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Abstract:

Metagenomics has greatly expanded our understanding of the human gut microbiome by
revealing a vast diversity of bacterial species within and across individuals. Even within a single
species, different strains can have highly divergent gene content, affecting traits such as
antibiotic resistance, metabolism, and virulence. Methods that harness metagenomic data to
resolve strain-level differences in functional potential are crucial for understanding the causes
and consequences of this intraspecific diversity. The enormous size of pangenome references,
strain mixing within samples, and inconsistent sequencing depth present challenges for existing
tools that analyze samples one at a time. To address this gap, we updated the MIDAS
pangenome profiler, now released as version 3, and developed StrainPGC, an approach to
strain-specific gene content estimation that combines strain tracking and correlations across
multiple samples. We validate our integrated analysis using a complex synthetic community of
strains from the human gut and find that StrainPGC outperforms existing approaches. Analyzing
a large, publicly available metagenome collection from inflammatory bowel disease patients and
healthy controls, we catalog the functional repertoires of thousands of strains across hundreds
of species, capturing extensive diversity missing from reference databases. Finally, we apply
StrainPGC to metagenomes from a clinical trial of fecal microbiota transplantation for the
treatment of ulcerative colitis. We identify two Escherichia coli strains from two different donors
that are both frequently transmitted to patients, but have notable differences in functional
potential. StrainPGC and MIDAS v3 together enable precise, intraspecific pangenomic
investigations using large collections of metagenomic data without microbial isolation or de novo

assembly.
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Introduction

In both diseased and healthy individuals, distinct strains of the same microbial species can differ
in medically relevant traits, including metabolic capacity (Joglekar et al. 2018), immunological
interactions (Yang et al. 2020; Carrow et al. 2020), antimicrobial resistance (Ray et al. 2017),
and pathogenic potential (Pakbin et al. 2021). Evaluating the functional potential encoded in
each genome is the first step in predicting strain-specific impacts on human health, and
methods that accurately determine gene content from metagenomic data can greatly improve
our understanding of the extent and importance of this intraspecific diversity. Widely used tools
for analyzing metagenomic data can accurately quantify the abundance of species presentin a
microbial community, but often fall short in characterizing variation in gene content between
strains (Plaza Onate et al. 2018). As a result, it is challenging to study the functional

consequences of strain-level variation in the gut microbiome.

The most common way to study microbial gene content in situ is to quantify the gene families
present in shotgun metagenomes, an approach referred to as “pangenome profiling”.
Pangenome profiling estimates the mean sequencing depth—sometimes called vertical
coverage—of a gene family as the mean number of reads aligning to each base of a
representative sequence (Milanese et al. 2019). (For brevity, we use “gene” as short-hand for
gene family and “depth” for mean sequencing depth throughout this paper.) Several existing
tools, including PanPhlAn (Beghini et al. 2021) and MIDAS (Zhao et al. 2022a; Nayfach et al.
2016) perform pangenome profiling. However, due to several sources of error in quantifying
gene depth, a second algorithm is needed to infer which genes are actually present in a specific
strain’s genome, a step that we call gene content estimation. Since this strain is never directly
observed in isolation—indeed, it is only a hypothesis—we refer to it as an inferred strain. Tools
for gene content estimation are often based on the assumption that all encoded genes will be at

a similar depth: the same as the overall species depth (Plaza Ofate et al. 2018), which can be
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directly estimated from the depth of species marker genes (Blanco-Miguez et al. 2023; Milanese
et al. 2019). Therefore, the depth ratio—the ratio of a given gene’s depth to the overall species
depth in a sample—can be used as the key criterion for the assignment of genes to a species

(Nayfach et al. 2016).

However, gene content estimation using pangenome profiles faces four key challenges:

1. anincomplete set of representative gene sequences in pangenome reference
databases,

2. ambiguous alignment of short-reads to multiple sequences both within and across
species (“cross-mapping”),

3. poor discrimination between present and absent genes for species at low depth due to
high variance of the depth ratio, and

4. a decreased depth ratio for strain-specific genes when other strains of the same species
are also abundant (“strain mixing”).

Significant progress towards (1) has been recently achieved by expanding pangenome
reference databases to include metagenome assembled genomes (MAGS), substantially
improving their coverage for human gut species (Almeida et al. 2020). Unfortunately, MAGs can
contain cross-species contamination and genome assembly errors such as gene fragmentation.
The frequency and types of these errors varies depending on the source and quality of the
MAGs, as well as whether they were assembled from short-read or long-read sequencing data.
Both types of errors can exacerbate cross-mapping (2), potentially reducing the accuracy of
pangenome profiling (Zhao et al. 2023). Careful curation of the pangenome database is needed
to reduce the impact of these issues. One promising approach for dealing with low depth (3), is
to combine data across multiple samples (Carr et al. 2013; Plaza Ofate et al. 2018), taking
advantage of increased depth from pooling reads. As a bonus, the correlation between the
species depth and gene depth can be used as an additional criterion to better exclude genes
with cross-mapping (2). However, combining samples can exacerbate the impacts of strain

mixing (4). Methods are needed for strain-aware gene content estimation that benefit from the
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increased sensitivity and specificity of multiple samples while also accounting for intraspecific

variation.

Here we introduce StrainPGC (“Strain Pure Gene Content”), a computational method designed
to accurately estimate the gene content of individual microbial strains. StrainPGC leverages
modern strain tracking tools to separate samples into strain-pure subsets in order to combine
data from pangenome profiling across multiple metagenomes. We also describe changes in
MIDAS v3, including updates to the pangenome database (MIDASDB) and profiling pipeline to
reduce cross-mapping, improve quantification, and facilitate the interpretation of strain-specific
gene content. As part of a complete workflow, our method requires only shotgun metagenomes
as input and outputs estimates of the gene content of individual strains. After validating our
workflow with a complex synthetic community (hCom2) (Jin et al. 2023), we use it to explore
strains in the Human Microbiome Project 2 (HMP2) (Proctor et al. 2019) and in a trial of fecal
microbiota transplantation for ulcerative colitis (UCFMT) (Smith et al. 2022b). We find novel
strain diversity not captured in existing reference databases as well as widespread variation in

gene content, including functions with likely clinical relevance.

Results

Updated pangenome profiling and strain-specific gene content
estimation

MIDAS v3 represents a major upgrade to the pangenome profiling pipeline intended to improve
the completeness, curation, and interpretability of gene abundance estimates. We updated the
pangenome database construction and gene annotation process as well as the profiling

algorithm, and describe these in the Methods section below. In each sample, MIDAS quantifies

the depth of the genes in each species’ pangenome.
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Figure 1: Conceptual overview of strain-resolved gene content reconstruction using StrainPGC.
(A) Schematic representation of pangenome profiling, which estimates gene depth based on short-read
alignment. The illustration represents profiling of a hypothetical microbial population harboring two strains
of the same species (blue and green), each with both shared and strain-specific gene content. Four key
challenges for pangenome profiling and gene content estimation are highlighted (brackets, see
Introduction). (B) Limitations of gene content estimation using single samples. Depth is shown across five
samples for three genes: one gene is ubiquitous across strains (“core”), another is found in only the strain
of interest (“strain-specific”), and a third not present in the strain of interest but is susceptible to cross-
mapping (“not present”). Samples are separated along the x-axis and represent five characteristic
scenarios: a sample where the species is not deeply sequenced (“low depth”), a sample with multiple
strains of the species (“strain mixture”), a sample exhibiting erroneous depth due to read mapping errors
(“cross-mapping”), a sample with an entirely different strain of the species (“different strain”), and a high
depth, strain-pure sample (“high depth”). Colors distinguish between strain-pure samples (green markers)
and samples with a different strain or a mixture of more than one strain (gray markers). Traditional, single-
sample analysis estimates gene content by selecting genes with a minimum depth (red, horizontal line,
which is chosen based on the species’s depth). As a result, samples with low depth, cross-mapping, and
strain mixing all lead to decreased accuracy (indicated with red x’s). Only gene content estimation in a
strain-pure, high-depth sample without cross-mapping (green check) accurately reflects the strain of

