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24  Abstract

25  The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
26  related nuclease (Cas) system allows precise and easy editing of genes in many plant
27  species. However, this system has not yet been applied to any fern species due to the
28  complex characteristics of fern genomes, genetics and physiology. Here, we
29  established, for the first time, a protocol for gametophyte-based screening single-
30 guide RNAs (sgRNAs) with high efficiency for CRISPR/Cas-mediated gene editing
31 in a model fern species, Ceratopteris richardii. We utilized the C. richardii Actin
32 promoter to drive sgRNA expression and enhanced CaMV 35S promoter to drive the
33 expression of Streptococcus pyogenes Cas9 in this CRISPR-mediated editing system,
34  which was employed to successfully edit a few genes (e.g., nucleotidase/phosphatase
35 1, CrSALI; Cryptochrome 4, CRY4) and CrPDS, encoding a phytoene desaturase
36  protein that resulted in an albino phenotype in C. richardii. Knockout of CrSALI
37  resulted in significantly reduced stomatal conductance (g;), leaf transpiration rate (E),
38  stomatal/pore length, and abscisic acid (ABA)-induced reactive oxygen species (ROS)
39  accumulation in guard cells. Moreover, CrSALI overexpressing plants showed
40  significantly increased net photosynthetic rate (4), g, £ and intrinsic water use
41  efficiency (iWUE) as well as most of the stomatal traits and ROS production in guard
42 cells compared to those in the wild-type (WT) plants. Taken together, the optimized
43 CRISPR/Cas9 system provides a useful tool for functional genomics in a model fern
44  species, allowing the exploration of fern gene functions for evolutionary biology,
45 herbal medicine discovery and agricultural applications.

46

47  Keywords: CRISPR/Cas, genetic transformation, overexpression, gene function,
48  Ceratopteris richardii
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50 Introduction

51  First appearing in the fossil record around 360 million years ago (MYA), true ferns
52 form the second largest vascular plant lineage after angiosperms with more than
53 10,500 species (https://www.worldfloraonline.org/). These numerous species have
54  been instrumental in shaping plant biodiversity and many ecosystems on Earth,
55  resulting in a breadth of adaptations and innovations that are fascinating for research
56  in genomics, evolution, ecology, molecular biology, and physiology (Cai et al., 2021;
57  Marchant et al.,, 2022). Compared to other vascular plants, distinct genes (e.g.,
58  phenolic acid decarboxylases, aerolysin-like, and 12-oxophytodienoic acid) might
59  protect ferns from biotic (Pennisi, 2023; Wei et al., 2023) and abiotic stresses (Yan et
60 al.,, 2019). Many fern species are used in traditional medicine for treating fevers,
61  relaxing muscles, and relieving pain due to the active chemical compounds they
62  produce (Cao et al., 2017; Kumar et al., 2023; Pohthmi and Sharma, 2023).

63 CRISPR/Cas has been widely used in plant molecular research due to its
64  simplicity, versatility, and efficiency for gene editing (Xie et al., 2015; Endo et al.,
65 2019; Wang et al., 2020; Cardi et al., 2023). The cellular repair of CRISPR/Cas-
66  mediated double-strand breaks by non-homologous end joining using sgRNA and Cas
67 nuclease can lead to the modification of genes (Wang et al., 2018; Wang et al., 2020).
68  The ability to reprogram CRISPR/Cas with engineered sgRNA to target any gene of
69 interest allows plant scientists to develop new plant varieties with desired traits and
70  reducing the regulatory complication of genetically modified organism (GMO) (He et
71  al., 2022; Cardi et al., 2023; Pacesa et al., 2024). For instance, CRISPR/Cas-mediated
72 inactivation significantly enhanced grain weight in rice (Oryza sativa) by targeting
73 OsGWS5 (Liu et al., 2017) and OsMADS1 (MADS-BOX TRANSCRIPTION FACTOR 1)
74  (Wang et al., 2024), production of low-gluten wheat (7riticum aestivum) through
75  editing the a-gliadin gene array (Sanchez-Leon et al., 2018), and powdery mildew
76  resistance of tomato (Solanum lycopersicum) (Nekrasov et al., 2017). In the past

77  decade, CRISPR/Cas technology has been successfully utilized to modify more than
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78 130 green plant species based on a recent review (Cardi et al., 2023), including 110
79  angiosperms (mostly agricultural and horticultural crops with significant economic
80  values) (Kis et al., 2019; Wang et al., 2023), and 7 gymnosperms (Ren et al., 2021; Ye
81 etal., 2023), 3 mosses (Tansley et al., 2023; Tavernier et al., 2023; Yuan et al., 2023),
82 and 12 algae (Belshaw et al., 2023; Patel et al., 2023; Zhang et al., 2023) without any
83  species of ferns or lycophytes.
84 Ceratopteris richardii is a fast-growing, small, tropical homosporous fern that
85  has been used for decades as the model fern species (Marchant et al., 2019). Genetic
86  transformation has been performed in C. richardii for functional genomics (Plackett et
87 al.,, 2014; Plackett et al., 2015) such as discovering the roles of genes in sex
88  determination (Youngstrom et al., 2019), genome structure, developmental biology
89  (Plackett et al., 2018; Geng et al., 2022), hybridization and reproductive barriers
90  (Youngstrom et al., 2022; Withers et al., 2023), and apogamy (Bui et al., 2017). In
91  addition, the molecular function of some C. richardii genes have been studied through
92 RNA interference (RNAi) (Plackett et al., 2018; Withers et al., 2023) and
93  overexpression methods (Youngstrom et al., 2022). While the genetic transformation
94  of fern gametophytes as the explant usually has a low success rate, it should be noted
95  that the majority of these methods were developed and optimized according to the
96  well-established protocols targeting to angiosperm flowers, immature embryos, and
97  calli (Bui et al., 2015; Bui et al., 2017). Efficient gene editing protocol for fern species
98  has not been developed, but an efficient and fast verification system in C. richardii
99  will facilitate the analysis of gene function in ferns (Frangedakis et al., 2023).
100 Nucleotidase/phosphatase SAL1, also known as FIERY1 (FRY1) (Ishiga et al.,
101 2017), has dual enzymatic activity of nucleotidase and inositol phosphatase, which
102  functions largely in responses to abiotic stresses through inositol signaling and
103 nucleotide metabolism (Jia et al., 2019). Transient silencing of SAL/ and loss-of-
104  function mutants led to enhanced drought tolerance in 7. aestivum (Manmathan et al.,

105  2013; Abdallah et al., 2022) and Arabidopsis thaliana (Wilson et al., 2009; Estavillo
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106 et al., 2011), while OsSALI overexpression plants were severely impaired in drought
107  tolerance of rice (Liu et al., 2023). Additionally, GASALI improved cold tolerance via
108  inositol 1,4,5-triphosphate-Ca®" signaling pathway in cotton (Gossypium hirsutum)
109  (Shen et al., 2023). Our previous study showed that C. richardii SAL1 (CrSAL1) and
110  its byproduct 3'-phosphoadenosine-5'-phosphate (PAP) function as chloroplast stress
111  signals and participated in the abscisic acid (ABA) signaling pathway for drought
112 response and stomatal regulation (Zhao et al., 2019), but CrSAL1 was not functionally
113 verified through genetic engineering in C. richardii.

