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Abstract

In previous work we used a Somalogic platform targeting approximately 5000 proteins to generate a
serum protein signature of centenarians that we validated in independent studies that used the same
technology. We set here to validate and possibly expand the results by profiling the serum proteome of
a subset of individuals included in the original study using liquid chromatography tandem mass
spectrometry (LC-MS/MS). Following pre-processing, the LC-MS/MS data provided quantification of
398 proteins, with only 266 proteins shared by both platforms. At 1% FDR statistical significance
threshold, the analysis of LC-MS/MS data detected 44 proteins associated with extreme old age,
including 23 of the original analysis. To identify proteins for which associations between expression
and extreme-old age were conserved across platforms, we performed inter-study conservation testing
of the 266 proteins quantified by both platforms using a method that accounts for the correlation
between the results. From these tests, a total of 80 proteins reached 5% FDR statistical significance,
and 26 of these proteins had concordant pattern of gene expression in whole blood. This signature of
80 proteins points to blood coagulation, IGF signaling, extracellular matrix (ECM) organization, and
complement cascade as important pathways whose protein level changes provide evidence for age-
related adjustments that distinguish centenarians from younger individuals.
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Introduction

Proteins in blood serum, cerebrospinal fluid, and urine have proven to be potent diagnostic and
prognostic biomarkers of many diseases [1], in addition to their providing insights into the biological
mechanisms underlying diseases. Progress in this area has relied on the increasingly sophisticated
proteomics technology that has seen major advances in the past few years. In bottom-up analysis, the
approach to liquid chromatography tandem mass spectrometry (LC-MS/MS) that has dominated the
field for decades [2], proteins are first digested into peptides that are then separated by one or more
chromatographic steps based on properties such as pl and hydrophobicity and analyzed via online
mass spectrometry that produces both molecular weight (MS) and the MS/MS sequence information
(MS2 and MS3) as the peptides elute. The large dynamic range of serum protein concentrations
challenges LC-MS/MS-based serum proteomics workflows and therefore highly abundant proteins such
as albumin are frequently depleted from samples prior to the analysis, increasing the complexity of
sample preparation. Thus, this technology is still limited by the number of samples that can be
analyzed simultaneously, the usual necessity for multistep sample preparation, the coverage that can
be achieved, and the complexities of data processing [3].

LC-MS/MS has been the dominant technology for proteomics until the last decade that saw the
emergence of high-throughput, reagent-based technologies from companies like Somalogic and Olink.
The SomaScan technology developed by Somalogic [4] uses DNA-based aptamer reagents called
somamers that bind to specific proteins in a sample, without the need for complex sample preparation
and depletion of albumin in blood serum. The key innovation is to use the hybridization of somamers
to the proteins present in the sample to convert the problem of measuring protein abundance into
DNA sequencing of the reagents that can be done efficiently by using DNA arrays. The technology is
high-throughput, and the latest platform includes reagents to detect more than 11,000 human
proteins. The proximity-extension assay technology developed by Olink uses matched pairs antibodies
labelled with oligonucleotides barcodes that bind to the proteins in a sample to measure protein
abundance. The Somalogic technology has a much more comprehensive coverage than the proximity-
extension assay technology developed by Olink that is limited by using antibodies, or mass
spectrometry [5] based proteomics that is challenged by the wide dynamic range of protein
abundances in the target. However, the specificity of many somamers is difficult to validate, and the
concordance of proteomics results that use different approaches can be low [6, 7]. Unlike LC-MS/MS,
the Somalogic and Olink techniques cannot provide the information necessary to identify novel
proteins or to determine post-translational modifications. Thus, a combination of multiple proteomic
technologies has advantages in terms of throughput, cost, and information content.

In the last few years, a variety of proteomics technologies have propelled the discovery of
biomarkers of healthy aging and longevity [8—10], using LC-MS/MS [11] and Somalogic [8, 10, 12]. We
used a Somalogic platform targeting approximately 5000 proteins to generate a serum protein
signature of centenarians that we validated in independent studies that used the same technology
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[13]. We set out here to validate and possibly expand the results by profiling the serum proteome of a
subset of individuals included in the original study using LC-MS/MS.

Methods

Samples

Proteomics profiling was performed on serum samples from blood obtained from 50
participants of the New England Centenarian Study (NECS) that included three age cohorts:
centenarians, centenarians’ offspring, and subjects without familial longevity [14]. For mass
spectrometry, the 50 samples were selected from the original pilot study of 224 subjects that had been
previously profiled with SomaScan [15] to uniformly cover an age range 50 to 100 years (Table 1). The
LC-MS/MS analyses used 10 tandem mass tags (TMT); samples were profiled in five pools of ten
samples each (plus an 11* channel containing the mixed 10 serum samples for normalization), and
each pool was run in triplicate, resulting in a total of 150 sample profiles and 15 mixed sample profiles
across 15 LC-MS/MS runs. Whole blood RNA sequencing transcriptomic and genotype data was
obtained from the Long Life Family Study (LLFS), a family-based study of healthy aging and longevity
[16]. These data include complete transcriptomic and genotypic profiles of 1,377 subjects. These
subjects covered an age range of 24 to 107 years with a mean age of 69.1 years. Transcriptomic
profiling was performed in 30 separate batches, with the number of subjects profiled per batch ranging
from 23 to 82.

Mass Spectrometry Profiling

Full details of the sample preparation and the LC-MS/MS analyses are included in the
supplemental material. Briefly, serum samples were subject to depletion of the top 12 most abundant
serum proteins followed by trypsin/LysC digestion, and TMT labeling performed according to the
manufacturer’s protocol. Peptide pools were analyzed on an Orbitrap Fusion Lumos Tribrid mass
spectrometer (Thermo Scientific) interfaced to an M class nanoUPLC (Waters) via a TriVersa NanoMate
nanoESI source (Advion). Peptide molecular weights were determined in the MS1 mode, and data
dependent analyses were used to generate MS2 and MS3 spectra because acquisition of MS3 data
minimizes interference from co-eluting components and thus increases the accuracy of quantification.

Processing of Mass Spectrometry Data

Peptide quantification of raw mass spectrometry data was performed using MaxQuant 1.6.17
[17] using search parameters detailed in the supplemental material. A database consisting of reviewed
protein sequences from the Uniprot Homo sapiens database, accession ID UP000005640, (downloaded
Sept. 29, 2019), was used for all searches. Filtration criteria for protein matches included 1% false
discovery rate, and > 1 unique peptide resulting in a filtered set of 11,584 peptides across 1,473
proteins. Following peptide quantification, we removed 461 peptides associated with 12 depleted
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proteins with gene symbols: ALBU, APOA1, APOA2, CRP, A1AG1, A1AG2, A1AT, A2MG, FIB, HPT, IGH,
TRFE. Next, we updated Uniprot IDs and mapped gene symbols using Uniprot’s “ID mapping” tool
(https://www.uniprot.org/id-mapping) (performed on September 20, 2022), and removed a single

peptide associated with Uniprot identifiers S4R460, which had been removed from the Uniprot
database, resulting in 11,122 peptides assigned across 1,450 proteins.

