

1 **Marine protected areas promote resilience of kelp forests to 2 marine heatwaves by preserving trophic cascades**

3
4 **Authors:** Joy A. Kumagai¹, Maurice C. Goodman¹, Juan Carlos Villaseñor-Derbez¹, David S.
5 Schoeman^{2,3}, Kyle C. Cavanagh⁴, Tom W. Bell⁵, Fiorenza Micheli^{1,6}, Giulio De Leo^{1,7}, Nur Arafeh-
6 Dalmau^{1,4}

7
8 **Contact Information:** Joy A. Kumagai - kumagaij@stanford.edu

9
10 **Affiliations:**

11 ¹ Stanford University, Hopkins Marine Station, Pacific Grove, CA, USA.

12 ² Ocean Futures Research Cluster, School of Science, Technology, and Engineering, University of the
13 Sunshine Coast, Maroochydore, QLD, Australia

14 ³ Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University,
15 Gqeberha, South Africa

16 ⁴ University of California, Department of Geography, Los Angeles, CA, USA

17 ⁵ Woods Hole Oceanographic Institution, Department of Applied Ocean Physics & Engineering, Woods
18 Hole, MA, USA

19 ⁶ Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA

20 ⁷ Woods Institute for the Environment, Stanford University, Stanford, CA, USA

21

22 **Abstract**

23 Under accelerating threats from climate change impacts, marine protected areas (MPAs) have
24 been proposed as climate adaptation tools to enhance the resilience of marine ecosystems. Yet, debate
25 persists as to whether and how MPAs may promote resilience to climate shocks. Here, we empirically
26 assess whether a network of 85 temperate MPAs in coastal waters promotes resilience against marine
27 heatwaves in Central and Southern California. We use 38 years of satellite-derived kelp cover to test
28 whether MPAs enhance the resistance of kelp forest ecosystems to, and recovery from, the unprecedented
29 2014–2016 marine heatwave regime. We also leverage a 20-year time series of subtidal community
30 surveys to understand whether protection and recovery of sea urchin predators within MPAs explain
31 emergent patterns in kelp forest resilience through trophic cascades. We find that fully protected MPAs
32 (i.e. no-take marine reserves) significantly enhance the resistance to and recovery of kelp forests to
33 marine heatwaves in Southern California, but not in Central California. Differences in regional responses
34 to the heatwaves may be partly explained by three-level trophic interactions comprising kelp, urchins, and

35 predators of urchins. Urchin abundances in Southern California MPAs are significantly lower within fully
36 protected MPAs during and after the heatwave, while the abundance of their predators are higher. In
37 Central California, there is no significant difference in urchin abundances within protected areas as the
38 current urchin predator, sea otters, are unilaterally protected. Therefore, we provide evidence that fully
39 protected MPAs can be effective climate adaptation tools, but their ability to enhance resilience to
40 extreme climate events depends upon region-specific environmental and ecological dynamics. As nations
41 progress to protect 30% of the oceans by 2030 scientists and managers should consider whether
42 protection will increase resilience to climate-change impacts given their local ecological contexts, and
43 what additional measures may be needed.

44

45 **Keywords:**

46 Marine ecology; climate change; ecological resilience; permutation analysis; trophic interactions; climate-
47 smart conservation, *Macrocystis pyrifera*; *Semicossyphus pulcher*

48

49 **1. Introduction**

50 Marine protected areas (MPAs) are an essential conservation tool whose coverage has globally
51 expanded in the past decades (Duarte et al., 2020; Lubchenco & Grorud-Colvert, 2015). Their importance
52 is reflected in recent international policies aiming to protect 30% of coastal and open oceans, as specified
53 within Target 3 of the post-2020 biodiversity framework (Convention of Biological Diversity, 2022).

54 Following mounting evidence of increasing impacts of climate change on marine ecosystems (Schoeman
55 et al., 2023), the new conservation framework includes climate mitigation and adaptation (e.g., Target 8
56 of the post-2020 biodiversity framework; Convention of Biological Diversity, 2022). The assumption
57 underlying this framework is that protected areas may enhance climate adaptation and ecosystem
58 resilience. While some empirical evidence supporting this expectation exists for individual MPAs and

59 species (Jacquemont et al., 2022), clear empirical evidence at regional scales and for whole ecosystems is
60 still lacking. There is strong consensus that well-managed and fully protected (i.e., no-take) MPAs
61 promote biodiversity and habitat conservation (Gill et al., 2017; Lester et al., 2009; Sala & Giakoumi,
62 2018), but the extent to which MPAs confer ecological resilience to climate change impacts remains
63 poorly understood.

64 One prominent manifestation of anthropogenic climate change is the increase in the frequency and
65 intensity of extreme climate shocks, in particular marine heatwaves (MHWs) (Oliver et al., 2018). MHWs
66 have caused mass mortality of sessile or low-mobility species (Garrabou et al., 2022; Szwalski et al.,
67 2023), losses of habitat-forming species such as corals and kelp, and regime shifts, among other impacts
68 (Arafeh-Dalmau et al., 2019; McPherson et al., 2021; Smale et al., 2019; Wernberg, 2021). For example,
69 MHWs in Australia and in the northeast Pacific Ocean have caused extensive losses of kelp over large
70 areas and a shift into alternative stable ecosystem states dominated by less-productive algae or by sea
71 urchin “barrens”, that have resulted in large-scale economic losses (Rogers-Bennett & Catton, 2019;
72 Wernberg, 2021). Given that MHWs will become more frequent and intense in coming decades, it is a
73 research priority to understand whether and how MPAs might increase resilience to these impacts.

74 Whether MPAs provide resilience to ecosystems experiencing climate shocks is debated and
75 challenging to study. The operational definition for resilience used here is resistance to, and recovery
76 from disturbance (Connell & Sousa, 1983), although resilience is a multifaceted concept (O’Leary et al.,
77 2017). MPAs are designed to provide protection from local anthropogenic disturbance, primarily from
78 extractive activities. They cannot directly mitigate the broad scale impacts of climate shocks, yet, by
79 reducing extractive activities such as fishing, MPAs may allow the recovery of key species for ecosystem
80 functioning, which in turn can promote resilience to climate shocks (Benedetti-Cecchi et al., 2024;
81 Jacquemont et al., 2022; Roberts et al., 2017; Sala & Giakoumi, 2018; Schindler et al., 2015). The
82 empirical evidence surrounding this argument is still emerging and mixed. Some studies have found no
83 evidence that MPAs confer resilience to climate impacts (Bruno et al., 2018; Freedman et al., 2020; J. G.

84 Smith et al., 2023). On the other hand, other studies have shown increased resilience to climate change in
85 MPAs: for instance, in Baja California, Mexico, juvenile recruitment and adult abundance of pink and
86 green abalone recovered faster within MPAs following a mass mortality of benthic invertebrates due to
87 climate-driven hypoxia and warming (Micheli et al., 2012; A. Smith et al., 2022). In California, USA,
88 species diversity recovered 75% faster from a series of MHWs within MPAs compared to adjacent
89 unprotected areas (Ziegler et al., 2023). Additionally, a recent global analysis found that well-enforced
90 MPAs can buffer the impacts of MHWs on reef fish by promoting the stability of fish at the community
91 and metacommunity levels (Benedetti-Cecchi et al., 2024). Ultimately, a clear understanding of the
92 conditions under which MPAs can provide climate resilience for whole ecosystems, including habitat-
93 forming species and their associated communities, remains limited, due to the challenge of detecting
94 resilience within MPAs.

95 One key challenge with detecting resilience emerges from the scarcity of long-term, sufficiently
96 replicated and spatially extensive studies needed to characterize the state of the marine systems within
97 and outside MPAs, before, during, and after climate extremes occur. Another limitation is that MPAs
98 must be sufficiently large and must have been in place for a sufficient duration for any benefits of
99 protection to emerge (Claudet et al., 2008). With a general paucity of studies with the necessary before,
100 after, control, impact experimental design and statistical power, it is challenging to characterize the
101 natural temporal variability and the inherent spatial heterogeneities of marine environments to achieve
102 consensus on whether and under what circumstances MPAs might increase resilience to climate change
103 impacts.

104 Here we overcome these challenges by utilizing long-term datasets to evaluate whether MPAs can
105 increase kelp forest resilience to an unprecedented series of MHWs in California. During 2014–2016, the
106 California coast was subject to one of the largest and longest MHW regime ever documented on Earth
107 (Cavole et al., 2016; Di Lorenzo & Mantua, 2016; Frölicher & Laufkötter, 2018), providing a unique
108 opportunity to investigate the dynamics of MPAs and ecosystem resilience. The combination of the 2014

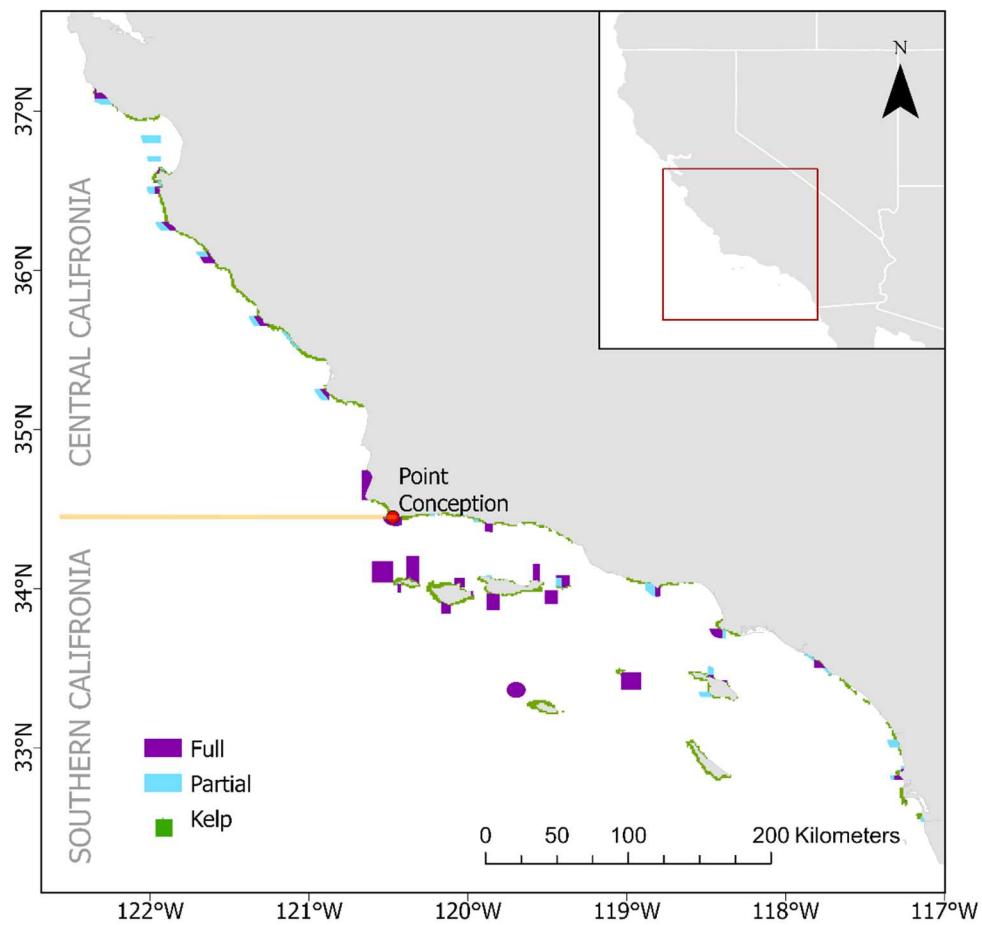
109 warm-water anomaly and the 2015–2016 El Niño Southern Oscillation led to extremely warm waters
110 (Cavole et al., 2016; Frölicher et al., 2018) that caused species range shifts (Favoretto et al., 2022;
111 Sanford et al., 2019; J. G. Smith et al., 2023), a widespread loss of kelp forests from Northern California
112 to Baja California Sur, Mexico (Bell et al., 2023), and an outbreak of sea urchins that are eroding kelp
113 forest resilience. Additionally, California has a network of MPAs that cover 16% of state waters
114 (Saarman & Carr, 2013), decades of satellite-derived estimates of kelp cover (Bell et al., 2023), and
115 underwater surveys of kelp forest communities (Malone et al., 2022). With the rich ecological monitoring
116 data that exist in this ecosystem, we can evaluate for the first time the resilience to and the underlying
117 mechanisms of kelp forest ecosystems to MHWs within MPAs at a regional scale.