114 Here, we established an efficient gene-editing platform for C. richardii
115  transformation using gametophytes. We improved targeting and editing efficiency of
116  sgRNAs for an optimized Agrobacterium-mediated CRISPR/Cas9 system via the
117 successful editing of CrSALI (Ceric.25G052000.1), CrPDS (Ceric.08G066500.1),
118  CrCRY4 (Ceric.03G029200.1), and CrYSL (Ceric.20G086500.1) in C. richardii.
119  Knockout and overexpression of CrSALI resulted in distinctive phenotypes in gas
120 exchange parameters and stomatal traits in the transgenic plants compared to those in
121  the WT. Our study suggests that the CRISPR/Cas system and the potentially
122 expanded toolkit for gene editing in ferns will facilitate more rapid gene discovery
123 and functional validation for evolutionary biology, herbal medicine, and agricultural
124 applications.

125

126  Results

127  Selection of fern species and developmental stages for transformation

128  Several reference genome of ferns have been assembled in recent years, including
129  Azolla filiculoides (0.75 Gb, n = 22), Salvinia cucullata (0.26 Gb, n = 9) (Li et al.,
130 2018), Alsophila spinulosa (6.27 Gb, n = 69) (Huang et al., 2022), Adiantum capillus-
131 veneris (4.83 Gb, n = 30) (Fang et al., 2022), Ceratopteris richardii (7.46 Gb, n = 39)

132 (Marchant et al., 2022), and Marsilea vestita (1.0 Gb, n = 20) (Rahmatpour et al.,
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133 2023) (Table 1). These high-quality genome sequences enable future research into the
134 functional genomics and applications of ferns (Chen, 2022; Kinosian and Wolf, 2022;
135  Frangedakis et al., 2023). In the available transformation methods, particle
136  bombardment and Agrobacterium-mediated stable transformation have been
137  successfully applied to C. richardii (Plackett et al., 2014, Bui et al., 2015) and Pteris
138  vittata (Muthukumar et al., 2013). These robust transformation methods have paved
139  the way for developing of gene editing in ferns. While Pteris vittata lacks the
140  necessary genomic information for extensive genetic manipulation (Petlewski and Li,
141 2019), the recent publication of the C. richardii genome led us to select C. richardii as
142 the most suitable fern species for establishing a gene editing protocol.

143 Unlike seed plants, homosporous ferns, including C. richardii, possess
144 morphologically and developmentally distinct free-living haploid gametophytes and
145  diploid sporophytes (Figure 1A). The germination of a haploid spore to produce a
146  photosynthetic thallus initiates the gametophytic generation. Hormonal sex
147  determination of C. richardii differentiates individual gametophytes into distinct male
148  or hermaphrodite sexes (Conway and Di Stilio, 2020). Archegonia (female
149  gametangia) and antheridia (male gametangia) develop to produce motile sperm and
150  eggs, respectively (Figure 1A). Only one archegonium is fertilized, resulting in a
151  single diploid zygote per gametophyte. This first step in the diploid sporophyte
152 generation is crucial for genetic transformation (Muthukumar et al., 2013; Bui et al.,
153 2015; Bui et al., 2017). Extrapolating from the successful transformation of the
154  liverwort Marchantia polymorpha (Ishizaki et al., 2008) and C. richardii (Bui et al.,
155  2015) gametophytes via Agrobacteria, we developed an Agrobacterium-mediated
156  gametophyte system for gene knockout in C. richardii. The life cycle of C. richardii

157  is completed with the production of haploid spores (Figure 1A).

158  ldentification and cloning of U6 promoter and Actin promoter from C. richardii

159  The core competent for CRISPR/Cas9 system contains the expression cassettes of

160  sgRNA and the SpCas9 nuclease. Guide RNAs for genome editing have been
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161  produced using a range of Pol III promoters (Xie et al., 2015; Kor et al., 2022). We
162  found seven U6 small nuclear ribonucleoprotein genes (Ceric.17G074700,
163 Ceric.33G040100, Ceric.09G088700, Ceric.02G026900, Ceric.12290000,
164  Ceric.03G070800, Ceric.03G071600) in the C. richardii genome (https://phytozome-
165  next.jgi.doe.gov/info/Crichardii v2 1), which showed high expression in
166  gametophyte, leaf, stem, and root (Supplemental Figure S1A). However, the
167  promoters of these C. richardii genes do not contain the upstream sequence element
168  (USE) and TATA elements, which are the typical structural properties of the Pol III
169  promoters (Kor et al., 2022). Therefore, we used the sequences of the A. thaliana U6-
170 26 snRNA (X52528, AT3G13857) and the T aestivum U6 gene (X52528,
171  ENSRNAO050022746-T1) (Poovaiah et al., 2021) sequences to compare with the
172 upstream U6 promoter regions in C. richardii. We identified three promoters
173 including CrU6-1 (Ceric.13G012200), CrU6-2 (Ceric.13G012300), and CrU6-3
174 (Ceric.12176900), which possess the USE and TATA elements (Supplemental Figure
175  S1B). However, these genes were not highly expressed in root, stem, leaf, or
176  gametophyte of C. richardii (Supplemental Figure S1A).

177 Previous studies showed that a single Pol II promoter (either constitutive or
178  inducible) can also achieve effective gene editing (Hassan et al., 2021; Cardi et al.,
179  2023) in O. sativa (Tang et al., 2016; Ren et al., 2019), T. aestivum (Luo et al., 2021),
180  Hordeum vulgare, S. lycopersicum, Medicago truncatula (Cermék et al., 2017), and
181  the diatom Phaeodactylum tricornutum (Taparia et al., 2022). The Actin promoter
182  isolated from P. vittata was able to function efficiently in both P vittate and
183 Ceratopteris thalictroides (Muthukumar et al., 2013). A 916 bp fragment, located at
184  the upstream of the CrActin was isolated and considered as the putative promoter
185  (Supplemental Figure S2A), which was instead of the OsU3 promoter in pPRGEB32
186  (Xie et al., 2015) to drive the expression cassettes of sgRNA (Luo et al., 2021). The
187  Cas9 protein also reported to be driven by the enhanced CaMV 35S promoter (Li et

188 al.,, 2013; Awasthi et al., 2021; Cui et al., 2021). Therefore, the native maize ubiquitin
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189  promoter (ZmUbi) promoter in the original construct pPRGEB32 was replaced by the
190  enhanced 35S promoter (Supplemental Figure S2B), which was designated as

191  pRGEB32-CrActin.

