was 207 

pCAMBIA1300-2×35S, which carries the hygromycin phosphotransferase (HPT) 208 

gene for selection of positive transgenic plants. After 72 h of co-incubation with 209 

Agrobacteria, transformed gametophytes were selected on MS media supplemented 210 

with 100 mg/L cefotaxime and 5 mg/L hygromycin to kill the Agrobacteria and select 211 

the transformants, respectively (Figure 3).  212 

We found that the gametophytes are unable to reproduce and survive for long 213 

periods under the suggested MS media with 20 mg/L hygromycin. In order to increase 214 

the regeneration and survival rate of the transformed gametophytes, we assayed a 215 

range of hygromycin concentrations and selected 5 mg/L (Supplemental Figure S3A, 216 
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S3B), resulting in more regenerated gametophytes with normal morphology and 217 

reproduction (Figure 3). The sporophytes were then transferred to MS media 218 

supplemented with 100 mg/L cefotaxime and 20 mg/L hygromycin for another 30 219 

days. The highest regeneration rate for stable transformation was achieved by 2 h 220 

treatment with 1.5% (w/v) cellulase before Agrobacterium co-incubation. We 221 

observed that sporophyte survival rate was slightly increased by Agrobacterium co-222 

incubation time with 1.5% cellulase for 1 h (Table 2). Therefore, a combination of 223 

digestion with 1.5% cellulase and selection with 100 mg/L cefotaxime and 5/20 mg/L 224 

hygromycin was employed in our experiments. Interestingly, regeneration rarely 225 

occurs in a 1:1 stoichiometry, and a cluster of diverse regenerated gametophytes were 226 

developed from a gametophyte inoculated with Agrobacterium (Figure 3B). The 227 

regenerated sporophytes were then transplanted to pots containing a premium potting 228 

mix for further analysis. 229 

Molecular analysis of transgenic C. richardii plants 230 

Nearly 10% of treated gametophytes survived on MS media supplemented with 20 231 

mg/L hygromycin (Figure 3B). We obtain 87 CrSAL1 overexpressed plants survived 232 

under hygromycin selection, but half of the plants failed to develop normally and 233 

complete the life cycle (Supplemental Figure S4A). Positive transgenic plants were 234 

screened by PCR with a 456-bp PCR product using the DNA as template and 235 

hygromycin primers targeting to the hygromycin gene (Supplemental Figure S4B). In 236 

total, we obtained and verified 15 transgenic C. richardii individuals with relatively 237 

higher expression of CrSAL1 (Supplemental Figure S4). The transformation 238 

efficiency was calculated according to the number of successfully developed 239 

transgenic sporophytes divided by the total gametophytes used in transformation and 240 

multiplied by 100 (Bui et al., 2017), resulting in an efficiency ranging from 3.3% to 241 

11.68% across those tested genes (Table 2).  242 
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Screening of knockout lines of CrPDS and CrSAL mediated by CRIPSR/Cas9 243 

After successful establishment of the Agrobacterium-mediated stable transformation 244 

method for overexpression gene of interest in C. richardii using gametophytes as the 245 

explant, the pipeline was employed to generate the gene editing lines with 246 

CRISPR/Cas9 system (Supplemental Figure S5) in C. richardii – the first of any fern 247 

species. Loss-of-function of Phytoene desaturase (PDS) leads to photobleaching 248 

phenotypes in varied plant species (Awasthi et al., 2021), which was widely employed 249 

as a visible marker in developing the protocol for knocking out of genes of interest 250 

(Ma et al., 2019). To introduce mutations into the CrPDS, two independent 20 bp 251 

sequences with NGG in their 3’-regions targeting were synthesized and inserted into 252 

the gRNA expression cassette of pRGEB32-CrActin vector. We obtained 18 CrSAL1 253 

and CrPDS CRIPSR/Cas9 plants through screening with hygromycin (Supplemental 254 

Figure S5). The positively transformed plants showed the expected photobleached 255 

leaf phenotype (Figure 4A). Sequence analysis determined that the editing efficiency 256 

of the CrPDS and CrSAL1 target site in the transgenic plants was ranged from 20% to 257 

25%, although the transformation efficiency of gene editing ranged from 3.33% to 258 

4.72%. Both of replacement and deletion could be found in the mutant lines (Figure 259 

4B, 4D). These results suggest that the pRGEB32-CrActin we generated in this study 260 

could be employed for editing genes of interest in C. richardii (Table 2). 261 

Physiological evaluation of SAL1 overexpression and knockout C. richardii plants  262 

The subcellular localization of GFP fusion construct in the tobacco epidermis showed 263 

that GFP alone was found in the nuclei, cytoplasm, and membranes. However, we 264 

found GFP fluorescence of CrSAL1 overlaps with the chloroplast fluorescence, 265 

implying that the CrSAL1 protein is localized at the chloroplast and potentially in the 266 

cytosol (Figure 5C). The results indicate that CrSAL1 may function in chloroplast 267 

retrograde signaling and stomatal regulation similar to those seen in A. thaliana 268 

