

1

2 **Reduction of Cystatin B results in increased**
3 **cathepsin B activity in disomic but not Trisomy21**
4 **human cellular and mouse models**

5

6 Yixing Wu^{1,2}, Karen Cleverley³ and Frances K. Wiseman^{¶1,2},

7 ¶Corresponding author f.wiseman@ucl.ac.uk (F.K.W.)

8 1. UK Dementia Research Institute at University College London; London,
9 United Kingdom.

10 2. UCL Queen Square Institute of Neurology, Queen Square, London, WC1N
11 3BG, United Kingdom.

12 3. Department of Neuromuscular Diseases, UCL Queen Square Institute of
13 Neurology, Queen Square, London, WC1N 3BG, United Kingdom.

14

15 Abstract

16 Down syndrome, resulting from trisomy of human chromosome 21, is a common form
17 of chromosomal disorder that results in intellectual disability and altered risk of several
18 medical conditions. Individuals with Down syndrome have a greatly increased risk of
19 Alzheimer's disease (DSAD), due to the presence of the *APP* gene on chromosome
20 21 that encodes the amyloid- β precursor protein (APP). APP can be processed to
21 generate amyloid- β , which accumulates in plaques in the brains of people who have
22 Alzheimer's disease and is the upstream trigger of disease. Cathepsin B has potential
23 roles in both APP processing and amyloid- β degradation and has been suggested to
24 contribute to amyloid- β accumulation. An endogenous inhibitor of Cathepsin B,
25 Cystatin B (*CSTB*), is encoded on chromosome 21. The abundance of this protein is
26 increased in the brains of individuals with DSAD, which may be associated with a
27 decrease in Cathepsin B activity compared to individuals who have Alzheimer's
28 disease in the general population. Whether targeting *CSTB* can modulate Cathepsin
29 B activity in the context of trisomy of chromosome 21 is unclear. Here we test if
30 reducing *CSTB* can alter Cathepsin B activity in a mouse and a cellular model of
31 trisomy of chromosome 21. We find that reducing *CSTB* abundance increases
32 Cathepsin B activity in disomic controls but not in the presence of trisomy of
33 chromosome 21. These findings offer new insights into the role of *CSTB* in regulating
34 Cathepsin B activity.

35

36

37 Introduction

38

39 Individuals with Down syndrome (DS) caused by trisomy of human chromosome 21
40 (Hsa21) experience cognitive impairment, craniofacial abnormalities and alterations in
41 the function of their immune system and have a significantly increased risk of
42 developing early onset Alzheimer's disease [1]. Alzheimer's disease (AD)-associated
43 amyloid- β plaques develop in people with DS by age 40 [2]. This triggers a cascade
44 of cellular and molecular changes in the brain that result in a greater increased risk of
45 developing mid-life dementia [3]. By the age of 60, around two-thirds of the individuals
46 with DS will have a clinical dementia diagnosis caused by AD (DSAD) [4]. Duplication
47 of the Hsa21-located *APP* gene that encodes amyloid precursor protein (APP) causes
48 an overproduction of amyloid- β , triggering its accumulation in the brain [5]. In addition,
49 an extra copy of Hsa21 genes other than *APP*, also modulates the generation and
50 accumulation of amyloid- β [6-11].

51

52 Cysteine protease, cathepsin B (CatB) [12], has important roles in protein degradation
53 and cellular homeostasis [13, 14]. Increased abundance and activity of the enzyme is
54 associated with AD in the general population [15-17], particularly with the
55 accumulation of amyloid- β within the brain [18], and variation in the *CTSB* (CatB gene)
56 is associated with the risk of late-onset AD [19]. CatB has been proposed to have a
57 role in APP processing in the brain, including both the generation and catabolism of
58 amyloid- β [17, 20, 21], but which mechanism predominates is unclear. Notably,
59 decreased CatB activity is associated with dysfunction of lysosomes and accumulation
60 of APP C-terminal fragments (CTFs) and amyloid- β [22, 23], phenotypes also
61 associated with the early stages of DSAD [24]. Thus, normalising CatB activity may
62 be a therapeutic strategy for the treatment of the early stages of DSAD.

63

64 The endogenous inhibitor of CatB, Cystatin B (CSTB), is encoded on Hsa21, and
65 trisomy of Hsa21 increases the abundance of CSTB in the brains of people with DSAD
66 and in fibroblasts from individuals with DS [15]. CatB activity is reduced in the brain of

67 individuals with DSAD compared with matched cases of EOAD from the general
68 population [15]. Elevated levels of CSTB may contribute to the altered activity of CatB,
69 leading to dysregulated proteolysis and downstream effects on neuropathological
70 features of AD. Although, an additional copy of *Cstb* is not sufficient to change CatB
71 activity in the brain of mouse models, or in trisomy 21 fibroblasts under basal
72 conditions [15, 25]. Whether targeting CSTB in the context of trisomy of Hsa21 is
73 sufficient to elevate CatB activity is unknown. Here we used human cellular and mouse
74 models to investigate this.

75

76

77 **Results**

78

79 **CSTB knockdown increases CatB activity in disomic but**
80 **not trisomy 21 human fibroblasts**

81 To determine if targeting the endogenous inhibitor of CatB, CSTB, might be a viable
82 strategy to increase cathepsin B activity in the context of trisomy of Hsa21, we used a
83 siRNA approach to reduce CSTB abundance in human fibroblasts isolated from
84 individuals with DS and matched euploid controls. We first optimized transfection
85 conditions using a non-targeting negative control, GAPDH or CSTB siRNAs. A 1:400
86 dilution of transfection reagent was required to reduce GAPDH and CSTB abundance
87 robustly in both disomic and trisomy 21 cells (**Fig. 1** and **S1 Fig.**). To determine the
88 effect of CSTB knockdown on CatB activity, a substrate (Ac-RR-AFC) cleavage assay
89 was used and the mean rate of cleavage relative to the disomic control was calculated
90 for all conditions. The siRNA-mediated reduction in CSTB abundance led to an
91 increase in CatB enzyme activity in disomic, but not in trisomy 21 human fibroblasts
92 (**Fig. 1E**), despite the abundance of CSTB after knockdown not differing between
93 disomic and trisomy 21 cells. Thus, targeting *CSTB* in trisomy 21 fibroblasts does not
94 have a direct impact on CatB activity, in contrast to the effect of reducing this
95 endogenous inhibitor on enzyme activity in disomic cells.