interest. (C) Relationship between gene depth and species depth for each of the three genes (panels)
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across the five samples (marker shape and color as in B). For each, the linear relationship is shown
between species depth and gene depth in the set of strain-pure samples (solid green line). We contrast
this fit with the linear relationship across all five samples without considering strain variation (dashed line).
(D) Schematic depiction of how StrainPGC estimates gene content based on both correlation and depth
ratio. The red lines indicate the thresholds of depth ratio and correlation used by StrainPGC to select
genes. With all samples combined (dashed markers), the “not-present” gene is correctly excluded due to
low correlation, and the core gene is correctly included, but the strain-specific gene is lost due to its low
depth ratio and correlation. Analyzing the strain-pure set separately moves the strain-specific gene into
the selection region (dashed arrow), increasing accuracy. (E) Schematic depiction of our integrated

workflow to infer gene content across strains using only shotgun metagenomic reads as input.

In order to further refine these pangenome profiles for individual samples into gene content
estimates for specific strains, we designed StrainPGC, a novel method that integrates data from
multiple metagenomes to overcome the limitations of pangenome profiling for characterizing
intraspecific variation (Fig. 1A-C). For each species, StrainPGC takes in pangenome profiles
and two other inputs, a list of species marker genes, and a list of “strain-pure” samples for each
of the desired strains. The StrainPGC algorithm can be summarized as follow: First, the species
depth in each sample is estimated based on mean depth of the provided marker genes. Next,
based on this depth, “species-free” samples are identified as those where the species is below a
minimum detection limit (in this work 0.0001x). Then, separately for each strain, two statistics
are calculated for each gene (Fig. 1C): (1) the depth ratio is the total gene depth divided by the
total species depth across that strain’s pure samples; (2) the correlation score is the Pearson
coefficient between the gene’s depth and the overall species depth across both this strain’s pure
samples and the species-free samples. For each strain, genes passing a minimum threshold for
both of these statistics—the depth ratio and the correlation score (Fig. 1D)—are estimated to be
present in that strain’s genome. Finally, two quality control statistics (described below) are

calculated for each strain intended to flag those likely to be of low accuracy.
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While StrainPGC is designed to accept strain-pure samples identified using a variety of strain
tracking approaches, in this work we apply GT-Pro (Shi et al. 2022), an assembly-free algorithm
for tallying single-nucleotide polymorphisms (SNPs) in shotgun metagenomic reads, followed by
StrainFacts (Smith et al. 2022a), which harnesses these SNP profiles to precisely identify
individual strains within species and quantify their relative abundances. For each species, we
consider samples estimated to be = 95% the majority strain as pure. Strains analyzed in this
work are therefore defined based on their SNP-genotypes, with gene content estimated as a

subsequent step.

StrainPGC is open source and freely available at https://github.com/bsmith89/StrainPGC. We
integrated pangenome profiling, strain tracking, and gene content estimation into a complete
Snakemake (Molder et al. 2021) workflow (Fig. 1E) intended for studying the human gut
microbiome. As with other tools, the computational resources required to run the full pipeline
may be substantial and are dominated by the requirements for read alignment with Bowtie2
(Langmead and Salzberg 2012). By comparison, even for large datasets, the StrainPGC core
algorithm generates results for all strains of a species and requires only a few GBs of RAM at
peak (see GitHub README for details). Our analysis harnesses the comprehensive Unified
Human Gastrointestinal Genome (UHGG) reference collection (Almeida et al. 2020) and

requires only raw metagenomic reads as user-provided input.

StrainPGC accurately estimates gene content of strains in a complex
synthetic community

In order to evaluate StrainPGC’s performance, we ran our workflow on 276 publicly available
metagenomes derived from experimental manipulations of the hCom2 synthetic bacterial
community (Jin et al. 2023). The shared inoculum was composed of 117 bacterial isolates
spanning 8 phyla, each with a high-quality genome assembly, which we refer to as ground truth

genomes (Fig. 2A). Most species were represented by a single strain, some by 2 or 3 strains,
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and one by 4 (Fig. 2B). We refer to the collection of ground-truth genomes and experimental
metagenomes as the hCom2 benchmark dataset. We annotated predicted protein-coding genes
in the ground truth genomes with EggNOG OGs (Fig. 2A). After removing species that could not
be genotyped by GT-Pro, or that were undetected in metagenomes, the benchmarking task
amounted to 87 species encompassing 97 strains and with highly disparate depths (estimated
maximum sample depth interquartile range of 2.7-22.4x) (Fig. 2B). We applied StrainPGC to
estimate gene content across inferred strains, matched each ground truth strain to a single
inferred strain based on SNP genotypes, and compared the EQgQNOG OGs annotations between
these. In this benchmark, StrainPGC had a median precision of 0.96 (IQR: 0.90-0.98; Fig. 1C),

a recall of 0.88 (0.82-0.93), and an F1 score of 0.91 (0.87—-0.94).

We next compared StrainPGC’s performance to two alternative, state-of-the-art methods:
PanPhlAn (Beghini et al. 2021), which is widely used and operates on single samples, and
StrainPanDA (Hu et al. 2022), a recently published tool that harnesses information across
multiple samples and applies non-negative matrix factorization to jointly estimate gene content
and strain depth (Fig. 2C). For all three methods, we used the same reference database
(UHGG) and pangenome profiles as input, thereby comparing the gene content estimation
approaches on an equal basis. However, since strains inferred using PanPhlAn and
StrainPanDA do not have SNP genotypes to be used for matching, for each hCom2 genome,
we instead selected the inferred strain with the highest F1 score, giving these two methods an
advantage. Nonetheless, StrainPGC performed better on average than either alternative: a
median increase of 0.069 in F1 score compared to PanPhlAn (IQR: 0.038-0.093; p < 1e-10 by
Wilcoxon, non-parametric, paired, t-test) and 0.042 relative to StrainPanDA (IQR: 0.022-0.079;
p < le-10). All three tools had similarly high precision, and the superior performance of
StrainPGC was driven primarily by a dramatic reduction in the false negative rate (FPR: 1 -

recall): a median of just 49% of PanPhlAn’s and 60% of StrainPanDA’s FPR.
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Figure 2: Evaluation of StrainPGC’s gene content estimation performance on a highly diverse,
synthetic community (Jin et al. 2023). (A) Schematic diagram of our procedure for benchmarking
gene content estimates using the hCom2 synthetic community constructed to reflect the species and
strain diversity found in human gut microbiomes (Cheng et al. 2022). StrainPGC and alternative tools
were applied to pangenome profiles from different samples derived from the synthetic community, and
estimates of gene content were compared to high-quality reference genomes for 97 strains. Strains were
drawn from 95 species across 8 phyla (phylogenetic tree on the left, colored by phylum, scale bar in units
of substitutions per position). (B) Core genome depths of 87 detectable benchmarking species span more
than two orders of magnitude. Points represent individual species, are colored by phylum, and are placed

based on that species’s maximum depth across samples (x-axis) and total depth summed over all
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samples combined (y-axis). Species are closer to the 1-to-1 diagonal (dashed line) when the sample with
the highest depth contributes more of their total depth. Some species are represented by more than one
strain (marker shape). (C) Accuracy of gene content estimates by StrainPGC (y-axis) compared to
PanPhlAn (Beghini et al. 2021) and StrainPanDA (Hu et al. 2022) (x-axes), as measured by precision,
recall, and F1. All three indices range between 0 and 1, and higher values reflect better performance. The
data are represented as two-dimensional histograms using a gray density scale to represent the number
of strains falling in each (x, y) bin; density above the 1-to-1 diagonal (dotted line) indicates strains where
StrainPGC outperformed the alternative on that index. The relationship between performance and strain

sequencing depth or sample number are shown in Supplementary Figure S1.

