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Abstract 
 
In previous work we used a Somalogic platform targeting approximately 5000 proteins to generate a 
serum protein signature of centenarians that we validated in independent studies that used the same 
technology. We set here to validate and possibly expand the results by profiling the serum proteome of 
a subset of individuals included in the original study using liquid chromatography tandem mass 
spectrometry (LC-MS/MS). Following pre-processing, the LC-MS/MS data provided quantification of 
398 proteins, with only 266 proteins shared by both platforms. At 1% FDR statistical significance 
threshold, the analysis of LC-MS/MS data detected 44 proteins associated with extreme old age, 
including 23 of the original analysis. To identify proteins for which associations between expression 
and extreme-old age were conserved across platforms, we performed inter-study conservation testing 
of the 266 proteins quantified by both platforms using a method that accounts for the correlation 
between the results. From these tests, a total of 80 proteins reached 5% FDR statistical significance, 
and 26 of these proteins had concordant pattern of gene expression in whole blood. This signature of 
80 proteins points to blood coagulation, IGF signaling, extracellular matrix (ECM) organization, and 
complement cascade as important pathways whose protein level changes provide evidence for age-
related adjustments that distinguish centenarians from younger individuals. 
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Introduction 
 

Proteins in blood serum, cerebrospinal fluid, and urine have proven to be potent diagnostic and 
prognostic biomarkers of many diseases [1],  in addition to their providing insights into the biological 
mechanisms underlying diseases.  Progress in this area has relied on the increasingly sophisticated 
proteomics technology that has seen major advances in the past few years. In bottom-up analysis, the 
approach to liquid chromatography tandem mass spectrometry (LC-MS/MS) that has dominated the 
field for decades [2], proteins are first digested into peptides that are then separated by one or more 
chromatographic steps based on properties such as pI and hydrophobicity and analyzed via online 
mass spectrometry that produces both molecular weight (MS) and the MS/MS sequence information 
(MS2 and MS3) as the peptides elute. The large dynamic range of serum protein concentrations 
challenges LC-MS/MS-based serum proteomics workflows and therefore highly abundant proteins such 
as albumin are frequently depleted from samples prior to the analysis, increasing the complexity of 
sample preparation. Thus, this technology is still limited by the number of samples that can be 
analyzed simultaneously, the usual necessity for multistep sample preparation, the coverage that can 
be achieved, and the complexities of data processing [3].  
 LC-MS/MS has been the dominant technology for proteomics until the last decade that saw the 
emergence of high-throughput, reagent-based technologies from companies like Somalogic and Olink. 
The SomaScan technology developed by Somalogic [4] uses DNA-based aptamer reagents called 
somamers that bind to specific proteins in a sample, without the need for complex sample preparation 
and depletion of albumin in blood serum. The key innovation is to use the hybridization of somamers 
to the proteins present in the sample to convert the problem of measuring protein abundance into 
DNA sequencing of the reagents that can be done efficiently by using DNA arrays.  The technology is 
high-throughput, and the latest platform includes reagents to detect more than 11,000 human 
proteins. The proximity-extension assay technology developed by Olink uses matched pairs antibodies 
labelled with oligonucleotides barcodes that bind to the proteins in a sample to measure protein 
abundance. The Somalogic technology has a much more comprehensive coverage than the proximity-
extension assay technology developed by Olink that is limited by using antibodies, or mass 
spectrometry [5] based proteomics that is challenged by the wide dynamic range of protein 
abundances in the target. However, the specificity of many somamers is difficult to validate, and the 
concordance of proteomics results that use different approaches can be low [6, 7]. Unlike LC-MS/MS, 
the Somalogic and Olink techniques cannot provide the information necessary to identify novel 
proteins or to determine post-translational modifications. Thus, a combination of multiple proteomic 
technologies has advantages in terms of throughput, cost, and information content. 
 In the last few years, a variety of proteomics technologies have propelled the discovery of 
biomarkers of healthy aging and longevity [8–10], using LC-MS/MS [11] and Somalogic [8, 10, 12]. We 
used a Somalogic platform targeting approximately 5000 proteins to generate a serum protein 
signature of centenarians that we validated in independent studies that used the same technology 
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[13]. We set out here to validate and possibly expand the results by profiling the serum proteome of a 
subset of individuals included in the original study using LC-MS/MS. 
 
Methods 
 
Samples 

Proteomics profiling was performed on serum samples from blood obtained from 50 
participants of the New England Centenarian Study (NECS) that included three age cohorts: 
centenarians, centenarians’ offspring, and subjects without familial longevity [14]. For mass 
spectrometry, the 50 samples were selected from the original pilot study of 224 subjects that had been 
previously profiled with SomaScan [15] to uniformly cover an age range 50 to 100 years (Table 1). The 
LC-MS/MS analyses used 10 tandem mass tags (TMT); samples were profiled in five pools of ten 
samples each (plus an 11th channel containing the mixed 10 serum samples for normalization), and 
each pool was run in triplicate, resulting in a total of 150 sample profiles and 15 mixed sample profiles 
across 15 LC-MS/MS runs. Whole blood RNA sequencing transcriptomic and genotype data was 
obtained from the Long Life Family Study (LLFS), a family-based study of healthy aging and longevity 
[16]. These data include complete transcriptomic and genotypic profiles of 1,377 subjects. These 
subjects covered an age range of 24 to 107 years with a mean age of 69.1 years. Transcriptomic 
profiling was performed in 30 separate batches, with the number of subjects profiled per batch ranging 
from 23 to 82. 
 
Mass Spectrometry Profiling 

Full details of the sample preparation and the LC-MS/MS analyses are included in the 
supplemental material. Briefly, serum samples were subject to depletion of the top 12 most abundant 
serum proteins followed by trypsin/LysC digestion, and TMT labeling performed according to the 
manufacturer’s protocol. Peptide pools were analyzed on an Orbitrap Fusion Lumos Tribrid mass 
spectrometer (Thermo Scientific) interfaced to an M class nanoUPLC (Waters) via a TriVersa NanoMate 
nanoESI source (Advion). Peptide molecular weights were determined in the MS1 mode, and data 
dependent analyses were used to generate MS2 and MS3 spectra because acquisition of MS3 data 
minimizes interference from co-eluting components and thus increases the accuracy of quantification. 
 
Processing of Mass Spectrometry Data 

Peptide quantification of raw mass spectrometry data was performed using MaxQuant 1.6.17 
[17] using search parameters detailed in the supplemental material. A database consisting of reviewed 
protein sequences from the Uniprot Homo sapiens database, accession ID UP000005640, (downloaded 
Sept. 29, 2019), was used for all searches. Filtration criteria for protein matches included 1% false 
discovery rate, and ≥ 1 unique peptide resulting in a filtered set of 11,584 peptides across 1,473 
proteins. Following peptide quantification, we removed 461 peptides associated with 12 depleted 
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proteins with gene symbols: ALBU, APOA1, APOA2, CRP, A1AG1, A1AG2, A1AT, A2MG, FIB, HPT, IGH, 
TRFE. Next, we updated Uniprot IDs and mapped gene symbols using Uniprot’s “ID mapping” tool 
(https://www.uniprot.org/id-mapping) (performed on September 20, 2022), and removed a single 
peptide associated with Uniprot identifiers S4R460, which had been removed from the Uniprot 
database, resulting in 11,122 peptides assigned across 1,450 proteins. 