96

97

98 **CSTB knockdown does not affect the maturation of**
99 **cathepsin B**

100 Cathepsin B undergoes a maturation process by cleaving its proenzyme form to
101 generate the mature active enzyme [26]. To test whether the reduction of CatB activity
102 in disomic cells, mediated by *CSTB* knock-down, changed enzyme processing, the
103 abundance of pro and mature CatB protein was measured by western blot (**Fig. 2A**).
104 Knocking down CSTB does not alter the protein level of pro-CatB, mature CatB or the
105 mature CatB/pro-CatB ratio, compared with both untransfected controls and GAPDH
106 knock-down in either disomic or trisomy 21 cells (**Fig. 2 B, C, D**). These results suggest
107 that the maturation of cathepsin B was unaffected by *CSTB* knockdown and thus
108 changes to CatB activity in disomic fibroblasts occur via another process, likely
109 mediated by a direct interaction between the endogenous inhibitor and enzyme.

110

111

112 ***Cstb* gene copy reduction leads to elevated CatB activity in**
113 **the mouse brain but not in the presence of trisomy 21**

114 To further understand the interaction of CSTB abundance, cathepsin B activity and
115 trisomy of chromosome 21, we studied the effect of *Cstb* gene dose on CatB activity
116 in a mouse model of DS. To do this we crossed the Tc1 mouse model of DS with
117 *Cstb*^{+/−} mice. The Tc1 mouse carries a copy of human chromosome 21, including an
118 additional copy of human *CSTB*, alongside a normal complement of mouse
119 chromosomes [27]. Thus, it contains 3 copies of the *CSTB/Cstb* gene and can be used
120 to understand the effect of this on trisomy 21 biology. Importantly, this mouse model
121 does not carry an additional functional copy of *APP* [28], and does not have raised
122 abundance of *APP* in the brain [10], therefore it can be used to understand the effect
123 of trisomy 21 independently of the effect of an additional copy of *APP*. The cross of
124 Tc1 and *Cstb*^{+/−} mice generated progeny with four genotypes: wildtype (WT) (2-copies

125 of *Cstb*), Tc1 (3-copies of CSTB/*Cstb*), *Cstb*^{+/−} (1-copy of *Cstb*) and Tc1;*Cstb*^{+/−} ((2-
126 copies of CSTB/*Cstb*).

127

128 We quantified the abundance of both mouse (Fig. 3A) and human (Fig. 3B) CSTB in
129 total cortical proteins from these mice at 3-months of age. Human euploid and trisomic
130 fibroblast homogenates were used to control for the specificity of the anti-mouse CSTB
131 antibody (Fig 3A). Similarly, negligible signal was detected with the anti-human CSTB
132 antibody in cortical samples from mice that did not express the human version of the
133 protein (WT and *Cstb*^{+/−}) (Fig. 3B). We found a significant decrease in mouse CSTB in
134 *Cstb*^{+/−} and Tc1;*Cstb*^{+/−} cortices compared to WT and Tc1 controls (Fig. 3A and 3D).
135 Human CSTB levels were significantly higher in Tc1 and Tc1;*Cstb*^{+/−} cortices than WT
136 and *Cstb*^{+/−} controls, with no difference observed between the Tc1 and Tc1;*Cstb*^{+/−}
137 samples (Fig. 3E). Thus, reduction in *Cstb* gene copy number from two to one, or three
138 to two, reduces the overall abundance of protein in the cortex of both the disomic and
139 trisomy 21 mice respectively.

140

141 To investigate whether the reduction of *Cstb* has an effect on CatB maturation, the
142 abundance of pro-CatB and mature CatB was quantified by western blot. No difference
143 in pro-CatB or mature CatB protein abundance, or the mature cathepsin B/pro-CatB
144 ratio was observed (**Fig. 3F-H**). Therefore, consistent with our findings in human
145 fibroblasts, *Cstb* gene copy reduction does not alter CatB maturation in the cortex of
146 either disomic or trisomy 21 mice at 3 months of age.

147

148 To determine how *Cstb* gene dose affected CatB activity, we undertook a biochemical
149 cleavage assay on samples of mouse cortex at 3-months of age. The mean rate of
150 CatB activity, corrected for non-specific activity using either ALLM or FMK inhibitors,
151 was calculated for each genotype relative to the WT mean rate. CatB activity in *Cstb*^{+/−}
152 mice was significantly increased compared with WT, Tc1 and Tc1;*Cstb*^{+/−} controls (**Fig.**
153 **3I, J**), demonstrating that a reduction in the copy number of *Cstb* results in increased
154 CatB activity within the disomic mouse brain. However, there was no difference in
155 CatB activity between the Tc1 and Tc1;*Cstb*^{+/−} groups (**Fig. 3I, J**). Thus, reducing the

156 *Cstb* gene copy in the presence of trisomy 21 in the young adult cortex does not modify
157 CatB activity.

158

159

160 **Discussion**

161

162 The interaction between CSTB and CatB plays an important role in balancing
163 proteolytic activity within cells [29]. In this study, we investigated whether altering this
164 balance by either reducing protein levels of CSTB using siRNA-mediated knockdown
165 or reducing the number of copies of the *Cstb* gene, can lead to an increase in CatB
166 activity, or a change in CatB maturation. Our results showed that in disomic human
167 fibroblasts, knocking down CSTB increases CatB activity. Similarly, reducing *Cstb*
168 from two to one copy in mice also leads to an increase in CatB activity in the young
169 adult cortex, consistent with a previous report [23]. In contrast, in the presence of
170 trisomy 21, knocking down CSTB in human fibroblasts or lowering *Cstb* gene dose in
171 a mouse model of DS does not alter CatB activity.

172

173 Previously, we have shown that an additional copy of *Cstb/CSTB* is not sufficient to
174 alter CatB activity in a range of DS preclinical models [15, 25]. Here, we show that in
175 the context of trisomy of Hsa21, less CSTB is also not sufficient to modify enzyme
176 activity, in contrast to the effect of the copy number of this gene in disomic cells and
177 brain. This may be the result of other regulators of CatB activity being differentially
178 regulated by trisomy 21. For example, cystatin C (CST3) also modulates CatB activity
179 [21, 30, 31], and has been reported to be upregulated by trisomy 21 [32]. However, in
180 the Ts2Cje mouse model of DS overexpressing CST3 improved endosomal
181 morphology and alleviated behavioural defects but does not alter CatB activity [33],
182 indicating that increased abundance of this cystatin may also be insufficient to change
183 CatB activity in the context of DS.

184

185 In addition to cystatins, CatB activity is also regulated by the processing of the enzyme.
186 Here we show, consistent with our previous work, that CatB processing as measured
187 by the pro/mature ratio is not affected by trisomy of Hsa21 [15]. Thus, another
188 mechanism likely results in the insensitivity of CatB activity to CSTB abundance in the
189 context of trisomy 21. Trisomy of Hsa21 results in perturbations to endo-lysosomal
190 biology, in part because of an effect of APP-CTF on v-ATPase acidification [34].
191 Notably, the Tc1 mouse model does not have an additional functional copy of *APP*,
192 thus raised APP-CTF is unlikely to be the cause of the insensitivity to *Cstb* gene dose
193 that we observed.