For all three tools, strains with higher estimated depth had better performance on this
benchmark (Spearman’s correlation between maximum strain depth across samples and F1
score: Spearman’s p = 0.29, 0.55, and 0.32 for StrainPGC, PanPhlAn, and StrainPanDA,
respectively; Supplementary Figure S1). We also find a correlation between the number of
strain-pure samples and F1 for all three tools (p = 0.33, 0.42, and 0.34, respectively,
Supplementary Figure S1). Interestingly, StrainPGC’s precision was less tightly related to depth
than either PanPhlAn or StrainPanDA (p = 0.19, 0.54, and 0.55, respectively). Since we
controlled for the upstream pangenome profiling, these findings support the use of the Pearson
correlation across strain-pure samples as a filtering criterion for gene content estimation,
allowing StrainPGC to maintain high precision even while greatly increasing recall. In particular,
we find our approach upholds this specificity—even at low depths—more effectively than
existing methods and that performance was fairly stable for strains with = 5 samples, or when at

least one sample had depth = 1x (Supplementary Figures S1).

In real-world applications—where ground-truth gene content is not known a priori—it is
beneficial to understand the confidence of StrainPGC estimates. We, therefore, calculated two
scores to serve as proxies for accuracy and compared these to the performance we measured
on the hCom2 datasets. First, we hypothesize that the fraction of high-prevalence, species

marker genes assigned to a given inferred strain reflects the overall completeness of the
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estimated gene content for that strain. Indeed, across strains in the hCom2 benchmark, we
found a strong correlation between the fraction of species marker genes and the F1 score (p =
0.60, p < 1e-10). As expected, this appears to be driven primarily by a strong association with
the recall (p = 0.63, p < 1e-10); a weaker correlation was found with the precision (p =0.34, p <
le-3). Second, for strains suffering from low signal-to-noise, such as those at low sequencing
depths, the depth ratio of assigned genes will be more variable. We, therefore, calculated a
noise index reflecting: the standard deviation across all assigned genes of the log10-
transformed depth ratio. For this score, we found a negative correlation with the F1 score (p = -
0.68, p < 1e-10), this time driven by an association with the precision (p =-0.58, p <1e-9) as
well as recall (p = -0.53, p < 1e-8). In our benchmark, the 22 strains with < 95% species marker
genes or a noise index > 0.25 had substantially lower F1 scores than those that passed this
guality control (median of 0.83 versus 0.92, p < 1e-5 by MWU test). We propose using these
two criteria together in order to exclude inferred strains with lower accuracy gene content

estimates.

Inferred strains in publicly available metagenomes substantially
expand the catalog of intraspecific diversity

We applied our workflow to the 106 subjects and 1338 samples of the HMP2 metagenome

collection—which we refer to as simply the HMP2 throughout this paper.

First, to explore the strain-level diversity that might be discovered in publicly available datasets,
we used StrainFacts to identify and estimate the distribution of strains based on SNP profiles.
We defined detection as an estimated depth of = 0.1x, a threshold chosen to balance false
positives with the sensitivity of strain tracking. All species combined, a median of 59 strains
were detected in each metagenomic sample and 191.5 across all samples from each subject
(Fig. 3A). This strain-level diversity was highly subject-specific; among inferred strains detected

in two or more samples, 36% were detected in just one subject, and only 34% were detected in
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three or more (Fig. 3B). Strain sharing was dramatically more common in pairs of samples from

the same subject than in pairs of samples from different subjects (mean of 36.7 shared,

detected strains from same subject vs. 0.7 from different subjects, p < 1e-10 by MWU; Fig. 3C),

consistent with prior studies of the HMP2 and other cohorts (Lloyd-Price et al. 2017).
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14). Most subjects harbor between 100 and 300 inferred strains (median of 191.5). (B) Number of
subjects where each strain was detected. Only strains found in two or more samples are tallied. Most
strains (67%) were found in just one or two subjects. (C) Number of strains shared in any pair of samples
from the same (purple) or different (red) subjects. Pairs of samples from different subjects shared a mean
of just 0.7 strains. (D) A substantial increase in strain diversity was captured when including inferred
strains. Diversity was quantified based on total branch length in a hierarchical clustering (UPGMA) of all
SNP genotypes, and the increase was measured as the change in branch length relative to a tree with
only reference strains. Points represent individual species, are colored by phylum, and increasing size
reflects a larger number of inferred strains. Five species with fewer than 3 inferred strains had a small
decrease in branch length when inferred strains were included; one of these is excluded from the plot, left
of the x-axis limit. (E) Taxonomic diversity of 3504 inferred strains of Bacteria. The species tree is colored
by phylum as in (D). Species that had no strains with estimated gene content were omitted, and bars
around the outer ring indicate the number of inferred strains (outer ring indicates 20 strains). The branch
length scale bar (interior) is in units of substitutions per position. (F) Estimated genotype and gene
content dissimilarity from the closest reference genome. Joint (main panel) and marginal distributions
(panels above and to the right) are plotted for all high-quality reference (gray background) and inferred
(green contours) strains of all species. Gene content dissimilarity of inferred strains is calculated after
batch correction (see Methods). Points reflecting each of 28 inferred E. coli strains are also shown. Green

contours in the main panel reflect deciles in the 2D kernel density estimator.

Concordant with this level of strain diversity, estimated genotypes for inferred strains were often
distinct from the closest reference strain. Using SNP profiles in strain-pure samples, we
estimated each inferred strain’s genotypes as the consensus allele, masking ambiguous
positions. Among inferred strains with = 100 genotyped positions, 68% had a genotype
dissimilarity of greater than 0.05 to the closest reference. Representing the strain diversity of
each species with a UPGMA tree, we calculated the increase in total branch length when
including inferred strains relative to only references (Fig. 3D). For many species, a substantial
increase in total branch length was observed: more than 10% for 288 species, more than 20%
for 183 species, and more than 50% for 63 species when inferred strains were included.
Overall, these findings suggest that inferring strains from publicly available metagenome

collections will reveal novel intraspecific diversity not already found in reference databases.
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To further evaluate the expected performance of StrainPGC in real-world scenarios, we
performed an in silico experiment, using five E. coli genomes not in the UHGG reference
collection (Davidova-Gerzova et al. 2023), spiking-in simulated reads to the HMP2 dataset.
These benchmark genomes represent a range of divergence from the closest reference
genome similar to what we found for the inferred strains. Despite this additional complexity and
reference bias, we observed F1 scores equivalent to those in the hCom2 benchmark

(Supplementary Material and Supplementary Table S2).

Having in this way validated its performance in the HMP2 dataset, we next applied StrainPGC to
the novel, inferred strains. After quality control, we estimated gene content for 3511 strains in
443 species across 12 phyla (Fig. 3E). Strains had a median of 9 strain-pure samples (IQR: 5 -
13). While these were primarily Bacteria, we were also able to estimate gene content for strains
in three species of Archaea. The largest number of inferred strains were classified in the phylum
Firmicutes_A (2232 strains; an additional 80 and 141 strains were also in “Firmicutes”, and
“Firmicutes_B”, respectively, which are classified as separate phyla in the GTDB taxonomy),
followed by Bacteroidota (727), and Proteobacteria (189). Hence, StrainPGC resolved gene
content for myriad strains across a diverse set of species found in the human gut

(Supplementary Table S1).

