

1 **Coral long-term recovery after bleaching: implications for sexual reproduction**
2 **and physiology.**

3 Padilla-Gamiño JL^{1*}, Timmins-Schiffman E², Lenz EA³, White SJ¹, Axworthy J¹, Potter
4 A⁴, Lopez J⁵, Wang F⁶

5
6

7 ¹School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St,
8 Seattle, Washington, USA

9

10 ²Department of Genome Sciences, University of Washington, 3720 15th Ave NE,
11 Seattle, Washington, USA

12

13 ³University of Hawai'i Sea Grant College Program, 2525 Correa Road, HIG 238
14 Honolulu, Hawai'i, USA

15

16 ⁴School of Biological Sciences and Centre of Geometric Biology, Monash University,
17 Clayton 3800, Victoria, Australia

18

19 ⁵San Francisco Bay Conservation and Development Commission, California, USA

20

21 ⁶California State University, Dominguez Hills, California, USA

22

23 Corresponding author: jpgamino@uw.edu

24

25

26

27 ABSTRACT

28 This study examined the long-term impacts of coral bleaching on the reproduction and
29 physiology of *Montipora capitata*, a dominant reef-building coral in Hawai'i. We monitored
30 bleached and non-bleached colonies during and after a natural coral bleaching event in 2014
31 and analyzed reproductive traits and transcriptomic signatures eight months later. Our study
32 shows that non-bleached and bleached colonies successfully produced gametes. Colonies that
33 bleached had smaller oocytes, and development was slower than in colonies that did not
34 bleach. Corals with different vulnerabilities to bleaching exhibited distinct transcriptomic
35 responses eight months after a bleaching event. Those more prone to bleaching showed
36 suppression of transcripts associated with sperm motility, calcification, and immunity. We found
37 distinct transcriptomic signatures between fringing and patch reefs, suggesting local adaptation
38 and/or acclimatization. To conserve coral reefs and better understand how they will be affected
39 by future heat stress, we need to track which colonies survive and examine how their
40 physiological and reproductive processes are impacted in the short- and long-term. This is
41 critical as consecutive bleaching events become more frequent, and corals have less time to
42 recover. Our study provides valuable molecular and reproductive data that can be used for
43 conservation and management purposes. This information can help us identify signs of coral
44 vulnerability and resilience to bleaching, project how future bleaching events will affect coral
45 reproduction, determine which traits are most at risk, and assess which sites are more likely to
46 be compromised.

47

48

49

50

51 **Keywords: thermal stress, reproduction, histology, egg, oocyte, size,**

52 **development, spawner, gene expression, creative kinase, sperm**

53 INTRODUCTION

54 Ocean warming is the leading cause of coral mortality due to bleaching events worldwide
55 (Hughes et al., 2017). During bleaching events, corals lose their symbiotic relationship with
56 dinoflagellate endosymbionts (Family Symbiodiniaceae, LaJeunesse et al., 2018), which provide
57 them with color and energy from photosynthesis (Muscatine et al., 1984). Without this energy,
58 coral health is compromised with significant consequences for survival, growth, and
59 reproduction (Coles & Brown, 2003; Hoegh-Guldberg, 1999). In the last decade, coral bleaching
60 events have increased in frequency, duration, and severity (van Hooidonk et al., 2013, Lough
61 and Hughes 2018), causing ecological, socioeconomic, and cultural losses (Chaijaroen, 2022;
62 Pratchett et al., 2008).

63
64 Coral response to thermal stress varies depending on temperature tolerance, environmental
65 factors (Hoegh-Guldberg et al., 2007; Hughes et al., 2017), genetics of the host and symbiont,
66 epigenetics, and microbial community composition (Baird et al., 2009; Edmunds, 1994; Fitt &
67 Warner, 1995; Grottoli et al., 2014; Marshall & Baird, 2000; Rosenberg et al., 2009; van Oppen
68 et al., 2015). During and after thermal stress, corals either die or acclimatize and recover.
69 Acclimatization and recovery occur via changes in physiology (e.g., plasticity) manifested in
70 shifts in gene and protein expression, epigenetic changes, symbiont shuffling changes in
71 dominant symbiont after bleaching (Baker, 2001; Hoegh-Guldberg, 1999), and heterotrophic
72 plasticity (Grottoli et al., 2006; Rodrigues et al., 2008). Corals sometimes divert energy from
73 reproductive processes and allocate it towards recovery (Michalek-Wagner & Willis 2001,
74 Rodrigues & Padilla-Gamiño, 2022, Jeffe et al. 2023).
75
76 Acclimatization mechanisms associated with thermal stress response and recovery in the coral
77 host may occur at different temporal scales (van Woesik et al., 2022). Gene expression
78 changes can occur within minutes (Thomas et al., 2019; Traylor-Knowles, Rose, & Palumbi,
79 2017; Traylor-Knowles, Rose, Sheets, et al., 2017), whereas symbiont reacquisition,
80 reallocation of energy, and reproductive recovery can occur over months or years (Rodrigues et
81 al., 2008; van Woesik et al., 2022). Coral thermal stress response can involve hundreds of
82 transcripts involved in apoptosis, oxidative stress, transcription regulation and redox regulation
83 (Bellantuono et al., 2012; Kenkel et al., 2013; Maor-Landaw & Levy, 2016; Thomas et al., 2019;
84 Williams et al., 2021; Zhang et al., 2022). Examining transcriptomic signatures before, during,
85 and after stress can help us to understand coral resilience, identify biomarkers of thermal
86 tolerance, assess physiological health, and better understand the ability and mechanisms of
87 individuals to respond to and recover from environmental stress (Pinzón et al., 2015; Seneca &
88 Palumbi, 2015; Thomas et al., 2019). To date, most coral transcriptomic studies have focused
89 on short-term responses during and after bleaching and very few studies have focused on gene
90 expression signatures associated with long-term recovery in the field (McLachlan et al., 2020;
91 Pinzón et al., 2015; Thomas et al., 2019; Thomas & Palumbi, 2017).
92
93 Little is known about how corals can continue long-term and expensive energy processes such
94 as reproduction after stress (Cox, 2007; Rodrigues & Padilla-Gamiño, 2022). This information is
95 critical to project both the short-term reproductive potential of survivors and the longer-term
96 population persistence in the future with more severe and frequent bleaching events.
97 Observations of coral reproduction following natural bleaching events reveal a varied response
98 among and within coral species, suggesting different physiological mechanisms during
99 recovery. Consequences of reproduction due to bleaching stress include a decrease in
100 gametogenesis, oocyte production, oocyte size, sperm motility, spermary abundance, fecundity,
101 and spawning (Baird & Marshall, 2002; Cox, 2007; Hagedorn et al., 2016; Mendes & Woodley,
102 2002; Omori, 2011; Szmant & Gassman, 1990). There are species that either abort (Jokiel et
103 al., 1985) or substantially decrease oocyte and/or planula (i.e., free-swimming larva) production
104 following exposure to warm seawater temperatures (Airi et al., 2014; Ward & Harrison, 2000).
105 *Orbicella annularis* colonies that had visibly recovered from bleaching (in 3-6 months) followed a
106 normal reproductive cycle, while colonies that remained visibly bleached for more than 8 months

107 did not (Szmant & Gassman, 1990). A two-year reduction in gonad development was observed
108 in bleached corals of *O. annularis* (Mendes & Woodley, 2002) and an eleven-year study (2002-
109 2013) by (Levitin et al., 2014) on the *Orbicella* species complex found that a severe coral
110 bleaching event reduced the likelihood of spawning in both visibly bleached and non-bleached
111 corals for up to four years. In contrast, other species have the capacity to continue sexual
112 reproduction despite bleaching (Armoza-Zvuloni et al., 2011; Cox, 2007; Padilla-Gamiño &
113 Gates, 2012; Szmant & Gassman, 1990).

114
115 To better understand long-term coral physiological recovery after a bleaching event, we
116 examined transcriptomic signatures and reproductive traits in colonies of *Montipora capitata*
117 with different thermal tolerance (bleaching susceptibility). *M. capitata* is an important reef builder
118 in Hawai'i and a dominant species in Kāne'ohe Bay, O'ahu (Edmondson 1929, Maragos 1972,
119 Jokiel 1991). In 2014, Hawaiian reefs experienced an extensive bleaching event with ~45% of
120 corals affected by bleaching, and in some areas of Kāne'ohe Bay, bleaching reached up to 80-
121 100% (Bahr et al., 2015, 2016; Ritson-Williams & Gates, 2020). From September to October
122 2014, the sea surface waters in Kāne'ohe Bay exceeded 28 °C, which is the critical threshold
123 temperature for coral bleaching in Hawai'i (Bahr et al., 2015; Jokiel & Brown, 2004), and in this
124 period, there were 6 days where the mean temperature was 30 °C and above in Kāne'ohe Bay
125 (Ritson-Williams & Gates, 2020). During the bleaching event, some colonies bleached entirely in
126 small reef areas, while others kept their coloration and seemed unaffected (Bahr et al., 2015).

127
128 To assess the impacts of bleaching on the fitness of *M. capitata*, we examined reproduction and
129 gene expression differences in bleached and non-bleached colonies eight months after the
130 2014 bleaching event (when gametogenesis was completed). We obtained colonies from
131 fringing and patch reefs to test whether (1) transcriptomic signatures differ between corals that
132 bleached and did not bleach, (2) fecundity, oocyte size, and gametogenesis are affected by
133 bleaching, and (3) environment influences coral transcriptomic signatures and reproductive
134 performance.

135
136

137 METHODS

138 Field Sites and Sample Collections

139 During the 2014 bleaching event in Kāne'ohe Bay (O'ahu, Hawai'i, Fig. 1), we tagged bleached
140 (completely whitened) and non-bleached coral colonies of *Montipora capitata*. This species is a
141 simultaneous hermaphrodite that releases egg-sperm bundles in the summer months close to
142 the new moon (Heyward 1986). Colonies ranging in size from 0.5 - 2 m in diameter were tagged
143 on the leeward side of two patch reefs in October 2014 (Reef 44: 21°28.595' N, 157°50.013' W
144 and HIMB: 21°26.159 N, 157°47.489'W) and on two fringe reefs in December 2014 (K4: 21°26
145 684 N, 157°48 362 W and K5: 21°28 032 N, 157°49 977 W).

146

147 On June 13-14th, 2015, we collected 2 - 4 cm fragments from the tagged colonies (n = 6-10) to
148 assess physiology (gene expression) and reproduction (gamete development and fecundity) in
149 corals that bleached and did not bleach during the thermal stress event of 2014. Collections
150 occurred 2 to 3 days before the new moon when spawning is expected for *M. capitata*, and eight
151 months after the thermal stress event (Fig. 2).

152

153 Corals in the bay's northern part were collected at fringing reef K5 and patch reef 44. Fringing
154 reef K5 was located near the He'eaia fishpond, and the output of the Waihe'e and Kahalu'u
155 streams and reef 44 was located near the Shipping (NW) channel. In the southern part of the
156 bay, corals were collected at fringing reef K4 and patch reef HIMB close to the Sampan (SE)
157 channel (Fig. 1).