194
195 In summary, results from our study indicate the complexity of the relationship between
196 CSTB, CatB, and trisomy 21. While reducing the abundance of CSTB increased CatB
197 activity in disomic human fibroblasts and mouse brain, this effect is not replicated in
198 the presence of trisomy 21, suggesting that *CSTB* gene dose does not contribute to
199 the regulation of CatB activity in people who have DS. Thus, targeting CSTB is unlikely
200 to be a useful strategy to normalize CatB activity in the context of DS.

201
202

203 Materials and Methods

204

205 Mouse welfare and husbandry

206 Heterozygous *Cstb* knockout mice (*Cstb*^{tm1b(EUCOMM)Wtsi} named here *Cstb*^{+/−}) (MGI
207 MGI:5790639) were kindly supplied by the MRC Mary Lyon Centre, and maintained
208 by mating male *Cstb*^{+/−} to female C57BL/6J for one generation prior to crossing the
209 progeny of this cross to Tc1 mice. Tc1 (Tc(HSA21)1TybEmcf/J) mice were taken from
210 a colony maintained by mating Tc1 females (MGI: 3814712) to F1 (129S8 × C57BL/6)
211 males. To generate the cohort studied here *Cstb*^{+/−} males were mated with Tc1 females
212 to produce four genotypes referred to as: wildtype (WT), *Cstb*^{+/−}, Tc1, and Tc1;*Cstb*^{+/−}.
213 We ensured that no *Cstb*^{−/−} animals were generated during our study because of
214 adverse welfare outcomes associated with this genotype. In this study, all mice were

215 housed in controlled conditions as per the Medical Research Council (MRC) and
216 University College London (UCL)'s guidance. All experiments were conducted with
217 approval from the Local Ethical Review panel and under License from the UK Home
218 Office. Mice were semi-randomised by Mendelian inheritance of the genetically altered
219 alleles into cages housing one sex, with at least two mice per cage. All mice were
220 provided with bedding and wood chips, and continuous access to water. RM1 and
221 RM3 chow were provided to breeding and stock mice, respectively by Special Diet
222 Services, UK. Individually ventilated cages were in a specific-pathogen-free facility.
223 Euthanasia of mice was carried out by exposing them to gradually increasing levels of
224 CO₂ gas, and confirmation of death by dislocation of the neck, in compliance with the
225 Animals (Scientific Procedures) Act issued in the United Kingdom in 1986.

226

227 **Genotyping**

228 DNA was extracted from ear biopsies by the Hot Shot method [35]. Mice were
229 genotyped using polymerase chain reaction (PCR) for the presence of human
230 chromosome 21 (Tc1 specific primers f: 5' -
231 GGTTTGAGGGAACACAAAGCTTAACCTCCCA-3' r: 5' -
232 ACAGAGCTACAGCCTCTGACACTATGAAC-3' , control primers f: 5' -
233 TTACGTCCATCGTGGACAGCAT-3' r: 5'-TGGGCTGGGTGTTAGTCTTAT-3') as
234 described previously [27]. Mice were genotyped by PCR for the presence of the Cstb-
235 (KO) and Cstb+ (WT) alleles with (Cstb-5arm-WT f: 5' -
236 GTAGGGGGAGGTTCAGGGTA-3' , Cstb-Crit-WT r: 5' -
237 GGCTGGCATGGAACTAAGCA-3' and 5-KO r: 5'-GAACCTCGGAATAGGAACCTCG-
238 3').

239

240 **Cell culture**

241 Cultured human fibroblasts derived from four individuals with Down syndrome (DS)
242 (AG05397, AG07438, AG04823, and AG06922) and four euploid controls (GM05399,
243 GM05565, GM05658 and GM05758) (Coriell Biorepository) were cultivated in

244 Dulbecco's Modified Eagle Medium (DMEM). The DMEM was supplemented with 10%
245 fetal bovine serum (FBS) and 100 units/ml of penicillin-streptomycin (Thermo Fisher
246 Scientific). The cells were grown at 37°C in an environment with 5% CO₂.

247 When the cells reached about 70% confluence, they were harvested through
248 trypsinization using Gibco™ Trypsin-EDTA (0.25%), phenol red at 37°C.
249 Subsequently, the cells were collected, pelleted, and washed three times using
250 phosphate-buffered saline (PBS) before being homogenised.

251

252 **Dharmafect-mediated gene knockdown**

253 DharmaconTM siRNA (Horizon) knockdown of CSTB in human fibroblasts was
254 conducted as per the manufacturer's instructions with minor changes. In brief, a 5 µM
255 siRNA solution (ON-TARGETplus Non-targeting Pool, Catalogue number: D-001810-
256 10-05, ON-TARGETplus GAPDH Control Pool (Human), Catalogue number: D-
257 001830-10-05, or ON-TARGETplus Human CSTB (1476) siRNA -SMARTpool,
258 Catalogue number: L-017240-00-0005) was prepared using RNase-free water by
259 diluting from the stock solution. Two separate tubes were used to dilute the siRNA
260 (Tube 1) and the DharmaFECT (Horizon) transfection reagent (Tube 2) using
261 serum-free medium. In Tube 1, a 200 µl diluted siRNA solution (for each well of a 6-
262 well plate) was prepared in serum-free DMEM medium by combining 10 µl of 5 µM
263 siRNA with 190 µl of serum-free medium. In Tube 2, a 200 µl diluted DharmaFECT
264 transfection reagent solution was prepared in serum-free medium. The DharmaFECT
265 reagent amounts used were 1 µl, 2.5 µl and 5 µl per well of a 6-well plate. The contents
266 in Tube 1 and 2 were then mixed and incubated for 5 minutes at room temperature.
267 The contents from Tube 1 were then added to Tube 2, and gently mixed by pipetting
268 prior to a further incubation for 20 minutes at room temperature. After incubation, the
269 transfection medium was added to each well of the 6 well plate (final concentration of
270 siRNA: 25nM). The cells were incubated at 37°C with 5% CO₂ for 48 hours prior to
271 analysis.

272

273 **Western blotting**

274 To assess protein levels, the mouse cortex was homogenised using CB lysis buffer
275 from the Cathepsin B Activity Assay Kit (Abcam, ab65300), with the addition of
276 cComplete™ Protease Inhibitor (Roche). Protein concentration was determined using
277 a Bradford assay (Bio-Rad).