Just like SNP genotypes, for most inferred strains, the estimated gene content was quite distinct
from the closest reference. Measuring dissimilarity using the cosine dissimilarity after batch
correction (see Methods), inferred strains were a median of 0.18 from the closest, high-quality
reference genome (Fig. 3F). As would be expected, strains with more dissimilar SNP genotypes
were often those with dissimilar gene content as well. For instance, across the 28 inferred
strains of E. coli, we found a significant correlation between the gene content dissimilarity and

the genotype dissimilarity (Spearman’s p = 0.44, p = 0.018; Fig. 3F). This suggests that the
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increased diversity captured by StrainPGC facilitates expanded analyses of intraspecific gene

content variation in the gut microbiome.

Estimated gene content enables pangenome analyses in prevalent
human gut microbes
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Figure 4: StrainPGC reveals patterns of gene content variation across dozens of species. (A) Gene
prevalence across inferred strains from HMP2 is very similar to prevalence in reference genomes.
Combining genes from all species, the 2D histogram shows the joint distribution of prevalence estimated
from reference genomes (x-axis) and inferred strains (y-axis). These independent estimates are highly
concordant, with higher density along the diagonal. Dashed horizontal lines represent the thresholds

defining core, shell, and cloud prevalence classes based on inferred strains. (B) Fraction of shell versus
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core genes in inferred strains. For each species (circle), x and y values are the median gene content in
the core and shell classes, respectively. The remaining gene content is composed of cloud genes and is
indicated by the dotted diagonal lines. Markers are colored by phylum. Analogous results calculated using
reference genomes are shown in Supplementary Figure S2. (C) Enrichment (red) or depletion (blue) in
genes of various functional categories in each of the core, shell, and cloud prevalence classes. Dots
representing each COG category (rows) and prevalence class (columns) are colored by odds ratio, with
red and blue indicating enrichment and depletion, respectively. Dot size reflects the number of genes in
that prevalence class that are in the given functional category. All enrichments/depletions shown are
significant (Two-tailed Fisher Exact Test; p < 0.05), except for those marked with a black cross. COG
categories A, B, and Y are omitted, as these had very few members (173, 74, and 0 genes, respectively).
(D) Gene co-occurrence clusters based on estimated gene content. The heatmap depicts histograms for
each of 44 species (rows) of cluster sizes (columns). Colors indicate the number of clusters in each
interval, and labels along the x-axis indicate the bounds of the intervals (left exclusive, right inclusive).
Colors on the left indicate phylum as elsewhere. (E, F) The maximum number of related annotations in
each co-occurrence cluster. The orange histogram represents the observed distribution, while the gray
region is the mean in each bin across 100 random permutations of cluster labels (i.e. the null distribution).
The higher number of clusters with multiple, shared annotations in the observed data compared to the
null suggests clumping of (E) KEGG module and (F) phage or plasmid genes into co-occurrence clusters.

To demonstrate the value of gene content estimates derived from the HMP2 for pangenome
analysis, we focused on the 99 species with estimated gene content for 10 or more inferred
strains (Median: 17 inferred strains per species, IQR: 12-28, 7 phyla). For each species, we
calculated the prevalence and distribution of genes across strains. Gene prevalence estimates
based on inferred strains were highly correlated with the prevalence observed in high-quality
reference genomes (r = 0.84, p < 1e-10; Fig. 4A), supporting the consistency of our estimates

with the existing reference database.

Based on these de novo prevalence estimates, we assigned genes to the “core” (= 90%
prevalence), “shell” (< 90% and = 15%), or “cloud” (< 15%) pangenome fractions. We then
calculated the portion of estimated gene content that fell into each prevalence class for each
inferred strain (Fig. 4B). Computing the median first within and then across species, genes in

the core fraction made up 70% (IQR: 63—76%) of each strain’s estimated gene content, shell
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fraction 25% (19-28%), and cloud fraction 5% (4—9%), in general agreement with reference
genomes (Supplementary Figure S2). Certain categories of functional annotations were more
common in each fraction (Fig. 4C). Core genes were enriched for COG categories with
housekeeping functions while the cloud pangenome was enriched in functional categories
including the mobilome, and defense mechanisms. The COG category for DNA replication,
recombination, and repair and genes without a COG category were also enriched in the cloud
pangenome, possibly indicating that many of these genes are also related to the mobilome.
Broadly, these patterns of enrichment confirm our expectations that core genes perform obligate

functions and make up a plurality of genes for most strains.

We also identified 200 genes that were annotated with antimicrobial resistance functions. Of
these, 168 were in the cloud, 32 were in the shell, and none were in the core pangenome
fraction. Across all 3511 high-quality strains, 482 (14%) of these had at least one gene with an
AMR annotation. We also found differences across phyla in the fraction of strains with at least
one annotation. For Bacteroidota, 37% of strains (271 of 727) had an AMR gene, as did 22% of
Proteobacteria (41 of 189). However, only 9% of Firmicutes (7 of 80), 7% of Firmicutes_A (151
of 2232), 6% of Actinobacteria (4 of 64) and 4% of Firmicutes_C (6 of 141) had an annotation.
These results are consistent with our expectation that resistance mechanisms are highly

variable within species and more common in gram-negative bacteria.

As an assembly-free approach, gene content estimation lacks synteny information, which can
be useful for understanding biological phenomena such as operonic co-regulation and
horizontal gene transfer. To get around this limitation, we clustered genes based on the
Pearson correlation of their presence and absence across inferred strains in the HMP2. For the
44 species with more than 20 high-quality inferred strains, we identified 36,208 co-occurring
gene clusters with 2 or more members, a median of 681.5 per species (Fig. 4D). Genes in the

same cluster were more likely to have related annotations; clusters having three or more genes
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in the same KEGG module were 12.7x more common than expected by random chance (n =
100 permutations of cluster labels within species, p < 1e-2; Fig. 4E). Likewise, phage- or
plasmid-associated genes were more frequently found in the same clusters than expected by
chance (three or more shared annotations 2.4x more common, p < le-2; Fig. 4F). This supports
our interpretation of StrainPGC—-enabled gene co-occurrence clustering across genomes as
evidence of related biochemical function or linked transmission, which may help to generate

testable hypotheses about relationships between genes in a species’ pangenome.

Overall, large surveys of gene content estimated by StrainPGC have the potential to vastly

expand the coverage and diversity of pangenome analyses.

Integrative analysis of E. coli strain gene content can inform the
selection of donors for fecal microbiota transplantation

We next sought to assess the potential utility of StrainPGC gene content estimates for
optimizing microbial therapies such as FMT. Current donor screening protocols focus on
detection of known pathogens and do little to match donors to recipients or optimize for
transmission and engraftment of particular microbial functions. To assess the sensitivity of our
approach for comparing donor strains, we re-analyzed metagenomes from a previously
published study of FMT for the treatment of ulcerative colitis (Smith et al. 2022b). We refer to
these metagenomes as the UCFMT dataset. As a proof-of-concept, we focused on strains of E.
coli, a well-studied and highly prevalent member of the human gut microbiome with well-
documented examples of not only pathogenic but also commensal and even probiotic strains

(Blount 2015).

