

1 **A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation**

2

3 Patrick M. Laughlin¹, Kimberly Young¹, Giovanni Gonzalez-Gutierrez¹, Joseph C.Y. Wang², and
4 Adam Zlotnick^{1*}

5

6 ¹ Department of Molecular and Cellular Biochemistry, Indiana University

7 ² Department of Microbiology and Immunology, Pennsylvania State University College of
8 Medicine

9

10 * Corresponding Author

11 Adam Zlotnick

12 Molecular and Cellular Biology Department

13 Indiana University-Bloomington

14 Bloomington, IN 47401

15 azlotnic@iu.edu

16 812-856-1925

17

18

19 **Abstract**

20 SARS-CoV-2 Nucleocapsid protein (**N**) is a viral structural protein that packages the
21 30kb genomic RNA inside virions and forms condensates within infected cells through liquid-
22 liquid phase separation (**LLPS**). N, in both soluble and condensed forms, has accessory roles in
23 the viral life cycle including genome replication and immunosuppression. The ability to perform
24 these tasks depends on phase separation and its reversibility. The conditions that stabilize and
25 destabilize N condensates and the role of N-N interactions are poorly understood. We have
26 investigated LLPS formation and dissolution in a minimalist system comprised of N protein and
27 an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on
28 the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS
29 assembly reactions from the perspective of the oligonucleotide. We find that N alone can form
30 oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a
31 ~1:1 ratio of N to oligonucleotide LLPS formation is maximal. We find that a modest excess of
32 N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions
33 examined here assembly has a critical concentration of about 1 μ M. The responsiveness of N
34 condensates to their environment may have biological consequences. A better understanding of
35 how nucleic acid modulates N-N association will shed light on condensate activity and could
36 inform antiviral strategies targeting LLPS.

37 **Introduction**

38 SARS-CoV-2 has caused 771 million infections and 7 million deaths since its emergence
39 in 2019.(1) Highly effective vaccines have ameliorated the morbidity and mortality of this
40 disease. However, the continued evolution of SARS-CoV-2 within humans and the wide array of
41 documented animal reservoirs threatens a return to pandemic conditions.(2) Effective antivirals
42 (e.g. Paxlovid) are available. However, Paxlovid requires early administration(3) and is cross-
43 reactive with several common medications.(4) Furthermore, existing medications are ineffective
44 for treating long COVID, which is associated with persistent reservoirs of SARS-CoV-2.(5)

45 N-protein (N) is the most abundant viral protein during a typical SARS-CoV-2 infection
46 and is critical to nearly every step of the viral life cycle.(6) In the core of the mature virion, N
47 forms 15 nm, roughly spherical assemblies with the viral genome that imply conserved
48 architectures and protein-protein interactions.(7-9) After entering a host cell, N complexes must
49 dissociate from the viral genome to enable primary translation. Within viral replication factories,
50 N enables replication of the full-length genome through interactions with the viral replicase.(10,
51 11) Genomic RNA (~30 kb) must be segregated from contaminating host and viral RNA's in the
52 cytoplasm, an ill-defined process that depends on liquid-liquid phase separation (LLPS) of
53 N.(12, 13) Phase-separated condensates provide a scaffold for budding of new virions through
54 interactions of N with the viral Matrix protein.(14, 15) N also has several immunomodulatory
55 roles. It inhibits multiple pattern recognition receptors to downregulate cytokine production.(16-
56 18) Paradoxically, N stabilizes inflammasomes and disassembles P-bodies to stimulate a pro-
57 inflammatory response.(19, 20) LLPS is probably critical to many of these functions. N is
58 displayed on the surface of the host cell, where it sequesters several chemokines.(21)
59 Commensurate with these accessory roles, impaired clearance of N is associated with worse
60 patient outcomes.(22, 23)

61 N is comprised of two ordered domains flanked by three intrinsically disordered domains
62 (IDR's; Figure 1A). The C-terminal ordered domain (CTD) forms a dimerization interface and
63 also binds nucleic acid.(24) The N-terminal ordered domain (NTD) binds RNA specifically and
64 non-specifically.(25, 26) The IDR linking the NTD and CTD (LKR) incorporates a leucine-rich
65 helix that appears to participate in protein-protein interactions and a serine/arginine-rich region
66 that can be phosphorylated to modulate LLPS formation.(11, 24, 27-29)

67 Proteins with IDR's tend to undergo LLPS because they can interact with each other or
68 with substrates such as RNA in a fluid manner.(30) These multivalent interactions lead to
69 oligomerization and phase separation from bulk solution into membraneless organelles, whose
70 formation must be reversible and responsive to their environment.(31) Dissecting the structural
71 basis of LLPS is notoriously difficult due to its inherent aperiodicity and structural heterogeneity.
72 For N, this is further compounded by its strong interactions with nucleic acid. While LLPS could
73 be mediated entirely through nucleic acid, optical tweezer experiments with N show multi-step
74 binding to DNA followed by "compaction", which supports the necessity of protein-protein
75 interactions.(32) However, the relative contribution of protein-protein versus protein-nucleic acid
76 interactions to N LLPS is unknown.

77 In this study, we examine the behavior of N LLPS *in vitro*. We show that N forms
78 complexes with an oligonucleotide that phase separate at narrow ratios of oligonucleotide to N.
79 Phase-separated condensates are dynamic and can grow over time. They are responsive to
80 their environment and can be disrupted by addition of excess N or oligonucleotide. Finally, we
81 demonstrate the importance of protein-protein interactions to N multimerization, which occur
82 with or without oligonucleotide. The presence of oligonucleotide facilitates linkages between
83 protein complexes that drive LLPS.

85 **Results**

86 A short nucleic acid promotes N self-association

87 Our broad focus is to understand the contribution of protein-protein interactions to phase
88 separation of N with nucleic acid. We first investigated the range of conditions where N co-
89 assembles with nucleic acids. For these studies we use ssDNA oligonucleotides with the
90 sequence of twenty consecutive Thymidines (dT20). A 20-nucleotide DNA oligomer was
91 previously shown to be the minimum length for inducing N self-assembly.(33) The short length
92 of dT20 emphasizes the effect of protein-protein interactions to self-association and minimizes
93 the contribution of cooperativity arising from a longer nucleic acid lattice.(34) Thymidine was
94 used as it has negligible base stacking and does not form secondary structures.(35) For
95 fluorescence experiments, dT20 was 5' end-labeled with Cy3 or Cy5 (Cy3-dT20 or Cy5-dT20,
96 respectively). The spectral properties of the Cy3 and Cy5 labels allow for direct measurement of
97 nucleic acid binding and packaging by N.

98 Care was taken that the N used in these studies has little or no contaminating nucleic
99 acid from the expression system. The purification includes a PEI precipitation to remove nucleic
100 acid. The resulting protein has an A260/A280 absorbance ratio of 0.52, consistent with an
101 absence of detectable nucleic acid.(36) Though N is usually thought of as a dimer with two
102 major nucleic acid binding sites, for clarity in discussing molar ratios of N and oligonucleotide, in
103 this paper we define N concentration in terms of monomer.(33)

104 To examine formation of N complexes driven by interaction with short oligonucleotides,
105 we leveraged Förster Resonance Energy Transfer (FRET). We prepared samples with different
106 concentrations of N and a constant concentration of the two labeled dT20s (1:1 Cy3-dT20:Cy5-
107 dT20) (Figure 1B). We reasoned that formation of a complex with two or more dT20s would
108 bring Cy3 and Cy5 within their Förster distance ($R_0=5.3$ nm) and cause FRET. When there is no
109 N present, the emission spectrum observed with excitation at 520 nm (the excitation maximum
110 for Cy3) shows no detectable FRET. With a dT20:N molar ratio of 1:0.4, we observe significant
111 FRET, shown by a loss of Cy3 donor emission at 570 nm and an increase in acceptor emission
112 for Cy5-dT20 at 670nm. Strikingly, at a 1:1 ratio of dT20 to N there is a near-total elimination of
113 Cy3 fluorescence with a substantial amount of Cy5 emission. Higher concentrations of N result
114 in a recovery of Cy3 fluorescence while Cy5 fluorescence had an initial increase followed by a
115 gradual decrease. These results can be summarized by focusing on the peak emission
116 wavelengths or on FRET efficiency (eqn 1, methods; Figure 1C). We note that the dT20:N ratio
117 that yields the highest FRET efficiency changes depending on the dT20 concentration
118 (Supplementary Figure 1A). Further, the behavior of dT20 is indistinguishable from an rU20
119 ssRNA (Supplementary Figure 2).