278 Mouse cortical homogenates were denatured using NuPAGE LDS Sample Buffer and
279 NuPAGE™ Sample Reducing Agent (Thermo Fisher Scientific) at 95°C for 5 minutes.
280 They were subsequently separated through SDS-polyacrylamide gel electrophoresis
281 on a NuPAGE Novex 4–12% Bis-Tris gel (Thermo Fisher Scientific) at 150V for 50
282 minutes. The proteins were then transferred from the gel to a nitrocellulose membrane
283 using the Trans-Blot Turbo™ Transfer System (Bio-Rad) at 25V, 2.5A for 7 minutes.
284 Following transfer, the membranes were blocked using Intercept Blocking Buffer (LI-
285 COR Bioscience) for 1 hour at room temperature.

286 For antibody probing, the membranes were incubated with primary antibodies
287 overnight at 4°C. The primary antibodies used were rabbit polyclonal anti-human
288 Cystatin B (Abcam, ab236646, 1:2,000), rat monoclonal anti-mouse Cystatin B (Novus
289 Biologicals, USA, #227818 (MAB1409), 1:2,000), rabbit polyclonal anti-cathepsin B
290 (Abcam, ab92955, 1:1,000), rabbit monoclonal anti-GAPDH (Sigma, G9545, 1:5,000)
291 and mouse monoclonal anti-β-actin antibody (Sigma-Aldrich, #A5441, 1:10,000). This
292 was followed by incubation with secondary antibodies for 1 hour at room temperature.
293 The secondary antibodies were IRDye 800CW Goat anti-Rabbit IgG (H + L) (1:10,000),
294 Goat anti-Rat IRDye® 800CW IgG (H + L) and IRDye 680RD Goat anti-Mouse IgG
295 (H + L) (1:10,000) (LI-COR Biosciences). Membranes were visualised using an
296 Odyssey CLx Infrared Imaging System. The density of protein bands was quantified
297 using ImageJ software.

298 For normalisation, the density of the CSTB or CatB protein band was divided by the
299 density of the corresponding β-actin band run in the same lane. All uncropped western
300 blots are available at FigShare Wu et al 2024_raw_images.pdf.

301

302 **Cathepsin B Enzyme Activity Assay**

303 The activity of CatB was examined in the cortex of 3-month-old mice or human
304 fibroblasts using a Cathepsin B Activity Assay Kit (Abcam, #ab65300). The tissue or

305 fibroblasts were homogenised in CB lysis buffer and then incubated on ice for 30
306 minutes before being centrifuged at 15,000 x g for 5 minutes at 4°C. The resulting
307 supernatant was transferred to a clean tube and protein concentration was determined
308 using a Bradford assay (Bio-Rad). 200 µg tissue homogenate or 10 µg cell lysate was
309 diluted in 50 µl CB lysis buffer and was used for the reaction with CatB Substrate (RR-
310 amino-4-trifluoromethyl coumarin (AFC)).

311 To measure nonspecific cleavage, samples were treated with 50 µM inhibitors ALLM
312 (Abcam, ab141446) or Z-Phe-Phe-FMK (Abcam, ab141386). The reaction mixture
313 was then incubated at 37°C in a microplate reader (Tecan), and the resulting
314 fluorescent signal (excitation/emission = 400/505nm) was recorded every 90 seconds
315 for 30 cycles by the microplate reader. The linear part of the reaction was determined,
316 and the relative CatB activity in the sample was calculated by determining the average
317 fluorescent output for each sample and subtracting the matched output from the
318 inhibited reaction. Means of technical replicates were calculated for each individual
319 sample, with biological replicate being used as the experimental unit. For CatB assays,
320 1 and 6 technical replicates were used for mouse cortex samples and human
321 fibroblasts, respectively.

322

323 **Statistical analysis**

324 All mouse experiments and data analyses were carried out blind to both genotype and
325 sex. A unique 6-digit identifier was assigned to all mice and their homogenate tissue
326 samples. Individual mouse or independent cell line were used as the experimental unit
327 for all analysis.

328 The data are presented as group mean ± SEM, with individual datapoints for biological
329 replicates. Data were analysed by ANOVA, using the mean of technical replicates, as
330 indicated in the figure legends. For fibroblast studies variables of trisomy 21 status
331 and treatment (control, *CSTB* knockdown or *GAPDH* knockdown) were used. For
332 mouse studies variables of sex, trisomy 21 status and *Cstb*^{+/−} status were used.
333 Pairwise comparisons for variables with more than two variants, with correction for
334 multiple comparison as indicated in the figure legends, was undertaken when
335 significant main effects or interactions were observed. Analyses were performed using

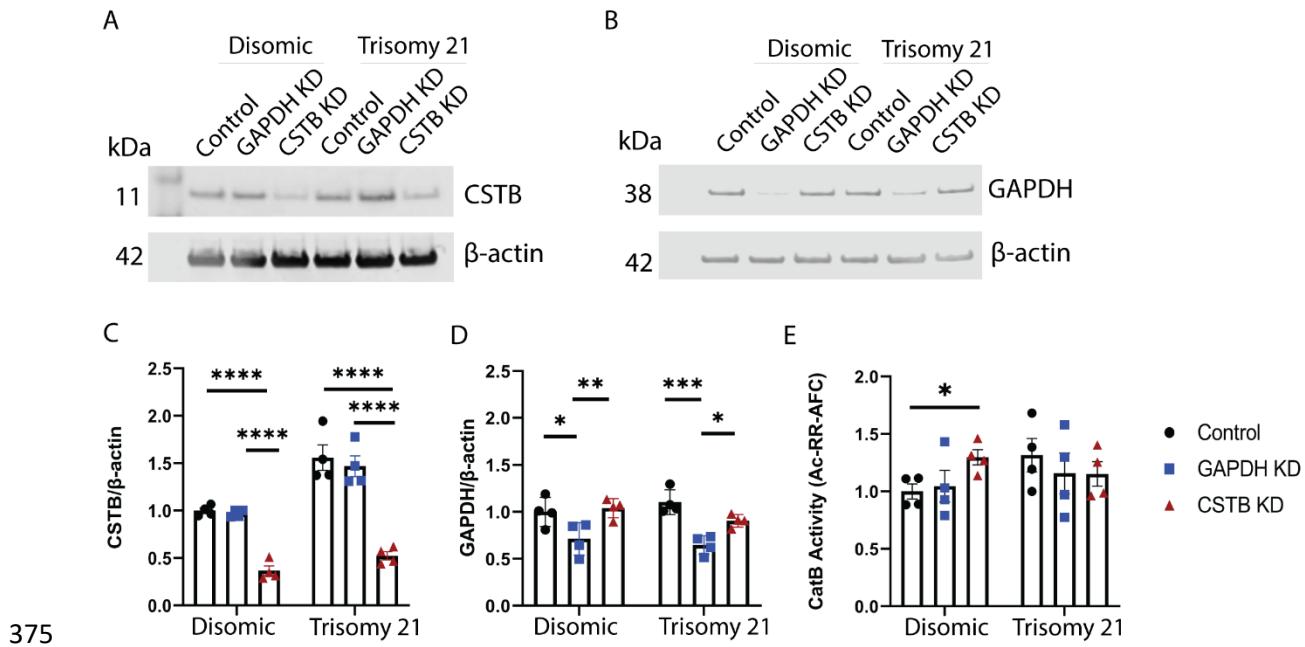
336 GraphPad Prism 9 software (GraphPad Software) and SPSS version 26. Statistical
337 significance was determined with a threshold of $p < 0.05$.

