

1 **Molecular Xenomonitoring (MX) allows real-time surveillance of West Nile
2 and Usutu virus in mosquito populations.**

3 Clément Bigeard^{1,2}, Laura Pezzi^{3,4}, Raphaelle Klitting^{3,4}, Nazli Ayhan^{3,4}, Grégory L'Ambert⁵, Nicolas Gomez⁶,
4 Géraldine Piorkowski⁴, Rayane Amaral⁴, Guillaume André Durand^{3,4}, Katia Ramiara¹, Camille Migné², Gilda
5 Grard^{3,4}, Thierry Touzet¹, Stéphan Zientara², Rémi Charrel⁴, Gaëlle Gonzalez², Alexandre Duvignaud⁷, Denis
6 Malvy⁷, Xavier de Lamballerie^{3,4}, Albin Fontaine^{4,8*}

7

8 ¹ Direction départementale de la protection des populations (DDPP) de la Gironde.

9 ² ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale,
10 Maisons-Alfort, France.

11 ³ Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France.

12 ⁴ Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA),
13 France.

14 ⁵ Entente interdépartementale pour la démoustication du littoral méditerranéen (EID Méditerranée), Montpellier,
15 France.

16 ⁶ Unité de Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de
17 Recherche Biomédicale des Armées (IRBA), Marseille, France.

18 ⁷ Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, France; National Institute for
19 Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD)
20 EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France.

21 ⁸ Institut de Recherche Biomédicale des Armées (IRBA), Unité de virologie, Marseille, France.

22

23 *Corresponding author: albinfont@gmail.com

24

25 **Keywords: Molecular xenomonitoring, West Nile virus, Usutu virus, mosquito excreta, surveillance.**

26 **Abstract**

27 **Background**

28 West Nile (WNV) and Usutu (USUV) virus are vector-borne flaviviruses causing neuroinvasive
29 infections in both humans and animals. Entomological surveillance is a method of choice for identifying virus
30 circulation ahead of the first human and animal cases, but performing molecular screening of vectors is
31 expensive, and time-consuming.

32 **Methods**

33 We implemented the MX (Molecular Xenomonitoring) strategy for the detection of WNV and USUV
34 circulation in mosquito populations in rural and urban areas in Nouvelle-Aquitaine region (France) between July
35 and August 2023, using modified BG Sentinel traps. We first performed molecular screening and sequencing on
36 excreta from trapped mosquitoes before confirming the results by detecting, sequencing and isolating viruses
37 from individual mosquitoes.

38 **Findings**

39 We identified WNV and USUV-infected mosquitoes in 3 different areas, concurrently with the first
40 human cases reported in the region. Trapped mosquito excreta revealed substantial virus co-circulation (75% of
41 traps had PCR+ excreta for at least one of both viruses). *Cx. pipiens* was the most common species infected by
42 both WNV and USUV. Genomic data from excreta and mosquitoes showed the circulation of WNV lineage 2
43 and USUV lineage Africa 3, both phylogenetically close to strains that circulated in Europe in recent years. Four
44 WNV and 3 USUV strains were isolated from trapped mosquitoes.

45 **Interpretation**

46 MX strategy is easy and rapid to implement on the field, and has proven its effectiveness in detecting
47 WNV and USUV circulation in local mosquito populations.

48 **Funding**

49 This study received funding from the Direction Générale de l'Armement (PDH□2□NBC-5-B-2212)
50 and ARBOGEN (funded by MSDAVENIR).

51 **Research in context**

52 **Evidence before this study**

53 WNV and USUV circulate through complex transmission cycles involving mosquitoes as vectors, birds
54 as amplifying hosts and several mammal species as dead-end hosts. Transmission to humans primarily occurs
55 through mosquito bites for both viruses. Notably, WNV can also be transmitted through blood donations and
56 organ transplants. It is estimated that a significant proportion of both WNV and USUV infections in vertebrate
57 hosts remain unreported due to their predominantly asymptomatic nature or nonspecific clinical presentation.
58 Nevertheless, neuroinvasive and potentially fatal disease can occur, in particular among vulnerable populations
59 such as elderly and immunocompromised patients.

60 In France, after its first detection in 2015, USUV has been sporadically found in eastern and southern
61 departments, with confirmed infections in birds, mosquitoes and mammals, and few human cases described.
62 WNV has recently caused annual outbreaks of varying intensities involving humans, equids and avifauna in
63 French departments mainly located in the Mediterranean area. Because of low viral loads and/or brief viremia,
64 diagnosis of both pathogens is often based on serological evidence, and few genomic data are available on
65 strains having circulated in France.

66 Entomological surveillance can be used as an early warning method for WNV and USUV surveillance,
67 but is costly to implement as it requires the collection of large numbers of mosquitoes to detect virus circulation
68 when infection rates in mosquito populations are low. Therefore, viral surveillance in France still heavily relies
69 on human and animal surveillance, *i.e.* late indicators of viral circulation.

70

71 **Added value of this study**

72 This study describes the implementation of the MX (Molecular Xenomonitoring) strategy for the
73 effective surveillance of WNV and USUV circulation within mosquito populations. MX uses of modified BG
74 Sentinels that allow (i) trapped mosquitoes to survive for several days and (ii) corresponding mosquito excreta
75 to be collected and preserved on filter paper. MX has demonstrated many advantages over traditional
76 entomological surveillance. Firstly, screening excreta collectively deposited by a community of trapped
77 mosquitoes for the presence of viruses in the first instance is time and cost efficient, as one sample is tested for
78 viral RNA, regardless of the number and species diversity in the trap. Second, filter papers with mosquito
79 excreta can be transported from the field to the laboratory at room temperature by regular postal mail, bringing
80 real-time detection within reach. WNV and USUV RNA have been detected and sequenced directly from the

81 mosquito excreta shortly after collection. Thirdly, MX adapters increase the longevity of trapped mosquitoes,
82 thereby allowing extension of the time between trap collections and increasing the likelihood of virus shedding
83 by infected mosquitoes. Fourthly, this approach is easy to implement in the field and requires neither a strong
84 entomological background nor specific technical skills. All these aspects make the MX strategy a powerful, non-
85 invasive and cost-effective tool for real-time monitoring of enzootic WNV and USUV circulation.

86

87 **Authors should describe here how their findings add value to the existing evidence.**

88 WNV was never detected on the Atlantic seaboard of France until October 2022. Molecular evidence
89 of WNV circulation was obtained in 3 symptomatic horses in the Nouvelle Aquitaine region in October 2022,
90 concomitantly with an USUV human case with no recent travel history outside the region. This was a harbinger
91 of an increase in cases over the next year. In 2023, MX succeeded in detecting the enzootic co-circulation of
92 WNV and USUV in rural and urban areas of Nouvelle Aquitaine, simultaneously with the first cases of WNV
93 detected by human and animal surveillance and the first human case of USUV diagnosed in the end of July
94 2023. Genomic and phylogenetic information was obtained directly from trapped mosquito excreta, before
95 information derived from animal or human surveillance. Mosquitoes from traps with PCR-positive excreta were
96 analysed individually, which allowed to calculate infection rates in mosquitoes. WNV and USUV were isolated
97 from single *Cx. pipiens* mosquitoes. *Cx. pipiens* was the species most commonly found positive for either
98 viruses although WNV was also detected in *Ochlerotatus* and *Aedes* mosquitoes, including one tiger mosquito
99 (*Ae. albopictus*) in the urban environment. We argue that the MX approach is a major asset in the early warning
100 detection of WNV and USUV circulation to alert health policy makers and take suitable control measures.

1 **Introduction**

2 West Nile (WNV) and Usutu (USUV) viruses, belong to the genus *Orthoflavivirus* (former *Flavivirus*,
3 *Flaviviridae* family)¹. They circulate in complex transmission cycles involving mosquitoes as vectors, birds as
4 amplifying hosts, and several vertebrate species as dead-end hosts. Infections in these incidental hosts are
5 predominantly asymptomatic or result in mild manifestations (*ie.* non-specific flu-like symptoms with a short
6 recovery period) and therefore often go unrecognized. In a minority of cases, infections with both viruses have
7 the potential to progress to severe and potentially fatal illnesses affecting the central nervous system (*ie.*
8 encephalitis, meningitis), particularly in vulnerable human populations such as the elderly and
9 immunocompromised patients. Transmission to humans occurs primarily through mosquito bites, but

10 transmission via blood transfusion and organ transplantation from infected donors has been occasionally
11 reported for WNV and could theoretically also occur for USUV. This makes the cryptic enzootic circulation of
12 these viruses a sword of Damocles hanging invisibly over the heads of the most vulnerable people².

13 Native to sub-Saharan Africa, WNVs can be classified into eight phylogenetic lineages, two of which
14 are associated with disease in humans (1 and 2)³. Both recently emerged worldwide through bird migrations or
15 their transportation by human activities. The emergence of WNV outside of Africa had a substantial impact on
16 both public and animal health. WNV's introduction into the United States of America (USA) in 1999 has since
17 produced the largest outbreaks ever recorded for a neuroinvasive arboviral disease in this country, with several
18 tens of thousands of cases and several thousand deaths⁴. WNV was introduced in Europe in the 1960s⁵. Before
19 2004, all WNV infections in Europe were caused by viruses from lineage 1a⁶ and were limited to sporadic cases
20 or self-limited outbreaks. The emergence of WNV lineage 2 in central Europe in 2004 was associated with a
21 significant increase in both the number and size of human and animal outbreaks in subsequent years⁷. In 2018,
22 11 countries reported a total of 1,548 local WNV infections (mostly caused by lineage 2), which exceeded the
23 cumulative number of all infections reported between 2010 and 2017⁸. The area of known circulation of WNV
24 lineages 1 and 2 in France has been limited to the Mediterranean basin (south-eastern part of the country), where
25 the virus has occasionally caused symptomatic infections in humans, equids or birds since the 1960s.

26 The emergence of USUV in Europe was first detected in 2001 in Austria, but its presence was
27 retrospectively documented in Italy in 1996⁹. Several African and European genotypes of USUV now circulate
28 in Europe¹⁰. The emergence of USUV was first officially reported in eastern France (Haut-Rhin, Rhône and
29 Bouches-du-Rhône departments) in 2015 by direct molecular identification in blackbirds¹¹ and mosquitoes¹², but
30 its circulation in the country was suspected since 2009¹³. Although no human deaths have been attributed to this
31 virus that is phylogenetically and ecologically close to WNV, USUV has caused several cases of neuroinvasive
32 disease in Europe in recent years. USUV has been detected in blood donors, but transmission from donor to
33 recipient has never been documented¹⁴.

34 The emergence of these two viruses always evolves towards a state of endemicity. In France, both
35 USUV (European and African genotypes) and WNV (lineages 1 and 2) are now circulating in endemic cycles.
36 WNV and USUV had never been detected on the Atlantic coast of France before the end of summer 2022.
37 Serological evidence of WNV circulation was reported in Nouvelle Aquitaine with the detection of an acute
38 infection (presence of IgM and IgG specific antibodies) in 3 symptomatic horses in October 2022, coincident

39 with a human case of USUV with no travel history outside the region. This date marked a turning point in the
40 epidemiology of these viruses in France and foreshadowed an increase in cases the following year.

41 Both the high proportion of asymptomatic infections caused by WNV and USUV and their cryptic
42 enzootic circulation make their detection in the environment challenging. There is currently no innovative, cost-
43 effective and easy-to-use method for the early detection of the circulation of these viruses, which is essential for
44 triggering the systematic viral RNA screening of blood and organ donors for these viruses. Here, at the interface
45 between entomological and environmental surveillance, we have implemented a non-invasive molecular
46 xenomonitoring (MX) approach that uses trapped mosquito excreta to monitor the emergence and circulation of
47 WNV and USUV in real time.