We further filtered the peptides based on missingness, defined as having either a measured
value of 0 or failure to be identified. First, for each peptide, we checked for association between
missingness and age cohort using logistic regression adjusting for year-of-collection and gender that
could suggest an informative missing data mechanism. To account for biological and technical
variability, we used generalized estimating equations (GEE) using the geepack (v1.3.4) R package and a
Bonferroni corrected p-value less than 0.05 for statistical significance. This analysis did not identify any
associations between missingness and age cohort.

Next, we removed peptides with a high missingness rate, based on any of the following criteria:

e Missingness in at least 20% of profiles, i.e., 30 out of 150

e Missingness in at least 20% of batches, i.e. 3 out of 15

e Missingness in at least 20% of pools, i.e. 1 out of 5.

Of the 11,122 assigned peptides, 7,726 were removed based on high missingness criteria, resulting in
2,653 peptides across 398 proteins for subsequent analyses.

We obtained aggregated measurements of protein expression by summing measured values of
peptides annotated to the same protein. Prior to the aggregation, missing peptide values were
imputed by drawing from a uniform distribution with a range of 0 to the minimum peptide
measurement of each batch. Each profile was then normalized by dividing their expression profiles by
their respective 10% trimmed mean, followed by a log2-transformation. Finally, the normalized profiles
were batch corrected to reduce the impact of technical variability using ComBat (v3.42.0) [18].

Analysis of Mass Spectrometry Data

For mass spectrometry data, we evaluated the differences in the mean of the log2-protein
expression between the three age cohorts —centenarians, centenarians’ offspring and subjects without
familial longevity— using linear regression adjusting for year-of-collection and gender. We used GEE to
account for within-sample variability of each triplicate, and we assessed the global differences
between age cohorts using the log-likelihood ratio chi-square tests with 2 degrees of freedom. P-values
were corrected for multiple hypothesis testing using the Benjamini-Hochberg False Discovery Rate
(FDR) correction[19].

Processing of SomaScan Data

The SomaScan data included in Sebastiani et al. (2021) [13] comprised 4,783 aptamers
mapping to 4,116 proteins. We updated the aptamer protein annotations from Somalogic version 3.0
to 4.1, removing 147 aptamers no longer included in more recent versions. Consistent with the mass
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spectrometry analysis, we updated Uniprot IDs and mapped gene symbols using Uniprot’s “ID
mapping” tool (performed on September 20, 2022), further removing 233 aptamers mapping to mouse
protein, Q99LC4, and updating an additional 36 aptamers. The filtered data comprised 4,403 aptamers
in 3,887 proteins. Updated SomaScan aptamer assignments to Uniprot identifiers are given in
Supplemental Table S1. A total of 266 proteins (353 aptamers) were shared across with the processed
mass spectrometry data, 3,621 proteins (4,050 aptamers) were detected only in the SomaScan data,
and 132 proteins were detected only in the mass spectrometry data.

Analysis of SomaScan Data

We re-analyzed the subset of SomaScan data comprising the same 50 subjects profiled with
mass spectrometry following the same procedure as the published SomaScan study [15]. Briefly,
processed SomaScan measurements were first log2-transformed, and aptamer-specific outlier
guantities were set to missing, based on values beyond three standard deviations of the 5% trimmed-
mean. We next analyzed the differences in the mean of the log2-protein expression between
centenarians, centenarians’ offspring and subjects without familial longevity using linear regression
with the same model formulation and tested for global differences between age cohorts with ANOVA
F-statistic testing on 2 and 45 degrees of freedom. Additionally, we re-performed multiple testing
correction using the Benjamini-Hochberg False Discovery Rate (FDR) correction [19].

Identification of conserved proteins associated with extreme old age

To identify proteins for which statistical associations between expression and age cohorts was
conserved across the mass spectrometry and published SomaScan studies we applied the adjusted
maximum p-value conserved (AdjMaxP) association method to pairs of differential results of proteins
shared across the mass spectrometry-based and SomaScan platforms [20]. Briefly, this method
aggregates the nominal p-values of statistical results for shared features (proteins in this case) across
studies to a single statistical test based on the maximum p-value from each feature-level series of
tests, while accounting for inter-study dependencies arising from shared samples across studies. In
cases where multiple aptamers were annotated to the same protein, we allowed individual mass
spectrometry proteins to be paired with each multiple SomaScan aptamers result, resulting in 353
shared feature pairs. Through the evaluation of the inter-study dependence, the mass spectrometry
and published SomaScan of these shared features constituted 1.77 effective studies rather than 2.00
studies if the data were independent. For multiple hypothesis correction, we considered a total of
4,535 features, including the 132 proteins that were only presented in the mass spectrometry data,
4,050 aptamers that were annotated to proteins available only in the SomaScan data, and the 353
shared feature pairs. The nominal p-values from the respective study of these 4,535 features were
included in FDR correction of the 353 AdjMaxP p-values.

We further evaluated their conservation across platforms based on the consistency of
directions of differences between centenarians and either offspring or controls, with fully conserved
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proteins demonstrating consistency of both comparisons between centenarians and control and
centenarians and offspring, and partially conserved proteins demonstrating consistency for only one of
the two comparisons. For partial conservation, the direction of effect was assigned based on the
conserved comparison.

RNA sequencing profiling

Total RNA was extracted from PAXgene tubes using the PAXgene blood miRNA kit (Qiagen Inc.)
on the QlAcube (Qiagen Inc.). RNA concentration and integrity were assessed using the Agilent 4200
Tapestation. At the McDonnell Genome Institute (MGI) at Washington University, analysis against the
sequencing library was performed with 500 ng to 1 pg of total RNA. Ribosomal RNA was blocked using
FastSelect reagents (Qiagen Inc.) during cDNA synthesis. RNA was fragmented in reverse transcriptase
buffer with FastSelect reagent and heating to 94 degrees for 5 minutes, 75 degrees for 2 minutes, 70
degrees for 2 minutes, 65 degrees for 2 minutes, 60 degrees for 2 minutes, 55 degrees for 2 minutes, 37
degrees for 5 minutes, 25 degrees for 5 minutes. mMRNA was reverse transcribed to yield cDNA using
SuperScript Il RT enzyme (Life Technologies, per manufacturer’s instructions) and random hexamers. A
second strand reaction was performed to yield ds-cDNA. cDNA was blunt ended, had an A base added
to the 3' ends, and then had lllumina sequ’ncing adapters ligated to the ends. Ligated fragments were
then amplified for 15 cycles using primers incorporating unique dual index tags. Fragments were
sequenced on an Illumina NovaSeq-6000 using paired end reads extending 150 bases. Basecalls and
demultiplexing were performed with lllumina’s bcl2fastq software and a custom Python demultiplexing
program with a maximum of one mismatch in the indexing read. After sequencing, reads were aligned
to the human genome sequence GRCh38 with GENCODE annotations by using STAR [21].