(Xiong et al., 2001; Estavillo et al., 2011). 269 

We overexpressed CrSAL1 in C. richardii and obtained 15 individuals with 270 
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relatively higher expression of CrSAL1, but only four individuals (Line 1, 13, 21 and 271 

24) completed the life cycle (Figure 5A). Overexpression CrSAL1- OE-1 (Line 1) in 272 

C. richardii significantly increased the net CO2 assimilation (A), leaf transpiration rate 273 

(E), and stomatal conductance (gs) under high light intensity compared to the WT 274 

across light intensity from 0 to 1500 μmol m−2 s−1. Interestingly, the crsal1-2 275 

CRIPSR/Cas9 knockout mutants displayed significantly lower gs, E, vapor pressure 276 

deficit (VPD), and leaf temperature (Tleaf) compared to the WT (Figure 5A). 277 

Stomata are essential for plants to respond to environmental conditions 278 

(Hetherington and Woodward, 2003; Chen et al., 2017; Jiang et al., 2024). In the 279 

control conditions, the CrSAL1-OE-1 transgenic plants exhibited larger length, area, 280 

and perimeter of both stomata and stomatal pores compared to the WT plants (Figure 281 

5B). Moreover, stomatal length, stomatal perimeter, and stomatal area in the CrSAL1-282 

OE-1 lines were significantly increased, on average, by 25.3%, 15.8%, and 30.4%, 283 

respectively. The mean pore length, pore perimeter, and pore area of CrSAL1-OE-1 284 

were increased by 33.3%, 32.4%, and 55.0%, respectively. In contrast, crsal1-2 285 

knockout mutants showed a slight decrease in the length and perimeter of stomata and 286 

stomatal pore compared to the WT (Figure 5B).  287 

CrSAL1-OE-1 plants also exhibited high ROS levels in guard cells under the 288 

control conditions. The total ROS level of crsal1-2 plants was significantly lower than 289 

that of WT in the control conditions (Figure 6A), similar to the results of previous 290 

studies analyzing mutants of SAL1 gene such as altered ascorbate peroxidase 2 291 

(APX2) expression 8 (alx8) and onset of leaf death 101 (old101) in A. thaliana 292 

(Estavillo et al., 2011; Shirzadian-Khorramabad et al., 2022). SAL1 was reported to 293 

be important for ABA signaling in response to environmental conditions 294 

(Pornsiriwong et al., 2017; Zhao et al., 2019). Thus, we also performed the stomatal 295 

assay with ABA treatment in the WT and transgenic plants. Interestingly, crsal1-2 296 

mutant displayed ABA-sensitive stomatal phenotype (Figure 6C, 6D), which is 297 

consistent with the previous study that sal1-8 (Pornsiriwong et al., 2017) and fry1 298 
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(Xiong et al., 2001) were more sensitive to ABA in A. thaliana, implying the 299 

potentially conserved molecular function of SAL1 in stomatal regulation in different 300 

plants. Furthermore, ABA treatment increased the ROS level of guard cell in WT, 301 

crsal1-2, CrSAL1-OE-1 plants (Figure 6B), leading to stomatal closure. In summary, 302 

we demonstrated for the first time on the gene editing in C. richardii by editing four 303 

important genes and anlayzed the function of CrSAL1. 304 

 305 

Discussion 306 

First gene editing for gene functional verification in a fern 307 

CRISPR/Cas genome editing has been applied to a variety of plant species to enhance 308 

disease resistance and abiotic stress tolerance (Deng et al., 2022). In the past ten 309 

years, there were 9,000 publications on topics relevant to plant CRISPR on Web of 310 

Science (https://www.webofscience.com/). However, there have been no studies on 311 

the use of CRISPR/Cas9 in ferns (Frangedakis et al., 2023). In this study, we 312 

established an efficient gene editing method for the transformation of C. richardii.  313 

We successfully overexpressed CrSAL1 and other genes in C. richardii 314 

gametophytes by adjusting the hygromycin concentration (Bui et al., 2015), OD value 315 

of Agrobacterium, age of gametophytes, and enzyme treatment time of gametophytes 316 

and co-cultivation with Agrobacterium (Table 2, Figure 3). This optimized protocol 317 

enabled us to establish stable Agrobacterium-mediated CRISPR/Cas9 transformation 318 

in C. richardii. Due to the low expression of CrU6 genes (Supplemental Figure S1A) 319 

and the low efficiency of ZmUbi in C. richardii, the OsU3 and ZmUbi promoter of 320 

pRGEB32 plasmid were replaced by the promoter of CrActin and enhanced 35S, 321 

respectively. This system can edit genes with high efficiency in C. richardii based on 322 

the success with CrSAL1, CrPDS and other genes. In most of the CRISPR/Cas9 323 

constructs, the RNA polymerase III-type 3 - U3 or U6 promoters are employed for 324 

expression of sgRNA in monocots, eudicots, gymnosperms, and bryophytes (Kor et 325 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.10.588889doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588889
http://creativecommons.org/licenses/by-nc/4.0/