158

159 Temperature data was recorded using HOBO loggers (Onset Computer; accuracy $\pm 0.2^{\circ}\text{C}$)
160 recording every 15 minutes. Temperature from reef 44 and HIMB (patch reefs) was collected
161 from October 2014 to August 2015 and temperature from K5 and K4 stations was collected from
162 November 2014 to August 2015 (Fig. 1, Table 1). Light data was recorded every 15 min from
163 June to October 2015 using Odyssey Photosynthetic Active Radiation (PAR) sensors. Minimum
164 water temperatures occurred in January and March throughout the bay (Fig. 2). Maximum water
165 temperatures occurred in July-August and were higher in fringing reefs compared to patch reefs
166 ($\sim 29^{\circ}\text{C}$ and 28°C respectively, Table 1). Overall, temperature fluctuates more in the fringing
167 reefs than the patch reefs (Table 1). K5 (fringing reef in the northern site) had the highest
168 variability in temperature and light conditions (Table 1), and the lowest light levels of all the
169 sites. K5 is found near the He'eaia fishpond and the output of the Waihe'e and Kahalu'u streams
170 and has higher sedimentation rates than K4 throughout the year (Padilla-Gamiño et al., 2014).

171

172 Histology

173 Samples were fixed in the field immediately after collection using buffered zinc formalin fixative
174 (Z-fix, Anatech Ltd) diluted in 0.2 - μm filtered seawater (1:4). After 48-72 hours, corals were
175 transferred into 70% ethanol (diluted in DI water) until processing. Fixed coral samples were
176 decalcified using a buffered 10% hydrochloric acid solution for 24 h. Tissue samples were
177 processed for histological examination according to Padilla-Gamino et al. (2014).

178 Developmental stages of oocytes and spermocytes were identified based on cell size and
179 morphology criteria (Szmant-Froelich et al., 1980; Szmant- Froelich, 1985, Padilla-Gamiño et
180 al., 2014). Feret's Statistical Diameter was used to estimate the size of the oocytes using
181 ImageJ Software V. 1.42 (Abramoff et al., 2004). Size measurements were performed only on
182 oocytes sectioned through the nucleus in order to standardize measurements to the widest axis
183 of oocytes to ensure no duplicate measurements (Davis, 1982; Parker et al., 1997). Oocyte size
184 and spermatocyst development were compared with previously reported data from the same
185 species and location in a year when no coral bleaching was reported (Padilla-Gamiño et al.,

186 2014). We compared results of our histological analysis with those from colonies from the same
187 region, collected and fixed on June 4, 2009 (18 days before the new moon) (Padilla-Gamiño et
188 al., 2014).

189

190 RNA extractions

191 Samples were immediately frozen after collection using liquid nitrogen and then stored in a -
192 80°C freezer until processing. Ambion RNAqueous Total RNA Isolation Kit (AM1912) was used
193 to extract RNA. The coral sample was crushed in 1 mL of lysis buffer using a razor blade and
194 further homogenized by passing it through a 25 g syringe needle several times. The samples
195 were then centrifuged for three minutes at top speed to remove debris, and the supernatant was
196 transferred to a new 1.5 mL tube. Following the protocol of the RNAqueous Kit, RNA in the
197 supernatant was isolated and eluted with 50 µL preheated Elution Solution. The quantity and
198 quality of coral RNA samples were evaluated by an Agilent Bioanalyzer.

199

200 Library preparation and sequencing

201 Library preparation and sequencing were performed at the Institute for Integrative Genome
202 Biology at the University of California Riverside. Stranded libraries were prepared with 100 ng of
203 total RNA with the TruSeq Stranded mRNA Library Prep for NeoPrep Kit (Illumina, Inc.) per the
204 manufacturer's instructions. Indexed libraries were pooled and run on a HiSeq4000 to generate
205 100bp paired-end reads for each library. All FastQ files are available in the NCBI Short Read
206 Archive (NCBI BioProject: PRJNA735085; SRR14729868 - SRR14729894).

207 Transcriptome assembly and annotation

208 FastQ file quality trimming, transcriptome assembly, quality assessment, and annotation are
209 described in the supporting information.
210

211 Statistical analysis

212 **Reproductive status and bleaching** - The impacts of previous bleaching condition and reef
213 type on reproductive traits were investigated using generalized linear models with the lme4
214 (v1.1-27.1) package for generalized linear mixed-effects models and the nlme (v 3.1-155)
215 package for linear mixed-effects models in R following the methods of (Leinbach et al., 2021).
216 Effects were considered significant with p-value < 0.05. To compare oocyte and spermatocyst

217 stages between a non-bleaching year (2009) and a bleaching year (2015), gamete stages for
218 the two years were combined for the fringe reef only and analyzed as described above.

219

220 **Transcriptomics** - Outlier samples and genes were screened out of the dataset using the
221 goodSamplesGenes command in the WGCNA package in R (Langfelder & Horvath 2008).
222 Nonmetric multidimensional scaling (NMDS) ordination was performed on the log(x+1)-
223 transformed reads from the reduced transcriptome using a Bray-Curtis dissimilarity matrix in the
224 vegan package (Oksanen et al. 2017) in R. Analysis of similarity (ANOSIM) was performed on
225 the row-standardized data in a Bray-Curtis dissimilarity matrix to compare significant
226 transcriptomic differences between groups based on the comparisons of: 1) all factors
227 (bleaching and reef type); 2) reef type only; and 3) bleaching only. Discriminant analysis of
228 principal components (DAPC) was used to reduce intra-group variability and find the underlying
229 transcript clusters that differentiated groups based on bleaching and site of origin. Based on
230 xval scores, 2 PCs were maintained for the DAPC analysis and clusters with a loading value of
231 at least 0.01 were considered significant.

232

233 Weighted gene correlation network analysis (WGCNA) was performed on the clustered
234 transcripts from the cd-hit pipeline following the instructions for working with a large dataset in R
235 using a blockwise analysis. WGCNA modules were considered significantly correlated with reef
236 type or bleaching status if the absolute value of the correlation coefficient was at least 0.7.

237

238 The counts matrix from corset was used as the RNASeq matrix for differential expression
239 analysis in edgeR. DGE comparisons were performed on 1) bleached and non-bleached corals
240 from the fringing reef; 2) bleached and non-bleached corals from the patch reef; 3) bleached
241 and non-bleached across reef types; and 4) patch and fringing, regardless of bleaching status.
242 Transcripts were considered differentially expressed with FDR < 0.05. Heatmaps of the
243 differentially expressed genes were made in pheatmap in R.

244

245 Gene Ontology (GO) enrichment analysis was performed on groups of differentially expressed
246 genes using compGO ([Timmins-Schiffman et al. 2017](https://meta.yeastrc.org/compgo_emma_montipora_large/pages/goAnalysisForm.jsp)) (project-specific enrichment portal:
247 https://meta.yeastrc.org/compgo_emma_montipora_large/pages/goAnalysisForm.jsp).

248 RESULTS

249 Reproduction (gamete presence, fecundity, gametogenesis)

250 The probability of an *M. capitata* colony containing gametes varied significantly with reef type;
251 colonies found at fringing reefs were more likely to have gametes present than those at patch
252 reefs ($p=0.014$, Fig. 3). Bleaching history had no impact on gamete presence. At fringing reefs,
253 all colonies that bleached had gametes, and only a few colonies that did not bleach had no
254 gametes.

255

256 There was no difference in fecundity (number of polyps) between previously bleached and non-
257 bleached corals; neither was there a difference in fecundity based on reef type (Fig. 3).

258

259 There was a significant difference in oocyte size (Feret diameter) based on bleaching history
260 ($p=0.0005$) and reef type ($p=0.024$). Corals that did not bleach had larger oocyte size (Fig. 4)
261 and slightly larger oocytes were found in fringing reefs than in patch reefs (~1.5% difference).
262 Previously bleached corals from fringing reefs had an average Feret diameter of 272.56 μm ,
263 compared to 294.45 μm in non-bleached corals (~7% difference). In corals from the patch reefs,
264 bleached corals had an average Feret diameter of 279.41 μm , while non-bleached corals had
265 an average Feret diameter of 296.17 μm (~6% difference). Oocytes of bleached and non-
266 bleached colonies in our study were smaller (19% and 13%, respectively) compared to oocytes
267 from a period (2008-2009) when no bleaching was reported (Padilla-Gamiño et al., 2014).
268 Bleaching status ($p=0.000$), and year ($p=0.0163$) were significant predictors of oocyte size when
269 analyzing the 2015 and 2009 data together.

270

271 There was a significant difference in oocyte stages between reef type ($p=0.0082$) and bleaching
272 history ($p=7.0\text{e-}4$) (Fig. 5). Oocytes were less developed (lower stage number) in colonies that
273 bleached than in colonies that did not bleach. Fringing reefs had more developed oocytes
274 (higher stage number) compared to patch reefs (Fig. 5).

275

276 For the inter-year comparison, gamete stage of both oocytes and spermatocysts (comparing
277 within fringing reef only) differed significantly by year ($p=2\text{e-}16$ for both comparisons). The
278 oocytes and spermatocysts measured in 2009 were at more advanced stages of development
279 than those from non-bleached colonies in 2015. There was no significant difference in oocyte
280 and spermatocyst stages based on previous bleaching or reef type ($p>0.05$, Fig. 5).

281 Transcriptome assembly and annotation

282 Genome-guided transcriptome assembly resulted in 578,756 transcripts ($\text{N}_{50} = 1,779\text{bp}$) with
283 median and mean lengths of 388bp and 861bp, respectively. There were 453,290 genes ($\text{N}_{50} =$
284 858bp) assembled with median and mean lengths of 328bp and 601bp, respectively
285 (Supplementary Table 1). Transdecoder identified 142,601 complete, long open reading frames.
286 Trinotate analysis resulted in 46,840 genes being annotated with Gene Ontology terms. The
287 CD-hit to corset pipeline yielded a transcriptome with reduced redundancy and 339,648

288 transcript clusters. Almost 38% of these transcript clusters (n=128,570) were annotated with
289 BLASTx against the UniProt trembl database (April 29, 2018).

290 Differential Gene Expression Analysis

291 Weighted gene correlation network analysis was performed on transcripts detected in at least
292 10 out of 12 corals. Eleven WGCNA modules were strongly correlated with reef type (correlation
293 coefficient $> |0.7|$) and four were strongly correlated with bleaching status (Supplemental Table
294 2). As with the differential expression analysis, there was a stronger signal of transcriptomic
295 differences by reef type than by bleaching status in the WGCNA results. A complete list of
296 enriched GO terms in the significantly correlated modules can be found in Supplementary Table
297 2. These included L-ascorbic acid biosynthetic process (yellow module, significant by reef type);
298 sperm connecting piece (darkturquoise module, significant by reef type); cellular oxidant
299 detoxification (blue3 module, significant by reef type); protein monoubiquitination (ivory2
300 module, significant by reef type); regulation of apoptotic process (hotpink module, significant by
301 reef type); and calcium ion transmembrane transport (violetred4 module, significant by reef
302 type).

