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Abstract: 

Metagenomics has greatly expanded our understanding of the human gut microbiome by 

revealing a vast diversity of bacterial species within and across individuals. Even within a single 

species, different strains can have highly divergent gene content, affecting traits such as 

antibiotic resistance, metabolism, and virulence. Methods that harness metagenomic data to 

resolve strain-level differences in functional potential are crucial for understanding the causes 

and consequences of this intraspecific diversity. The enormous size of pangenome references, 

strain mixing within samples, and inconsistent sequencing depth present challenges for existing 

tools that analyze samples one at a time. To address this gap, we updated the MIDAS 

pangenome profiler, now released as version 3, and developed StrainPGC, an approach to 

strain-specific gene content estimation that combines strain tracking and correlations across 

multiple samples. We validate our integrated analysis using a complex synthetic community of 

strains from the human gut and find that StrainPGC outperforms existing approaches. Analyzing 

a large, publicly available metagenome collection from inflammatory bowel disease patients and 

healthy controls, we catalog the functional repertoires of thousands of strains across hundreds 

of species, capturing extensive diversity missing from reference databases. Finally, we apply 

StrainPGC to metagenomes from a clinical trial of fecal microbiota transplantation for the 

treatment of ulcerative colitis. We identify two Escherichia coli strains from two different donors 

that are both frequently transmitted to patients, but have notable differences in functional 

potential. StrainPGC and MIDAS v3 together enable precise, intraspecific pangenomic 

investigations using large collections of metagenomic data without microbial isolation or de novo 

assembly.  
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Introduction 

In both diseased and healthy individuals, distinct strains of the same microbial species can differ 

in medically relevant traits, including metabolic capacity (Joglekar et al. 2018), immunological 

interactions (Yang et al. 2020; Carrow et al. 2020), antimicrobial resistance (Ray et al. 2017), 

and pathogenic potential (Pakbin et al. 2021). Evaluating the functional potential encoded in 

each genome is the first step in predicting strain-specific impacts on human health, and 

methods that accurately determine gene content from metagenomic data can greatly improve 

our understanding of the extent and importance of this intraspecific diversity. Widely used tools 

for analyzing metagenomic data can accurately quantify the abundance of species present in a 

microbial community, but often fall short in characterizing variation in gene content between 

strains (Plaza Oñate et al. 2018). As a result, it is challenging to study the functional 

consequences of strain-level variation in the gut microbiome. 

The most common way to study microbial gene content in situ is to quantify the gene families 

present in shotgun metagenomes, an approach referred to as “pangenome profiling”. 

Pangenome profiling estimates the mean sequencing depth—sometimes called vertical 

coverage—of a gene family as the mean number of reads aligning to each base of a 

representative sequence (Milanese et al. 2019). (For brevity, we use “gene” as short-hand for 

gene family and “depth” for mean sequencing depth throughout this paper.) Several existing 

tools, including PanPhlAn (Beghini et al. 2021) and MIDAS (Zhao et al. 2022a; Nayfach et al. 

2016) perform pangenome profiling. However, due to several sources of error in quantifying 

gene depth, a second algorithm is needed to infer which genes are actually present in a specific 

strain’s genome, a step that we call gene content estimation. Since this strain is never directly 

observed in isolation—indeed, it is only a hypothesis—we refer to it as an inferred strain. Tools 

for gene content estimation are often based on the assumption that all encoded genes will be at 

a similar depth: the same as the overall species depth (Plaza Oñate et al. 2018), which can be 
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directly estimated from the depth of species marker genes (Blanco-Míguez et al. 2023; Milanese 

et al. 2019). Therefore, the depth ratio—the ratio of a given gene’s depth to the overall species 

depth in a sample—can be used as the key criterion for the assignment of genes to a species 

(Nayfach et al. 2016). 

However, gene content estimation using pangenome profiles faces four key challenges: 

1. an incomplete set of representative gene sequences in pangenome reference 
databases, 

2. ambiguous alignment of short-reads to multiple sequences both within and across 
species (“cross-mapping”), 

3. poor discrimination between present and absent genes for species at low depth due to 
high variance of the depth ratio, and 

4. a decreased depth ratio for strain-specific genes when other strains of the same species 
are also abundant (“strain mixing”). 
 

Significant progress towards (1) has been recently achieved by expanding pangenome 

reference databases to include metagenome assembled genomes (MAGs), substantially 

improving their coverage for human gut species (Almeida et al. 2020). Unfortunately, MAGs can 

contain cross-species contamination and genome assembly errors such as gene fragmentation. 

The frequency and types of these errors varies depending on the source and quality of the 

MAGs, as well as whether they were assembled from short-read or long-read sequencing data. 

Both types of errors can exacerbate cross-mapping (2), potentially reducing the accuracy of 

pangenome profiling (Zhao et al. 2023). Careful curation of the pangenome database is needed 

to reduce the impact of these issues. One promising approach for dealing with low depth (3), is 

to combine data across multiple samples (Carr et al. 2013; Plaza Oñate et al. 2018), taking 

advantage of increased depth from pooling reads. As a bonus, the correlation between the 

species depth and gene depth can be used as an additional criterion to better exclude genes 

with cross-mapping (2). However, combining samples can exacerbate the impacts of strain 

mixing (4). Methods are needed for strain-aware gene content estimation that benefit from the 
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increased sensitivity and specificity of multiple samples while also accounting for intraspecific 

variation. 

Here we introduce StrainPGC (“Strain Pure Gene Content”), a computational method designed 

to accurately estimate the gene content of individual microbial strains. StrainPGC leverages 

modern strain tracking tools to separate samples into strain-pure subsets in order to combine 

data from pangenome profiling across multiple metagenomes. We also describe changes in 

MIDAS v3, including updates to the pangenome database (MIDASDB) and profiling pipeline to 

reduce cross-mapping, improve quantification, and facilitate the interpretation of strain-specific 

gene content. As part of a complete workflow, our method requires only shotgun metagenomes 

as input and outputs estimates of the gene content of individual strains. After validating our 

workflow with a complex synthetic community (hCom2) (Jin et al. 2023), we use it to explore 

strains in the Human Microbiome Project 2 (HMP2) (Proctor et al. 2019) and in a trial of fecal 

microbiota transplantation for ulcerative colitis (UCFMT) (Smith et al. 2022b). We find novel 

strain diversity not captured in existing reference databases as well as widespread variation in 

gene content, including functions with likely clinical relevance. 

Results 

Updated pangenome profiling and strain-specific gene content 
estimation 

MIDAS v3 represents a major upgrade to the pangenome profiling pipeline intended to improve 

the completeness, curation, and interpretability of gene abundance estimates. We updated the 

pangenome database construction and gene annotation process as well as the profiling 

algorithm, and describe these in the Methods section below. In each sample, MIDAS quantifies 

the depth of the genes in each species’ pangenome. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


6 
 

 

Figure 1: Conceptual overview of strain-resolved gene content reconstruction using StrainPGC. 

(A) Schematic representation of pangenome profiling, which estimates gene depth based on short-read 

alignment. The illustration represents profiling of a hypothetical microbial population harboring two strains 

of the same species (blue and green), each with both shared and strain-specific gene content. Four key 

challenges for pangenome profiling and gene content estimation are highlighted (brackets, see 

Introduction). (B) Limitations of gene content estimation using single samples. Depth is shown across five 

samples for three genes: one gene is ubiquitous across strains (“core”), another is found in only the strain 

of interest (“strain-specific”), and a third not present in the strain of interest but is susceptible to cross-

mapping (“not present”). Samples are separated along the x-axis and represent five characteristic 

scenarios: a sample where the species is not deeply sequenced (“low depth”), a sample with multiple 

strains of the species (“strain mixture”), a sample exhibiting erroneous depth due to read mapping errors 

(“cross-mapping”), a sample with an entirely different strain of the species (“different strain”), and a high 

depth, strain-pure sample (“high depth”). Colors distinguish between strain-pure samples (green markers) 

and samples with a different strain or a mixture of more than one strain (gray markers). Traditional, single-

sample analysis estimates gene content by selecting genes with a minimum depth (red, horizontal line, 

which is chosen based on the species’s depth). As a result, samples with low depth, cross-mapping, and 

strain mixing all lead to decreased accuracy (indicated with red x’s). Only gene content estimation in a 

strain-pure, high-depth sample without cross-mapping (green check) accurately reflects the strain of 

interest. (C) Relationship between gene depth and species depth for each of the three genes (panels) 
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across the five samples (marker shape and color as in B). For each, the linear relationship is shown 

between species depth and gene depth in the set of strain-pure samples (solid green line). We contrast 

this fit with the linear relationship across all five samples without considering strain variation (dashed line). 

(D) Schematic depiction of how StrainPGC estimates gene content based on both correlation and depth 

ratio. The red lines indicate the thresholds of depth ratio and correlation used by StrainPGC to select 

genes. With all samples combined (dashed markers), the “not-present” gene is correctly excluded due to 

low correlation, and the core gene is correctly included, but the strain-specific gene is lost due to its low 

depth ratio and correlation. Analyzing the strain-pure set separately moves the strain-specific gene into 

the selection region (dashed arrow), increasing accuracy. (E) Schematic depiction of our integrated 

workflow to infer gene content across strains using only shotgun metagenomic reads as input. 

 

In order to further refine these pangenome profiles for individual samples into gene content 

estimates for specific strains, we designed StrainPGC, a novel method that integrates data from 

multiple metagenomes to overcome the limitations of pangenome profiling for characterizing 

intraspecific variation (Fig. 1A-C). For each species, StrainPGC takes in pangenome profiles 

and two other inputs, a list of species marker genes, and a list of “strain-pure” samples for each 

of the desired strains. The StrainPGC algorithm can be summarized as follow: First, the species 

depth in each sample is estimated based on mean depth of the provided marker genes. Next, 

based on this depth, “species-free” samples are identified as those where the species is below a 

minimum detection limit (in this work 0.0001x). Then, separately for each strain, two statistics 

are calculated for each gene (Fig. 1C): (1) the depth ratio is the total gene depth divided by the 

total species depth across that strain’s pure samples; (2) the correlation score is the Pearson 

coefficient between the gene’s depth and the overall species depth across both this strain’s pure 

samples and the species-free samples. For each strain, genes passing a minimum threshold for 

both of these statistics—the depth ratio and the correlation score (Fig. 1D)—are estimated to be 

present in that strain’s genome. Finally, two quality control statistics (described below) are 

calculated for each strain intended to flag those likely to be of low accuracy. 
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While StrainPGC is designed to accept strain-pure samples identified using a variety of strain 

tracking approaches, in this work we apply GT-Pro (Shi et al. 2022), an assembly-free algorithm 

for tallying single-nucleotide polymorphisms (SNPs) in shotgun metagenomic reads, followed by 

StrainFacts (Smith et al. 2022a), which harnesses these SNP profiles to precisely identify 

individual strains within species and quantify their relative abundances. For each species, we 

consider samples estimated to be ≥ 95% the majority strain as pure. Strains analyzed in this 

work are therefore defined based on their SNP-genotypes, with gene content estimated as a 

subsequent step. 