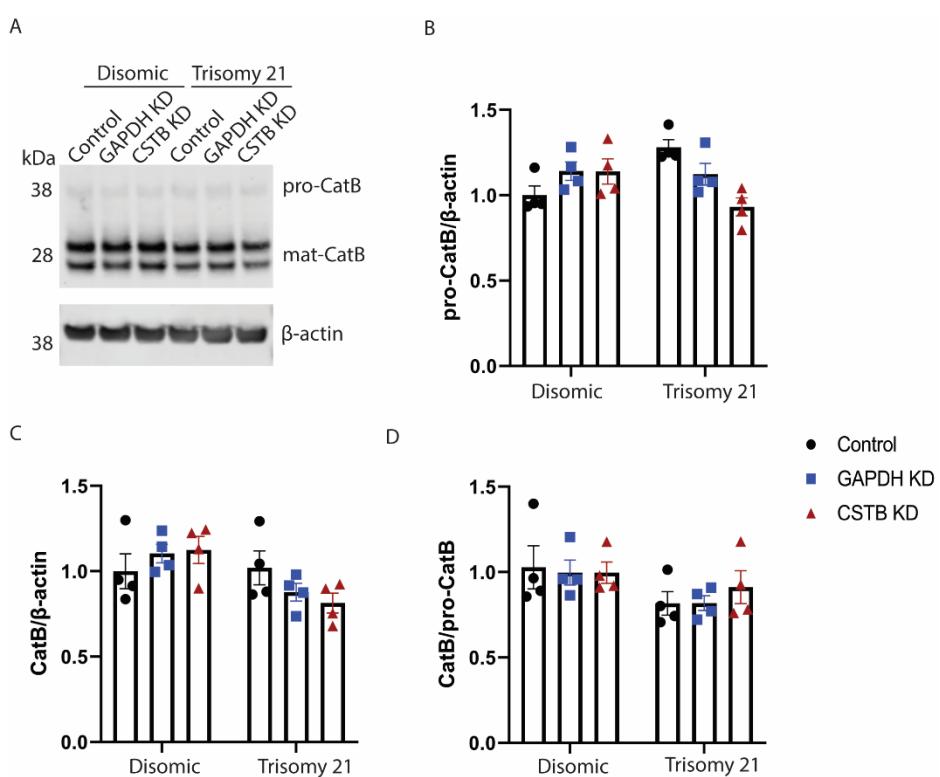
338

339 **Acknowledgements**

340 We thank Dr. T. Cunningham (MRC Mouse Genetics Unit and Institute of Prion
341 diseases, University College London) for help with this project. For the purpose of
342 Open Access, the author has applied a CC-BY public copyright licence to any Author
343 Accepted Manuscript version arising from this submission.

344


345 **Funding Statement**


346 F.K.W., is supported by the UK Dementia Research Institute (UKDRI-1014) through
347 UK DRI Ltd, principally funded by the UK Medical Research Council. Y. W. is
348 supported by an Alzheimer's Research UK Senior Research Fellowship (ARUK-
349 SRF2018A-001 and ARUK-SRFEXT2022-001) awarded to F.K.W.

350 **Figure Legends**

351

352 **Fig. 1. CSTB knockdown and CatB activity in disomic and trisomy 21 human**
353 **fibroblasts.** Western blot of CSTB (A) and GAPDH (B) normalised to β -actin in
354 disomic and trisomy 21 human fibroblasts. (C) Trisomy 21 increased CSTB
355 abundance in control and *GAPDH* KD groups (ANOVA main effect of Trisomy 21
356 $F(1,18)=41.92$, $p<0.0001$, pairwise with Tukey correction control $p<0.0001$, *GAPDH*
357 KD $p=0.0002$). DharmaFECT-mediated knockdown reduced CSTB abundance
358 compared with the control and the *GAPDH* KD groups (ANOVA main effect
359 treatment $F(2,18)=73.50$, $p<0.0001$, pairwise with Tukey correction control versus
360 CSTB knockdown $p<0.0001$ (disomic and trisomy 21), GAPDH versus CSTB
361 knockdown $p<0.0001$ (disomic and trisomy 21)). (D) DharmaFECT-mediated
362 knockdown significantly reduced GAPDH compared with the control group and the
363 CSTB KD group (ANOVA main effect treatment $F(2,18)=19.04$, $p<0.0001$, pairwise
364 with Tukey correction control versus GAPDH knockdown $p=0.0133$ (disomic),
365 $p=0.0002$ (trisomy 21), GAPDH versus CSTB knockdown $p=0.0051$ (disomic)
366 $p=0.0259$ (trisomy 21). (E) CSTB knockdown significantly increases CatB activity
367 compared with the control group and the *GAPDH* KD group in disomic, but not
368 trisomic 21, fibroblasts as measured by the rate of cleavage of Ac-RR-AFC,
369 corrected for nonspecific activity in samples inhibited by ALLM. (ANOVA interaction
370 of treatment and trisomy $F(2,12)=4.621$, $p=0.0325$, pairwise with Tukey control
371 versus CSTB knock-down $p=0.0418$ (disomic)). Data are shown as \pm SEM of group
372 means for 4 disomic and 4 trisomy 21 lines (6 technical replicates for CSTB KD
373 western blots, 4 technical replicates for GAPDH KD western blots and 2 technical
374 replicates for CatB activity assay). * $p<0.05$, ** $p<0.001$, *** $p<0.0001$.