303 Montipora reef type comparison

304 Ordination analyses (NMDS and discriminant analysis of principal components, DAPC) reveal a
305 stronger, lasting impact of bleaching at the patch reef than at the fringing reef (Fig. 6). ANOSIM
306 revealed a significant difference in transcriptomes by reef type (ANOSIM R = 0.4074; p =
307 0.012), but not by bleaching status (p>0.05). Transcripts with strong loadings on the DAPC LD1
308 axis, which separates bleached patch reef transcriptomes from others, included proteins
309 involved in the cytoskeleton, skeletogenesis, extracellular matrix, and the immune response
310 (Supp. Table 3). Transcripts with strong loadings on LD2, which separates non-bleached patch
311 reef transcriptomes from others, included functions such as cholesterol homeostasis, immune
312 response, bile acid transport, and cytoskeleton (Supp. Table 3).

313
314 There were 563 differentially expressed genes in a comparison of corals (bleached and non-
315 bleached) from the two reef types (Fig. 6), representing a wide range of enriched GO terms.
316 Transcripts that were at higher abundance from the patch reef were enriched for GO terms
317 including calcium transport, growth hormone signaling, organ development, and cell-matrix
318 adhesion (Fig. 7). There were also categories of DEGs that were not included in the enrichment
319 results but are of note. Several transcripts associated with calcium binding or calcium transport
320 were elevated at the patch reef compared to the fringing reef. Multiple transcripts typically
321 associated with embryonic development were also elevated, as were transcripts involved in the
322 immune response and mucus production.

323
324 Transcripts that were at higher abundance in fringing reef corals were enriched for GO terms
325 associated with nervous system, protein post-translational modification, and negative regulation
326 of circadian rhythm (Fig. 7). These general differences between the sites suggest an underlying
327 physiological difference between corals from different reef types. Categories of transcripts that

328 were at higher abundance from the fringing reef, but not included in enrichment results, included
329 apoptosis, extracellular matrix, protein metabolism and ubiquitination, multiple forms of carbonic
330 anhydrase, transcription, circadian clock (Fig. 6 and 7), vitamin C biosynthesis (Supp. Fig. 1),
331 and androgen metabolism.

332

333 **Bleaching comparison**

334 In a comparison of bleached and non-bleached corals, regardless of reef type, 32 transcripts
335 were differentially expressed (Fig. 8). Transcripts that were at elevated levels in non-bleached
336 corals were associated with energy transduction, sodium independent transport, sphingolipid
337 metabolism, DNA replication, and immune response. Transcripts that were significantly higher in
338 bleached corals were associated with glutathione catabolism, and DNA binding (Supplemental
339 Table 3). Two transcripts (integrase catalytic domain-containing protein and reverse
340 transcriptase domain-containing protein) may be microbial contamination because annotations
341 suggest they are involved in insertion of viral and/or bacterial DNA into the host genome.

342

343 **Fringing Reef**

344 In a comparison of bleached and non-bleached corals from the fringing reef only, 36 transcripts
345 were differentially expressed (Supplemental Fig. 2, Supp. Table 3). Eight different transcripts
346 representing the gene mitochondrial import receptor subunit TOM70 were differentially
347 expressed between B and NB corals at site K4. These transcripts were elevated in non-
348 bleached corals and are responsible for the enrichment of the two GO terms "Regulation of
349 apoptotic process" and "Transferase activity, transferring glycosyl groups". Other transcripts
350 elevated in NB corals were associated with apoptosis and immune response. In bleached
351 corals, the elevated transcripts included two annotated as pogo transposable element with
352 KRAB domain (transcription) and CH2-type domain-containing protein.

353

354 **Patch Reef**

355 There were 57 DEGs in a comparison of bleached and non-bleached corals from the patch reef
356 (Supp Table 3, Supplemental Fig. 3). Annotations of transcripts that were elevated in non-
357 bleached corals revealed transcripts associated with extracellular matrix binding/axonal growth,
358 binding of simple sugars, transfer of a sulfo group, amine as an acceptor, and DNA polymerase.

359

360 In bleached corals the following transcripts were elevated: tyrosine-protein phosphatase non-
361 receptor type 12 (dephosphorylation), RNA-directed DNA polymerase from mobile element
362 jockey (DNA replication), nose resistant to fluoxetine protein 6 (lipid transport, including yolk
363 transport to oocytes), two transcripts of insoluble matrix shell protein, two transcripts
364 representing RNA-directed DNA polymerase from transposon BS (DNA polymerase), 52 kDa
365 repressor of the inhibitor of protein kinase (may inhibit cell growth), serine/threonine protein
366 kinase pats1, GIY-YIG domain-containing protein (DNA repair nuclease).

367

368

369 DISCUSSION

370 Long-term impact of bleaching on coral reproduction

371 In this study we examined long-term impact on fitness and sublethal effects in
372 *Montipora capitata* eight months after a natural bleaching event. We obtained colonies
373 from fringing and patch reefs to test whether (1) gamete presence, fecundity, oocyte size
374 and gametogenesis were affected by bleaching, (2) transcriptomic signatures differed
375 between corals that bleached and did not bleach, and (3) environment influenced coral
376 transcriptomic signatures and reproductive performance.

377

378 Our results show that reproduction in *M. capitata* is a resilient process but can be
379 affected by thermal stress. We found that most colonies (100% in the fringing reefs and
380 81% in the patch reefs) were able to develop gametes despite bleaching, and that polyp
381 fecundity did not change with bleaching history or between reef types. However,
382 colonies that bleached had smaller oocytes and slower oocyte development than non-
383 bleached colonies and this trend was consistent in both fringing and patch reefs. It is
384 important to note that oocyte sizes of bleached and non-bleached colonies were smaller
385 compared to oocytes from previous studies in years when no bleaching was reported
386 (Cox, 2007; Padilla-Gamiño et al., 2014). This shows that the thermal stress event also
387 affected oogenesis in colonies that did not show evident signs of bleaching.

388

389 The delay in gametogenesis in bleached colonies may be associated with the time it
390 took corals to regain their symbiotic algae after thermal stress and recover
391 physiologically. After the thermal stress (October 2014), bleached corals had lower
392 chlorophyll levels and biomass (Wall et al., 2019, Ritson-Williams & Gates, 2020),
393 possibly impacting the energy available to continue the development of the gametes.
394 Oocyte development in *M. capitata* starts in the summer and oogenesis lasts 9-11
395 months (Padilla-Gamiño et al., 2014). Thermal stress has the potential to affect not only
396 the adult colonies but also the oocytes that will be released the following summer.
397 Rates of bleaching recovery in Hawaiian corals are on the order of months (Jokiel &
398 Coles 1977, Bahr et al., 2015; Jokiel & Brown, 2004; Ritson-Williams & Gates, 2020;
399 Rodrigues & Grottoli, 2007; Wall et al., 2019). During the year of our study (2014-2015),
400 *M. capitata* colonies recovered chlorophyll levels and biomass throughout Kāne'ohe Bay
401 by January, three months after the bleaching event (Wall et al. 2019).

402
403 It is interesting to note that lipid levels in *M. capitata* after the thermal stress (bleaching)
404 were not affected (Wall et al., 2019). This is consistent with previous findings showing
405 that bleached colonies of *M. capitata* can rely on heterotrophic feeding during recovery
406 (Grottoli et al., 2006; Hughes et al., 2010; Rodrigues & Grottoli, 2007) and thus have the
407 resources to prioritize gamete development despite loss of symbionts (Rodrigues &
408 Padilla-Gamiño, 2022).

409
410 Spermatocyst development did not change between bleached and non-bleached
411 colonies or reef types in 2015. Most of the colonies at fringing and patch reefs had
412 spermatocysts at stage 4, which is the most mature stage and the development
413 necessary for successful fertilization. Although not significant, bleached colonies in
414 fringing reefs showed the highest proportion of colonies with spermatocysts at stage 4
415 (>75%). Spermatogenesis in *M. capitata* takes 4-5 months and occurs from April to
416 August (Padilla-Gamiño et al., 2014). This process is less likely to be affected by
417 thermal stress (compared to oogenesis) because it starts after bleached colonies have
418 regained their symbionts. However, when we compare spermatogenesis between years
419 with and without thermal stress (Padilla-Gamiño et al., 2014), we found that
420 spermatocyst development may be faster in the year when corals bleached. In 2009, a
421 year when no bleaching occurred, proportions of spermatocysts at stages 3 and 4 had
422 very similar proportions (~40%) compared to 2015, when most colonies had
423 spermatocysts at stage 4 (Fig. 5b). Faster spermatocyst development in bleached years
424 can be a problem especially if oocyte development is delayed, as our results suggest. If
425 the spermatocysts develop faster than the oocytes, this can have important
426 consequences for sperm quality and senescence, spawning synchronization,
427 fertilization success, and offspring quality (Levitin & Petersen, 1995). In 2015, post-
428 thermal stress, *M. capitata* sperm had a 44% motility reduction compared to the
429 previous four years (normal range 70-90%), and larval survival and settlement were
430 also compromised (Hagedorn et al., 2016). Furthermore, sperm motility remained less
431 than 50% in 2017 and 2018 (years when bleaching also occurred) and had not fully
432 recovered by 2019, with ~63% motile sperm (Henley et al., 2021). This reduction in
433 sperm motility in *M. capitata* was associated with mitochondrial damage but no
434 molecular mechanisms were investigated (Henley et al., 2021). Future research is
435 needed to better understand how thermal stress affects the plasticity and molecular

436 mechanisms involved in the timing of gamete development, gamete quality and
437 synchronization of their release.

438

439 **Transcriptomic profiles differ between bleached and non-bleached colonies eight
440 months after a bleaching event**

441

442 *M. capitata* expressed prolonged bleaching effects in coral colonies from both reef
443 types, persisting eight months post-event. Our study revealed reef-specific
444 transcriptomic signatures, indicating distinct long-term molecular impacts of bleaching.
445 Previous work has shown that a lasting transcriptomic signature of coral bleaching can
446 persist for up to 12 months after the event in other species (Thomas et al., 2019;
447 Thomas & Palumbi, 2017); however, the specific transcriptomic response can vary by
448 species (Thomas et al., 2019). Similarly, distinct metabolomic signatures have been
449 observed in corals with different bleaching susceptibility four years post-bleaching
450 (Roach et al., 2021).

451

452 Across coral species, the short-term transcriptomic bleaching response is usually
453 defined by increased levels of transcripts associated with heat shock, oxidative stress,
454 apoptosis, unfolded protein response and decreased abundances of transcripts
455 associated with the extracellular matrix, calcification, and innate immunity (DeSalvo et
456 al., 2008, 2010, Vidal-Dupiol et al., 2014; Ruiz-Jones & Palumbi, 2017; Thomas &
457 Palumbi, 2017; Williams et al., 2021). In our study, some of these signals were still
458 detected in *M. capitata* eight months after bleaching. Given the baseline differences in
459 transcriptomes between reef types (see below), it is likely that *M. capitata*'s
460 transcriptomic response to bleaching differs by location and may be impacted by local
461 adaptation.