48 The origins of the MX approach date back to the work of Hall-Mendelin and colleagues in 2010. The
49 authors exploited mosquito sugar feeding to detect mosquito-borne pathogens in a community of trapped
50 mosquitoes to improve the cost/effectiveness ratio of entomological surveillance (here defined as the detection
51 of pathogens in mosquitoes)¹⁵. The discovery that the excreta of infected mosquitoes contain higher virus loads
52 than their saliva¹⁶, which thereby improve the sensitivity of molecular detection, led to a new arbovirus
53 surveillance system that has proved its value in the field for several viruses^{17,18} and parasites¹⁹. In MX, a 3D-
54 printed housing that fits most standard mosquito traps, provides trapped mosquitoes with a moist shelter and
55 freely accessible sugar water and facilitates the collection of their excreta on filter paper (Supplementary file 1).
56 Trapped mosquitoes, here used as environmental samplers, are kept alive in the field over several days, which
57 (i) allows the time between trap collections to be extended and (ii) increases the likelihood of virus shedding by
58 trapped infected mosquitoes. Once infected by a virus, a single mosquito can shed between 3 to 5 log₁₀ of viral
59 RNA per day¹⁶. Excreta are shipped at ambient temperature by postal mail to a laboratory. There, these samples
60 are used to detect viral RNA in a fast, simple, efficient, and cost-effective approach. Viral genetic identities can
61 then be rapidly revealed by sequencing viral genomic RNA contained in excreta. Importantly, the method is
62 compatible with downstream mosquito processing for nucleic acid extraction and sequencing, as well as virus
63 isolation allowing to obtain viral genome sequences from individual mosquitoes, to identify vector species or to
64 estimate mosquito infection prevalence (Supplementary figure 1).

65 We demonstrated the value of MX in July-August 2023 in the region of Nouvelle-Aquitaine in
66 southwest France.

67 **Materials and methods**

68 **MX (Molecular Xenomonitoring) strategy**

69 MX uses modified BG Sentinel traps (BGS, Biogents AG, Regensburg, Germany), inspired from
70 Timmins et al.²⁰ and updated from L'Ambert et al.¹⁷ (Supplementary figure 2). In these modified BG Sentinel
71 traps, BGS catching bags are replaced with a 3D printed MX adapter (Supplementary file 1) attached beneath
72 the intake funnel through a conical net and inserted into the depressurized BGS catching pipe. The MX adapter
73 provides a safe and moisturized shelter to trapped mosquitoes with easy access to a cotton ball soaked in 10%
74 sugar water, held in a feeder at the top inner side of the cylinder. A filter paper (Whatman, grade 1, ref. 1001-
75 917) is placed at the bottom of the adapter to collect excreta from trapped mosquitoes.

76

77 **Study area and samples collection**

78 The study was carried out in a ~ 800 km² (40 x 20 km) area from either side of the Gironde estuary at
79 the northern edge of the Bordeaux urban area, in the region of Nouvelle-Aquitaine (South-Western France)
80 (Figure 1-A). MX traps operated on a 24 hour/7-day basis using carbon dioxide (CO₂) as mosquito attractant.
81 Pressurized CO₂ bottles operated at a rate of 250 mL/min, from 8 pm to 8 am using a BG-CO₂ timer (Biogents
82 AG). Trapped mosquitoes were first stored at -20°C near the collection site, and then transferred to the
83 laboratory where they were frozen at -80°C. The filter paper impregnated with mosquito excreta was removed
84 and sent to the laboratory at room temperature by post. A new MX adapter was inserted in the trap for the
85 following collection so that each trap was operating without discontinuity along the surveillance period.
86 Between 20th July and 3rd August 2023, four MX traps (A-D) were placed in a wetland area on the right bank of
87 the Gironde estuary. Six MX traps (E-J) were placed in a wetland area between the Dordogne and the Garonne
88 rivers, before their confluence. From August 11th, the MX surveillance was extended with 3 MX traps (K-M)
89 located in an urban area, inside the city of Bordeaux. In sites A to J, captures were conducted over 3 to 4
90 consecutive days, with traps collection and reconditioning for a new mosquito trapping session performed twice
91 a week. Trap reconditioning involves collecting the adapter with live mosquitoes and replacing it with a new
92 one. K to M traps were emptied every 2 to 4 days. An additional mosquito sampling site was implemented at a
93 late stage on the 10th of October 2023 in Châtelailon, a town in the department of Charente-Maritime, which

94 borders the Gironde department to the north. This sampling was carried out in the vicinity of a confirmed human
95 case of West Nile virus.

96

97 **RNA extraction from filter papers impregnated with mosquito excreta**

98 Filter papers impregnated with mosquito excreta were stored at 4°C upon arrival to the laboratory until
99 the RNA extraction step. Samples were not frozen and were processed in less than two weeks after reception.
100 Briefly, each filter paper was coiled and placed at the bottom of a 14 mL plastic tubes (Falcon, ref: 352059)
101 before being soaked in 1.5 mL of Lysis buffer RAV1 (NucleoSpin 96 virus core kit, Macherey□Nagel, Düren,
102 Germany) for 5 to 10 minutes. Ten microliters of MS2 phage were added to each tube as an internal extraction
103 control²¹. Filter papers were then manually grinded with a 2 mL pipette until a homogeneous filter paper pulp
104 was obtained. Several 2 mm diameter holes were then drilled in the transparent caps of the 14 mL tubes to create
105 a colander and clipped tightly on each tube. Closed 14 mL tubes were then placed upside-down on a larger 50
106 mL tube (with the colander cap placed downward, at the bottom of the 50 mL tube) and centrifuged 5 min at
107 2,500 rpm. A 3D printed disposable spacer was used to create a space between the bottom of the 50 mL tube to
108 avoid re-infiltration of the dry paper pulp by the flow through by capillarity after centrifugation. Flow throughs
109 were collected and mixed with 1.5 mL 96–100% ethanol before being loaded on NucleoSpin Virus Columns in
110 several steps. RNA extraction was then performed according to the manufacturer procedure. Eluates were stored
111 at +4°C until used for molecular detection. This methodological step is summarized in Supplementary figure 3.

112

113 **RNA extraction from individual mosquitoes**

114 Using RT-qPCR results on mosquito excreta, we identified traps containing mosquitoes infected with
115 WNV and/or USUV. RNA extraction and virus detection by RT-qPCR was implemented individually for each
116 mosquito from a selected subset of traps with positive RT-qPCR on excreta. The subset of traps were selected
117 based on the following criteria: (i) the presence of a low number of trapped mosquitoes to reduce processing
118 time, (ii) low *Ct* values obtained by RT-qPCR in excreta, indicative of a high virus load in trapped mosquitoes,
119 (iii) a diversity of detection status in excreta with either the concomitant detection of both WNV and USUV, or
120 one of these viruses alone, (iv) different location of traps (urban area, and rural area north of Bordeaux). These
121 criteria were applied to increase the chance of virus isolation, to estimate the sensitivity and specificity of the
122 method (working on excreta) as compared to standard entomological surveillance practices (working on
123 mosquitoes), and to assess genomic diversity of strains circulating in different locations.

124 Mosquitoes were individually homogenized using 3mm tungsten beads in 400 µL of Minimum
125 Essential Medium (MEM) supplemented with 1% penicillin–streptomycin, 1% L-glutamine, 1% Kanamycin,
126 and 3% Amphotericin B. Homogenization was realized in a 96-well plate in a TissueLyser grinder (QIAGEN,
127 Hilden, Germany) for 2□×□30 seconds at 30 Hz. Viral RNA was extracted with QIAamp 96 Virus QIAcube
128 HT Kit (QIAGEN, Hilden, Germany) on a QIAcube extraction platform using 100 µL of individual mosquito
129 lysate. RT-qPCR for WNV and USUV on individual mosquitoes was performed as described for excreta
130 (paragraph ‘RT-qPCR on mosquito excreta’). The remaining lysate volume was stored at 4°C for subsequent
131 viral isolation attempts to be performed for RT-qPCR-positive mosquitoes.

132

133 **RT-qPCR for for WNV and USUV**

134 Detection of WNV and USUV genomic RNA was performed with a real-time reverse transcription
135 polymerase chain reaction (RT-qPCR) assay. The SuperScript III Platinum One-Step qRT-PCR kit
136 (ThermoFisher Scientific, Waltham, MA, USA) was used on a CFX96TM thermal cycler, software version 3.1
137 (Bio-Rad Laboratories, Hercules, CA, USA). Cycling conditions were: 15 min at 50 °C, 2 min at 95 °C, 15 s at
138 95°C and 45 s at 60 °C (45 cycles). A 5 µL volume of RNA was added to 20 µL of mix containing 12.5 µL of
139 2X Reaction Mix, 0.5 µL of Superscript III RT/Platinum Taq Mix and primers and probe at the concentrations
140 described in Supplementary table 1. A dual-target in-house assay (USUV Duo) was used to detect USUV RNA.
141 Two RT-qPCR assays were used to detect WNV RNA. A dual-target, single dye (FAM) RT-qPCR assay (Duo
142 WNV), combining two assays from the literature^{22,23}, was used as a first-line due to its high sensitivity. Because
143 this Duo assay cross-react with USUV, a second screening was performed with a WNV specific but less
144 sensitive single target assay²³ in second intention to discriminate a single WNV infection from a co-infection
145 with both viruses when needed. A result was considered negative if the Ct value was > 40. The MS2 (internal
146 control) RT-qPCR assay was tested on all samples.

147

148 **Viral isolation in cell culture**

149 Remaining volume of homogenates (kept at 4°C) was retrospectively selected from mosquitoes with a
150 RT-qPCR result lower than 38 Ct, to be inoculated on Vero African green monkey kidney cells (Vero E6
151 (ATCC C1008)) and C6/36 insect cells (ATCC CRL-1660). Individual mosquito's homogenates were filtered
152 using 0.5 mL PVDF ST ultra-free-cl millipore (Merck, Darmstadt, Germany) and diluted (1/8) in 350 µL of
153 MEM (for Vero E6 cells) or Leibovitz's L15 medium (for C6/36 cells) supplemented with 2.5% fetal bovine

154 serum (FBS), 1% penicillin–streptomycin, 1% L-glutamine, 1% Kanamycin, and 3% Amphotericin B, before
155 inoculation on confluent culture of Vero E6 and C6/36 on 6-well flat bottom cell culture plates. Individual
156 mosquito's homogenate inoculum was incubated 1 hour at 37°C in a 5% CO₂ atmosphere (Vero E6 cells) or
157 28°C without CO₂ (C6/36 cells) to infect cells mono-layers prior to be removed and replaced by 4 mL of MEM
158 (for Vero E6 cells) or L-15 (for C6/36 cells) supplemented with 7% heat-inactivated FBS, 1% penicillin–
159 streptomycin, 1% L-glutamine, 1% Kanamycin, and 3% Amphotericin B. Cell cultures were examined daily for
160 the presence of the cytopathic effect (CPE). At post-inoculation day 5, supernatants were aliquoted and tested
161 for the presence of WNV and USUV. Extraction and RT-qPCR were performed as described above.

162

163 **Virus sequencing**

164 We sequenced WNV and USUV genomes from excreta and whole mosquito samples using amplicon-
165 based approaches. We used virus-specific sets of primers to generate eight overlapping amplicons spanning the
166 entire virus genome (Supplementary table 1, Supplementary file 3). When amplification failed for one or more
167 amplicons, we later attempted whole genome amplification using a tiled-amplicon approach initially developed
168 by Quick J.²⁴, and Grubaugh N.D.²⁵ and colleagues, with adaptations. Briefly, PrimalSeq protocol generates
169 overlapping amplicons from 2 multiplexed PCR reactions to generate sufficient templates for subsequent high-
170 throughput sequencing. We used primer schemes developed for WNV lineage 2²⁶ and USUV²⁷. For sequencing
171 WNV and USUV genomes from virus isolates, cell culture supernatants were treated with benzonase for 1h at
172 37°C, extracted with no RNA carrier, and a random RT-PCR amplification was performed using the
173 TransPlex® Complete Whole Transcriptom Amplification Kit WTA2 (Merck Millipore) following the
174 manufacturers' instructions. Following amplification (virus-specific or random), an equimolar pool of all
175 amplicons was prepared for each sample, and then purified and quantified before being sonicated into 250 pb
176 long frgments. Fragmented DNA was used for library building followed by PCR quantification. Finally, an
177 emulsion PCR of the library pools was performed, followed by loading on 530 chips and sequencing using the
178 S5 Ion torrent technology, following the manufacturer's instructions (details in Supplementary file 3).