118 Trophic cascades are one of the proposed mechanisms by which MPAs can provide climate
119 resilience. It has been hypothesized that, by protecting key predators of sea urchins, a voracious predator
120 of kelp, MPAs may indirectly control sea urchin abundance, thus increasing both kelp resistance to, and
121 recovery from, MHWs (Ripple et al., 2016). Outside MPAs, where fishers target urchin predators,
122 including California sheephead (*Semicossyphus pulcher*) and spiny lobsters (*Panulirus interruptus*), there
123 are fewer urchin predators and more urchins (Eisaguirre et al., 2020). When a disturbance leads to severe
124 kelp loss, urchins may shift their behavior from hiding in protective cracks and eating drift kelp to being
125 more exposed, eating any remaining kelp and preventing further kelp establishment (Harrold & Reed,
126 1985; Kriegisch et al., 2019). Overharvesting and depletion of urchin predators can then lead to a high
127 abundance of urchins that overgraze kelp forests (Cowen, 1983). If MPAs protect and foster greater
128 abundances of urchin predators (which otherwise would be commonly fished), then protected kelp forests
129 may be more likely to recover and even resist change in the face of a disturbance, compared to
130 unprotected kelp forests.

131 In this study we investigated the recovery of the giant kelp, *Macrocystis pyrifera* (henceforth “kelp”)
132 following the 2014–2016 MHWs in Central and Southern California. The main objectives were to
133 determine (1) whether kelp forests within a network of MPAs were more resilient to the 2014–2016

134 MHWs compared to unprotected kelp forests, (2) whether resilience of kelp forests differed between
135 regions, and (3) whether there is evidence that trophic cascades are a mechanism underlying resilience to
136 climate shocks. To address these questions, we assessed changes in kelp area during and after the 2014–
137 2016 MHW using satellite-derived estimates of kelp area spanning 1984–2021 and analyzed 20 years of
138 subtidal monitoring datasets to investigate possible evidence for trophic cascades. We tested the following
139 hypotheses: (i) kelp canopy resilience is higher within fully protected and partially protected areas
140 compared to unprotected areas in both Central and Southern California during and after the MHWs; (ii)
141 urchin abundances are lower within protected areas compared to unprotected areas during and after the
142 MHWs, enabling the recovery of kelp forests; and (iii) urchin abundances are driven by the abundances of
143 their main predators.

144


145 **2. Materials and Methods**

146

147 **2.1 Study area**

148 Our study spans Central and Southern California as defined by the Marine Life Protection Act
149 (Marine Life Protection Act, 2013), encompassing the region where giant kelp is the dominant surface
150 canopy-forming kelp species in the USA, from the US Mexico border ($\sim 32.5^\circ$ N) to Pigeon Point,
151 California ($\sim 37.2^\circ$ N) (Figure 1). Central and Southern California are separated into two different
152 biogeographic regions at Point Conception ($\sim 34.5^\circ$ N), which is a transition zone between the cooler
153 temperate ecosystems of Central California and the warmer ecosystems of Southern California (Murray &
154 Abbott, 1980). In this region, there are a total of 85 MPAs, with varying levels of fishing restriction (no-
155 take MPAs and partially protected multiple-use areas) (Figure 1). Of these, 60 MPAs are in Southern
156 California and 25 in Central California. In Southern California, the primary predators of sea urchins
157 include the California sheephead and spiny lobsters, while in Central California, sea otters (*Enhydra*

158 *lutris*) and sunflower sea stars (*Pycnopodia helianthoides*) are the primary predators of urchins —
159 although sunflower sea stars are no longer a functional predator of urchins due to a mass mortality event
160 that has greatly reduced their numbers throughout California (Burt et al., 2018; Eisaguirre et al., 2020).
161 As such, sea otters, which are protected statewide, are currently the sole top predator of urchins within
162 Central California and are known to be a primary driver for changes in kelp (Eisaguirre et al., 2020;
163 Nicholson et al., 2024). California sheephead and spiny lobsters, which are both fished, fill this role of
164 predation in Southern California (Eisaguirre et al., 2020). The range of purple (*Strongylocentrotus*
165 *purpuratus*) and red urchins (*Mesocentrotus franciscanus*) both span from Alaska to Baja California,
166 while crowned urchins (*Centrostephanus coronatus*) are common between the Galapagos and the Channel
167 Islands, being mostly absent from Central California.

168

169 **Figure 1: Distribution of giant kelp and the network of marine protected areas in Central and**
170 **Southern California.** Green polygons show the satellite-derived locations with giant kelp, and purple and
171 blue polygons show fully and partially protected areas in the network in Central and Southern California.
172 The yellow horizontal line at 34.4° N represents the biogeographic barrier at Point Conception where
173 Central California is separated from Southern California.

174

175 **2.2 Quantifying the resilience of kelp forests from MHWs**

176

177 We used 38 years (1984–2021) of quarterly estimates of kelp area based on remote sensing from
178 the Santa Barbara Coastal LTER time series dataset (Bell et al. 2023) to estimate the resilience of kelp
179 forests. The dataset contains quarterly estimates of kelp canopy area in m² (referred to as kelp area from
180 now on) from three Landsat sensors: Landsat 5 Thematic Mapper (1984–2011), Landsat 7 Enhanced
181 Thematic Mapper+ (1999–present), and Landsat 8 Operational Land Imager (2013–present). Each Landsat
182 sensor has 30-m resolution and does not distinguish between giant and bull kelp. We aggregated the
183 original dataset to 1-km resolution to reduce spatial autocorrelation in the data by summing the kelp area
184 in the 30x30m pixels. We followed previous approaches for cleaning the Landsat data (Bell et al., 2023)
185 and excluded those quarters of a year that had no data for more than 25% of the 30-m pixels. We also
186 removed from our dataset 1-km pixels which consisted of fewer than five 30-m pixels. Next, we removed
187 1-km pixels for which more than two quarters of kelp area were missing in a given year. Finally, the
188 quarterly 1-km data were aggregated to a yearly scale by taking the maximum quarterly kelp area for each
189 year, as a preliminary data analysis showed that the peak in kelp forest cover might occur in different
190 quarters in different years and pixels. Our final dataset thus uses the maximum annual kelp area per 1-km²
191 pixel.

192 To develop a metric of kelp resistance and recovery to the 2014–2016 MHWs, we calculated the
193 relative change in kelp area. For each 1-km² pixel, we first determined the long-term historic baseline of
194 kelp coverage, defined as the average kelp area across the 30 years (1984–2013) before the 2014–16
195 MHWs. Next, we calculated the ratio of each subsequent year's (2014–2021) kelp area relative to that
196 baseline. We define the resistance and recovery of kelp forests to the MHWs as the annual change in kelp
197 area during 2014–2016 and 2017–2021, respectively, relative to the corresponding pre-2014, historical
198 baseline mean for each 1-km² pixel. Accordingly, values close to 100% represented stable kelp cover with
199 respect to the average kelp forest cover during the 1984–2013 baseline; values <100% represented kelp
200 decline with respect to the pre-MHW baseline, and values >100% represented expansion of kelp coverage
201 with respect to the historical baseline.

202

203 2.3 Evaluating the resilience of kelp forests within MPAs

204

205 2.3.1 The MPA dataset

206 We downloaded the spatial layers, age, and level of fishing restriction for California's MPAs
207 from NOAA's MPAs Inventory. We categorized MPAs as fully protected or partially protected. Fully
208 protected areas do not allow any extractive activities, while there are some restrictions on recreational and
209 commercial fishing within partially protected areas (multiple use areas). Next, we overlaid the MPA layer
210 on the 1-km² resolution kelp layer. This procedure allowed us to categorize the level of protection of each
211 pixel as (i) unprotected, (ii) partially protected, or (iii) fully protected. Any pixels within National Marine
212 Sanctuaries were classified as unprotected because many of these sanctuaries have minimal or no fishing
213 restrictions. We then classified the remaining 85 MPAs in two age categories based on their year of
214 implementation. We classified MPAs established before 2007 as "old" and those established between
215 2007 and 2012 as "new". We also estimated additional environmental and human impact variables to

216 investigate whether MPAs were established in more productive areas for kelp forests using a principal
217 component analysis (Supplementary methods and results).

218

219 *2.3.2. Permutation Analysis*

220 We used a one-tailed permutation analysis to test whether the differences in resistance and
221 recovery of kelp area during and after the 2014–2016 MHWs were affected by protection status, i.e., fully
222 protected vs partially protected vs unprotected areas. As there are known latitudinal differences in water
223 temperature, oceanographic regimes and in other social and environmental drivers of kelp coverage, we
224 repeated the analysis for Southern and Central California separately. Given the high year-to-year
225 variability in kelp cover, we used a permutation test because it does not make assumptions about the
226 underlying distribution of the data (Supplementary Figure 2). Specifically, we tested the following
227 hypotheses: (i) relative kelp area during and after the MHWs within fully protected areas is higher than
228 relative kelp area within partially protected or unprotected areas, and (ii) relative kelp area during and
229 after the MHWs within partially protected areas is higher than that in unprotected areas.

230 For each region, we first computed the observed differences in the medians of the relative kelp
231 area during the response period (2014–2016) and in the recovery period (2017–2021) for each category
232 (i.e., fully protected vs unprotected; partially protected vs unprotected, fully protected vs partially
233 protected). Next, to derive the null distribution, we randomly assigned each pixel to one of the three
234 protection categories and computed the differences in the median values among the three categories of the
235 randomized set as above. These values were saved and then the same calculation was replicated 10,000
236 times, each time randomly assigning each pixel a protection category. The respective null distributions of
237 the difference in the median values among the three categories were derived by using the 10,000
238 randomized replicates, and a one-sided pseudo *p*-value was calculated as 1 less than the percentile of the
239 observed value under the corresponding null distribution. Since we generated multiple *p*-values for each
240 hypothesis, we applied Bonferroni's correction, multiplying *p*-values by the number of comparisons

241 undertaken (six). This analysis was implemented first across the entire study area, then repeated for each
242 region individually. We also explored the effect of the age of MPAs on our results, repeating the
243 permutation analyses for both old (established before 2007) and new (established between 2007-2012)
244 MPAs separately.