462

463 Despite little overlap in transcriptomic response to bleaching between reef types,
464 bleached corals from both types of reefs had transcriptomic signatures suggesting
465 negative impacts on sperm energy production and motility. Transcripts associated with
466 mitochondrial creatine kinases (B,M,S and U-type) were suppressed in corals bleached
467 across reef types. Creatine kinases are crucial in supplying energy for sperm motility
468 (Dorsten et al., 1997), and are part of the *M. capitata* sperm transcriptome (Van Etten et
469 al., 2020). The suppression of these genes likely led to reduced sperm motility in

470 bleached corals (Henley et al., 2021), which could have implications for fertilization
471 success. In the current study the mitochondrial import receptor subunit TOM70, which is
472 involved in mitochondrial stress (Backes et al., 2021), was at lower abundance in
473 bleached corals. Both TOM70 and mitochondrial creatine kinases may be important
474 biomarkers of bleaching stress, and the link between bleaching, the expression of
475 genes, and sperm function should be further explored.

476

477 Despite little overlap in reef-specific responses to bleaching stress, two transcripts were
478 differentially abundant between B and NB corals at both reefs: an interferon-induced
479 very large GTPase and a transcript with no annotation. Interferon-induced very large
480 GTPases are immune response proteins. A lingering signal of altered expression of
481 immune response transcripts is a common theme across the studies that have followed
482 long-term bleaching responses (Pinzón et al., 2015; Thomas & Palumbi, 2017). The
483 universality of the interferon-induced GTPase as a molecular signal of long-term
484 bleaching stress, and its impact on coral immune function, is an additional avenue of
485 further research.

486

487 **Reef-specific responses to bleaching**

488 Transcripts involved in diverse physiological processes sustained altered expression
489 levels in corals that bleached from the patch reef, including those involved in DNA
490 replication and repair, lipid transport, protein dephosphorylation, and shell matrix.
491 Transcripts that remained suppressed were involved in the extracellular matrix (ECM),
492 binding of simple sugars, amine sulfotransferase, and DNA polymerase. ECM
493 transcripts have been found to be impacted in the short term by thermal stress and
494 bleaching (DeSalvo et al., 2008), and it is hypothesized that their downregulation could
495 impact calcification. Additionally, transcripts with strong loadings in the DAPC analysis
496 associated with bleaching status at the patch reef included those annotated as carbonic
497 anhydrase, mannose-binding protein C, and lymphocyte antigen 6D. Carbonic
498 anhydrase may be associated with coral skeletogenesis (Bertucci et al., 2013) and is
499 further evidence that calcification and somatic growth may remain impacted in corals at
500 the patch reef. The two immune-related transcripts - mannose-binding protein C and
501 lymphocyte antigen 6D - associated with bleaching at the patch reef may be biomarkers
502 of lasting bleaching impacts on these coral's innate immune system. Mannose-binding
503 lectin appears to be a biomarker of the thermal stress response in corals and may be

504 necessary in maintaining symbiosis (Vidal-Dupiol et al., 2009). Its transcript was up-
505 regulated in thermally preconditioned corals in response to a thermal challenge
506 (Bellantuono et al., 2012) and was down-regulated during thermal stress and bleaching
507 in *P. damicornis* (Vidal-Dupiol et al., 2009). These pieces of evidence suggest that this
508 transcript, and its protein, may be protective against bleaching.

509
510 At the fringing reef, transcripts that maintained altered expression levels eight months
511 post-bleaching represented a distinct set of processes compared to the patch reef.
512 Transcripts that were elevated in bleached colonies included those involved in
513 transcription. Transcripts that were still suppressed included the processes of apoptosis,
514 sphingolipid metabolism, serine hydrolases, and the immune response. The
515 suppression of transcripts associated with apoptosis and the immune response is a
516 typical short-term coral response to thermally induced bleaching (e.g., Vidal-Dupiol et
517 al., 2014), and yet, in *M. capitata*, it remains a biomarker of bleaching at the fringing reef
518 months after the stress-inducing event. Similarly, genes regulating apoptosis and
519 immunity were also down-regulated up to a year after bleaching in *O. faveolata* (Pinzón
520 et al., 2015); however, in *Acropora hyacinthus*, functionally similar transcripts were up-
521 regulated and remained so for months after bleaching (Thomas & Palumbi, 2017). The
522 cellular and physiological stress induced by a bleaching event seems to have lasting
523 impacts on the coral immune response, but the specific molecular markers (and
524 perhaps physiological details) of those impacts vary by species and perhaps also by
525 location. In the short term, this bleaching-induced weakening of the immune response
526 has proven to make *P. damicornis* more susceptible to infection in a lab setting (Vidal-
527 Dupiol et al., 2014); it remains to be seen if long-term impacts on the immune response
528 affect susceptibility to infection in different species in the field.

529
530 **Corals had site-specific transcriptomic profiles**
531 There are innate molecular differences between *M. capitata* found at the two reef types,
532 patch and fringing. These site-specific differences were a driving factor across statistical
533 analyses suggesting that *M. capitata* is acclimatized and/or adapted to its local
534 environment. Reef type-specific differences in the transcriptome are also reflected in the
535 lingering molecular signatures of bleaching, which had very little overlap in specific
536 transcripts or in overall transcript function between the two reef types. These reef type-

537 specific transcriptomic profiles may give insight into local environmental drivers that
538 shape coral physiology and environmental response.

539

540 Differentially abundant transcripts between reef types represent a wide range of
541 functions, highlighting the complex nature of local acclimatization/adaptation and
542 environmental response. A strong, reef type-specific transcriptomic signature has
543 previously been detected in *M. capitata* (Helmkampf et al., 2019) and in *Montastraea*
544 *cavernosa* (Studivan & Voss, 2020). Many of these transcripts that drive the
545 transcriptomic differences between colonies from different reefs may also be involved in
546 the different schedules of bleaching recovery at the two reefs. Immune response
547 transcripts had a higher abundance in patch reef corals. The expression levels of
548 immune response transcripts are typically altered in response to various biotic and
549 abiotic stressors, such as growth anomaly disease (Frazier et al., 2017), warming
550 (Williams et al., 2021), bleaching (Thomas & Palumbi, 2017), and simulated climate
551 change (Kaniewska et al., 2015), suggesting that patch reef corals may experience a
552 higher level of environmental stress than fringing reef corals. Calcium transport
553 transcripts were also revealed as an important driver in transcriptomic differences
554 between reef types. It may be that somatic/skeletal growth is prioritized in the patch reef
555 corals, whereas gametogenesis is prioritized in the fringing reef corals. The link
556 between higher environmental stress and increased calcification/somatic growth, along
557 with other physiological processes that differ by reef type, may reveal key elements to
558 site-specific stress response and survival in *M. capitata*.

559

560 Additional evidence of an elevated physiological stress response in patch reef corals,
561 and higher rates of somatic growth, comes from the elevated transcripts frizzled (Wnt
562 receptor) and notch. These transcripts are environmentally sensitive in corals and have
563 also been found to be differentially abundant in response to growth anomaly disease
564 (Frazier et al., 2017), low pH (González-Pech et al., 2017) and simulated climate
565 change (Kaniewska et al., 2015). The Wnt pathway genes, including frizzled receptors,
566 are highly conserved across metazoa. This pathway is essential in embryonic patterning
567 and gastrulation across taxa, and this essential role has been confirmed in multiple taxa
568 of cnidaria (Lapébie et al., 2014; Guder et al., 2006). However, the Wnt pathway also
569 plays an important role in adult tissues in cnidaria, with genes in the pathway both
570 constitutively expressed in localized tissues (Sanders & Cartwright, 2015) and up-

571 regulated during tissue turnover and repair (Guder et al., 2006; Loh et al., 2016). The
572 elevated expression of these transcripts in the patch reef corals may suggest increased
573 tissue growth due to damage or a higher investment in somatic growth.

574

575 Coral colonies from fringing reefs exhibit quicker reproductive and transcriptomic
576 recovery compared to those from patch reefs. This accelerated recovery may be
577 attributed to the heightened environmental variability at fringing reef sites, enhancing
578 the corals' acclimatization capacity. In fringing reefs, we found a higher likelihood of
579 gametes being present and oocytes being more developed than in patch reefs.

580 Transcriptomic signatures indicate a closer resemblance between bleached and non-
581 bleached colonies at fringing reefs, suggesting a faster recovery process compared to
582 patch reefs. Additionally, fringing reef corals show transcriptomic signals associated
583 with elevated skeletogenesis compared to their counterparts in patch reefs.

584

585 Many of the processes represented by higher transcript levels in fringing reef corals
586 have proven to be environmentally sensitive in other coral transcriptomic studies,
587 including carbonic anhydrase and vitamin C metabolism. Carbonic anhydrases perform
588 two main roles in corals: 1) acquisition of CO₂ for dinoflagellate symbiont
589 photosynthesis (Tansik et al., 2015; Weis et al., 1989) and 2) skeleton calcification
590 (Moya et al., 2008). It is difficult to ascribe a specific role to the carbonic anhydrases
591 detected in this set of DEGs at the fringing reef; however, both processes represent
592 positive coral metabolism and growth. The increased abundance of vitamin C synthesis
593 transcripts lends additional evidence for increased skeletal growth in fringing reef corals.
594 Vitamin C transport transcripts have previously been associated with coral calcification
595 (Caspasso et al. 2022). L-gulonolactone oxidase in the vitamin C (ascorbic acid)
596 biosynthesis pathway was at increased abundance in the corals from the fringing reef,
597 lending additional evidence to the hypothesis of elevated calcification in the fringing
598 reef.

599

600 Transcripts in apoptotic pathways were relatively elevated in fringing corals and have
601 been found to be elevated across coral species exposed to various environmental
602 drivers. The apoptotic pathway is a biomarker of coral environmental response; as
603 coral proteins and cells sustain damage, apoptosis may be up-regulated to clear
604 damaged proteins and cells. An increase in transcripts linked to apoptotic pathways is

605 frequently detected at elevated levels post-environmental stress in corals (Cleves et al.,
606 2020; Davies et al., 2016; Kaniewska et al., 2015; Pinzón et al., 2015; Thomas &
607 Palumbi, 2017; Zhang et al., 2022). Similar transcriptomic signatures indicating protein
608 damage or ubiquitination have been consistently observed in previous studies
609 examining coral environmental responses (e.g., (Pinzón et al., 2015; Ruiz-Jones &
610 Palumbi, 2017). These are likely signals of endoplasmic reticulum (ER) stress and
611 reactive oxygen species damage as coral cells respond to environmental stresses (e.g.
612 Petrou et al., 2021; Roach et al., 2021). Some corals change the abundance of ER
613 stress transcripts during cyclical, sub-bleaching environmental variability (Ruiz-Jones &
614 Palumbi, 2017), and the elevated levels of these transcripts could be an artifact of
615 sampling day/time at the fringing reef.