179 After demultiplexing, read data were analyzed with an in-house Snakemake pipeline (details in
180 Supplementary methods). Read alignment was achieved using BWA MEM (v0.7.17) using, as a reference, the
181 best match identified by blasting (magicblast, v1.7.7) sequencing reads using a database of flavivirus sequences
182 including reference sequences representative of the genetic diversity of WNV (8 sequences) and USUV (13

183 sequences). Consensus sequences were called using a minimum coverage depth of 50x (virus-specific
184 amplification approach) or 30x (random amplification approach).

185

186 **Phylogenetic analyses**

187 All publicly available sequences for WNV and USUV were downloaded from the NCBI Nucleotide
188 database, Genbank (database accessed on November 17nd, 2023). We filtered the data by: (i) excluding
189 sequences from laboratory strains (adapted, passaged multiple times, obtained from experiments), (ii) keeping
190 only sequences covering more than 85% of the open reading frame (ORF). The remaining sequences were
191 trimmed to their ORF, aligned using MAFFT (version 7.511) and inspected manually using the program
192 AliView (version 1.0). We inferred the phylogenetic relationships between public WNV and USUV genomes
193 and the sequences generated in this study based on a Maximum-likelihood (ML) approach with IQ-Tree (version
194 1.6.12), using the best-fit model identified by ModelFinder and assessed branch support using an ultrafast
195 bootstrap approximation (UFBoot2) (1000 replicates). With this first inference we identified the genotype (and
196 phylogenetic subgroup) of all WNV and USUV sequences generated in this study. Based on these first
197 phylogenies, we then selected smaller datasets including, for WNV, all sequences from the Central/South-West
198 European subgroup of lineage 2 (267 sequences) and for USUV, all sequences from the Africa 3 genotype (128
199 sequences). Using these datasets we reconstructed time-scaled phylogenies with BEAST (v1.10.5), under the
200 Shapiro-Rambaut-Drummond-2006 (SRD06) substitution model an uncorrelated lognormal (UCLN) clock
201 model clock, and a bayesian skygrid coalescent models. We ran five MCMC chains of 50 million states with the
202 BEAGLE computational library. We used Tracer (v1.7) for inspecting the convergence and mixing, discarding
203 the first 10 % of steps as burn-in, and ensuring that estimated sampling size (ESS) values associated with
204 estimated parameters were all >200. All xml files for these analyses are available at
205 https://github.com/rkllitting/WNV_USUV_NouvelleAquitaine_2023. Phylogenetic trees were visualized using
206 the ggtree R package.

207

208 **Mosquito species identification through mitochondrial DNA**

209 Morphological identification was confirmed at the species level for a subset of mosquitoes by
210 sequencing a 710 bp region of the cytochrome oxidase subunit I (COI) using primers from Simon et al.²⁸
211 (Supplementary table 1). Molecular identification at the species level was performed on all mosquitoes with a
212 PCR-positive result for either WNV or USUV, and mosquitoes that failed to be identified at the species level

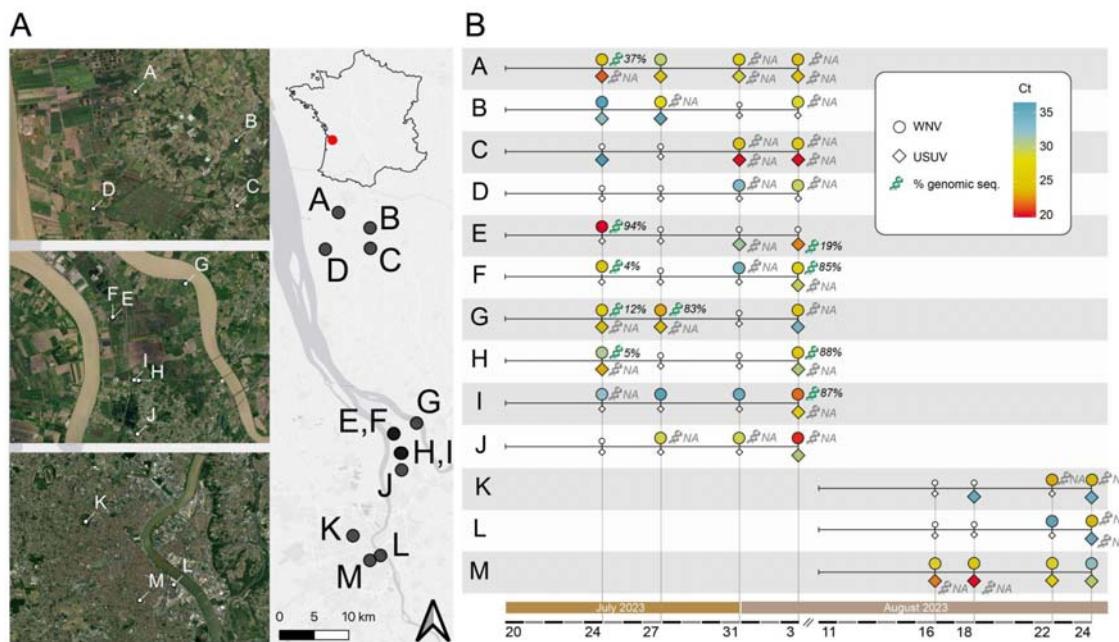
213 morphologically. Five μ l of mosquito excreta RNA/DNA eluates were used in a 20 μ l PCR mix containing 5 μ l
214 of Hot START 5X Firepol ready-to-load DNA polymerase mix (Dutscher, Brumath, France), 2 μ l of forward
215 and reverse primers at 10 μ M, and 11 μ l of water. The thermal programme was: 10 min of polymerase
216 activation at 96°C followed by 35 \square cycles of (i) 30 \square s denaturing at 96°C, (ii) 30 \square s annealing at 50°C and (iii) 1
217 min extension at 72°C, followed by a final incubation step at 72°C for 7 min to complete synthesis of all PCR
218 products. Amplicons were subsequently sequenced using the Sanger method and the reverse primer at
219 Microsynth AG, Lyon, France. Each sequence was visually inspected and compared with nucleotide sequences
220 database deposited in GenBank using the BLAST algorithm (Supplementary file 4).

221

222 **Digested blood meal identification using amplicon-based metabarcoding on mosquito excreta**

223 A ~440 \square bp mitochondrial DNA section corresponding to a subfragment of COI was amplified with
224 primers developed by Reeves et al.²⁹ (Supplementary table 1) using RNA/DNA eluates extracted from trapped
225 mosquito excreta. These primers were degenerated to selectively amplify vertebrate mitochondrial DNA while
226 avoiding co-amplification of mosquito mitochondrial DNA. Illumina Nextera universal tails sequences were
227 added to the 5' end of each of these primers to facilitate library preparation by a two-step PCR approach. Six
228 nucleotides barcodes were also inserted in the reverse primer sequences to reduce the costs by multiplexing³⁰.
229 The parameters for PCR mix and cycling were the same as for mosquito species identification described above.
230 A 15 \square cycle PCR was then performed using Nextera Index Kit – PCR primers, that adds the P5 and P7 termini
231 that bind to the dual 8 bp index tags and the flow cell. Resulting amplicons were purified with magnetic beads
232 (SPRIselect, Beckman Coulter). Libraries were sequenced on a MiSeq run (Illumina) by Microsynth AG,
233 Zurich, Switzerland, using MiSeq version 3 chemistry with 300 \square bp paired \square end sequencing.

234 The DDemux program³⁰ was used for demultiplexing fastq files. Demultiplexed .fastq sequences were
235 imported to QIIME 2 Amplicon Distribution version 2023.9 for bioinformatic analyses. The qiime2 \square dada2
236 pipeline³¹ was used for turning paired \square end fastq files into merged reads, filtering out Illumina adapters,
237 denoising and removal of chimeras and filtering out replicates. Taxonomic assignment was carried out for the
238 amplicon sequence variants (ASVs) using the qiime2 \square feature \square classifier classify \square consensus \square vsearch plugin
239 using a database of 1,176,764 sequences gathering Fungi, Protist, and Animal COI records, recovered from the
240 Barcode of Life Database Systems 7 March 2021 available in L'Ambert et al.¹⁷. Phylogenetic tree was made


241 with the iqtreet-ultrafast-bootstrap function implemented in QIIME 2 based on sequences (ASV). The script and
242 input QIIME 2 artifacts are provided in Supplementary file 2.

243 All statistical analyses were performed in the statistical environment R. Figures were made using the
244 package ggplot2 (Wickham, 2016). The Map was created using the Free and Open Source QGIS Geographic
245 Information System using satellite imagery from the Environmental Systems Research Institute (ESRI).

246 Results

247 *WNV and USUV were detected in trapped mosquito excreta at high rate.*

248 A total of 52 excreta samples, obtained from 13 different sites in the region of Nouvelle-Aquitaine
249 between the end of July and August 2023, were collected and processed (Figure 1). WNV or USUV RNA was
250 detected in 39 (75%) excreta, alone or in combination. WNV RNA was detected in 35/52 (67%) filters. USUV
251 RNA detected in 26/52 (50%) filters. WNV and USUV RNA were both detected in the same filter in 22/52
252 cases (42%). At least one of the two viruses was detected at least once in all 13 sites over the study period.,. Site
253 D (rural area in the north of Bordeaux) is the only site where WNV alone was detected. There was no site with
254 an exclusive detection of USUV. WNV was detected at a late stage in an additional trap in Charente Maritime.

255

256 **Figure 1: Timeline of WNV and USUV RNA detection in trapped mosquito excreta from 13 sampling**
257 **sites in the department of Gironde, region of Nouvelle-Aquitaine, in the South-West of France.** A) Study
258 map with the geo-localization of the 13 sampling sites (A to M) situated on the East bank of the Gironde
259 estuary, at the confluence of Dordogne and Garonne rivers, and within the Bordeaux agglomeration. The map
260 was created using the free and open source QGIS geographic information system using satellite imagery from
261 the ESRI. B) Detection of WNV (circles) and USUV (diamonds) in each sampling site (A to M) over time.
262 Color shades correspond to cycle threshold (Ct) values, indicative of a virus load (red: low Ct and high virus
263 load; blue: high Ct and low virus load). Little white symbols indicate no virus detection in mosquito excreta.
264 The proportion of genomic sequence recovery from mosquito excreta at a site and collection time is represented
265 by a DNA symbol with the genome coverage value at a sequencing depth of 50X. Grey DNA symbol indicates a
266 failed attempt to generate sequence.

267 *WNV and USUV detection in trapped mosquitoes*

268 Of the 39 filter-positive traps, we selected 7 traps (18%) to test captured mosquitoes, totaling 364
269 mosquitoes. These mosquito collections originated from 6 sites at 5 different dates (site E: 25/07/2023 and
270 03/08/2023; sites G, I and F: 03/08/2023; site M: 18/08/2023; site K 24/08/2023). Each of the 364 mosquito was
271 tested individually to estimate positivity rates. The positivity rate in mosquitoes from different traps ranged from
272 5% (N=5/94) to 18% (N=5/28) for WNV and from 2% (N=2/94) to 8% (N=5/60) for USUV (Table 1).
273 Considering all mosquito samples, the overall positivity rate by PCR was 5% and 3% for WNV and USUV,
274 respectively. These results may overestimate positivity rates, as we only tested mosquitoes from traps for which
275 a PCR-positive result was obtained for WNV or USUV in the corresponding excreta. Each of the 364 mosquito
276 was morphologically identified at the genus level: 291 (80%) and 51 (14%) were classified as *Culex* (Cx.) and
277 *Aedes* (Ae.)/*Ochlerotatus*, respectively. The morphologically unidentified mosquitoes were subjected to
278 molecular identification (COI sequencing). COI was also sequenced in all mosquitoes that were PCR positive
279 for either WNV or USUV (N=17) to identify the species.