Processing of transcriptomic data

The LLFS transcriptomic profiling data included 1,377 individuals aged between 24 and 107
years and 60,649 transcripts. We removed low quality samples, based on intergenic reads percentage >
8% and possible samples swap based on gender mismatch, resulting in the removal of 29 profiles. Raw
read counts were then normalized using DESeq2 [22], followed by log2-transformation. Finally, we
removed lowly expressed transcripts with at least 10 counts per million in fewer than 3% of samples.
The final filtered data set comprised 1,348 subjects and 11,173 genes.

Analysis of transcriptomic data

We examined the effect of age at blood draw on each transcript levels by using a linear mixed-
effect model, in which the transcript data was the dependent variable, age was the main predictor, and
additional covariates included gender, education level, enroliment site, sequencing batch, percentage
of intergenic reads, and the first four genome-wide principal components calculated from genetic data
to adjust for genetic ancestry. To account for relatedness, the model included a random intercept with
variance covariance matrix proportional to the genetic relation matrix. Genome-wide principal
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components and the genetic relation matrix were estimated from whole genome sequence data using
the R/3.6.0 packages PC-Relate and PC-Air following the method by Conomos et al [23], using the
GENESIS R package (v2.6.0) [24].Full details of the genetic data and the modeling approach are
reported by Gurinovich et al [25]. Modelling was performed on 1,346 individuals with complete
transcriptome, genotype, and covariate data. P-values were corrected for multiple hypothesis testing
using the Benjamini-Hochberg (FDR) correction [19].

Functional analysis of protein signatures

We performed functional analysis of protein signatures with hypergeometric test-based
enrichment analysis of functionally annotated protein sets, as well as annotation of protein-protein
interactions. Enrichment analysis was performed using the hypeR R package (v1.10.0) [26] using as
background the total number of proteins across the mass spectrometry and SomaScan data, i.e. 4,019
proteins. Signatures were tested for over-representation of protein sets from Gene Ontology
Molecular Function [27, 28] and Reactome [29] obtained from the mSigDB (v7.5.1)[30]. Prior to
running hypeR, mSigDB gene sets were converted to Uniprot identifiers using Uniprot’s “ID mapping”
tool (performed on October 15, 2022). Annotation of protein-protein interactions was performed by
qguerying Uniprot identifiers with STRING database (v11.4) [31].

Results

Cross platform signatures of extreme old age-associated proteins

In our analyses, we sought to identify serum proteins that were associated with extreme old
age in the two proteomics platforms: mass spectrometry and SomaScan array. Our data included
serum protein profiles of 50 NECS participants that were measured by both platforms, and our analysis
evaluated global differences in the mean expression between three age-related cohorts: centenarians,
centenarians’ offspring (offspring) and subjects without familial longevity (controls), comprised of 9,
17, and 24 subjects (Table 1), respectively. The SomaScan data of 50 NECS participants was a subset of
the 224 NECS participants profiles included in the proteomics signature of extreme old age previously
reported [13]. Following pre-processing, the mass spectrometry data quantified 398 proteins, the
SomaScan data included 3,887 proteins measured by 4,403 aptamers, with 266 proteins shared by
both platforms linked to 353 SomaScan aptamers. The complete list of proteins, including Uniprot
identifiers, SomaScan aptamer identifiers, protein symbols, and gene symbols are in Supplemental
Table S2.

At 1% FDR statistical significance threshold, our analysis detected only 1 protein, IGFBP2,
associated with extreme old age in the reduced SomaScan data set, and 44 proteins, including IGFBP2,
in the mass spectrometry data set (Figure 1A, Table 2, Supplemental Table S2). In contrast, following
update of aptamer-to-protein annotations, the analysis of the complete SomaScan study with 224
subjects discovered 1,229 proteins. Of the 266 proteins quantified by both platforms, 33 and 106
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proteins were discovered as extreme old age markers in the mass spectrometry study and the
published SomaScan study, respectively, and 23 proteins were discovered across both platforms,
representing a generally high congruence as indicated by Fisher’s exact test, p-value = 0.0021 (Figure
1B, Table 2). Accordingly, of the 266 proteins quantified by both platforms, 10 and 83 were only
discovered by mass spectrometry or the published SomaScan study, respectively.

To identify proteins for which associations between expression and age-cohorts were
conserved across the mass spectrometry and the published SomaScan results, we performed inter-
study conservation testing of the 266 proteins quantified by both platforms using the AdjMaxP
method. From these tests, a total of 53 proteins reached 1% FDR statistical significance (Table 2,
Supplemental Table S2). Of these 53 proteins, 52 demonstrated full cross-platform conservation based
on consistent directions of differences between centenarians and either offspring or controls, and 1
protein, KNG1, demonstrated partial conservation due to consistently higher expression in offspring
compared to centenarians, but we observed discrepancy in direction of difference between controls
and centenarians (Figure 2C, Table 2). This set of 53 fully or partially conserved proteins included 25
proteins that had been previously identified by only one study at 1% FDR statistical significance,
including 5 and 20 proteins that had been discovered by mass spectrometry or the published
SomaScan study, respectively, as well as 5 proteins that were not previously identified by either study
(Figure 1A, Table 2). Moreover, of these 53 proteins, 24 and 29 proteins were assigned as having higher
expression in offspring/controls or centenarians, respectively (Figure 2D).

At 5% FDR threshold, an additional of 30 proteins reached statistical significance. However,
three of these proteins, TGFBI, GAPDH, and DPEP2, did not have consistent patterns of associations
across platforms (Supplemental Table S2). Of the remaining 27 proteins, 25 demonstrated full
conservation, and two, F2 and CPN2, demonstrated partial conservation with consistent higher
expression in either controls or offspring, respectively (Table 3). This additional set of 27 fully or
partially conserved proteins included 18 proteins that had been previously identified by only one study
at 1% FDR statistical significance, all of which had been discovered by the published SomaScan study,
as well as 9 proteins that were not previously identified by either study (Table 3). Moreover, of these
27 proteins, 12 and 15 were assigned as having higher expression in offspring/controls or centenarians,
respectively.

Finally, the mass spectrometry study identified 16 proteins at 1% FDR statistical significance
threshold, 11 of which were either not measured by SomaScan and 5 proteins that were measured by
SomaScan but were not identified by inter-study conservation tests. These 5 proteins that were not
measured by SomaScan included IGFBP3, PGLYRP, PTPRJ, CFHR1, and SERPINA11 (Figure 1A, Table 4).
Of these 16 proteins, 8 and 8 were assigned as having higher expression in offspring/controls or
centenarians, respectively. Given that these 16 proteins were not identified in the published SomaScan
study [13], either through lack of aptamer targets or failing to reach statistical significance, we included
them in downstream analyses.
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Functional analysis results

We performed functional annotation of 96 proteins, comprising the 80 proteins identified as
associated with extreme old age by inter-study conservation analysis, and 16 additional proteins
identified only by mass spectrometry using overrepresentation-based enrichment analysis. The
compendium used for annotation including the Gene Ontology Molecular Function [27, 28] and the
Reactome [29] knowledge bases (Figure 2A, Supplemental Table S3). Although most highly enriched
categories included proteins assigned as having higher expression in either offspring/controls or
centenarians, the enrichment of these categories was generally specific to either signature. The
complement cascade was the only pathway that showed differential enrichment in both signatures and
included six proteins with higher expression in offspring/controls, FCN3, MASP1, VTN, F2, CPN2, CR2,
and six proteins with higher expression in centenarians, C9, CFD, CFHR1, C7, CFHR5, CFHR2.