245 The distribution of relative kelp area was highly right skewed with most pixels having kelp
246 coverage after the MHW equal to, or lower than, before MHW. However, in some pixels, the relative
247 differences in the median coverage during and after MHW with respect to the historical baseline exceeded
248 100% by several orders of magnitude. These substantial changes in kelp area reflect the fact that some
249 areas that contained very little kelp historically experienced a large increase in kelp area during 2014–
250 2021. To test the impact of pixels with very small pre-MHW kelp forest area on the results of the
251 permutation analysis, we conducted a sensitivity analysis that involved removing pixels with the lowest
252 5% to 30% of mean historic kelp area from the analysis in increments of 5% (Supplementary Table 6) and
253 then re-running the permutation analysis.

254

255 2.4 Mechanism of resilience: trophic cascades

256

257 2.4.1 Processing of subtidal dataset

258 To investigate whether species interactions - sea urchin grazing and trophic cascades - may be a
259 mechanism driving differences in kelp recovery between protected and unprotected areas, we used
260 subtidal surveys of kelp forest communities that include urchins and their main predators from the
261 Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO; Malone et al., 2022). We spatially
262 joined the master PISCO sites dataset within our study area with the MPA layer to produce a layer with
263 the sites, protection status, and region. Next, we created a dataset of all the unique transects where PISCO
264 divers surveyed our species of interest for both the fish and benthic invertebrate (swath) surveys. We
265 filtered the PISCO data from 2002–2023. We chose this start year because the UCSB and UCSC

266 (University of California Santa Barbara and Santa Cruz) monitoring teams started consistently searching
267 for crowned urchins using the same methods in 2002 and this year is also five years after the 1997–1998
268 extreme El Niño. We chose five years after the 97–98 period to ensure any effects of sheephead
269 recruitment from the El Niño had mostly dissipated. We terminated the series in 2023 because this was
270 the last year of available data. Additionally, we focused on adult organisms, and did not include urchin
271 recruits and California sheephead that were <10 cm in total length, as these are not physically big enough
272 to eat large urchins. A previous study found only very small sea urchin spines in the gut contents of
273 California sheephead 15–20 cm in length (Hamilton & Caselle, 2015).

274 For the fish surveys, we calculated the number and biomass of sheephead recorded on each
275 transect, and joined these data to the dataset of all unique fish transects. For the invertebrate surveys, we
276 calculated the total number of urchins (summing all three species) and spiny lobsters recorded on each
277 transect, and again joined these data to the dataset of all unique swath transects. Because searches were
278 performed for all species of interest, a value of zero was assumed wherever one of the species was not
279 reported. We estimated California sheephead biomass using length-weight equation for California
280 sheephead $b = 0.0144 * l^{3.04}$, where b is the biomass in g and l is the total length in cm (Hamilton &
281 Caselle, 2015). Next, we summarized these data to average annual abundances per protection category per
282 site (as measured in standard transects), joined the fish and invertebrate data together, and then calculated
283 the average (and standard error) annual abundance for the species of interest across sites from 2002–2023.
284 Thus, each site is equally weighted. Finally, we added a variable called “heatwave”, and assigned its
285 values as “before” (2002–2013), “during” (2014–2016), and “after” (2017–2023), according to the year
286 the data were collected.

287 There were 81 monitoring sites (32.9%) within fully protected areas, 33 sites (13.4%) within
288 partially protected areas and 132 unprotected sites (53.7 %). Divided by region, there were 120 sites
289 (48.8%) within Southern and 126 sites (51.2%) within Central California. All sites with data we used for
290 analyses are visualized in Supplementary Figure 2.

291

292 *2.4.2 Regression Models*

293 We hypothesized that higher abundances of sheephead and lobster (mesopredators frequently
294 targeted by fisheries) inside MPAs in Southern California would result in greater predation pressure on
295 sea urchins, thereby decreasing sea urchin kelp herbivory and allowing for greater kelp area and/or faster
296 kelp recovery. We focused on Southern California to examine whether trophic cascades may be a
297 mechanism underlying kelp resilience because only in this region are the main predators of sea urchins
298 directly targeted by fisheries, and therefore benefit from protection in MPAs. To investigate these
299 hypotheses, we used two generalized linear mixed models (GLMMs) to explore the variability in urchin
300 abundances among times and locations. First, we modeled urchin abundances in Central California and
301 Southern California as a function of protection level, period (relative to the MHWs), and interactions
302 between protection and period. Second, we explored whether in Southern California the abundances of
303 California sheephead and spiny lobsters explain variability in urchin abundances (within the conceptual
304 framework of a predator-prey model), allowing for linear and quadratic effects of predator biomass. We
305 modeled these hypotheses separately because the proximal effect of California sheephead predation could
306 mask the effect of protection.

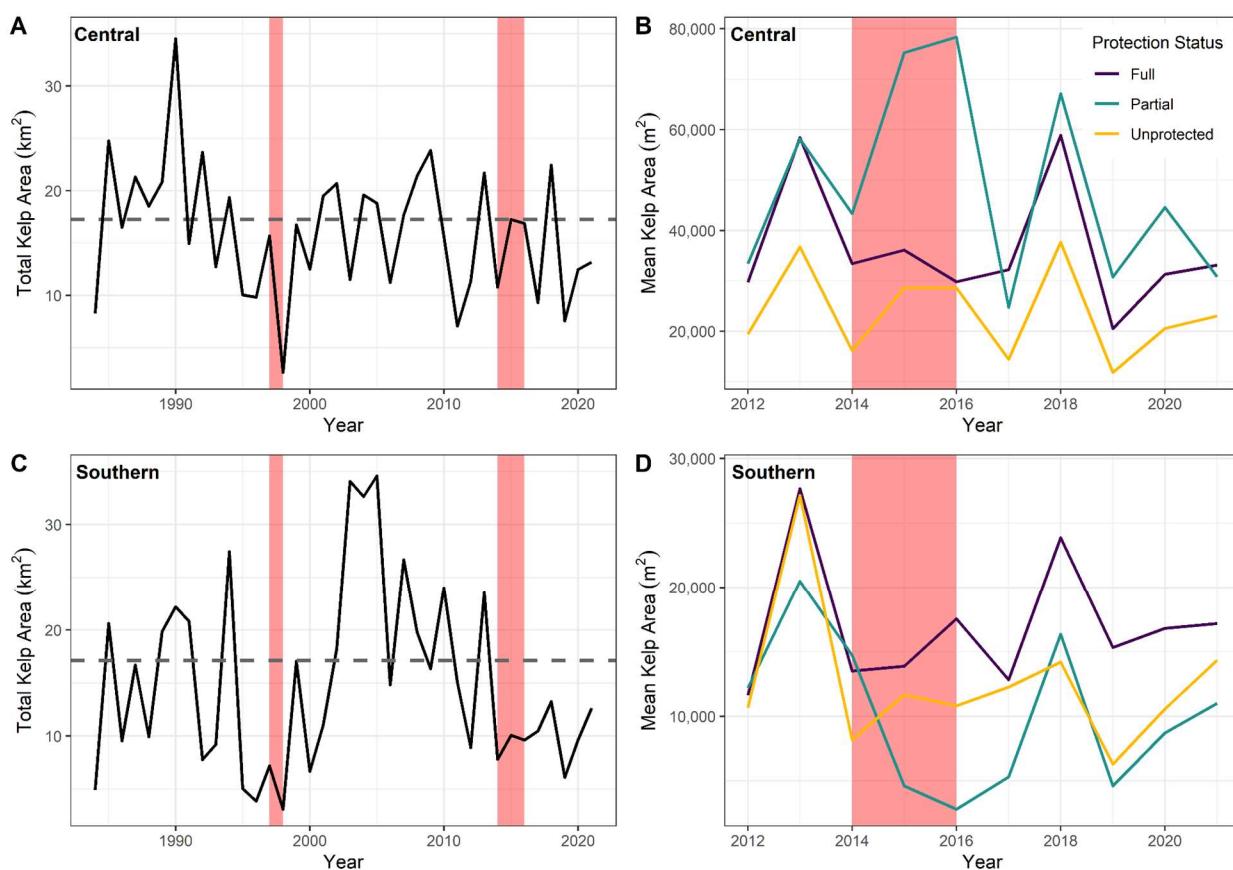
307 Due to zeros within the sea urchin and sheephead data and the fact that we modeled average
308 urchin count densities, we selected a Tweedie distribution with a log link function for all models. In
309 fitting each model, we estimated the Tweedie power parameter jointly with the model coefficients.
310 Additionally, we fit site-level random intercepts and slopes within both models to account for repeated
311 sampling at each site. The models including random intercepts and slopes were selected based on
312 diagnostic plots of the model residuals, as well as the fact that these models had lower AIC values than
313 those including only random intercepts. Following model fitting, we assessed whether there was evidence
314 of residual temporal autocorrelation in the model by computing the lag-1 autocorrelation on the residuals
315 of each site separately. We found that the average residual autocorrelation among sites was low (0.14). To

316 be sure, we ran both models with and without consideration of a site-level autoregressive order-1 (AR(1))
317 error structure. No large differences were detected for the models describing the relationship between
318 protection, heatwave period, and urchin abundances; therefore, we chose the simpler model without the
319 autoregressive function. For the predator–prey model, we report both model specifications.

320 Additionally, we ran three GLMMs to test whether there were greater abundances of spiny
321 lobsters and California sheephead, and greater biomass of California sheephead within protected sites
322 from 2012 onward. We selected a Tweedie distribution with a log link function for all models again and
323 we fit the full models with a site-level AR(1) error structure, and site-level random slopes and intercepts.
324 We then selected model structure on the basis of model fit, removing the random slopes and/or
325 autocorrelation in the error structure on the basis of improvements in model fit. We used the R packages
326 “glmmTMB” to fit our models, “car” to compute Wald Tests of the main effects, and “DHARMa” to
327 assess the model residuals (Brooks et al. 2017; Fox, J. W., 2019; Hartig, F., 2022).

328 Previous studies have found that MPA age is correlated with increased fish biomass (Claudet et
329 al., 2008; Micheli et al., 2004; Ziegler et al., 2023). To investigate this dynamic, we also used a two-way
330 fixed-effects model to test whether accounting for the year of MPA implementation (spanning from
331 1973–2012) modified the effect of protection on urchin abundance in Southern California. In this
332 instance, we used an ordinary least-squares estimation with fixed effects for both site and year, and
333 Driscoll-Kraay standard errors. These results are reported in supplementary figure 6.