280 *Cx. pipiens* accounted for 77% of infected mosquitoes (N=23/30): 14 were positive for WNV and 9 for
281 USUV. Notably, no other *Culex* species were successfully identified at the molecular level among the PCR-
282 positive mosquitoes. Among non-*Culex* mosquitoes that were found positive for either viruses, molecular
283 identification revealed *Ochlerotatus caspius* (N=2, positive for WNV), *Ae. vexans* (N=2, positive for WNV),

284 *Culiseta longiareolata* (N=1, positive for USUV), and *Ae. albopictus* (N=1, positive for WNV) (Supplementary
285 file 4). The total diversity of mosquito species captured and molecularly identified in this study was limited to 5
286 species: *Cx. pipiens*, *Ochlerotatus caspius*, *Ae. vexans*, *Ae. albopictus* and *Culiseta longiareolata*. *Cx. pipiens*
287 was the most frequently captured species. It was the only species –together with *Ae. albopictus*– that was
288 trapped in every locations, both urban and rural. *Culiseta longiareolata* was the only species caught only in the
289 urban environment.

290 *Cx. pipiens* showed both the highest PCR positivity rate and viral loads, independently of the virus.
291 WNV was detected in *Cx. pipiens* with a mean Ct value of 29.8 (range 15.2-37.6 Ct), and in *Aedes/Ochlerotatus*
292 with a mean Ct value of 33.9 (range min 33.1-34.3 Ct). USUV was detected in *Cx. pipiens* with Ct value as low
293 as 18.8 (range 18.8-39.9 Ct, mean: 34.5 Ct), in *Culiseta longiareolata* with a Ct of 17.2 and in an undetermined
294 *Aedes* species with a Ct of 39.3.

295 Table 1: Concordance of WNV and USUV detection in trapped mosquitoes and their excreta. Only mosquitoes
296 from a subset of traps with PCR-positive results on excreta (7 collections, C1-C7) have been tested by RT-
297 qPCR.

Collection	Sampling date	Sites	Location	Virus detection in excreta	N mosquitoes	<i>Culex</i>	<i>Aedes</i>	Others	N (%) WNV	N (%) USUV
C1	25/07/2023	E	Estuary	WNV	28	28	0	0	5 (18%)	0 (0%)
C2	03/08/2023	E	Estuary	USUV	60	58	2	0	0 (0%)	5 (8%)
C3	03/08/2023	G	Estuary	WNV+USUV	35	32	3	0	6 (17%)	0 (0%)
C4	03/08/2023	I	Estuary	WNV+USUV	27	19	5	3	0 (0%)	0 (0%)
C5	03/08/2023	F	Estuary	WNV+USUV	26	17	9	0	2 (8%)	0 (0%)
C6	18/08/2023	M	City	USUV	94	83	4	7	0 (0%)	4 (4%)
C7	24/08/2023	K	City	WNV+USUV	94	55	32	7	5 (5%)	2 (2%)
				Total	364	292	55	17	18 (5%)	11 (3%)

298

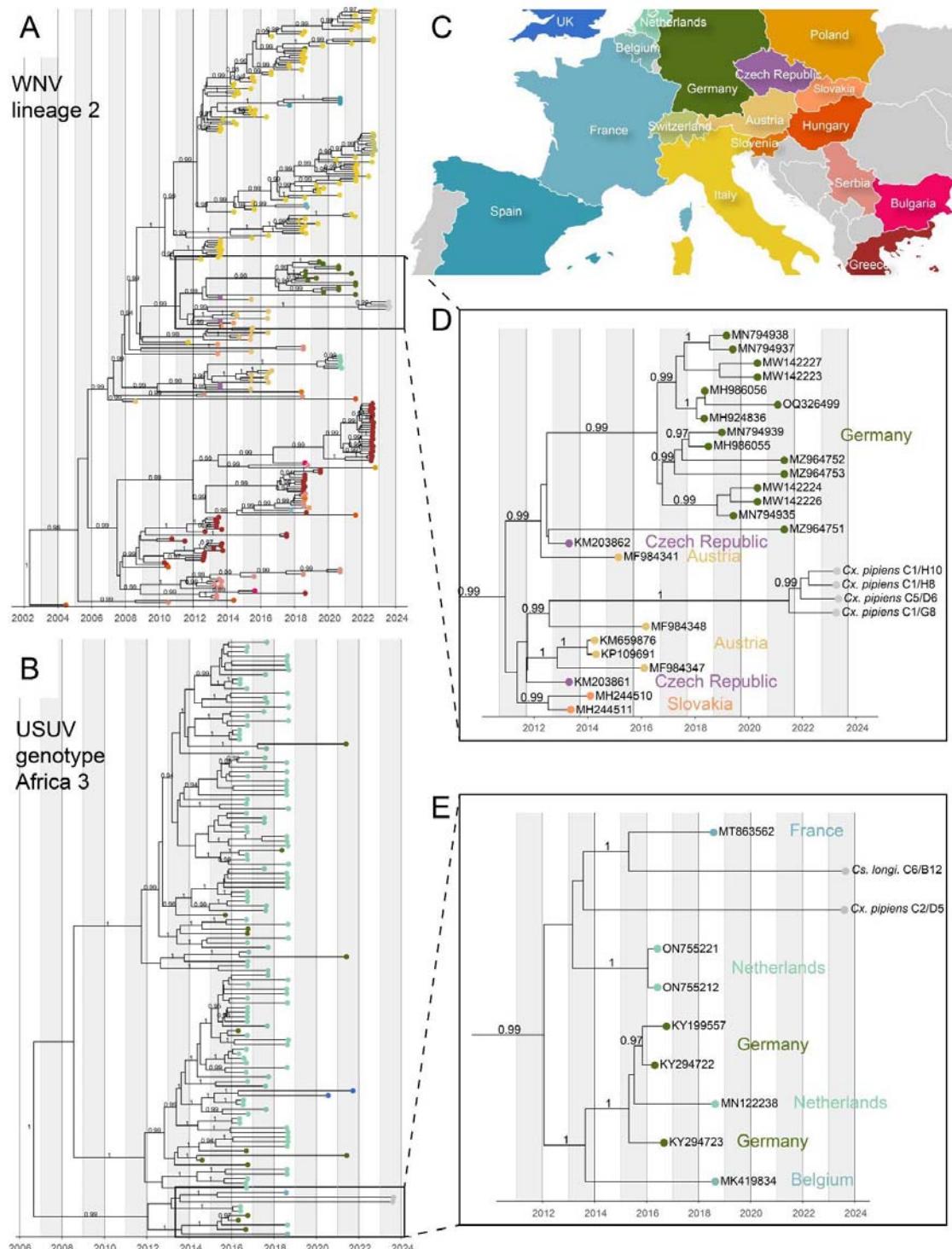
299 In collections C1, C2, C6 and C7, perfect agreement was observed between the presence of viral RNA
300 in excreta and in the corresponding mosquitoes (Table 1). However, no USUV RNA was detected in

301 mosquitoes from collections C3, C4 and C5, although viral RNA from both viruses had previously been
302 detected in excreta.

303 A total of 34 *Culex* spp., 79 *Aedes* spp. and 7 other mosquitoes non morphologically identified at the
304 genus level were collected in the trap from Charente Maritime in October. WNV was detected with a Ct of 35.4
305 in the pool of *Culex* mosquitoes (Supplementary file 2).

306 *High success of viral isolations from single mosquitoes with the help of data obtained from trapped mosquito*
307 *excreta.*

308 All individual mosquito homogenates with a Ct < 38 were selected for attempting virus isolation . Four
309 WNV and three USUV strains were isolated from individual mosquitoes. The success rate of virus isolation
310 from a single mosquito was 4/18 (22%) and 3/7 (43%) for WNV and USUV, respectively; it was linked to virus
311 load with 6/7 (86%) isolates coming from mosquitoes with a Ct<21 (Supplementary table 2). All strains were
312 isolated on both Vero E6 and C6/36 cells, except for one USUV strain (Isolate numb. 7), which was recovered
313 on Vero E6 cells


314 *Virus sequencing on excreta and mosquitoes confirmed the presence of WNV or USUV and revealed*
315 *their genetic identities.*

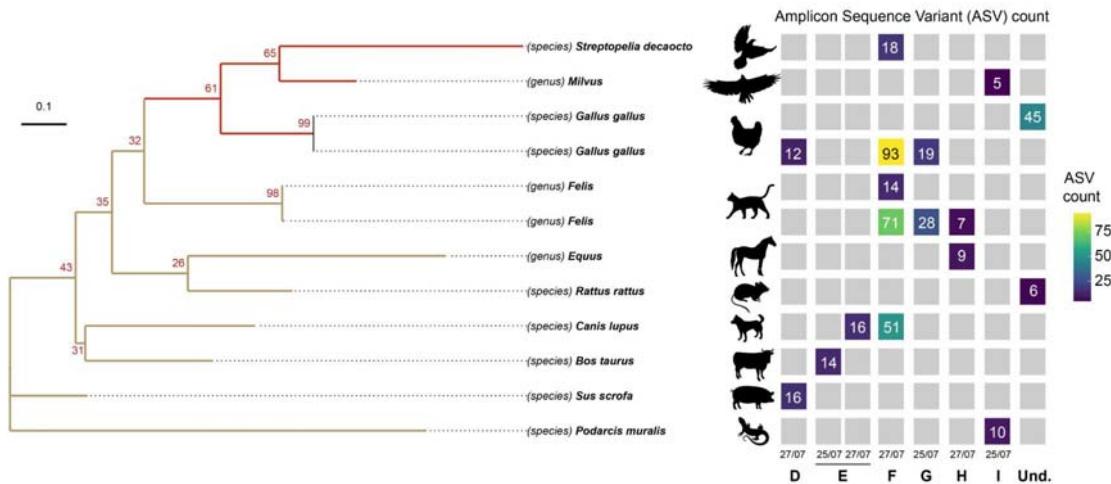
316 To confirm the presence of WNV and USUV in virus-positive excreta and mosquitoes, we applied an
317 amplicon sequencing approach to sequence virus genomes from these samples. For mosquito excreta, we
318 obtained WNV and USUV genomes in 8/26 (35%) samples and 1/17 (6 %) samples, respectively. For
319 individual mosquitoes, we obtained 4 WNV and 2 USUV genomes. We also performed sequencing on virus
320 isolates derived from individual mosquitoes and obtained 5 WNV and 3 USUV genomes (Supplementary table
321 3). All WNV genomes belonged to the Lineage 2 and all USUV genomes belonged to Africa 3 genotype.

322 To gain insights into the geographical origin of the WNV strains circulating in Nouvelle-Aquitaine, we
323 performed phylogenetic reconstruction using the virus genomes generated from individual mosquitoes (and
324 from the corresponding cell culture isolate when direct sequencing from the mosquito sample failed). Within the
325 phylogenetic tree grouping all WNV near-complete genomes (>8500 nt) available on GenBank, all sequences
326 from Nouvelle-Aquitaine form a single (monophyletic) clade within lineage 2 (see supplementary figure 4). We
327 obtained similar results using virus genomes obtained directly from mosquito excreta (see supplementary figure

328 4). In particular, our sequences belong to the Central/South-West European subgroup³² of that clade, which
329 gathers sequences from Austria, Italy, Czech Republic and Germany (see Figure 2). The Nouvelle-Aquitaine
330 clade is rooted on a sequence from Austria in 2016 and groups more broadly with strains from Austria and
331 Slovakia from 2014-2016, the Czech Republic (2013), and recent German strains (mostly from 2018 to 2020).
332 These results show that the strains circulating in mosquitoes in Nouvelle-Aquitaine are not directly related to L1
333 and L2 WNV previously identified in France in animal samples (*ie.* birds, horses).

334 Within the phylogenetic tree grouping all USUV near-complete genomes (>8500 nt) genomes available
335 on GenBank, the virus genomes from Nouvelle-Aquitaine group together with a sequence previously sampled in
336 Nouvelle-Aquitaine (Haute-Vienne department) in 2018, within the Africa 3 genotype (see supplementary
337 Figure 5). We obtained similar results using virus genomes obtained directly from mosquito excreta (see
338 supplementary figure 5). This clade from Nouvelle-Aquitaine is itself rooted by sequences sampled in Germany
339 (2016), in Belgium (2018), and in the Netherlands (2016-2018) (Figure 2), indicating that one main lineage is
340 currently circulating in the region.