We further filtered the peptides based on missingness, defined as having either a measured 
value of 0 or failure to be identified. First, for each peptide, we checked for association between 
missingness and age cohort using logistic regression adjusting for year-of-collection and gender that 
could suggest an informative missing data mechanism. To account for biological and technical 
variability, we used generalized estimating equations (GEE) using the geepack (v1.3.4) R package and a 
Bonferroni corrected p-value less than 0.05 for statistical significance. This analysis did not identify any 
associations between missingness and age cohort.   

Next, we removed peptides with a high missingness rate, based on any of the following criteria: 
• Missingness in at least 20% of profiles, i.e., 30 out of 150 
• Missingness in at least 20% of batches, i.e. 3 out of 15 
• Missingness in at least 20% of pools, i.e. 1 out of 5. 

Of the 11,122 assigned peptides, 7,726 were removed based on high missingness criteria, resulting in 
2,653 peptides across 398 proteins for subsequent analyses. 
 We obtained aggregated measurements of protein expression by summing measured values of 
peptides annotated to the same protein. Prior to the aggregation, missing peptide values were 
imputed by drawing from a uniform distribution with a range of 0 to the minimum peptide 
measurement of each batch. Each profile was then normalized by dividing their expression profiles by 
their respective 10% trimmed mean, followed by a log2-transformation. Finally, the normalized profiles 
were batch corrected to reduce the impact of technical variability using ComBat (v3.42.0) [18]. 
 
Analysis of Mass Spectrometry Data 

For mass spectrometry data, we evaluated the differences in the mean of the log2-protein 
expression between the three age cohorts –centenarians, centenarians’ offspring and subjects without 
familial longevity— using  linear regression adjusting for year-of-collection and gender. We used GEE to 
account for within-sample variability of each triplicate, and we assessed the global differences 
between age cohorts using the log-likelihood ratio chi-square tests with 2 degrees of freedom. P-values 
were corrected for multiple hypothesis testing using the Benjamini-Hochberg False Discovery Rate 
(FDR) correction[19].  

 
Processing of SomaScan Data 

The SomaScan data included in Sebastiani et al. (2021)  [13] comprised 4,783 aptamers 
mapping to 4,116 proteins. We updated the aptamer protein annotations from SomaLogic version 3.0 
to 4.1, removing 147 aptamers no longer included in more recent versions. Consistent with the mass 
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spectrometry analysis, we updated Uniprot IDs and mapped gene symbols using Uniprot’s “ID 
mapping” tool (performed on September 20, 2022), further removing 233 aptamers mapping to mouse 
protein, Q99LC4, and updating an additional 36 aptamers. The filtered data comprised 4,403 aptamers 
in 3,887 proteins. Updated SomaScan aptamer assignments to Uniprot identifiers are given in 
Supplemental Table S1. A total of 266 proteins (353 aptamers) were shared across with the processed 
mass spectrometry data, 3,621 proteins (4,050 aptamers) were detected only in the SomaScan data, 
and 132 proteins were detected only in the mass spectrometry data. 

 
Analysis of SomaScan Data 

We re-analyzed the subset of SomaScan data comprising the same 50 subjects profiled with 
mass spectrometry following the same procedure as the published SomaScan study [15]. Briefly, 
processed SomaScan measurements were first log2-transformed, and aptamer-specific outlier 
quantities were set to missing, based on values beyond three standard deviations of the 5% trimmed-
mean. We next analyzed the differences in the mean of the log2-protein expression between 
centenarians, centenarians’ offspring and subjects without familial longevity using linear regression 
with the same model formulation and tested for global differences between age cohorts with ANOVA 
F-statistic testing on 2 and 45 degrees of freedom. Additionally, we re-performed multiple testing 
correction using the Benjamini-Hochberg False Discovery Rate (FDR) correction [19].  
 
Identification of conserved proteins associated with extreme old age 
 To identify proteins for which statistical associations between expression and age cohorts was 
conserved across the mass spectrometry and published SomaScan studies we applied the adjusted 
maximum p-value conserved (AdjMaxP) association method to pairs of differential results of proteins 
shared across the mass spectrometry-based and SomaScan platforms [20]. Briefly, this method 
aggregates the nominal p-values of statistical results for shared features (proteins in this case) across 
studies to a single statistical test based on the maximum p-value from each feature-level series of 
tests, while accounting for inter-study dependencies arising from shared samples across studies. In 
cases where multiple aptamers were annotated to the same protein, we allowed individual mass 
spectrometry proteins to be paired with each multiple SomaScan aptamers result, resulting in 353 
shared feature pairs. Through the evaluation of the inter-study dependence, the mass spectrometry 
and published SomaScan of these shared features constituted 1.77 effective studies rather than 2.00 
studies if the data were independent. For multiple hypothesis correction, we considered a total of 
4,535 features, including the 132 proteins that were only presented in the mass spectrometry data, 
4,050 aptamers that were annotated to proteins available only in the SomaScan data, and the 353 
shared feature pairs. The nominal p-values from the respective study of these 4,535 features were 
included in FDR correction of the 353 AdjMaxP p-values. 

We further evaluated their conservation across platforms based on the consistency of 
directions of differences between centenarians and either offspring or controls, with fully conserved 
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proteins demonstrating consistency of both comparisons between centenarians and control and 
centenarians and offspring, and partially conserved proteins demonstrating consistency for only one of 
the two comparisons. For partial conservation, the direction of effect was assigned based on the 
conserved comparison. 
 
RNA sequencing profiling 

Total RNA was extracted from PAXgene tubes using the PAXgene blood miRNA kit (Qiagen Inc.) 
on the QIAcube (Qiagen Inc.). RNA concentration and integrity were assessed using the Agilent 4200 
Tapestation. At the McDonnell Genome Institute (MGI) at Washington University, analysis against the 
sequencing library was performed with 500 ng to 1 μg of total RNA. Ribosomal RNA was blocked using 
FastSelect reagents (Qiagen Inc.) during cDNA synthesis. RNA was fragmented in reverse transcriptase 
buffer with FastSelect reagent and heating to 94 degrees for 5 minutes, 75 degrees for 2 minutes, 70 
degrees for 2 minutes, 65 degrees for 2 minutes, 60 degrees for 2 minutes, 55 degrees for 2 minutes, 37 
degrees for 5 minutes, 25 degrees for 5 minutes. mRNA was reverse transcribed to yield cDNA using 
SuperScript III RT enzyme (Life Technologies, per manufacturer’s instructions) and random hexamers. A 
second strand reaction was performed to yield ds-cDNA.  cDNA was blunt ended, had an A base added 
to the 3' ends, and then had Illumina sequ’ncing adapters ligated to the ends. Ligated fragments were 
then amplified for 15 cycles using primers incorporating unique dual index tags. Fragments were 
sequenced on an Illumina NovaSeq-6000 using paired end reads extending 150 bases. Basecalls and 
demultiplexing were performed with Illumina’s bcl2fastq software and a custom Python demultiplexing 
program with a maximum of one mismatch in the indexing read. After sequencing, reads were aligned 
to the human genome sequence GRCh38 with GENCODE annotations by using STAR [21]. 