Proteins with higher expression in offspring/controls were specifically enriched for functional
categories related to insulin-like growth factor (IGF) signaling regulation, blood coagulation pathways,
and endopeptidase regulation. Regulation of IGF transport and uptake by insulin-like growth factor
binding proteins (IGFBPs) was the most significantly enriched category across all tests, FDR = 3.00E-11,
and included 14 proteins assigned to this set, highlighted by the presence of IGFs, IGF1 and IGF2, IGFBs,
IGFBP3 and IGFBP5, and IGFBP acid labile subunit (IGFALS). Moreover, two additional proteins, IGFBP2
and IGFBP6, demonstrated higher expression in centenarians. Notably, IGFALS and IGFBP2, were the
most statistically significant proteins identified by cross-platform conservation analysis assigned to
either cohort set, FDR = 1.78E-32 and 4.11E-13, respectively (Table S2, Figure 1C). Blood coagulation
pathway results spanned eight functional categories, including four fibrin clot and contact activation
system, and three platelet activity pathways. Finally, endopeptidase regulator activity related
pathways spanned five functional categories, and included 12 proteins with higher expression in
offspring/controls, highlighted by six serine-type endopeptidase inhibitor (SERPIN) proteins, SERPINF2,
SERPINA4, SERPINAS, SERPINA6, SERPIND1, and SERPINA10.

Proteins with higher expression in centenarians were specifically enriched for categories related
to extracellular matrix (ECM), cell surface, and neutrophil degranulation. Combined, this signature
includes ten cell surface proteins, including CHL1, MCAM, PLXDC2, B2M, DAG1, LRP1, C7, C9, CD93,
and ROBO4, and six extracellular matrix proteins, including COMP, TNC, LUM, HSPG2, COL6A3,
COL18ALl. Finally, the neutrophil degranulation category included 11 proteins: CHIT1, CST3, LRG1, GGH,
LYZ, ALDOA, B2M, CD93, CFD, and HSPAS. (In some cases, the same protein appears in more than one
of these categories.) Increased activity of genes involved in neutrophil degranulation is consistent with
the shift from noncytotoxic to cytotoxic immune cells that we observed in in centenarians [32].

Given the extent to which these signature genes reside in functional categories, we sought to
further explore their functional and physical interactions using the STRING database [31]. The database
reported a total of 306 total interactions, and 78 physical interactions above at a confidence level
above 0.4 (Figure 2B, Supplemental Table S4). To gain further insight into the STRING reported
interactions, as well additional unreported interactions, we performed additional interrogation via
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Reactome [29] and literature review. This resulted in the characterization of 53 interactions, delineated
into four categories, binding, activation, inhibition, and proteolysis (Figure 3, Supplemental Table S5).

Comparison with whole blood transcriptomic signatures of aging

We evaluated the concordance between our 80 protein, conserved serum proteomics signature
of extreme old age at FDR < 0.05 and an independent whole blood transcriptomics signature of aging
that we identified using 1346 expression profiles in the LLFS [16]. We identified this transcriptomic
signature of age based on models with age as a continuous variable. Of 11,173 genes in the processed
transcriptomics data, expression of 4,916 genes were associated with age at 1% FDR statistical
significance threshold, with 2,570 and 2,346 genes associated with increased and decreased expression
with age, respectively. Moreover, the 11,173 genes included 26 genes that encoded proteins included
in the 80 conserved protein signature, of which 19 and 7 had higher expression in centenarians and
offspring/control, respectively.

Of the 19 proteins with higher expression in centenarians, 12 coincided with genes with
increased expression with age, and demonstrated significant over-representation as indicated by
Fisher’s exact test, p-value = 0.0002. Alternatively, of the 7 genes with higher expression in
offspring/control, only 1 coincided with genes with decreased expression with age, yielding non-
significant over-representation, p-value = 0.808. The 12 gene/proteins demonstrating concordant
higher expression levels associated with age, included ALDOA, B2M, CFD, CST3, LDHA, LRP1, LYZ, OAF,
PLXDC2, PTGDS, S100A9, and YWHAZ. Functional annotation of these 12 proteins, yielded neutrophil
degranulation (Reactome) as the only significantly enriched functional category, FDR = 0.036, which
included six overlapping genes, ALDOA, B2M, CFD, CST3, LYZ, S100A9 (Figure 4).

To evaluate the general concordances between the features identified by the transcriptomics
study and the conserved protein signature, we evaluated the correlation between effect sizes across
platforms for coinciding features of genes and proteins included in the 4,916 gene and 80 protein
signatures. These included 123 and 1,142 coinciding features between the transcriptomic data and
each of the mass spectrometry and published SomaScan studies, respectively. Since in proteomics
studies the direction of effects was measured based on comparing younger cohorts to centenarians,
we reversed this direction to make these results easily comparable to the transcriptomics signature.
The full list of results for these features comparing the transcriptomic study compared to mass
spectrometry and published SomaScan studies are reported in Supplemental Table S6 and
Supplemental Table S7, respectively.

The transcriptomics data demonstrated general concordance with both proteomics studies
based on trends of the direction and scale of age-associated effects (Figure 4). For these features,
model coefficients comparing mass spectrometry and transcriptomic results were positively correlated
across both mass spectrometry modeling results comparing centenarians to either offspring or controls
(Figure 4A), yielding correlation estimates of 0.19 (p-value = 0.035) and 0.16 (p-value = 0.072),
respectively. Comparisons between SomaScan and transcriptomic yielded complementary results
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(Figure 4B), with correlation estimates of 0.14 (p-value = 2.1E-6) and 0.15 (p-value = 3.0E-7),
respectively.

Discussion

Identifying robust serum proteomics signatures presents several challenges, particularly in
terms of specificity, reproducibility, and interpretation of results. Although the SomaScan assay is
highly regarded for its high coverage and reproducibility[33], non-specific aptamer-to-protein binding
may lead to false positive results, thereby confounding biological inference [5]. On the other hand,
mass spectrometry has comparatively low coverage and may exhibit higher technical variability when
stringent criteria are imposed. Our cross-platform analyses of SomaScan and mass spectrometry assays
sought to bridge their respective shortcomings and identify highly specific and robust proteomics
signatures of extreme old age. In total, we characterized 80 proteins as being associated with extreme
old age based on their conservation across the SomaScan and mass spectrometry studies at 5% FDR
threshold. These 80 proteins comprised 23 proteins that were identified individually by both platforms,
38 proteins identified by the published SomaScan study only [15], 5 proteins identified by mass
spectrometry only, and 14 proteins not identified by either study alone but reached significance based
on inter-study conservation. Accordingly, these analyses confirm 61 proteins of the published
SomaScan[15] study, and designate an additional 19 proteins with conserved association of extreme
old age across the SomaScan and mass spectrometry studies (Table 2, Table 3). Finally, we
characterized 16 additional proteins, which were only associated with extreme old age in the mass
spectrometry study, five of which were measured by SomaScan, but were not identified as conserved
across studies (Table 4).