192  An efficient Agrobacterium-mediated transformation of C. richardii using

193  hygromycin selection

194  To get positive transformants with gene editing or overexpression, the transformation
195  protocol of C. richardii was optimized through adjusting the time for enzyme
196  treatment, co-incubation and the concentrations with hygromycin for positive
197  selection (Table 2). Subsequently, CrSALI was selected to establish the
198  Agrobacterium-mediated transformation of C. richardii. SALI-PAP retrograde
199  signaling is involved stomatal opening and closure through ROS, Ca®’, and nitric
200  oxide (NO) pathways and ion channel (Pornsiriwong et al., 2017; Zhao et al., 2019)
201  (Figure 1B). Here, we found that key component of the SALI-PAP retrograde
202  signaling pathway such as CrSALI, CrCATI, ion channels (CrKATI, CrALMTI,
203  CrCNGC) and protein kinases (CrCIPKI1I, CrCIPK23) displayed high levels of
204  expression in most of the tissues, particularly leaves (Figure 1C).

205 The pRGEB32-CrActin (Figure 2A), and pCAMBIA1300 (Figure 2B) were
206  employed for gene editing and overexpression C. richardii, respectively. The
207  transformation construct used for stable overexpression transformation was
208 pCAMBIA1300-2x35S, which carries the hygromycin phosphotransferase (HPT)
209  gene for selection of positive transgenic plants. After 72 h of co-incubation with
210  Agrobacteria, transformed gametophytes were selected on MS media supplemented
211 with 100 mg/L cefotaxime and 5 mg/L hygromycin to kill the Agrobacteria and select
212 the transformants, respectively (Figure 3).

213 We found that the gametophytes are unable to reproduce and survive for long
214  periods under the suggested MS media with 20 mg/L hygromycin. In order to increase
215  the regeneration and survival rate of the transformed gametophytes, we assayed a

216  range of hygromycin concentrations and selected 5 mg/L (Supplemental Figure S3A,
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217  S3B), resulting in more regenerated gametophytes with normal morphology and
218  reproduction (Figure 3). The sporophytes were then transferred to MS media
219  supplemented with 100 mg/L cefotaxime and 20 mg/L. hygromycin for another 30
220  days. The highest regeneration rate for stable transformation was achieved by 2 h
221  treatment with 1.5% (w/v) cellulase before Agrobacterium co-incubation. We
222 observed that sporophyte survival rate was slightly increased by Agrobacterium co-
223 incubation time with 1.5% cellulase for 1 h (Table 2). Therefore, a combination of
224 digestion with 1.5% cellulase and selection with 100 mg/L cefotaxime and 5/20 mg/L
225  hygromycin was employed in our experiments. Interestingly, regeneration rarely
226  occurs in a 1:1 stoichiometry, and a cluster of diverse regenerated gametophytes were
227  developed from a gametophyte inoculated with Agrobacterium (Figure 3B). The
228  regenerated sporophytes were then transplanted to pots containing a premium potting

229  mix for further analysis.

230  Molecular analysis of transgenic C. richardii plants

231  Nearly 10% of treated gametophytes survived on MS media supplemented with 20
232 mg/L hygromycin (Figure 3B). We obtain 87 CrSALI overexpressed plants survived
233 under hygromycin selection, but half of the plants failed to develop normally and
234  complete the life cycle (Supplemental Figure S4A). Positive transgenic plants were
235  screened by PCR with a 456-bp PCR product using the DNA as template and
236  hygromycin primers targeting to the hygromycin gene (Supplemental Figure S4B). In
237  total, we obtained and verified 15 transgenic C. richardii individuals with relatively
238  higher expression of CrSALI (Supplemental Figure S4). The transformation
239  efficiency was calculated according to the number of successfully developed
240  transgenic sporophytes divided by the total gametophytes used in transformation and
241  multiplied by 100 (Bui et al., 2017), resulting in an efficiency ranging from 3.3% to

242 11.68% across those tested genes (Table 2).
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243  Screening of knockout lines of CrPDS and CrSAL mediated by CRI PSR/Cas9

244 After successful establishment of the Agrobacterium-mediated stable transformation
245  method for overexpression gene of interest in C. richardii using gametophytes as the
246  explant, the pipeline was employed to generate the gene editing lines with
247  CRISPR/Cas9 system (Supplemental Figure S5) in C. richardii — the first of any fern
248  species. Loss-of-function of Phytoene desaturase (PDS) leads to photobleaching
249  phenotypes in varied plant species (Awasthi et al., 2021), which was widely employed
250  as a visible marker in developing the protocol for knocking out of genes of interest
251  (Ma et al., 2019). To introduce mutations into the CrPDS, two independent 20 bp
252 sequences with NGG in their 3’-regions targeting were synthesized and inserted into
253 the gRNA expression cassette of pPRGEB32-CrActin vector. We obtained 18 CrSALI
254  and CrPDS CRIPSR/Cas9 plants through screening with hygromycin (Supplemental
255  Figure S5). The positively transformed plants showed the expected photobleached
256  leaf phenotype (Figure 4A). Sequence analysis determined that the editing efficiency
257  of the CrPDS and CrSAL] target site in the transgenic plants was ranged from 20% to
258  25%, although the transformation efficiency of gene editing ranged from 3.33% to
259  4.72%. Both of replacement and deletion could be found in the mutant lines (Figure
260 4B, 4D). These results suggest that the pPRGEB32-CrActin we generated in this study

261  could be employed for editing genes of interest in C. richardii (Table 2).

262  Physiological evaluation of SAL1 overexpression and knockout C. richardii plants

263  The subcellular localization of GFP fusion construct in the tobacco epidermis showed
264  that GFP alone was found in the nuclei, cytoplasm, and membranes. However, we
265  found GFP fluorescence of CrSALI1 overlaps with the chloroplast fluorescence,
266  implying that the CrSALI protein is localized at the chloroplast and potentially in the
267  cytosol (Figure 5C). The results indicate that CrSAL1 may function in chloroplast
268  retrograde signaling and stomatal regulation similar to those seen in A. thaliana
269  (Xiong et al., 2001; Estavillo et al., 2011).