 

 13

al., 2022). Although we did not use CrU6 promoters due its low expression, we 326 

hypothesize that they can have potential applications in the genome editing of ferns. 327 

The ZmUbi had been successfully used for generating the RNAi plants of C. richardii 328 

(Plackett et al., 2018), but it requires further investigation on whether it can be used 329 

for fern gene editing or not. 330 

In the future, direct transformation of gametophytes for gene functions in 331 

apogamy (Bui et al., 2018) may provide a clue to the evolution of asexual 332 

reproduction in land plants, permitting comparison of fern apogamy to somatic 333 

embryogenesis and apomixis in angiosperms (Kinosian and Wolf, 2022). Therefore, 334 

once the current gene editing method of C. richardii is applicable to many other fern 335 

species, we can study key biological aspects such as the role of duplicate genes as 336 

well as physiological features and the evolution of stress tolerance in ferns at the 337 

molecular level using gene editing. Despite the great potential, several issues still 338 

limit the efficiency of CRISPR/Cas9 as a tool for mitigating plant stresses (Deng et 339 

al., 2022). For instance, the inactivation of some genes through gene editing often 340 

results in disease resistance, but is also associated with pleiotropic effects such as 341 

inhibition of plant growth, phenotypic abnormalities and increased susceptibility to 342 

abiotic stress and other pathogens (Ma et al., 2018). Abiotic stress tolerance usually 343 

depends on complex mechanisms controlled by multiple genes (Adem et al., 2020; 344 

Shabala et al., 2020; Tripathi et al., 2020; Wang et al., 2023), implicating the need to 345 

develop multiplex CRISPR-based approaches for ferns. 346 

Advantages of using gametophytes in the transformation of ferns  347 

Bryophytes, ferns and lycophytes rely on free-living gametophytes for reproduction 348 

(Fouracre and Harrison, 2022). Unlike mosses and liverworts whose dominant 349 

generation is the gametophyte (Frangedakis et al., 2023), the dominant generation in 350 

ferns is the sporophyte. The spores of ferns are shed by the sporophytes and develop 351 

into free-living gametophytes (Bui et al., 2018). This life cycle of ferns provides an 352 

opportunity to use gametophytes as targets for transgenesis (Kinosian and Wolf, 353 
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2022). This is in stark contrast to the transformation protocol for angiosperm species, 354 

where the immature embryo, callus, flowers and protoplasts are usually used for 355 

efficient stable transformation (Altpeter et al., 2016). The advantages of using 356 

gametophytes are relatively simple and reproducible using large quantity of spores 357 

(Bui et al., 2018), which are fast to germinate, easy to manage, and quick to grow on 358 

solid medium compared to laborious embryo separation and callus induction needed 359 

for genetic transformation of many angiosperms (Ishizaki et al., 2016).  360 

RNAi was made possible through direct uptake of dsRNA into germinating 361 

spores of C. richardii (Stout et al., 2003) and Marsilea vestita (Klink and Wolniak, 362 

2001). Particle bombardment of DNA constructs into gametophytes has also been 363 

demonstrated in C. richardii (Rutherford et al., 2004) and Adiantum capillus-veneris 364 

(Kawai-Toyooka et al., 2004) (Table 1). Transgenesis in ferns was demonstrated in C. 365 

thalictroides and P. vittata with five-day-old germinating spores and 15-day-old 366 

gametophytes by Agrobacterium-mediated transformation and particle bombardment 367 

transformation, respectively (Muthukumar et al., 2013). 368 

A tractable particle bombardment transgenesis system using sporophytes has 369 

been established in C. thalictroides and C. richardii (Plackett et al., 2014; Plackett et 370 

al., 2015). Callus tissues were induced from young sporophytes, and then bombarded 371 

with a GUS reporter and hygromycin selection (Plackett et al., 2014). This method 372 

requires callus induction similar to transformation protocols of angiosperms followed 373 

by sporophyte regeneration. Here, we optimized the enzyme treatment time, OD value 374 

of Agrobacterium, the suitable concentrations of hygromycin selection, and planting 375 

density in Petri dishes, achieving a higher transformation efficiency close to 10% in 376 

overexpression of CrSAL1 (Table 1, Figure 3). The high transformation efficiency will 377 

benefit better understand the function of important genes in the biology, evolutionary, 378 

and future agricultural and medicinal applications of ferns. 379 

Conserved evolution and functional divergence of SAL genes family  380 

Plant SAL1s have been extensively reported to be involved in phytohormones (Ishiga 381 
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et al., 2017) (e.g., ABA, salicylic acid, jasmonic acid, and auxin) and stresses (Jia et 382 

al., 2019) such as Fusarium graminearum (Yu et al., 2015), salt (Chen et al., 2011), 383 

drought (Abdallah et al., 2022), cold (Shen et al., 2023), high light (Estavillo et al., 384 