120 The rise and fall in FRET efficiency suggests a phase transition requiring a narrow
121 dT20:N ratio. In particular, we focused on the spectrum of the 1:1 complex where donor
122 emission was suppressed (Figure 1B-C) and compare this to predictions based on three
123 models. For these predictions, we factored in Cy3-Cy3 and Cy5-Cy5 self-quenching and
124 protein-induced fluorescence enhancement with control experiments where Cy3-dT20 or Cy5-
125 dT20 mixed with unlabeled dT20 was combined with N (Supplemental Figure 1B). As a
126 boundary condition, we assume that FRET transfer is 100% efficient for a complex with both
127 Cy3 and Cy5 oligos (i.e. acceptor emission and no donor emission). In the simplest scenario we
128 consider dT20 binding to an N dimer (Supplementary Figure 3A). Here we expect 25% of N
129 dimers to be bound by two Cy3-dT20s, 25% to be bound by two Cy5-dT20s, and 50% to be
130 bound to one of each labeled DNA oligo. The expected fluorescence spectrum is qualitatively
131 and quantitatively different from our observed 1:1 spectrum (Figure 1B; compare black dashed
132 line and green line). The calculated spectrum has significant donor emission from dimers with

133 two Cy3-dT20s and less Cy5 emission due to the fact only 50% of N dimers are bound to a
134 FRET pair. The much higher donor emission and lower FRET efficiency of our simulation
135 (Figure 1C; yellow diamond with black border) relative to our experimental observations suggest
136 a larger complex.

137 Given that a single dimer is inadequate to explain our results, we considered an N
138 tetramer and a higher-order model. We first consider two N dimers (a tetramer) bound to four
139 dT20s (Supplementary Figure 3B). In this model, 87.75% of tetramers would include both Cy3-
140 and Cy5-dT20 and generate some FRET. 6.25% of tetramers would have four C5-dT20s.
141 Maximal Cy3 emission (per complex) would arise from the 6.25% of tetramers bound to four
142 Cy3-dT20s, which would yield far more Cy3 emission than observed. A higher order model
143 comprised of many dimers (or tetramers) inherently resembles an LLPS (Supplementary Figure
144 3C). Phase separated condensates would contain a mixture of both oligos and thus yield high
145 FRET because very few Cy3-dT20s would escape proximity to one or more Cy5 acceptors.
146 While LLPS explains our observations (discussed later), the FRET assay cannot differentiate
147 the size of LLPS condensates.

148 To gain a better understanding of the range of conditions for maximal FRET and to
149 examine its N concentration dependence, we constructed phase diagrams of dT20:N versus [N]
150 (Figure 1D). We observed the highest FRET efficiency at a 1:1.5 ratio of dT20:N. This
151 maximum differs from the 1:1 ratio in the one dimensional version of this experiment (Fig 1B)
152 suggesting either that these experimental conditions do not support tight binding and/or that
153 association can lead to kinetic traps that impede equilibration. In support of the assertion that
154 our concentrations are close to the K_D of N for dT20, we saw that a 4 μ M concentration of dT20
155 yielded a maximum signal at a 1:1 ratio with N, while lower concentrations of dT20 required a
156 molar excess of N to yield the same signal (Supplementary Figure 1A). We also observe that
157 FRET efficiency increases over time (Figure 1D), suggesting continued growth of large N
158 complexes. FRET fell off steeply on either side of the maximal signal, though not to baseline.
159 This steep falloff suggests a lack of large oligomers (where energy transfer is highly efficient)
160 and a predominance of smaller complexes. These hypotheses are tested in later experiments.

161 At a constant dT20:N ratio, we observed that maximal FRET required $\geq 1.25 \mu$ M N
162 protein (Figure 1D). Formation of large complexes, a crystal or an LLPS, should be
163 characterized by a critical concentration.(37-39) In a phase where subunits can freely equilibrate
164 with bulk solvent, all subunit above the critical concentration is bound in the separated phase.
165 Critical concentration is a function of the subunit-subunit interaction energy and the multivalency
166 of the subunit. The appearance of FRET signal at higher [N] is consistent with a critical
167 concentration of LLPS assembly that is modulated by the dT20 concentration.

168

169 dT20 packaging occurs in conjunction with liquid-liquid phase separation

170 Due to the length of our dT20 (135 Å) and the Förster distance of our Cy3-Cy5 FRET
171 pair ($R_0 = 53 \text{ \AA}$), our FRET experiments are focused on local interactions. To gain a more global
172 understanding of how dT20 drives N self-assembly, we examined N-dT20 complexes using light
173 scattering and light microscopy.

174 The change in light scattering was visually obvious and responsive to the ratio of dT20 to
175 N (Figure 2A). With N alone and up to a 1:1 molar ratio, samples in Eppendorff tubes were
176 clear. At a 1.5:1 and 2:1 ratio, the samples were very cloudy. Higher ratios of dT20:N again
177 produced clear samples. More quantitatively, turbidity at 320 nm followed the same trend
178 (Figure 2B).

179 The complexes that scatter light were further characterized by differential interference
180 contrast (DIC) microscopy, which revealed that elevated sample turbidity was due to liquid-liquid
181 phase separations (Figure 2C). Without any dT20, we did not see any condensates. At a 0.5
182 dT20:N ratio, a few condensates were found. At 1:1 and 1.5:1 ratio we saw larger condensates
183 that were also abundant. While there were still abundant condensates at a 2-fold excess of
184 dT20, they were much smaller in size. We could not detect any LLPS at higher dT20
185 concentrations.

186 To verify that LLPS was due to nucleic acid-driven assembly, we correlated DIC
187 microscopy with epifluorescence imaging of condensates formed by N and Cy3-dT20. We
188 observed colocalization of fluorescence with condensate. At samples where Cy3-dT20 was in
189 excess of the 1:1 ratio, we noticed substantial background signal for Cy3-dT20, indicating that
190 excess oligo is not associated with the condensates.

191 Like the FRET assays (Figure 1), there is a sharp rise and fall in turbidity and
192 condensate formation as the ratio of dT20 to N is changed. We observed maximum FRET
193 efficiency at a dT20:N ratio of 1:2 at low dT20 concentrations and at 1:1 ratio at higher dT20
194 concentrations (Supplementary Figure 1A). In our turbidity assay, we see that a molar excess of
195 dT20 between 1.25- and 1.5-fold is required for maximum signal. We note that in our
196 microscopy data, a large number of condensates are observed at these conditions, but they are
197 smaller in general. This disconnect between assays may arise from the transition from Rayleigh
198 to Mie scattering, discussed in the following paragraphs.

199

200 Phase-separated Condensates are dynamic and coalesce over time

201 Given the similarities between the pattern for turbidity and LLPS formation observed by
202 DIC, we generated phase diagrams for turbidity (Figure 3A) like those generated with the FRET-
203 based assay (Figure 1D). At 10 minutes, we see the same trend as in Figure 2B for maximum
204 turbidity at a dT20:N of 1.25:1 and 1.5:1. Higher N concentrations led to higher turbidity at the
205 same dT20:N ratios. We detected elevated turbidity at N concentrations as low as 1 μ M. At
206 higher concentrations of N, a broader range of dT20:N was permissive for LLPS. No changing
207 turbidity was detected in samples with N alone.

208 Counterintuitively, turbidity of the samples decreased very quickly. By 30 minutes, the
209 signal had decreased by over 50% from the first measurement at 10 minutes for most
210 conditions. By 2 hours the turbidity signal shifted to a maximum at 1:1 dT20:N. This is identical
211 to the ratio that yielded maximum FRET in prior results (Figure 1B, C; Supplementary Figure
212 1A).

213 The decrease in turbidity may be attributable to a change in the scattering regimen of
214 LLPS condensates. At early timepoints in assembly, where condensates are expected to be
215 small, we suggest that samples are in the Rayleigh Scattering regimen, where turbidity is
216 proportional to the weight-average molecular weight of the assembled products. As condensate
217 diameter grows large compared to the wavelength of scattered light ($>>5\%$ the wavelength of
218 incident light, $>>20$ nm), they enter the Mie Scattering regimen, which causes a decrease in
219 light scattering. We tested the prediction of LLPS growth with DIC and epifluorescence (Figure
220 3B, C). At 10 minutes, many small condensates (<1 micron diameter) were observed that
221 colocalized with Cy3-dT20. With longer incubation, we observed larger condensates that were
222 fewer in number. We analyzed particle size and polydispersity through direct measurement and
223 saw that condensates indeed grew over time until approaching a median diameter of ~ 4 microns
224 after 2 hours. At these sizes, Rayleigh theory is inadequate; Mie scattering thus accounted for
225 the decrease in the observed scattering over time, as smaller condensates decrease in number

226 due to growth or incorporation into larger preformed condensates. Efforts to visualize
227 aggregates by negative stain and cryo electron microscopy were unsuccessful, probably
228 because they were disordered, irregular, and large

229 Because LLPS size is dynamic, we predicted that preformed condensates would be
230 responsive to changes in their environment. In particular, because LLPS formation is very
231 sensitive the the dT20:N ratio, we hypothesized that additions of free N or free dT20 would
232 perturb preformed LLPS condensates more than dilution with buffer alone. To test this
233 hypothesis, we first assembled condensates at an equimolar ratio of N to Cy3-dT20. After a
234 preincubation, we diluted this stock with free N, free Cy3-dT20, or buffer. Despite dilution with
235 buffer, preformed condensates were resistant to disassembly. However, addition of free Cy3-
236 dT20 or N resulted in condensates that were much smaller than our control dilutions. Based on
237 DIC microscopy, we see that dilution has little effect on condensate size (Figure 3D). The ability
238 of excess N or dT20 to disrupt condensates could be of biological significance.