These analyses yielded signatures of extreme old age that were highlighted by changes
associated with numerous pathways, including blood coagulation, IGF signaling, extracellular matrix
organization (ECM), and complement cascade. However, the interpretation of these results presents
additional challenges stemming from general caveats of both proteomics and longevity studies. First,
our proteomics profiles comprised only overall expression of proteins and did not probe the datasets
for the evidence they may contain related to post-translational changes, which can impact expression
guantification leading to confounded interpretation of differences between groups. Next, cross-
sectional experiments comparing centenarians and younger cohorts fall short of explicitly identifying
drivers of longevity, such that our results reflect changes related to both general and healthy aging, as
well as the effect of being extremely old and close to the end of life. Accordingly, here we attempt to
contextualize our results based on previous studies of aging, longevity, and disease.

Blood Coagulation. Our analyses highlighted blood coagulation as an important process different in
centenarians as compared to younger cohorts. The majority of proteins involved in blood coagulation
were more abundant in younger cohorts. While, intuitively, this would suggest hypocoagulability in the
centenarian cohort, previous studies have actually reported hypercoagulability in centenarians and
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aging. However, our findings most likely don’t contradict previous studies, but reflect that overall
expression of a portion of these proteins may be negatively associated with their post-processing and
activation. These proteins that were lower in centenarians compared to younger individuals included
F2 (prothrombin/thrombin), F10, PLG (plasminogen/plasmin), and SERPINF2 (alpha 2-antiplasmin),
KNG1 (high-molecular-weight kininogen (HMWK)/kinins), KLKB1 (prekallikrein/kallikrein), and F11. A
previous study of coagulation markers from plasma of centenarians and younger cohorts reported
significantly higher levels of prothrombin and coagulation factor X in younger controls[34]. However,
these differences coincided with higher levels of coagulation activation markers in centenarians,
including thrombin generation and F10 activation, as well as higher levels of the plasmin-antiplasmin
complex in centenarians, indicative of elevated fibrin formation[34]. Moreover, plasma kallikrein
cleaves HMWK to release bradykinin, which is composed of only nine amino acids [35]. Lower HMWK
and higher kinin levels are associated with age-related diseases, including Alzheimer’s Disease (AD) and
impaired cognitive function [36—39]. Finally, activated F11 is a component of both thrombin
generation and the kallikrein-kinin system[40]. Taken together, it is likely our observed higher protein
expression of coagulation markers in younger cohorts actually coincides with greater coagulation
activity in the centenarian cohort.

In addition to SERPINF2, numerous serine protease inhibitors involved in blood coagulation
were also more highly expressed in younger cohorts, including SERPINA10, SERPIND1, and SERPINAS,
which collectively inhibit F10 [41], thrombin [42, 43], and kallikrein [44]. Moreover, SERPINA4,
SERPINAG6, and SERPINA10 were also more highly expressed in younger cohorts, while SERPINA11 was
more highly expressed in centenarians. SERPINs have been previously reported as plasma markers of
aging, including decreased SERPINF2 expression [45]. However, to our knowledge, associations of the
other SERPINs with aging and longevity have not been previously reported.

IGF signaling. Differences in the expression of proteins involved in IGF signaling regulation
between centenarians and younger cohorts present a comprehensive depiction of this pathway that is
consistent with previous studies of longevity and aging. First, all protein components of
IGF/IGFBP/IGFALS ternary complex, including IGFALS, IGFBP3, IGFBP5, IGF2, and IGF1, were more
highly expressed in younger cohorts, indicating that they have an elevated activity of this complex for
regulation IGF1 and IGF2 activity. Other studies have reported that all of these proteins decrease with
ages [46—49]. Alternatively, non-ternary complex components IGFBPs, IGFBP2 and IGFBP6 were more
highly expressed in centenarians. Elevated IGFBP2 has been shown to be associated with AD and
impaired cognitive function [50-52], and circulating IGFBP6 increases with age[53]. Moreover, our
analyses identified three proteins involved in proteolysis of the IGF/IGFBP/IGFALS ternary complex,
MMP2, PLG, and F2 [29], of which only MMP2 was more highly expressed in centenarians; this result
also supports the findings of a previous study of long-lived individuals [54]. Considering that the
assayed PLG and F2 expression may be negatively associated with their overall activity [34], it is likely
that these observations reflect elevated IGF/IGFBP/IGFALS ternary complex proteolysis in
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centenarians, leading to the decreased levels of its components we observed in this study. Taken
together, these results put forward a broad depiction of age associated IGF signaling regulation,
harmonizing those reported by previous studies.

ECM organization. Proteins that were more highly expressed in centenarians were mostly
enriched for ECM organization processes. Aging is associated with reduced ECM integrity through
collagen fragmentation and crosslinking, glycation, and accumulation of aggregation-prone peptides
such as amyloid beta[55]. Our cross-platform analysis validated the higher expression of two collagens,
COL18A1 and COL6A3, and the collagen degrading enzyme, MMP2 [56], in centenarians. In models of
C. elegans, induced overexpression of collagens was shown to increase lifespan [57], however
associations between COL18A1 and COL6A3 expression with human aging and longevity have not been
previously detected. MMP2 has been shown to be elevated in individuals greater than 94 years old, but
remains relatively stable throughout earlier life stages, suggesting a role in healthy aging [54].
Circulating endostatin produced by the cleavage of COL18A1 is positively associated with several age-
associated diseases, including chronic obstructive pulmonary disease [58] and myocardial infarction
[59]. Interestingly, endostatin inhibits MMP2 activity [60], suggesting that intact COL18A1 is a marker
of healthy aging. Alternatively, in addition to the IGF/IGFBP/IGFALS ternary complex, MMP2 can cleave
COL6A3 to generate endotrophin [61], which is associated with onset of obesity-related metabolic
disorders [62]. However, MMP2 is more likely to capture intact COL6A3, and cannot characterize its
cleavage activity. Taken together, these results illustrate the overall complexity of protein interactions
involved in ECM organization and suggest a protective role of collagen activity for healthy aging in
centenarians.

Complement System. The complement system, which is part of innate immunity, was the only
pathway to exhibit protein expression changes in both directions when comparing cohorts and
centenarians. Complement system overactivation has been implicated in numerous age-associated
diseases, including autoimmune and cognitive disorders [63]. We identified proteins involved in
complement system activation, including some more abundant in centenarians and some more
abundant in offspring/controls. However, these two groups of proteins generally comprise different
components of this system. Proteins with higher expression in younger cohorts included lectin
complement pathway components, MASP1 and FCN3, while protein more highly expressed in
centenarians included alternative pathway components, CFD and alternative pathway complement
factor H-related (FHR) proteins, CFHR1, CFHR2, and CFHRS5, as well as membrane attack complex
proteins, C7 and C9 [64, 65]. Given that the membrane attack complex is the endpoint of the
complement system regardless of the initiating pathway, these results suggest an overall higher
activation of the complement system in centenarians. Interestingly, previous studies have
demonstrated opposite relationships of complement system activity for aging and longevity, however
these reports have focused on complement factor, C3, which we did not identify. C3 is positively
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associated with age [66], but negatively associated with centenarian longevity [67]. Importantly, net C3
levels are not necessarily indicative of complement system activation, and are more precisely
measured by the ratio between C3 and activated C3 [68]. Accordingly, these studies do not provide an
explicit association between aging, longevity and overall complement system activation. Increased
membrane attack complex levels in the choriocapillaris have been shown to increase with age and are
associated with age-related macular degeneration (AMD) [69, 70].