334 All data and statistical analyses were carried out in R (version 4.3.1) using R Studio (version
335 2023.06.0 for windows). All code used for the data preparation, statistics, and figures can be found on the
336 GitHub repository: https://github.com/jkumagai96/Kelp_Forests_and_MPAs


337

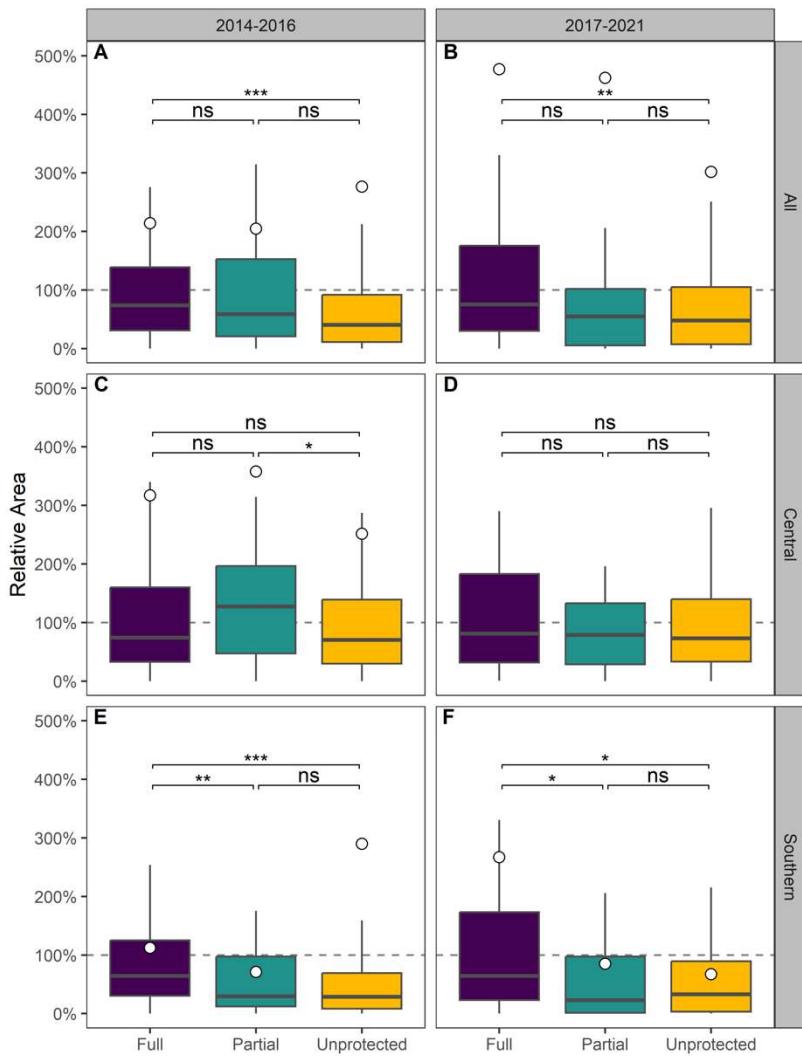
338 **3. Results**

339 3.1 Resilience of kelp within MPAs to MHWs

340 Landsat data reveal that during the 2014–2016 MHW there was an average loss of 46.4% of kelp
341 canopy area relative to the historic baseline in Southern California. In 2017–2021, there was some
342 recovery, but coverage remained 39.1% below the baseline. In Central California kelp cover loss during
343 the MHWs with respect to the baseline was lower than in Southern California, i.e. 13.3%, but there was
344 no recovery during the 2017–2021 period, kelp forest loss increased to 24.8% with respect to the historic
345 baseline.(Figure 2).

346

347


348 **Figure 2: Kelp area through time for the study area.** The left column reports total kelp area (km²)
349 within Central (A), and Southern California (C), with the mean baseline kelp area between 1984–2013
350 represented as a horizontal dashed line. The right column reports mean kelp area in m² per 1-km² pixel by
351 protection category from 2012–2021, to include all MPAs established in southern and central California,
352 with kelp from fully protected areas in purple, partially protected areas in turquoise, and unprotected areas

353 in yellow for Central (B), and Southern California (D). Note that the axes are not held constant and
354 MHWs (the 1997-98 extreme ENSO event and 2014-16 MHW) are denoted using transparent red
355 rectangles.

356 Both during and after the MHWs, there was significantly higher relative kelp area within fully
357 protected areas than unprotected areas (Figure 3, $p < 0.005$), while there were no significant differences in
358 kelp area between partially protected and unprotected areas (Figure 3 A-B; Supplementary Table 2).
359 However, this overall pattern is driven by responses in southern California. When analyzed by region, the
360 only significant differences in relative kelp area in Central California were between partially protected
361 and unprotected areas during the MHW (Figure 3; Supplementary Table 2), with more kelp within
362 partially protected areas during the MHW (Figure 2B & Figure 3C). In Southern California, there was
363 significantly higher resistance to, and recovery from, MHWs within fully protected areas compared to
364 partially protected and unprotected areas ($p < .05$, Figure 2E-F). Importantly, we found no significant
365 difference between relative kelp area within partially protected areas and unprotected areas in Southern
366 California. Based on this evidence, fully protected areas appear to confer resilience to MHWs, both in
367 terms of resistance and recovery, depending on the region.

368 When assessing the impact of MPA age on these results in Southern California, we found that
369 kelp forests within fully protected areas consistently had significantly higher resistance to the MHWs
370 independent of MPA age, although the effect was stronger in MPAs established before 2007 compared to
371 the younger MPAs (Supplementary Figure 5). However, recovery was indistinguishable between new and
372 old MPAs, albeit that new MPAs exhibited significantly higher relative area of kelp in fully protected
373 areas compared to partially protected areas (Supplementary Figure 5). Additionally, when testing how
374 sensitive our results were to high values in percent recovery, we found that kelp forests within fully
375 protected areas consistently had higher resistance to the MHWs than unprotected areas, although recovery
376 was sensitive to these high values (Supplementary Table 6). Taken together, these results could be biased
377 if MPAs had been non-randomly placed in habitat more favorable to kelp recovery. A principal

378 component analysis revealed no evidence for difference in environmental variables (i.e. temperature,
379 depth, marine heatwave intensity) between protection categories from before (2013), during (2015), and
380 after (2019) the 2014–2016 MHWs, suggesting that protection status is not correlated with pre-existing
381 resilience potential (Supplementary Figure 1).

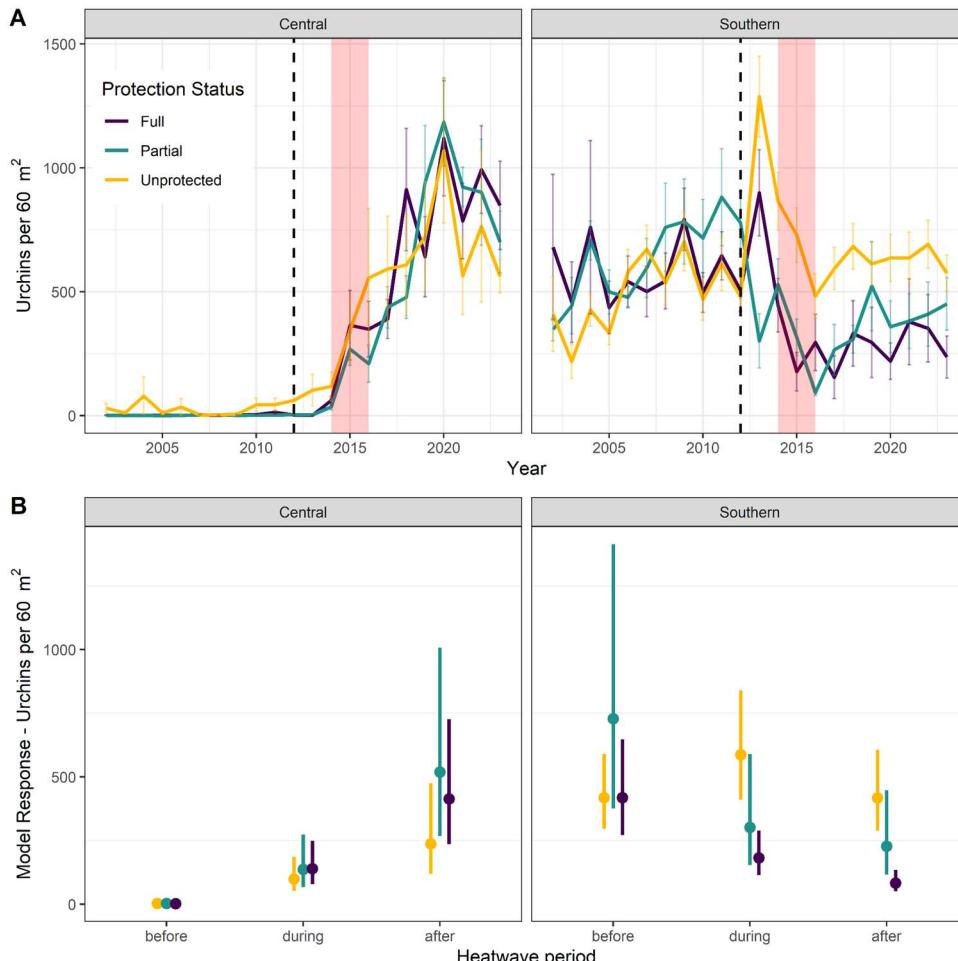
382

383 **Figure 3: Resilience of kelp forests during (2014–2016) and after the MHWs (2017–2021).** Boxplots
384 of relative area of kelp (averaged annual kelp area relative to the historic baseline area within each pixel)
385 are reported within fully protected, partially protected, and unprotected areas for (A-B) all regions, (C-D)
386 Central California, and (E-F) Southern California. White points represent averages. Average points in

387 Central California in 2017–2021 are outside the plot extent and not visualized (see Supplementary Table
388 5) and outliers are also removed from the plot for ease of visualization. Pseudo p-values were computed
389 via Bonferroni-corrected permutation analyses; non-significant group differences are indicated with “ns”
390 while significant comparisons (after Bonferroni correction) are denoted with asterisks – $p < 0.05$ (*), < 0.01 (**), and < 0.001 (***).

392

393 3.3 Mechanism of resilience: trophic cascades


394 In Central California, urchin abundances significantly increased overall from 2014–2023 in all
395 protection categories (Figure 4, $\chi^2 = 684$, $df = 2$, $p < 0.0001$). Average urchin abundance across all
396 protection categories was only 2.61 ± 0.58 per transect before the MHWs but increased to 123 ± 28 per
397 transect during the MHWs and 371 ± 89 per transect after the MHWs. There was no significant
398 interaction between protection category and heatwave period, suggesting that protection status had no
399 effect on urchin abundance and their population increase during and after the MHWs.