StrainPGC is open source and freely available at https://github.com/bsmith89/StrainPGC. We 

integrated pangenome profiling, strain tracking, and gene content estimation into a complete 

Snakemake (Mölder et al. 2021) workflow (Fig. 1E) intended for studying the human gut 

microbiome. As with other tools, the computational resources required to run the full pipeline 

may be substantial and are dominated by the requirements for read alignment with Bowtie2 

(Langmead and Salzberg 2012). By comparison, even for large datasets, the StrainPGC core 

algorithm generates results for all strains of a species and requires only a few GBs of RAM at 

peak (see GitHub README for details). Our analysis harnesses the comprehensive Unified 

Human Gastrointestinal Genome (UHGG) reference collection (Almeida et al. 2020) and 

requires only raw metagenomic reads as user-provided input. 

StrainPGC accurately estimates gene content of strains in a complex 
synthetic community 

In order to evaluate StrainPGC’s performance, we ran our workflow on 276 publicly available 

metagenomes derived from experimental manipulations of the hCom2 synthetic bacterial 

community (Jin et al. 2023). The shared inoculum was composed of 117 bacterial isolates 

spanning 8 phyla, each with a high-quality genome assembly, which we refer to as ground truth 

genomes (Fig. 2A). Most species were represented by a single strain, some by 2 or 3 strains, 
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and one by 4 (Fig. 2B). We refer to the collection of ground-truth genomes and experimental 

metagenomes as the hCom2 benchmark dataset. We annotated predicted protein-coding genes 

in the ground truth genomes with EggNOG OGs (Fig. 2A). After removing species that could not 

be genotyped by GT-Pro, or that were undetected in metagenomes, the benchmarking task 

amounted to 87 species encompassing 97 strains and with highly disparate depths (estimated 

maximum sample depth interquartile range of 2.7–22.4x) (Fig. 2B). We applied StrainPGC to 

estimate gene content across inferred strains, matched each ground truth strain to a single 

inferred strain based on SNP genotypes, and compared the EggNOG OGs annotations between 

these. In this benchmark, StrainPGC had a median precision of 0.96 (IQR: 0.90–0.98; Fig. 1C), 

a recall of 0.88 (0.82–0.93), and an F1 score of 0.91 (0.87–0.94). 

We next compared StrainPGC’s performance to two alternative, state-of-the-art methods: 

PanPhlAn (Beghini et al. 2021), which is widely used and operates on single samples, and 

StrainPanDA (Hu et al. 2022), a recently published tool that harnesses information across 

multiple samples and applies non-negative matrix factorization to jointly estimate gene content 

and strain depth (Fig. 2C). For all three methods, we used the same reference database 

(UHGG) and pangenome profiles as input, thereby comparing the gene content estimation 

approaches on an equal basis. However, since strains inferred using PanPhlAn and 

StrainPanDA do not have SNP genotypes to be used for matching, for each hCom2 genome, 

we instead selected the inferred strain with the highest F1 score, giving these two methods an 

advantage. Nonetheless, StrainPGC performed better on average than either alternative: a 

median increase of 0.069 in F1 score compared to PanPhlAn (IQR: 0.038–0.093; p < 1e-10 by 

Wilcoxon, non-parametric, paired, t-test) and 0.042 relative to StrainPanDA (IQR: 0.022–0.079; 

p < 1e-10). All three tools had similarly high precision, and the superior performance of 

StrainPGC was driven primarily by a dramatic reduction in the false negative rate (FPR: 1 - 

recall): a median of just 49% of PanPhlAn’s and 60% of StrainPanDA’s FPR. 
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Figure 2: Evaluation of StrainPGC’s gene content estimation performance on a highly diverse, 

synthetic community (Jin et al. 2023). (A) Schematic diagram of our procedure for benchmarking 

gene content estimates using the hCom2 synthetic community constructed to reflect the species and 

strain diversity found in human gut microbiomes (Cheng et al. 2022). StrainPGC and alternative tools 

were applied to pangenome profiles from different samples derived from the synthetic community, and 

estimates of gene content were compared to high-quality reference genomes for 97 strains. Strains were 

drawn from 95 species across 8 phyla (phylogenetic tree on the left, colored by phylum, scale bar in units 

of substitutions per position). (B) Core genome depths of 87 detectable benchmarking species span more 

than two orders of magnitude. Points represent individual species, are colored by phylum, and are placed 

based on that species’s maximum depth across samples (x-axis) and total depth summed over all 
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samples combined (y-axis). Species are closer to the 1-to-1 diagonal (dashed line) when the sample with 

the highest depth contributes more of their total depth. Some species are represented by more than one 

strain (marker shape). (C) Accuracy of gene content estimates by StrainPGC (y-axis) compared to 

PanPhlAn (Beghini et al. 2021) and StrainPanDA (Hu et al. 2022) (x-axes), as measured by precision, 

recall, and F1. All three indices range between 0 and 1, and higher values reflect better performance. The 

data are represented as two-dimensional histograms using a gray density scale to represent the number 

of strains falling in each (x, y) bin; density above the 1-to-1 diagonal (dotted line) indicates strains where 

StrainPGC outperformed the alternative on that index. The relationship between performance and strain 

sequencing depth or sample number are shown in Supplementary Figure S1. 

 

For all three tools, strains with higher estimated depth had better performance on this 

benchmark (Spearman’s correlation between maximum strain depth across samples and F1 

score: Spearman’s ⍴ = 0.29, 0.55, and 0.32 for StrainPGC, PanPhlAn, and StrainPanDA, 

respectively; Supplementary Figure S1). We also find a correlation between the number of 

strain-pure samples and F1 for all three tools (⍴ = 0.33, 0.42, and 0.34, respectively, 

Supplementary Figure S1). Interestingly, StrainPGC’s precision was less tightly related to depth 

than either PanPhlAn or StrainPanDA (⍴ = 0.19, 0.54, and 0.55, respectively). Since we 

controlled for the upstream pangenome profiling, these findings support the use of the Pearson 

correlation across strain-pure samples as a filtering criterion for gene content estimation, 

allowing StrainPGC to maintain high precision even while greatly increasing recall. In particular, 

we find our approach upholds this specificity—even at low depths—more effectively than 

existing methods and that performance was fairly stable for strains with ≥ 5 samples, or when at 

least one sample had depth ≥ 1x (Supplementary Figures S1). 

In real-world applications—where ground-truth gene content is not known a priori—it is 

beneficial to understand the confidence of StrainPGC estimates. We, therefore, calculated two 

scores to serve as proxies for accuracy and compared these to the performance we measured 

on the hCom2 datasets. First, we hypothesize that the fraction of high-prevalence, species 

marker genes assigned to a given inferred strain reflects the overall completeness of the 
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estimated gene content for that strain. Indeed, across strains in the hCom2 benchmark, we 

found a strong correlation between the fraction of species marker genes and the F1 score (⍴ = 

0.60, p < 1e-10). As expected, this appears to be driven primarily by a strong association with 

the recall (⍴ = 0.63, p < 1e-10); a weaker correlation was found with the precision (⍴ = 0.34, p < 

1e-3). Second, for strains suffering from low signal-to-noise, such as those at low sequencing 

depths, the depth ratio of assigned genes will be more variable. We, therefore, calculated a 

noise index reflecting: the standard deviation across all assigned genes of the log10-

transformed depth ratio. For this score, we found a negative correlation with the F1 score (⍴ = -

0.68, p < 1e-10), this time driven by an association with the precision (⍴ = -0.58, p < 1e-9) as 

well as recall (⍴ = -0.53, p < 1e-8). In our benchmark, the 22 strains with < 95% species marker 

genes or a noise index > 0.25 had substantially lower F1 scores than those that passed this 

quality control (median of 0.83 versus 0.92, p < 1e-5 by MWU test). We propose using these 

two criteria together in order to exclude inferred strains with lower accuracy gene content 

estimates. 

Inferred strains in publicly available metagenomes substantially 
expand the catalog of intraspecific diversity 

We applied our workflow to the 106 subjects and 1338 samples of the HMP2 metagenome 

collection—which we refer to as simply the HMP2 throughout this paper. 

First, to explore the strain-level diversity that might be discovered in publicly available datasets, 

we used StrainFacts to identify and estimate the distribution of strains based on SNP profiles. 

We defined detection as an estimated depth of ≥ 0.1x, a threshold chosen to balance false 

positives with the sensitivity of strain tracking. All species combined, a median of 59 strains 

were detected in each metagenomic sample and 191.5 across all samples from each subject 

(Fig. 3A). This strain-level diversity was highly subject-specific; among inferred strains detected 

in two or more samples, 36% were detected in just one subject, and only 34% were detected in 
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three or more (Fig. 3B). Strain sharing was dramatically more common in pairs of samples from 

the same subject than in pairs of samples from different subjects (mean of 36.7 shared, 

detected strains from same subject vs. 0.7 from different subjects, p < 1e-10 by MWU; Fig. 3C), 

consistent with prior studies of the HMP2 and other cohorts (Lloyd-Price et al. 2017). 

 

Figure 3: Strain diversity in the HMP2 metagenome collection. (A–B) Histograms reflecting the 

distribution of inferred strains of any species across subjects in the HMP2 metagenome collection. (A) 

Number of strains for 106 subjects, summed over all samples (median of 11 samples per subject; IQR: 9–
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14). Most subjects harbor between 100 and 300 inferred strains (median of 191.5). (B) Number of 

subjects where each strain was detected. Only strains found in two or more samples are tallied. Most 

strains (67%) were found in just one or two subjects. (C) Number of strains shared in any pair of samples 

from the same (purple) or different (red) subjects. Pairs of samples from different subjects shared a mean 

of just 0.7 strains. (D) A substantial increase in strain diversity was captured when including inferred 

strains. Diversity was quantified based on total branch length in a hierarchical clustering (UPGMA) of all 

SNP genotypes, and the increase was measured as the change in branch length relative to a tree with 

only reference strains. Points represent individual species, are colored by phylum, and increasing size 

reflects a larger number of inferred strains. Five species with fewer than 3 inferred strains had a small 

decrease in branch length when inferred strains were included; one of these is excluded from the plot, left 

of the x-axis limit. (E) Taxonomic diversity of 3504 inferred strains of Bacteria. The species tree is colored 

by phylum as in (D). Species that had no strains with estimated gene content were omitted, and bars 

around the outer ring indicate the number of inferred strains (outer ring indicates 20 strains). The branch 

length scale bar (interior) is in units of substitutions per position. (F) Estimated genotype and gene 

content dissimilarity from the closest reference genome. Joint (main panel) and marginal distributions 

(panels above and to the right) are plotted for all high-quality reference (gray background) and inferred 

(green contours) strains of all species. Gene content dissimilarity of inferred strains is calculated after 

batch correction (see Methods). Points reflecting each of 28 inferred E. coli strains are also shown. Green 

contours in the main panel reflect deciles in the 2D kernel density estimator. 