385

386

387 **Fig. 3. CSTB and CatB abundance, and CatB activity in the brain of WT, *Cstb*^{+/−},**

388 **Tc1 and Tc1;Cstb^{+/−} cortex.** Representative western blots of (A) mouse CSTB

389 (mCSTB), (B) human CSTB (hCSTB), (C) pro-CatB and mature CatB in cortex

390 homogenate of WT, *Cstb*^{+/−}, Tc1 and Tc1; *Cstb*^{+/−} mice. The relative intensity of

391 mCSTB, hCSTB, pro-CatB or mature CatB was quantified by normalising it with β-

392 actin. (D) The abundance of mCSTB is lower in *Cstb*^{+/−} and Tc1; *Cstb*^{+/−} compared

393 with WT and Tc1 controls (ANOVA *Cstb*^{+/−} genotype main-effect $F(1,31)=5.857$,

394 $p=0.022$, pairwise comparison with Hochberg correction WT compared *Cstb*^{+/−}

395 $p=0.043$, Tc1 compared Tc1; *Cstb*^{+/−} $p=0.006$, Tc1 compared *Cstb*^{+/−} $p<0.001$). (E)

396 The abundance of hCSTB was higher in Tc1 and Tc1; *Cstb*^{+/−} than WT and *Cstb*^{+/−}

397 controls (ANOVA Tc1 genotype main-effect $F(1,31)=383.733$, $p<0.001$, pairwise

398 comparison with Hochberg correction WT/ *Cstb*^{+/−} compared Tc1 $p<0.001$, *Cstb*^{+/−}

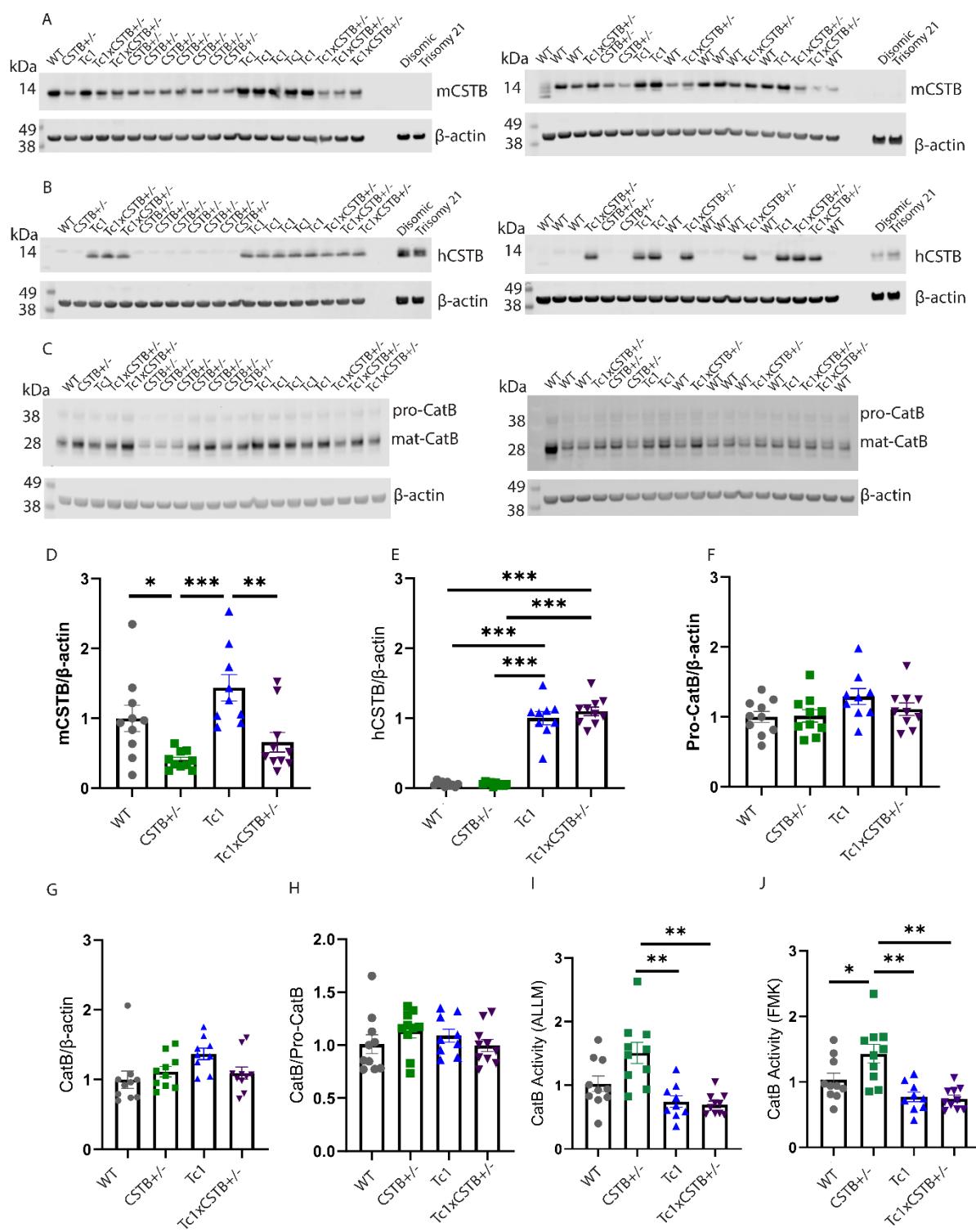
399 compared Tc1; *Cstb*^{+/−} $p<0.001$). No difference in the abundance of (F) proCatB, (G)

400 mature CatB or (H) the mature CatB/pro-CatB ratio was detected in the WT, *Cstb*^{+/−},

401 Tc1 and Tc1; *Cstb*^{+/−} cortex. (I) CatB activity as measured by biochemical assay

402 (rate of cleavage of Ac-RR-AFC corrected for (I) ALLM or (J) FMK. (I) CatB activity