341


342 **Figure 2: Phylogenetic relationships within WNV lineage 2 (Central European/Hungarian clade) and**
 343 **USUV Africa 3 genotype with a focus on sequences from Nouvelle-Aquitaine.** Maximum clade credibility
 344 trees for WNV and USUV time-scaled phylogenies were reconstructed with BEAST (v1.10.5). Clade posterior
 345 supports superior to 90% are shown. A) Phylogenetic relationships within WNV from lineage 2 Central

346 European/Hungarian clade are represented. All sequences are colored according to their geographic origin. B)
347 Phylogenetic relationships within USUV Africa 3 genotype are represented. All sequences are colored
348 according to their geographic origin. C) Map color highlighting the color-country correspondence used for tip
349 coloring. D) and E) Zoom on the phylogenetic clades corresponding to WNV (D) and USUV (E) sequences
350 from Nouvelle-Aquitaine.

351 *Sequencing digested blood from trapped mosquitoes reveals a community of vertebrates exposed to mosquitoes*

352 DNA amplification was successful in 9 (17%) samples, all from the rural sites B (27/07/2023), D
353 (27/07/2023), E (25 and 27/07/2023), F (27/07/2023), G (25/07/2023), H (25 and 27/07/2023) and I
354 (25/07/2023). Sequencing generated a total of 244,424 demultiplexed read sequences across all samples with a
355 Q20 of 92% and a median of 9,950 read sequences per sample. The total number of reads was reduced to 75
356 amplicons sequence variants (ASVs) with a mean length of 381 nucleotides, a mean occurrence of 1.7 ASV per
357 sample (min: 1; first quartile: 1; third quartile: 1; max: 8) and a mean frequency of 633X (min: 2X; first quartile:
358 6X; third quartile: 43.5X; max: 23,879X) per sample. Following taxonomic assignment, a total of 11 ASVs
359 (15%) were assigned to the *Arthropoda* phylum with *Chironomus riparius*, *Ochlerotatus detritus*, *Phlebotomus*
360 *perniciosus*, and *Hybrizon buccatus* identified at the species level. A majority of ASVs (N=56%) were
361 unassigned using our identity threshold, and 18 (24%) were assigned to the *Chordata* phylum. Among them 13
362 (17%) were identified as human DNA. As we cannot exclude that the presence of human DNA is due to
363 contamination during sample processing, these ASVs were not considered here. Twelve ASVs were assigned to
364 10 vertebrate taxons: *Bos taurus* (cow), *Sus scrofa* (pig), *Canis lupus* (dog or wolf), *Felis catus* or *Felis*
365 *silvestris* (cat), *Equus caballus*, *Equus ferus* or *Equus przewalskii* (horses) and *Rattus rattus* (rat) from the
366 *Mammalia* class, *Podarcis muralis* (common wall lizard) from the *Reptilia* class, and *Streptopelia decaocto*
367 (Eurasian collared dove), *Gallus gallus* (hen) and *Milvus migrans* or *Milvus milvus* (kites) from the *Aves* class
368 (Figure 3). Hens, Cats, and dogs were the vertebrate species that were the most identified in both occurrence
369 (number of study sites) and quantity (ASV counts) in these samples.

370

371
372 **Figure 3: Vertebrate diversity identified based on digested blood from trapped mosquitoes.** Taxons were
373 determined at the species or genus level by comparing ASV to a sequence database using the vsearch algorithm.
374 Genus level was chosen when an ASV matches several species inside a genus using our parameters. *Milvus*:
375 *Milvus migrans* and *Milvus milvus*, *Felis*: *Felis catus* and *Felis silvestris*, *Equus*: *Equus caballus*, *Equus ferus* or
376 *Equus przewalskii*. The molecular phylogenetic tree was created with the iqtree-ultrafast-bootstrap function
377 implemented in QIIME 2 directly from ASV sequences, with 100 bootstrap replicates. This phylogenetic tree is
378 therefore not necessarily representative of the genetic distances between these taxons. Heatmap represents the
379 total number of ASV attributed to a taxon according to sampling sites and sampling times.

380 Discussion

381 *A need for a new surveillance method to early detect cryptic enzootic arbovirus circulation.*

382 The accidental transmission from an organ or blood donor to recipients is one of the main risks
383 associated with the silent circulation of enzootic neurotropic arboviruses such as WNV and, to a lesser extent,
384 USUV. In France, systematic viral screening of all blood and organ donors is currently triggered by the
385 diagnosis and reporting of incident WNV human cases. There is no systematic surveillance system for USUV in
386 humans. Animal surveillance for WNV and USUV is mainly based on the reporting and diagnosis of sick horses
387 (WNV) and dead birds (WNV, USUV). Due to the large proportion of asymptomatic infections, neither methods
388 are fully effective in detecting the circulation of WNV/USUV in their enzootic cycles before they cause disease
389 in humans and animals. Entomological surveillance offers non-invasive early warning capabilities, but this
390 approach is expensive and labor intensive, requiring the processing of large numbers of mosquitoes by trained

391 operators with strong entomological skills³³. To our knowledge, no systematic virus screening has ever been
392 initiated in France on the basis of entomological surveillance results.

393 *MX reveals the hidden circulation of enzootic arboviruses in Nouvelle-Aquitaine.*

394 Here, MX succeeded in detecting WNV and USUV enzootic transmissions in Nouvelle-Aquitaine with
395 a high rate of detection in trapped mosquito excreta (75% of samples), one year after their suspected emergence
396 in this area, as evidenced by serological detection in equids. In less than 2 weeks following collection, WNV
397 and USUV genomes were detected and sequenced directly from the RNA extracted from the mosquito excreta.
398 MX detected WNV concurrently with the confirmation of the first WNV human case in the region (end of July
399 2023) and a few days before the first equine case in Gironde department (4th of August). A total of 22 and 4
400 confirmed human cases were subsequently reported during the transmission season for WNV and USUV,
401 respectively. MX revealed the hidden circulation of USUV concomitantly with the first confirmed human case
402 and before the first avian case (end of July and mi-August respectively). In Italy, entomological surveillance
403 was reported to be able to outpace the appearance of the first human infections by days to weeks^{34,35}. Its early
404 implementation in the season via MX can thus be effective in detecting enzootic arboviral circulation in
405 endemic or emerging areas while viruses are still invisibly amplifying in animal reservoirs. The presence of
406 WNV and USUV in Gironde, as revealed by human and animal surveillance, has made it possible to extend the
407 detection of viral genomes in donations of human products to the surrounding Charente Maritime department
408 from 2023 August 10th. This area would have not been identified as being at risk before the detection of the first
409 WNV human case in Châtelairon in end of August 2023. MX, which was carried out late around this human
410 case, showed that WNV was still present in the environment two months later.

411 *Culex mosquitoes were major vectors in the transmission of WNV and USUV in Nouvelle-Aquitaine*

412 *Cx. pipiens* was the most abundant species collected in both urban and rural environments and the
413 species found with both the highest infection rate and viral loads. This species unquestionably played a leading
414 role in the transmission of both WNV and USUV viruses in Nouvelle-Aquitaine, as it has already been reported
415 in other transmission areas^{36,37}. Here, WNV was also detected in other mosquito species. While the detection of
416 viral RNA in mosquitoes does not necessarily confirm their infection or their ability to transmit the virus - they

417 may simply have fed on viraemic hosts without being infected - the high USUV load recovered from a *Culiseta*
418 *longiareolata* suggests a role for this ornithophilic species in the enzootic amplification cycle of these viruses. In
419 addition, the detection of WNV in *Ae. albopictus* echoes recent findings that this urban and anthropophilic
420 mosquito species is able to transmit WNV and USUV under experimental conditions³⁸. Unlike *Culex*
421 mosquitoes, this invasive species has been reported to have strict mammalian orientated feeding preferences³⁹
422 and an avian component is a prerequisite for amplification of these viruses prior to infection of mosquitoes. The
423 potential role of this species in bridging the animal reservoir to human hosts, alongside *Culex* mosquitoes, may
424 warrant further attention if occasional blood-feeding on birds can occur.

425 Here, both WNV and USUV were mostly isolated from *Culex* mosquitoes exhibiting high virus loads.
426 Infected arthropods are prime targets for virus isolation because, unlike vertebrates, they do not develop
427 sterilizing immunity and can amplify viruses throughout their lives. Isolating viruses as they evolve and emerge
428 worldwide can feed research activities to better understand or forecast the mechanisms that underlie their
429 spread, pathogenicity, or adaptability in new environments.

430 *Easy and early access to arbovirus genomic sequences shed light on the origin and spread of viruses.*

431 Here, we obtained virus sequences directly from trapped mosquito excreta, rapidly classified the
432 circulating WNV and USUV strains as belonging to lineage 2 and Africa 3, respectively, and confirmed these
433 results using virus sequences obtained from single individuals. Virus sequencing from excreta samples may
434 provide useful elements to quickly assess the potential origin of viral circulation. The resulting virus consensus
435 genomes constitute, however, a mixing of virus populations from all virus-excreting mosquitoes –when more
436 than one are present in the trap. In that case, analysing such genomes using phylogenetic methods may not be
437 accurate. For that reason, we performed phylogenetic inference using virus genomes from individual mosquitoes
438 (rather than excreta) to try to trace the origin of the virus strains identified in this study (Figure 2).

439 While the first detection of WNV circulation in France dates back to the 1960s⁴⁰, limited sequence data
440 are available to assess the spatio-temporal dynamics of circulation of the virus in the country. Here, we show
441 that WNV sequences originating from the Nouvelle-Aquitaine region are distinct from previous L2 sequences
442 identified in the South of France (Alpes maritimes) in 2018 from dead raptors specimens⁴¹ (supplementary
443 Figure 4) and group with sequences from Austria. Based on our phylogenetic inference, the most recent

444 common ancestor between Nouvelle-Aquitaine and Austrian sequences is approximately 10 years old (Figure
445 2), which makes it difficult to identify the actual timing and geographical source of the introduction of WNV
446 into South-West France. The latter might be in Austria but may alternatively be located in another unsampled
447 country closer to France including Italy, which has already been identified as a likely source of WNV
448 introduction in the past⁴¹.

449 The detection of USUV in France is more recent than for WNV and dates back to 2015, when the virus
450 was detected in the North-East (Haut-Rhin, Rhône) and South of France (Camargue), with distinct virus lineages
451 circulating in each location, those from Rhin being apparently related to German sequences (Europe 3
452 genotype), those from Rhone appearing closer to sequences from Spain (Africa 2 genotype), and those from
453 Camargue being closer to sequences from Germany and Spain (Africa 2 genotype), and the Netherlands (Africa
454 3 genotype). In 2018, the USUV Africa 3 genotype was identified again in Haute-Vienne, this last virus
455 sequence is the closest phylogenetic relative of the USUV sequences identified in this study, with whom it
456 shares a most recent common ancestor around 10 years ago (Figure 2). The long branches linking those events
457 of virus circulation in 2018 and 2023 suggest that an important unsampled diversity of USUV genotype Africa 3
458 circulates in Nouvelle Aquitaine.

459 Altogether, our results highlight our limited knowledge of the circulating genetic diversity of WNV and USUV
460 in France and in Europe. They call for increased genomic surveillance of arboviruses to (i) improve our
461 understanding of the spatio-temporal circulation dynamics of these viruses at a large scale, (ii) better predict the
462 sequential expansion of the viruses beyond the borders of Nouvelle Aquitaine and (iii) better inform public
463 health strategies, in particular, vector management interventions.

464 *Molecular information contained in digested blood meals can help to reveal ecological factors involved in the
465 emergence of these viruses.*

466 The ecological factors underlying the emergence of WNV and USUV in a Nouvelle-Aquitaine region
467 remain unresolved. A link with the migration of birds, which are reservoirs for these viruses, can reasonably be
468 suggested. The large fires south of Bordeaux in 2022 may also have destroyed a natural buffer zone and
469 displaced bird populations. Mosquito excreta contains digested blood that the mosquitoes have ingested from the
470 surrounding fauna before being caught. Sequencing regions of the selected vertebrate portion of this DNA

471 mixture can provide insight into their local trophic preference. This method relies on catching blood engorged
472 mosquitoes and is hampered by their rapid digestion. MX has the asset to capture vertebrate blood as it is
473 progressively digested by trapped mosquitoes, without the need to process the mosquitoes during the digestion
474 stage. While it cannot directly identify an animal reservoir, it does link a diversity of trapped mosquitoes to a
475 diversity of surrounding animal hosts and, when applied at scale and combined with viral genetic information,
476 can help to reveal the ecological forces at play in the emergence and transmission dynamics of these viruses.