 
Processing of transcriptomic data 

The LLFS transcriptomic profiling data included 1,377 individuals aged between 24 and 107 
years and 60,649 transcripts. We removed low quality samples, based on intergenic reads percentage > 
8% and possible samples swap based on gender mismatch, resulting in the removal of 29 profiles. Raw 
read counts were then normalized using DESeq2 [22], followed by log2-transformation. Finally, we 
removed lowly expressed transcripts with at least 10 counts per million in fewer than 3% of samples. 
The final filtered data set comprised 1,348 subjects and 11,173 genes.  
 
Analysis of transcriptomic data 

We examined the effect of age at blood draw on each transcript levels by using a linear mixed-
effect model, in which the transcript data was the dependent variable, age was the main predictor, and 
additional covariates included gender, education level, enrollment site, sequencing batch, percentage 
of intergenic reads, and the first four genome-wide principal components calculated from genetic data 
to adjust for genetic ancestry.  To account for relatedness, the model included a random intercept with 
variance covariance matrix proportional to the genetic relation matrix.  Genome-wide principal 
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components and the genetic relation matrix were estimated from whole genome sequence data using 
the R/3.6.0 packages PC-Relate and PC-Air following the method by Conomos et al [23], using the 
GENESIS R package (v2.6.0) [24].Full details of the genetic data and the modeling approach are 
reported by Gurinovich et al [25]. Modelling was performed on 1,346 individuals with complete 
transcriptome, genotype, and covariate data. P-values were corrected for multiple hypothesis testing 
using the Benjamini-Hochberg (FDR) correction [19]. 
 
Functional analysis of protein signatures 
 We performed functional analysis of protein signatures with hypergeometric test-based 
enrichment analysis of functionally annotated protein sets, as well as annotation of protein-protein 
interactions. Enrichment analysis was performed using the hypeR R package (v1.10.0) [26] using as 
background the total number of proteins across the mass spectrometry and SomaScan data, i.e. 4,019 
proteins. Signatures were tested for over-representation of protein sets from Gene Ontology 
Molecular Function [27, 28] and Reactome [29] obtained from the mSigDB (v7.5.1)[30]. Prior to 
running hypeR, mSigDB gene sets were converted to Uniprot identifiers using Uniprot’s “ID mapping” 
tool (performed on October 15, 2022). Annotation of protein-protein interactions was performed by 
querying Uniprot identifiers with STRING database (v11.4) [31]. 
 
Results 
 
Cross platform signatures of extreme old age-associated proteins 

In our analyses, we sought to identify serum proteins that were associated with extreme old 
age in the two proteomics platforms: mass spectrometry and SomaScan array. Our data included 
serum protein profiles of 50 NECS participants that were measured by both platforms, and our analysis 
evaluated global differences in the mean expression between three age-related cohorts: centenarians, 
centenarians’ offspring (offspring) and subjects without familial longevity (controls), comprised of 9, 
17, and 24 subjects (Table 1), respectively. The SomaScan data of 50 NECS participants was a subset of 
the 224 NECS participants profiles included in the proteomics signature of extreme old age previously 
reported [13]. Following pre-processing, the mass spectrometry data quantified 398 proteins, the 
SomaScan data included 3,887 proteins measured by 4,403 aptamers, with 266 proteins shared by 
both platforms linked to 353 SomaScan aptamers. The complete list of proteins, including Uniprot 
identifiers, SomaScan aptamer identifiers, protein symbols, and gene symbols are in Supplemental 
Table S2. 

At 1% FDR statistical significance threshold, our analysis detected only 1 protein, IGFBP2, 
associated with extreme old age in the reduced SomaScan data set, and 44 proteins, including IGFBP2, 
in the mass spectrometry data set (Figure 1A, Table 2, Supplemental Table S2). In contrast, following 
update of aptamer-to-protein annotations, the analysis of the complete SomaScan study with 224 
subjects discovered 1,229 proteins. Of the 266 proteins quantified by both platforms, 33 and 106 
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proteins were discovered as extreme old age markers in the mass spectrometry study and the 
published SomaScan study, respectively, and 23 proteins were discovered across both platforms, 
representing a generally high congruence as indicated by Fisher’s exact test, p-value = 0.0021 (Figure 
1B, Table 2). Accordingly, of the 266 proteins quantified by both platforms, 10 and 83 were only 
discovered by mass spectrometry or the published SomaScan study, respectively. 

To identify proteins for which associations between expression and age-cohorts were 
conserved across the mass spectrometry and the published SomaScan results, we performed inter-
study conservation testing of the 266 proteins quantified by both platforms using the AdjMaxP 
method. From these tests, a total of 53 proteins reached 1% FDR statistical significance (Table 2, 
Supplemental Table S2). Of these 53 proteins, 52 demonstrated full cross-platform conservation based 
on consistent directions of differences between centenarians and either offspring or controls, and 1 
protein, KNG1, demonstrated partial conservation due to consistently higher expression in offspring 
compared to centenarians, but we observed discrepancy in direction of difference between controls 
and centenarians (Figure 2C, Table 2). This set of 53 fully or partially conserved proteins included 25 
proteins that had been previously identified by only one study at 1% FDR statistical significance, 
including 5 and 20 proteins that had been discovered by mass spectrometry or the published 
SomaScan study, respectively, as well as 5 proteins that were not previously identified by either study 
(Figure 1A, Table 2). Moreover, of these 53 proteins, 24 and 29 proteins were assigned as having higher 
expression in offspring/controls or centenarians, respectively (Figure 2D).  