Using 231 samples collected longitudinally from patients (189 samples) and donors (42 samples
from three of four donors) in the UCFMT study, we identified and tracked strains using
StrainFacts. Focusing on D44 and D97—the two donors with the most metagenomic samples

and who contributed materials to the most recipients—we observed robust, repeated
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transmission of strains during FMT (Fig. 5A). Next, with StrainPGC, we obtained gene content
estimates for inferred strains of E. coli; 18 passed quality control. In order to examine their
genetic relatedness—and to put them in the context of the earlier pangenome analysis—we
combined inferred strains from the UCFMT and HMP2 metagenomes and generated a UPGMA
tree based on their SNP genotype dissimilarity (Fig. 5B). As before, genotype and gene content
were related (Fig. 5B): for the combined set of inferred strains, we found a robust correlation
between the cosine dissimilarity of the shell pangenome fraction—defined above using the

HMP2 strains—and genotype dissimilarity (r = 0.88, Fig. 5C).

In recipients of donor D44, one strain, strain-6, stood out as frequently present both during six
weeks of maintenance dosing and in subsequent follow-up sampling (Fig. 5A). Likewise, strain-
9 engrafted frequently for recipients of D97. Both strains were very closely related to isolate
genomes represented in the UHGG reference collection: strain-6 matched
GUT_GENOME288864 (GenBank accession GCA_009896305.1) with an identical genotype at
all 74,229 shared SNP positions, and strain-9 matched GUT_GENOME140932

(GCA _000408385.1) with just 7 mismatches across 79,260 shared SNP positions. The two
inferred strains had a SNP genotype dissimilarity to each other of 0.23, similar to the median
dissimilarity across all pairs of UCFMT strains of 0.25 (IQR: 0.13 — 0.31). Approximately 80% of
each strain’s gene content was shared with the other, while 18% and 24% was private to strain-
6 and strain-9, respectively (Fig. 5C; Supplementary Table S3). Cross-referencing co-
occurrence clusters with the estimated gene content of these strains, about 60% of clusters in
each were shared, with 39% and 42% private, respectively (Fig. 5D). Of the 118 shared
clusters, 12 were found in no more than two additional UCFMT strains. We hypothesize that
these might indicate important physiological similarities that distinguish high-engraftment strains

from the others. Among 85 genes in these shared clusters, the most common COG category
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annotation was X (“Mobilome”) reinforcing that phage, plasmids, and other mobile genetic

elements are an important source of shared gene content across distantly related strains.
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Figure 5: Different donors in a fecal microbiota transplant (FMT) trial (Smith et al. 2022b) have
engrafting E. coli strains that differ in their functional potential. (A) E. coli strains found in repeated
sampling of two independent donors’ fecal materials (boxed panels) and in the fecal time series of their
respective recipients. Columns in each panel represent individual samples, colors represent E. coli strains
inferred from StrainFacts, and the height of colored bars indicates strain abundance normalized to total E.
coli abundance in the sample. For donors, samples are ordered arbitrarily. Recipient samples are ordered
by collection day and include samples at baseline (labeled “B”) collected before initial FMT treatment,
samples collected before each of up to six maintenance FMT doses (labeled “M1” to “M6”), and up to
three follow-up samples (labeled “F1” to “F3”). For a subset of recipients, samples were also collected
after antibiotic treatment and before FMT (labeled “pA”, post-antibiotics). For each donor, one strain (tan
in D44, aqua in D97) showed a high rate of engraftment in recipients at follow-up. (B) Comparison of shell
gene content between inferred strains from the FMT experiment (18 strains) and E. coli strains from the
HMP2 (28). Heatmap indicates the presence and absence of genes (rows) across inferred strains
(columns). Strains are ordered by UPGMA tree of estimated SNP genotype dissimilarity. Genes are
filtered to only the 3,134 genes in the shell pangenome fraction. Arrows (tan and aqua) highlight the high-
engraftment strains from panel (A). (C, D) Estimated gene content that is shared and distinct between the
two high-engraftment strains. Venn diagrams depict the intersection of (C) genes and (D) gene co-

occurrence clusters.

Next we sought to understand functional gene differences between the two high-engraftment
strains, in particular any that might result in disparate impacts on host health. We therefore
examined the unshared gene content in order to identify plausible physiological differences
(Supplementary Table S3). Strikingly, strain-9 had 12 genes annotated as related to
antimicrobial resistance, suggesting potential resistance to 17 different antibiotics, while strain-6
had none. Among gene co-occurrence clusters, one (labeled clust-861) is also found only in
strain-9, and includes genes with homology to components of a type VI secretion system
(T6SS). Most T6SSs are involved in inter-microbial competition, although a role in pathogenesis
has also been described (Navarro-Garcia et al. 2019). Another cluster private to strain-9,
labeled clust-37, includes genes with homology to many components of a type IV secretion
system (T4SS), other secretion systems, a helicase, and a component of a toxin/anti-toxin

system. Combined, these annotations suggest that the cluster may primarily reflect a
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mobilizable plasmid in strain-9 that is missing in strain-6. Similarly, related annotations in
several clusters (clust-351, clust-352, and clust-353) have homology to genes in the pdu-
operon. This operon encodes components of catabolic bacterial microcompartments, which are
involved in various catabolic pathways, including 1,2-propanediol utilization. These co-
occurrence clusters are found only in strain-9, and strain-6 is missing homology to most of the
genes in the pdu-operon. Microcompartments and 1,2-propanediol utilization have been
associated with pathogenicity in E. coli and other species of Enterobacteriaceae (Prentice

2021).

Given the presence of AMR genes and the plausible association between several co-
occurrence clusters and pathogenesis, we speculate that the engraftment of E. coli strain-9,
found in FMT samples donated by D97, could result in a less beneficial or even detrimental
treatment for recipients. Similarly, the engraftment of strain-6 from D44 might contribute to the
competitive exclusion of more pathogenic strains. While the previously published study found no
difference in outcomes between recipients of the two donors (Smith et al. 2022b), that study
may have been underpowered (n = 8 recipients for each of D44 and D97). Our computational

predictions could be tested in vitro with isolates obtainable from archived donor materials.

Discussion

Here we have described updates to the MIDAS v3 pangenome database and profiling software,
as well as StrainPGC, a novel tool for accurate, strain-specific gene content estimation using
metagenomic data. The key innovations of StrainPGC are the use of depth correlation
information and selection of strain-pure samples. Together, these innovations enable StrainPGC
to outperform PanPhlAn and StrainPanDA in a benchmark based on a complex, synthetic
community modeled after the human gut microbiome. Combining the updated MIDAS v3 and

StrainPGC in our workflow, we estimated gene content for thousands of strains in the HMP2
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metagenome collection, substantially expanding on the diversity found in reference genome
collections and enabling analyses of intraspecific variation without isolation or assembly. Finally,
we used StrainPGC to compare the functional potential of two different strains of E. coli that

were successfully transferred from two different donors in a clinical trial of FMT.

StrainPGC is an assembly-free method, and complements assembly-based methods—including
novel, strain-aware approaches (Quince et al. 2017; Quince et al. 2021)—for gene content
estimation. High-quality genome sequences enabled by laboratory isolation and culturing, as
well as modern, long-read sequencing, reduce the risk of cross-mapping and remain the gold
standard for comparative genomics. However, these methods are labor intensive, expensive,
and often fail to capture low-abundance organisms (Chen et al. 2020). In contrast, StrainPGC
offers a more accessible approach which can be applied to existing short-read metagenomic
datasets. Our method identified extensive, underexplored diversity in the well-studied HMP2,
demonstrating that many strains are missed by culturing and assembly-based methods.
Nonetheless, both approaches are complementary: assembly-based methods contribute to the
completeness and accuracy of reference databases, which in turn enhances the performance of
reference-based methods like StrainPGC. Together, these diverse approaches enable

comprehensive analysis of gene content variation in complex microbial communities.