616

617

618 **Conclusions/Broader Implications**

619 The combined approach of assessing bleaching response and recovery using
620 physiological (gametogenic) and transcriptomic responses revealed important links
621 between cellular priorities and organism-scale reproductive processes. Even though
622 gametogenesis progressed in all corals, oocyte development was delayed in bleached
623 colonies. This can have important implications for synchrony in gamete release,
624 fertilization, offspring development and performance.

625

626 We used transcriptomics to examine the mechanisms of physiological resilience and
627 long-term impacts of bleaching. Our data show that corals with different bleaching
628 susceptibility have contrasting transcriptomes eight months following a natural
629 bleaching event. Suppression of sperm motility, calcification and immune-related
630 transcripts were associated with bleaching susceptibility. We also found distinct
631 transcriptomic profiles between fringing and patch reefs, indicating acclimatization
632 and/or local adaptation in *M. capitata*. It is noteworthy that, following an 8-month period
633 of recovery after thermal stress, the transcriptomic profiles of bleached and non-
634 bleached colonies within the fringing reefs exhibited a greater degree of similarity
635 compared to those in the patch reef, suggesting a faster physiological recovery rate
636 among colonies from the fringing reef. Since colonies in the fringing reef are exposed to
637 higher environmental variability, they may have evolved or have acquired plasticity to
638 recover from stress more rapidly. This faster recovery extends to gametogenesis:

639 colonies from the fringing reef were more likely to have gametes, which were more
640 developed than those from the patch reef.

641
642 To protect coral reefs and better understand how coral populations will be affected by
643 future thermal stress, we need to know not only which colonies survive but also how
644 their physiological and reproductive processes are affected in the short and long-term. It
645 is essential to understand the dynamics of recovery as consecutive bleaching events
646 are becoming more frequent, potentially limiting recovery time. Our study examines the
647 variability in long-term recovery and provides molecular and reproductive data that can
648 aid in conservation and management efforts. These insights can help to detect
649 biomarkers of bleaching susceptibility and resilience, project the impact of future
650 bleaching events on reproductive output, assess which traits are more vulnerable, and
651 identify what sites are more likely to be compromised.

652

653 ACKNOWLEDGEMENTS

654 Special thanks to CSUDH students Ashley Trujillo, Janet Mejia, Marshay Galloway,
655 Vanessa Gomez Mendez and Azia Mitchell. Thanks to the Gates Lab and HIMB staff for
656 their support in the field. Thanks to Holly Clark, Ann Tarrant and Amy Maas for
657 guidance on transcriptomic analysis. This research was conducted under Hawai'i
658 Department of Land and Natural Resources scientific permit 2017-13 to JPG.

659

660

661

662

663 BIBLIOGRAPHY

664 Abramoff, Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. *Biophotonics
665 International*, 11(7), 36–42.

666 Airi, V., Gizzi, F., Falini, G., Levy, O., Dubinsky, Z., & Goffredo, S. (2014). Reproductive
667 efficiency of a Mediterranean endemic zooxanthellate coral decreases with increasing

668 temperature along a wide latitudinal gradient. *PLoS One*, 9(3), e91792.

669 Armoza-Zvuloni, R., Segal, R., Kramarsky-Winter, E., & Loya, Y. (2011). Repeated bleaching
670 events may result in high tolerance and notable gametogenesis in stony corals: *Oculina*
671 *patagonica* as a model. *Marine Ecology Progress Series*, 426, 149–159.

672 Backes, S., Bykov, Y. S., Flohr, T., Räschle, M., Zhou, J., Lenhard, S., Krämer, L., Mühlhaus,
673 T., Bibi, C., Jann, C., Smith, J. D., Steinmetz, L. M., Rapaport, D., Storchová, Z.,
674 Schuldiner, M., Boos, F., & Herrmann, J. M. (2021). The chaperone-binding activity of the
675 mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced
676 stress. *Cell Reports*, 35(1), 108936.

677 Bahr, K. D., Jokiel, P. L., & Rodgers, K. S. (2015). The 2014 coral bleaching and freshwater
678 flood events in Kāne'ohe Bay, Hawai'i. *PeerJ*, 3, e1136.

679 Bahr, K. D., Jokiel, P. L., & Rodgers, K. S. (2016). Seasonal and annual calcification rates of the
680 Hawaiian reef coral, *Montipora capitata*, under present and future climate change
681 scenarios. *ICES Journal of Marine Science: Journal Du Conseil*, 74(4), 1083–1091.

682 Baird, A. H., Bhagooli, R., Ralph, P. J., & Takahashi, S. (2009). Coral bleaching: the role of the
683 host. *Trends in Ecology & Evolution*, 24(1), 16–20.

684 Baird, A. H., & Marshall, P. A. (2002). Mortality, growth and reproduction in scleractinian corals
685 following bleaching on the Great Barrier Reef. *Marine Ecology Progress Series*, 237, 133–
686 141.

687 Baker, A. C. (2001). Reef corals bleach to survive change. *Nature*, 411(6839), 765–766.

688 Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O., & Rodriguez-
689 Lanetty, M. (2012). Coral thermal tolerance: tuning gene expression to resist thermal
690 stress. *PLoS One*, 7(11), e50685.

691 Bertucci, A., Moya, A., Tambutté, S., Allemand, D., Supuran, C. T., & Zoccola, D. (2013).
692 Carbonic anhydrases in anthozoan corals—A review. *Bioorganic & Medicinal Chemistry*,
693 21(6), 1437–1450.

694 Capasso L, Aranda M, Cui G, Pousse M, Tambutté S, Zoccola D. Investigating calcification-
695 related candidates in a non-symbiotic scleractinian coral, *Tubastraea* spp. *Sci Rep.* 2022
696 Aug 6;12(1):13515. doi: 10.1038/s41598-022-17022-4. PMID: 35933557; PMCID:
697 PMC9357087.

698 Chaijaroen, P. (2022). Tradeoffs between fertility and child development attributes: evidence
699 from coral bleaching in Indonesia. *Environment and Development Economics*, 27(4), 295–
700 315.

701 Cleves, P. A., Krediet, C. J., Lehnert, E. M., Onishi, M., & Pringle, J. R. (2020). Insights into
702 coral bleaching under heat stress from analysis of gene expression in a sea anemone
703 model system. *Proceedings of the National Academy of Sciences of the United States of
704 America*, 117(46), 28906–28917.

705 Coles, S. L., & Brown, B. E. (2003). Coral bleaching — capacity for acclimatization and
706 adaptation. In *Advances in Marine Biology* (Vol. 46, pp. 183–223). Academic Press.

707 Cox, E. F. (2007). Continuation of sexual reproduction in *Montipora capitata* following bleaching.
708 *Coral Reefs*, 26(3), 721–724.

709 Davies, S. W., Marchetti, A., Ries, J. B., & Castillo, K. D. (2016). Thermal and pCO₂ Stress Elicit
710 Divergent Transcriptomic Responses in a Resilient Coral. *Frontiers in Marine Science*, 3.
711 <https://doi.org/10.3389/fmars.2016.00112>

712 Davis, T. L. O. 1982. Maturity and sexuality in Barramundi, *Lates calcarifer* (Bloch), in the
713 Northern Territory and south-eastern Gulf of Carpentaria. *Aust. J. Mar. Freshw. Res.* 33:
714 529–545.

715 DeSalvo, M. K., Sunagawa, S., Fisher, P. L., Voolstra, C. R., Iglesias-Prieto, R., & Medina, M.
716 (2010). Coral host transcriptomic states are correlated with *Symbiodinium* genotypes.
717 *Molecular Ecology*, 19(6), 1174–1186.

718 DeSalvo, M. K., Voolstra, C. R., Sunagawa, S., Schwarz, J. A., Stillman, J. H., Coffroth, M. A.,
719 Szmant, A. M., & Medina, M. (2008). Differential gene expression during thermal stress

720 and bleaching in the Caribbean coral *Montastraea faveolata*. *Molecular Ecology*, 17(17),
721 3952–3971.

722 Dorsten, F. A., Wyss, M., Wallimann, T., & Nicolay, K. (1997). Activation of sea-urchin sperm
723 motility is accompanied by an increase in the creatine kinase exchange flux. *Biochemical
724 Journal*, 325 (Pt 2)(Pt 2), 411–416.

725 Edmondson CH. 1929. Growth of Hawaiian corals. Honolulu: Bishop Museum Press.

726 Edmunds, P. J. (1994). Evidence that reef-wide patterns of coral bleaching may be the result of
727 the distribution of bleaching-susceptible clones. *Marine Biology*, 121(1), 137–142.

728 Fitt, W. K., & Warner, M. E. (1995). Bleaching Patterns of Four Species of Caribbean Reef
729 Corals. *The Biological Bulletin*, 189(3), 298–307.

730 Frazier, M., Helmkampf, M., Bellinger, M. R., Geib, S. M., & Takabayashi, M. (2017). De novo
731 metatranscriptome assembly and coral gene expression profile of *Montipora capitata* with
732 growth anomaly. *BMC Genomics*, 18(1), 710.

733 González-Pech, R. A., Ragan, M. A., & Chan, C. X. (2017). Signatures of adaptation and
734 symbiosis in genomes and transcriptomes of *Symbiodinium*. *Scientific Reports*, 7(1),
735 15021.

736 Grottoli, A. G., Rodrigues, L. J., & Palardy, J. E. (2006). Heterotrophic plasticity and resilience in
737 bleached corals. *Nature*, 440(7088), 1186–1189.

738 Grottoli, A. G., Warner, M. E., Levas, S. J., Aschaffenburg, M. D., Schoepf, V., McGinley, M.,
739 Baumann, J., & Matsui, Y. (2014). The cumulative impact of annual coral bleaching can
740 turn some coral species winners into losers. *Global Change Biology*, 20(12), 3823–3833.

741 Guder, C., Philipp, I., Lengfeld, T., Watanabe, H., Hobmayer, B., & Holstein, T. W. (2006). The
742 Wnt code: cnidarians signal the way. *Oncogene*, 25(57), 7450–7460.

743 Hagedorn, M., Carter, V. L., Lager, C., Camperio Ciani, J. F., Dygert, A. N., Schleiger, R. D., &
744 Michael Henley, E. (2016). Potential bleaching effects on coral reproduction. *Reproduction,
745 Fertility, and Development*, 28(8), 1061–1071.

746 Helmkampf, M., Bellinger, M. R., Frazier, M., & Takabayashi, M. (2019). Symbiont type and
747 environmental factors affect transcriptome-wide gene expression in the coral *Montipora*
748 *capitata*. *Ecology and Evolution*, 9(1), 378–392.

749 Henley, E. Michael, Mariko Quinn, Jessica Bouwmeester, Jonathan Daly, Nikolas Zuchowicz,
750 Claire Lager, Daniel W. Bailey, and Mary Hagedorn. Reproductive plasticity of Hawaiian
751 *Montipora* corals following thermal stress. *Scientific Reports* 11(1) (2021): 12525.