477 *MX as a versatile early warning tool*

478 A major drawback of entomological surveillance is that it requires time and specific knowledge.
479 Combined with the low infection rates that typically occur in low or non-endemic areas, the method can have an
480 unfavorable cost/effectiveness ratio that can hinder its promotion in nationwide arbovirus surveillance programs
481 with steady funding and operational commitment. Here, we implemented a non-invasive, innovative, efficient,
482 and cost-effective MX approach (Supplementary figure 1), at the crossroads between entomological and
483 environmental surveillance, that succeeded in revealing the hidden circulation and the genetic identity of WNV
484 and USUV in Nouvelle-Aquitaine. By taking advantage of excreta-based PCR testing, the MX strategy
485 significantly accelerates the identification of potential infection hotspots, streamlining the surveillance process
486 and facilitating more rapid and targeted public health mitigation and control measures.

487

488 **Conflict of interest**

489 The authors declare that there is no conflict of interest regarding the publication of this article.

490 **Author contributions**

491 Clément Bigeard, Grégory L'Ambert, Guillaume André Durand, Gilda Grard, Gaëlle Gonzalez, Camille Migné,
492 Rémi Charrel, Denis Malvy, Xavier de Lamballerie, Stéphan Zientara, Alexandre Duvignaud and Albin
493 Fontaine designed the research. Katia Ramiara, Thierry Touzet, Grégory L'Ambert and Clément Bigeard
494 contributed to the sample collection on the field. Laura Pezzi, Nazli Ayhan, Raphaelle Klitting, Nicolas Gomez,
495 Géraldine Piorkowski, Rayane Amaral and Albin Fontaine performed research. Laura Pezzi, Nazli Ayhan,

496 Raphaelle Klitting, and Albin Fontaine analyzed data. All authors participated in the redaction of the
497 manuscript.

498

499 **Data sharing**

500 Data are available under the NCBI BioProject number PRJNA1085973. Analysis files are available at
501 https://github.com/rklitting/WNV_USUV_NouvelleAquitaine_2023

502

503 **Acknowledgements**

504 We thank Thomas Canivez, Laurent Bosio, Manon Geulen, and Manon Peden from the CNR des arbovirus,
505 Sophie Lescure, Christophe Courtin, Steeve Vernerde, Hadrien Martin-Herrou from Bordeaux Métropole, Guéric
506 Gabriel and Franck Bastit from the Communauté de Commune de Blaye and Benoît Leuret, Frédéric Jacquet
507 and Léonard Bour from the Direction départementale de la protection des populations (DDPP) de la Gironde,
508 Sébastien Chouin, Laurent Malnoe, Yann Renaudeau, Christian Smeraldi, and Stéphane Macaud from la
509 direction de l'Environnement et de la mobilité du département de la Charente Maritime for their help and
510 technical assistance. The PCR tests were provided by the European virus archive-Marseille (EVAM,
511 <https://evam.european-virus-archive.com/>) under the label Technological Platforms of Aix-Marseille. This work
512 was supported by ANRS MIE, Project APP PRI 22275, Emergen-2021.

513

514 **References**

- 515 1 Postler TS, Beer M, Blitvich BJ, *et al.* Renaming of the genus Flavivirus to Orthoflavivirus and extension of
516 binomial species names within the family Flaviviridae. *Arch Virol* 2023; **168**: 224.
- 517 2 Barzon L. Ongoing and emerging arbovirus threats in Europe. *J Clin Virol* 2018; **107**: 38–47.
- 518 3 Fall G, Di Paola N, Faye M, *et al.* Biological and phylogenetic characteristics of West African lineages of
519 West Nile virus. *PLoS Negl Trop Dis* 2017; **11**: e0006078.
- 520 4 Murray KO, Mertens E, Despres P. West Nile virus and its emergence in the United States of America. *Vet
521 Res* 2010; **41**: 67.
- 522 5 Hubálek Z, Halouzka J. West Nile fever--a reemerging mosquito-borne viral disease in Europe. *Emerg Infect
523 Dis* 1999; **5**: 643–50.
- 524 6 Koch RT, Erazo D, Folly AJ, *et al.* Genomic epidemiology of West Nile virus in Europe. *One Health* 2024;
525 **18**: 100664.

526 7 Bakonyi T, Ivanics E, Erdélyi K, *et al.* Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe.
527 *Emerg Infect Dis* 2006; **12**: 618–23.

528 8 Bakonyi T, Haussig JM. West Nile virus keeps on moving up in Europe. *Euro Surveill* 2020; **25**: 2001938.

529 9 Weissenböck H, Bakonyi T, Rossi G, Mani P, Nowotny N. Usutu virus, Italy, 1996. *Emerg Infect Dis* 2013;
530 **19**: 274–7.

531 10 Cadar D, Lühken R, van der Jeugd H, *et al.* Widespread activity of multiple lineages of Usutu virus,
532 western Europe, 2016. *Euro Surveill* 2017; **22**: 30452.

533 11 Lecollinet S, Blanchard Y, Manson C, *et al.* Dual Emergence of Usutu Virus in Common Blackbirds,
534 Eastern France, 2015. *Emerg Infect Dis* 2016; **22**: 2225.

535 12 Eiden M, Gil P, Ziegler U, *et al.* Emergence of two Usutu virus lineages in *Culex pipiens* mosquitoes
536 in the Camargue, France, 2015. *Infect Genet Evol* 2018; **61**: 151–4.

537 13 Vittecoq M, Lecollinet S, Jourdain E, *et al.* Recent circulation of West Nile virus and potentially other
538 closely related flaviviruses in Southern France. *Vector Borne Zoonotic Dis* 2013; **13**: 610–3.

539 14 Cadar D, Simonin Y. Human Usutu Virus Infections in Europe: A New Risk on Horizon? *Viruses*
540 2022; **15**: 77.

541 15 Hall-Mendelin S, Ritchie SA, Johansen CA, *et al.* Exploiting mosquito sugar feeding to detect
542 mosquito-borne pathogens. *Proc Natl Acad Sci U S A* 2010; **107**: 11255–9.

543 16 Fontaine A, Jiolle D, Moltini-Conclois I, Lequime S, Lambrechts L. Excretion of dengue virus RNA by
544 *Aedes aegypti* allows non-destructive monitoring of viral dissemination in individual mosquitoes. *Sci Rep*
545 2016; **6**: 24885.

546 17 L'Ambert G, Gendrot M, Briolant S, *et al.* Analysis of trapped mosquito excreta as a noninvasive
547 method to reveal biodiversity and arbovirus circulation. *Mol Ecol Resour* 2023; **23**: 410–23.

548 18 Ramírez AL, Hall-Mendelin S, Doggett SL, *et al.* Mosquito excreta: A sample type with many
549 potential applications for the investigation of Ross River virus and West Nile virus ecology. *PLoS Negl Trop
550 Dis* 2018; **12**: e0006771.

551 19 Minetti C, Pilote N, Zulch M, *et al.* Field evaluation of DNA detection of human filarial and malaria
552 parasites using mosquito excreta/feces. *PLoS Negl Trop Dis* 2020; **14**: e0008175.

553 20 Timmins DR, Staunton KM, Meyer DB, *et al.* Modifying the Biogents Sentinel Trap to Increase the
554 Longevity of Captured *Aedes aegypti*. *J Med Entomol* 2018; **55**: 1638–41.

555 21 Ninove L, Nougairede A, Gazin C, *et al.* RNA and DNA bacteriophages as molecular diagnosis
556 controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests. *PLoS One* 2011;
557 **6**: e16142.

558 22 Linke S, Ellerbrok H, Niedrig M, Nitsche A, Pauli G. Detection of West Nile virus lineages 1 and 2 by
559 real-time PCR. *J Virol Methods* 2007; **146**: 355–8.

560 23 Tang Y, Anne Hapip C, Liu B, Fang CT. Highly sensitive TaqMan RT-PCR assay for detection and
561 quantification of both lineages of West Nile virus RNA. *J Clin Virol* 2006; **36**: 177–82.

562 24 Quick J, Grubaugh ND, Pullan ST, *et al.* Multiplex PCR method for MinION and Illumina sequencing
563 of Zika and other virus genomes directly from clinical samples. *Nat Protoc* 2017; **12**: 1261–76.

564 25 Grubaugh ND, Gangavarapu K, Quick J, *et al.* An amplicon-based sequencing framework for
565 accurately measuring intrahost virus diversity using PrimalSeq and iVar. *Genome Biol* 2019; **20**: 8.

566 26 Schneider J, Bachmann F, Choi M, *et al.* Autochthonous West Nile virus infection in Germany:
567 Increasing numbers and a rare encephalitis case in a kidney transplant recipient. *Transbound Emerg Dis* 2022;
568 **69**: 221–6.

569 27 Hernández-Triana LM, de Marco MF, Mansfield KL, *et al.* Assessment of vector competence of UK
570 mosquitoes for Usutu virus of African origin. *Parasit Vectors* 2018; **11**: 381.

571 28 Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, Weighting, and Phylogenetic
572 Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction
573 Primers. *Annals of the Entomological Society of America* 1994; **87**: 651–701.

574 29 Reeves LE, Gillett-Kaufman JL, Kawahara AY, Kaufman PE. Barcoding blood meals: New vertebrate-
575 specific primer sets for assigning taxonomic identities to host DNA from mosquito blood meals. *PLoS Negl
576 Trop Dis* 2018; **12**: e0006767.

577 30 Rašić G, Filipović I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to strong signals of
578 geographic structure and relatedness patterns in the major arbovirus vector, *Aedes aegypti*. *BMC Genomics*
579 2014; **15**: 275.

580 31 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution
581 sample inference from Illumina amplicon data. *Nat Methods* 2016; **13**: 581–3.

582 32 Chaintoutis SC, Papa A, Pervanidou D, Dovas CI. Evolutionary dynamics of lineage 2 West Nile virus
583 in Europe, 2004–2018: Phylogeny, selection pressure and phylogeography. *Mol Phylogenet Evol* 2019; **141**:
584 106617.

585 33 Cristina Radaelli M, Verna F, Pautasso A, *et al.* Mosquito-Borne Diseases and ‘One Health’: The
586 Northwestern Italian Experience. In: J. Rodriguez-Morales A, ed. Current Topics in Tropical Emerging
587 Diseases and Travel Medicine. IntechOpen, 2018. DOI:10.5772/intechopen.78985.

588 34 Barzon L, Montarsi F, Quaranta E, *et al.* Early start of seasonal transmission and co-circulation of West
589 Nile virus lineage 2 and a newly introduced lineage 1 strain, northern Italy, June 2022. *Euro Surveill* 2022; **27**:
590 2200548.

591 35 Calzolari M, Pautasso A, Montarsi F, *et al.* West Nile Virus Surveillance in 2013 via Mosquito
592 Screening in Northern Italy and the Influence of Weather on Virus Circulation. *PLoS One* 2015; **10**:
593 e0140915.

594 36 Ergunay K, Gunay F, Oter K, *et al.* Arboviral surveillance of field-collected mosquitoes reveals
595 circulation of West Nile virus lineage 1 strains in Eastern Thrace, Turkey. *Vector Borne Zoonotic Dis* 2013;
596 **13**: 744–52.

597 37 Mancini G, Montarsi F, Calzolari M, *et al.* Mosquito species involved in the circulation of West Nile
598 and Usutu viruses in Italy. *Vet Ital* 2017; **53**: 97–110.

599 38 Martinet J-P, Bohers C, Vazeille M, *et al.* Assessing vector competence of mosquitoes from
600 northeastern France to West Nile virus and Usutu virus. *PLoS Negl Trop Dis* 2023; **17**: e0011144.