2011), oxidative stress (Chan et al., 2016), and cadmium (Xi et al., 2016). Due to its 385 

distinct effects on different cellular processes, the underlying molecular mechanisms 386 

of SAL1 in stress responses appears to be complex (Jia et al., 2019). In A. thaliana, 387 

there are four SALs (AT5G63980, AT5G64000, AT5G63990, AT5G09290) and two 388 

homologs [inositol monophosphatase, AT5G54390 (Arabidopsis Halotolerance 2-like, 389 

AHL) and AT4G05090] (Shin et al., 2019). AtSAL1 plays a negative role in stress 390 

response pathways that are predominantly ABA-dependent and ABA-independent 391 

(Wilson et al., 2009).  392 

The C. richardii genome contains one inositol-1,4-bisphosphate 1-phosphatase 393 

CrHAL2/CrSAL2 (Ceric.01G129600) and PAP-specific phosphatase CrHAL2-like 394 

(Ceric.11G097700), which shows 32% and 44% identity to 3'(2'), 5'-bisphosphate 395 

nucleotidase CrSAL1 (Ceric.25G052000), respectively. In this study, crsal1-2 mutant 396 

displayed ABA-sensitive stomatal phenotype, which is in accordance with fry1 397 

(Xiong et al., 2001) and sal1-8 (Pornsiriwong et al., 2017) that were more sensitive to 398 

ABA in A. thaliana compared to the WT. In addition, overexpressed CrSAL1-1 plants 399 

exhibited reduced response to ABA-induced stomatal closure, which is in agreement 400 

with previous report that ectopic expression of soybean GmSAL1 in A. thaliana 401 

decreased the ABA-induced stomatal closure (Ku et al., 2013). A. thaliana alx8 also 402 

showed low A and gs (Rossel et al., 2005) and A. thaliana old101 mutants of 403 

maintained lower ROS levels (Shirzadian-Khorramabad et al., 2022). Interestingly, 404 

crsal1-2 showed significantly lower ROS production in the guard cell and decreased 405 

photosynthetic parameters (e.g. A, gs, VPD, Tleaf) (Figures 5 and 6), indicating the 406 

functional similarity of SAL1s in the two species. 407 

Our previous study showed that SAL1 and its chloroplast transit peptides were 408 

conserved in chlorophyte algae and land plants (Zhao et al., 2019). 197 SAL genes in 409 
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53 Chlorophyta and Embryophyta species were identified (Supplemental Figure S6) 410 

through PLAZA platform (Van Bel et al., 2022) with 27% and 17% of block and 411 

tandem within this gene family. The SAL gene family was greatly expanded in 412 

monocots (e.g., T. aestivum, Phyllostachys edulis) and eudicots (e.g., Glycine max, 413 

Brassica napus), but not in bryophytes and ferns. Gene expression profiles of SALs 414 

showed that some genes are specifically expressed in the reproductive organs, leaf, 415 

and root (Proost and Mutwil, 2018). Interestingly, AtSAL1 showed high expression in 416 

many organs such as root, stem, leaf, flower, seed, reproductive organs, and meristem 417 

(Table S2). AtSAL2 was preferentially expressed in the leaf, while AtSAL4 displayed 418 

specific expression in root, implying their different roles in these tissues. Drought 419 

induced the expression of Zm00001e039578_P001 (GRMZM2G152757, SAL1) in 420 

maize (Kim et al., 2021), which was also involved in photoperiod at vegetative-421 

tasseling stage (Wang et al., 2017) and osmotic stress (Yu et al., 2018). Interestingly, 422 

red fluorescence of RFP-SAL (Pp3c3_21240V3.1) was observed in the cytosol of 423 

moss Physcomitrella patens cells (Cross et al., 2017), implying the diverse biological 424 

functions of SALs. Expression analyzes demonstrated that some SAL genes function 425 

in leaf and root of gymnosperms and lycophytes and others are important for the 426 

reproductive organs of angiosperms, illustrating that neofunctionalization of SAL 427 

genes might coincide with the emergence of expansion in angiosperms. However, the 428 

study of SALs mainly focused on the A. thaliana (Jia et al., 2019). Thus, 429 

investigations of the molecular mechanisms of SALs through gene editing are 430 

important for enhancing abiotic stress tolerance in crops and addressing key 431 

evolutionary biology questions in important early divergent plant lineages such as 432 

ferns. 433 

 434 
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Materials and Methods 435 

Plant materials and growth conditions 436 

The C. richardii genotype Hn-n with a fully sequenced and assembled genome 437 

(Marchant et al., 2022) was used in our study. Plants were grown in a GEN 1000 438 

(CONVIRON, Manitoba, Canada) at 16 h of light/8 h of dark, 28°C, 80% relative 439 

humidity, and fluence of 100 μmol m–2 s–1. Gametophytes were grown with 1.5% 440 

(w/v) of 1× Murashige and Skoog (MS) in agar medium at pH of 5.9 (Plackett et al., 441 