400 In Southern California, overall urchin density in unprotected areas (418 ± 73 per transect ($60m^2$)
401 mean \pm SE)) before the MHWs was not significantly different from that in partially (729 ± 246 , $p = 0.30$)
402 or fully protected (419 ± 93 per transect, $p = 1$) areas before the MHWs. However, we found that the
403 difference in urchin abundance between protection categories varied through time ($\chi^2 = 84$, $df = 4$, $p < 0.0001$). In contrast with Central California, urchin abundance was significantly lower in fully protected
404 areas than in unprotected areas both during ($p < 0.0001$) and after ($p < 0.0001$) the MHWs. Urchin
405 abundances also declined in partially protected areas during (302 ± 103 per transect) and after (228 ± 78
406 per transect, $p = 0.039$) the MHWs, but these abundances were only statistically significantly different
407 from those for unprotected areas after the heatwave (Figure 4). There were significantly fewer urchins in
408 fully protected areas (83 ± 21 per transect) compared to partially protected areas (228 ± 79 per transect)
409 after the MHWs ($p = 0.039$). Using a two-way fixed-effects model, we found that urchin abundances
410 declined with MPA age, particularly in fully protected areas (Figure S6). Taken together, these results
411 declined with MPA age, particularly in fully protected areas (Figure S6). Taken together, these results

412 indicate that the difference in urchin abundances between unprotected and protected areas increased

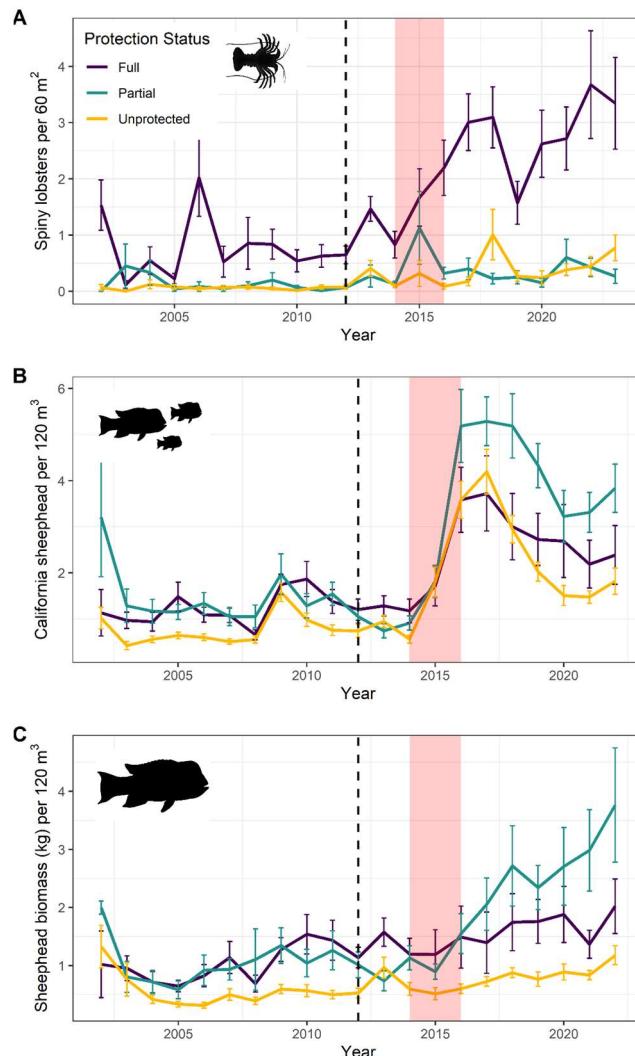
413 during and after the MHWs.

414

415

416 **Figure 4: Urchin dynamics through time by level of protection in Central and Southern California.**

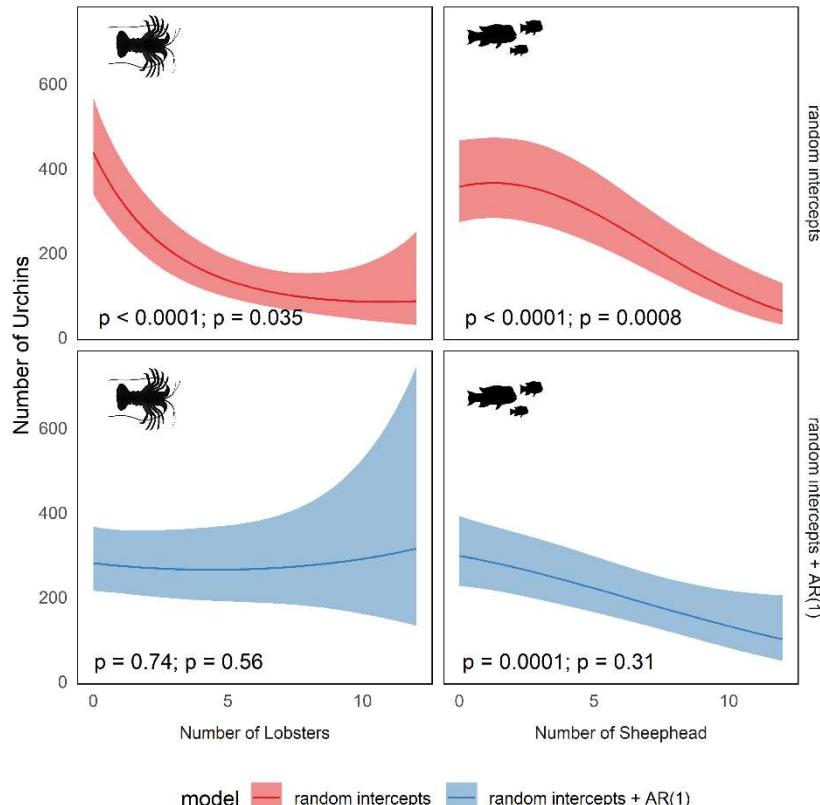
417 (A) Mean urchin abundances per site and level of protection (number of individuals per standard 60 m²)
418 transect, $N = 121$ and 94 sites for Central and Southern California respectively) from subtidal data for the
419 period 2002–2021 from PISCO. All urchin species were combined. The dashed line at 2012 represents the
420 implementation of the last MPAs under the Marine Life Protection Act. Error bars represent standard
421 errors. Data before 2012 include sites that were protected at that time or would become protected in 2012.
422 The 2014–2016 MHWs are depicted in transparent red. (B) Variation in urchin densities across protection


423 levels (full, partial, and unprotected) and heatwave periods (before, during, and after) for both regions.
424 Points and line ranges represent estimates and confidence intervals (respectively) for mean urchin density
425 from a Tweedie GLMM. The vertical lines in panel B represent 95% confidence intervals.

426

427 After the full implementation of the Marine Life Protection Act and establishment of all MPAs,
428 completed in 2012, there was a significant increase in spiny lobster abundance within fully protected sites
429 compared to both unprotected ($p < 0.0001$) and partially protected sites (Figure 5A, $p = 0.0055$) in
430 Southern California. Sheephead abundance increased at all sites during the MHW (Figure 5B).
431 Surprisingly, after the MHW, there were significantly higher abundances of California sheephead within
432 partially protected sites compared to fully protected and unprotected sites (Figure 5B, $p = 0.0052$). When
433 assessing differences in California sheephead biomass, there was significantly higher biomass within both
434 fully ($p = 0.011$) and partially protected sites ($p = 0.002$) compared to unprotected sites (Figure 5C). The
435 different patterns observed between abundance and biomass trends within fully protected sites suggest
436 larger sheephead sizes in fully protected sites.

437 When assessing predators' relationship to urchins, we found that the abundances of California
438 sheephead and spiny lobster were negatively correlated with abundances of urchins (Figure 6). When
439 accounting for temporal autocorrelation, abundances of California sheephead were negatively correlated
440 with urchins, but spiny lobsters were not (Figure 6, residuals in Supplementary figures 7-10). Regardless
441 of model choice, the relationship between the abundances of California sheephead and urchins was
442 consistently negative and significant.


443

444

445 **Figure 5: Average abundances of urchin predator population size per site and level of protection**
446 **for Southern California from 2002–2023.** (A) Mean abundances of spiny lobsters per site (number of
447 individuals/ 60m^2), (B) Mean abundance of California sheephead per site (number of individuals/ 120m^3),
448 (C) Mean biomass of California sheephead (g/ 120m^3). The dashed line at 2012 represents the
449 implementation of the last marine protected areas under the Marine Life Protection Act. Error bars
450 represent standard errors. Data before 2012 includes sites that were protected or would become protected
451 in 2012. Data within fully protected areas are in purple, partially protected areas in turquoise, and
452 unprotected areas in yellow. The MHWs in 2014–2016 are depicted in transparent red.

453

454

455 **Figure 6: Partial effects plots from two models of average urchin abundances per site in Southern**
456 **California as a function of California sheephead and spiny lobster abundances.** One model includes
457 an autoregressive correlation structure (blue), and the other does not (red). On each panel there are two
458 significance values, the left-most p value corresponds to the log-linear effects, while the right-most p
459 value corresponds to the log-quadratic effects. Plots for model residuals can be found in the
460 supplementary (Supplementary Figure 6 and 7).

461

462

463

4. Discussion

464 This study provides empirical evidence that fully protected MPAs can promote the resilience of
465 kelp forests to climate impacts when protection has a positive effect on natural predators of sea-urchins.
466 Full protection improved both kelp resistance to, and recovery from, extreme MHWs. This pattern

467 emerged for Southern California, suggesting that the current network of MPAs offers resilience to climate
468 change impacts, but only when and where MPAs successfully protect urchin predators. In Central
469 California, where the main urchin predators have been depleted by a disease outbreak (sunflower sea
470 stars) or are protected statewide and therefore not directly influenced by MPA status (sea otters), sea
471 urchins increased dramatically during and after the MHW, across both protected and unprotected sites. In
472 contrast, in Southern California, protected areas had significantly greater abundances of urchin predators
473 and fewer urchins within both partially and fully protected MPAs during and after the 2014–2016 MHWs.
474 These results lend support to the role of trophic cascades as a mechanism for ecological resilience, and
475 fully protected MPAs as a climate adaptation tool.

476 Our findings provide evidence that trophic cascades are a mechanistic path through which MPAs
477 provide climate resilience to kelp forest ecosystems; however, these benefits are highly context-dependent
478 and vary regionally. Multiple studies have shown that fully protected MPAs increase the biomass and
479 abundance of the predators of urchins (Caselle et al., 2015; Hamilton & Caselle, 2015; Lenihan et al.,
480 2022), which exerts a top-down control on urchin populations, thereby supporting stability and resilience
481 of kelp populations (Ling et al., 2009; Peleg et al., 2023). Here, we show that this mechanism also applies
482 under climate impacts because we observed that there were fewer sea urchins, less loss of kelp and greater
483 recovery of kelp populations inside fully protected MPAs during and after the 2014–2016 MHW in
484 Southern California. Corroborating this interpretation of our results, we found that urchin abundances
485 were negatively correlated with those of spiny lobster and California sheephead. These results suggest
486 that the recovery of urchin predators within protected areas from overfishing is likely controlling urchin
487 populations and potentially behavior, thus preventing overgrazing and allowing kelp to recover faster
488 from disturbances than in unprotected areas.