Given the enormous diversity of strains found across subjects in the HMP2, the StrainPGC
approach may be most useful for analyzing FMT, longitudinal, or other study designs where the
same strains are expected to be found in multiple samples. While StrainPGC is specifically
designed to overcome the limitations of short-read, alignment-based pangenome profiling, in
particular ambiguous mapping to homologous sequences both within and across species,
systematic false positive and false negative gene assignments may still occur. As a result, we
caution against over-interpreting analyses that rely on directly comparing the gene content of

inferred strain with reference strains. Our approach leverages strain-pure samples and
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compares across multiple samples with the same strain. As a result, StrainPGC will likely
perform suboptimally in environments and study designs with particularly high intra-sample
diversity, such as waste-water or soil microbiomes, and where fewer strain-pure samples have
shared strains. This highlights an opportunity for the development of complementary tools that
can handle extreme microbial diversity both within and across samples. With increasingly
comprehensive pangenome reference databases, the accuracy of our approach will improve,
expanding its application to other microbiomes beyond the human gut. Nonetheless, highly
diverged strains may have elevated error rates due to reference database bias and it is prudent
for users to ensure that their species of interest are sufficiently covered in reference sets (Zhao
et al. 2023; Hovhannisyan et al. 2020). Another major barrier to interpreting gene content
estimates by StrainPGC or other methods is the sparsity of robust genetic, biochemical,
structural, and experimental characterization of gene products (Zhou et al. 2019). While we
augmented available annotations by leveraging co-occurrence clusters to investigate epistatic
and evolutionary relationships between genes—as others have done previously (Minot et al.

2021)—laboratory-based characterization is still vital.

Packaged as stand-alone software tools and integrated into an automated workflow, MIDAS v3
and StrainPGC together facilitate the broad exploration of strain-specific gene content in
metagenome collections. This enables expanding surveys across additional metagenomic
datasets, looking for associations between microbial strains and disease, and identifying
determinants of success for FMT. Important future work also includes specializing our end-to-
end workflow for environments beyond the human gut, integrating additional analyses
comparing inferred strains to the reference collection, and further refining pangenome profiles
based on horizontal coverage. We designed StrainPGC as part of a modular workflow that may
include gene and strain information from any context. In particular, our references can be

replaced with databases targeting different environments using previously released protocols
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(Zhao et al. 2022b; Shi et al. 2022). Thus, while we chose to focus on the human gut
microbiome in this initial study, we expect that StrainPGC will be a broadly useful approach to

associate genes with strains using metagenomic data from diverse environments.

Methods
MIDAS v3 update

Here we describe updates in MIDAS v3, including changes to the pangenome reference
database construction procedure and the pangenome profiling method. Together, these updates
clean, functionally annotate, and expand the phylogenetic coverage of MIDAS pangenome
profiling, providing a foundation for accurately estimating and interpreting gene content across
species. MIDAS v3 is available at hitps://github.com/czbiohub-sf/MIDAS and can be installed
using conda or Docker. Compatible, pre-built MIDAS databases based on UHGG (Almeida et al.
2020) v2.0 and GTDB (Parks et al. 2021) r202 are available. We use the UHGG database

throughout this work.
Pangenome database curation and clustering

A MIDAS v3 pangenome database can be constructed from any reference genome collection,
and is composed, for each species, of predicted gene sequences from all example genomes
clustered into operational gene families (OGFs) at a series of average nucleotide identity (ANI)
thresholds. For clarity, we have referred to these OGFs simply as genes in the main text. In
order to minimize the impacts of inter- and intra-specific cross-mapping on pangenome profiling,
which can be major problems for gene databases constructed with MAGs, we made major
changes to the clustering and curation pipeline. In this MIDAS update, described below, we
sought to minimize the impact of fragmented gene sequences, spurious gene calls, chimeric
assemblies, and redundant OGFs resulting from these errors (Li et al. 2014; Hyatt et al. 2012;

Dimonaco et al. 2021).
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For each species, for each reference genome in the source genome collection, genes were
predicted by Prokka v1.14.6 (Seemann 2014), wrapping Prodigal v2.6.3 (Hyatt et al. 2010).
Gene sequences less than 200 bp or with ambiguous bases (anything but A, C, G, or T) were
removed. Then, the remaining sequences were dereplicated by clustering at a 99% ANI
threshold using VSEARCH v2.23.0 (Rognes et al. 2016), with the longest sequence initially
assigned as the representative sequence for the cluster. Next, in order to identify and remove
additional cases of fragmented genes, we applied CD-HIT v4.8.1 (Fu et al. 2012) (using options
-c 1 -aS 0.9 -G 0 -g 1 -AS 180); when a shorter representative sequence had perfect
identity over =2 90% of length to a longer sequence, the two clusters were merged, and the
longer sequence was assigned as representative. Short gene sequences predicted on the

opposite strand, a known complication (Trimble et al. 2012), were also merged in this way.

Having dereplicated and cleaned gene sequences, we further clustered representative
sequences into OGFs using VSEARCH, defining final OGF clusters at thresholds between 95%

and 75% ANI.

Pangenome database annotation

Next, we annotated sequences using a variety of tools. We ran EQQNOG mapper v2.1.12
(Cantalapiedra et al. 2021) on dereplicated genes to identify homology relative to several
commonly used gene orthologies: COGs, EggNOG OGs, and KOs. ResFinder v4.4.2 (Florensa
et al. 2022), geNomad v1.7.4 (Camargo et al. 2023) and MobileElementFinder v1.1.2
(Johansson et al. 2020) were run directly on contigs of each reference genome to identify AMR,
phage, plasmid, and mobile element associated regions, and these annotations were

transferred onto predicted genes based on overlapping coordinates.

While annotations are performed on genomic sequences or dereplicated gene sequences,

interpretation of estimated gene content requires annotations at the OGF level. We therefore
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implemented a voting procedure intended to enable the transfer of annotations from gene
sequences to gene clusters. For OGFs at each ANI level, we calculated the fraction of genes in
each cluster annotated as an AMR gene, phage-associated, plasmid-associated, or mobile
element-associated. In this way, users can identify annotations robustly associated with genes

of interest.

Alignment and gene depth estimation

For pangenome profiling, the MIDASDB representative gene sequences from selected species
(i.e. dereplicated at the 99% ANI level) are compiled into an index for alignment and
guantification. At this stage, we apply additional filtering to the set of representative sequences,
which we refer to as “pruning”, with the goal of speeding up alignment and improving
guantification by reducing the rate of cross-mapping within and between species. First, we
remove representative sequences that are less than 50% of the median length in the 95% ANI
cluster, as these are more likely to be truncated genes resulting from assembly fragmentation.
Second, for species with more than 10 reference genomes, we remove representative
sequences where their 75% ANI clusters had only one member, as these are more likely to be
spurious gene calls or contamination resulting from chimeric assembly. Finally, an alignment
index is constructed from the remaining representative sequences, and reads are mapped using

Bowtie2 (Langmead and Salzberg 2012).

Pangenome profiling with MIDAS v3 proceeds through four stages: (1) building a reference
index as described above, (2) alignment of reads to the reference index, (3) calculation of the
mean depth across the length of the representative sequence, and then (4) summation of
representative sequence depths into clusters in order to estimate the total depth of the OGF at

the chosen ANI threshold.
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Shotgun metagenomes

All shotgun metagenomes analyzed in this work are publicly available as SRA BioProjects,
including the HMP2 (PRINA398089), UCFMT (PRJINA737472), and the hCom2 samples used
for benchmarking (PRJIJNA885585). The HMP2 metagenomes already had human reads
removed and quality control procedures previously applied. UCFMT metagenomes were filtered
for human reads, deduplicated, adapter trimmed, and quality trimmed, as previously described
in (Smith et al. 2022b). The hCom2 metagenomes were processed in the same way, except that

human read removal was skipped because the data was collected in vitro.