270 We overexpressed CrSALI in C. richardii and obtained 15 individuals with

10
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271  relatively higher expression of CrSALI, but only four individuals (Line 1, 13, 21 and
272 24) completed the life cycle (Figure 5A). Overexpression CrSALI- OE-1 (Line 1) in
273 C. richardii significantly increased the net CO; assimilation (4), leaf transpiration rate
274  (F), and stomatal conductance (g;) under high light intensity compared to the WT
275  across light intensity from 0 to 1500 umol m > s '. Interestingly, the crsall-2
276  CRIPSR/Cas9 knockout mutants displayed significantly lower g, E, vapor pressure
277  deficit (VPD), and leaf temperature (7., compared to the WT (Figure 5A).

278 Stomata are essential for plants to respond to environmental conditions
279  (Hetherington and Woodward, 2003; Chen et al., 2017; Jiang et al., 2024). In the
280  control conditions, the CrSALI-OE-1 transgenic plants exhibited larger length, area,
281  and perimeter of both stomata and stomatal pores compared to the WT plants (Figure
282  5B). Moreover, stomatal length, stomatal perimeter, and stomatal area in the CrSALI-
283  OE-1 lines were significantly increased, on average, by 25.3%, 15.8%, and 30.4%,
284  respectively. The mean pore length, pore perimeter, and pore area of CrSALI-OE-1
285  were increased by 33.3%, 32.4%, and 55.0%, respectively. In contrast, crsall-2
286  knockout mutants showed a slight decrease in the length and perimeter of stomata and
287  stomatal pore compared to the WT (Figure 5B).

288 CrSALI-OE-1 plants also exhibited high ROS levels in guard cells under the
289  control conditions. The total ROS level of crsall-2 plants was significantly lower than
290  that of WT in the control conditions (Figure 6A), similar to the results of previous
291  studies analyzing mutants of SALI gene such as altered ascorbate peroxidase 2
292 (APX2) expression 8 (alx8) and onset of leaf death 101 (0ld10I) in A. thaliana
293  (Estavillo et al., 2011; Shirzadian-Khorramabad et al., 2022). SAL1 was reported to
294  be important for ABA signaling in response to environmental conditions
295  (Pornsiriwong et al., 2017; Zhao et al., 2019). Thus, we also performed the stomatal
296 assay with ABA treatment in the WT and transgenic plants. Interestingly, crsall-2
297 mutant displayed ABA-sensitive stomatal phenotype (Figure 6C, 6D), which is

298  consistent with the previous study that sa//-8 (Pornsiriwong et al., 2017) and fiyl

11
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299 (Xiong et al., 2001) were more sensitive to ABA in A. thaliana, implying the
300  potentially conserved molecular function of SAL/ in stomatal regulation in different
301  plants. Furthermore, ABA treatment increased the ROS level of guard cell in WT,
302 crsall-2, CrSALI-OE-1 plants (Figure 6B), leading to stomatal closure. In summary,
303  we demonstrated for the first time on the gene editing in C. richardii by editing four
304  important genes and anlayzed the function of CrSALI.

305

306 Discussion

307 First gene editing for gene functional verification in afern

308 CRISPR/Cas genome editing has been applied to a variety of plant species to enhance
309 disease resistance and abiotic stress tolerance (Deng et al., 2022). In the past ten
310  years, there were 9,000 publications on topics relevant to plant CRISPR on Web of
311  Science (https://www.webofscience.com/). However, there have been no studies on
312 the use of CRISPR/Cas9 in ferns (Frangedakis et al., 2023). In this study, we
313  established an efficient gene editing method for the transformation of C. richardii.

314 We successfully overexpressed CrSALI and other genes in C. richardii
315  gametophytes by adjusting the hygromycin concentration (Bui et al., 2015), OD value
316  of Agrobacterium, age of gametophytes, and enzyme treatment time of gametophytes
317  and co-cultivation with Agrobacterium (Table 2, Figure 3). This optimized protocol
318 enabled us to establish stable Agrobacterium-mediated CRISPR/Cas9 transformation
319  in C. richardii. Due to the low expression of CrU6 genes (Supplemental Figure S1A)
320  and the low efficiency of ZmUbi in C. richardii, the OsU3 and ZmUDbi promoter of
321 pRGEB32 plasmid were replaced by the promoter of CrActin and enhanced 35S,
322 respectively. This system can edit genes with high efficiency in C. richardii based on
323 the success with CrSALI, CrPDS and other genes. In most of the CRISPR/Cas9
324 constructs, the RNA polymerase III-type 3 - U3 or U6 promoters are employed for

325  expression of sgRNA in monocots, eudicots, gymnosperms, and bryophytes (Kor et
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326 al, 2022). Although we did not use CrU6 promoters due its low expression, we
327  hypothesize that they can have potential applications in the genome editing of ferns.
328  The ZmUbi had been successfully used for generating the RNAI plants of C. richardii
329  (Plackett et al., 2018), but it requires further investigation on whether it can be used
330 for fern gene editing or not.

331 In the future, direct transformation of gametophytes for gene functions in
332  apogamy (Bui et al.,, 2018) may provide a clue to the evolution of asexual
333  reproduction in land plants, permitting comparison of fern apogamy to somatic
334  embryogenesis and apomixis in angiosperms (Kinosian and Wolf, 2022). Therefore,
335  once the current gene editing method of C. richardii is applicable to many other fern
336  species, we can study key biological aspects such as the role of duplicate genes as
337  well as physiological features and the evolution of stress tolerance in ferns at the
338  molecular level using gene editing. Despite the great potential, several issues still
339  limit the efficiency of CRISPR/Cas9 as a tool for mitigating plant stresses (Deng et
340  al., 2022). For instance, the inactivation of some genes through gene editing often
341  results in disease resistance, but is also associated with pleiotropic effects such as
342  inhibition of plant growth, phenotypic abnormalities and increased susceptibility to
343  abiotic stress and other pathogens (Ma et al., 2018). Abiotic stress tolerance usually
344  depends on complex mechanisms controlled by multiple genes (Adem et al., 2020;
345  Shabala et al., 2020; Tripathi et al., 2020; Wang et al., 2023), implicating the need to

346  develop multiplex CRISPR-based approaches for ferns.