At 5% FDR threshold, an additional of 30 proteins reached statistical significance. However, 
three of these proteins, TGFBI, GAPDH, and DPEP2, did not have consistent patterns of associations 
across platforms (Supplemental Table S2). Of the remaining 27 proteins, 25 demonstrated full 
conservation, and two, F2 and CPN2, demonstrated partial conservation with consistent higher 
expression in either controls or offspring, respectively (Table 3). This additional set of 27 fully or 
partially conserved proteins included 18 proteins that had been previously identified by only one study 
at 1% FDR statistical significance, all of which had been discovered by the published SomaScan study, 
as well as 9 proteins that were not previously identified by either study (Table 3). Moreover, of these 
27 proteins, 12 and 15 were assigned as having higher expression in offspring/controls or centenarians, 
respectively. 
 Finally, the mass spectrometry study identified 16 proteins at 1% FDR statistical significance 
threshold, 11 of which were either not measured by SomaScan and 5 proteins that were measured by 
SomaScan but were not identified by inter-study conservation tests. These 5 proteins that were not 
measured by SomaScan included IGFBP3, PGLYRP, PTPRJ, CFHR1, and SERPINA11 (Figure 1A, Table 4). 
Of these 16 proteins, 8 and 8 were assigned as having higher expression in offspring/controls or 
centenarians, respectively. Given that these 16 proteins were not identified in the published SomaScan 
study [13], either through lack of aptamer targets or failing to reach statistical significance, we included 
them in downstream analyses. 
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Functional analysis results 
 We performed functional annotation of 96 proteins, comprising the 80 proteins identified as 
associated with extreme old age by inter-study conservation analysis, and 16 additional proteins 
identified only by mass spectrometry using overrepresentation-based enrichment analysis. The 
compendium used for annotation including the Gene Ontology Molecular Function [27, 28] and the 
Reactome [29] knowledge bases (Figure 2A, Supplemental Table S3). Although most highly enriched 
categories included proteins assigned as having higher expression in either offspring/controls or 
centenarians, the enrichment of these categories was generally specific to either signature. The 
complement cascade was the only pathway that showed differential enrichment in both signatures and 
included six proteins with higher expression in offspring/controls, FCN3, MASP1, VTN, F2, CPN2, CR2, 
and six proteins with higher expression in centenarians, C9, CFD, CFHR1, C7, CFHR5, CFHR2. 
 Proteins with higher expression in offspring/controls were specifically enriched for functional 
categories related to insulin-like growth factor (IGF) signaling regulation, blood coagulation pathways, 
and endopeptidase regulation. Regulation of IGF transport and uptake by insulin-like growth factor 
binding proteins (IGFBPs) was the most significantly enriched category across all tests, FDR = 3.00E-11, 
and included 14 proteins assigned to this set, highlighted by the presence of IGFs, IGF1 and IGF2, IGFBs, 
IGFBP3 and IGFBP5, and IGFBP acid labile subunit (IGFALS). Moreover, two additional proteins, IGFBP2 
and IGFBP6, demonstrated higher expression in centenarians. Notably, IGFALS and IGFBP2, were the 
most statistically significant proteins identified by cross-platform conservation analysis assigned to 
either cohort set, FDR = 1.78E-32 and 4.11E-13, respectively (Table S2, Figure 1C). Blood coagulation 
pathway results spanned eight functional categories, including four fibrin clot and contact activation 
system, and three platelet activity pathways. Finally, endopeptidase regulator activity related 
pathways spanned five functional categories, and included 12 proteins with higher expression in 
offspring/controls, highlighted by six serine-type endopeptidase inhibitor (SERPIN) proteins, SERPINF2, 
SERPINA4, SERPINA5, SERPINA6, SERPIND1, and SERPINA10. 
 Proteins with higher expression in centenarians were specifically enriched for categories related 
to extracellular matrix (ECM), cell surface, and neutrophil degranulation. Combined, this signature 
includes ten cell surface proteins, including CHL1, MCAM, PLXDC2, B2M, DAG1, LRP1, C7, C9, CD93, 
and ROBO4, and six extracellular matrix proteins, including COMP, TNC, LUM, HSPG2, COL6A3, 
COL18A1. Finally, the neutrophil degranulation category included 11 proteins: CHIT1, CST3, LRG1, GGH, 
LYZ, ALDOA, B2M, CD93, CFD, and HSPA8. (In some cases, the same protein appears in more than one 
of these categories.) Increased activity of genes involved in neutrophil degranulation is consistent with 
the shift from noncytotoxic to cytotoxic immune cells that we observed in in centenarians [32]. 
 Given the extent to which these signature genes reside in functional categories, we sought to 
further explore their functional and physical interactions using the STRING database [31]. The database 
reported a total of 306 total interactions, and 78 physical interactions above at a confidence level 
above 0.4 (Figure 2B, Supplemental Table S4). To gain further insight into the STRING reported 
interactions, as well additional unreported interactions, we performed additional interrogation via 
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Reactome [29] and literature review. This resulted in the characterization of 53 interactions, delineated 
into four categories, binding, activation, inhibition, and proteolysis (Figure 3, Supplemental Table S5). 
 
Comparison with whole blood transcriptomic signatures of aging 

We evaluated the concordance between our 80 protein, conserved serum proteomics signature 
of extreme old age at FDR < 0.05 and an independent whole blood transcriptomics signature of aging 
that we identified using 1346 expression profiles in the LLFS [16]. We identified this transcriptomic 
signature of age based on models with age as a continuous variable. Of 11,173 genes in the processed 
transcriptomics data, expression of 4,916 genes were associated with age at 1% FDR statistical 
significance threshold, with 2,570 and 2,346 genes associated with increased and decreased expression 
with age, respectively. Moreover, the 11,173 genes included 26 genes that encoded proteins included 
in the 80 conserved protein signature, of which 19 and 7 had higher expression in centenarians and 
offspring/control, respectively.  

Of the 19 proteins with higher expression in centenarians, 12 coincided with genes with 
increased expression with age, and demonstrated significant over-representation as indicated by 
Fisher’s exact test, p-value = 0.0002. Alternatively, of the 7 genes with higher expression in 
offspring/control, only 1 coincided with genes with decreased expression with age, yielding non-
significant over-representation, p-value = 0.808. The 12 gene/proteins demonstrating concordant 
higher expression levels associated with age, included ALDOA, B2M, CFD, CST3, LDHA, LRP1, LYZ, OAF, 
PLXDC2, PTGDS, S100A9, and YWHAZ. Functional annotation of these 12 proteins, yielded neutrophil 
degranulation (Reactome) as the only significantly enriched functional category, FDR = 0.036, which 
included six overlapping genes, ALDOA, B2M, CFD, CST3, LYZ, S100A9 (Figure 4). 

To evaluate the general concordances between the features identified by the transcriptomics 
study and the conserved protein signature, we evaluated the correlation between effect sizes across 
platforms for coinciding features of genes and proteins included in the 4,916 gene and 80 protein 
signatures. These included 123 and 1,142 coinciding features between the transcriptomic data and 
each of the mass spectrometry and published SomaScan studies, respectively. Since in proteomics 
studies the direction of effects was measured based on comparing younger cohorts to centenarians, 
we reversed this direction to make these results easily comparable to the transcriptomics signature. 
The full list of results for these features comparing the transcriptomic study compared to mass 
spectrometry and published SomaScan studies are reported in Supplemental Table S6 and 
Supplemental Table S7, respectively. 

The transcriptomics data demonstrated general concordance with both proteomics studies 
based on trends of the direction and scale of age-associated effects (Figure 4). For these features, 
model coefficients comparing mass spectrometry and transcriptomic results were positively correlated 
across both mass spectrometry modeling results comparing centenarians to either offspring or controls 
(Figure 4A), yielding correlation estimates of 0.19 (p-value = 0.035) and 0.16 (p-value = 0.072), 
respectively. Comparisons between SomaScan and transcriptomic yielded complementary results 
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(Figure 4B), with correlation estimates of 0.14 (p-value = 2.1E-6) and 0.15 (p-value = 3.0E-7), 
respectively.  
 
Discussion 
 Identifying robust serum proteomics signatures presents several challenges, particularly in 
terms of specificity, reproducibility, and interpretation of results. Although the SomaScan assay is 
highly regarded for its high coverage and reproducibility[33], non-specific aptamer-to-protein binding 
may lead to false positive results, thereby confounding biological inference [5]. On the other hand, 
mass spectrometry has comparatively low coverage and may exhibit higher technical variability when 
stringent criteria are imposed. Our cross-platform analyses of SomaScan and mass spectrometry assays 
sought to bridge their respective shortcomings and identify highly specific and robust proteomics 
signatures of extreme old age. In total, we characterized 80 proteins as being associated with extreme 
old age based on their conservation across the SomaScan and mass spectrometry studies at 5% FDR 
threshold. These 80 proteins comprised 23 proteins that were identified individually by both platforms, 
38 proteins identified by the published SomaScan study only [15], 5 proteins identified by mass 
spectrometry only, and 14 proteins not identified by either study alone but reached significance based 
on inter-study conservation. Accordingly, these analyses confirm 61 proteins of the published 
SomaScan[15] study, and designate an additional 19 proteins with conserved association of extreme 
old age across the SomaScan and mass spectrometry studies (Table 2, Table 3). Finally, we 
characterized 16 additional proteins, which were only associated with extreme old age in the mass 
spectrometry study, five of which were measured by SomaScan, but were not identified as conserved 
across studies (Table 4).  