 

Concordant with this level of strain diversity, estimated genotypes for inferred strains were often 

distinct from the closest reference strain. Using SNP profiles in strain-pure samples, we 

estimated each inferred strain’s genotypes as the consensus allele, masking ambiguous 

positions. Among inferred strains with ≥ 100 genotyped positions, 68% had a genotype 

dissimilarity of greater than 0.05 to the closest reference. Representing the strain diversity of 

each species with a UPGMA tree, we calculated the increase in total branch length when 

including inferred strains relative to only references (Fig. 3D). For many species, a substantial 

increase in total branch length was observed: more than 10% for 288 species, more than 20% 

for 183 species, and more than 50% for 63 species when inferred strains were included. 

Overall, these findings suggest that inferring strains from publicly available metagenome 

collections will reveal novel intraspecific diversity not already found in reference databases. 
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To further evaluate the expected performance of StrainPGC in real-world scenarios, we 

performed an in silico experiment, using five E. coli genomes not in the UHGG reference 

collection (Davidova-Gerzova et al. 2023), spiking-in simulated reads to the HMP2 dataset. 

These benchmark genomes represent a range of divergence from the closest reference 

genome similar to what we found for the inferred strains. Despite this additional complexity and 

reference bias, we observed F1 scores equivalent to those in the hCom2 benchmark 

(Supplementary Material and Supplementary Table S2). 

Having in this way validated its performance in the HMP2 dataset, we next applied StrainPGC to 

the novel, inferred strains. After quality control, we estimated gene content for 3511 strains in 

443 species across 12 phyla (Fig. 3E). Strains had a median of 9 strain-pure samples (IQR: 5 - 

13). While these were primarily Bacteria, we were also able to estimate gene content for strains 

in three species of Archaea. The largest number of inferred strains were classified in the phylum 

Firmicutes_A (2232 strains; an additional 80 and 141 strains were also in “Firmicutes”, and 

“Firmicutes_B”, respectively, which are classified as separate phyla in the GTDB taxonomy), 

followed by Bacteroidota (727), and Proteobacteria (189). Hence, StrainPGC resolved gene 

content for myriad strains across a diverse set of species found in the human gut 

(Supplementary Table S1). 

Just like SNP genotypes, for most inferred strains, the estimated gene content was quite distinct 

from the closest reference. Measuring dissimilarity using the cosine dissimilarity after batch 

correction (see Methods), inferred strains were a median of 0.18 from the closest, high-quality 

reference genome (Fig. 3F). As would be expected, strains with more dissimilar SNP genotypes 

were often those with dissimilar gene content as well. For instance, across the 28 inferred 

strains of E. coli, we found a significant correlation between the gene content dissimilarity and 

the genotype dissimilarity (Spearman’s ⍴ = 0.44, p = 0.018; Fig. 3F). This suggests that the 
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increased diversity captured by StrainPGC facilitates expanded analyses of intraspecific gene 

content variation in the gut microbiome. 

Estimated gene content enables pangenome analyses in prevalent 
human gut microbes 

 

Figure 4: StrainPGC reveals patterns of gene content variation across dozens of species. (A) Gene 

prevalence across inferred strains from HMP2 is very similar to prevalence in reference genomes. 

Combining genes from all species, the 2D histogram shows the joint distribution of prevalence estimated 

from reference genomes (x-axis) and inferred strains (y-axis). These independent estimates are highly 

concordant, with higher density along the diagonal. Dashed horizontal lines represent the thresholds 

defining core, shell, and cloud prevalence classes based on inferred strains. (B) Fraction of shell versus 
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core genes in inferred strains. For each species (circle), x and y values are the median gene content in 

the core and shell classes, respectively. The remaining gene content is composed of cloud genes and is 

indicated by the dotted diagonal lines. Markers are colored by phylum. Analogous results calculated using 

reference genomes are shown in Supplementary Figure S2. (C) Enrichment (red) or depletion (blue) in 

genes of various functional categories in each of the core, shell, and cloud prevalence classes. Dots 

representing each COG category (rows) and prevalence class (columns) are colored by odds ratio, with 

red and blue indicating enrichment and depletion, respectively. Dot size reflects the number of genes in 

that prevalence class that are in the given functional category. All enrichments/depletions shown are 

significant (Two-tailed Fisher Exact Test; p < 0.05), except for those marked with a black cross. COG 

categories A, B, and Y are omitted, as these had very few members (173, 74, and 0 genes, respectively). 

(D) Gene co-occurrence clusters based on estimated gene content. The heatmap depicts histograms for 

each of 44 species (rows) of cluster sizes (columns). Colors indicate the number of clusters in each 

interval, and labels along the x-axis indicate the bounds of the intervals (left exclusive, right inclusive). 

Colors on the left indicate phylum as elsewhere. (E, F) The maximum number of related annotations in 

each co-occurrence cluster. The orange histogram represents the observed distribution, while the gray 

region is the mean in each bin across 100 random permutations of cluster labels (i.e. the null distribution). 

The higher number of clusters with multiple, shared annotations in the observed data compared to the 

null suggests clumping of (E) KEGG module and (F) phage or plasmid genes into co-occurrence clusters. 

 

To demonstrate the value of gene content estimates derived from the HMP2 for pangenome 

analysis, we focused on the 99 species with estimated gene content for 10 or more inferred 

strains (Median: 17 inferred strains per species, IQR: 12–28, 7 phyla). For each species, we 

calculated the prevalence and distribution of genes across strains. Gene prevalence estimates 

based on inferred strains were highly correlated with the prevalence observed in high-quality 

reference genomes (r = 0.84, p < 1e-10; Fig. 4A), supporting the consistency of our estimates 

with the existing reference database. 

Based on these de novo prevalence estimates, we assigned genes to the “core” (≥ 90% 

prevalence), “shell” (< 90% and ≥ 15%), or “cloud” (< 15%) pangenome fractions. We then 

calculated the portion of estimated gene content that fell into each prevalence class for each 

inferred strain (Fig. 4B). Computing the median first within and then across species, genes in 

the core fraction made up 70% (IQR: 63–76%) of each strain’s estimated gene content, shell 
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fraction 25% (19–28%), and cloud fraction 5% (4–9%), in general agreement with reference 

genomes (Supplementary Figure S2). Certain categories of functional annotations were more 

common in each fraction (Fig. 4C). Core genes were enriched for COG categories with 

housekeeping functions while the cloud pangenome was enriched in functional categories 

including the mobilome, and defense mechanisms. The COG category for DNA replication, 

recombination, and repair and genes without a COG category were also enriched in the cloud 

pangenome, possibly indicating that many of these genes are also related to the mobilome. 

Broadly, these patterns of enrichment confirm our expectations that core genes perform obligate 

functions and make up a plurality of genes for most strains. 

We also identified 200 genes that were annotated with antimicrobial resistance functions. Of 

these, 168 were in the cloud, 32 were in the shell, and none were in the core pangenome 

fraction. Across all 3511 high-quality strains, 482 (14%) of these had at least one gene with an 

AMR annotation. We also found differences across phyla in the fraction of strains with at least 

one annotation. For Bacteroidota, 37% of strains (271 of 727) had an AMR gene, as did 22% of 

Proteobacteria (41 of 189). However, only 9% of Firmicutes (7 of 80), 7% of Firmicutes_A (151 

of 2232), 6% of Actinobacteria (4 of 64) and 4% of Firmicutes_C (6 of 141) had an annotation. 

These results are consistent with our expectation that resistance mechanisms are highly 

variable within species and more common in gram-negative bacteria. 

As an assembly-free approach, gene content estimation lacks synteny information, which can 

be useful for understanding biological phenomena such as operonic co-regulation and 

horizontal gene transfer. To get around this limitation, we clustered genes based on the 

Pearson correlation of their presence and absence across inferred strains in the HMP2. For the 

44 species with more than 20 high-quality inferred strains, we identified 36,208 co-occurring 

gene clusters with 2 or more members, a median of 681.5 per species (Fig. 4D). Genes in the 

same cluster were more likely to have related annotations; clusters having three or more genes 
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in the same KEGG module were 12.7x more common than expected by random chance (n = 

100 permutations of cluster labels within species, p < 1e-2; Fig. 4E). Likewise, phage- or 

plasmid-associated genes were more frequently found in the same clusters than expected by 

chance (three or more shared annotations 2.4x more common, p < 1e-2; Fig. 4F). This supports 

our interpretation of StrainPGC–enabled gene co-occurrence clustering across genomes as 

evidence of related biochemical function or linked transmission, which may help to generate 

testable hypotheses about relationships between genes in a species’ pangenome. 

Overall, large surveys of gene content estimated by StrainPGC have the potential to vastly 

expand the coverage and diversity of pangenome analyses. 

Integrative analysis of E. coli strain gene content can inform the 
selection of donors for fecal microbiota transplantation 

We next sought to assess the potential utility of StrainPGC gene content estimates for 

optimizing microbial therapies such as FMT. Current donor screening protocols focus on 

detection of known pathogens and do little to match donors to recipients or optimize for 

transmission and engraftment of particular microbial functions. To assess the sensitivity of our 

approach for comparing donor strains, we re-analyzed metagenomes from a previously 

published study of FMT for the treatment of ulcerative colitis (Smith et al. 2022b). We refer to 

these metagenomes as the UCFMT dataset. As a proof-of-concept, we focused on strains of E. 

coli, a well-studied and highly prevalent member of the human gut microbiome with well-

documented examples of not only pathogenic but also commensal and even probiotic strains 

(Blount 2015). 

Using 231 samples collected longitudinally from patients (189 samples) and donors (42 samples 

from three of four donors) in the UCFMT study, we identified and tracked strains using 

StrainFacts. Focusing on D44 and D97—the two donors with the most metagenomic samples 

and who contributed materials to the most recipients—we observed robust, repeated 
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transmission of strains during FMT (Fig. 5A). Next, with StrainPGC, we obtained gene content 

estimates for inferred strains of E. coli; 18 passed quality control. In order to examine their 

genetic relatedness—and to put them in the context of the earlier pangenome analysis—we 

combined inferred strains from the UCFMT and HMP2 metagenomes and generated a UPGMA 

tree based on their SNP genotype dissimilarity (Fig. 5B). As before, genotype and gene content 

were related (Fig. 5B): for the combined set of inferred strains, we found a robust correlation 

between the cosine dissimilarity of the shell pangenome fraction—defined above using the 

HMP2 strains—and genotype dissimilarity (r = 0.88, Fig. 5C). 