752 Heyward AJ (1986) Sexual reproduction in five species of the coral Montipora. In: Jokiel PH,
753 Richmond RH, Rogers R (eds) *Coral reef population biology*. Honolulu, University of
754 Hawaii, pp 170–178

755 Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world's coral
756 reefs. *Marine and Freshwater Research*, 50(8), 839–866.

757 Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E.,
758 Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M.,
759 Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., & Hatziolos, M. E. (2007). Coral
760 reefs under rapid climate change and ocean acidification. *Science*, 318(5857), 1737–1742.

761 Hughes, A. D., Grottoli, A. G., Pease, T. K., & Matsui, Y. (2010). Acquisition and assimilation of
762 carbon in non-bleached and bleached corals. *Marine Ecology Progress Series*, 420, 91–
763 101.

764 Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird,
765 A. H., Babcock, R. C., Beger, M., Bellwood, D. R., Berkelmans, R., Bridge, T. C., Butler, I.
766 R., Byrne, M., Cantin, N. E., Comeau, S., Connolly, S. R., Cumming, G. S., Dalton, S. J.,
767 Diaz-Pulido, G., ... Wilson, S. K. (2017). Global warming and recurrent mass bleaching of
768 corals. *Nature*, 543(7645), 373–377.

769 Jaffe M, Padilla-Gamiño JL, Brook NL, Rodrigues LJ (2023) Coral trophic pathways impact the
770 allocation of carbon and nitrogen for egg development after bleaching. *Frontiers in Ecology
771 and Evolution* 10.3389/fevo.2023.1251220

772 Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C., & Toonen, R. J. (2020). The
773 legacy of stress: Coral bleaching impacts reproduction years later. *Functional Ecology*,
774 34(11), 2315–2325.

775 Jokiel PL. 1991. Jokiel's illustrated scientific guide to Kāne'ohe Bay.

776 Jokiel, P. L., & Brown, E. K. (2004). Global warming, regional trends and inshore environmental
777 conditions influence coral bleaching in Hawaii. *Global Change Biology*, 10(10), 1627–1641.

778 Jokiel, P. L., & Coles, S. L. (1990). Response of Hawaiian and other Indo-Pacific reef corals to
779 elevated temperature. *Coral Reefs* , 8(4), 155–162.

780 Jokiel, P. L., & Coles, S. L. (1977). Effects of temperature on the mortality and growth of
781 Hawaiian reef corals. *Marine Biology*, 43, 201-208.

782 Jokiel, P. L., Ito, R. Y., & Liu, P. M. (1985). Night irradiance and synchronization of lunar release
783 of planula larvae in the reef coral *Pocillopora damicornis*. *Marine Biology*, 88(2), 167–174.

784 Kaniewska, P., Chan, C.-K. K., Kline, D., Ling, E. Y. S., Rosic, N., Edwards, D., Hoegh-
785 Guldberg, O., & Dove, S. (2015). Transcriptomic Changes in Coral Holobionts Provide
786 Insights into Physiological Challenges of Future Climate and Ocean Change. *PloS One*,
787 10(10), e0139223.

788 Kenkel, C. D., Meyer, E., & Matz, M. V. (2013). Gene expression under chronic heat stress in
789 populations of the mustard hill coral (*Porites astreoides*) from different thermal
790 environments. *Molecular Ecology*, 22(16), 4322–4334.

791 LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C.
792 R., & Santos, S. R. (2018). Systematic Revision of Symbiodiniaceae Highlights the
793 Antiquity and Diversity of Coral Endosymbionts. *Current Biology: CB*, 28(16), 2570–
794 2580.e6.

795 Lapébie, P., Ruggiero, A., Barreau, C., Chevalier, S., Chang, P., Dru, P., Houlston, E., &
796 Momose, T. (2014). Differential responses to Wnt and PCP disruption predict expression
797 and developmental function of conserved and novel genes in a cnidarian. *PLoS Genetics*,

798 10(9), e1004590.

799 Leinbach, S. E., Speare, K. E., Rossin, A. M., Holstein, D. M., & Strader, M. E. (2021). Energetic
800 and reproductive costs of coral recovery in divergent bleaching responses. *Scientific
801 Reports*, 11(1), 23546.

802 Levitan, D. R., Boudreau, W., Jara, J., & Knowlton, N. (2014). Long-term reduced spawning in
803 *Orbicella* coral species due to temperature stress. *Marine Ecology Progress Series*, 515,
804 1–10.

805 Levitan, D. R., & Petersen, C. (1995). Sperm limitation in the sea. *Trends in Ecology &
806 Evolution*, 10(6), 228–231.

807 Loh, K. M., van Amerongen, R., & Nusse, R. (2016). Generating Cellular Diversity and Spatial
808 Form: Wnt Signaling and the Evolution of Multicellular Animals. *Developmental Cell*, 38(6),
809 643–655.

810 Lough, J. M., Anderson, K. D., & Hughes, T. P. (2018). Increasing thermal stress for tropical
811 coral reefs: 1871–2017. *Scientific reports*, 8(1), 6079.

812 Maragos JE. 1972. A study of the ecology of Hawaiian reef corals. PhD Thesis, University of
813 Hawai'i, Honolulu

814 Maor-Landaw, K., & Levy, O. (2016). Gene expression profiles during short-term heat stress;
815 branching vs. massive Scleractinian corals of the Red Sea. *PeerJ*, 4, e1814.

816 Marshall, P. A., & Baird, A. H. (2000). Bleaching of corals on the Great Barrier Reef: differential
817 susceptibilities among taxa. *Coral Reefs*, 19(2), 155–163.

818 McLachlan, R. H., Price, J. T., Solomon, S. L., & Grottoli, A. G. (2020). Thirty years of coral
819 heat-stress experiments: a review of methods. *Coral Reefs*, 39(4), 885–902.

820 Mendes, J. M., & Woodley, J. D. (2002). Effect of the 1995-1996 bleaching event on polyp
821 tissue depth, growth, reproduction and skeletal band formation in *Montastraea annularis*.
822 *Marine Ecology Progress Series*, 235, 93–102.

823 Michalek-Wagner, K., & Willis, B. L. (2001). Impacts of bleaching on the soft coral *Lobophytum*

824 compactum. I. Fecundity, fertilization and offspring viability. *Coral Reefs*, 19, 231-239.

825 Moya, A., Tambutté, S., Bertucci, A., Tambutté, E., Lotto, S., Vullo, D., Supuran, C. T.,
826 Allemand, D., & Zoccola, D. (2008). Carbonic anhydrase in the scleractinian coral
827 *Stylophora pistillata*: characterization, localization, and role in biomineralization. *The*
828 *Journal of Biological Chemistry*, 283(37), 25475–25484.

829 Muscatine, L., Falkowski, P. G., Porter, J. W., & Dubinsky, Z. (1984). Fate of photosynthetic
830 fixed carbon in light- and shade-adapted colonies of the symbiotic coral *Stylophora*
831 *pistillata*. *Proceedings of the Royal Society of London*, 222(1227), 181–202.

832 Omori, M. (2011). Degradation and restoration of coral reefs: Experience in Okinawa, Japan.
833 *Marine Biology Research* , 7(1), 3–12.

834 Padilla-Gamiño, J. L., & Gates, R. D. (2012). Spawning dynamics in the Hawaiian reef-building
835 coral *Montipora capitata*. *Marine Ecology Progress Series*, 449, 145–160.

836 Padilla-Gamiño, J. L., Hédonin, L., Waller, R. G., Smith, D., Truong, W., & Gates, R. D. (2014).
837 Sedimentation and the reproductive biology of the Hawaiian reef-building coral *Montipora*
838 *capitata*. *The Biological Bulletin*, 226(1), 8–18.

839 Parker, N. R., P. V. Mladenov, and K. R. Grange. 1997. Reproductive biology of the
840 antipatharian black coral *Antipathes fiordensis* in Doubtful Sound, Fiordland, New Zealand.
841 Mar. Biol. 130: 11–22.

842 Petrou, K., Nunn, B. L., Padula, M. P., Miller, D. J., & Nielsen, D. A. (2021). Broad scale
843 proteomic analysis of heat-destabilised symbiosis in the hard coral *Acropora millepora*.
844 *Scientific Reports*, 11(1), 19061.

845 Pinzón, J. H., Kamel, B., Burge, C. A., Harvell, C. D., Medina, M., Weil, E., & Mydlarz, L. D.
846 (2015). Whole transcriptome analysis reveals changes in expression of immune-related
847 genes during and after bleaching in a reef-building coral. *Royal Society Open Science*,
848 2(4), 140214.

849 Pratchett, M. S., Munday, P., Wilson, S. K., Graham, N. A., Cinner, J. E., Bellwood, D. R.,

850 Jones, G. P., Polunin, N. V., & McClanahan, T. R. (2008). Effects of climate-induced coral
851 bleaching on coral-reef fishes. *Ecological and Economic Consequences. Oceanography*
852 and *Marine Biology: Annual Review*, 46, 251–296.

853 Ritson-Williams, R., & Gates, R. D. (2020). Coral community resilience to successive years of
854 bleaching in Kāne'ohe Bay, Hawai'i. *Coral Reefs*, 39(3), 757–769.

855 Roach, T. N. F., Dilworth, J., H, C. M., Jones, A. D., Quinn, R. A., & Drury, C. (2021).
856 Metabolomic signatures of coral bleaching history. *Nature Ecology & Evolution*, 5(4), 495–
857 503.

858 Rodrigues, L. J., & Grottoli, A. G. (2007). Energy reserves and metabolism as indicators of coral
859 recovery from bleaching. *Limnology and Oceanography*, 52(5), 1874–1882.

860 Rodrigues, L. J., Grottoli, A. G., & Pease, T. K. (2008). Lipid class composition of bleached and
861 recovering *Porites compressa* Dana, 1846 and *Montipora capitata* Dana, 1846 corals from
862 Hawaii. *Journal of Experimental Marine Biology and Ecology*, 358(2), 136–143.

863 Rodrigues, L. J., & Padilla-Gamiño, J. L. (2022). Trophic provisioning and parental trade-offs
864 lead to successful reproductive performance in corals after a bleaching event. *Scientific
865 Reports*, 12(1), 18702.

866 Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E., & Yossi, L. (2009). The role of
867 microorganisms in coral bleaching. *The ISME Journal*, 3(2), 139–146.

868 Ruiz-Jones, L. J., & Palumbi, S. R. (2017). Tidal heat pulses on a reef trigger a fine-tuned
869 transcriptional response in corals to maintain homeostasis. *Science Advances*, 3(3),
870 e1601298.

871 Sanders, S. M., & Cartwright, P. (2015). Patterns of Wnt signaling in the life cycle of
872 *Podocoryna carneae* and its implications for medusae evolution in Hydrozoa (Cnidaria).
873 *Evolution & Development*, 17(6), 325–336.

874 Seneca, F. O., & Palumbi, S. R. (2015). The role of transcriptome resilience in resistance of
875 corals to bleaching. *Molecular Ecology*, 24(7), 1467–1484.