These analyses yielded signatures of extreme old age that were highlighted by changes 
associated with numerous pathways, including blood coagulation, IGF signaling, extracellular matrix 
organization (ECM), and complement cascade. However, the interpretation of these results presents 
additional challenges stemming from general caveats of both proteomics and longevity studies. First, 
our proteomics profiles comprised only overall expression of proteins and did not probe the datasets 
for the evidence they may contain related to post-translational changes, which can impact expression 
quantification leading to confounded interpretation of differences between groups. Next, cross-
sectional experiments comparing centenarians and younger cohorts fall short of explicitly identifying 
drivers of longevity, such that our results reflect changes related to both general and healthy aging, as 
well as the effect of being extremely old and close to the end of life. Accordingly, here we attempt to 
contextualize our results based on previous studies of aging, longevity, and disease.  
 
Blood Coagulation. Our analyses highlighted blood coagulation as an important process different in 
centenarians as compared to younger cohorts. The majority of proteins involved in blood coagulation 
were more abundant in younger cohorts. While, intuitively, this would suggest hypocoagulability in the 
centenarian cohort, previous studies have actually reported hypercoagulability in centenarians and 
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aging. However, our findings most likely don’t contradict previous studies, but reflect that overall 
expression of a portion of these proteins may be negatively associated with their post-processing and 
activation. These proteins that were lower in centenarians compared to younger individuals included 
F2 (prothrombin/thrombin), F10, PLG (plasminogen/plasmin), and SERPINF2 (alpha 2-antiplasmin), 
KNG1 (high-molecular-weight kininogen (HMWK)/kinins), KLKB1 (prekallikrein/kallikrein), and F11. A 
previous study of coagulation markers from plasma of centenarians and younger cohorts reported 
significantly higher levels of prothrombin and coagulation factor X in younger controls[34]. However, 
these differences coincided with higher levels of  coagulation activation markers in centenarians, 
including thrombin generation and F10 activation, as well as higher levels of the plasmin-antiplasmin 
complex in centenarians, indicative of elevated fibrin formation[34]. Moreover, plasma kallikrein 
cleaves HMWK to release bradykinin, which is composed of only nine amino acids [35]. Lower HMWK 
and higher kinin levels are associated with age-related diseases, including Alzheimer’s Disease (AD) and 
impaired cognitive function [36–39].  Finally, activated F11 is a component of both thrombin 
generation and the kallikrein-kinin system[40]. Taken together, it is likely our observed higher protein 
expression of coagulation markers in younger cohorts actually coincides with greater coagulation 
activity in the centenarian cohort. 

In addition to SERPINF2, numerous serine protease inhibitors involved in blood coagulation 
were also more highly expressed in younger cohorts, including SERPINA10, SERPIND1, and SERPINA5, 
which collectively inhibit F10 [41], thrombin [42, 43], and kallikrein [44]. Moreover, SERPINA4, 
SERPINA6, and SERPINA10 were also more highly expressed in younger cohorts, while SERPINA11 was 
more highly expressed in centenarians. SERPINs have been previously reported as plasma markers of 
aging, including decreased SERPINF2 expression [45]. However, to our knowledge, associations of the 
other SERPINs with aging and longevity have not been previously reported. 

 
 IGF signaling. Differences in the expression of proteins involved in IGF signaling regulation 
between centenarians and younger cohorts present a comprehensive depiction of this pathway that is 
consistent with previous studies of longevity and aging. First, all protein components of 
IGF/IGFBP/IGFALS ternary complex, including IGFALS, IGFBP3, IGFBP5, IGF2, and IGF1, were more 
highly expressed in younger cohorts, indicating that they have an elevated activity of this complex for 
regulation IGF1 and IGF2 activity. Other studies have reported that all of these proteins decrease with 
ages [46–49]. Alternatively, non-ternary complex components IGFBPs, IGFBP2 and IGFBP6 were more 
highly expressed in centenarians. Elevated IGFBP2 has been shown to be associated with AD and 
impaired cognitive function [50–52], and circulating IGFBP6 increases with age[53]. Moreover, our 
analyses identified three proteins involved in proteolysis of the IGF/IGFBP/IGFALS ternary complex, 
MMP2, PLG, and F2 [29], of which only MMP2 was more highly expressed in centenarians; this result 
also supports the findings of a previous study of long-lived individuals [54]. Considering that the 
assayed PLG and F2 expression may be negatively associated with their overall activity [34], it is likely 
that these observations reflect elevated IGF/IGFBP/IGFALS ternary complex proteolysis in 
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centenarians, leading to the decreased levels of its components we observed in this study. Taken 
together, these results put forward a broad depiction of age associated IGF signaling regulation, 
harmonizing those reported by previous studies. 
 
 ECM organization. Proteins that were more highly expressed in centenarians were mostly 
enriched for  ECM organization processes. Aging is associated with reduced ECM integrity through 
collagen fragmentation and crosslinking, glycation, and accumulation of aggregation-prone peptides 
such as amyloid beta[55]. Our cross-platform analysis validated the higher expression of two collagens, 
COL18A1 and COL6A3, and the collagen degrading enzyme, MMP2 [56], in centenarians. In models of 
C. elegans, induced overexpression of collagens was shown to increase lifespan [57], however 
associations between COL18A1 and COL6A3 expression with human aging and longevity have not been 
previously detected. MMP2 has been shown to be elevated in individuals greater than 94 years old, but 
remains relatively stable throughout earlier life stages, suggesting a role in healthy aging [54]. 
Circulating endostatin produced by the cleavage of COL18A1 is positively associated with several age-
associated diseases, including chronic obstructive pulmonary disease [58] and myocardial infarction 
[59]. Interestingly, endostatin inhibits MMP2 activity [60], suggesting that intact COL18A1 is a marker 
of healthy aging. Alternatively, in addition to the IGF/IGFBP/IGFALS ternary complex, MMP2 can cleave 
COL6A3 to generate endotrophin [61], which is associated with onset of obesity-related metabolic 
disorders [62]. However, MMP2 is more likely to capture intact COL6A3, and cannot characterize its 
cleavage activity. Taken together, these results illustrate the overall complexity of protein interactions 
involved in ECM organization and suggest a protective role of collagen activity for healthy aging in 
centenarians. 
 
 Complement System. The complement system, which is part of innate immunity, was the only 
pathway to exhibit protein expression changes in both directions when comparing cohorts and 
centenarians. Complement system overactivation has been implicated in numerous age-associated 
diseases, including autoimmune and cognitive disorders [63]. We identified proteins involved in 
complement system activation, including some more abundant in centenarians and some more 
abundant in offspring/controls. However, these two groups of proteins generally comprise different 
components of this system. Proteins with higher expression in younger cohorts included lectin 
complement pathway components, MASP1 and FCN3, while protein more highly expressed in 
centenarians included alternative pathway components, CFD and alternative pathway complement 
factor H-related (FHR) proteins, CFHR1, CFHR2, and CFHR5, as well as membrane attack complex 
proteins, C7 and C9 [64, 65]. Given that the membrane attack complex is the endpoint of the 
complement system regardless of the initiating pathway, these results suggest an overall higher 
activation of the complement system in centenarians. Interestingly, previous studies have 
demonstrated opposite relationships of complement system activity for aging and longevity, however 
these reports have focused on complement factor, C3, which we did not identify. C3 is positively 
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associated with age [66], but negatively associated with centenarian longevity [67]. Importantly, net C3 
levels are not necessarily indicative of complement system activation, and are more precisely 
measured by the ratio between C3 and activated C3 [68]. Accordingly, these studies do not provide an 
explicit association between aging, longevity and overall complement system activation. Increased 
membrane attack complex levels in the choriocapillaris have been shown to increase with age and are 
associated with age-related macular degeneration (AMD) [69, 70]. 