In addition to broader pathways, our analysis revealed aging pathology-related subsets of
proteins. Proteins more highly expressed in centenarians included lactate dehydrogenase components
LDHA that did not reach a significant association in our original report and LDHB, which are marker for
cell death and organ damage [71]. LDHA and LDHB are important enzymes of pyruvate metabolism and
degrade pyruvate — a metabolite made from glucose through glycolysis into lactic acid. Higher levels of
LDHA and LDHB in the centenarian cohort suggest dysregulation of glucose metabolism in extreme old
age. Proteins more highly expressed in younger cohorts included retinol/RBP4/TTR complex proteins,
RBP4 and TTR, of which circulating levels are negatively associated with insulin sensitivity [72, 73] and
positively associated with cardiovascular events in elderly subjects [74, 75]. Accordingly, lower levels of
RBP4 and TTR in the centenarian cohort indicate that they are potential markers of healthy aging.

Finally, the comparison between the serum protein signature and the whole blood
transcriptomic signatures of aging from the LLFS revealed moderate concordance, highlighted by age-
associated changes of six genes involved in neutrophil degranulation, ALDOA, B2M, CFD, CST3, LYZ,
S100A9. Such moderate concordance in unsurprising, given the key differences between these studies,
specifically that the serum proteomics studies primarily capture extracellular proteins in blood
originating from a variety of tissues, while whole blood transcriptomics studies primarily capture
intracellular transcripts in immune cells. Thus, consistencies between serum proteins and whole blood
transcripts reflect specific incidences of transcripts from immune cells that are translated to proteins
and eventually enter extracellular space. Accordingly, neutrophils are highly abundant in blood,
comprising ~70% of all immune cells [76], and neutrophil degranulation is a main component of their
immune function [77]. Previous studies have shown age-associated changes in neutrophil function,
including decreased chemotaxis and phagocytosis with age in adults throughout ages 30-79, but
increased chemotaxis and phagocytosis in long-lived subjects, ages 90-103 [78]. However, explicit
associations between neutrophil degranulation and aging have not been previously reported. Finally,
these findings likely reflect age-associated shifts in immune cell composition, which we have previously
characterized in a single-cell transcriptomics study of peripheral blood mononuclear cells (PBMCs) in
centenarians and younger cohorts [32], although neutrophils have multi-lobulated nuclei and are not
included in PBMC studies.

Our serum proteomics signatures of centenarians and younger cohorts strongly demonstrated
changes to numerous pathways associated with health and aging. These results reflect the changes to
both general and healthy aging, and likely more reflect the former. As a cross-platform study to
identify conserved associations between SomaScan and mass spectrometry profiles, we stress the
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high-confidence of these signatures over those identified by single-platform studies. Accordingly, these
results shed light on predominant mechanisms driving aging and longevity, thereby serving as roadmap
for future studies to explore age-related pathology and possible interventions.
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Tables

Table 1: Cohort subject counts in full dataset and 50-subject subset

Cohort

Centenarian Offspring Control
Published Data 77 82 65
50 Sample Subset 9 17 24



https://doi.org/10.1101/2024.04.10.588876
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.10.588876; this version posted April 14, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Mass Spectrometry Published SomaScan
Log2 Fold Change Log2 Fold Change
Uniprot Gene SomaScan Platform | Conserved (vs Centenarian) (vs Centenarian)

ID Symbol Aptamer Hits FDR FDR Control Offspring FDR Control Offspring
P35858 IGFALS 6605-17_3 MS,SSP 1.78E-32  0.00E+00 0.639 0.793  3.08E-18 0.741 0.642
Q96KN2 CNDP1 5456-59_2 MS,SSP 1.90E-24  0.00E+00 1.065 1.115 7.17E-14 0.825 0.843
P43652 AFM 4763-31_3 MS,SSP 4.00E-09 7.44E-05 0.479 0.433 7.14E-12 0.309 0.274
P08697  SERPINF2 3024-18_2 MS,SSP 3.49E-07  8.99E-04 0.247 0.288  7.25E-18 0.515 0.514
014791 APOL1 11510-31_3 MS,SSP 1.23E-06  1.63E-03 0.483 0.553  7.95E-06 0.244 0.304
P00747 PLG 4151-6_2 MS,SSP 2.38E-06 2.22E-03 0.221 0.248 1.44E-04 0.171 0.230
P00742 F10 4878-3_1 MS,SSP 8.57E-06  4.42E-03 0.253 0.406  2.35E-06 0.286 0.310
P03952 KLKB1 4152-58_2 MS,SSP 1.50E-05  5.80E-03 0.199 0.308  1.63E-08 0.301 0.317
P01019 AGT 3484-60_2 MS,SSP 1.65E-05 6.11E-03 0.133 0.331 1.21E-05 0.239 0.316
P01344 IGF2 6973-111_4 SSP 8.28E-05  1.38E-02 0.338 0.319  2.27E-03 0.111 0.138
Q76LX8 ADAMTS13  3175-51_5 SSP 1.18E-04  1.65E-02 0.255 0.384  4.79E-04 0.301 0.274
P00533 EGFR 2677-1_1 SSP 1.19E-04 1.65E-02 0.384 0.424 3.00E-05 0.244 0.234
P29622 SERPINA4 3449-58_2 SSP 6.43E-04 3.82E-02 0.243 0.227 3.86E-08 0.204 0.167
P05154  SERPINAS 3389-7_2 SSP 7.78E-04  4.13E-02 0.318 0.221  7.23E-03 0.279 0.171
P43251 BTD 9269-7_3 SSP 8.00E-04 4.14E-02 0.449 0.551 7.65E-05 0.268 0.327
P08185  SERPINA6 4785-30_3 SSP 8.80E-04  4.30E-02 0.145 0.266  2.01E-05 0.138 0.155
P24593 IGFBP5 2685-21_2 SSP 4.09E-03  8.90E-02 0.356 0.003  2.71E-04 0.223 0.166
P05546 SERPIND1 3316-58_1 MS 9.46E-04 1.83E-04 0.363 0.497 2.23E-02 0.115 0.211
P02753 RBP4 7831-39_3 MS 1.54E-03 7.87E-06 0.437 0.364 2.91E-02 0.132 0.072
P19827 ITIH1 7955-195_3 MS 2.54E-03  5.66E-05 0.239 0.309  3.85E-02 0.104 0.096
P19823 ITIH2 9326-33_3 MS 3.61E-03  1.46E-03 0.242 0.326  4.67E-02 0.107 0.086
P01042 KNG1 7784-1_3 MS 9.47E-03 1.69E-08 0.172 0.260 7.86E-02 -0.047 0.151
Q9UKS5 SERPINA1O0  6583-67_3 co 1.62E-03  5.74E-02 0.177 0.307  2.94E-02 0.083 0.162