2015). Spores were sterilized by incubating for 5 min in sodium hypochlorite solution 442 

[1% (v/v) chlorine], which was subsequently removed by three sequential rinses with 443 

sterile distilled water at 23°C. Spores were then imbibed in distilled water and 444 

incubated for 3 days in darkness before sowing (Plackett et al., 2014; Withers et al., 445 

2023). The spores were imbibed in 1 mL sterile water in the Petri dish, which was 446 

sealed with foil and incubated at 28°C for 7 days and germinated. One-month-old 447 

gametophytes can be used for the transformation of Agrobacterium. 448 

Agrobacterium tumefaciens-mediated transformation of gametophytes 449 

Stable genetic transformation of C. richardii plants was performed as described 450 

previously with modification (Bui et al., 2015; Bui et al., 2017). More details can be 451 

found in Supplementary Materials and Methods. Overexpression and CRISPR/cas9 452 

constructs were generated utilizing the assembly technology (Bai et al., 2020). 453 

Briefly, the PCR products of full-length coding sequences (CDS) were cloned into the 454 

vector pJET1.2/blunt using CloneJET PCR Cloning Kit (Thermo Fisher Scientific, 455 

Waltham, MA USA) (Awasthi et al., 2021), and then transformed into DH5α 456 

competent cells (Life Technologies, Waltham, MA USA). Plasmid purification was 457 

performed with a GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific, 458 

Waltham, MA USA) (Lorenzo et al., 2023) and the resulting plasmid DNAs were 459 

validated by sequencing. The correct sequence was introduced into the destination 460 

vectors pCAMBIA1300-2× 35S [enhanced cauliflower mosaic virus (CaMV) 35S 461 
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promoter] at the restriction enzyme sites BamHI and PstI (New England BioLabs, 462 

Ipswich, MA, USA). The sgRNAs were designed through CRISPR-P 2.0 463 

(http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/SCORE) (Liu et al., 2017). To generate 464 

CRISPR/Cas9 plasmid, fragments containing tRNA-sgRNA1 fusion and gRNA-465 

tRNA-sgRNA2 fusion were obtained through pGTR as a template (Xie et al., 2015; 466 

Wang et al., 2018). The PCR products were then cloned into pRGEB32-CrActin 467 

vector at the restriction enzyme site BsaI (Fu et al., 2022; Kuang et al., 2022). All 468 

constructs were introduced into the Agrobacterium tumefaciens strain GV3101. 469 

After Agrobacterium infection, gametophytes were grown in MS media with 5 470 

mg/L of hygromycin and 100 mg/L of cefuroxime for 30 days. Then, the sporophytes 471 

were transferred to new MS media containing 20 mg/L of hygromycin and 100 mg/L 472 

of cefuroxime for 30 days. T1 sporophytes grown without hygromycin selection and 473 

transgenic individuals were subsequently identified by hygromycin selection on MS 474 

media (Plackett et al., 2015). Sporophytes were then transplanted to pots containing a 475 

premium potting mix (Scotts Osmocote, Bella Vista, Australia) with the cover to keep 476 

high humidity. The plants were watered and fertilized fortnightly with a nutrient 477 

solution at the 0.5 g/L (Thrive Soluble Fertilizer, Yates, Padstow NSW, Australia). 478 

qPCR analysis of transgenic plants 479 

For expression analysis of CrSAL1, total RNA was extracted from infertile leaves 480 

through RNeasy Plant Mini Kit (QIAGEN) (Cai et al., 2017; Cai et al., 2021). The 481 

cDNA synthesis was performed by QuantiTect Reverse Transcription Kit (QIAGEN) 482 

and the synthesized cDNA was diluted five times before Quantitative real-time PCR 483 

(qPCR) experiments. The qPCR was conducted for three biological replicates using a 484 

QuantiNova SYBR Green PCR Kit (QIAGEN) on a LightCycler 96 Real-Time PCR 485 

System (CFX Connect) (Jiang et al., 2020). Expression levels were normalized 486 

against the CrACTIN reference gene (Plackett et al., 2018). The relative expression 487 

levels of genes were performed from cycle threshold values by 2−ΔΔCt procedure (Feng 488 

et al., 2020; Jiang et al., 2022). All primers were designed using Primer Premier 6.0 489 
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(PREMIER Biosoft, San Francisco, CA, USA) or SnapGene Viewer (GSL Biotech 490 

LLC, Boston, MA, USA) in this study (Supplemental Table S1). 491 

Subcellular localization 492 

Subcellular localization of CrSAL1 was performed according to the previous study 493 

(Feng et al., 2020). The coding regions of CrSAL1 were amplified and cloned into 494 

pCAMBIA1300-GFP (Fu et al., 2022) by the restriction enzyme site KpnI and XbaI. 495 

The resulting plasmids were transferred into A. tumefaciens strain GV3101. A. 496 

tumefaciens harboring the vector was grown overnight in Luria broth (LB) medium 497 

containing 25 mg/L of Rifampin and 50 mg/L of Kanamycin (Jiang et al., 2022). After 498 

centrifugation, A. tumefaciens was resuspended through the infiltration buffer [10 mM 499 