347  Advantages of using gametophytesin the transformation of ferns

348  Bryophytes, ferns and lycophytes rely on free-living gametophytes for reproduction
349  (Fouracre and Harrison, 2022). Unlike mosses and liverworts whose dominant
350  generation is the gametophyte (Frangedakis et al., 2023), the dominant generation in
351  ferns is the sporophyte. The spores of ferns are shed by the sporophytes and develop
352 into free-living gametophytes (Bui et al., 2018). This life cycle of ferns provides an

353  opportunity to use gametophytes as targets for transgenesis (Kinosian and Wolf,
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354  2022). This is in stark contrast to the transformation protocol for angiosperm species,
355  where the immature embryo, callus, flowers and protoplasts are usually used for
356 efficient stable transformation (Altpeter et al., 2016). The advantages of using
357 gametophytes are relatively simple and reproducible using large quantity of spores
358 (Bui et al., 2018), which are fast to germinate, easy to manage, and quick to grow on
359  solid medium compared to laborious embryo separation and callus induction needed
360  for genetic transformation of many angiosperms (Ishizaki et al., 2016).

361 RNAi was made possible through direct uptake of dsRNA into germinating
362  spores of C. richardii (Stout et al., 2003) and Marsilea vestita (Klink and Wolniak,
363  2001). Particle bombardment of DNA constructs into gametophytes has also been
364  demonstrated in C. richardii (Rutherford et al., 2004) and Adiantum capillus-veneris
365 (Kawai-Toyooka et al., 2004) (Table 1). Transgenesis in ferns was demonstrated in C.
366  thalictroides and P. vittata with five-day-old germinating spores and 15-day-old
367  gametophytes by Agrobacterium-mediated transformation and particle bombardment
368 transformation, respectively (Muthukumar et al., 2013).

369 A tractable particle bombardment transgenesis system using sporophytes has
370  Dbeen established in C. thalictroides and C. richardii (Plackett et al., 2014; Plackett et
371 al., 2015). Callus tissues were induced from young sporophytes, and then bombarded
372 with a GUS reporter and hygromycin selection (Plackett et al., 2014). This method
373  requires callus induction similar to transformation protocols of angiosperms followed
374 by sporophyte regeneration. Here, we optimized the enzyme treatment time, OD value
375  of Agrobacterium, the suitable concentrations of hygromycin selection, and planting
376  density in Petri dishes, achieving a higher transformation efficiency close to 10% in
377  overexpression of CrSALI (Table 1, Figure 3). The high transformation efficiency will
378  benefit better understand the function of important genes in the biology, evolutionary,

379  and future agricultural and medicinal applications of ferns.

380  Conserved evolution and functional divergence of SAL genes family
381  Plant SALIs have been extensively reported to be involved in phytohormones (Ishiga
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382 etal, 2017) (e.g., ABA, salicylic acid, jasmonic acid, and auxin) and stresses (Jia et
383 al., 2019) such as Fusarium graminearum (Yu et al., 2015), salt (Chen et al., 2011),
384  drought (Abdallah et al., 2022), cold (Shen et al., 2023), high light (Estavillo et al.,
385 2011), oxidative stress (Chan et al., 2016), and cadmium (Xi et al., 2016). Due to its
386  distinct effects on different cellular processes, the underlying molecular mechanisms
387  of SALI in stress responses appears to be complex (Jia et al., 2019). In 4. thaliana,
388  there are four SALs (AT5G63980, AT5G64000, AT5G63990, AT5G09290) and two
389  homologs [inositol monophosphatase, AT5G54390 (Arabidopsis Halotolerance 2-like,
390 AHL) and AT4G05090] (Shin et al., 2019). AtSALI1 plays a negative role in stress
391 response pathways that are predominantly ABA-dependent and ABA-independent
392  (Wilson et al., 2009).

393 The C. richardii genome contains one inositol-1,4-bisphosphate 1-phosphatase
394  CrHAL2/CrSAL2 (Ceric.01G129600) and PAP-specific phosphatase CrHAL2-like
395  (Ceric.11G097700), which shows 32% and 44% identity to 3'(2'), 5'-bisphosphate
396  nucleotidase CrSAL1 (Ceric.25G052000), respectively. In this study, crsall-2 mutant
397  displayed ABA-sensitive stomatal phenotype, which is in accordance with fiyl
398  (Xiong et al., 2001) and sall-8 (Pornsiriwong et al., 2017) that were more sensitive to
399  ABAin A. thaliana compared to the WT. In addition, overexpressed CrSALI-1 plants
400  exhibited reduced response to ABA-induced stomatal closure, which is in agreement
401  with previous report that ectopic expression of soybean GmSALI in A. thaliana
402  decreased the ABA-induced stomatal closure (Ku et al., 2013). A. thaliana alx8 also
403  showed low A and g; (Rossel et al., 2005) and A. thaliana old10] mutants of
404  maintained lower ROS levels (Shirzadian-Khorramabad et al., 2022). Interestingly,
405  crsall-2 showed significantly lower ROS production in the guard cell and decreased
406  photosynthetic parameters (e.g. 4, g5, VPD, T.) (Figures 5 and 6), indicating the
407  functional similarity of SALIs in the two species.

408 Our previous study showed that SAL1 and its chloroplast transit peptides were

409  conserved in chlorophyte algae and land plants (Zhao et al., 2019). 197 SAL genes in
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410 53 Chlorophyta and Embryophyta species were identified (Supplemental Figure S6)
411  through PLAZA platform (Van Bel et al., 2022) with 27% and 17% of block and
412  tandem within this gene family. The SAL gene family was greatly expanded in
413  monocots (e.g., T aestivum, Phyllostachys edulis) and eudicots (e.g., Glycine max,
414  Brassica napus), but not in bryophytes and ferns. Gene expression profiles of SALs
415  showed that some genes are specifically expressed in the reproductive organs, leaf,
416  and root (Proost and Mutwil, 2018). Interestingly, AtSAL1 showed high expression in
417  many organs such as root, stem, leaf, flower, seed, reproductive organs, and meristem
418  (Table S2). AtSAL2 was preferentially expressed in the leaf, while 4£S4L4 displayed
419  specific expression in root, implying their different roles in these tissues. Drought
420  induced the expression of Zm00001e039578 P00I (GRMZM2G152757, SALI) in
421 maize (Kim et al., 2021), which was also involved in photoperiod at vegetative-
422  tasseling stage (Wang et al., 2017) and osmotic stress (Yu et al., 2018). Interestingly,
423 red fluorescence of RFP-SAL (Pp3c3 21240V3.1) was observed in the cytosol of
424 moss Physcomitrella patens cells (Cross et al., 2017), implying the diverse biological
425  functions of SALs. Expression analyzes demonstrated that some SAL genes function
426  in leaf and root of gymnosperms and lycophytes and others are important for the
427  reproductive organs of angiosperms, illustrating that neofunctionalization of SAL
428  genes might coincide with the emergence of expansion in angiosperms. However, the
429  study of SALs mainly focused on the A. thaliana (Jia et al., 2019). Thus,
430  investigations of the molecular mechanisms of SALs through gene editing are
431 important for enhancing abiotic stress tolerance in crops and addressing key
432  evolutionary biology questions in important early divergent plant lineages such as
433  ferns.