239 FRET, turbidity, and DIC microscopy illustrate that N will phase separate over a narrow
240 range of ratios of dT20 to N when in excess of a critical concentration. Consistent with their
241 dynamic nature, phase separations are disrupted by addition of excess N or dT20.

242

243 N assembles through protein-protein as well as protein-oligonucleotide interactions

244 In these experiments, N does not appear to form a separate phase without dT20. This
245 raises the question of whether protein-protein interactions are involved in LLPS. We turned to
246 crosslinking to test for direct interaction between N-proteins.

247 We reasoned that salt bridges would be likely in oligomerization of N which is extremely
248 polar and enriched in intrinsically disordered regions. 1-Ethyl-3-(3-dimethylaminopropyl)
249 carbodiimide (EDC) forms a zero-length covalent linkage between a primary or secondary
250 amine and a carboxylate (e.g. lysine and aspartate or glutamate). We add sulfoNHS to EDC
251 reactions to form a more stable reaction intermediate and thus increase reaction efficiency.
252 Similarly, for N to form a phase with nucleic acids, basic regions were likely to be in
253 juxtaposition bound to a bridging nucleic acid. Thus, a second complementary crosslinker is
254 bis(sulfosuccinimidyl)suberate (BS3), which links two primary amines with an 11.4 Å linker.
255 Crosslinking was evaluated by SDS-PAGE (Figure 4A-D).

256 Both EDC and BS3 led to extensive crosslinking of N without any dT20 present. We
257 observed a concentration dependent formation of dimer, trimer, tetramer, and higher-MW
258 species (Figure 4A, 4C). To test for formation of spurious crosslinks, reactions were also run in
259 the presence of 50 mM Tris, which should effectively compete with non-specific partners. With
260 both crosslinkers we were able to stabilize a similar catalog of N oligomers even in the presence
261 of Tris (Supplementary Figure 4A-B).

262 We investigated crosslinking in the presence of dT20. Samples from phase separations
263 were largely associated with higher-MW bands. With EDC (Figure 4B), these samples led to a
264 ladder of higher-MW bands that were not observed without dT20. BS3 (Figure 4D) was much
265 more responsive to the concentration of dT20. Low concentrations of dT20 led to a novel ladder
266 of intermediates. At dT20 concentrations consistent with LLPS formation, little N migrated into
267 the gel consistent with it being trapped in a very large complex. The complexity arises in the
268 presence of sufficient dT20 to disrupt an LLPS. Under these conditions, we observe a novel
269 ladder of bands distinctly different from what was seen in the absence of dT20 or in low
270 concentrations thereof.

271 These results show that N without nucleic acid can form a range of species. N self-
272 association is frequent enough that crosslinkers can outcompete high concentrations of
273 competitive inhibitor. When oligonucleotide is added, N undergoes further multimerization.
274 Differences in the EDC and BS3 crosslinking pattern of phase separated condensates indicate
275 that a unique set of protein-protein interactions are required for LLPS.

276

277 Discussion

278 In this work, we focus on four observations. First, a narrow range of dT20:N enables
279 LLPS. Second, condensates are disrupted by addition of excess N or dT20, which is suggestive
280 of a biologically relevant responsiveness. This dynamic nature of LLPS may influence nucleic
281 acid packaging, genome segregation and virus assembly, or release of free N for innate
282 immune modulation. Third, phase separation requires a critical concentration of N. Though
283 lacking any apparent structural order, LLPS growth is analogous to nucleated polymerization
284 such as crystallization. Fourth, N assembles through both protein-protein and protein-nucleic
285 acid interactions. However, neither set of interactions alone is sufficient for LLPS.

286 These behaviors inform a simple model in which protein-protein and protein-nucleic acid
287 interactions control the N assembly landscape (Figure 5). With a 1:1 dT20:N ratio, we observed
288 aggressive LLPS formation. This result is consistent with the observations of Zhao et al who
289 observed that a 20-mer was long enough to induce assembly of N dimers and built a similar
290 model.(33) All five domains of N contribute to nucleic acid interactions.(40, 41) We infer that
291 each N monomer has two effective dT20 binding sites, or four sites per N dimer. As noted by
292 Schuck and co-workers, a dT20 is sufficiently long to be bound by two N dimers.(33) At a 1:1
293 ratio, Each N dimer has two open and two filled sites and can participate in LLPS growth. In
294 addition to nucleic acid crosslinks and dimerization by the ordered CTD, we observe additional
295 protein-protein interaction by crosslinking, which are consistent with those identified from
296 crystallographic and solution experiments.(14, 24, 27-29, 42, 43) Substantial published work
297 indicates interactions via the leucine-rich region of the LKR IDR connecting the ordered NTD
298 and CTD domains.(27, 28) Crystal contacts suggest CTD-CTD interaction.(44) Also the C-
299 terminal IDR has been implicated a site of interaction.(24, 45) However, in the absence of
300 nucleic acid these protein-protein interactions are only sufficient to support small complexes (Fig
301 4A,C).

302 This model of an N dimer with four effective dT20 sites provides an explanation for LLPS
303 growth and also for LLPS response to excess N and excess dT20. At the 1:1 ratio, where half
304 of all sites are empty, the periphery of the LLPS will be comprised of open sites and “ends” of
305 dT20 molecules. It will be maximally receptive to adding more 1:1 dimers and complexes of
306 dimers. We observe continued growth under these conditions. Unlike crystals, which do not
307 typically merge, an LLPS can adjust its surface geometry to encourage fusion. Barring a
308 physical constraint, the larger the LLPS the larger the fraction of buried subunits and the lower
309 the energy of the complex. Subunits on the interior may have incomplete or sub-optimal
310 contacts, as with any liquid. The relative affinity of the two dT20 binding sites may influence the
311 kinetics of LLPS. For free N dimers, bound dT20 is simply not shared with N in another dimer. In
312 the context of LLPS, all sites are engaged due to “sharing” of dT20 between adjacent N
313 proteins. Links that promote LLPS may be kinetically inhibited by dT20 repositioning despite
314 favorable thermodynamics. In our turbidity phase diagrams (Figure 3A), we observed that the
315 dT20:N ratio that yielded maximum turbidity changed from 1.5:1 at 10 minutes to 1:1 after two
316 hours. The higher turbidity of the 1.5:1 ratio at shorter timescales may be explained by
317 restoration of dT20 to the weaker (but LLPS-critical) binding site.

318 Addition of excess N (or dT20) to an LLPS is predicted to result in an LLPS coated with
319 unsaturated or oversaturated N and lead to stripping off peripheral subunits. If N does not
320 infiltrate the LLPS, loss of subunits will be expected to proceed from the exterior. If N does infiltrate
321 the complex, we can anticipate accumulation of defects in the LLPS lattice, a percolation
322 threshold, and a sudden collapse of the LLPS. (46-48) The susceptibility of LLPS integrity to an
323 excess of N may allow the LLPS to respond to changes in the biological milieu and progression
324 through the viral replication cycle. Consider a situation where the relative amount of N in the
325 host cell increases. As virus replication proceeds, the RNA:N ratio decreases changing LLPS
326 stability and leading to virus assembly.

327 A characteristic of a polymer (e.g. a crystal) that is applicable to an LLPS is that, for a
328 set of conditions, its assembly can be described in terms of a critical concentration. In the low
329 ionic strength, short oligo conditions investigated in this study, the critical concentration is
330 approximately 1 μ M (Figure 1, 3). A critical concentration arises when subunits are free to
331 equilibrate between association with free ends and bulk solution.(37) Thus, a critical
332 concentration is a dissociation constant described as the ratio of the second order binding
333 subunit to LLPS and the first order release of subunit:

334 Equation 1. $K_{crit} = (k_{binding} [\text{subunit}][\text{ends}]) / (k_{release}[\text{ends}])$

335 The value for K_{crit} is a function of the microscopic association constants of interaction and the
336 number of such interactions per subunit.(37, 49)

337 The contribution of N-N interactions to oligomerization provides thermodynamic support
338 for assembly of amorphous LLPS. These interactions may also play roles in other structural
339 functions of N. In tomographic studies of virions, N was found to form small 15nm diameter
340 complexes, about 40 per virion, that are believed to compact and organize the viral genome,
341 analogous to nucleosomes.(7-9) We used crosslinking to search for interaction in the absence
342 of nucleic acid (Figure 4A,C) and found evidence of salt bridges (crosslinked by EDC) and
343 clusters of basic residues (crosslinked by BS3). To avoid serendipitous crosslinks, we added up
344 to 50 mM Tris and nonetheless saw essentially the same interactions. However, this self-assembly
345 is limited, structurally or energetically, to a few subunits based on crosslinking and the absence
346 of turbidity or LLPS (Figure 2A-B, Figure 3A). This lack of phase separation of free N protein,
347 even in the presence of crosslinking agents, suggests that by itself N was not nucleating a three
348 dimensional phase.(37) dT20 concentrations that induce N LLPS also stabilize N-dimerization
349 and yield higher-mass crosslinks (Figure 4). Nonetheless, N multimerization in the absence of
350 nucleic acid may provide avidity for nucleic acid engagement and further protein-protein
351 interaction.