2-(N-morpholino) ethanesulfonic acid (MES)-KOH (pH 5.7), 10 mM MgCl2, 100 μM 500 

acetosyringone (AS)] to achieve OD600 = 0.8. The suspension was infiltrated into the 501 

abaxial air spaces of 4-week-old Nicotiana benthamiana leaves using a 1-mL syringe 502 

without a needle to transiently express (Feng et al., 2020). Green fluorescent protein 503 

(GFP) fluorescence was detected through using a confocal microscopy (SP5, Leica 504 

Microsystems GmbH, Wetzlar, Germany) (Deng et al., 2021). 505 

Measurement of reactive oxygen species (ROS)  506 

The production of ROS in guard cells of CrSAL1 transgenic and WT plants was 507 

measured using a fluorescent indicator 2',7'-dichlorodihydrofluorescein diacetate 508 

(CM-H2DCFDA, Life Technologies, Waltham, MA USA) (Cai et al., 2017). epidermal 509 

peels were incubated with an opening buffer [10 mM KCl and 5 mM MES at pH 6.1 510 

with Ca(OH)2] for 30 mins for stomatal assays epidermal peels The samples were 511 

then loading with 20 µM CM-H2DCFDA for 30 min in the dark, followed by a 5 min 512 

rinse with a measuring buffer [50 mM KCl and 10 mM MES at pH 6.1 with NaOH] to 513 

remove excess dye (Cai et al., 2021). The epidermal peels were then incubated in the 514 

measuring buffer for confocal microscopy imaging with excitation at 488 nm and 515 

emission at 510–540 nm (SP5, Leica Microsystems GmbH, Wetzlar, Germany).  516 
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Gas exchange measurements 517 

Gas exchange measurements were measured on the C. richardii fully expanded 518 

infertile leaf by LI-6400 infrared gas analyzer (LI-COR, USA) (Liu et al., 2017; Qiu 519 

et al., 2023). The parameters are net CO2 assimilation (A), stomatal conductance (gs), 520 

leaf transpiration rate (E), vapor pressure deficit (VPD), and leaf temperature (Tleaf). 521 

The intrinsic water use efficiency (iWUE) calculation is the ratio of A to gs. Leaf 522 

chamber conditions were maintained at a flow rate of 500 mol s−1, 70% relative 523 

humidity and 400 ppm reference CO2. Irradiance levels were set at 0, 20, 50, 100, 524 

200, 300, 500, 800, 1000, and 1500 μmol m−2 s−1 for light response curve 525 

measurement. 526 

Stomatal assay 527 

Stomatal assay was determined from the abaxial surface of the fully expanded and 528 

mature leaves as described in our previous work (O'Carrigan et al., 2014; Liu et al., 529 

2017; Plackett et al., 2021). For these measurements, fully expanded infertile leaves 530 

were removed from the chamber and placed in Petri dishes on tissue paper soaked in 531 

opening buffer. The lower leaf epidermis was quickly peeled off and placed it on 532 

slides with the opening buffer. Stomatal morphology was calculated from the leaf 533 

epidermis through a light microscopy and imaging system (Nikon, Tokyo, Japan). 534 

Treatment was applied as ABA (50 μM) measured for another 60 min. The pictures 535 

were imported into the ImageJ software for the analysis of multiple parameters. 536 

Stomatal area (total stomatal area), stomatal perimeter (total length of the stomatal 537 

outer border), stomatal length (top to bottom of the stomatal), stomatal width (left to 538 

right of the stomatal), pore area (total pore area), pore perimeter (total length of the 539 

pore outer border), pore length (top to bottom of the pore), and pore width (left to 540 

right of the pore) were recorded (Pan et al., 2022). There were 20–30 stomata with 541 

three biological replicates for each treatment and genotype. 542 
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Statistical analysis 543 

Data were shown as means with standard errors of three biological replicates. The 544 

SPSS 26.0 software (IBM, USA) was employed to perform the analysis of variance 545 

(ANOVA) and means were compared by Duncan’s multiple range tests. 546 
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Figure legends 922 

Figure 1. The lifecycle, proposed model and gene expression of SAL1-PAP 923 

retrograde signaling in a model fern species Ceratopteris richardii. The lifecycle of C. 924 

richardii (A). Images are not to scale. After meiosis produces haploid spores, the 925 

haploid gametophyte (n) starts generation. Spores germinate into either male 926 

gametophytes or hermaphrodite that produce gametes (sperm and egg) through 927 

mitosis. After fertilization, the diploid sporophyte (2n) generation begins as a zygote 928 

that generates into an embryo with its first root and leaf, initially dependent on the 929 

gametophyte. In the vegetative stage, the independent sporophyte produces sterile 930 

leaves (trophophyll), followed by increasingly dissected and lobed fronds. In the 931 

reproductive stage, the fertile leaves (sporophyll) of the sporophyte develop sporangia 932 

through meiosis on their undersides, closing the cycle. Model of SAL1-PAP 933 

retrograde signaling in plant (B). Expression of key genes associated with SAL1 934 

pathway in diverse tissues such as immature gametophyte, mature gametophyte, 935 

young sporophyte, expanding leaf, development leaf, fertile leaf, sterile leaf, stem, 936 

root, sori. SAL1, 3'(2'),5'-bisphosphate nucleotidase 1; PAP, 3'-phosphoadenosine 5'-937 

phosphate; XRN, exoribonuclease; GORK, guard cell outward rectifying K+ channel; 938 