434

16


https://doi.org/10.1101/2024.04.10.588889
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.10.588889; this version posted April 11, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

435 Materials and Methods

436  Plant materials and growth conditions

437  The C. richardii genotype Hn-n with a fully sequenced and assembled genome
438  (Marchant et al., 2022) was used in our study. Plants were grown in a GEN 1000
439  (CONVIRON, Manitoba, Canada) at 16 h of light/8 h of dark, 28°C, 80% relative
440  humidity, and fluence of 100 umol m > s '. Gametophytes were grown with 1.5%
441  (w/v) of 1x Murashige and Skoog (MS) in agar medium at pH of 5.9 (Plackett et al.,
442 2015). Spores were sterilized by incubating for 5 min in sodium hypochlorite solution
443 [1% (v/v) chlorine], which was subsequently removed by three sequential rinses with
444  sterile distilled water at 23°C. Spores were then imbibed in distilled water and
445  incubated for 3 days in darkness before sowing (Plackett et al., 2014; Withers et al.,
446  2023). The spores were imbibed in 1 mL sterile water in the Petri dish, which was
447  sealed with foil and incubated at 28°C for 7 days and germinated. One-month-old

448  gametophytes can be used for the transformation of Agrobacterium.

449  Agrobacterium tumefaciens-mediated transformation of gametophytes

450  Stable genetic transformation of C. richardii plants was performed as described
451  previously with modification (Bui et al., 2015; Bui et al., 2017). More details can be
452  found in Supplementary Materials and Methods. Overexpression and CRISPR/cas9
453  constructs were generated utilizing the assembly technology (Bai et al., 2020).
454  Briefly, the PCR products of full-length coding sequences (CDS) were cloned into the
455  vector pJET1.2/blunt using CloneJET PCR Cloning Kit (Thermo Fisher Scientific,
456  Waltham, MA USA) (Awasthi et al., 2021), and then transformed into DHS5a
457  competent cells (Life Technologies, Waltham, MA USA). Plasmid purification was
458  performed with a GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific,
459  Waltham, MA USA) (Lorenzo et al., 2023) and the resulting plasmid DNAs were
460  validated by sequencing. The correct sequence was introduced into the destination

461  vectors pCAMBIA1300-2x 35S [enhanced cauliflower mosaic virus (CaMV) 35S
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462  promoter] at the restriction enzyme sites BamHI and Pstl (New England BioLabs,
463  Ipswich, MA, USA). The sgRNAs were designed through CRISPR-P 2.0
464  (http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/SCORE) (Liu et al., 2017). To generate
465  CRISPR/Cas9 plasmid, fragments containing tRNA-sgRNAI1 fusion and gRNA-
466  tRNA-sgRNA2 fusion were obtained through pGTR as a template (Xie et al., 2015;
467  Wang et al., 2018). The PCR products were then cloned into pRGEB32-CrActin
468  vector at the restriction enzyme site Bsal (Fu et al., 2022; Kuang et al., 2022). All
469  constructs were introduced into the Agrobacterium tumefaciens strain GV3101.

470 After Agrobacterium infection, gametophytes were grown in MS media with 5
471  mg/L of hygromycin and 100 mg/L of cefuroxime for 30 days. Then, the sporophytes
472  were transferred to new MS media containing 20 mg/L of hygromycin and 100 mg/L
473  of cefuroxime for 30 days. T1 sporophytes grown without hygromycin selection and
474  transgenic individuals were subsequently identified by hygromycin selection on MS
475  media (Plackett et al., 2015). Sporophytes were then transplanted to pots containing a
476  premium potting mix (Scotts Osmocote, Bella Vista, Australia) with the cover to keep
477  high humidity. The plants were watered and fertilized fortnightly with a nutrient

478  solution at the 0.5 g/L (Thrive Soluble Fertilizer, Yates, Padstow NSW, Australia).

479  gPCR analysis of transgenic plants

480  For expression analysis of CrSALI, total RNA was extracted from infertile leaves
481  through RNeasy Plant Mini Kit (QIAGEN) (Cai et al., 2017; Cai et al., 2021). The
482  cDNA synthesis was performed by QuantiTect Reverse Transcription Kit (QIAGEN)
483  and the synthesized cDNA was diluted five times before Quantitative real-time PCR
484  (gqPCR) experiments. The qPCR was conducted for three biological replicates using a
485  QuantiNova SYBR Green PCR Kit (QIAGEN) on a LightCycler 96 Real-Time PCR
486  System (CFX Connect) (Jiang et al., 2020). Expression levels were normalized
487  against the CrACTIN reference gene (Plackett et al., 2018). The relative expression
488  levels of genes were performed from cycle threshold values by 2! procedure (Feng

489 et al., 2020; Jiang et al., 2022). All primers were designed using Primer Premier 6.0
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490 (PREMIER Biosoft, San Francisco, CA, USA) or SnapGene Viewer (GSL Biotech

491  LLC, Boston, MA, USA) in this study (Supplemental Table S1).

492  Subcellular localization

493  Subcellular localization of CrSAL1 was performed according to the previous study
494  (Feng et al., 2020). The coding regions of CrSAL1 were amplified and cloned into
495 pCAMBIA1300-GFP (Fu et al., 2022) by the restriction enzyme site Kpnl and Xbal.
496  The resulting plasmids were transferred into A4. tumefaciens strain GV3101. A.
497  tumefaciens harboring the vector was grown overnight in Luria broth (LB) medium
498  containing 25 mg/L of Rifampin and 50 mg/L of Kanamycin (Jiang et al., 2022). After
499  centrifugation, 4. tumefaciens was resuspended through the infiltration buffer [10 mM
500  2-(N-morpholino) ethanesulfonic acid (MES)-KOH (pH 5.7), 10 mM MgCl,, 100 uM
501  acetosyringone (AS)] to achieve OD600 = 0.8. The suspension was infiltrated into the
502  abaxial air spaces of 4-week-old Nicotiana benthamiana leaves using a 1-mL syringe
503  without a needle to transiently express (Feng et al., 2020). Green fluorescent protein
504  (GFP) fluorescence was detected through using a confocal microscopy (SP5, Leica