Integrated analysis workflow

Pangenome profiling

For the work presented here, we ran MIDAS v3 Using Bowtie2 v2.5.1 throughout, a single
reference index was built for 627 species using midas build bowtie2db --

prune centroids --remove singleton. Paired-end reads for each sample were aligned
to this index using midas run genes --aln speed sensitive --aln extra flags
'--mm --ignore-quals' --total depth 0. To maximize our sensitivity to divergent
strains and at low abundance we did not use any of MIDAS’s default filters in calculating depths.
Instead, mean mapping depth was calculated using samtools depth and summed up at the

75% ANI OGF level.
Reference genomes and species marker genes

High-quality reference genomes in the UHGG were defined as those with estimated
completeness of > 90% and contamination of < 5%. OGFs found in > 95% of high-quality
reference genomes were selected as species marker genes and were used for species depth

estimation, quality control, and downstream analyses.
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A list of the marker genes used for each of the 627 species analyzed in this study are distributed

with the StrainPGC software.
SNP profiling

SNP profiles were obtained from metagenomes using GT-Pro v1.0.1 (Shi et al. 2022) and the
default database, which was built using UHGG v1.0. GT-Pro was run on preprocessed reads,
and counts from forward and reverse reads were summed. The resulting SNP profile matrix, a
three-dimensional array of counts indexed by sample, genotyped position, and allele (reference

or alternative), is the core input for StrainFacts (Smith et al. 2022a).

An analogous approach was used to obtain SNP genotypes for genomic sequence. Specifically,
for both reference and benchmarking genomes, contigs were fragmented into 500 bp tiles with
31 bp of overlap and used as input to GT-Pro. We filtered out tallies for SNP sites that did not

match the expected species.
Strain tracking and genotyping

For each species, SNP profiles obtained from GT-Pro were filtered to remove low-depth
samples (those with < 5% of positions observed). For the HMP2 and UCFMT datasets, low
polymorphism positions (minority allele observed in < 5% of samples) were also removed.
However, this latter filter was not applied to the synthetic community since many species had
only one strain. Strain genotypes and proportions were estimated with StrainFacts v0.6.0, using
the updated Model 4 and a number of strains set as n%8° where n is the number of samples. For
the vast majority of species, this model was fit using a single, standardized set of
hyperparameters: --optimizer-learning-rate 0.05 --min-optimizer-learning-
rate le-2 --hyperparameters gamma hyper=le-15 pi hyper=le-2

pi hyper2=le-2 rho hyper=1.0 rho hyper2=1.0 --anneal-hyperparameters

gamma_hyper=0.999 --anneal-steps 120000. However, for seven species (species IDs:
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sp-100076, sp-101302, sp-101306, sp-101704, sp-102478, sp-103456, sp-103683), amended
hyperparameters were found to perform better: gamma hyper=1e-10 pi hyper=le-3
pi hyper2=le-3 gamma hyper=le-1 rho hyper=10.0 rho hyper2=10.0 --

anneal-steps 20000.

Each strain-pure set was defined as those samples where StrainFacts estimated it to be > 95%
of the species. For analyses requiring estimated genotypes, we used a consensus genotype for
each strain, pooling all samples in the strain-pure set. Based on this pooling, the consensus
genotype for each strain was the majority allele at each position. Positions with unexpectedly
high counts of the minor allele (= 10%)—which suggests issues with genotyping—were masked.
Similarly, positions without any observed alleles were also masked in subsequent comparisons.
Likewise, SNPs in reference and benchmark genotypes where neither allele was observed were
masked in downstream analyses. We selected this as a more conservative approach compared
to directly using the genotypes estimated by StrainFacts. All pairwise dissimilarities between
inferred strain, reference, and benchmark genotypes were calculated as the masked Hamming

distance, with a pseudocount of 1 added, i.e.:

d(Gi, Gj) = “+11 where P, is the number of positions with different allele and P, is the number of

P
P.+

unmasked positions.

Note that this measure of genetic distance is related to but not equivalent to the complement of
the core genome average nucleotide identity (“ANI dissimilarity”: 1 — ANI), since it is based on
only known polymorphic sites in the core genome, and the actual ANI dissimilarity—which

includes many non-polymorphic sites in the denominator, as well—is likely to be much smaller.

StrainPGC
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For each species we estimated gene content across strains with StrainPGC v0.1.0, providing
the three required inputs: (1) the list of species marker gene IDs from the MIDASDB, (2) the
strain pure sets derived from StrainFacts, and (3) pangenome profiles from MIDAS as the three

inputs.

StrainPGC estimates the depth of each species in each sample as the 15%-trimmed mean
depth across all species marker genes, i.e., the mean depth of species marker genes excluding
those genes with the 15% highest and lowest depth. Species-free samples were defined as
those with an estimated species depth of < 0.0001x. Genes were selected using a depth ratio
threshold of 0.2 and a correlation threshold of 0.4 in order to strike a balance between sensitivity
and specificity, while slightly favoring false negatives over false positives (see Supplementary

Figure S3).

Gene family annotation

To facilitate functional interpretation, we extended the voting procedure used for the MIDASDB
to EggNOG mapper annotations, which include COGs, COG categories, EGgNOG OGs, KOs,
and KEGG Modules. We augmented the COG categories assigned by EggNOG mapper with
additional categories available from https:/ftp.ncbi.nim.nih.gov/pub/COG/COG2020/data. Since
annotations were performed on representative sequences for each dereplicated gene (99% ANI
cluster), we first transferred specific annotations to all cluster members. Annotations within each
gene (75% ANI cluster) were then counted as votes. Any annotations possessed by > 50% of
member sequences were assigned to the gene family as a whole. Note that while the annotation
voting for the MIDASDB, described above, operates on binary annotations (e.g., it is or is not a
phage gene), this additional voting procedure was performed for individual annotations (e.g., a

specific COG or AMR reference accession).
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Downstream analysis

Benchmarking gene content estimation performance

We benchmarked the performance of gene content estimates from StrainPGC, PanPhlAn, and
StrainPanDA, using publicly available, high-quality strain genomes and metagenomes from
experimental treatments of the hCOM2 synthetic community (Jin et al. 2023). From the 117
inoculated strains, we excluded genomes from evaluation if: (1) when running GT-Pro directly
on their genome sequence, less than 50% of identified SNPs were from the same species, or
(2) the species had no depth across metagenomes, as estimated from mean marker gene

depth.

In the remaining 97 strain genomes we identified gene sequences with Prodigal v2.6.3 (Hyatt et
al. 2012) (masking ambiguous bases and using the meta procedure), translated them with
codon table 11, and annotated them with EQgNOG mapper version 2.1.10. The ground-truth
annotations used to assess performance were defined as the complete set of all EggNOG OGs
assigned to all genes in the ground-truth genome. These were compared to the complete set of

OG annotations in each inferred strain’s estimated gene content.

In order to select which inferred strain to compare to each benchmark genome, the GT-Pro
genotype of the ground-truth genome was compared to all strain-pure sample consensus
genotypes, and the best match was identified based on the smallest masked hamming distance.
For each benchmark genome, we calculated the precision, recall, and F1 score for this best

match.

Both PanPhlAn and StrainPanDA are packaged with their own pangenome databases and
profiling scripts. However, in order to compare the core algorithms directly, the same MIDAS
pangenome profiles were provided as input to all three tools. Both alternative tools have several

parameters that control when they fail to run on low sequencing depth datasets. Since, for some
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species, the use of default parameter values results in a runtime exception, we adjusted these
parameters to be much more lenient. For PanPhlAn, we used the flags: --1eft max 1000000
--right min 0 --min coverage 0. For StrainPanDA, we made modifications to the code
(see https://github.com/bsmith89/StrainPanDA) and used the flags -—-mincov 10 --minfrac
0.9 --minreads le6 --minsamples 1.We also fixed the number of latent strains to 6
using --max rank 6 --rank 6 for all runs. For PanPhlAn and StrainPanDA, the inferred

strain with the highest F1 score was used for performance comparisons.