In addition to broader pathways, our analysis revealed aging pathology-related subsets of 
proteins. Proteins more highly expressed in centenarians included lactate dehydrogenase components 
LDHA that did not reach a significant association in our original report and LDHB, which are marker for 
cell death and organ damage [71]. LDHA and LDHB are important enzymes of pyruvate metabolism and 
degrade pyruvate – a metabolite made from glucose through glycolysis into lactic acid. Higher levels of 
LDHA and LDHB in the centenarian cohort suggest dysregulation of glucose metabolism in extreme old 
age. Proteins more highly expressed in younger cohorts included retinol/RBP4/TTR complex proteins, 
RBP4 and TTR, of which circulating levels are negatively associated with insulin sensitivity [72, 73] and 
positively associated with cardiovascular events in elderly subjects [74, 75]. Accordingly, lower levels of 
RBP4 and TTR in the centenarian cohort indicate that they are potential markers of healthy aging. 

Finally, the comparison between the serum protein signature and the whole blood 
transcriptomic signatures of aging from the LLFS revealed moderate concordance, highlighted by age-
associated changes of six genes involved in neutrophil degranulation, ALDOA, B2M, CFD, CST3, LYZ, 
S100A9. Such moderate concordance in unsurprising, given the key differences between these studies, 
specifically that the serum proteomics studies primarily capture extracellular proteins in blood 
originating from a variety of tissues, while whole blood transcriptomics studies primarily capture 
intracellular transcripts in immune cells. Thus, consistencies between serum proteins and whole blood 
transcripts reflect specific incidences of transcripts from immune cells that are translated to proteins 
and eventually enter extracellular space. Accordingly, neutrophils are highly abundant in blood, 
comprising ~70% of all immune cells [76], and neutrophil degranulation is a main component of their 
immune function [77]. Previous studies have shown age-associated changes in neutrophil function, 
including decreased chemotaxis and phagocytosis with age in adults throughout ages 30-79, but 
increased chemotaxis and phagocytosis in long-lived subjects, ages 90-103 [78]. However, explicit 
associations between neutrophil degranulation and aging have not been previously reported. Finally, 
these findings likely reflect age-associated shifts in immune cell composition, which we have previously 
characterized in a single-cell transcriptomics study of peripheral blood mononuclear cells (PBMCs) in 
centenarians and younger cohorts [32], although neutrophils have multi-lobulated nuclei and are not 
included in PBMC studies. 
 Our serum proteomics signatures of centenarians and younger cohorts strongly demonstrated 
changes to numerous pathways associated with health and aging. These results reflect the changes to 
both general and healthy aging, and likely more reflect the former. As a cross-platform study to 
identify conserved associations between SomaScan and mass spectrometry profiles, we stress the 
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high-confidence of these signatures over those identified by single-platform studies. Accordingly, these 
results shed light on predominant mechanisms driving aging and longevity, thereby serving as roadmap 
for future studies to explore age-related pathology and possible interventions. 
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Tables 
 
Table 1: Cohort subject counts in full dataset and 50-subject subset 
 

 Cohort     
 Centenarian Offspring Control   
Published Data 77 82 65   
50 Sample Subset 9 17 24   
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     Mass Spectrometry Published SomaScan 

Uniprot  
ID 

Gene 
Symbol 

SomaScan 
Aptamer 

Platform 
Hits 

Conserved 
FDR 

 
Log2 Fold Change 
(vs Centenarian)  

Log2 Fold Change 
(vs Centenarian) 

FDR Control Offspring FDR Control Offspring 
P35858 IGFALS 6605-17_3 MS,SSP 1.78E-32 0.00E+00 0.639 0.793 3.08E-18 0.741 0.642 
Q96KN2 CNDP1 5456-59_2 MS,SSP 1.90E-24 0.00E+00 1.065 1.115 7.17E-14 0.825 0.843 
P43652 AFM 4763-31_3 MS,SSP 4.00E-09 7.44E-05 0.479 0.433 7.14E-12 0.309 0.274 
P08697 SERPINF2 3024-18_2 MS,SSP 3.49E-07 8.99E-04 0.247 0.288 7.25E-18 0.515 0.514 
O14791 APOL1 11510-31_3 MS,SSP 1.23E-06 1.63E-03 0.483 0.553 7.95E-06 0.244 0.304 
P00747 PLG 4151-6_2 MS,SSP 2.38E-06 2.22E-03 0.221 0.248 1.44E-04 0.171 0.230 
P00742 F10 4878-3_1 MS,SSP 8.57E-06 4.42E-03 0.253 0.406 2.35E-06 0.286 0.310 
P03952 KLKB1 4152-58_2 MS,SSP 1.50E-05 5.80E-03 0.199 0.308 1.63E-08 0.301 0.317 
P01019 AGT 3484-60_2 MS,SSP 1.65E-05 6.11E-03 0.133 0.331 1.21E-05 0.239 0.316 
P01344 IGF2 6973-111_4 SSP 8.28E-05 1.38E-02 0.338 0.319 2.27E-03 0.111 0.138 
Q76LX8 ADAMTS13 3175-51_5 SSP 1.18E-04 1.65E-02 0.255 0.384 4.79E-04 0.301 0.274 
P00533 EGFR 2677-1_1 SSP 1.19E-04 1.65E-02 0.384 0.424 3.00E-05 0.244 0.234 
P29622 SERPINA4 3449-58_2 SSP 6.43E-04 3.82E-02 0.243 0.227 3.86E-08 0.204 0.167 
P05154 SERPINA5 3389-7_2 SSP 7.78E-04 4.13E-02 0.318 0.221 7.23E-03 0.279 0.171 
P43251 BTD 9269-7_3 SSP 8.00E-04 4.14E-02 0.449 0.551 7.65E-05 0.268 0.327 
P08185 SERPINA6 4785-30_3 SSP 8.80E-04 4.30E-02 0.145 0.266 2.01E-05 0.138 0.155 
P24593 IGFBP5 2685-21_2 SSP 4.09E-03 8.90E-02 0.356 0.003 2.71E-04 0.223 0.166 
P05546 SERPIND1 3316-58_1 MS 9.46E-04 1.83E-04 0.363 0.497 2.23E-02 0.115 0.211 
P02753 RBP4 7831-39_3 MS 1.54E-03 7.87E-06 0.437 0.364 2.91E-02 0.132 0.072 
P19827 ITIH1 7955-195_3 MS 2.54E-03 5.66E-05 0.239 0.309 3.85E-02 0.104 0.096 
P19823 ITIH2 9326-33_3 MS 3.61E-03 1.46E-03 0.242 0.326 4.67E-02 0.107 0.086 
P01042 KNG1 7784-1_3 MS 9.47E-03 1.69E-08 0.172 0.260 7.86E-02 -0.047 0.151 
Q9UK55 SERPINA10 6583-67_3 CO 1.62E-03 5.74E-02 0.177 0.307 2.94E-02 0.083 0.162 
Q9UGM5 FETUB 3367-8_3 CO 6.27E-03 1.81E-02 0.286 0.244 6.25E-02 0.163 0.182 
P18065 IGFBP2 8469-41_3 MS,SSP* 4.11E-13 6.65E-07 -1.061 -1.324 2.96E-17 -0.993 -0.997 
P51884 LUM 13114-50_3 MS,SSP 5.29E-11 7.87E-06 -0.329 -0.412 1.67E-06 -0.282 -0.279 
P12111 COL6A3 11196-31_3 MS,SSP 4.52E-10 2.35E-05 -0.432 -0.360 4.76E-16 -0.426 -0.481 
P24821 TNC 6259-60_3 MS,SSP 4.52E-10 7.87E-06 -0.476 -0.447 6.58E-06 -0.222 -0.306 
P02748 C9 13722-105_3 MS,SSP 5.33E-08 3.03E-04 -0.515 -0.579 2.30E-08 -0.461 -0.397 
Q14118 DAG1 8369-102_3 MS,SSP 9.23E-07 1.47E-03 -0.423 -0.483 1.76E-04 -0.164 -0.182 
Q06033 ITIH3 7145-1_3 MS,SSP 1.21E-06 1.63E-03 -0.459 -0.425 3.27E-06 -0.344 -0.393 
Q07954 LRP1 10699-52_3 MS,SSP 2.85E-06 2.36E-03 -0.324 -0.370 2.24E-06 -0.235 -0.271 
Q12805 EFEMP1 8480-29_3 MS,SSP 5.80E-06 3.49E-03 -0.657 -0.709 7.05E-11 -0.388 -0.378 
Q15848 ADIPOQ 3554-24_1 MS,SSP 2.34E-05 7.20E-03 -0.591 -0.890 4.40E-04 -0.302 -0.466 
P08294 SOD3 8463-2_3 MS,SSP 3.39E-05 8.65E-03 -0.411 -0.555 9.21E-11 -0.349 -0.356 