505  Microsystems GmbH, Wetzlar, Germany) (Deng et al., 2021).

506  Measurement of reactive oxygen species (ROS)

507  The production of ROS in guard cells of CrSALI transgenic and WT plants was
508 measured using a fluorescent indicator 2',7'-dichlorodihydrofluorescein diacetate
509 (CM-H,DCFDA, Life Technologies, Waltham, MA USA) (Cai et al., 2017). epidermal
510  peels were incubated with an opening buffer [10 mM KCIl and 5 mM MES at pH 6.1
511  with Ca(OH),] for 30 mins for stomatal assays epidermal peels The samples were
512 then loading with 20 uM CM-H,DCFDA for 30 min in the dark, followed by a 5 min
513 rinse with a measuring buffer [5S0 mM KCl and 10 mM MES at pH 6.1 with NaOH] to
514  remove excess dye (Cai et al., 2021). The epidermal peels were then incubated in the
515  measuring buffer for confocal microscopy imaging with excitation at 488 nm and

516  emission at 510-540 nm (SP5, Leica Microsystems GmbH, Wetzlar, Germany).
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517  Gasexchange measurements

518  Gas exchange measurements were measured on the C. richardii fully expanded
519  infertile leaf by LI-6400 infrared gas analyzer (LI-COR, USA) (Liu et al., 2017; Qiu
520 et al., 2023). The parameters are net CO, assimilation (4), stomatal conductance (g;),
521  leaf transpiration rate (E), vapor pressure deficit (VPD), and leaf temperature (Zjeq).
522  The intrinsic water use efficiency (iWUE) calculation is the ratio of 4 to g,. Leaf

523  chamber conditions were maintained at a flow rate of 500 mol s

, 70% relative
524  humidity and 400 ppm reference CO,. Irradiance levels were set at 0, 20, 50, 100,
525 200, 300, 500, 800, 1000, and 1500 pmol m?2 s for light response curve

526  measurement.

527  Stomatal assay

528  Stomatal assay was determined from the abaxial surface of the fully expanded and
529  mature leaves as described in our previous work (O'Carrigan et al., 2014; Liu et al.,
530  2017; Plackett et al., 2021). For these measurements, fully expanded infertile leaves
531  were removed from the chamber and placed in Petri dishes on tissue paper soaked in
532 opening buffer. The lower leaf epidermis was quickly peeled off and placed it on
533  slides with the opening buffer. Stomatal morphology was calculated from the leaf
534  epidermis through a light microscopy and imaging system (Nikon, Tokyo, Japan).
535  Treatment was applied as ABA (50 uM) measured for another 60 min. The pictures
536  were imported into the Imagel] software for the analysis of multiple parameters.
537  Stomatal area (total stomatal area), stomatal perimeter (total length of the stomatal
538  outer border), stomatal length (top to bottom of the stomatal), stomatal width (left to
539  right of the stomatal), pore area (total pore area), pore perimeter (total length of the
540  pore outer border), pore length (top to bottom of the pore), and pore width (left to
541  right of the pore) were recorded (Pan et al., 2022). There were 20-30 stomata with

542  three biological replicates for each treatment and genotype.
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543  Statistical analysis

544  Data were shown as means with standard errors of three biological replicates. The
545  SPSS 26.0 software (IBM, USA) was employed to perform the analysis of variance
546  (ANOVA) and means were compared by Duncan’s multiple range tests.
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922  Figure legends

923  Figure 1. The lifecycle, proposed model and gene expression of SALI-PAP
924  retrograde signaling in a model fern species Ceratopteris richardii. The lifecycle of C.
925  richardii (A). Images are not to scale. After meiosis produces haploid spores, the
926  haploid gametophyte (n) starts generation. Spores germinate into either male
927  gametophytes or hermaphrodite that produce gametes (sperm and egg) through
928  mitosis. After fertilization, the diploid sporophyte (2n) generation begins as a zygote
929  that generates into an embryo with its first root and leaf, initially dependent on the
930  gametophyte. In the vegetative stage, the independent sporophyte produces sterile
931 leaves (trophophyll), followed by increasingly dissected and lobed fronds. In the
932  reproductive stage, the fertile leaves (sporophyll) of the sporophyte develop sporangia
933  through meiosis on their undersides, closing the cycle. Model of SALI1-PAP
934  retrograde signaling in plant (B). Expression of key genes associated with SALI
935 pathway in diverse tissues such as immature gametophyte, mature gametophyte,
936  young sporophyte, expanding leaf, development leaf, fertile leaf, sterile leaf, stem,
937  root, sori. SALI1, 3'(2'),5'-bisphosphate nucleotidase 1; PAP, 3'-phosphoadenosine 5'-
938  phosphate; XRN, exoribonuclease; GORK, guard cell outward rectifying K™ channel;
939  SLACI, S-type anion channel 1; ALMT1, aluminum-activated malate transporter 1;
940 CIPK, CBL-interacting serine/threonine-protein kinase; CPK, calcium-dependent
941 protein kinase; CNGC, cyclic nucleotide-gated ion channel; GAIA,
942 GAMETOPHYTES ABA INSENSITIVE ON Acgl; CAT, catalase peroxidase;
943  PAPST, sulfate donor 3'-phosphoadenosine 5'-phosphosulfate transporter; NOA,
944  oxide-associated]; NIA, nitrate reductase; XRN, exoribonuclease.

945

946  Figure 2. Plasmid information of CRISPR/Cas9 and overexpression for genetic
947  transformation in C. richardii. CRISPR/Cas9 (A) and overexpression (B). A 916 bp
948  fragment, located at the upstream of the CrActin was isolated and considered as the

949  putative promoter, which was instead of the OsU3 promoter in pRGEB32 to drive the
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950  expression cassettes of sgRNA. The native maize ubiquitin promoter (ZmUDbi)
951  promoter in the original construct pPRGEB32 was replaced by the enhanced 35S
952 promoter, which was designated as pPRGEB32-CrActin. The pRGEB32-CrActin and
953 pCAMBIA1300 were employed for gene editing and overexpression C. richardii,
954  respectively.