In recipients of donor D44, one strain, strain-6, stood out as frequently present both during six 

weeks of maintenance dosing and in subsequent follow-up sampling (Fig. 5A). Likewise, strain-

9 engrafted frequently for recipients of D97. Both strains were very closely related to isolate 

genomes represented in the UHGG reference collection: strain-6 matched 

GUT_GENOME288864 (GenBank accession GCA_009896305.1) with an identical genotype at 

all 74,229 shared SNP positions, and strain-9 matched GUT_GENOME140932 

(GCA_000408385.1) with just 7 mismatches across 79,260 shared SNP positions. The two 

inferred strains had a SNP genotype dissimilarity to each other of 0.23, similar to the median 

dissimilarity across all pairs of UCFMT strains of 0.25 (IQR: 0.13 – 0.31). Approximately 80% of 

each strain’s gene content was shared with the other, while 18% and 24% was private to strain-

6 and strain-9, respectively (Fig. 5C; Supplementary Table S3). Cross-referencing co-

occurrence clusters with the estimated gene content of these strains, about 60% of clusters in 

each were shared, with 39% and 42% private, respectively (Fig. 5D). Of the 118 shared 

clusters, 12 were found in no more than two additional UCFMT strains. We hypothesize that 

these might indicate important physiological similarities that distinguish high-engraftment strains 

from the others. Among 85 genes in these shared clusters, the most common COG category 
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annotation was X (“Mobilome”) reinforcing that phage, plasmids, and other mobile genetic 

elements are an important source of shared gene content across distantly related strains. 
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Figure 5: Different donors in a fecal microbiota transplant (FMT) trial (Smith et al. 2022b) have 

engrafting E. coli strains that differ in their functional potential. (A) E. coli strains found in repeated 

sampling of two independent donors’ fecal materials (boxed panels) and in the fecal time series of their 

respective recipients. Columns in each panel represent individual samples, colors represent E. coli strains 

inferred from StrainFacts, and the height of colored bars indicates strain abundance normalized to total E. 

coli abundance in the sample. For donors, samples are ordered arbitrarily. Recipient samples are ordered 

by collection day and include samples at baseline (labeled “B”) collected before initial FMT treatment, 

samples collected before each of up to six maintenance FMT doses (labeled “M1” to “M6”), and up to 

three follow-up samples (labeled “F1” to “F3”). For a subset of recipients, samples were also collected 

after antibiotic treatment and before FMT (labeled “pA”, post-antibiotics). For each donor, one strain (tan 

in D44, aqua in D97) showed a high rate of engraftment in recipients at follow-up. (B) Comparison of shell 

gene content between inferred strains from the FMT experiment (18 strains) and E. coli strains from the 

HMP2 (28). Heatmap indicates the presence and absence of genes (rows) across inferred strains 

(columns). Strains are ordered by UPGMA tree of estimated SNP genotype dissimilarity. Genes are 

filtered to only the 3,134 genes in the shell pangenome fraction. Arrows (tan and aqua) highlight the high-

engraftment strains from panel (A). (C, D) Estimated gene content that is shared and distinct between the 

two high-engraftment strains. Venn diagrams depict the intersection of (C) genes and (D) gene co-

occurrence clusters. 

 

Next we sought to understand functional gene differences between the two high-engraftment 

strains, in particular any that might result in disparate impacts on host health. We therefore 

examined the unshared gene content in order to identify plausible physiological differences 

(Supplementary Table S3). Strikingly, strain-9 had 12 genes annotated as related to 

antimicrobial resistance, suggesting potential resistance to 17 different antibiotics, while strain-6 

had none. Among gene co-occurrence clusters, one (labeled clust-861) is also found only in 

strain-9, and includes genes with homology to components of a type VI secretion system 

(T6SS). Most T6SSs are involved in inter-microbial competition, although a role in pathogenesis 

has also been described (Navarro-Garcia et al. 2019). Another cluster private to strain-9, 

labeled clust-37, includes genes with homology to many components of a type IV secretion 

system (T4SS), other secretion systems, a helicase, and a component of a toxin/anti-toxin 

system. Combined, these annotations suggest that the cluster may primarily reflect a 
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mobilizable plasmid in strain-9 that is missing in strain-6. Similarly, related annotations in 

several clusters (clust-351, clust-352, and clust-353) have homology to genes in the pdu-

operon. This operon encodes components of catabolic bacterial microcompartments, which are 

involved in various catabolic pathways, including 1,2-propanediol utilization. These co-

occurrence clusters are found only in strain-9, and strain-6 is missing homology to most of the 

genes in the pdu-operon. Microcompartments and 1,2-propanediol utilization have been 

associated with pathogenicity in E. coli and other species of Enterobacteriaceae (Prentice 

2021). 

Given the presence of AMR genes and the plausible association between several co-

occurrence clusters and pathogenesis, we speculate that the engraftment of E. coli strain-9, 

found in FMT samples donated by D97, could result in a less beneficial or even detrimental 

treatment for recipients. Similarly, the engraftment of strain-6 from D44 might contribute to the 

competitive exclusion of more pathogenic strains. While the previously published study found no 

difference in outcomes between recipients of the two donors (Smith et al. 2022b), that study 

may have been underpowered (n = 8 recipients for each of D44 and D97). Our computational 

predictions could be tested in vitro with isolates obtainable from archived donor materials. 

Discussion 

Here we have described updates to the MIDAS v3 pangenome database and profiling software, 

as well as StrainPGC, a novel tool for accurate, strain-specific gene content estimation using 

metagenomic data. The key innovations of StrainPGC are the use of depth correlation 

information and selection of strain-pure samples. Together, these innovations enable StrainPGC 

to outperform PanPhlAn and StrainPanDA in a benchmark based on a complex, synthetic 

community modeled after the human gut microbiome. Combining the updated MIDAS v3 and 

StrainPGC in our workflow, we estimated gene content for thousands of strains in the HMP2 
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metagenome collection, substantially expanding on the diversity found in reference genome 

collections and enabling analyses of intraspecific variation without isolation or assembly. Finally, 

we used StrainPGC to compare the functional potential of two different strains of E. coli that 

were successfully transferred from two different donors in a clinical trial of FMT. 

StrainPGC is an assembly-free method, and complements assembly-based methods—including 

novel, strain-aware approaches (Quince et al. 2017; Quince et al. 2021)—for gene content 

estimation. High-quality genome sequences enabled by laboratory isolation and culturing, as 

well as modern, long-read sequencing, reduce the risk of cross-mapping and remain the gold 

standard for comparative genomics. However, these methods are labor intensive, expensive, 

and often fail to capture low-abundance organisms (Chen et al. 2020). In contrast, StrainPGC 

offers a more accessible approach which can be applied to existing short-read metagenomic 

datasets. Our method identified extensive, underexplored diversity in the well-studied HMP2, 

demonstrating that many strains are missed by culturing and assembly-based methods. 

Nonetheless, both approaches are complementary: assembly-based methods contribute to the 

completeness and accuracy of reference databases, which in turn enhances the performance of 

reference-based methods like StrainPGC. Together, these diverse approaches enable 

comprehensive analysis of gene content variation in complex microbial communities. 

Given the enormous diversity of strains found across subjects in the HMP2, the StrainPGC 

approach may be most useful for analyzing FMT, longitudinal, or other study designs where the 

same strains are expected to be found in multiple samples. While StrainPGC is specifically 

designed to overcome the limitations of short-read, alignment-based pangenome profiling, in 

particular ambiguous mapping to homologous sequences both within and across species, 

systematic false positive and false negative gene assignments may still occur. As a result, we 

caution against over-interpreting analyses that rely on directly comparing the gene content of 

inferred strain with reference strains. Our approach leverages strain-pure samples and 
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compares across multiple samples with the same strain. As a result, StrainPGC will likely 

perform suboptimally in environments and study designs with particularly high intra-sample 

diversity, such as waste-water or soil microbiomes, and where fewer strain-pure samples have 

shared strains. This highlights an opportunity for the development of complementary tools that 

can handle extreme microbial diversity both within and across samples. With increasingly 

comprehensive pangenome reference databases, the accuracy of our approach will improve, 

expanding its application to other microbiomes beyond the human gut. Nonetheless, highly 

diverged strains may have elevated error rates due to reference database bias and it is prudent 

for users to ensure that their species of interest are sufficiently covered in reference sets (Zhao 

et al. 2023; Hovhannisyan et al. 2020). Another major barrier to interpreting gene content 

estimates by StrainPGC or other methods is the sparsity of robust genetic, biochemical, 

structural, and experimental characterization of gene products (Zhou et al. 2019). While we 

augmented available annotations by leveraging co-occurrence clusters to investigate epistatic 

and evolutionary relationships between genes—as others have done previously (Minot et al. 

2021)—laboratory-based characterization is still vital. 

Packaged as stand-alone software tools and integrated into an automated workflow, MIDAS v3 

and StrainPGC together facilitate the broad exploration of strain-specific gene content in 

metagenome collections. This enables expanding surveys across additional metagenomic 

datasets, looking for associations between microbial strains and disease, and identifying 

determinants of success for FMT. Important future work also includes specializing our end-to-

end workflow for environments beyond the human gut, integrating additional analyses 

comparing inferred strains to the reference collection, and further refining pangenome profiles 

based on horizontal coverage. We designed StrainPGC as part of a modular workflow that may 

include gene and strain information from any context. In particular, our references can be 

replaced with databases targeting different environments using previously released protocols 
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(Zhao et al. 2022b; Shi et al. 2022). Thus, while we chose to focus on the human gut 

microbiome in this initial study, we expect that StrainPGC will be a broadly useful approach to 

associate genes with strains using metagenomic data from diverse environments. 

Methods 

MIDAS v3 update 

Here we describe updates in MIDAS v3, including changes to the pangenome reference 

database construction procedure and the pangenome profiling method. Together, these updates 

clean, functionally annotate, and expand the phylogenetic coverage of MIDAS pangenome 

profiling, providing a foundation for accurately estimating and interpreting gene content across 

species. MIDAS v3 is available at https://github.com/czbiohub-sf/MIDAS and can be installed 

using conda or Docker. Compatible, pre-built MIDAS databases based on UHGG (Almeida et al. 

2020) v2.0 and GTDB (Parks et al. 2021) r202 are available. We use the UHGG database 

throughout this work. 