352 In our experiments, growth of LLPS shares many similarities to growth of a protein
353 crystal. Both are comprised of repeating units that associate by weak contacts. In a protein
354 crystal, interactions are persistent and each repeating cell has the same ensemble of contacts.
355 In LLPS, the contacts are transient and a given subunit may only have a fraction of its possible
356 contacts. The growth of a crystal or LLPS are governed by the strength of these contacts, which
357 can be evaluated in terms of a critical concentration, the maximum concentration of free subunit
358 at equilibrium. Growth of LLPS will continue until either the concentration of free subunit drops
359 to the critical concentration or the surface is “poisoned” by defective subunits. In our FRET and
360 turbidity assays, we observed high responsiveness to the N concentration. We also observe that
361 “poisoning” of LLPS by excess N or dT20 can disrupt condensates much more severely than an
362 equivalent dilution of buffer alone.

363 An N protein LLPS must involve both protein-protein and protein-nucleic acid
364 interactions. While protein-protein interactions are sufficient to drive limited multimerization,
365 LLPS could not be detected with N alone. While nucleic acid “bridging” interactions driven by

366 exclusively N-dT20 interactions could theoretically drive LLPS, the growth pattern with dT20
367 (Figure 4C-D) showed many similarities to N alone. We suggest that the presence of identical
368 multimerized species with and without dT20 implies a substantial role for protein protein
369 interactions in the N LLPS pathway. The requirement for dT20 for LLPS suggests that longer
370 range interactions between separate quasisimilar “unit cells” are sewn together by nucleic acid
371 scaffolds. Taken together, these results suggest that modulation of N-N or N-nucleic acid
372 contacts (i.e. by a small molecule) could alter the behavior of N condensates and disrupt
373 multiple steps of the SARS-CoV-2 replication cycle.

374 **Methods**

375 *Preparation of Material*

376 DNA oligomers – dT20, Cy3-labeled dT20 (Cy3-dT20), and Cy5-labeled dT20(Cy5-
377 dT20) – were purchased from Integrated DNA Technologies. For Cy3-dT20 and Cy5-dT20, the
378 fluorophore was at the 5' end. Concentrations were based on absorbance at 260 nm using
379 extinction coefficients of 162,600 M⁻¹cm⁻¹ for unlabeled dT20, 167,500 M⁻¹cm⁻¹ for Cy3-dT20,
380 and 172,600 M⁻¹cm⁻¹ for Cy5-dT20.

381 To create an N expression platform, we utilized the coding sequence for SARS-CoV-2 N
382 (GenBank: NC_045512.2; Integrated DNA Technologies; ref 10006625), and cloned this
383 sequence into a pET-24a(+) plasmid to introduce a C-terminal HisTag. After sequencing
384 (Eurofins), the plasmid was transformed into BL21(DE3) cells (New England Biosciences) for
385 protein expression. Cells were grown in Terrific Broth with 0.05 mg/mL kanamycin. Upon
386 reaching an OD of 0.6-0.8, expression was induced with 1 mM IPTG for 18 hours at 23°C. Cells
387 were cooled to 4°C and pelleted by centrifugation (15 minutes at 10,000xg), then stored at -80°C.

388 The following protein purification steps were all performed at 4°C. Frozen cell pellets
389 were resuspended in Lysis Buffer (50 mM HEPES [pH 7.5], 100 mM NaCl, 1 mM NaF, 0.1%
390 βME with Roche EDTA-free protease inhibitor tablets; ref A32965) and lysed by Emulsification
391 (Avestin). Cell debris was centrifuged at 10,000xg for 15 minutes. To the supernatant,
392 polyethyleneimine (PEI; branched, MW 2000; Polysciences) was added to a final concentration
393 of 1% w/v to precipitate nucleic acids, which were pelleted by centrifugation at 10,000xg for 10
394 minutes. Using ammonium sulfate (40% saturation), N was precipitated from the supernatant of
395 the PEI precipitation and pelleted by centrifugation at 10,000xg for 10 minutes. The pellet was
396 resuspended in NiNTA Binding Buffer (20 mM Tris [pH 7.5], 500 mM NaCl, 60 mM Imidazole,
397 0.1% βME) and loaded onto a 5 mL HisTrap HP column (Cytiva) equilibrated in the same buffer.
398 The column was washed with 15 mL of Binding Buffer, followed by 15 mL with 5% NiNTA
399 Elution Buffer (20 mM Tris [pH 7.5], 500 mM NaCl, 600 mM Imidazole, 0.1% βME). The protein
400 was then eluted with 45% NiNTA Elution Buffer, which removed all the bound protein. Protein
401 Fractions were diluted five-fold with Dilution Buffer (50 mM HEPES [pH 7.5], 0.1% βME) to
402 lower the ionic strength before loading onto a 5 mL HiTrap SP FF column (Cytiva) pre-
403 equilibrated with HiTrap Binding Buffer (50 mM HEPES [pH 7.5], 100 mM NaCl, 0.1% βME).
404 The column was washed with 30 mL of HiTrap Binding Buffer, then 30 mL of 15% HiTrap
405 Elution Buffer (50 mM HEPES [pH 7.5], 2 M NaCl, 0.1% βME). Protein was eluted with 30%
406 HiTrap Elution Buffer and collected for dialysis into storage buffer (50 mM HEPES [pH 7.5], 150
407 mM NaCl, 0.1% βME). N stocks were highly pure and no nucleic acid contamination was
408 present (A260/A280=0.53).

409

410 *Förster Resonance Energy Transfer (FRET) Assay*

411 Samples for fluorescence measurements were prepared in black 384-well microplates
412 (Greiner Bio-One; ref 784900) by a BioMek FX-P liquid handling robot (Beckman Coulter) at
413 23°C. Assays were performed on separate days for statistical analysis. Fluorescence data were
414 collected using a Synergy H1 plate reader (BioTek) using excitation wavelengths of 520 nm or
415 600 nm. Using an excitation wavelength of 520 nm, the FRET transfer efficiency was defined
416 as:

417

418 Eqn 1. $E = F_{670} / (F_{570} + F_{670})$

419

420 Wherein F is the fluorescence emission at the subscripted wavelength and E is FRET efficiency.
421 Wells containing Cy3-dT20 and unlabeled-dT20 or Cy5-dT20 and unlabeled-dT20 were used
422 to quantify the effect of Cy3-Cy3 and Cy5-Cy5 self-FRET, as well as protein-induced fluorescence
423 enhancement, to our signal.

424 For the experiment in Figure 1B-C and Supplementary Figure 1A-B, three
425 oligonucleotide stocks (2 μ M Cy3-dT20, 2 μ M Cy5-dT20; 2 μ M Cy3-dT20, 2 μ M unlabeled dT20;
426 2 μ M Cy5-dT20, 2 μ M unlabeled dT20; each in 50 mM HEPES [pH 7.5], 0.1% β ME) and one N
427 stock (16 μ M N in 50 mM HEPES [pH 7.5], 20 mM NaCl, 0.1% β ME) were prepared. For the
428 experiment in Figure 1D, different concentrations of oligonucleotide (3 μ M Cy3-dT20, 3 μ M Cy5-
429 dT20; 3 μ M Cy3-dT20, 3 μ M unlabeled dT20; 3 μ M Cy5-dT20, 3 μ M unlabeled dT20; each in 50
430 mM HEPES [pH 7.5], 0.1% β ME) and N (4 μ M N in 50 mM HEPES [pH 7.5], 20 mM NaCl, 0.1%
431 β ME) were used for stocks. In each of these experiments, these stocks were diluted in their
432 background buffers and combined in a 1:1 volumetric ratio to yield the concentrations indicated
433 in the figure.

434

435 *Turbidity assays*

436 For the two-dimensional version of the experiment depicted in Figure 2B, a 2x stock
437 solution of 32 μ M N in 50 mM HEPES [pH 7.5], 20 mM NaCl, 0.1% β ME was combined with 2x
438 solutions of dT20 in 50 mM HEPES [pH 7.5], 0.1% β ME in equal volumes. The turbidity of each
439 sample was measured after 15 minutes in a 1 mm pathlength cuvette.

440 For the phase diagrams in Figure 3A, samples were prepared in clear 384-well
441 microplates (Greiner Bio-One; ref. 781201) by a BioMek FX-P liquid handling robot (Beckman
442 Coulter) at 23°C. Stock solutions of 24 and 32 μ M N in 50 mM HEPES [pH 7.5], 20 mM NaCl,
443 0.1% β ME were pipetted onto a microplate and serially diluted. A separate stock of 96 μ M
444 unlabeled dT20 in 50 mM HEPES [pH 7.5], 0.1% β ME was used to prepare a range of dT20
445 concentrations. N and dT20 were combined in a 1:1 volumetric ratio to yield the concentrations
446 indicated in the figure. To monitor turbidity, we measured the absorbance at 600 nm using a
447 Synergy H1 (BioTek) plate reader over two hours. Assays were performed in triplicate on
448 separate days for statistical analysis.