Inferred strain quality filtering

For analysis of the HMP2 and UCFMT datasets—but not performance benchmarking—strains
were filtered to remove those likely to be low accuracy. Strains with fewer than 100 unmasked
positions in their consensus genotype were included in benchmarking but excluded from all
other analyses. This criterion a priori excludes 19 of the 627 species profiled in this work. For
analyses of gene content, strains with an estimated depth of < 1x across all strain-pure samples
were also excluded. Finally, strains with < 95% of species genes or with a standard deviation in
the log10-transformed depth ratio across selected genes of > 0.25 were flagged as low quality

and removed.

Analysis of species and strain diversity

The species phylogeny in Fig. 2A and Fig. 3E was obtained directly from the UHGG
https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-

gut/v2.0.2/phylogenies/bac120 igtree.nwk.

For the analysis of strain distribution in the HMP2, strain depth was estimated as the product of
the estimated species depth and estimated strain fraction. All strains with depth > 0.1x were

considered to be “present” in a sample. The number of strains in each subject was calculated as


https://github.com/bsmith89/StrainPanDA
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the total number of strains present in any of that subject’s samples. For shared-strain analysis
(Fig. 3C), samples with fewer than 10 strains present of any species were excluded from

analysis, as this removed several samples with anomalously low diversity.

Gene content was compared using the cosine dissimilarity. For comparisons between inferred
strains and references, the inferred strains’ gene content was first batch corrected by

subtracting the difference in means (i.e., the difference in prevalence).

Pangenome Analyses

To calculate the correlation between gene prevalence in reference genomes and inferred strains

we first removed genes that were very rare (< 1%) in both.

Genes found in no more than one or missing from no more than one genome were excluded
from clustering analysis. The remaining genes were then hierarchically clustered based on their
correlation across inferred strains using the average-neighbor method at a correlation threshold

of 0.9. Only clusters with more than one member were kept.

To analyze the clumping of related genes in co-occurrence clusters, we considered annotations
of (1) individual KEGG modules and (2) binary classification of genes as phage and/or plasmid.
For each co-occurrence cluster, we took the maximum count for any one annotation. To
estimate a distribution under the null, we permuted cluster labels within species before again
collecting the maximum counts across clusters. Significance was tested by comparing the

number of clusters with 23 related annotations to the null.

For analysis of the UCFMT E. coli strains, shell genes and co-occurrence clusters were defined

using the HMP2 inferred strains, not de novo.
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Software availability
StrainPGC is freely available at https://github.com/bsmith89/StrainPGC. Code and metadata

needed to replicate our analyses and plots are available at

https://github.com/bsmith89/StrainPGC-manuscript.
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Supplementary Materials

Extended hCom2 benchmarking results

1.0

T
i,
ol g 2N

1

0.8 - /W »

0.6 g

0.4 4 -1

Precision

0.2 4 -

0.0 -

0.8

0.6

Recall

0.4 .

0.2 4 -1

0.0

0.8 1

0.6

F1

0.4 -

StrainPGC

0.2 PanPhlAn T

StrainPanDA

0 107! 10° 1(')1 1<')2 1<')1 1('J?
Maximum Strain Depth Maximum Strain Depth
Figure S1: Relationship between sequencing depth or number of samples and the accuracy of
gene content estimation. Points represent the performance of each tool (colors) on each of the 97
benchmark strains. For the left column, the x-axis is the maximum estimated depth of the genotype-
matched strain across strain-pure samples, and for the right column it is the total number of strain-pure
samples identified for that strain. Trend lines are a rolling average over the 10 nearest points. The dotted
vertical line indicates the 1x depth and 5 strain-pure samples, after which the mean performance
stabilizes for StrainPGC.
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Figure S2: Per-genome core, shell, and cloud gene fractions in reference genomes. Equivalent
results to Fig. 4B, here calculated using reference genomes for comparison to StrainPGC-based gene

content estimates.

Simulated E. coli spike-in validation

We performed an additional benchmarking study to validate our approach in datasets with
substantially more strain-diversity, for strains with more divergence from the reference set, and
with a limited number of strain-pure samples. To keep the simulated metagenomeic data as
realistic as possible, we opted to construct samples with novel strains by “spiking” simulated
reads from recently sequenced isolates into real metagenomes from the HMP2 study. Due to an
abundance of studies with wild E. coli isolates, and our particular focus on this species
throughout, we identified five novel E. coli genomes from a recently published project
(Davidova-Gerzova et al. 2023). These isolates varied greatly in their relatedness to the UHGG
reference genomes, including very distantly related strains with a genotype dissimilarity of
0.077. These strains are as novel relative to the reference database as would be expected for
E. coli found in the human gut; only 0.8% of UHGG genomes had a closest match genotype-

dissimilarity of more than 0.077.
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We selected five HMP2 samples, all from one subject (C3022), where E. coli was not detected.
Into these, we spiked-in simulated reads at 1x, 2x, 4%, 8x, and 16x depths with a separate set of
reads for each strain. We combined all 25 of these additional, synthetic samples with the full
HMP2 dataset, and then re-ran our integrated workflow. We matched the inferred strains to
each of the ground-truth genomes based on genotype similarity and evaluated the StrainPGC

gene content estimates as in the hCom2 benchmark.

We found that the performance of StrainPGC in these simulations with non-reference E. coli
genomes is consistent with the overall performance on the hCom2 (synthetic community)
benchmark. This is despite the fact that the metagenomes were much more complex and some
strains were more dissimilar to the closest reference genome. Specifically, we found a median
F1 score across all strains of 0.92, equivalent to the median F1 of 0.91 from the hCom2
benchmark. Interestingly, we do not find a negative relationship between the divergence of the
benchmark genome and performance. StrainPGC performance was nearly equivalent for the
least diverged (F1 of 0.89) and most diverged genomes (F1 of 0.92). We conclude that it is
reasonable to expect similar performance for other strains and datasets, even when the number
of strains for a species is large and when strains are more diverged from the reference

database.

Supplementary Table S2: Performance on five E. coli genomes in an in silico spike-in experiment.

GenBank Closest UHGG Closest Genotype Precision Recall F1
Accession Reference Dissimilarity

GCF_030198905.1 GUT_GENOME144970 0.0039 0.97 0.87 0.92
GCF_030202075.1 = GUT_GENOME140957 0.0078 0.96 0.87 0.92
GCF_030204715.1 GUT_GENOME144767 0.0011 0.97 0.82 0.89

GCF_030205145.1 GUT_GENOME144552 0.030 0.96 0.87 091
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GenBank Closest UHGG Closest Genotype Precision Recall F1
Accession Reference Dissimilarity
GCF_030205875.1  GUT_GENOME144360 0.077 0.97 0.87 0.92

Sensitivity of StrainPGC performance to depth ratio and correlation
score thresholds
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Figure S3: Threshold depth ratio and correlation score parameter search. Median performance
across 97 hCom2 benchmark genomes at every combination of 11 correlation score thresholds (x-axis)
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and 7 depth ratio thresholds (y-axis). Panels represent median precision (A), recall (B), and F1 score (C).
The best performance (F1 score) was achieved at a depth ratio threshold of 0.1 and correlation threshold
of 0.40. We used a slightly more conservative depth threshold of 0.2 throughout the rest of this work,

which decreased the median F1 score negligably from 0.916 to 0.908.
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