Pangenome database curation and clustering 

A MIDAS v3 pangenome database can be constructed from any reference genome collection, 

and is composed, for each species, of predicted gene sequences from all example genomes 

clustered into operational gene families (OGFs) at a series of average nucleotide identity (ANI) 

thresholds. For clarity, we have referred to these OGFs simply as genes in the main text. In 

order to minimize the impacts of inter- and intra-specific cross-mapping on pangenome profiling, 

which can be major problems for gene databases constructed with MAGs, we made major 

changes to the clustering and curation pipeline. In this MIDAS update, described below, we 

sought to minimize the impact of fragmented gene sequences, spurious gene calls, chimeric 

assemblies, and redundant OGFs resulting from these errors (Li et al. 2014; Hyatt et al. 2012; 

Dimonaco et al. 2021). 
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For each species, for each reference genome in the source genome collection, genes were 

predicted by Prokka v1.14.6 (Seemann 2014), wrapping Prodigal v2.6.3 (Hyatt et al. 2010). 

Gene sequences less than 200 bp or with ambiguous bases (anything but A, C, G, or T) were 

removed. Then, the remaining sequences were dereplicated by clustering at a 99% ANI 

threshold using VSEARCH v2.23.0 (Rognes et al. 2016), with the longest sequence initially 

assigned as the representative sequence for the cluster. Next, in order to identify and remove 

additional cases of fragmented genes, we applied CD-HIT v4.8.1 (Fu et al. 2012) (using options 

-c 1 -aS 0.9 -G 0 -g 1 -AS 180); when a shorter representative sequence had perfect 

identity over ≥ 90% of length to a longer sequence, the two clusters were merged, and the 

longer sequence was assigned as representative. Short gene sequences predicted on the 

opposite strand, a known complication (Trimble et al. 2012), were also merged in this way. 

Having dereplicated and cleaned gene sequences, we further clustered representative 

sequences into OGFs using VSEARCH, defining final OGF clusters at thresholds between 95% 

and 75% ANI. 

Pangenome database annotation 

Next, we annotated sequences using a variety of tools. We ran EggNOG mapper v2.1.12 

(Cantalapiedra et al. 2021) on dereplicated genes to identify homology relative to several 

commonly used gene orthologies: COGs, EggNOG OGs, and KOs. ResFinder v4.4.2 (Florensa 

et al. 2022), geNomad v1.7.4 (Camargo et al. 2023) and MobileElementFinder v1.1.2 

(Johansson et al. 2020) were run directly on contigs of each reference genome to identify AMR, 

phage, plasmid, and mobile element associated regions, and these annotations were 

transferred onto predicted genes based on overlapping coordinates. 

While annotations are performed on genomic sequences or dereplicated gene sequences, 

interpretation of estimated gene content requires annotations at the OGF level. We therefore 
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implemented a voting procedure intended to enable the transfer of annotations from gene 

sequences to gene clusters. For OGFs at each ANI level, we calculated the fraction of genes in 

each cluster annotated as an AMR gene, phage-associated, plasmid-associated, or mobile 

element-associated. In this way, users can identify annotations robustly associated with genes 

of interest. 

Alignment and gene depth estimation 

For pangenome profiling, the MIDASDB representative gene sequences from selected species 

(i.e. dereplicated at the 99% ANI level) are compiled into an index for alignment and 

quantification. At this stage, we apply additional filtering to the set of representative sequences, 

which we refer to as “pruning”, with the goal of speeding up alignment and improving 

quantification by reducing the rate of cross-mapping within and between species. First, we 

remove representative sequences that are less than 50% of the median length in the 95% ANI 

cluster, as these are more likely to be truncated genes resulting from assembly fragmentation. 

Second, for species with more than 10 reference genomes, we remove representative 

sequences where their 75% ANI clusters had only one member, as these are more likely to be 

spurious gene calls or contamination resulting from chimeric assembly. Finally, an alignment 

index is constructed from the remaining representative sequences, and reads are mapped using 

Bowtie2 (Langmead and Salzberg 2012). 

Pangenome profiling with MIDAS v3 proceeds through four stages: (1) building a reference 

index as described above, (2) alignment of reads to the reference index, (3) calculation of the 

mean depth across the length of the representative sequence, and then (4) summation of 

representative sequence depths into clusters in order to estimate the total depth of the OGF at 

the chosen ANI threshold. 
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Shotgun metagenomes 

All shotgun metagenomes analyzed in this work are publicly available as SRA BioProjects, 

including the HMP2 (PRJNA398089), UCFMT (PRJNA737472), and the hCom2 samples used 

for benchmarking (PRJNA885585). The HMP2 metagenomes already had human reads 

removed and quality control procedures previously applied. UCFMT metagenomes were filtered 

for human reads, deduplicated, adapter trimmed, and quality trimmed, as previously described 

in (Smith et al. 2022b). The hCom2 metagenomes were processed in the same way, except that 

human read removal was skipped because the data was collected in vitro. 

Integrated analysis workflow 

Pangenome profiling 

For the work presented here, we ran MIDAS v3 Using Bowtie2 v2.5.1 throughout, a single 

reference index was built for 627 species using midas build_bowtie2db --

prune_centroids --remove_singleton. Paired-end reads for each sample were aligned 

to this index using midas run_genes --aln_speed sensitive --aln_extra_flags 

'--mm --ignore-quals' --total_depth 0. To maximize our sensitivity to divergent 

strains and at low abundance we did not use any of MIDAS’s default filters in calculating depths. 

Instead, mean mapping depth was calculated using samtools depth and summed up at the 

75% ANI OGF level. 

Reference genomes and species marker genes 

High-quality reference genomes in the UHGG were defined as those with estimated 

completeness of > 90% and contamination of < 5%. OGFs found in > 95% of high-quality 

reference genomes were selected as species marker genes and were used for species depth 

estimation, quality control, and downstream analyses. 
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A list of the marker genes used for each of the 627 species analyzed in this study are distributed 

with the StrainPGC software. 

SNP profiling 

SNP profiles were obtained from metagenomes using GT-Pro v1.0.1 (Shi et al. 2022) and the 

default database, which was built using UHGG v1.0. GT-Pro was run on preprocessed reads, 

and counts from forward and reverse reads were summed. The resulting SNP profile matrix, a 

three-dimensional array of counts indexed by sample, genotyped position, and allele (reference 

or alternative), is the core input for StrainFacts (Smith et al. 2022a). 

An analogous approach was used to obtain SNP genotypes for genomic sequence. Specifically, 

for both reference and benchmarking genomes, contigs were fragmented into 500 bp tiles with 

31 bp of overlap and used as input to GT-Pro. We filtered out tallies for SNP sites that did not 

match the expected species. 

Strain tracking and genotyping 

For each species, SNP profiles obtained from GT-Pro were filtered to remove low-depth 

samples (those with < 5% of positions observed). For the HMP2 and UCFMT datasets, low 

polymorphism positions (minority allele observed in < 5% of samples) were also removed. 

However, this latter filter was not applied to the synthetic community since many species had 

only one strain. Strain genotypes and proportions were estimated with StrainFacts v0.6.0, using 

the updated Model 4 and a number of strains set as 𝑛0.85 where 𝑛 is the number of samples. For 

the vast majority of species, this model was fit using a single, standardized set of 

hyperparameters: --optimizer-learning-rate 0.05 --min-optimizer-learning-

rate 1e-2 --hyperparameters gamma_hyper=1e-15 pi_hyper=1e-2 

pi_hyper2=1e-2 rho_hyper=1.0 rho_hyper2=1.0 --anneal-hyperparameters 

gamma_hyper=0.999 --anneal-steps 120000. However, for seven species (species IDs: 
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sp-100076, sp-101302, sp-101306, sp-101704, sp-102478, sp-103456, sp-103683), amended 

hyperparameters were found to perform better: gamma_hyper=1e-10 pi_hyper=1e-3 

pi_hyper2=1e-3 gamma_hyper=1e-1 rho_hyper=10.0 rho_hyper2=10.0 --

anneal-steps 20000. 

Each strain-pure set was defined as those samples where StrainFacts estimated it to be > 95% 

of the species. For analyses requiring estimated genotypes, we used a consensus genotype for 

each strain, pooling all samples in the strain-pure set. Based on this pooling, the consensus 

genotype for each strain was the majority allele at each position. Positions with unexpectedly 

high counts of the minor allele (≥ 10%)—which suggests issues with genotyping—were masked. 

Similarly, positions without any observed alleles were also masked in subsequent comparisons. 

Likewise, SNPs in reference and benchmark genotypes where neither allele was observed were 

masked in downstream analyses. We selected this as a more conservative approach compared 

to directly using the genotypes estimated by StrainFacts. All pairwise dissimilarities between 

inferred strain, reference, and benchmark genotypes were calculated as the masked Hamming 

distance, with a pseudocount of 1 added, i.e.: 

𝑑(𝐺𝑖 , 𝐺𝑗) =
𝑃𝛥+1

𝑃∗+1
 where 𝑃𝛥 is the number of positions with different allele and 𝑃∗ is the number of 

unmasked positions. 

Note that this measure of genetic distance is related to but not equivalent to the complement of 

the core genome average nucleotide identity (“ANI dissimilarity”: 1 − ANI), since it is based on 

only known polymorphic sites in the core genome, and the actual ANI dissimilarity—which 

includes many non-polymorphic sites in the denominator, as well—is likely to be much smaller. 

StrainPGC 
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For each species we estimated gene content across strains with StrainPGC v0.1.0, providing 

the three required inputs: (1) the list of species marker gene IDs from the MIDASDB, (2) the 

strain pure sets derived from StrainFacts, and (3) pangenome profiles from MIDAS as the three 

inputs. 

StrainPGC estimates the depth of each species in each sample as the 15%-trimmed mean 

depth across all species marker genes, i.e., the mean depth of species marker genes excluding 

those genes with the 15% highest and lowest depth. Species-free samples were defined as 

those with an estimated species depth of < 0.0001x. Genes were selected using a depth ratio 

threshold of 0.2 and a correlation threshold of 0.4 in order to strike a balance between sensitivity 

and specificity, while slightly favoring false negatives over false positives (see Supplementary 

Figure S3). 

Gene family annotation 

To facilitate functional interpretation, we extended the voting procedure used for the MIDASDB 

to EggNOG mapper annotations, which include COGs, COG categories, EggNOG OGs, KOs, 

and KEGG Modules. We augmented the COG categories assigned by EggNOG mapper with 

additional categories available from https://ftp.ncbi.nlm.nih.gov/pub/COG/COG2020/data. Since 

annotations were performed on representative sequences for each dereplicated gene (99% ANI 

cluster), we first transferred specific annotations to all cluster members. Annotations within each 

gene (75% ANI cluster) were then counted as votes. Any annotations possessed by > 50% of 

member sequences were assigned to the gene family as a whole. Note that while the annotation 

voting for the MIDASDB, described above, operates on binary annotations (e.g., it is or is not a 

phage gene), this additional voting procedure was performed for individual annotations (e.g., a 

specific COG or AMR reference accession). 
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Downstream analysis 

Benchmarking gene content estimation performance 

We benchmarked the performance of gene content estimates from StrainPGC, PanPhlAn, and 

StrainPanDA, using publicly available, high-quality strain genomes and metagenomes from 

experimental treatments of the hCOM2 synthetic community (Jin et al. 2023). From the 117 

inoculated strains, we excluded genomes from evaluation if: (1) when running GT-Pro directly 

on their genome sequence, less than 50% of identified SNPs were from the same species, or 

(2) the species had no depth across metagenomes, as estimated from mean marker gene 

depth. 