Q9NQ79 CRTAC1 5632-6_3 MS,SSP 3.40E-05 9.16E-06 -0.462 -0.626 3.60E-03 -0.285 -0.281 
P08253 MMP2 4160-49_1 MS,SSP 1.25E-04 5.62E-03 -0.394 -0.417 7.36E-03 -0.159 -0.275 
Q12841 FSTL1 13112-179_3 MS,SSP 1.50E-04 8.87E-03 -0.244 -0.326 8.11E-03 -0.115 -0.202 
P61626 LYZ 4920-10_1 SSP 1.22E-04 1.65E-02 -0.354 -0.577 1.73E-11 -0.651 -0.658 
Q6UX71 PLXDC2 10576-7_3 SSP 4.01E-04 3.13E-02 -0.317 -0.253 6.31E-06 -0.233 -0.216 
P07195 LDHB 3890-8_2 SSP 5.66E-04 3.64E-02 -0.180 -0.292 1.05E-03 -0.368 -0.252 
P41222 PTGDS 10514-5_3 SSP 8.62E-04 4.29E-02 -0.574 -0.728 2.77E-05 -0.373 -0.393 
P20742 PZP 6580-29_3 SSP 9.34E-04 4.41E-02 -1.446 -0.861 5.20E-03 -0.501 -0.461 
P39060 COL18A1 2201-17_6 SSP 1.53E-03 5.74E-02 -0.241 -0.424 1.37E-09 -0.444 -0.532 
Q99969 RARRES2 3079-62_2 SSP 1.55E-03 5.74E-02 -0.237 -0.360 1.03E-04 -0.198 -0.353 
Q13231 CHIT1 10460-1_3 SSP 1.62E-03 5.74E-02 -1.114 -0.888 3.66E-04 -0.664 -0.497 
P07998 RNASE1 7211-2_3 SSP 2.50E-03 7.33E-02 -0.861 -0.881 8.76E-18 -1.476 -1.621 
P00746 CFD 13678-169_3 SSP 2.67E-03 7.53E-02 -0.341 -0.492 1.50E-05 -0.257 -0.234 
O00533 CHL1 8958-51_3 SSP 6.27E-03 1.11E-01 -0.575 -0.689 4.85E-04 -0.207 -0.186 
P49747 COMP 8043-153_3 CO 1.55E-03 5.74E-02 -0.192 -0.295 2.92E-02 -0.201 -0.209 
P06702 S100A9 5339-49_3 CO 3.49E-03 8.34E-02 -0.960 -0.814 3.64E-02 -0.154 -0.184 
P04075 ALDOA 5864-10_3 CO 5.19E-03 3.88E-02 -0.169 -0.331 5.64E-02 -0.165 -0.169 
P00338 LDHA 9761-89_3 CO 8.47E-03 8.70E-02 -0.352 -0.333 7.41E-02 -0.121 -0.258 

Table 2: Inter-study validated protein signature (FDR < 0.01). The top half of the table shows 
proteins that are decreasing with older age, while the bottom half shows protein increasing at 
older age. Platform hits: SSP=only SomaScan; MS= only mass spectrometry; MS,SSP= both; 
CO=Conserved only 
* Also identified from the 50-sample subset of SomaScan data 
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     Mass Spectrometry Published SomaScan 

Uniprot ID 
Gene 

Symbol 
SomaScan 
Aptamer 

Platform 
Hits 

Conserved 
 FDR 

 
Log2 Fold Change 
(vs Centenarian)  

Log2 Fold Change 
(vs Centenarian) 

FDR Control Offspring FDR Control Offspring 
O75636 FCN3 14077-6_3 SSP 1.67E-02 1.90E-01 0.393 0.292 4.01E-05 0.151 0.145 

Q9UNW1 MINPP1 5586-66_3 SSP 2.40E-02 2.24E-01 0.153 0.134 4.37E-03 0.119 0.108 
P14151 SELL 4831-4_2 SSP 2.71E-02 2.33E-01 0.277 0.255 1.89E-03 0.170 0.202 
O95445 APOM 10445-20_3 SSP 3.96E-02 2.77E-01 0.305 0.299 7.30E-04 0.240 0.255 
P02765 AHSG 3581-53_3 SSP 4.21E-02 2.84E-01 0.123 0.179 3.32E-10 0.297 0.327 
P48740 MASP1 3605-77_4 SSP 4.64E-02 2.95E-01 0.274 0.256 8.85E-16 0.315 0.308 
P00734 F2 4157-2_1 CO 1.40E-02 7.64E-02 0.235 0.284 9.67E-02 0.094 -0.080 
P04004 VTN 8280-238_3 CO 1.65E-02 4.68E-02 0.250 0.332 1.06E-01 0.083 0.040 
P03951 F11 2190-55_1 CO 1.78E-02 1.96E-01 0.103 0.264 2.44E-02 0.114 0.171 
P05019 IGF1 2952-75_2 CO 1.84E-02 1.18E-02 0.797 0.751 1.12E-01 0.146 0.161 
P22792 CPN2 6415-90_3 CO 2.08E-02 3.20E-02 -0.066 0.210 1.20E-01 0.125 0.143 