403 differed between genotypes (ANOVA Tc1 genotype main-effect $F(1,30)=16.583$,

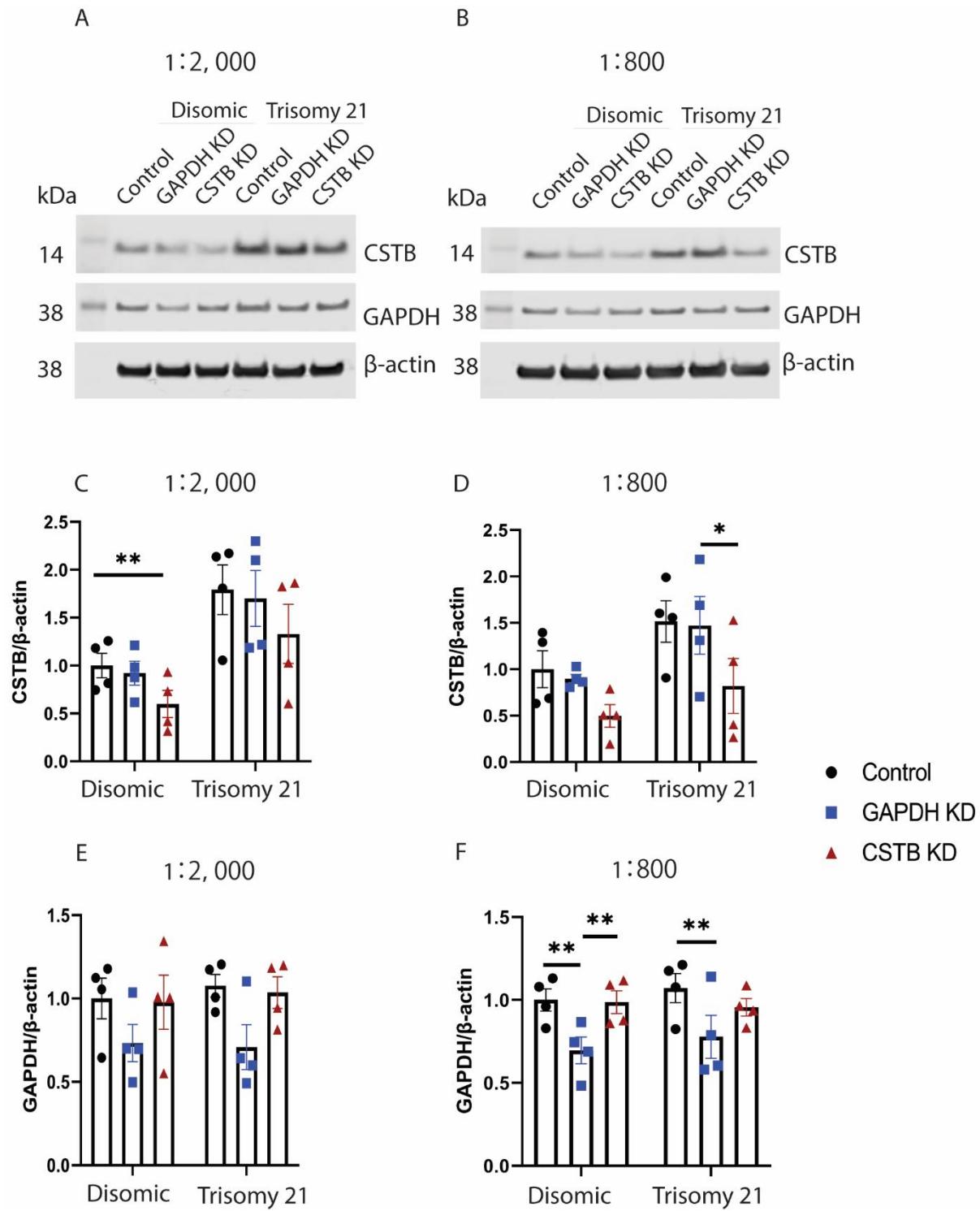

404 $p<0.001$, pairwise comparison with Hochberg correction *Cstb*^{+/−} compared Tc1

405 p=0.001, *Cstb*⁺⁻ compared *Tc1;Cstb*⁺⁻ p=0.001). (J) CatB activity differed between
406 genotypes (ANOVA *Tc1* genotype main-effect $F(1,30)=16.106$, $p<0.001$, pairwise
407 comparison with Hochberg correction WT compared *Cstb*⁺⁻ p=0.048, *Cstb*⁺⁻
408 compared *Tc1* p=0.001, *Cstb*⁺⁻ compared *Tc1;Cstb*⁺⁻ p=0.001). (A-H) 10 WT (5
409 female 5 male), 10 *Cstb*⁺⁻ (3 female, 7 male), 9 *Tc1* (3 female, 6 male) and 10
410 *Tc1;Cstb*⁺⁻ (4 female, 6 male) mice. (I, J) 10 WT (5 female, 5 male), 10 *Cstb*⁺⁻ (3
411 female, 7 male), 9 *Tc1* (3 female, 6 male) and 9 *Tc1;Cstb*⁺⁻ (4 female, 5 male) mice.
412 2-3 technical replicates for western blots and 2 technical replicates for CatB activity
413 assay). * $p<0.05$, ** $p<0.01$, *** $p<0.001$, error bars SEM.

414

415

416



418 **Supporting Information**

419

420 **S1 Fig. CSTB and GAPDH knockdown in disomic and trisomy 21 human**
421 **fibroblasts using different concentrations of DharmaFECT transfection**
422 **reagent.** (A-B) Western blot of CSTB and GAPDH normalised to β -actin in disomic
423 and trisomy 21 human fibroblasts in (A) 1:2,000 dilution of DharmaFECT reagent or
424 (B) 1:800 dilution DharmaFECT reagent. (C) 1:2,000 dilution of DharmaFECT-
425 mediated CSTB knockdown reduced CSTB abundance compared with the control
426 group ($p= 0.0058$) in the disomic, but not in the trisomy 21 fibroblasts. (D) 1:800
427 dilution of DharmaFECT-mediated CSTB knockdown reduced CSTB abundance in
428 the CSTB KD group compared with the GAPDH KD group ($p= 0.0139$), but not
429 compared to the control group in the trisomic 21 human fibroblasts or the disomic
430 group. (E) 1:2000 dilution of DharmaFECT-mediated GAPDH knockdown does not
431 affect GAPDH abundance in either disomic or trisomy 21 fibroblasts. (F) 1:800
432 dilution of DharmaFECT-mediated GAPDH knockdown reduced GAPDH abundance
433 in disomic fibroblasts compared to control ($p= 0.002$) and CSTB ($p= 0.0028$) groups.
434 In the trisomy 21 fibroblasts, GAPDH knockdown reduced GAPDH abundance
435 compared with the control ($p= 0.0025$), but not the CSTB knockdown group. Data are
436 shown as \pm SEM of group means for 4 disomic and 4 trisomy 21 lines (1 technical
437 replicate for western blots). Data were analysed by two-way ANOVA followed by
438 Tukey's post-hoc tests, * $p<0.05$, ** $p<0.001$, *** $p<0.0001$.