In the remaining 97 strain genomes we identified gene sequences with Prodigal v2.6.3 (Hyatt et 

al. 2012) (masking ambiguous bases and using the meta procedure), translated them with 

codon table 11, and annotated them with EggNOG mapper version 2.1.10. The ground-truth 

annotations used to assess performance were defined as the complete set of all EggNOG OGs 

assigned to all genes in the ground-truth genome. These were compared to the complete set of 

OG annotations in each inferred strain’s estimated gene content. 

In order to select which inferred strain to compare to each benchmark genome, the GT-Pro 

genotype of the ground-truth genome was compared to all strain-pure sample consensus 

genotypes, and the best match was identified based on the smallest masked hamming distance. 

For each benchmark genome, we calculated the precision, recall, and F1 score for this best 

match. 

Both PanPhlAn and StrainPanDA are packaged with their own pangenome databases and 

profiling scripts. However, in order to compare the core algorithms directly, the same MIDAS 

pangenome profiles were provided as input to all three tools. Both alternative tools have several 

parameters that control when they fail to run on low sequencing depth datasets. Since, for some 
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species, the use of default parameter values results in a runtime exception, we adjusted these 

parameters to be much more lenient. For PanPhlAn, we used the flags: --left_max 1000000 

--right_min 0 --min_coverage 0. For StrainPanDA, we made modifications to the code 

(see https://github.com/bsmith89/StrainPanDA) and used the flags --mincov 10 --minfrac 

0.9 --minreads 1e6 --minsamples 1. We also fixed the number of latent strains to 6 

using --max_rank 6 --rank 6 for all runs. For PanPhlAn and StrainPanDA, the inferred 

strain with the highest F1 score was used for performance comparisons. 

Inferred strain quality filtering 

For analysis of the HMP2 and UCFMT datasets—but not performance benchmarking—strains 

were filtered to remove those likely to be low accuracy. Strains with fewer than 100 unmasked 

positions in their consensus genotype were included in benchmarking but excluded from all 

other analyses. This criterion a priori excludes 19 of the 627 species profiled in this work. For 

analyses of gene content, strains with an estimated depth of < 1x across all strain-pure samples 

were also excluded. Finally, strains with < 95% of species genes or with a standard deviation in 

the log10-transformed depth ratio across selected genes of > 0.25 were flagged as low quality 

and removed. 

Analysis of species and strain diversity 

The species phylogeny in Fig. 2A and Fig. 3E was obtained directly from the UHGG 

https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-

gut/v2.0.2/phylogenies/bac120_iqtree.nwk. 

For the analysis of strain distribution in the HMP2, strain depth was estimated as the product of 

the estimated species depth and estimated strain fraction. All strains with depth > 0.1x were 

considered to be “present” in a sample. The number of strains in each subject was calculated as 
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the total number of strains present in any of that subject’s samples. For shared-strain analysis 

(Fig. 3C), samples with fewer than 10 strains present of any species were excluded from 

analysis, as this removed several samples with anomalously low diversity. 

Gene content was compared using the cosine dissimilarity. For comparisons between inferred 

strains and references, the inferred strains’ gene content was first batch corrected by 

subtracting the difference in means (i.e., the difference in prevalence). 

Pangenome Analyses 

To calculate the correlation between gene prevalence in reference genomes and inferred strains 

we first removed genes that were very rare (< 1%) in both. 

Genes found in no more than one or missing from no more than one genome were excluded 

from clustering analysis. The remaining genes were then hierarchically clustered based on their 

correlation across inferred strains using the average-neighbor method at a correlation threshold 

of 0.9. Only clusters with more than one member were kept. 

To analyze the clumping of related genes in co-occurrence clusters, we considered annotations 

of (1) individual KEGG modules and (2) binary classification of genes as phage and/or plasmid. 

For each co-occurrence cluster, we took the maximum count for any one annotation. To 

estimate a distribution under the null, we permuted cluster labels within species before again 

collecting the maximum counts across clusters. Significance was tested by comparing the 

number of clusters with ≥3 related annotations to the null. 

For analysis of the UCFMT E. coli strains, shell genes and co-occurrence clusters were defined 

using the HMP2 inferred strains, not de novo. 
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Software availability 

StrainPGC is freely available at https://github.com/bsmith89/StrainPGC. Code and metadata 

needed to replicate our analyses and plots are available at 

https://github.com/bsmith89/StrainPGC-manuscript. 
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Supplementary Materials 

Extended hCom2 benchmarking results 

 

Figure S1: Relationship between sequencing depth or number of samples and the accuracy of 

gene content estimation. Points represent the performance of each tool (colors) on each of the 97 

benchmark strains. For the left column, the x-axis is the maximum estimated depth of the genotype-

matched strain across strain-pure samples, and for the right column it is the total number of strain-pure 

samples identified for that strain. Trend lines are a rolling average over the 10 nearest points. The dotted 

vertical line indicates the 1x depth and 5 strain-pure samples, after which the mean performance 

stabilizes for StrainPGC. 
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Extended pangenome results 

 

Figure S2: Per-genome core, shell, and cloud gene fractions in reference genomes. Equivalent 

results to Fig. 4B, here calculated using reference genomes for comparison to StrainPGC-based gene 

content estimates. 

Simulated E. coli spike-in validation 

We performed an additional benchmarking study to validate our approach in datasets with 

substantially more strain-diversity, for strains with more divergence from the reference set, and 

with a limited number of strain-pure samples. To keep the simulated metagenomeic data as 

realistic as possible, we opted to construct samples with novel strains by “spiking” simulated 

reads from recently sequenced isolates into real metagenomes from the HMP2 study. Due to an 

abundance of studies with wild E. coli isolates, and our particular focus on this species 

throughout, we identified five novel E. coli genomes from a recently published project 

(Davidova-Gerzova et al. 2023). These isolates varied greatly in their relatedness to the UHGG 

reference genomes, including very distantly related strains with a genotype dissimilarity of 

0.077. These strains are as novel relative to the reference database as would be expected for 

E. coli found in the human gut; only 0.8% of UHGG genomes had a closest match genotype-

dissimilarity of more than 0.077. 
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We selected five HMP2 samples, all from one subject (C3022), where E. coli was not detected. 

Into these, we spiked-in simulated reads at 1x, 2x, 4x, 8x, and 16x depths with a separate set of 

reads for each strain. We combined all 25 of these additional, synthetic samples with the full 

HMP2 dataset, and then re-ran our integrated workflow. We matched the inferred strains to 

each of the ground-truth genomes based on genotype similarity and evaluated the StrainPGC 

gene content estimates as in the hCom2 benchmark. 

We found that the performance of StrainPGC in these simulations with non-reference E. coli 

genomes is consistent with the overall performance on the hCom2 (synthetic community) 

benchmark. This is despite the fact that the metagenomes were much more complex and some 

strains were more dissimilar to the closest reference genome. Specifically, we found a median 

F1 score across all strains of 0.92, equivalent to the median F1 of 0.91 from the hCom2 

benchmark. Interestingly, we do not find a negative relationship between the divergence of the 

benchmark genome and performance. StrainPGC performance was nearly equivalent for the 

least diverged (F1 of 0.89) and most diverged genomes (F1 of 0.92). We conclude that it is 

reasonable to expect similar performance for other strains and datasets, even when the number 

of strains for a species is large and when strains are more diverged from the reference 

database. 

Supplementary Table S2: Performance on five E. coli genomes in an in silico spike-in experiment. 

GenBank 

Accession 

Closest UHGG 

Reference 

Closest Genotype 

Dissimilarity 

Precision Recall F1 

GCF_030198905.1 GUT_GENOME144970 0.0039 0.97 0.87 0.92 

GCF_030202075.1 GUT_GENOME140957 0.0078 0.96 0.87 0.92 

GCF_030204715.1 GUT_GENOME144767 0.0011 0.97 0.82 0.89 

GCF_030205145.1 GUT_GENOME144552 0.030 0.96 0.87 0.91 
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GenBank 

Accession 

Closest UHGG 

Reference 

Closest Genotype 

Dissimilarity 

Precision Recall F1 

GCF_030205875.1 GUT_GENOME144360 0.077 0.97 0.87 0.92 

Sensitivity of StrainPGC performance to depth ratio and correlation 
score thresholds 

 

Figure S3: Threshold depth ratio and correlation score parameter search. Median performance 

across 97 hCom2 benchmark genomes at every combination of 11 correlation score thresholds (x-axis) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


42 
 

and 7 depth ratio thresholds (y-axis). Panels represent median precision (A), recall (B), and F1 score (C). 

The best performance (F1 score) was achieved at a depth ratio threshold of 0.1 and correlation threshold 

of 0.40. We used a slightly more conservative depth threshold of 0.2 throughout the rest of this work, 

which decreased the median F1 score negligably from 0.916 to 0.908. 

 

References 

Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova E, 
Parks DH, Hugenholtz P, et al. 2020. A unified catalog of 204,938 reference genomes from the 
human gut microbiome. Nat Biotechnol 39: 105–114. 

Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi P, 
Scholz M, Thomas AM, et al. 2021. Integrating taxonomic, functional, and strain-level profiling of 
diverse microbial communities with bioBakery 3. eLife 10: e65088. 

Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, Manghi P, Dubois L, 
Huang KD, Thomas AM, et al. 2023. Extending and improving metagenomic taxonomic profiling 
with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 41: 1633–1644. 

Blount ZD. 2015. The unexhausted potential of E. coli. eLife 4: e05826. 

Camargo AP, Roux S, Schulz F, Babinski M, Xu Y, Hu B, Chain PSG, Nayfach S, Kyrpides NC. 
2023. Identification of mobile genetic elements with geNomad. Nat Biotechnol 1–10. 

Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-
mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the 
Metagenomic Scale. Molecular Biology and Evolution 38: 5825–5829. 

Carr R, Shen-Orr SS, Borenstein E. 2013. Reconstructing the Genomic Content of Microbiome 
Taxa through Shotgun Metagenomic Deconvolution. PLoS Comput Biol 9: e1003292. 

Carrow HC, Batachari LE, Chu H. 2020. Strain diversity in the microbiome: Lessons from 
Bacteroides fragilis. PLoS Pathog 16: e1009056. 

Chen L-X, Anantharaman K, Shaiber A, Eren AM, Banfield JF. 2020. Accurate and complete 
genomes from metagenomes. Genome Res 30: 315–333. 