Q9UGM5 FETUB 3367-8_3 co 6.27E-03  1.81E-02 0.286 0.244  6.25E-02 0.163 0.182
P18065 IGFBP2 8469-41_3 MS,SSP* 4.11E-13 6.65E-07 -1.061 -1.324  2.96E-17 -0.993 -0.997
P51884 LUM 13114-50_3 MS,SSP 5.29E-11 7.87E-06 -0.329 -0.412 1.67E-06 -0.282 -0.279
P12111 COL6A3 11196-31_3 MS,SSP 4.52E-10  2.35E-05 -0.432 -0.360  4.76E-16 -0.426 -0.481
P24821 TNC 6259-60_3 MS,SSP 4.52E-10 7.87E-06 -0.476 -0.447 6.58E-06 -0.222 -0.306
P02748 (o] 13722-105_3 MS,SSP 5.33E-08  3.03E-04 -0.515 -0.579  2.30E-08 -0.461 -0.397
Q14118 DAG1 8369-102_3 MS,SSP 9.23E-07  1.47E-03 -0.423 -0.483  1.76E-04 -0.164 -0.182
Q06033 ITIH3 7145-1_3 MS,SSP 1.21E-06  1.63E-03 -0.459 -0.425 3.27E-06 -0.344 -0.393
Q07954 LRP1 10699-52_3 MS,SSP 2.85E-06  2.36E-03 -0.324 -0.370  2.24E-06 -0.235 -0.271
Q12805 EFEMP1 8480-29_3 MS,SSP 5.80E-06  3.49E-03 -0.657 -0.709  7.05E-11 -0.388 -0.378
Q15848 ADIPOQ 3554-24_1 MS,SSP 2.34E-05  7.20E-03 -0.591 -0.890  4.40E-04 -0.302 -0.466
P08294 SOD3 8463-2_3 MS,SSP 3.39E-05  8.65E-03 -0.411 -0.555  9.21E-11 -0.349 -0.356
Q9NQ79 CRTAC1 5632-6_3 MS,SSP 3.40E-05  9.16E-06 -0.462 -0.626  3.60E-03 -0.285 -0.281
P08253 MMP2 4160-49_1 MS,SSP 1.25E-04  5.62E-03 -0.394 -0.417  7.36E-03 -0.159 -0.275
Q12841 FSTL1 13112-179 3 MS,SSP 1.50E-04 8.87E-03 -0.244 -0.326  8.11E-03 -0.115 -0.202
P61626 LYz 4920-10_1 SSP 1.22E-04 1.65E-02 -0.354 -0.577 1.73E-11 -0.651 -0.658
Q6UX71 PLXDC2 10576-7_3 SSP 4.01E-04  3.13E-02 -0.317 -0.253  6.31E-06 -0.233 -0.216
P07195 LDHB 3890-8_2 SSP 5.66E-04  3.64E-02 -0.180 -0.292  1.05E-03 -0.368 -0.252
P41222 PTGDS 10514-5_3 SSP 8.62E-04 4.29E-02 -0.574 -0.728  2.77E-05 -0.373 -0.393
P20742 Pzp 6580-29_3 SSP 9.34E-04  4.41E-02 -1.446 -0.861  5.20E-03 -0.501 -0.461
P39060 COL18A1 2201-17_6 SSP 1.53E-03  5.74E-02 -0.241 -0.424  1.37E-09 -0.444 -0.532
Q99969 RARRES2 3079-62_2 SSP 1.55E-03  5.74E-02 -0.237 -0.360  1.03E-04 -0.198 -0.353
Q13231 CHIT1 10460-1_3 SSP 1.62E-03  5.74E-02 -1.114 -0.888  3.66E-04 -0.664 -0.497
P07998 RNASE1 7211-2_3 SSP 2.50E-03  7.33E-02 -0.861 -0.881  8.76E-18 -1.476 -1.621
P00746 CFD 13678-169_3 SSP 2.67E-03  7.53E-02 -0.341 -0.492  1.50E-05 -0.257 -0.234
000533 CHL1 8958-51_3 SSP 6.27E-03  1.11E-01 -0.575 -0.689  4.85E-04 -0.207 -0.186
P49747 comp 8043-153_3 co 1.55E-03  5.74E-02 -0.192 -0.295  2.92E-02 -0.201 -0.209
P06702 S100A9 5339-49_3 co 3.49E-03  8.34E-02 -0.960 -0.814  3.64E-02 -0.154 -0.184
P04075 ALDOA 5864-10_3 co 5.19E-03  3.88E-02 -0.169 -0.331  5.64E-02 -0.165 -0.169
P00338 LDHA 9761-89_3 CcO 8.47E-03  8.70E-02 -0.352 -0.333  7.41E-02 -0.121 -0.258

Table 2: Inter-study validated protein signature (FDR < 0.01). The top half of the table shows
proteins that are decreasing with older age, while the bottom half shows protein increasing at
older age. Platform hits: SSP=only SomaScan; MS= only mass spectrometry; MS,SSP= both;
CO=Conserved only

* Also identified from the 50-sample subset of SomaScan data
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Mass Spectrometry Published SomaScan
Log2 Fold Change Log2 Fold Change
Gene SomaScan Platform | Conserved (vs Centenarian) (vs Centenarian)