SLAC1, S-type anion channel 1; ALMT1, aluminum-activated malate transporter 1; 939 

CIPK, CBL-interacting serine/threonine-protein kinase; CPK, calcium-dependent 940 

protein kinase; CNGC, cyclic nucleotide-gated ion channel; GAIA, 941 

GAMETOPHYTES ABA INSENSITIVE ON ACE1; CAT, catalase peroxidase; 942 

PAPST, sulfate donor 3'-phosphoadenosine 5'-phosphosulfate transporter; NOA, 943 

oxide-associated1; NIA, nitrate reductase; XRN, exoribonuclease. 944 

 945 

Figure 2. Plasmid information of CRISPR/Cas9 and overexpression for genetic 946 

transformation in C. richardii. CRISPR/Cas9 (A) and overexpression (B). A 916 bp 947 

fragment, located at the upstream of the CrActin was isolated and considered as the 948 

putative promoter, which was instead of the OsU3 promoter in pRGEB32 to drive the 949 
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expression cassettes of sgRNA. The native maize ubiquitin promoter (ZmUbi) 950 

promoter in the original construct pRGEB32 was replaced by the enhanced 35S 951 

promoter, which was designated as pRGEB32-CrActin. The pRGEB32-CrActin and 952 

pCAMBIA1300 were employed for gene editing and overexpression C. richardii, 953 

respectively. 954 

 955 

Figure 3. The workflow of gene editing (A) and gene overexpression (B) in C. 956 

richardii. Gene editing (A) and gene overexpression (B), bars = 5 cm. The sgRNAs 957 

were designed through CRISPR-P 2.0 (http://crispr.hzau.edu.cn/cgi-958 

bin/CRISPR2/SCORE). Overexpression and CRISPR/cas9 constructs were generated 959 

utilizing the assembly technology. After Agrobacterium infection, gametophytes were 960 

grown at MS media with 5 mg/L of hygromycin and 100 mg/L of cefuroxime for 30 961 

days. Then, the sporophytes were transferred to MS media supplemented with 100 962 

mg/L cefotaxime and 20 mg/L hygromycin for another 30 days. The regeneration 963 

sporophytes were then transplanted to pots containing a premium potting mix for PCR 964 

and qPCR analysis. 965 

 966 

Figure 4. Phenotype and sequences of the editing types of CrPDS and CrSAL1 967 

transgenic plants. Phenotypes of WT and transgenic plants (CrPDS) (A), bars= 1 cm. 968 

Sanger sequencing of the editing types in CrPDS transgenic plants (B). Phenotypes of 969 

crsal1 plants. Sanger sequencing of the editing types in CrSAL1 transgenic plants (D). 970 

 971 

Figure 5. Photosynthesis and stomatal traits of CrSAL1 gene editing and 972 

overexpression lines. Phenotype and gas exchange parameters of WT, SAL1-OE, and 973 

crsal1 plants (A), bars= 5 cm. Net CO2 assimilation (A), leaf transpiration rate (E), 974 

stomatal conductance (gs), intrinsic water use efficiency (iWUE), vapor pressure 975 

deficit (VPD), and leaf temperature (Tleaf) of transgenic and WT plants (n=6). 976 

Stomatal parameters of transgenic and WT plants (B), bar= 20 μm. Subcellular 977 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2024. ; https://doi.org/10.1101/2024.04.10.588889doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588889
http://creativecommons.org/licenses/by-nc/4.0/


 

 33

localization patterns of CrSAL1 in tobacco leaves (C), bars= 20 μm. Values are means 978 

of three biological replicates ± SE with 20–30 stomata. Asterisks indicate significant 979 

differences compared with the WT plants (*P < 0.05). 980 

 981 

Figure 6. Effects of gene editing and overexpression CrSAL1 on reactive oxygen 982 

species (ROS) and ABA response of fern plants. Confocal images and fluorescent 983 

probe intensity of ROS in guard cells of the SAL1 CRISPR/Cas9 and overexpression 984 

plants (A), bar= 20 μm. ABA induced stomatal close in transgenic and WT plants (C), 985 

bar=20 μm. ROS intensity (B) and stomatal traits (D) and of C. richardii in control 986 

and 50 μΜ ABA treatment for 60 min. Values are means of three biological replicates 987 

± SE with 20–30 stomata. Asterisks indicate significant differences compared with the 988 