Cheng AG, Ho P-Y, Aranda-Díaz A, Jain S, Yu FB, Meng X, Wang M, Iakiviak M, Nagashima K, 
Zhao A, et al. 2022. Design, construction, and in vivo augmentation of a complex gut 
microbiome. Cell 185: 3617–3636.e19. 

Davidova-Gerzova L, Lausova J, Sukkar I, Nesporova K, Nechutna L, Vlkova K, Chudejova K, 
Krutova M, Palkovicova J, Kaspar J, et al. 2023. Hospital and community wastewater as a 
source of multidrug-resistant ESBL-producing Escherichia coli. Front Cell Infect Microbiol 13. 

Dimonaco NJ, Aubrey W, Kenobi K, Clare A, Creevey CJ. 2021. No one tool to rule them all: 
Prokaryotic gene prediction tool annotations are highly dependent on the organism of study. 
Bioinformatics 38: 1198–1207. 

Florensa AF, Kaas RS, Clausen PTLC, Aytan-Aktug D, Aarestrup FM. 2022. ResFinder – an 
open online resource for identification of antimicrobial resistance genes in next-generation 
sequencing data and prediction of phenotypes from genotypes. Microb Genom 8: 000748. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.7554/eLife.65088
https://doi.org/10.7554/eLife.65088
https://doi.org/10.1038/s41587-023-01688-w
https://doi.org/10.1038/s41587-023-01688-w
https://doi.org/10.7554/eLife.05826
https://doi.org/10.1038/s41587-023-01953-y
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1371/journal.pcbi.1003292
https://doi.org/10.1371/journal.pcbi.1003292
https://doi.org/10.1371/journal.ppat.1009056
https://doi.org/10.1371/journal.ppat.1009056
https://doi.org/10.1101/gr.258640.119
https://doi.org/10.1101/gr.258640.119
https://doi.org/10.1016/j.cell.2022.08.003
https://doi.org/10.1016/j.cell.2022.08.003
https://doi.org/10.3389/fcimb.2023.1184081
https://doi.org/10.3389/fcimb.2023.1184081
https://doi.org/10.1093/bioinformatics/btab827
https://doi.org/10.1093/bioinformatics/btab827
https://doi.org/10.1099/mgen.0.000748
https://doi.org/10.1099/mgen.0.000748
https://doi.org/10.1099/mgen.0.000748
https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


43 
 

Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: Accelerated for clustering the next-generation 
sequencing data. Bioinformatics 28: 3150–3152. 

Hovhannisyan H, Hafez A, Llorens C, Gabaldón T. 2020. CROSSMAPPER: Estimating cross-
mapping rates and optimizing experimental design in multi-species sequencing studies. 
Bioinformatics 36: 925–927. 

Hu H, Tan Y, Li C, Chen J, Kou Y, Xu ZZ, Liu Y, Tan Y, Dai L. 2022. StrainPanDA: Linked 
reconstruction of strain composition and gene content profiles via pangenome‐based 

decomposition of metagenomic data. iMeta 1: e41. 

Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: Prokaryotic 
gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119. 

Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. 2012. Gene and translation initiation site 
prediction in metagenomic sequences. Bioinformatics 28: 2223–2230. 

Jin X, Yu FB, Yan J, Weakley AM, Dubinkina V, Meng X, Pollard KS. 2023. Culturing of a 
complex gut microbial community in mucin-hydrogel carriers reveals strain- and gene-
associated spatial organization. Nat Commun 14: 3510. 

Joglekar P, Sonnenburg ED, Higginbottom SK, Earle KA, Morland C, Shapiro-Ward S, Bolam 
DN, Sonnenburg JL. 2018. Genetic Variation of the SusC/SusD Homologs from a 
Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional 
Adaptation in Bacteroides Thetaiotaomicron Strains. mSphere 3. 

Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. 2020. 
Detection of mobile genetic elements associated with antibiotic resistance in Salmonella 
Enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 76: 
101–109. 

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 
357–359. 

Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, 
et al. 2014. An integrated catalog of reference genes in the human gut microbiome. Nat 
Biotechnol 32: 834–841. 

Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy HH, 
McCracken C, Giglio MG, et al. 2017. Strains, functions and dynamics in the expanded Human 
Microbiome Project. Nature 550: 61–66. 

Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh H-J, Cuenca M, Hingamp P, Alves R, 
Costea PI, Coelho LP, et al. 2019. Microbial abundance, activity and population genomic 
profiling with mOTUs2. Nat Commun 10: 1014. 

Minot SS, Barry KC, Kasman C, Golob JL, Willis AD. 2021. Geneshot: Gene-level 
metagenomics identifies genome islands associated with immunotherapy response. Genome 
Biol 22: 135. 

Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, Forster J, Lee S, 
Twardziok SO, Kanitz A, et al. 2021. Sustainable data analysis with Snakemake. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/btz626
https://doi.org/10.1093/bioinformatics/btz626
https://doi.org/10.1002/imt2.41
https://doi.org/10.1002/imt2.41
https://doi.org/10.1002/imt2.41
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1093/bioinformatics/bts429
https://doi.org/10.1093/bioinformatics/bts429
https://doi.org/10.1038/s41467-023-39121-0
https://doi.org/10.1038/s41467-023-39121-0
https://doi.org/10.1038/s41467-023-39121-0
https://doi.org/10.1128/mspheredirect.00185-18
https://doi.org/10.1128/mspheredirect.00185-18
https://doi.org/10.1128/mspheredirect.00185-18
https://doi.org/10.1093/jac/dkaa390
https://doi.org/10.1093/jac/dkaa390
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nbt.2942
https://doi.org/10.1038/nature23889
https://doi.org/10.1038/nature23889
https://doi.org/10.1038/s41467-019-08844-4
https://doi.org/10.1038/s41467-019-08844-4
https://doi.org/10.1186/s13059-021-02355-6
https://doi.org/10.1186/s13059-021-02355-6
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


44 
 

Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, Larzábal M. 2019. Type VI Secretion System in 
Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front Microbiol 10: 
1965. 

Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. 2016. An integrated metagenomics 
pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. 
Genome Res 26: 1612–1625. 

Pakbin B, Brück WM, Rossen JWA. 2021. Virulence Factors of Enteric Pathogenic Escherichia 
coli: A Review. IJMS 22: 9922. 

Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. 2021. GTDB: An 
ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank 
normalized and complete genome-based taxonomy. Nucleic Acids Research 50: D785–D794. 

Plaza Oñate F, Le Chatelier E, Almeida M, Cervino ACL, Gauthier F, Magoulès F, Ehrlich SD, 
Pichaud M. 2018. MSPminer: Abundance-based reconstitution of microbial pan-genomes from 
shotgun metagenomic data. Bioinformatics 35: 1544–1552. 

Prentice MB. 2021. Bacterial microcompartments and their role in pathogenicity. Current 
Opinion in Microbiology 63: 19–28. 

Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, Zhou W, Buck GA, Snyder 
MP, Strauss JF, Weinstock GM, et al. 2019. The Integrative Human Microbiome Project. Nature 
569: 641–648. 

Quince C, Delmont TO, Raguideau S, Alneberg J, Darling AE, Collins G, Eren AM. 2017. 
DESMAN: A new tool for de novo extraction of strains from metagenomes. Genome Biol 18: 1–
22. 

Quince C, Nurk S, Raguideau S, James R, Soyer OS, Summers JK, Limasset A, Eren AM, 
Chikhi R, Darling AE. 2021. STRONG: Metagenomics strain resolution on assembly graphs. 
Genome Biology 22: 214. 

Ray S, Das S, Suar M. 2017. Molecular Mechanism of Drug Resistance. In Drug Resistance in 
Bacteria, Fungi, Malaria, and Cancer (eds. G. Arora, A. Sajid, and V.C. Kalia), pp. 47–110, 
Springer International Publishing, Cham. 

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: A versatile open source 
tool for metagenomics. PeerJ 4: e2584. 

Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30: 2068–
2069. 

Shi ZJ, Dimitrov B, Zhao C, Nayfach S, Pollard KS. 2022. Fast and accurate metagenotyping of 
the human gut microbiome with GT-Pro. Nat Biotechnol 40: 507–516. 

Smith BJ, Li X, Shi ZJ, Abate A, Pollard KS. 2022a. Scalable Microbial Strain Inference in 
Metagenomic Data Using StrainFacts. Front Bioinform 2. 

Smith BJ, Piceno Y, Zydek M, Zhang B, Syriani LA, Terdiman JP, Kassam Z, Ma A, Lynch SV, 
Pollard KS, et al. 2022b. Strain-resolved analysis in a randomized trial of antibiotic pretreatment 
and maintenance dose delivery mode with fecal microbiota transplant for ulcerative colitis. Sci 
Rep 12: 5517. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.3389/fmicb.2019.01965
https://doi.org/10.3389/fmicb.2019.01965
https://doi.org/10.1101/gr.201863.115
https://doi.org/10.1101/gr.201863.115
https://doi.org/10.3390/ijms22189922
https://doi.org/10.3390/ijms22189922
https://doi.org/10.1093/nar/gkab776
https://doi.org/10.1093/nar/gkab776
https://doi.org/10.1093/nar/gkab776
https://doi.org/10.1093/bioinformatics/bty830
https://doi.org/10.1093/bioinformatics/bty830
https://doi.org/10.1016/j.mib.2021.05.009
https://doi.org/10.1038/s41586-019-1238-8
https://doi.org/10.1186/s13059-017-1309-9
https://doi.org/10.1186/s13059-021-02419-7
https://doi.org/10.1007/978-3-319-48683-3_3
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1038/s41587-021-01102-3
https://doi.org/10.1038/s41587-021-01102-3
https://doi.org/10.3389/fbinf.2022.867386
https://doi.org/10.3389/fbinf.2022.867386
https://doi.org/10.1038/s41598-022-09307-5
https://doi.org/10.1038/s41598-022-09307-5
https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


45 
 

Trimble WL, Keegan KP, D’Souza M, Wilke A, Wilkening J, Gilbert J, Meyer F. 2012. Short-read 
reading-frame predictors are not created equal: Sequence error causes loss of signal. BMC 
Bioinformatics 13: 183. 

Yang C, Mogno I, Contijoch EJ, Borgerding JN, Aggarwala V, Li Z, Siu S, Grasset EK, Helmus 
DS, Dubinsky MC, et al. 2020. Fecal IgA Levels Are Determined by Strain-Level Differences in 
Bacteroides ovatus and Are Modifiable by Gut Microbiota Manipulation. Cell Host &amp; 
Microbe 27: 467–475.e6. 

Zhao C, Dimitrov B, Goldman M, Nayfach S, Pollard KS. 2022a. MIDAS2: Metagenomic Intra-
species Diversity Analysis System. Bioinformatics 39: btac713. 

Zhao C, Goldman M, Smith BJ, Pollard KS. 2022b. Genotyping Microbial Communities with 
MIDAS2: From Metagenomic Reads to Allele Tables. Current Protocols 2: e604. 