489 In Central California, we found no measurable effect of protection status on kelp resistance and
490 recovery, likely because spatial protection does not confer additional benefits to the main mesopredators
491 of urchins in the region—sea otters and sunflower sea stars—whose dynamics are largely independent of

492 fishing effort and, as a consequence, protection status. Sea otters are federally protected and have not
493 been actively hunted for over a century, thus benefiting from protection throughout their range. Further,
494 sea urchin abundance started to increase exponentially both inside and outside protected areas following
495 the mass mortality of sea stars due to the outbreak of sea star wasting disease in 2013–2015, which led
496 this sea urchin predator to near extinction (Harvell et al., 2019; Montecino-Latorre et al., 2016; Rogers-
497 Bennett & Catton, 2019). We assume that the level of protection has no influence on recovery of sea stars,
498 as this species is not being actively harvested and has yet to recover. These observations illuminate how
499 non-spatial policies, such as species-specific interventions (i.e. federal protection conferred over sea
500 otters, and possibly the proposed active restoration of depleted seastar populations through captive
501 breeding and outplants) may also promote some degree of ecosystem resilience.

502 Our results are consistent with and expand on other studies in the region, emphasizing evidence
503 for trophic cascades—preserved by MPAs—as the mechanism separating healthy kelp forests from urchin
504 barrens. For example, trophic cascades were found to enhance macroalgae abundances in MPAs in the
505 northern Channel Islands a year after the MHWs (Eisaguirre et al., 2020). However, another study in the
506 Channel Islands found contrasting evidence: there was an increase of urchins within protected areas, in
507 part due to the release of red urchins from fishing pressure within MPAs, which outweighed any effect of
508 trophic cascades (Malakhoff & Miller, 2021), though the authors of this study did not consider the
509 response of urchins to the MHWs. In comparison, we found fewer urchins within MPAs, but only during
510 and after the MHWs. Notably, when we took into consideration the year of establishment for the MPAs,
511 we found that protection led to fewer urchins in Southern California through time (Supplementary figure
512 6). Therefore, by expanding the spatial and temporal scale of analysis, our results reconcile previously
513 contrasting conclusions.

514 Our work is also subject to some limitations. First, the long-term dataset of kelp area tracks only
515 the area of kelp at the surface; we have no remote sensing information on subsurface giant kelp.
516 Additionally, kelp area is an estimate from satellite imagery which may add some sources of error (Alix-

517 Garcia & Millimet, 2022). However, ongoing methodological improvements have addressed most
518 detection gaps (see Bell et al., 2020 for more detail). For the subtidal data, while we have size structure
519 information for California sheephead that allowed us to evaluate biomass, such data are not available for
520 spiny lobsters as it is difficult to measure their size in the field. Larger individual biomass of
521 overexploited species is expected inside fully protected MPAs, and these larger animals are usually more
522 efficient at consuming larger urchins (Hamilton & Caselle, 2015). Having such estimates for spiny
523 lobsters in this study could help us to further understand the role of spiny lobsters in trophic cascades,
524 although spillover effects of lobsters in both abundance and biomass have been demonstrated previously
525 (Lenihan et al., 2022). Moreover, we did not include in our analyses other smaller species, such as crabs,
526 which may benefit from MPAs and influence urchin populations by feeding on their juveniles (Clemente
527 et al., 2013). We excluded these species because of the current limited understanding of their role as
528 urchin predators. Finally, we were not able to explore evidence for trophic cascades within Central
529 California as there is no population data for otters at the same scale and resolution of the PISCO data.

530 Besides trophic interactions, there are additional potential reasons why spatial protection in
531 Central California was not associated with increased climate resilience for kelp forests. First, this region
532 was less impacted by the MHWs and had an overall better recovery from the MHWs than Southern
533 California. Notably, on average (not considering protection status) kelp area remained on average 1.5 - 3
534 times higher in central than southern California during and after the MHW (Figure 2). It is no surprise
535 that level of protection had no effect in Central California because, regardless of protection, giant kelp
536 forests were not as impacted from the MHWs, although they had a steady decline after the heatwaves.
537 Giant kelp in Central California were more resilient during the MHWs likely because temperature
538 extremes during the MHWs were often below the thermal tolerance limit of giant kelp. In addition, large
539 areas of Central California are less accessible to people and therefore less impacted by human activities,
540 including fishing (Free et al., 2023), than in Southern California, and because density of the remaining
541 urchin predators (federally protected sea otters) is largely uncorrelated with protection status. Our results

542 are in general agreement with previous studies that also found limited contribution of MPAs to climate
543 resilience for kelp forests communities in Central California (J. G. Smith et al., 2023). These findings
544 suggest that it is a priority to assess the benefits of MPAs for providing climate resilience in regions that
545 are more impacted by climate change and human activities. For example, research is needed to evaluate
546 whether MPAs or other management strategies provide similar benefits near the distribution limit of giant
547 kelp in Baja California Sur, Mexico. Our study casts new light on differences in climate resilience
548 between two regions in California and, most importantly, highlights the importance of the local ecological
549 context in determining whether MPAs can be expected to buffer climate extremes.

550 Our findings have important implications for evaluating the benefits that MPAs can confer in
551 terms of mitigating the impacts of climate change, and also for informing approaches to climate-smart
552 management and establishment of new MPAs (Arafeh-Dalmau et al., 2023) as nations make progress
553 toward protecting 30% of the oceans by 2030 while adapting to climate change (Convention of Biological
554 Diversity, 2022). Understanding which mechanisms provide climate resilience at different levels of
555 biological organization (species, population, and ecosystem), and at local to regional scale, is crucial to
556 inform realistic expectations of the benefits of resilience to climate change that MPAs or other
557 management options may provide. There is a need for deeper understanding of the local biogeography,
558 environmental conditions, and management strategies that drive ecosystem resilience to understand where
559 placing MPAs may increase climate resilience. Furthermore, such understanding will require investment
560 in long term monitoring and standardized metrics to define and measure ecological resilience to evaluate
561 the conditions under which MPAs confer resilience to climate impacts.

562 The most important implication of our findings is that protection of top predators confers benefits
563 that propagate through the ecosystem, boosting resilience to and recovery from acute impacts of climate
564 change. While this goal often underpins the establishment of MPAs, its effectiveness in providing climate
565 resilience is seldom supported by empirical evidence. Of course, additional research is required to assess
566 the generality of our findings, but they provide a strong initial motivation to carefully manage fishing

567 pressure in the coastal zone as climate extremes become more frequent and intense (Oliver et al., 2018;
568 Schoeman et al., 2023). Protected areas offer many benefits from preventing continued destruction of
569 habitats (including blue carbon ecosystems such as seagrass and mangroves), increasing food security,
570 and increasing resilience to climate shocks and environmental variability, ultimately increasing overall
571 ecosystem resilience (Aburto-Oropeza et al., 2011; Jacquemont et al., 2022; Miteva et al., 2015; Selig &
572 Bruno, 2010). However, protected areas are not a panacea to the ongoing and projected impacts of climate
573 change. In particular, our results of context-dependent roles of MPAs in providing climate resilience
574 highlights the urgency to carefully consider what and where additional measures are needed, such as the
575 protection of wide ranging top predators to the active restoration of habitat and critical species
576 interactions. Crucially, the root causes of climate change and global biodiversity loss must be urgently
577 addressed before the efficacy of our adaptation tools is lost (Mills et al., 2023).

578

579 **Acknowledgements**

580 We want to thank the Santa Barbara Coastal LTER, PISCO, NOAA, and the many other data providers
581 for sharing their data openly so our mutual understanding of these systems can continue to advance. In
582 addition, thank you, Joel Erberich, for the many discussions that helped to form the paper in its current
583 form. Thank you, Marty Freeland, for the black and white organism figures which help to clearly
584 communicate our science. Also, thank you Ryan O'Connor for the helpful feedback on data
585 visualizations. TB and the kelp canopy and environmental dataset was funded by the NASA Biodiversity
586 and Ecological Conservation award #80NSSC22K0169. NA-D, FM, and KC acknowledge funding from
587 the Lenfest Ocean Program (ID Number: 00036969) to explore climate resilience in marine protected
588 areas. Finally, we acknowledge funding from the NSF Award #2108566 - DISES: Pathways and
589 constraints to adaptation in coastal social-environmental systems.

590

591

592 Data Availability

593 The data that support the findings of this study will be openly available in Zenodo at _____ [will be
594 updated if accepted.]

595 These data were derived from the following resources available in the public domain: the Kelpwatch SBC
596 LTER dataset (<https://doi.org/10.6073/pasta/c40db2c8629cfa3fbe80fdc9e086a9aa>), the marine protected area
597 dataset (<https://marineprotectedareas.noaa.gov/dataanalysis/mpainventory/>), and an updated version of the
598 currently publicly available PISCO data
599 (https://data.piscoweb.org/metacatui/view/doi:10.6085/AA/PISCO_kelpforest.1.6).

600

601 Author Contributions

602 **Joy A. Kumagai** – Conceptualization, data processing and analysis, investigation, methodology,
603 visualizing, writing – original draft. **Maurice Goodman** – Data processing and analysis, methodology,
604 visualizing, writing – review and editing. **Juan Carlos Villaseñor-Derbez** – Data processing and
605 analysis, methodology, writing – review and editing. **David S Schoeman** – conceptualization,
606 investigation, writing – review and editing. **Kyle Cavanagh** – conceptualization, writing – review and
607 editing. **Tom Bell** – conceptualization, writing – review and editing. **Fiorenza Micheli** –
608 conceptualization, investigation, writing – review and editing. **Giulio De Leo** – investigation,
609 methodology, writing – review and editing. **Nur Arafah-Dalmau** – conceptualization, data processing
610 and analysis, investigation, methodology, writing – review and editing.

611

612 References

- 613 1. Aburto-Oropeza, O., Erisman, B., Galland, G. R., Mascareñas-Osorio, I., Sala, E., & Ezcurra, E. (2011).
614 Large Recovery of Fish Biomass in a No-Take Marine Reserve. *PLoS ONE*, 6(8), e23601.
615 <https://doi.org/10.1371/journal.pone.0023601>
- 616 2. Alix-Garcia, J., & Millimet, D. (2022). *Replication Data for: Remotely Incorrect? Accounting for*
617 *Nonclassical Measurement Error in Satellite Data on Deforestation*. <https://doi.org/10.7910/DVN/PIKTVS>

618 3. Arafeh-Dalmau, N., Montaño-Moctezuma, G., Martínez, J. A., Beas-Luna, R., Schoeman, D. S., & Torres-
619 Moye, G. (2019). Extreme Marine Heatwaves Alter Kelp Forest Community Near Its Equatorward
620 Distribution Limit. *Frontiers in Marine Science*, 6, 499. <https://doi.org/10.3389/fmars.2019.00499>

621 4. Arafeh-Dalmau, N., Munguia-Vega, A., Michel, F., Vilalta-Navas, A., Villaseñor-Derbez, J. C., Précoma-
622 de La Mora, M., Schoeman, D. S., Medellín-Ortíz, A., Cavanaugh, K. C., Sosa-Nishizaki, O., Burnham, T.
623 L. U., Knight, C. J., Woodson, C. B., Abas, M., Abadía-Cardoso, A., Aburto-Oropeza, O., Esgro, M. W.,
624 Espinosa-Andrade, N., Beas-Luna, R., ... Possingham, H. P. (2023). Integrating climate adaptation and
625 transboundary management: Guidelines for designing climate-smart marine protected areas. *One Earth*,
626 6(11), 1523–1541. <https://doi.org/10.1016/j.oneear.2023.10.002>

627 5. [dataset] Bell, T; 2023; SBC LTER: Reef: California kelp canopy and environmental variable dynamics ver
628 1. Environmental Data Initiative. <https://doi.org/10.6073/pasta/c40db2c8629cfa3fbe80fdc9e086a9aa>
629 (accessed September 2022).