601 39 Faraj A, Egizi A, Fonseca DM, *et al.* Comparative host feeding patterns of the Asian tiger mosquito,
602 *Aedes albopictus*, in urban and suburban Northeastern USA and implications for disease transmission. *PLoS
603 Negl Trop Dis* 2014; **8**: e3037.

604 40 Joubert L, Oudar J, Hannoun C, *et al.* [Epidemiology of the West Nile virus: study of a focus in
605 Camargue. IV. Meningo-encephalomyelitis of the horse]. *Ann Inst Pasteur (Paris)* 1970; **118**: 239–47.

606 41 Beck C, Leparc Goffart I, Franke F, *et al.* Contrasted Epidemiological Patterns of West Nile Virus
607 Lineages 1 and 2 Infections in France from 2015 to 2019. *Pathogens* 2020; **9**: 908.

608 42 Durand B, Chevalier V, Pouillot R, *et al.* West Nile virus outbreak in horses, southern France, 2000:
609 results of a serosurvey. *Emerg Infect Dis* 2002; **8**: 777–82.

610 43 Zeller H, Zientara S, Hars J, *et al.* West Nile outbreak in horses in Southern France: September 2004.
611 *Santé Publique France* 2004; published online Sept 13.
612 <https://www.santepubliquefrance.fr/content/download/185268/2315428>.

613 44 Calistri P, Giovannini A, Hubalek Z, *et al.* Epidemiology of west nile in europe and in the
614 mediterranean basin. *Open Virol J* 2010; **4**: 29–37.

615 45 Bahuon C, Marcillaud-Pitel C, Bournez L, *et al.* West Nile virus epizootics in the Camargue (France)
616 in 2015 and reinforcement of surveillance and control networks. *Rev Sci Tech* 2016; **35**: 811–24.

617

618 **Supplementary table 1: Molecular amplification systems used in this study.** Oligonucleotides sequences (primers and probes) are presented with their corresponding
619 species, gene targets and amplicon sizes. Illumina Nextera® universal tails sequences that have been added to primers during the PCR amplification step of the
620 metabarcoding method are represented in green and barcodes in blue. An adenine (A) nucleotide was added between the barcode and the primer (not mandatory).

621

622 **Supplementary table 2:** Ct values obtained from excreta, individual mosquito samples and Vero E6 and C6/36 supernatant samples obtained for isolated WNV and USUV
623 strains. Collection/Position field correspond to the first and second column of supplementary file 4 related to virus screening in individual mosquitoes.

624

625

626

627

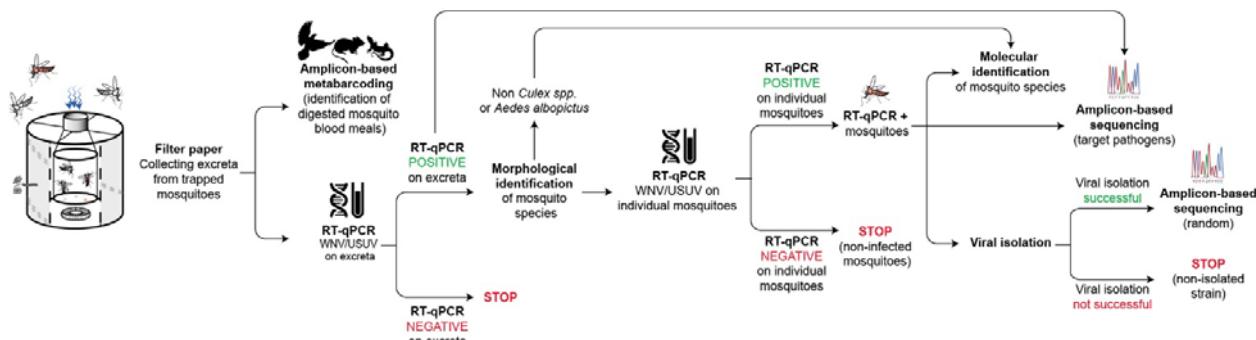
628

629

630

Isol. number	Mosquito species	Virus	Collectio n/Position	Excreta			Screening moustiques individual			Vero E6 cells				C6/36 cells		
				USUV Ct	WNV Duo Ct	WNV Linke Ct	USUV Ct	WNV Duo Ct	WNV Linke Ct	CPE	USUV Ct	WNV Duo Ct	WNV Linke Ct	CPE	USUV Ct	WNV Duo Ct
1	<i>Cx. Pipiens</i>	WNV	C5/D6	33.2	26	na	neg	20.6	26.2	+	neg	11.4	13.4	+	neg	16.3
2	<i>Cx. Pipiens</i>	WNV	C1/G8	neg	19.8	20.1	neg	16.6	20.1	+	neg	11.1	12.5	+	neg	13.9
3	<i>Cx. Pipiens</i>	WNV	C1/H10	neg	19.8	20.1	neg	16.7	20.8	+	neg	11	12.7	+	neg	13.1
4	<i>Cx. Pipiens</i>	WNV	C7/D1	36.9	24.3	27.5	neg	15.2	18.5	+	neg	11.4	na	+	neg	10.3
5	<i>Cs. Longiareolata</i>	USUV	C6/B12	22.9	26.7	neg	17.2	20.4	neg	+	14.1	19.1	neg	+	12.5	21
6	<i>Cx. Pipiens</i>	USUV	C2/A1	27	neg	na	18.8	20.7	neg	+	12.8	17.3	neg	+	12.1	16.2
7	<i>Cx. Pipiens</i>	USUV	C2/D5	27	neg	na	28.6	31	neg	+	16.9	20.6	neg	-	neg	neg

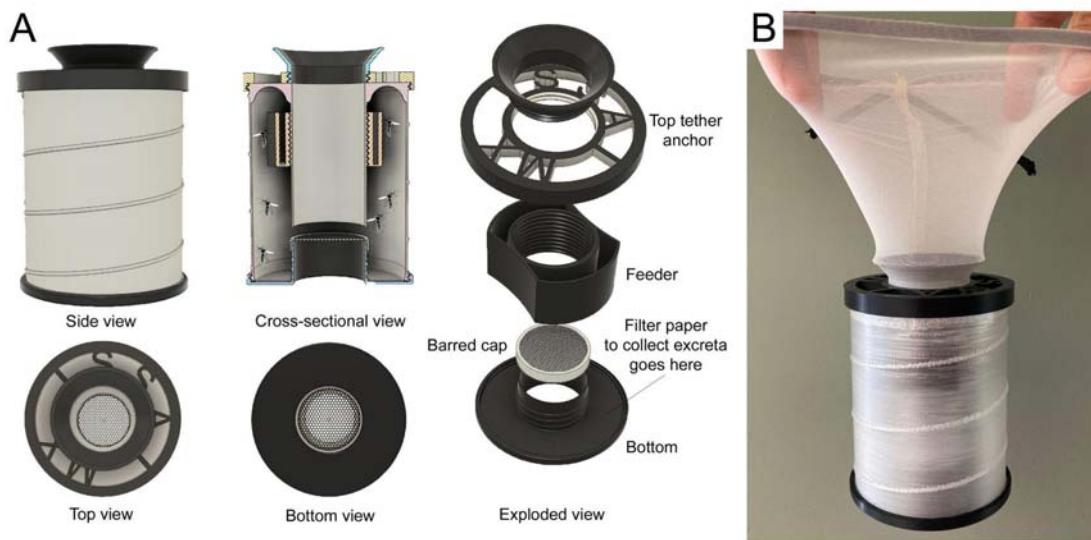
632 **Supplementary table 3:** WNV and USUV sequences produced from mosquito excreta and individual
633 mosquitoes. For each sequence, the exact source (excreta, mosquito, isolate), amplification approach, coverage
634 at 30X (for sequences obtained from isolates) or 50X (for sequences obtained from mosquito and mosquito
635 excreta samples), and Genbank accession number are specified. Sequencing reads for all virus genomes are
636 available on NCBI (Bioproject ID: PRJNA1085973). Virus genomes with no Genbank accession number (NA*)
637 are available at https://github.com/rkllitting/WNV_USUV_NouvelleAquitaine_2023.


638

Sample ID	GB accession	Collection date	Location	Virus	Isolation source	Coverage
C6/B12	PP482814	2023-08-18	Site M	USUV	VeroE6 (P0)	61.02
C6/B12	PP482815	2023-08-18	Site M	USUV	mosquito	95.01
C2/A1	PP482816	2023-08-03	Site E	USUV	mosquito	89.62
C2/A1	NA*	2023-08-03	Site E	USUV	C636 (P0)	40.28
C2/D5	PP482817	2023-08-03	Site E	USUV	VeroE6 (P0)	92.56
C5/D6	PP482818	2023-08-03	Site F	WNV	C636 (P0)	96.33
C5/D6	PP482819	2023-08-03	Site F	WNV	VeroE6 (P0)	98.23
C5/D6	PP482820	2023-08-03	Site F	WNV	mosquito	94.15
C1/H10	PP482821	2023-07-25	Site E	WNV	VeroE6 (P0)	89.26
C1/H10	PP482822	2023-07-25	Site E	WNV	mosquito	90.18
C1/G8	PP482823	2023-07-25	Site E	WNV	VeroE6 (P0)	92.29
C1/G8	PP482824	2023-07-25	Site E	WNV	mosquito	90.17
C7/D1	PP482825	2023-08-24	Site K	WNV	C636 (P0)	86.76
C7/D1	PP482826	2023-08-24	Site K	WNV	mosquito	90.17

E1-M4	NA*	2023-08-03	Site H	WNV	mosquito excreta	88.08
E10-M2	NA*	2023-07-25	Site H	WNV	mosquito excreta	5.04
E11-M2	NA*	2023-07-25	Site G	WNV	mosquito excreta	11.99
E15-M2	NA*	2023-07-27	Site G	WNV	mosquito excreta	83.02
E2-M1	NA*	2023-07-25	Site A	WNV	mosquito excreta	36.51
E2-M2	NA*	2023-07-25	Site E	WNV	mosquito excreta	93.59
E2-M4	NA*	2023-08-03	Site F	WNV	mosquito excreta	84.83
E6-M4	NA*	2023-08-03	Site I	WNV	mosquito excreta	86.57
E4-M4	NA*	2023-08-03	Site E	USUV	mosquito excreta	18.92

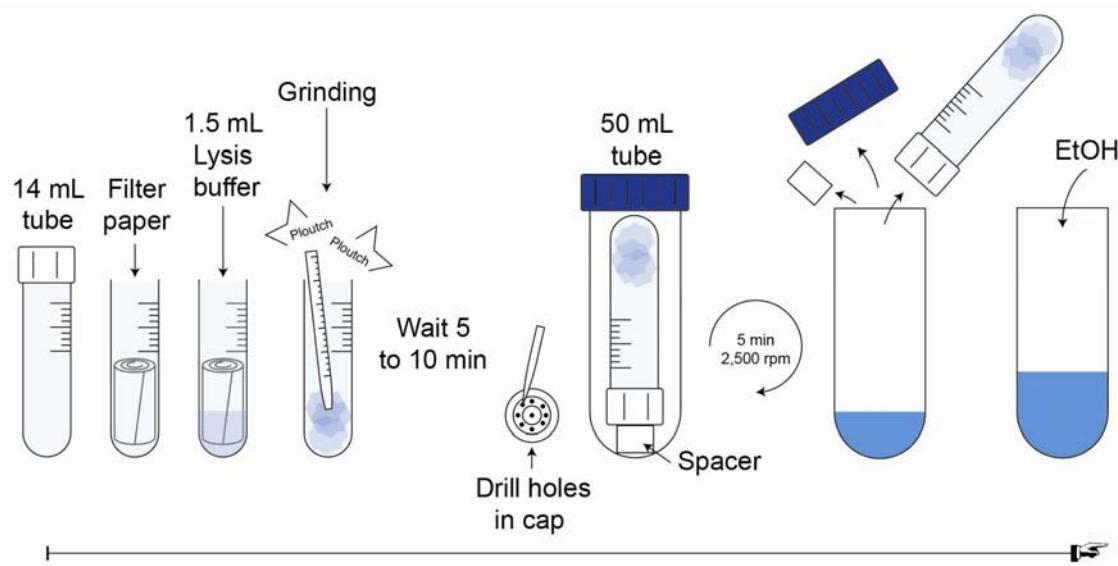
639


640

641

642 **Supplementary figure 1: Workflow of the MX approach.** Mosquitoes are captured and kept alive on the field
 643 during several days in a 3D printed shelter with a free access to sugar water. Mosquitoes are then killed and kept
 644 frozen *in situ* while the filter papers containing their excreta are sent to a laboratory at room temperature by
 645 post. Virus detection is performed at first step directly on mosquito excreta by RT-qPCR. If positive, an attempt
 646 was made to sequence the genomic RNA of the virus using amplicon-based approaches directly on the excreta.
 647 Mosquitoes from collections found positive for either viruses were then transported to the laboratory on dry ice
 648 before to be analyzed individually. Estimation of infection rates in mosquitoes, virus isolation and sequencing
 649 were performed on trapped mosquitoes on a second step.