WT plants (*P < 0.05, **P < 0.01). 989 

 990 

Supplementary data 991 

The following materials are available in the online version of this article. 992 

 993 

Supplemental Figure S1. Expression and alignment of sequences of U6 small 994 

nuclear RNA genes in diverse tissues of C. richardii.  995 

 996 

Supplemental Figure S2. The sequences of the Actin/U6 promoter from C. richardii 997 

and 2× CaMV 35S promoter. 998 

 999 

Supplemental Figure S3. Growth of gametophytes and sporophytes for testing 1000 

hygromycin sensitivity and germination in C. richardii. 1001 

 1002 

Supplemental Figure S4. Genotyping and phenotyping of CrSAL1 overexpression C. 1003 

richardii plants. 1004 

 1005 
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Supplemental Figure S5. Phenotype of CrSAL1 (A) and CrPDS CRIPSR/Cas9 1006 

plants of C. richardii on the hygromycin selection medium. 1007 

 1008 

Supplemental Figure S6. Tandem and block gene duplicate of SAL genes family in 1009 

Chlorophyta and Embryophyta.  1010 

 1011 

Table S1. List of primer sequences used in this study. 1012 

 1013 

Table S2. Expression patterns of plant SALs in different tissues and evolutionarily 1014 

important lineages of plants. 1015 
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Table 1. Overview of overexpression, RNAi, CRISPR/Cas9 in fern species. 1017 

 1018 

      Transformation methods 

Species Genome size 
Chromosome 
number RNAi DNAi 

Agrobacterium-
mediated 

Particle 
bombartment CRISPR/Cas9 

Ceratopteris 
richardii 

7.46 Gb, Marchant 
et al. 2022 n=39 

Stout et al. 
2003 

Rutherford et al. 
2004 

Muthukumar et al. 2013; 
Bui et al. 2015 

Plackett et al. 
2014, 2015  This study 

Azolla 
filiculoides 

0.75 Gb, Li et al. 
2018 n=22 - - - - - 

Salvinia 
cucullata 

0.26 Gb, Li et al. 
2018 n=9 - - - - - 

Marsilea vestita 

1.0 Gb, 
Rahmatpour et al. 
2023 n=20 

Klinkand 
Wolniak 
2000 - - - - 

Adiantum 
capillus-veneris 

4.83 Gb, Fang et al. 
2022 n=30 - 

Kawai-Tooyoka 
et al. 2004 - 

Kawai et al. 
2003 - 

Alsophila 
spinulosa 

6.27 Gb, Huang et 
al. 2022 n=69 - - - - - 

Pteris vittata - - - - Muthukumar et al. 2013 - - 
  1019 
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Table 2. Factors affecting the efficiency of genetic transformation of the fern species C. richardii. 1020 

 1021 

Construct 
Total 
number of 
gametophytes 

OD 
value 

Enzyme 
treatment 
time 

Co-incubated 
Agrobacterium 
time 

Hygromycin 
selection Transformants Transformation 

efficiency 
Tested 
T0 
seedling

Mutated 
T0 
seedling 
number 

Ratio 

Untransformed 215 0.4 15 min 15 min 10 mg/L 0 0% - - - 

SAL1-OE 893 0.4 15 min 15 min 10 mg/L 8 0.90% - - - 

SAL1-OE 537 1.2 15 min 15 min 10 mg/L 6 1.12% - - - 

SAL1-OE 768 0.8 2 h 1 h 5, then 20 
mg/L 73 9.51% - - - 

CRY4-OE 194 0.8 2 h 1 h 5, then 20 
mg/L 23 11.68% - - - 

YSL-OE 351 0.8 2 h 1 h 5, then 20 
mg/L 26 7.41% - - - 

GRF-OE 159 0.8 2 h 1 h 5, then 20 
mg/L 14 8.81% - - - 

SAL1-KO 210 0.8 2 h 1 h 5, then 20 
mg/L 8 3.33% 8 2 25.00% 

PDS-KO 212 0.8 2 h 1 h 5, then 20 
mg/L 10 4.72% 10 2 20.00% 

CRY4-KO 526 0.8 2 h 1 h 5, then 20 
mg/L 28 5.32% - - - 

YSL-KO 468 0.8 2 h 1 h 5, then 20 
mg/L 21 4.49% - - - 
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Figure 1. The lifecycle, proposed model and gene expression of SAL1-PAP retrograde signaling in a model fern 

species Ceratopteris richardii.  
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Figure 2. Plasmid information of CRISPR/Cas9 and overexpression for genetic transformation in C. richardii. 
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Figure 3. The workflow of gene editing and gene overexpression in C. richardii. 
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Figure 4. Phenotype and sequences of the editing types of CrPDS and CrSAL1 transgenic plants. 
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Figure 5. Photosynthesis and stomatal traits of CrSAL1 gene editing and overexpression lines. 
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Figure 6. Effects of gene editing and overexpression of CrSAL1 on ROS and ABA-response of fern plants. 
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