439

445 References

- 446 1. Wiseman, F.K., et al., *Down syndrome--recent progress and future prospects*. *Hum Mol Genet*, 2009. **18**(R1): p. R75-83.
- 447 2. Head, E. and I.T. Lott, *Down syndrome and beta-amyloid deposition*. *Current Opinion in Neurology*, 2004. **17**(2): p. 95-100.
- 448 3. Schupf, N. and G.H. Sergievsky, *Genetic and host factors for dementia in Down's syndrome*. *Br J Psychiatry*, 2002. **180**: p. 405-10.
- 449 4. McCarron, M., et al., *A prospective 14-year longitudinal follow-up of dementia in persons with Down syndrome*. *Journal of Intellectual Disability Research*, 2014. **58**(1): p. 61-70.
- 450 5. Sawa, M., et al., *Impact of increased APP gene dose in Down syndrome and the Dp16 mouse model*. *Alzheimers Dement*, 2022. **18**(6): p. 1203-1234.
- 451 6. García-Cerro, S., et al., *Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer's disease phenotypes*. *Neurobiol Dis*, 2017. **106**: p. 76-88.
- 452 7. Alić, I., et al., *Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain*. *Mol Psychiatry*, 2021. **26**(10): p. 5766-5788.
- 453 8. Mumford, P., et al., *Genetic Mapping of APP and Amyloid- β Biology Modulation by Trisomy 21*. *J Neurosci*, 2022. **42**(33): p. 6453-6468.
- 454 9. Tosh, J.L., et al., *Genetic dissection of down syndrome-associated alterations in APP/amyloid- β biology using mouse models*. *Sci Rep*, 2021. **11**(1): p. 5736.
- 455 10. Wiseman, F.K., et al., *Trisomy of human chromosome 21 enhances amyloid- β deposition independently of an extra copy of APP*. *Brain*, 2018. **141**(8): p. 2457-2474.
- 456 11. Zheng, Q., et al., *USP25 inhibition ameliorates Alzheimer's pathology through the regulation of APP processing and A β generation*. *J Clin Invest*, 2022. **132**(5).
- 457 12. Turk, V. and W. Bode, *The cystatins: protein inhibitors of cysteine proteinases*. *FEBS Lett*, 1991. **285**(2): p. 213-9.
- 458 13. Turk, V., B. Turk, and D. Turk, *Lysosomal cysteine proteases: facts and opportunities*. *The EMBO Journal*, 2001. **20**(17): p. 4629-4633.
- 459 14. Yadati, T., et al., *The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management*. *Cells*, 2020. **9**(7).
- 460 15. Wu, Y., et al., *Cathepsin B abundance, activity and microglial localisation in Alzheimer's disease-Down syndrome and early onset Alzheimer's disease; the role of elevated cystatin B*. *Acta Neuropathologica Communications*, 2023. **11**(1): p. 132.
- 461 16. Stoka, V., V. Turk, and B. Turk, *Lysosomal cathepsins and their regulation in aging and neurodegeneration*. *Ageing Res Rev*, 2016. **32**: p. 22-37.
- 462 17. Hook, G., M. Kindy, and V. Hook, *Cathepsin B Deficiency Improves Memory Deficits and Reduces Amyloid- β in hA β PP Mouse Models Representing the Major Sporadic Alzheimer's Disease Condition*. *J Alzheimers Dis*, 2023. **93**(1): p. 33-46.
- 463 18. Yuyama, K., et al., *Extracellular vesicle proteome unveils cathepsin B connection to Alzheimer's disease pathogenesis*. *Brain*, 2024. **147**(2): p. 627-636.
- 464 19. Bellenguez, C., et al., *New insights into the genetic etiology of Alzheimer's disease and related dementias*. *Nat Genet*, 2022. **54**(4): p. 412-436.
- 465 20. Embury, C.M., et al., *Cathepsin B Improves β -Amyloidosis and Learning and Memory in Models of Alzheimer's Disease*. *J Neuroimmune Pharmacol*, 2017. **12**(2): p. 340-352.
- 466 21. Sun, B., et al., *Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer's disease*. *Neuron*, 2008. **60**(2): p. 247-57.
- 467 22. Cermak, S., et al., *Loss of Cathepsin B and L Leads to Lysosomal Dysfunction, NPC-Like Cholesterol Sequestration and Accumulation of the Key Alzheimer's Proteins*. *PLOS ONE*, 2016. **11**(11): p. e0167428.

495 23. Yang, D.S., et al., *Reversal of autophagy dysfunction in the TgCRND8 mouse model of*
496 *Alzheimer's disease ameliorates amyloid pathologies and memory deficits*. Brain, 2011.
497 **134**(Pt 1): p. 258-77.

498 24. Jiang, Y., et al., *Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated*
499 *by APP- β CTF (C99)*. J Neurosci, 2019. **39**(27): p. 5255-5268.

500 25. Wu, Y., et al., *The effects of Cstb duplication on APP/amyloid- β pathology and cathepsin B*
501 *activity in a mouse model*. PLOS ONE, 2021. **16**(7): p. e0242236.

502 26. Rozman, J., et al., *Autocatalytic processing of recombinant human procathepsin B is a*
503 *bimolecular process*. FEBS Lett, 1999. **459**(3): p. 358-62.

504 27. O'Doherty, A., et al., *An aneuploid mouse strain carrying human chromosome 21 with Down*
505 *syndrome phenotypes*. Science, 2005. **309**(5743): p. 2033-7.

506 28. Gribble, S.M., et al., *Massively parallel sequencing reveals the complex structure of an*
507 *irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome*.
508 PLoS One, 2013. **8**(4): p. e60482.

509 29. Rinne, R., et al., *Reduced cystatin B activity correlates with enhanced cathepsin activity in*
510 *progressive myoclonus epilepsy*. Annals of Medicine, 2002. **34**(5): p. 380-385.

511 30. Cimerman, N., et al., *Interaction of cystatin C variants with papain and human cathepsins B,*
512 *H and L*. Journal of enzyme inhibition, 1999. **14**(2): p. 167-174.

513 31. Kaur, G., et al., *Cystatin C Rescues Degenerating Neurons in a Cystatin B-Knockout Mouse*
514 *Model of Progressive Myoclonus Epilepsy*. The American Journal of Pathology, 2010. **177**(5):
515 p. 2256-2267.

516 32. Sullivan, K.D., et al., *Trisomy 21 causes changes in the circulating proteome indicative of*
517 *chronic autoinflammation*. Scientific Reports, 2017. **7**(1): p. 14818.

518 33. Kaur, G., et al., *Cystatin C prevents neuronal loss and behavioral deficits via the endosomal*
519 *pathway in a mouse model of down syndrome*. Neurobiology of Disease, 2018. **120**: p. 165-
520 173.

521 34. Im, E., et al., *Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is*
522 *caused by v-ATPase inhibition by Tyr(682)-phosphorylated APP β CTF*. Sci Adv, 2023. **9**(30): p.
523 eadg1925.

524 35. Truett, G.E., et al., *Preparation of PCR-quality mouse genomic DNA with hot sodium*
525 *hydroxide and tris (HotSHOT)*. Biotechniques, 2000. **29**(1): p. 52, 54.

526

527

528

529

530