449

450 *Visualization of N Liquid-Liquid Phase Separation by Differential Interference Contrast and* 451 *Epifluorescence Microscopy*

452 A stock solution of 32 μ M N in 50 mM HEPES [pH 7.5], 20 mM NaCl, 0.1% β ME was
453 mixed at a 1:1 volumetric ratio with different concentrations of Cy3-dT20 in 50 mM HEPES [pH
454 7.5], 0.1% β ME in a microfuge tube at 23°C. Micrographs in each figure were representative of a
455 triplicate dataset.

456 To visualize liquid-liquid phase separation, 4 μ L drop of each sample was pipetted onto
457 a glass slide (VWR) and covered with #1 12 mm diameter cover slip (Premium Line). Samples
458 were imaged using differential interference contrast and Cy3 epifluorescence on a Nikon Eclipse
459 NiE operating with an 80x oil immersion objective. In time-based experiments, fresh slides were
460 prepared at each timepoint.

461 For condensate disruption experiments, a solution containing 16 μ M N, 16 μ M Cy3-dT20
462 was prepared as described previously. After incubation, this solution was diluted with
463 background buffer (50 mM HEPES [pH 7.5], 10 mM NaCl, 0.1% β ME), 16 μ M Cy3-dT20, or 3.2
464 μ M Cy3-dT20.

465

466 *Crosslinking*

467 A 2x stock of 32 μ M N in 50 mM HEPES [pH 7.5], 20 mM NaCl was combined in equal
468 volumes with 50 mM HEPES [pH 7.5], a 2x stock of dT20 in the same buffer, or with 50 mM
469 HEPES, 100 mM Tris [pH 7.5] to test for spurious crosslinks. Samples were incubated for 15
470 minutes before crosslinking with EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
471 hydrochloride; Pierce) and sulfoNHS (sulfo-N-hydroxylsuccinamide; Sigma Aldrich) or with BS3
472 (bis(sulfosuccinimidyl)suberate; ThermoFisher). 5x stocks of crosslinkers were prepared in
473 water before adding to samples. EDC/sNHS crosslinking was performed for 2 hours at 23°C.
474 BS3 crosslinking was performed for 30 minutes at 23°C. Crosslinkers were quenched by adding
475 150 mM glycine (pH 7.5) for 15 minutes. Samples were boiled for 10 minutes in loading dye
476 containing 10% β ME and run on 4-15% Protean SDS-PAGE gels (BioRad). Gels were stained
477 with Coomassie Brilliant Blue R250 and imaged on a BioRad Chemidoc.

478

479 **Acknowledgements**

480 **We thank Andras Kun of the Light Microscopy Imaging Center and the staff of the**
481 **Electron Microscopy Center and Physical Biochemistry Instrumentation Facility at**
482 **Indiana University Bloomington.**

483 **Funding:** This project was funded with support from the Indiana Clinical and
484 Translational Sciences Institute which is funded in part by Award Number UM1TR004402
485 from the National Institutes of Health, National Center for Advancing Translational
486 Sciences, Clinical and Translational Sciences Award. P.L. was supported by the
487 Graduate Training Program in Quantitative and Chemical Biology under Award Number
488 T32 GM131994 and Indiana University.

489 **Competing interests:** A.Z. is a founder of Assembly Biosciences and a founder
490 and officer of Door Pharmaceuticals. A.Z. has equity in both companies. These are
491 biotech companies that are focused on developing antivirals. All the other authors
492 declare that they have no competing interests.

493

494 **Bibliography**

- 495 1. (2023) WHO Coronavirus (COVID-19) Dashboard World Health Organization,
- 496 2. Telenti, A., Arvin, A., Corey, L., Corti, D., Diamond, M. S., Garcia-Sastre, A. *et al.* (2021)
497 After the pandemic: perspectives on the future trajectory of COVID-19 *Nature* **596**, 495-
498 504 10.1038/s41586-021-03792-w
- 499 3. Wang, Y., Zhao, D., Liu, X., Chen, X., Xiao, W., and Feng, L. (2023) Early administration
500 of Paxlovid reduces the viral elimination time in patients infected with SARS-CoV-2
501 Omicron variants *J Med Virol* **95**, e28443 10.1002/jmv.28443
- 502 4. Marzolini, C., Kuritzkes, D. R., Marra, F., Boyle, A., Gibbons, S., Flexner, C. *et al.* (2022)
503 Recommendations for the Management of Drug-Drug Interactions Between the COVID-
504 19 Antiviral Nirmatrelvir/Ritonavir (Paxlovid) and Comedication *Clin Pharmacol Ther*
505 10.1002/cpt.2646
- 506 5. Swank, Z., Senussi, Y., Manickas-Hill, Z., Yu, X. G., Li, J. Z., Alter, G. *et al.* (2023)
507 Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is
508 Associated With Post-acute Coronavirus Disease 2019 Sequelae Clinical infectious
509 diseases : an official publication of the Infectious Diseases Society of America **76**, e487-
510 e490 10.1093/cid/ciac722
- 511 6. Cascarina, S. M., and Ross, E. D. (2022) Phase separation by the SARS-CoV-2
512 nucleocapsid protein: Consensus and open questions *J Biol Chem* **298**, 101677
513 10.1016/j.jbc.2022.101677
- 514 7. Yao, H., Song, Y., Chen, Y., Wu, N., Xu, J., Sun, C. *et al.* (2020) Molecular Architecture
515 of the SARS-CoV-2 Virus *Cell* **183**, 730-738 e713 10.1016/j.cell.2020.09.018
- 516 8. Calder, L. J., Calcraft, T., Hussain, S., Harvey, R., and Rosenthal, P. B. (2022) Electron
517 cryotomography of SARS-CoV-2 virions reveals cylinder-shaped particles with a double
518 layer RNP assembly *Commun Biol* **5**, 1210 10.1038/s42003-022-04183-1
- 519 9. Klein, S., Cortese, M., Winter, S. L., Wachsmuth-Melm, M., Neufeldt, C. J., Cerikan, B. *et*
520 *al.* (2020) SARS-CoV-2 structure and replication characterized by in situ cryo-electron
521 tomography *Nat Commun* **11**, 5885 10.1038/s41467-020-19619-7
- 522 10. Wu, C. H., Chen, P. J., and Yeh, S. H. (2014) Nucleocapsid phosphorylation and RNA
523 helicase DDX1 recruitment enables coronavirus transition from discontinuous to
524 continuous transcription *Cell Host Microbe* **16**, 462-472 10.1016/j.chom.2014.09.009
- 525 11. Carlson, C. R., Asfaha, J. B., Ghent, C. M., Howard, C. J., Hartooni, N., Safari, M. *et al.*
526 (2020) Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests
527 a Biophysical Basis for its Dual Functions *Mol Cell* **80**, 1092-1103 e1094
528 10.1016/j.molcel.2020.11.025
- 529 12. Iserman, C., Roden, C. A., Boerneke, M. A., Sealfon, R. S. G., McLaughlin, G. A.,
530 Jungreis, I. *et al.* (2020) Genomic RNA Elements Drive Phase Separation of the SARS-
531 CoV-2 Nucleocapsid *Mol Cell* **80**, 1078-1091 e1076 10.1016/j.molcel.2020.11.041
- 532 13. Cubuk, J., Alston, J. J., Incicco, J. J., Singh, S., Stuchell-Brereton, M. D., Ward, M. D. *et*
533 *al.* (2021) The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase
534 separates with RNA *Nat Commun* **12**, 1936 10.1038/s41467-021-21953-3
- 535 14. Lu, S., Ye, Q., Singh, D., Cao, Y., Diedrich, J. K., Yates, J. R., 3rd *et al.* (2021) The SARS-
536 CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and
537 the membrane-associated M protein *Nat Commun* **12**, 502 10.1038/s41467-020-20768-y
- 538 15. Neuman, B. W., Kiss, G., Kunding, A. H., Bhella, D., Baksh, M. F., Connelly, S. *et al.*
539 (2011) A structural analysis of M protein in coronavirus assembly and morphology *J Struct*
540 *Biol* **174**, 11-22 10.1016/j.jsb.2010.11.021
- 541 16. Aloise, C., Schipper, J. G., van Vliet, A., Oymans, J., Donselaar, T., Hurdiss, D. L. *et al.*
542 (2023) SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress
543 response through RNA-binding domain N2b *PLoS Pathog* **19**, e1011582
544 10.1371/journal.ppat.1011582

545 17. Luo, L., Li, Z., Zhao, T., Ju, X., Ma, P., Jin, B. *et al.* (2021) SARS-CoV-2 nucleocapsid
546 protein phase separates with G3BPs to disassemble stress granules and facilitate viral
547 production *Science Bulletin* **66**, 1194-1204 10.1016/j.scib.2021.01.013

548 18. Wang, S., Dai, T., Qin, Z., Pan, T., Chu, F., Lou, L. *et al.* (2021) Targeting liquid-liquid
549 phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity
550 by elevating MAVS activity *Nat Cell Biol* **23**, 718-732 10.1038/s41556-021-00710-0

551 19. Pan, P., Shen, M., Yu, Z., Ge, W., Chen, K., Tian, M. *et al.* (2021) SARS-CoV-2 N protein
552 promotes NLRP3 inflammasome activation to induce hyperinflammation *Nat Commun* **12**,
553 4664 10.1038/s41467-021-25015-6