Zhao C, Shi ZJ, Pollard KS. 2023. Pitfalls of genotyping microbial communities with rapidly 
growing genome collections. Cell Systems 14: 160–176.e3. 

Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, Lewis KA, Georghiou G, 
Nguyen HN, Hamid MN, et al. 2019. The CAFA challenge reports improved protein function 
prediction and new functional annotations for hundreds of genes through experimental screens. 
Genome Biol 20: 244. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1186/1471-2105-13-183
https://doi.org/10.1186/1471-2105-13-183
https://doi.org/10.1016/j.chom.2020.01.016
https://doi.org/10.1016/j.chom.2020.01.016
https://doi.org/10.1093/bioinformatics/btac713
https://doi.org/10.1093/bioinformatics/btac713
https://doi.org/10.1002/cpz1.604
https://doi.org/10.1002/cpz1.604
https://doi.org/10.1016/j.cels.2022.12.007
https://doi.org/10.1016/j.cels.2022.12.007
https://doi.org/10.1186/s13059-019-1835-8
https://doi.org/10.1186/s13059-019-1835-8
https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


Not strain-pure

Strain-
specific
gene

Strain-
specific
gene

G
en

e 
D

ep
th

Lo
w D

ep
th

Stra
in 

M
ixt

ur
e

High
 D

ep
th

Correlation

A

B
C

D

Gene 
Content

Input

Output

E

(3) Low depth

(4) Strain mixing

✗ ✗ ✓ Strain-pure only

Depth
Ratio

Estimated
Gene

Content

Cro
ss

-M
ap

pin
g

✗

Diffe
re

nt
 S

tra
in

✗

gene
species

1

Selected
Genes

G
en

e 
D

ep
th

Core
geneCore

gene

Gene not 
present

Species Depth

Quality 
Control

Shotgun
metagenomes

Reference
sequences

Strains in
samples

(2) Cross-mapping

Depth
Estimate

Strain-pure All samples

Gene not 
present

(1) Missing
References

Strain-pure
samples

Strain
Tracking

(StrainFacts)

SNP Profiling
(GT-Pro)

Meta-
genomes

Species
Marker 
Genes

Pangenome 
Reference

(MIDASDB)

Pangenome 
Profiling
(MIDAS)

SNP 
Genotype

StrainPGC

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


A
Assembled Genomes

Direct 
Annotation

Pure Isolates

Synthetic Communities

C

Measure 
Accuracy

P
recision

R
ecall

F
1

vs. PanPhlAn vs. StrainPanDA

S
tr

ai
nP

G
C

 P
er

fo
rm

an
ce

Gene
Content 

Estimation

Pangenome Profiling

B

10

1

50
0

0

6

34

8

8

0

0

0

1

1

2

36

Phylum
Num. 

strains

Euryarchaeota

Thermoplasmatota

Firmicutes

Firmicutes_A

Firmicutes_C

Actinobacteriota

Synergistota

Fusobacteriota

Campylobacterota

Proteobacteria

Desulfobacterota_A

Bacteroidota

Verrucomicrobiota

100 102 104 106

Total Depth

10 1

100

101

102

103

104

M
a
x
 D

e
p
th

Num. Strains
1
2
3
4

0.0

0.5

1.0

0.0

0.5

1.0

0.0 0.5 1.0

0.0

0.5

1.0

0.0 0.5 1.0

0.2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


0%1% 10% 100% 300%

Branch Length Increase

Verrucomicrobiota

Bacteroidota

Desulfobacterota_A

Proteobacteria

Campylobacterota

Fusobacteriota

Synergistota

Actinobacteriota

Firmicutes_C

Firmicutes_A

Firmicutes

Thermoplasmatota

Euryarchaeota

P
h
y
lu

m

Num.
inferred
strains

1

10

100

0.25

0.50 Same Subject

Different Subject

0 25 50 75 100 125

Shared Strains per Sample Pair

0.00

0.02

0.04

A

B

C

D

E F

S
ub

je
ct

s
(c

ou
nt

)
S

tr
ai

ns
(c

ou
nt

)

Strains
(density)

Genotype Dissimilarity

P
ai

rs
(f

ra
ct

io
n)

0 100 200 300 400 500

Strains

0

10

1 3 5 7 9 11 13

Subjects

0

2000

0

1

10 6 10 5 10 4 10 3 10 2 10 1 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

G
e
n
e
 C

o
n
te

n
t 

D
is

si
m

ila
ri

ty

All Novel

E. coli

0 5

0.2

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


0
%

1
5

%

9
0

%

1
0

0
%

0%

15%

90%

100%
core

shell

cloud
100

101

102

103

104

G
e
n
e
s 

(c
o
u
n
t)

A

D

B C

E

Shared KEGG Module Annotations (Max)

F

P
re

va
le

nc
e 

in
In

fe
rr

ed
 S

tr
ai

ns

Prevalence in
Reference Strains

Shared Phage/Plasmid Annotations (Max)

40% 50% 60% 70% 80% 90%
0%

10%

20%

30%

40%

50%

60%

0%10%
20%

Cloud 30%

S
h
e
ll

Core

21 4 8 16 32 64 128 256 512
0

100

101

102

103
C

lu
st

er
s 

(c
ou

nt
)

Cluster Size

S
pe

ci
es

Euryarchaeota

Thermoplasmatota

Firmicutes_A

Firmicutes_C

Actinobacteriota

Firmicutes

Synergistota

Fusobacteriota

Campylobacterota

Proteobacteria

Desulfobacterota_A

Bacteroidota

Verrucomicrobiota

1:
20 1:

5
1:

1
5:

1
20

:1

Enrichment

co
re

sh
el
l

cl
ou

d"M
obilo

me" - 
XUnknown

DNA re
plica

tio
n/re

combinatio
n/re

pair -
 LDefense - V

Secre
tio

n / v
esic

ular tr
ansport -

 U

Extra
ce

llu
lar s

tru
ctu

res -
 W

Tra
nscr

iptio
n - K

Cell e
nvelope - MMotili

ty - N

Carbohydrates -
 G

Cell c
ycle

 co
ntro

l - 
D

Secondary m
etabolite

s -
 Q

General o
nly - R

Signal tr
ansducti

on - T

Inorganic i
ons -

 P

Protein proce
ssi

ng - O
Lipids -

 I

Coenzymes -
 HEnergy - C

Amino acid
s -

 E
Nucle

otid
es -

 F

Ribosomes /
 Tr

ansla
tio

n - J

Cytoske
leton - Z

100
1,000

10,000

Num. Genes

1 2 3 4 5 6 7 10 15

100

101

102

103

104

105

C
lu

st
e
rs

 (
co

u
n
t)

observed

null

1 3 5 7 10 15 20 25 30 35 40 45

100

101

102

103

104

105

C
lu

st
e
rs

 (
co

u
n
t)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


A

B

Present

Absent

D

C 6 9

959 13554256

76 86118

6 9

6

0%

50%

100%
D0044

B
M
1

M
2

M
3

M
4

M
5

M
6 F1 F2 F3

S0055

B
M
1

M
2

M
3

M
4

M
5

M
6 F1 F2 F2

S0056

B
p
A

M
1

M
2

M
3

M
4

M
5 F1 F2

S0060

M
2

M
3

M
4

M
5

M
6 F1 F2 F3

S0061

B
M
1

M
3

M
4

M
5

M
6 F1

S0053

p
A

M
1

M
3

M
4

M
5 F1 F2

S0047

B
M
1

M
2

M
3

M
5 F1

S0059

0%

50%

100%
D0097

B
p
A

M
1

M
2

M
3

M
4

M
6 F1 F2 F3

S0004

B
M
1

M
2

M
3

M
4

M
5

M
6 F1 F2 F3

S0001

B
M
1

M
2

M
3

M
4

M
5

M
6 F1 F2 F3

S0024

B
p
A

M
1

M
2

M
3

M
4

M
5 F1 F2

S0021

p
A

M
2

M
3

M
4

M
5

M
6 F1 F2 F3

S0027
B

M
1

M
5

S0013

M
2

S0043

B B
M
1

M
1

M
2

M
3

M
3

M
4

M
5

M
6 F1 F2

S0041

9

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 10 1 100 101 102

0.0

0.2

0.4

0.6

0.8

1.0

101 102

F1
R

e
ca

ll
P
re

ci
si

o
n

Maximum Strain Depth Maximum Strain Depth

StrainPGC
PanPhlAn
StrainPanDA

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


40% 50% 60% 70% 80% 90%

Core

0%

10%

20%

30%

40%

50%

60%
S
h
e
ll

0%10%
20%

Cloud 30%

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/


0
.0
5

0
.1

0
.1
5

0
.2

0
.2
5

0
.3

0
.3
5

d
e
p
th
_t
h
re
sh

0.85 0.85 0.88 0.89 0.90 0.91 0.93 0.94 0.95 0.95 0.96 0.97

0.87 0.89 0.90 0.91 0.92 0.93 0.94 0.94 0.95 0.96 0.96 0.97

0.90 0.91 0.92 0.92 0.93 0.94 0.95 0.95 0.96 0.96 0.97 0.97

0.92 0.93 0.93 0.94 0.94 0.94 0.95 0.96 0.96 0.97 0.97 0.97

0.93 0.93 0.94 0.94 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.98

0.93 0.94 0.95 0.95 0.95 0.95 0.96 0.97 0.97 0.97 0.98 0.98

0.94 0.95 0.95 0.96 0.96 0.96 0.96 0.97 0.97 0.98 0.98 0.98

precision

corr_thresh

d
e
p
th
_t
h
re
sh

0.94 0.94 0.93 0.93 0.93 0.93 0.92 0.92 0.91 0.90 0.89 0.88

0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.90 0.89 0.88 0.87

0.91 0.91 0.91 0.90 0.90 0.90 0.90 0.89 0.89 0.88 0.87 0.86

0.90 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.87 0.86 0.86 0.85

0.89 0.88 0.88 0.87 0.87 0.87 0.87 0.87 0.86 0.85 0.85 0.84

0.87 0.87 0.86 0.86 0.86 0.86 0.86 0.86 0.85 0.84 0.84 0.82

0.86 0.86 0.85 0.85 0.85 0.85 0.85 0.84 0.83 0.82 0.81 0.81

recall

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

corr_thresh

0
.0
5

0
.1

0
.1
5

0
.2

0
.2
5

0
.3

0
.3
5

d
e
p
th
_t
h
re
sh

0.88 0.88 0.89 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.90

0.89 0.89 0.90 0.90 0.90 0.90 0.91 0.91 0.92 0.91 0.91 0.90

0.89 0.90 0.90 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.90

0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.91 0.91 0.91 0.90 0.90

0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.89

0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89

0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.88 0.88

F1

A

C

C

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.04.10.588779doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.10.588779
http://creativecommons.org/licenses/by/4.0/