955

956  Figure 3. The workflow of gene editing (A) and gene overexpression (B) in C.
957  richardii. Gene editing (A) and gene overexpression (B), bars = 5 cm. The sgRNAs
958 were  designed  through  CRISPR-P 2.0  (http:/crispr.hzau.edu.cn/cgi-
959  bin/CRISPR2/SCORE). Overexpression and CRISPR/cas9 constructs were generated
960  utilizing the assembly technology. After Agrobacterium infection, gametophytes were
961  grown at MS media with 5 mg/L of hygromycin and 100 mg/L of cefuroxime for 30
962  days. Then, the sporophytes were transferred to MS media supplemented with 100
963 mg/L cefotaxime and 20 mg/L hygromycin for another 30 days. The regeneration
964  sporophytes were then transplanted to pots containing a premium potting mix for PCR
965  and qPCR analysis.

966

967  Figure 4. Phenotype and sequences of the editing types of CrPDS and CrSALI
968  transgenic plants. Phenotypes of WT and transgenic plants (CrPDS) (A), bars= 1 cm.
969  Sanger sequencing of the editing types in CrPDS transgenic plants (B). Phenotypes of
970  crsall plants. Sanger sequencing of the editing types in CrSAL1 transgenic plants (D).
971

972  Figure 5. Photosynthesis and stomatal traits of CrSALI gene editing and
973  overexpression lines. Phenotype and gas exchange parameters of WT, SAL/-OF, and
974  crsall plants (A), bars= 5 cm. Net CO, assimilation (4), leaf transpiration rate (E),
975  stomatal conductance (g;), intrinsic water use efficiency (iWUE), vapor pressure
976  deficit (VPD), and leaf temperature (7,) of transgenic and WT plants (n=6).

977  Stomatal parameters of transgenic and WT plants (B), bar= 20 pm. Subcellular
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978  localization patterns of CrSALI in tobacco leaves (C), bars= 20 um. Values are means
979  of three biological replicates = SE with 20-30 stomata. Asterisks indicate significant
980  differences compared with the WT plants (*P < 0.05).

981

982  Figure 6. Effects of gene editing and overexpression CrSALI on reactive oxygen
983  species (ROS) and ABA response of fern plants. Confocal images and fluorescent
984  probe intensity of ROS in guard cells of the SALI CRISPR/Cas9 and overexpression
985  plants (A), bar= 20 pm. ABA induced stomatal close in transgenic and WT plants (C),
986  bar=20 um. ROS intensity (B) and stomatal traits (D) and of C. richardii in control
987  and 50 pM ABA treatment for 60 min. Values are means of three biological replicates
988 = SE with 20-30 stomata. Asterisks indicate significant differences compared with the

989  WT plants (*P < 0.05, **P < 0.01).

990

991  Supplementary data

992  The following materials are available in the online version of this article.

993
994  Supplemental Figure S1. Expression and alignment of sequences of U6 small
995  nuclear RNA genes in diverse tissues of C. richardii.
996
997  Supplemental Figure S2. The sequences of the Actin/U6 promoter from C. richardii
998  and 2x CaMV 35S promoter.
999
1000  Supplemental Figure S3. Growth of gametophytes and sporophytes for testing
1001  hygromycin sensitivity and germination in C. richardii.
1002
1003  Supplemental Figure S4. Genotyping and phenotyping of CrSALI overexpression C.
1004  richardii plants.
1005
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Supplemental Figure SS5. Phenotype of CrSALI (A) and CrPDS CRIPSR/Cas9

plants of C. richardii on the hygromycin selection medium.

Supplemental Figure S6. Tandem and block gene duplicate of SAL genes family in

Chlorophyta and Embryophyta.

Table S1. List of primer sequences used in this study.

Table S2. Expression patterns of plant SALs in different tissues and evolutionarily

important lineages of plants.
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1017
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1019

Table 1. Overview of overexpression, RNAi, CRISPR/Cas9 in fern species.

Transformation methods

Chromosome Agrobacterium- Particle

Species Genome size number RNAI DNAIi mediated bombartment CRISPR/Cas9
Ceratopteris 7.46 Gb, Marchant Stout et al. Rutherford et al. Muthukumar et al. 2013;  Plackett et al.
richardii etal. 2022 n=39 2003 2004 Bui et al. 2015 2014, 2015 This study
Azolla 0.75 Gb, Li et al.
filiculoides 2018 n=22 - - - - -
Salvinia 0.26 Gb, Li et al.
cucullata 2018 n=9 - - - - -

1.0 Gb, Klinkand

Rahmatpour et al. Wolniak
Marsilea vestita 2023 n=20 2000 - - - -
Adiantum 4.83 Gb, Fang et al. Kawai-Tooyoka Kawai et al.
capillus-veneris 2022 n=30 - et al. 2004 - 2003 -
Alsophila 6.27 Gb, Huang et
spinulosa al. 2022 n=69 - - - - -
Pteris vittata - - - - Muthukumar et al. 2013 - -
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Table 2. Factors affecting the efficiency of genetic transformation of the fern species C. richardii.

Mutated
Total Enzyme  Co-incubated . . Tested
Construct number of OD treatment Agrobacterium Hygr{)mymn Transformants TraI}sformatlon TO T0 . Ratio
value . . selection efficiency . seedling
gametophytes time time seedling
number
Untransformed 215 0.4 15 min 15 min 10 mg/L 0 0% - - -
SALI-OF 893 0.4 15 min 15 min 10 mg/L 8 0.90% - - -
SALI-OFE 537 1.2 15 min 15 min 10 mg/L 6 1.12% - - -
SALI-OE 768 08  2h 1h 3 then 20 og 9.51% - - -
mg/L
CRY4-OE 194 08  2h Ih S then20 3 11.68% i i :
mg/L
YSL-OE 351 08  2h Ih Sthen20 ¢ 7.41% i i i
mg/L
GRF-OF 159 08  2h Ih 5 then 20y, 8.81% i i :
mg/L
SALI-KO 210 0.8 2h 1h 5, then 20 8 3.33% 8 2 25.00%
mg/L
PDS-KO 212 08  2h Ih fngt?fn 20 o 4.72% 10 2 20.00%
CRY4-KO 526 08  2h Ih 5 then 20 5 5.32% - - -
mg/L
YSL-KO 468 08  2h 1h 5 then 20, 4.49% - - -
mg/L
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Figure 1. The lifecycle, proposed model and gene expression of SAL1-PAP retrograde signaling in a model fern
species Ceratopteris richardii.
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Figure 2. Plasmid information of CRISPR/Cas9 and overexpression for genetic transformation in C. richardii.
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Figure 3. The workflow of gene editing and gene overexpression in C. richardii.
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Figure 5. Photosynthesis and stomatal traits of CrSAL1 gene editing and overexpression lines.
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Figure 6. Effects of gene editing and overexpression of CrSAL1 on ROS and ABA-response of fern plants.
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