554 20. Kleer, M., Mulloy, R. P., Robinson, C. A., Evseev, D., Bui-Marinis, M. P., Castle, E. L. *et*
555 *al.* (2022) Human coronaviruses disassemble processing bodies *PLoS Pathog* **18**,
556 e1010724 10.1371/journal.ppat.1010724

557 21. López-Muñoz, A. D., Kosik, I., Holly, J., and Yewdell, J. W. (2023) Cell surface SARS-CoV-
558 2 nucleocapsid protein modulates innate and adaptive immunity *Science Advances* **8**,
559 eabp9770 10.1126/sciadv.abp9770

560 22. Bauer, C., Mack, E., Hefter, V., Fischer, A., Volland, K., Skevaki, C. *et al.* (2023) Impaired
561 systemic nucleocapsid antigen clearance in severe COVID-19 *J Med Virol* **95**, e29032
562 10.1002/jmv.29032

563 23. Grootemaat Anita, E., van der Niel, S., Scholl Edwin, R., Roos, E., Schurink, B., Bugiani,
564 M. *et al.* (2022) Lipid and Nucleocapsid N-Protein Accumulation in COVID-19 Patient Lung
565 and Infected Cells *Microbiology Spectrum* **10**, e01271-01221 10.1128/spectrum.01271-21

566 24. Ye, Q., West, A. M. V., Silletti, S., and Corbett, K. D. (2020) Architecture and self-assembly
567 of the SARS-CoV-2 nucleocapsid protein *Protein Sci* **29**, 1890-1901 10.1002/pro.3909

568 25. Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X. *et al.* (2020) Crystal structure
569 of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug
570 targeting sites *Acta Pharm Sin B* **10**, 1228-1238 10.1016/j.apsb.2020.04.009

571 26. Grossoechme, N. E., Li, L., Keane, S. C., Liu, P., Dann, C. E., 3rd, Leibowitz, J. L. *et al.*
572 (2009) Coronavirus N protein N-terminal domain (NTD) specifically binds the
573 transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes *J Mol Biol*
574 **394**, 544-557 10.1016/j.jmb.2009.09.040

575 27. Zhao, H., Wu, D., Hassan, S. A., Nguyen, A., Chen, J., Piszczech, G. *et al.* (2023) A
576 conserved oligomerization domain in the disordered linker of coronavirus nucleocapsid
577 proteins *Science Advances* **9**, eadg6473 10.1126/sciadv.adg6473

578 28. Adly, A. N., Bi, M., Carlson, C. R., Syed, A. M., Ciling, A., Doudna, J. A. *et al.* (2023)
579 Assembly of SARS-CoV-2 ribonucleosomes by truncated N(*) variant of the nucleocapsid
580 protein *J Biol Chem* **299**, 105362 10.1016/j.jbc.2023.105362

581 29. Chang, C. K., Chen, C. M., Chiang, M. H., Hsu, Y. L., and Huang, T. H. (2013) Transient
582 oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein
583 packaging *PLoS One* **8**, e65045 10.1371/journal.pone.0065045

584 30. Chau, B. A., Chen, V., Cochrane, A. W., Parent, L. J., and Mouland, A. J. (2023) Liquid-
585 liquid phase separation of nucleocapsid proteins during SARS-CoV-2 and HIV-1
586 replication *Cell Rep* **42**, 111968 10.1016/j.celrep.2022.111968

587 31. Hagan, M. F., and Mohajerani, F. (2023) Self-assembly coupled to liquid-liquid phase
588 separation *PLoS Comput Biol* **19**, e1010652 10.1371/journal.pcbi.1010652

589 32. Morse, M., Sefcikova, J., Rouzina, I., Beuning, P. J., and Williams, M. C. (2022) Structural
590 domains of SARS-CoV-2 nucleocapsid protein coordinate to compact long nucleic acid
591 substrates *Nucleic Acids Res* 10.1093/nar/gkac1179

592 33. Zhao, H., Wu, D., Nguyen, A., Li, Y., Adão, R. C., Valkov, E. *et al.* (2021) Energetic and
593 structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids *iScience*
594 **24**, 102523 10.1016/j.isci.2021.102523

595 34. Kowalczykowski, S. C., Paul, L. S., Lonberg, N., Newport, J. W., McSwiggen, J. A.,
596 and Von Hippel, P. H. (1986) Cooperative and noncooperative binding of protein ligands
597 to nucleic acid lattices: experimental approaches to the determination of thermodynamic
598 parameters *Biochemistry* **25**, 1226-1240 10.1021/bi00354a006

599 35. Jafilan, S., Klein, L., Hyun, C., and Florian, J. (2012) Intramolecular base stacking of
600 dinucleoside monophosphate anions in aqueous solution *J Phys Chem B* **116**, 3613-3618
601 10.1021/jp209986y

602 36. Porterfield, J. Z., and Zlotnick, A. (2010) A simple and general method for determining the
603 protein and nucleic acid content of viruses by UV absorbance *Virology* **407**, 281-288,

604 37. Oosawa, F., and Asakura, S. (1975) Thermodynamics of the polymerization of protein
605 Academic Press, London ;

606 38. Katen, S., and Zlotnick, A. (2009) Chapter 14 The Thermodynamics of Virus Capsid
607 Assembly In *Methods in Enzymology*, Elsevier, 395-417

608 39. Zandi, R., van der Schoot, P., Reguera, D., Kegel, W., and Reiss, H. (2006) Classical
609 nucleation theory of virus capsids *Biophys J* **90**, 1939-1948 10.1529/biophysj.105.072975

610 40. Chang, C. K., Hsu, Y. L., Chang, Y. H., Chao, F. A., Wu, M. C., Huang, Y. S. et al. (2009)
611 Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory
612 syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein
613 packaging *J Virol* **83**, 2255-2264 10.1128/JVI.02001-08

614 41. Wu, C., Qavi, A. J., Hachim, A., Kavian, N., Cole, A. R., Moyle, A. B. et al. (2021)
615 Characterization of SARS-CoV-2 nucleocapsid protein reveals multiple functional
616 consequences of the C-terminal domain *iScience* **24**, 102681 10.1016/j.isci.2021.102681

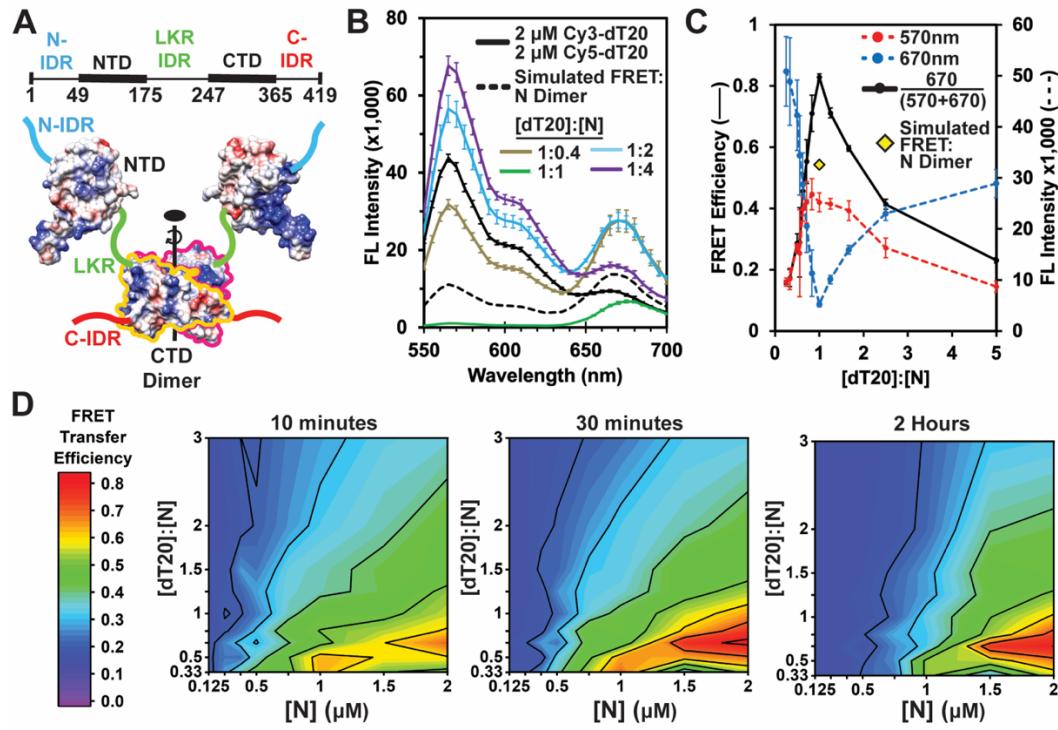
617 42. Cong, Y., Kriegenburg, F., de Haan, C. A. M., and Reggiori, F. (2017) Coronavirus
618 nucleocapsid proteins assemble constitutively in high molecular oligomers *Sci Rep* **7**,
619 5740 10.1038/s41598-017-06062-w

620 43. Wu, W., Cheng, Y., Zhou, H., Sun, C., and Zhang, S. (2023) The SARS-CoV-2
621 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a
622 potential target in the development of vaccines and diagnostics *Virol J* **20**, 6
623 10.1186/s12985-023-01968-6