650

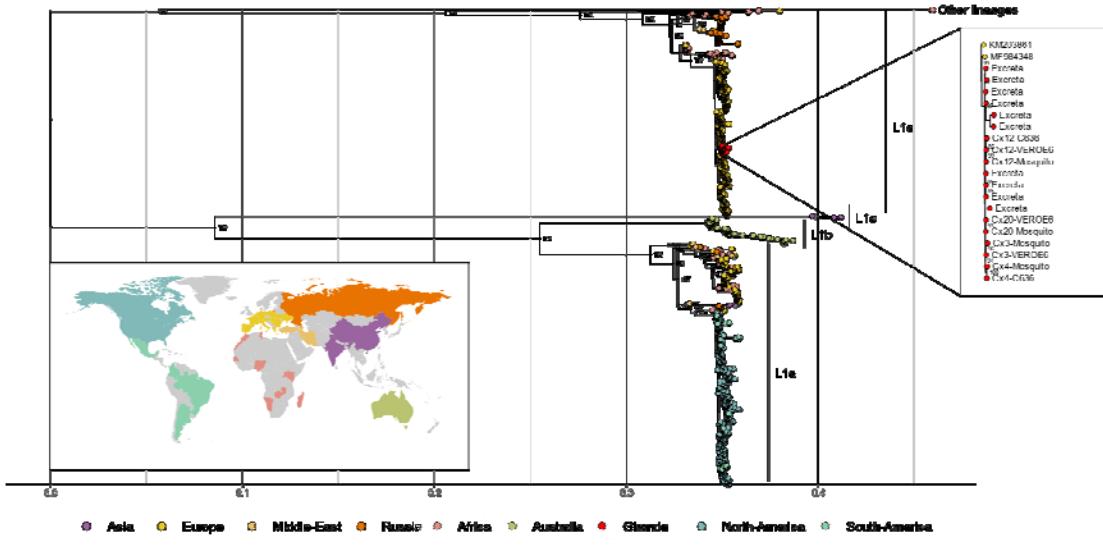


651

652

653 **Supplementary figure 2: Representations of the 3D printed MX adapter designed to increase trapped**
654 **mosquitoes' longevity and to collect their excreta for an arbovirus surveillance purpose. (A) Different**
655 **views of the adapter. All components are visible in the cross-sectional and exploded views. (B) Picture of the**
656 **adapter ready to be attached to the intake funnel of the BGS. The MX adapter was created on Fusion 360**
657 **(AutoDesl) and 3D printed in PLA. MX adapter 3D files (.stl format) are provided in supplementary file 1**
658 **under the Creative Commons (CC) license BY-NC-SA.**

659

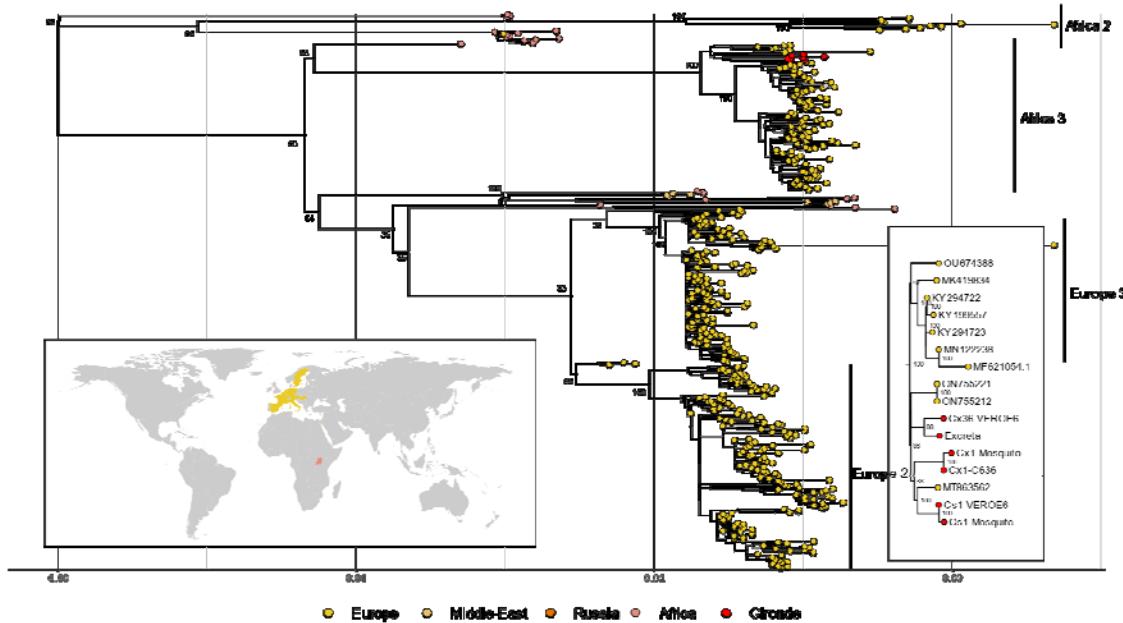

660

661 **Supplementary figure 3: Schematic representation of the procedure to extract RNA/DNA from filter**
662 **papers impregnated with mosquito excreta.**

663

664

665


666

667 **Supplementary figure 4: Phylogenetic relationships with WNV species with a focus on sequences from**
668 **Nouvelle-Aquitaine obtained from excreta, single mosquito extract and cell culture isolates.** The
669 Maximum-likelihood phylogeny was inferred using IQ-Tree under model finder. Branch support values were
670 calculated using UFBoot (100 replicates). Statistical supports values superior to 80% are shown for the main
671 clades. All sequences are colored according to their geographic origin. A zoom on the clade with WNV
672 sequences from this work is shown on the right hand side of the panel (Excreta: sequences derived from
673 mosquito excreta, VEROE6 and C636: sequences derived from VEROE6 and C636 cell cultures, respectively,
674 Mosquito: sequences derived from single mosquitoes).

675

676

677

678

679 **Supplementary figure 5: Phylogenetic relationships with USUV species with a focus on sequences from**
680 **Nouvelle-Aquitaine obtained from excreta, single mosquito extract and cell culture isolates.** The
681 Maximum-likelihood phylogeny was inferred using IQ-Tree under model finder. Branch support values were
682 calculated using UFBoot (100 replicates). Statistical supports values superior to 80% are shown for the main
683 clades. All sequences are coloured according to their geographic origin. A zoom on the clade with WNV
684 sequences from this work is shown on the right hand side of the panel (Excreta: sequences derived from
685 mosquito excreta, VEROE6 and C636: sequences derived from VEROE6 and C636 cell cultures, respectively,
686 Mosquito: sequences derived from single mosquitoes).

687

688 **Supplementary file 1: MX adapter 3D files in .stl format.** MX adapter is under the Creative Commons (CC)
689 license BY-NC-SA (Licensees may copy, distribute, display, and make derivatives only for non-commercial
690 purposes and by giving credits to the authors). Two versions are provided. Version 1 was used in this work.
691 Version 2 is updated to decrease the cost and printing time.

692

693 **Supplementary file 2:** Archive comprising (i) Qiime2 code that was used in the amplicon-based metabarcoding
694 analysis pipeline (Script_qiime2_dada2.sh), (ii) metadata file associated to the data (COI-metadata.txt), (iii)
695 input reads (COI-paired-end.qza). All analysis and diversity metrics implemented in Qiime2 can be accessed by

696 running Qiime2 diversity commands on data provided. All .qsv files generated by the script can be easily loaded
697 on the Qiime2 visualizer at <https://view.qiime2.org>.

698

699 **Supplementary file 3: Supplementary methods.**

700

701 **Supplementary file 4: Data relative to virus detection in collections of trapped individual mosquitoes and**
702 **their molecular identification at the species level.**

703

704 **Emergence timeline box:**

705 **1960** – Emergence of WNV lineage 1 in Europe, including in Southern France ⁵.

706 **1999** – Emergence of WNV lineage 1 in the United States of America. The virus has since spread southwards
707 across the continent ⁴.

708 **2000** – 76 WNV cases in Equidae in Camargue, 21 deaths (Provence-Alpes-Côte d’Azur region)⁴².

709 **1996/2001** – Emergence of USUV in Europe ⁹.

710 **2001/2002** – Low level of WNV activity in Camargue as reported in sentinel birds (Provence-Alpes-Côte
711 d’Azur region)⁴³.

712 **2003** – 7 and 4 WNV cases in Human and Equidae, respectively, in the Var department (Provence-Alpes-Côte
713 d’Azur region)⁴³.

714 **2004** – Emergence of WNV lineage 2 in Europe ⁷. 37 suspected WNV cases in Equidae in Camargue (Provence-
715 Alpes-Côte d’Azur region)⁴³.

716 **2006** – 4 WNV cases in Equidae in Pyrénées-Orientales department (Occitanie region)⁴⁴.

717 **2008** – Large WNV outbreaks in three Italian Northern Regions (Emilia Romagna, Veneto, Lombardy) with 794
718 cases of WNV infections in Equidae, several WNV infection detected in birds (magpies, carrion crows, and rock
719 pigeons) and 9 WNV cases in Human⁴⁴.

720 **2009/2015** – Emergence of USUV in France ¹¹⁻¹³.

721 **2015** – 49 WNV cases in Equidae in Camargue and Hérault department (Occitanie region)⁴⁵ and 1 WNV human
722 case in Gard department (Occitanie region)⁴¹.

723 **2017** – 2 and 1 WNV cases in Human and Equidae, respectively, in Gard department (Occitanie region)⁴¹.

724 **2018** – High number of WNV and USUV human and animal cases in Europe. 26 and 13 WNV cases in Human,
725 Equidae, respectively⁴¹. In the avifauna: 4 WNV cases in northern goshawks, 1 in common buzzard and one in
726 long-eared owl⁴¹ in Corsica and Alpes-Maritimes (Provence-Alpes-Côte d’Azur region). USUV is detected in a
727 Lapland Owl in the Gironde (Nouvelle-Aquitaine region) department and in a blackbird in the Charente
728 department (Nouvelle-Aquitaine region).

729 **2019** – 9 WNV cases in Equidae in Camargue (Provence-Alpes-Côte d’Azur region)⁴¹.

730 **2022, September** – USUV is detected in a Lapland Owl in the Dordogne department (Nouvelle-Aquitaine
731 region).

732 **2022, October** – First evidence of WNV circulation on the Atlantic coast of France (3 symptomatic horses) and
733 first human case of USUV.

734 **2023, July 16th** – First WNV human case in the Atlantic coast of France.

735 **2023, July 21th** – First USUV human case in Nouvelle-Aquitaine in 2023.

736 **2023, July 24th** – MX revealed the circulation of both WNV and USUV in Nouvelle-Aquitaine in 2023.

737 **2023, August 4th** – First WNV equine case in Nouvelle-Aquitaine in 2023.

738 **2023, August** – USUV is detected in a blackbird in the Charente-Maritime department (Nouvelle-Aquitaine
739 region).

740 **2023, September** – USUV and WNV are detected (co-infection) in a wood pigeon in the Charente department
741 (Nouvelle-Aquitaine region).

742 **2023, November** – USUV is detected in a Lapland Owl in the Dordogne department (Nouvelle-Aquitaine
743 region).