630 6. Bell, T. W., Allen, J. G., Cavanaugh, K. C., & Siegel, D. A. (2020). Three decades of variability in
631 California's giant kelp forests from the Landsat satellites. *Remote Sensing of Environment*, 238, 110811.
632 <https://doi.org/10.1016/j.rse.2018.06.039>

633 7. Bell, T. W., Cavanaugh, K. C., Saccoccia, V. R., Cavanaugh, K. C., Houskeeper, H. F., Eddy, N.,
634 Schuetzenmeister, F., Rindlaub, N., & Gleason, M. (2023). Kelpwatch: A new visualization and analysis
635 tool to explore kelp canopy dynamics reveals variable response to and recovery from marine heatwaves.
636 *PLOS ONE*, 18(3), e0271477. <https://doi.org/10.1371/journal.pone.0271477>

637 8. Benedetti-Cecchi, L., Bates, A. E., Strona, G., Bulleri, F., Horta E Costa, B., Edgar, G. J., Hereu, B., Reed,
638 D. C., Stuart-Smith, R. D., Barrett, N. S., Kushner, D. J., Emslie, M. J., García-Charton, J. A., Gonçalves,
639 E. J., & Aspíllaga, E. (2024). Marine protected areas promote stability of reef fish communities under
640 climate warming. *Nature Communications*, 15(1), 1822. <https://doi.org/10.1038/s41467-024-44976-y>

641 9. Brooks, M., E., Kristensen, K., Benthem, K., J., van, Magnusson, A., Berg, C., W., Nielsen, A., Skaug, H.,
642 J., Mächler, M., & Bolker, B., M. (2017). glmmTMB Balances Speed and Flexibility Among Packages for
643 Zero-inflated Generalized Linear Mixed Modeling. *The R Journal*, 9(2), 378. <https://doi.org/10.32614/RJ-2017-066>

645 10. Bruno, J. F., Côté, I. M., & Toth, L. T. (2018). Climate Change, Coral Loss, and the Curious Case of the
646 Parrotfish Paradigm: Why Don't Marine Protected Areas Improve Reef Resilience?

647 11. Burt, J. M., Tinker, M. T., Okamoto, D. K., Demes, K. W., Holmes, K., & Salomon, A. K. (2018). Sudden
648 collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts.
649 *Proceedings of the Royal Society B: Biological Sciences*, 285(1883), 20180553.
650 <https://doi.org/10.1098/rspb.2018.0553>

651 12. California Fish and Game Code. (2013, Sep 26). *Chapter 10.5. Marine Life Protection Act*. California
652 Legislation.
653 https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=FGC&division=3.&title=&part=&chapter=10.5.&article=

655 13. Caselle, J. E., Rassweiler, A., Hamilton, S. L., & Warner, R. R. (2015). Recovery trajectories of kelp forest
656 animals are rapid yet spatially variable across a network of temperate marine protected areas. *Scientific
657 Reports*, 5(1), 14102. <https://doi.org/10.1038/srep14102>

658 14. Cavole, L., Demko, A., Diner, R., Giddings, A., Koester, I., Pagniello, C., Paulsen, M.-L., Ramirez-Valdez,
659 A., Schwenck, S., Yen, N., Zill, M., & Franks, P. (2016). Biological Impacts of the 2013–2015 Warm-
660 Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. *Oceanography*, 29(2).
661 <https://doi.org/10.5670/oceanog.2016.32>

662 15. Claudet, J., Osenberg, C. W., Benedetti-Cecchi, L., Domenici, P., García-Charton, J., Pérez-Ruzafa, Á.,
663 Badalamenti, F., Bayle-Sempere, J., Brito, A., Bulleri, F., Culoli, J., Dimech, M., Falcón, J. M., Guala, I.,
664 Milazzo, M., Sánchez-Meca, J., Somerfield, P. J., Stobart, B., Vandeperre, F., ... Planes, S. (2008). Marine
665 reserves: Size and age do matter. *Ecology Letters*, 11(5), 481–489. <https://doi.org/10.1111/j.1461-0248.2008.01166.x>

667 16. Clemente, S., Hernández, J. C., Montaño-Moctezuma, G., Russell, M. P., & Ebert, T. A. (2013). Predators
668 of juvenile sea urchins and the effect of habitat refuges. *Marine Biology*, 160(3), 579–590.
669 <https://doi.org/10.1007/s00227-012-2114-3>

670 17. Connell, J. H., & Sousa, W. P. (1983). On the Evidence Needed to Judge Ecological Stability or
671 Persistence. *The American Naturalist*, 121(6), 789–824. <https://doi.org/10.1086/284105>

672 18. Convention of Biological Diversity. (2022). *Kunming-Montreal Global Biodiversity Framework*.
673 <https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf>

674 19. Cowen, R. K. (1983). The effects of sheepshead (*Semicossyphus pulcher*) predation on red sea urchin
675 (*Strongylocentrotus franciscanus*) populations: An experimental analysis. *Oecologia*, 58(2), 249–255.
676 <https://doi.org/10.1007/BF00399225>

677 20. Di Lorenzo, E., & Mantua, N. (2016). Multi-year persistence of the 2014/15 North Pacific marine
678 heatwave. *Nature Climate Change*, 6(11), 1042–1047. <https://doi.org/10.1038/nclimate3082>

679 21. Duarte, C. M., Agusti, S., Barbier, E., Britten, G. L., Castilla, J. C., Gattuso, J.-P., Fulweiler, R. W.,
680 Hughes, T. P., Knowlton, N., Lovelock, C. E., Lotze, H. K., Predragovic, M., Poloczanska, E., Roberts, C.,
681 & Worm, B. (2020). Rebuilding marine life. *Nature*, 580(7801), 39–51. <https://doi.org/10.1038/s41586-020-2146-7>

683 22. Eisaguirre, J. H., Eisaguirre, J. M., Davis, K., Carlson, P. M., Gaines, S. D., & Caselle, J. E. (2020).
684 Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics.
685 *Ecology*, 101(5). <https://doi.org/10.1002/ecy.2993>

686 23. Favoretto, F., Sánchez, C., & Aburto-Oropeza, O. (2022). Warming and marine heatwaves tropicalize
687 rocky reefs communities in the Gulf of California. *Progress in Oceanography*, 206, 102838.
688 <https://doi.org/10.1016/j.pocean.2022.102838>

689 24. Fox J, Weisberg S (2019). An R Companion to Applied Regression_, Third edition. Sage, Thousand Oaks
690 CA. <https://socialsciences.mcmaster.ca/jfox/Books/Companion/>.

691 25. Free, C. M., Bellquist, L. F., Forney, K. A., Humberstone, J., Kauer, K., Lee, Q., Liu, O. R., Samhouri, J.
692 F., Wilson, J. R., & Bradley, D. (2023). Static management presents a simple solution to a dynamic fishery
693 and conservation challenge. *Biological Conservation*, 285, 110249.
694 <https://doi.org/10.1016/j.biocon.2023.110249>

695 26. Freedman, R. M., Brown, J. A., Caldow, C., & Caselle, J. E. (2020). Marine protected areas do not prevent
696 marine heatwave-induced fish community structure changes in a temperate transition zone. *Scientific
697 Reports*, 10(1), 21081. <https://doi.org/10.1038/s41598-020-77885-3>

698 27. Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. *Nature*,
699 560(7718), 360–364. <https://doi.org/10.1038/s41586-018-0383-9>

700 28. Frölicher, T. L., & Laufkötter, C. (2018). Emerging risks from marine heat waves. *Nature
701 Communications*, 9(1), 650. <https://doi.org/10.1038/s41467-018-03163-6>

702 29. Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M., Schlegel, R., Bensoussan, N.,
703 Turicchia, E., Sini, M., Gerovasileiou, V., Teixido, N., Mirasole, A., Tamburello, L., Cebrian, E., Rilov, G.,

704 Ledoux, J., Souissi, J. B., Khamassi, F., Ghanem, R., ... Harmelin, J. (2022). Marine heatwaves drive
705 recurrent mass mortalities in the Mediterranean Sea. *Global Change Biology*, 28(19), 5708–5725.
706 <https://doi.org/10.1111/gcb.16301>

707 30. Gill, D. A., Mascia, M. B., Ahmadi, G. N., Glew, L., Lester, S. E., Barnes, M., Craigie, I., Darling, E. S.,
708 Free, C. M., Geldmann, J., Holst, S., Jensen, O. P., White, A. T., Basurto, X., Coad, L., Gates, R. D.,
709 Guannel, G., Mumby, P. J., Thomas, H., ... Fox, H. E. (2017). Capacity shortfalls hinder the performance
710 of marine protected areas globally. *Nature*, 543(7647), 665–669. <https://doi.org/10.1038/nature21708>

711 31. Hamilton, S. L., & Caselle, J. E. (2015). Exploitation and recovery of a sea urchin predator has implications
712 for the resilience of southern California kelp forests. *Proceedings of the Royal Society B: Biological
713 Sciences*, 282(1799), 20141817. <https://doi.org/10.1098/rspb.2014.1817>

714 32. Harrold, C., & Reed, D. C. (1985). Food Availability, Sea Urchin Grazing, and Kelp Forest Community
715 Structure. *Ecology*, 66(4), 1160–1169. <https://doi.org/10.2307/1939168>

716 33. Hartig F (2022). _DHARMA: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression
717 Models. R package version 0.4.6, <https://CRAN.R-project.org/package=DHARMA>.

718 34. Harvell, C. D., Montecino-Latorre, D., Caldwell, J. M., Burt, J. M., Bosley, K., Keller, A., Heron, S. F.,
719 Salomon, A. K., Lee, L., Pontier, O., Pattengill-Semmens, C., & Gaydos, J. K. (2019). Disease epidemic
720 and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (*721 Pycnopodia helianthoides*). *Science Advances*, 5(1), eaau7042. <https://doi.org/10.1126/sciadv.aau7042>

722 35. Jacquemont, J., Blasiak, R., Le Cam, C., Le Gouellec, M., & Claudet, J. (2022). Ocean conservation boosts
723 climate change mitigation and adaptation. *One Earth*, 5(10), 1126–1138.
724 <https://doi.org/10.1016/j.oneear.2022.09.002>

725 36. Kriegisch, N., Reeves, S. E., Flukes, E. B., Johnson, C. R., & Ling, S. D. (2019). Drift-kelp suppresses
726 foraging movement of overgrazing sea urchins. *Oecologia*, 190(3), 665–677.
727 <https://doi.org/10.1007/s00442-019-04445-6>

728 37. Lenihan, H. S., Fitzgerald, S. P., Reed, D. C., Hofmeister, J. K. K., & Stier, A. C. (2022). Increasing
729 spillover enhances southern California spiny lobster catch along marine reserve borders. *Ecosphere*, 13(6),
730 e4110. <https://doi.org/10.1002/ecs2.4110>

731 38. Lester, S., Halpern, B., Grorud-Colvert, K., Lubchenco, J., Ruttenberg, B., Gaines, S., Airamé, S., &
732 Warner, R. (2009). Biological effects within no-take marine reserves: A global synthesis. *Marine Ecology
733 Progress Series*, 384, 33–46. <https://doi.org/10.3354/meps08029>

734 39. Ling, S. D., Johnson, C. R., Frusher, S. D., & Ridgway, K. R. (2009). Overfishing reduces resilience of
735 kelp beds to climate-driven catastrophic phase shift. *Proceedings of the National Academy of Sciences*,
736 106(52), 22341–22345. <https://doi.org/10.1073/pnas.0907529106>

737 40. Lubchenco, J., & Grorud-Colvert, K. (2015). Making waves: The science and politics of ocean protection.
738 *Science*, 350(6259), 382–383. <https://doi.org/10.1126/science.aad5443>

739 41. [dataset] Mark H Carr, Jennifer E Caselle, Kathryn D Koehn, & Daniel P Malone. (2020). PISCO Kelp
740 Forest Community Surveys. PISCO MN. doi:10.6085/AA/PISCO_kelpforest.1.6.