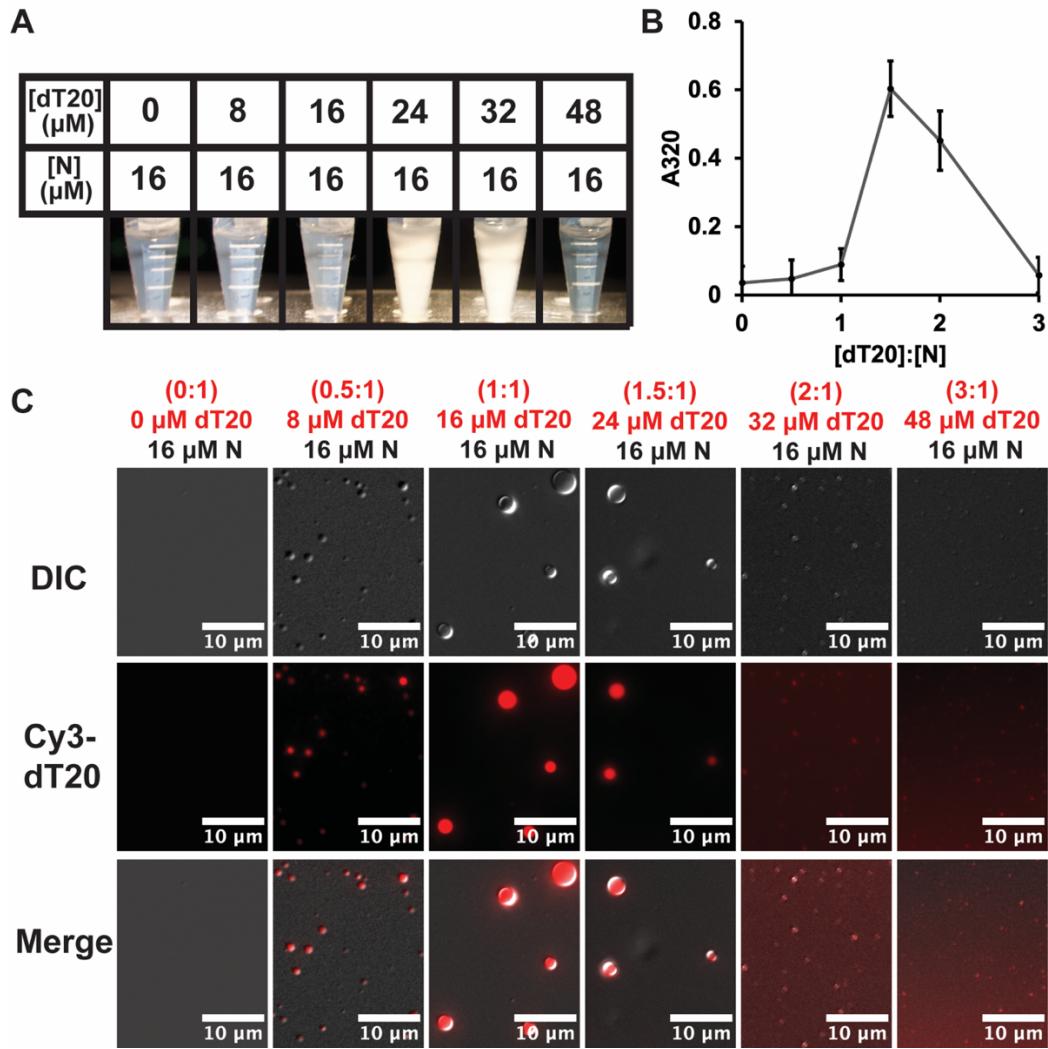
624 44. Chen, C. Y., Chang, C. K., Chang, Y. W., Sue, S. C., Bai, H. I., Riang, L. et al. (2007)
625 Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization
626 domain suggests a mechanism for helical packaging of viral RNA *J Mol Biol* **368**, 1075-
627 1086 10.1016/j.jmb.2007.02.069

628 45. Lo, Y. S., Lin, S. Y., Wang, S. M., Wang, C. T., Chiu, Y. L., Huang, T. H. et al. (2013)
629 Oligomerization of the carboxyl terminal domain of the human coronavirus 229E
630 nucleocapsid protein *FEBS Lett* **587**, 120-127 10.1016/j.febslet.2012.11.016

631 46. Abete, T., de Candia, A., Lairez, D., and Coniglio, A. (2004) Percolation model for enzyme
632 gel degradation *Phys Rev Lett* **93**, 228301 10.1103/PhysRevLett.93.228301

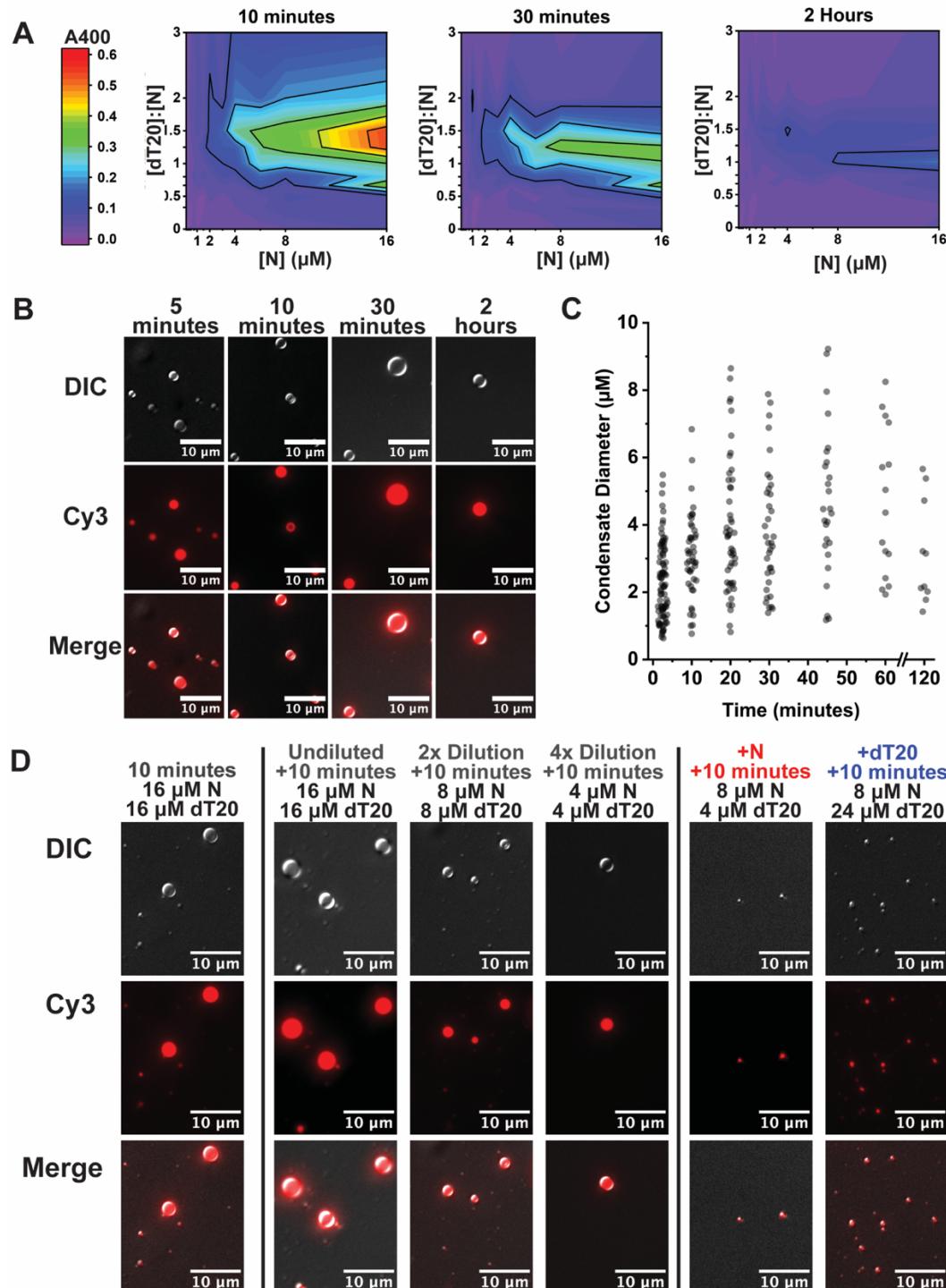

633 47. Schrenk, K. J., Hilário, M. R., Sidoravicius, V., Araújo, N. A. M., Herrmann, H. J.,
634 Thielmann, M. et al. (2016) Critical Fragmentation Properties of Random Drilling: How
635 Many Holes Need to Be Drilled to Collapse a Wooden Cube? *Phys Rev Lett* **116**, 055701
636 10.1103/PhysRevLett.116.055701

637 48. Brunk, N., Lee, L. S., Glazier, J. A., Butske, W. D., and Zlotnick, A. (2018) Molecular Jenga:
638 The Percolation Phase Transition (Collapse) in Virus Capsids *Phys Biol* **15**, 056005
639 10.1088/1478-3975/aac194