Q9UHG3 PCYOX1 6431-68_3 CO 3.70E-02 5.74E-02 0.252 0.165 1.63E-01 0.158 0.142 
P01034 CST3 2609-59_2 SSP 1.12E-02 1.53E-01 -0.365 -0.489 6.00E-18 -0.693 -0.756 
P24592 IGFBP6 14088-38_3 SSP 1.16E-02 1.53E-01 -0.295 -0.320 1.80E-16 -0.517 -0.608 
P63104 YWHAZ 5858-6_5 SSP 1.64E-02 1.90E-01 -0.566 -0.520 6.75E-05 -0.312 -0.222 
P61769 B2M 3485-28_2 SSP 2.10E-02 2.11E-01 -0.359 -0.544 6.24E-20 -0.917 -0.981 
P35443 THBS4 3340-53_1 SSP 2.23E-02 2.17E-01 -0.369 -0.354 1.93E-05 -0.362 -0.469 
P04278 SHBG 4929-55_1 SSP 2.34E-02 2.23E-01 -0.407 -0.479 3.77E-03 -0.452 -0.451 

Q8WZ75 ROBO4 9232-1_3 SSP 2.47E-02 2.27E-01 -0.414 -0.421 2.20E-03 -0.296 -0.354 
Q9NPY3 CD93 14136-234_3 SSP 2.75E-02 2.33E-01 -0.331 -0.285 5.62E-03 -0.138 -0.211 
P11142 HSPA8 5903-91_2 SSP 2.87E-02 2.38E-01 -0.474 -0.525 6.67E-04 -0.341 -0.204 
P23142 FBLN1 10819-108_3 SSP 3.14E-02 2.49E-01 -0.441 -0.359 1.41E-05 -0.294 -0.239 
P10645 CHGA 11184-51_3 SSP 3.25E-02 2.51E-01 -0.327 -0.476 6.80E-07 -1.029 -1.166 
Q86UD1 OAF 6414-8_3 SSP 4.47E-02 2.89E-01 -0.195 -0.149 5.26E-04 -0.209 -0.311 
P10643 C7 13731-14_3 CO 1.05E-02 1.49E-01 -0.210 -0.355 7.87E-02 -0.060 -0.164 
Q9BXR6 CFHR5 3666-17_4 CO 2.25E-02 2.02E-01 -0.272 -0.313 1.25E-01 -0.049 -0.132 
Q92820 GGH 9370-69_3 CO 2.56E-02 8.43E-02 -0.335 -0.416 1.34E-01 -0.086 -0.138 

Table 3: Additional inter-study validated protein signature (FDR < 0.05) 
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     Mass Spectrometry Published SomaScan 

Uniprot 
ID 

Gene 
Symbol 

SomaScan 
Aptamer 

Platform 
Hits 

Conserved 
FDR 

 
Log2 Fold Change 
(vs Centenarian)  

Log2 Fold Change 
(vs Centenarian) 

FDR Control Offspring FDR Control Offspring 
P17936 IGFBP3 2571-12_3 MS 2.46E-01 8.59E-07 0.634 0.612 4.49E-01 0.070 0.016 
Q96PD5 PGLYRP2 5601-2_3 MS 8.64E-02 1.98E-03 0.373 0.184 2.59E-01 0.090 0.072 
Q12913 PTPRJ 8250-2_3 MS 2.70E-01 6.90E-03 0.271 0.251 4.74E-01 -0.048 -0.033 
P80108 GPLD1  MS  6.19E-13 0.662 0.624    
P02766 TTR  MS  1.40E-05 0.751 0.685    
P20023 CR2  MS  2.22E-03 0.640 0.397    
P02774 GC  MS  2.46E-03 0.144 0.244    
P12955 PEPD  MS  9.92E-03 0.241 0.314    
Q03591 CFHR1 5982-50_3 MS 4.24E-01 3.16E-04 -0.694 -0.757 6.11E-01 -0.051 -0.012 
Q86U17 SERPINA11 9002-36_3 MS 7.26E-02 8.30E-03 -0.363 -0.333 2.35E-01 -0.088 -0.014 
P36980 CFHR2  MS  6.49E-05 -0.941 -0.997    
O14498 ISLR  MS  9.37E-05 -0.194 -0.355    
P98160 HSPG2  MS  8.56E-04 -0.251 -0.232    
P02750 LRG1  MS  1.26E-03 -0.568 -0.554    
Q16853 AOC3  MS  1.88E-03 -0.285 -0.462    
P43121 MCAM  MS  6.41E-03 -0.346 -0.225    

Table 4: Mass spectrometry only protein signature 
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Figures 
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Figure 1: Inter-study protein signatures comparing centenarians to offspring and unrelated 
controls. 

A. Euler plot of protein signatures detected in the mass spectrometry data set with 50 
subjects (Mass Spec), the SomaScan subsetwith the same 50 subjects (SomaScan 
Subset), and the SomaScan data with 224 participants (Somascan). Numbers in 
parentheses with a “*” denote the proteins that were included in both data sets but 
detected only  in one analysis.   

B. Fisher’s Exact Test results of the intersection between mass spectrometry and 
SomaScan signatures. The diagonal represents the number of significant proteins from 
each analysis that are annotated by the SomaScan assay.  

C. Comparison of log2 fold changes protein expression differences of controls and 
offspring to centenarians from mass spectrometry and SomaScan studies across their 
266 shared proteins. 

D. Log2 fold changes protein expression differences inter-study conserved proteins, 
including each mass spectrometry result and SomaScan aptamer. 

All protein signature results shown were idenRfied using an FDR cutoff of 0.01. The full set of 
analysis results are reported in Supplementary Table S2. 
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Figure 2: Protein interaction and functional analysis results 
These results reflect analyses of 96 protein signature of proteins with conserved (FDR values < 
0.05) and mass spectrometry-only discovered proteins (FDR < 0.01). 

A. Overrepresentation-based enrichment analysis comparing Gene Ontology Functional 
Terms and Reactome pathways to three protein lists: All 96 proteins (All), 44 proteins 
with higher expression in offspring and controls (Up in Off./Cont.), and 52 proteins with 
higher expression in centenarians (Up in Centenarians). Additional information for these 
results, including term source, p-values, set sizes, and set members are reported in 
Supplementary Table S3. 

B. STRING database annotated protein physical and functional interactions. The full list of 
interaction pairs is reported in Supplementary Table S4.  
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Figure 3: Summary of literature and Reactome database confirmed protein physical 
interac=ons 
AddiRonal informaRon, including descripRons of interacRon and sources can be found in 
Supplementary Table S5. 
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Figure 4: Comparison of mass spectrometry proteomic and LLFS transcriptomic results 
Comparison of log2 fold changes from proteomic studies and LLFS gene expression models 
features characterized by either proteomic conservaRon analysis or transcriptomic analyses that 
are mappable across plaaorms. Proteomic results reflect differences between either offspring 
(led) or controls (right) to centenarian cohorts. LLFS transcriptomic results reflect age as a 
conRnuous variable, i.e. 1-year age differences. Proteins/genes annotated to the neutrophil 
degranulaRon pathway are highlighted in bold. 
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A. Comparison of the mass spectrometry study and LLFS gene expression features. The 
plots comprise 123 coinciding protein:gene pairs. The full set of results for these 
features is reported in Supplemental Table S6. 

B. Comparison of the published SomaScan signature and LLFS gene expression features. 
The plots comprise 1,142 coinciding protein:gene pairs. The full set of results for these 
features is reported in Supplemental Table S7. 
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