Uniprot ID Symbol Aptamer Hits FDR FDR Control  Offspring FDR Control  Offspring
075636 FCN3 14077-6_3 SSP 1.67E-02 1.90E-01 0.393 0.292 4.01E-05 0.151 0.145
Q9UNW1 MINPP1 5586-66_3 SSP 2.40E-02 2.24E-01 0.153 0.134 4.37E-03 0.119 0.108
P14151 SELL 4831-4 2 SSP 2.71E-02 2.33E-01 0.277 0.255 1.89E-03 0.170 0.202
095445 APOM 10445-20_3 SSP 3.96E-02 2.77€E-01 0.305 0.299 7.30E-04 0.240 0.255
P02765 AHSG 3581-53_3 SSP 4.21E-02 2.84E-01 0.123 0.179 3.32E-10 0.297 0.327
P48740 MASP1 3605-77_4 SSP 4.64E-02 2.95E-01 0.274 0.256 8.85E-16 0.315 0.308
P00734 F2 4157-2_1 co 1.40E-02 7.64E-02 0.235 0.284 9.67E-02 0.094 -0.080
P04004 VTN 8280-238_3 co 1.65E-02 4.68E-02 0.250 0.332 1.06E-01 0.083 0.040
P03951 F11 2190-55_1 co 1.78E-02 1.96E-01 0.103 0.264 2.44E-02 0.114 0.171
P05019 IGF1 2952-75_2 (0] 1.84E-02 1.18E-02 0.797 0.751 1.12E-01 0.146 0.161
P22792 CPN2 6415-90_3 (0] 2.08E-02 3.20E-02 -0.066 0.210 1.20E-01 0.125 0.143
Q9UHG3 PCYOX1 6431-68_3 Cco 3.70E-02 5.74E-02 0.252 0.165 1.63E-01 0.158 0.142
P01034 CST3 2609-59_2 SSP 1.12E-02 1.53E-01 -0.365 -0.489 6.00E-18 -0.693 -0.756
P24592 IGFBP6 14088-38_3 SSP 1.16E-02 1.53E-01  -0.295 -0.320 1.80E-16 -0.517 -0.608
P63104 YWHAZ 5858-6_5 SSP 1.64E-02 1.90E-01  -0.566 -0.520 6.75E-05 -0.312 -0.222
P61769 B2M 3485-28_2 SSP 2.10E-02 2.11E-01  -0.359 -0.544 6.24E-20 -0.917 -0.981
P35443 THBS4 3340-53_1 SSP 2.23E-02 2.17E-01  -0.369 -0.354 1.93E-05 -0.362 -0.469
P04278 SHBG 4929-55_1 SSP 2.34E-02 2.23E-01 -0.407 -0.479 3.77E-03 -0.452 -0.451
Q8WZ75 ROBO4 9232-1_3 SSP 2.47E-02 2.27E-01  -0.414 -0.421 2.20€E-03 -0.296 -0.354
QONPY3 CD93 14136-234_3 SSP 2.75E-02 2.33E-01 -0.331 -0.285 5.62E-03 -0.138 -0.211
P11142 HSPA8 5903-91_2 SSP 2.87E-02 2.38E-01 -0.474 -0.525 6.67E-04 -0.341 -0.204
P23142 FBLN1 10819-108_3 SSP 3.14E-02 2.49E-01 -0.441 -0.359 1.41E-05 -0.294 -0.239
P10645 CHGA 11184-51_3 SSP 3.25E-02 2.51E-01  -0.327 -0.476 6.80E-07 -1.029 -1.166
Q86UD1 OAF 6414-8 3 SSP 4.47E-02 2.89E-01 -0.195 -0.149 5.26E-04 -0.209 -0.311
P10643 c7 13731-14_3 co 1.05E-02 1.49e-01 -0.210 -0.355 7.87E-02 -0.060 -0.164
Q9BXR6 CFHR5 3666-17_4 co 2.25E-02 2.02E-01 -0.272 -0.313 1.25E-01 -0.049 -0.132
Q92820 GGH 9370-69_3 CO 2.56E-02 8.43E-02  -0.335 -0.416 1.34E-01 -0.086 -0.138

Table 3: Additional inter-study validated protein signature (FDR < 0.05)
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Mass Spectrometry Published SomaScan

Log2 Fold Change Log2 Fold Change

Uniprot Gene SomaScan Platform | Conserved (vs Centenarian) (vs Centenarian)
ID Symbol Aptamer Hits FDR FDR Control  Offspring FDR Control  Offspring

P17936 IGFBP3 2571-12_3 MS 2.46E-01 8.59E-07 0.634 0.612 4.49E-01 0.070 0.016
Q96PD5 PGLYRP2 5601-2_3 MS 8.64E-02 1.98E-03 0.373 0.184 2.59E-01 0.090 0.072
Q12913 PTPRJ 8250-2_3 MS 2.70E-01 6.90E-03 0.271 0.251 4.74E-01 -0.048 -0.033
P80108 GPLD1 MS 6.19E-13 0.662 0.624
P02766 TTR MS 1.40E-05 0.751 0.685
P20023 CR2 MS 2.22E-03 0.640 0.397
P02774 GC MS 2.46E-03 0.144 0.244
P12955 PEPD MS 9.92E-03 0.241 0.314
Q03591 CFHR1 5982-50_3 MS 4.24E-01 3.16E-04 -0.694 -0.757 6.11E-01 -0.051 -0.012
Q86U17  SERPINA11l 9002-36_3 MS 7.26E-02 8.30E-03 -0.363 -0.333 2.35E-01 -0.088 -0.014
P36980 CFHR2 MS 6.49E-05  -0.941 -0.997
014498 ISLR MS 9.37E-05 -0.194 -0.355
P98160 HSPG2 MS 8.56E-04 -0.251 -0.232
P02750 LRG1 MS 1.26E-03  -0.568 -0.554
Q16853 AOC3 MS 1.88E-03  -0.285 -0.462
P43121 MCAM MS 6.41E-03 -0.346 -0.225

Table 4: Mass spectrometry only protein signature
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Figure 1: Inter-study protein signatures comparing centenarians to offspring and unrelated
controls.

A. Euler plot of protein signatures detected in the mass spectrometry data set with 50
subjects (Mass Spec), the SomaScan subsetwith the same 50 subjects (SomaScan
Subset), and the SomaScan data with 224 participants (Somascan). Numbers in
parentheses with a “*” denote the proteins that were included in both data sets but
detected only in one analysis.

B. Fisher’s Exact Test results of the intersection between mass spectrometry and
SomaScan signatures. The diagonal represents the number of significant proteins from
each analysis that are annotated by the SomaScan assay.

C. Comparison of log2 fold changes protein expression differences of controls and
offspring to centenarians from mass spectrometry and SomaScan studies across their
266 shared proteins.

D. Log2 fold changes protein expression differences inter-study conserved proteins,
including each mass spectrometry result and SomaScan aptamer.

All protein signature results shown were identified using an FDR cutoff of 0.01. The full set of
analysis results are reported in Supplementary Table S2.
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Figure 2: Protein interaction and functional analysis results
These results reflect analyses of 96 protein signature of proteins with conserved (FDR values <
0.05) and mass spectrometry-only discovered proteins (FDR < 0.01).

A. Overrepresentation-based enrichment analysis comparing Gene Ontology Functional
Terms and Reactome pathways to three protein lists: All 96 proteins (All), 44 proteins
with higher expression in offspring and controls (Up in Off./Cont.), and 52 proteins with
higher expression in centenarians (Up in Centenarians). Additional information for these
results, including term source, p-values, set sizes, and set members are reported in
Supplementary Table S3.

B. STRING database annotated protein physical and functional interactions. The full list of
interaction pairs is reported in Supplementary Table S4.
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Figure 3: Summary of literature and Reactome database confirmed protein physical
interactions

Additional information, including descriptions of interaction and sources can be found in
Supplementary Table S5.
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Figure 4: Comparison of mass spectrometry proteomic and LLFS transcriptomic results
Comparison of log2 fold changes from proteomic studies and LLFS gene expression models
features characterized by either proteomic conservation analysis or transcriptomic analyses that
are mappable across platforms. Proteomic results reflect differences between either offspring
(left) or controls (right) to centenarian cohorts. LLFS transcriptomic results reflect age as a
continuous variable, i.e. 1-year age differences. Proteins/genes annotated to the neutrophil
degranulation pathway are highlighted in bold.
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A. Comparison of the mass spectrometry study and LLFS gene expression features. The
plots comprise 123 coinciding protein:gene pairs. The full set of results for these
features is reported in Supplemental Table S6.

B. Comparison of the published SomaScan signature and LLFS gene expression features.
The plots comprise 1,142 coinciding protein:gene pairs. The full set of results for these
features is reported in Supplemental Table S7.
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