741 42. Malakhoff, K. D., & Miller, R. J. (2021). After 15 years, no evidence for trophic cascades in marine
742 protected areas. *Proceedings of the Royal Society B: Biological Sciences*, 288(1945), 20203061.
743 <https://doi.org/10.1098/rspb.2020.3061>

744 43. Malone, D. P., Davis, K., Lonhart, S. I., Parsons-Field, A., Caselle, J. E., & Carr, M. H. (2022). Large-
745 scale, multidecade monitoring data from kelp forest ecosystems in CALIFORNIA and OREGON (USA).
746 *Ecology*, 103(5), e3630. <https://doi.org/10.1002/ecy.3630>

747 44. McPherson, M. L., Finger, D. J. I., Houskeeper, H. F., Bell, T. W., Carr, M. H., Rogers-Bennett, L., &
748 Kudela, R. M. (2021). Large-scale shift in the structure of a kelp forest ecosystem co-occurs with an
749 epizootic and marine heatwave. *Communications Biology*, 4(1), 298. <https://doi.org/10.1038/s42003-021-01827-6>

751 45. Micheli, F., Halpern, B. S., Botsford, L. W., & Warner, R. R. (2004). TRAJECTORIES AND
752 CORRELATES OF COMMUNITY CHANGE IN NO-TAKE MARINE RESERVES. *Ecological
753 Applications*, 14(6), 1709–1723. <https://doi.org/10.1890/03-5260>

754 46. Micheli, F., Saenz-Arroyo, A., Greenley, A., Vazquez, L., Espinoza Montes, J. A., Rossetto, M., & De Leo,
755 G. A. (2012). Evidence That Marine Reserves Enhance Resilience to Climatic Impacts. *PLoS ONE*, 7(7),
756 e40832. <https://doi.org/10.1371/journal.pone.0040832>

757 47. Mills, K. E., Osborne, E. B., Bell, R. J., Colgan, C. S., Cooley, S. R., Goldstein, M. C., Griffis, R. B.,
758 Holsman, K., Jacox, M., & Micheli, F. (2023). Ocean ecosystems and marine resources. In A. R. Crimmins,
759 C. W. Avery, D. R. Easterling, K. E. Kunkel, B. C. Stewart, & T. K. Maycock (Eds.), *Fifth National
760 Climate Assessment*. U.S. Global Change Research Program. <https://doi.org/10.7930/NCA5.2023.CH10>

761 48. Miteva, D. A., Murray, B. C., & Pattanayak, S. K. (2015). Do protected areas reduce blue carbon
762 emissions? A quasi-experimental evaluation of mangroves in Indonesia. *Ecological Economics*, 119, 127–
763 135. <https://doi.org/10.1016/j.ecolecon.2015.08.005>

764 49. Montecino-Latorre, D., Eisenlord, M. E., Turner, M., Yoshioka, R., Harvell, C. D., Pattengill-Semmens, C.
765 V., Nichols, J. D., & Gaydos, J. K. (2016). Devastating Transboundary Impacts of Sea Star Wasting
766 Disease on Subtidal Asteroids. *PLOS ONE*, 11(10), e0163190.
767 <https://doi.org/10.1371/journal.pone.0163190>

768 50. Murray, S. N., & Abbott, I. A. (1980). Biogeography of the California Marine Algae with Emphasis on the
769 Southern California Islands. *The California Islands: Proceedings of a Multidisciplinary Symposium*, 325–
770 339.

771 51. Nicholson, T. E., McClenachan, L., Tanaka, K. R., & Van Houtan, K. S. (2024). Sea otter recovery buffers
772 century-scale declines in California kelp forests. *PLOS Climate*, 3(1), e0000290.
773 <https://doi.org/10.1371/journal.pclm.0000290>

774 52. [dataset] Office of National Marine Sanctuaries, 2024: Marine Protected Areas (MPA) Inventory 2023-
775 2024, <https://www.fisheries.noaa.gov/inport/item/69506>.

776 53. O’Leary, J. K., Micheli, F., Aioldi, L., Boch, C., De Leo, G., Elahi, R., Ferretti, F., Graham, N. A. J.,
777 Litvin, S. Y., Low, N. H., Lummis, S., Nickols, K. J., & Wong, J. (2017). The Resilience of Marine
778 Ecosystems to Climatic Disturbances. *BioScience*, 67(3), 208–220. <https://doi.org/10.1093/biosci/biw161>

779 54. Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, J.
780 A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A.,
781 Straub, S. C., & Wernberg, T. (2018). Longer and more frequent marine heatwaves over the past century.
782 *Nature Communications*, 9(1), 1324. <https://doi.org/10.1038/s41467-018-03732-9>

783 55. Peleg, O., Blain, C., & Shears, N. (2023). Long-term marine protection enhances kelp forest ecosystem
784 stability. *Ecological Applications*, e2895. <https://doi.org/10.1002/eaap.2895>

785 56. R Core Team (2023). R: A Language and Environment for Statistical Computing_. R Foundation for
786 Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

787 57. Ripple, W. J., Estes, J. A., Schmitz, O. J., Constant, V., Kaylor, M. J., Lenz, A., Motley, J. L., Self, K. E.,
788 Taylor, D. S., & Wolf, C. (2016). What is a Trophic Cascade? *Trends in Ecology & Evolution*, 31(11),
789 842–849. <https://doi.org/10.1016/j.tree.2016.08.010>

790 58. Roberts, C. M., O’Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., Pauly, D.,
791 Sáenz-Arroyo, A., Sumaila, U. R., Wilson, R. W., Worm, B., & Castilla, J. C. (2017). Marine reserves can
792 mitigate and promote adaptation to climate change. *Proceedings of the National Academy of Sciences*,
793 114(24), 6167–6175. <https://doi.org/10.1073/pnas.1701262114>

794 59. Rogers-Bennett, L., & Catton, C. A. (2019). Marine heat wave and multiple stressors tip bull kelp forest to
795 sea urchin barrens. *Scientific Reports*, 9(1), 15050. <https://doi.org/10.1038/s41598-019-51114-y>

796 60. Saarman, E. T., & Carr, M. H. (2013). The California Marine Life Protection Act: A balance of top down
797 and bottom up governance in MPA planning. *Marine Policy*, 41, 41–49.
798 <https://doi.org/10.1016/j.marpol.2013.01.004>

799 61. Sala, E., & Giakoumi, S. (2018). No-take marine reserves are the most effective protected areas in the
800 ocean. *ICES Journal of Marine Science*, 75(3), 1166–1168. <https://doi.org/10.1093/icesjms/fsx059>

801 62. Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. R., & Largier, J. L. (2019). Widespread shifts in
802 the coastal biota of northern California during the 2014–2016 marine heatwaves. *Scientific Reports*, 9(1),
803 4216. <https://doi.org/10.1038/s41598-019-40784-3>

804 63. Schindler, D. E., Armstrong, J. B., & Reed, T. E. (2015). The portfolio concept in ecology and evolution.
805 *Frontiers in Ecology and the Environment*, 13(5), 257–263. <https://doi.org/10.1890/140275>

806 64. Schoeman, D. S., Bolin, J. A., & Cooley, S. R. (2023). Quantifying the ecological consequences of climate
807 change in coastal ecosystems. *Cambridge Prisms: Coastal Futures*, 1, e39.
808 <https://doi.org/10.1017/cft.2023.27>

809 65. Selig, E. R., & Bruno, J. F. (2010). A Global Analysis of the Effectiveness of Marine Protected Areas in
810 Preventing Coral Loss. *PLoS ONE*, 5(2), e9278. <https://doi.org/10.1371/journal.pone.0009278>

811 66. Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T.,
812 Alexander, L. V., Benthuyzen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-
813 Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., & Moore, P. J. (2019). Marine heatwaves
814 threaten global biodiversity and the provision of ecosystem services. *Nature Climate Change*, 9(4), 306–
815 312. <https://doi.org/10.1038/s41558-019-0412-1>

816 67. Smith, A., Aguilar, J. D., Boch, C., De Leo, G., Hernández-Velasco, A., Houck, S., Martinez, R.,
817 Monismith, S., Torre, J., Woodson, C. B., & Micheli, F. (2022). Rapid recovery of depleted abalone in Isla
818 Natividad, Baja California, Mexico. *Ecosphere*, 13(3). <https://doi.org/10.1002/ecs2.4002>

819 68. Smith, J. G., Free, C. M., Lopazanski, C., Brun, J., Anderson, C. R., Carr, M. H., Claudet, J., Dugan, J. E.,
820 Eurich, J. G., Francis, T. B., Hamilton, S. L., Mouillot, D., Raimondi, P. T., Starr, R. M., Ziegler, S. L.,
821 Nickols, K. J., & Caselle, J. E. (2023). A marine protected area network does not confer community
822 structure resilience to a marine heatwave across coastal ecosystems. *Global Change Biology*, gcb.16862.
823 <https://doi.org/10.1111/gcb.16862>

824 69. Szwalski, C. S., Aydin, K., Fedewa, E. J., Garber-Yonts, B., & Litzow, M. A. (2023). The collapse of
825 eastern Bering Sea snow crab. *Science*, 382(6668), 306–310. <https://doi.org/10.1126/science.adf6035>

826 70. Wernberg, T. (2021). Marine Heatwave Drives Collapse of Kelp Forests in Western Australia. In J. G.
827 Canadell & R. B. Jackson (Eds.), *Ecosystem Collapse and Climate Change* (Vol. 241, pp. 325–343).
828 Springer International Publishing. https://doi.org/10.1007/978-3-030-71330-0_12

829 71. Ziegler, S. L., Johnson, J. M., Brooks, R. O., Johnston, E. M., Mohay, J. L., Ruttenberg, B. I., Starr, R. M.,
830 Waltz, G. T., Wendt, D. E., & Hamilton, S. L. (2023). Marine protected areas, marine heatwaves, and the
831 resilience of nearshore fish communities. *Scientific Reports*, 13(1), 1405. <https://doi.org/10.1038/s41598-023-28507-1>

833