640 49. Zlotnick, A. (2003) Are weak protein-protein interactions the general rule in capsid
641 assembly? *Virology* **315**, 269-274,

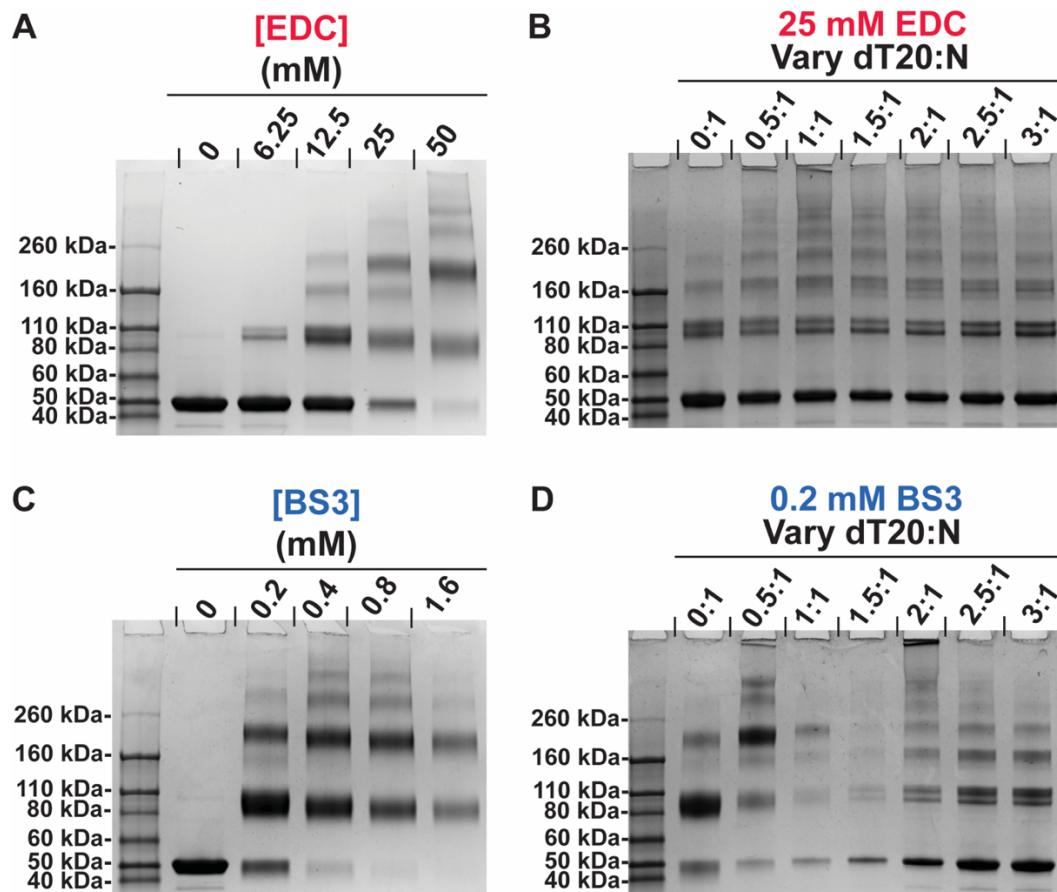
642

643



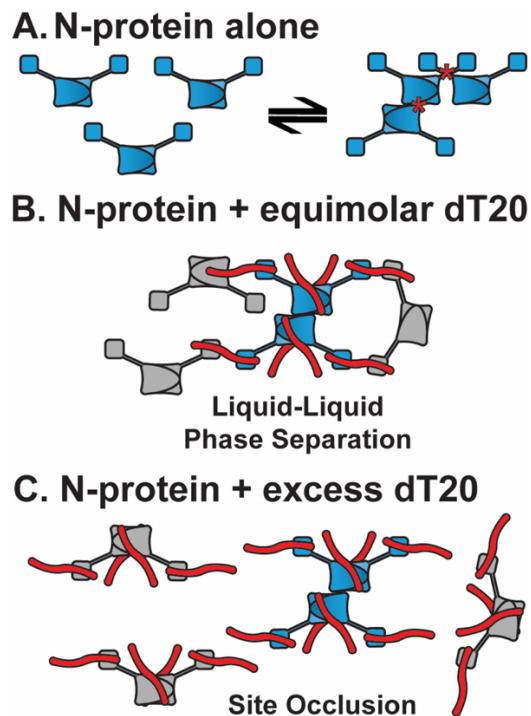
645 **Figure 1. N packages Cy3- and Cy5-labeled nucleic acids in a multiprotein complex.** (A) 646 Schematic of an N dimer, with coulombic surfaces of NTD (PDB 8IQJ) and CTD (PDB 6WZO). 647 (B) Emission spectra (excitation at 520nm) of labeled dT20 (2 μ M each of Cy3- and Cy5-dT20) 648 with different concentrations of N. Values in the legend represent the molar ratio the total 649 dT20:N. Note that at 4 μ M N (1:1) we observe almost complete loss of donor emission and 650 substantial acceptor fluorescence (green line). This observation is distinctly different from a 651 prediction for this condition, based on a single N dimer with two bound oligomers (dashed line). 652 This implies formation of a larger complex. (C) The emission from donor (blue line) and 653 acceptor (red line) shows a minimum near a molar ratio of 1 dT20 to 1 N. This minimum 654 corresponds to a maximum in FRET efficiency (green line). The yellow diamond corresponds to 655 the FRET efficiency predicted for an N dimer bound to two dT20s and not associated with any 656 other N dimers. (D) FRET efficiency evolves over time as seen in phase diagrams of the 657 [dT20]:[N] ratio versus [N] measured at 10 minutes, 30 minutes, and 2 hours. Phase diagrams 658 also show evidence of a critical concentration near 0.5 μ M N for formation of the high FRET 659 efficiency dT20:N complex.

661 **Figure 2. Liquid-Liquid Phase Separation occurs at a dT20:N ratio near 1:1.** (A) Visual
662 observation of cloudiness in Eppendorf tubes and (B) 320 nm turbidity measurements 15
663 minutes after mixing each sample indicate that a maximum in light scattering occurs at distinct
664 ratios of dT20 to N. (C) LLPS was detected using differential interference contrast microscopy.
665 Fluorescence of Cy3-dT20 showed localization to condensates. At 8 μM Cy3-dT20, few
666 condensates formed. At a dT20:N ratio of 1:1 (16 μM dT20), many large condensates were
667 observed. At higher concentrations of dT20, condensates were smaller while a background of
668 Cy3 fluorescence suggests that some dT20 is not bound by N.


669

670

671 **Figure 3. LLPS is concentration-dependent and dynamic.** (A) 400 nm turbidity
672 measurements indicate that a maximum in light scattering occurs at a 1.5:1 excess of dT20:N at
673 10 minutes. Turbidity falls sharply by 30 minutes. At 2 hours, turbidity falls further with a
674 maximum at equimolar dT20:N. (B) Condensates were assembled at 16 μM Cy3-dT20, 16 μM
675 N and visualized with differential interference contrast. Cy3-dT20 was localized to condensates,
676 which grew over time. (C) Condensate sizes from (B) were determined by thresholding of Cy3
677 fluorescence intensity. Condensates grow until plateauing near 4 microns. (D) Condensates


678 diluted with excess Cy3-dT20 or N are smaller than dilution with buffer alone and indicates
679 destabilization caused by excess free subunit.

681 **Figure 4. N constitutively assembles and is modulated by dT20.** (A) EDC and (C) BS3
682 Crosslinking of 16 μ M N without dT20 shows N self-assembly. Bands corresponding to
683 monomer, dimer, tetramer, and higher-MW bands via SDS-PAGE. Crosslinking of 16 μ M N in
684 the presence of dT20 by (B) 25mM EDC and (D) 0.2mM BS3. The EDC treated sample shows
685 higher MW bands that are more dominant in samples that phase separate. For BS3 crosslinked
686 LLPS most of the material does not enter the gel, hence the weaker bands. For EDC
687 crosslinking, sulfoNHS was added to 0.2x the concentration of EDC.

688

689

690

Figure 5. Incomplete saturation of N with nucleic acid is required for phase separation.
(A) The cartoon of an N dimer based on the structure shown in Figure 1A; the N-IDR and C-IDR are omitted for clarity. N-protein self-association occurs stochastically without nucleic acid to form multimers that are LLPS-incompetent. In this diagram, oligomerization occurs through CTD-CTD interaction and mediated by L-rich helices located in the LKR (contacts denoted by the asterisks). (B) Each NTD has one oligonucleotide binding site and the CTD dimer has two sites. The dT20 oligonucleotide is long enough to form linkages between N dimers. With two dT20s per dimer, each dT20 can be shared by two dimers, enabling extensive network formation and phase separation. Shown is a central dimer of dimers with all nucleotide sites filled (blue) linked to partially filled surrounding dimers (gray). (C) Excess dT20 fills all sites and thus cannot accept an oligonucleotide from other N-protein dimers, disrupting LLPS connectivity. Even with nuleic acid sites filled, there can still be oligomerization by protein-protein interactions.