876 Stanley, E. L., Hume, R., & Coughtrie, M. W. H. (2005). Expression profiling of human fetal
877 cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in
878 detoxification. *Molecular and Cellular Endocrinology*, 240(1-2), 32–42.

879 Studivan, M. S., & Voss, J. D. (2020). Transcriptomic plasticity of mesophotic corals among
880 natural populations and transplants of *Montastraea cavernosa* in the Gulf of Mexico and
881 Belize. *Molecular Ecology*, 29(13), 2399–2415.

882 Szmant-Froelich, A., Yevich, P., & Pilson, M. E. (1980). Gametogenesis and early development
883 of the temperate coral *Astrangia danae* (Anthozoa: Scleractinia). *The Biological Bulletin*,
884 158(2), 257-269.

885 Szmant-Froelich, A., Reutter, M., & Riggs, L. (1985). Sexual reproduction of *Favia fragum*
886 (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico.
887 *Bulletin of Marine Science*, 37(3), 880-892.

888 Szmant, A. M., & Gassman, N. J. (1990). The effects of prolonged “bleaching” on the tissue
889 biomass and reproduction of the reef coral *Montastrea annularis*. *Coral Reefs* , 8(4), 217–
890 224.

891 Tansik, A. L., Fitt, W. K., & Hopkinson, B. M. (2015). External carbonic anhydrase in three
892 Caribbean corals: quantification of activity and role in CO₂ uptake. *Coral Reefs* , 34(3),
893 703–713.

894 Thomas, L., López, E. H., Morikawa, M. K., & Palumbi, S. R. (2019). Transcriptomic resilience,
895 symbiont shuffling, and vulnerability to recurrent bleaching in reef-building corals.
896 *Molecular Ecology*, 28(14), 3371–3382.

897 Thomas, L., & Palumbi, S. R. (2017). The genomics of recovery from coral bleaching.
898 *Proceedings. Biological Sciences / The Royal Society*, 284(1865).
899 <https://doi.org/10.1098/rspb.2017.1790>

900 Traylor-Knowles, N., Rose, N. H., & Palumbi, S. R. (2017). The cell specificity of gene
901 expression in the response to heat stress in corals. *The Journal of Experimental Biology*,

902 220(Pt 10), 1837–1845.

903 Traylor-Knowles, N., Rose, N. H., Sheets, E. A., & Palumbi, S. R. (2017). Early Transcriptional
904 Responses during Heat Stress in the Coral *Acropora hyacinthus*. *The Biological Bulletin*,
905 232(2), 91–100.

906 Van Etten, J., Shumaker, A., Mass, T., Putnam, H. M., & Bhattacharya, D. (2020).
907 Transcriptome analysis provides a blueprint of coral egg and sperm functions. *PeerJ*, 8,
908 e9739.

909 van Hoidonk, R., Maynard, J. A., & Planes, S. (2013). Temporary refugia for coral reefs in a
910 warming world. *Nature Climate Change*, 3(5), 508–511.

911 van Oppen, M. J. H., Oliver, J. K., Putnam, H. M., & Gates, R. D. (2015). Building coral reef
912 resilience through assisted evolution. *Proceedings of the National Academy of Sciences of*
913 *the United States of America*, 112(8), 2307–2313.

914 van Woesik, R., Shlesinger, T., Grottoli, A. G., Toonen, R. J., Vega Thurber, R., Warner, M. E.,
915 Marie Hulver, A., Chapron, L., McLachlan, R. H., Albright, R., Crandall, E., DeCarlo, T. M.,
916 Donovan, M. K., Eirin-Lopez, J., Harrison, H. B., Heron, S. F., Huang, D., Humanes, A.,
917 Krueger, T., ... Zaneveld, J. (2022). Coral-bleaching responses to climate change across
918 biological scales. *Global Change Biology*, 28(14), 4229–4250.

919 Vidal-Dupiol, J., Adjeroud, M., Roger, E., Foure, L., Duval, D., Mone, Y., ... & Mitta, G. (2009).
920 Coral bleaching under thermal stress: putative involvement of host/symbiont recognition
921 mechanisms. *BMC physiology*, 9, 1-16.

922 Vidal-Dupiol, J., Dheilly, N. M., Rondon, R., Grunau, C., Cosseau, C., Smith, K. M., ... & Mitta,
923 G. (2014). Thermal stress triggers broad *Pocillopora damicornis* transcriptomic remodeling,
924 while *Vibrio coralliilyticus* infection induces a more targeted immuno-suppression response.
925 *PloS one*, 9(9), e107672.

926 Wall, C. B., Ritson-Williams, R., Popp, B. N., & Gates, R. D. (2019). Spatial variation in the
927 biochemical and isotopic composition of corals during bleaching and recovery. *Limnology*

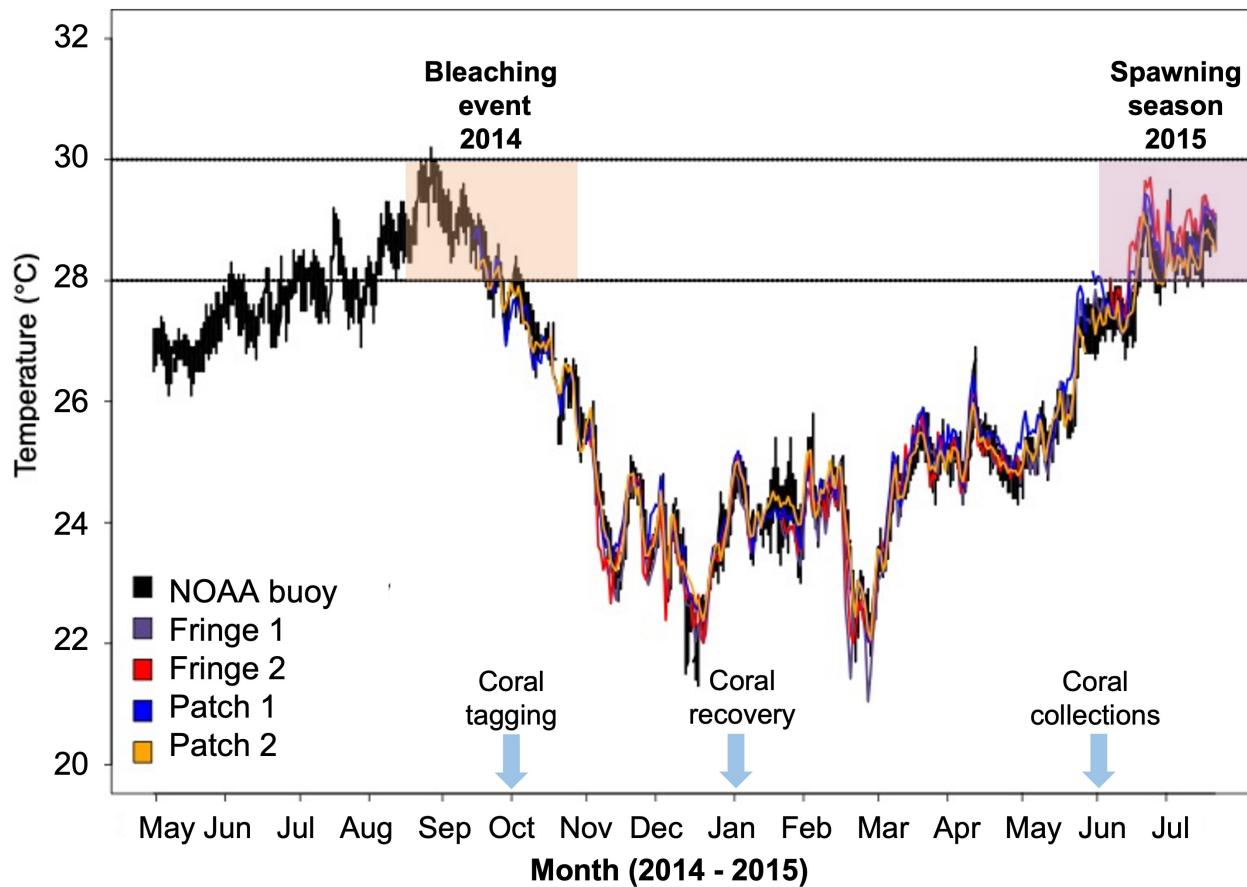
928 and *Oceanography*, 64(5), 2011–2028.

929 Ward, S., & Harrison, P. (2000). Changes in gametogenesis and fecundity of acroporid corals
930 that were exposed to elevated nitrogen and phosphorus during the ENCORE experiment.
931 *Journal of Experimental Marine Biology and Ecology*, 246(2), 179–221.


932 Weis, V. M., Smith, G. J., & Muscatine, L. (1989). A “CO₂ supply” mechanism in zooxanthellate
933 cnidarians: role of carbonic anhydrase. *Marine Biology*, 100(2), 195–202.

934 Williams, A., Pathmanathan, J. S., Stephens, T. G., Su, X., Chiles, E. N., Conetta, D., Putnam,
935 H. M., & Bhattacharya, D. (2021). Multi-omic characterization of the thermal stress
936 phenotype in the stony coral *Montipora capitata*. *PeerJ*, 9, e12335.

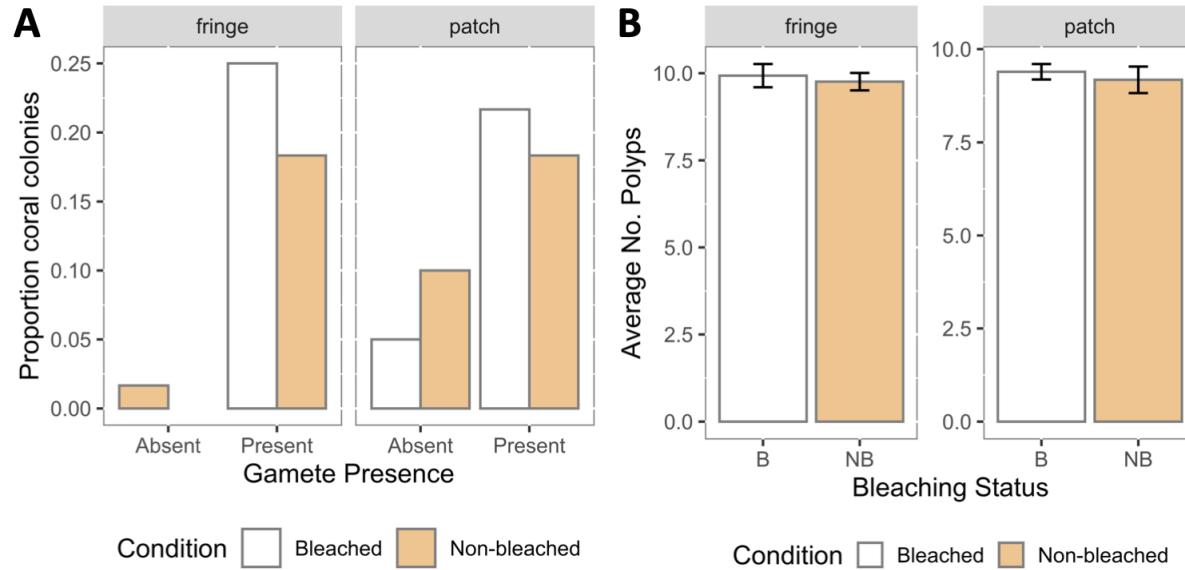
937 Zhang, Y., Ip, J. C.-H., Xie, J. Y., Yeung, Y. H., Sun, Y., & Qiu, J.-W. (2022). Host–symbiont
938 transcriptomic changes during natural bleaching and recovery in the leaf coral *Pavona*
939 *decussata*. *The Science of the Total Environment*, 806, 150656.


940
941 The data that support the findings of this study are openly available in
942 <https://github.com/Nunn-Lab/Publication-Mcapitata-bleaching-transcriptomics>
943
944 Data available:
945 Egg and sperm development (gamete stages), egg size, polyp fecundity (eggs per polyp),
946 transcript counts.
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

965 **Figure 1**
966 **Map of study sites (Reef 44, K4, K5, and HIMB) at Kāne'ohe Bay, Hawai'i.**

967
968
969
970
971
972
973
974
975
976
977
978
979
980

981 **Figure 2**
982 Thermal history in Kāne‘ohe Bay at two fringing reefs (K4 and K5), two patch reefs (HIMB
983 and reef 44) and NOAA buoy station located near Moku o Loe Island (HIMB). Figure
984 shows the timing when we tagged vulnerable and susceptible colonies (bleached or non-
985 bleached), when colonies recovered and when we collected the samples to assess
986 reproductive characteristics.
987


988
989
990
991
992
993
994
995
996
997
998
999
1000

1001 **Figure 3**

1002 **Gamete presence and fecundity in bleached and non-bleached colonies of *Montipora***

1003 ***capitata***

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

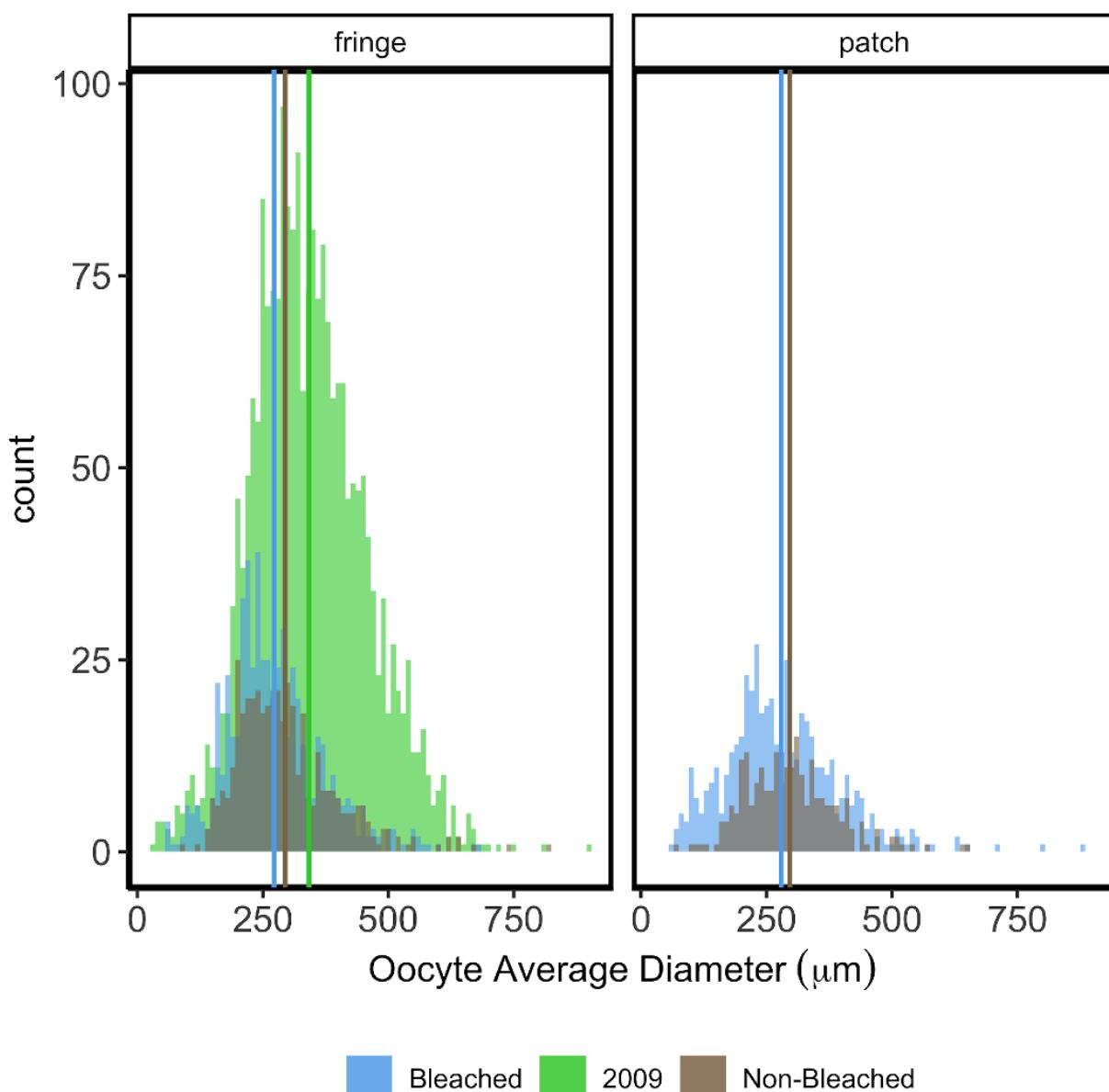
1023

1024

1025

1026

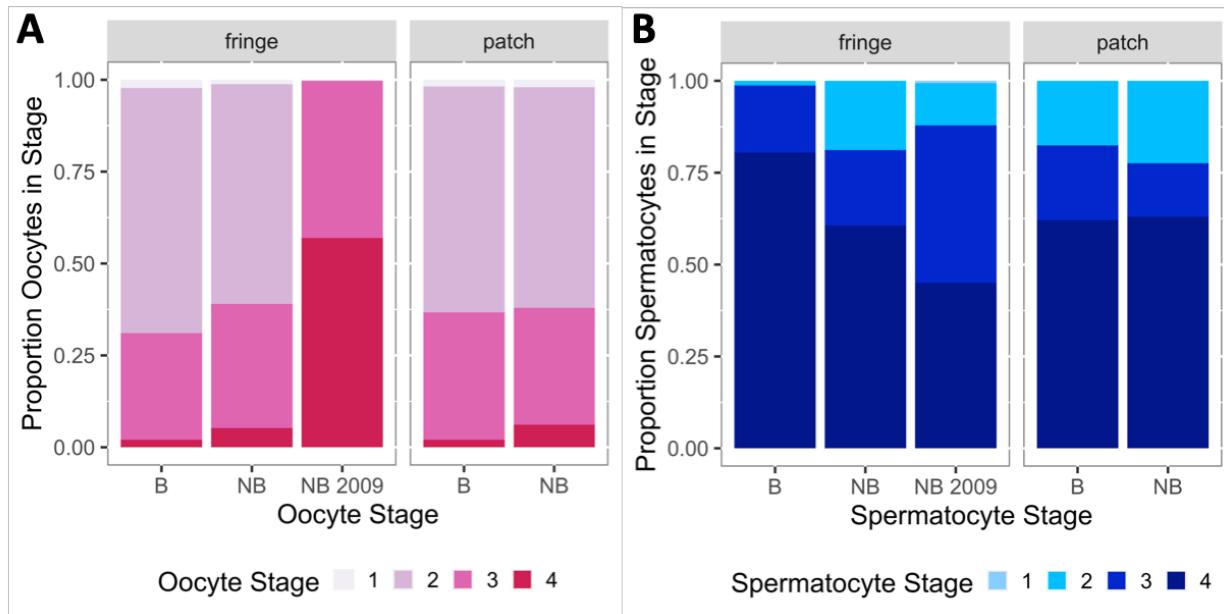
1027


1028

1029

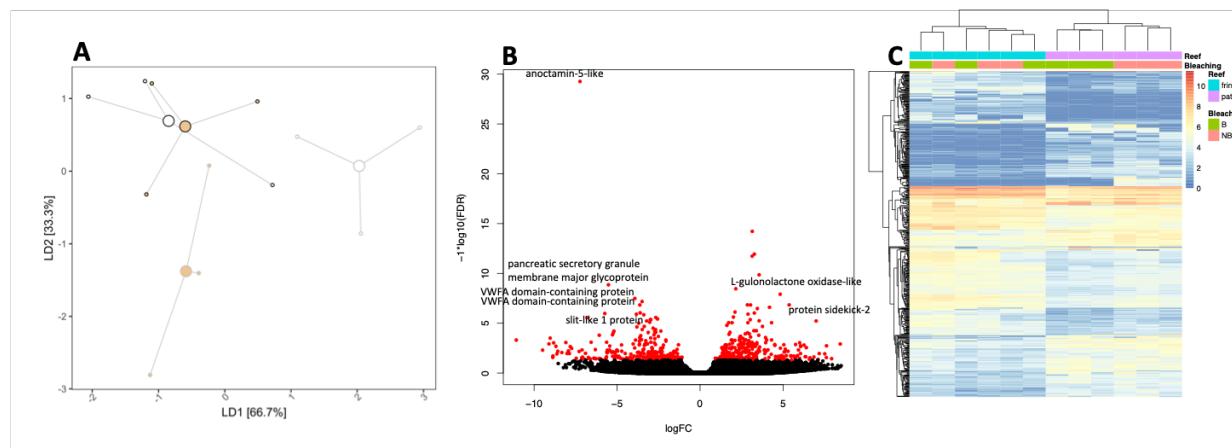
1030
1031
1032
1033

Figure 4


Oocyte size distribution in bleached and non-bleached colonies of *Montipora capitata*.
Vertical lines represent mean values.

1034
1035
1036
1037
1038
1039
1040
1041
1042

1043
1044
1045
1046
1047


Figure 5
Oocyte and spermatocyst stages in bleached and non-bleached colonies of *Montipora capitata*

1072 **Figure 6**

1073 **A. Discriminant analysis of principal components of bleached (white) and non-bleached**
1074 **(tan) *M. capitata* from patch reef (gray outline) and fringing reef (black outline).**
1075 **Transcripts loaded on LD1 represent 66.7% of the variation between groups; transcripts**
1076 **loaded on LD2 represent 33.3% of the variation between groups. B. Differentially**
1077 **expressed genes (DEGs) between reef types. The volcano plot shows the 563 DEGs in**
1078 **red; transcripts not differentially expressed are in black. Positive log fold change (LFC)**
1079 **transcripts were higher at the fringing reef and negative LFC transcripts were higher at**
1080 **the patch reef. C The heat map represents the DEG transcripts in each sample, with blue**
1081 **representing lower expression and red representing higher expression.**

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

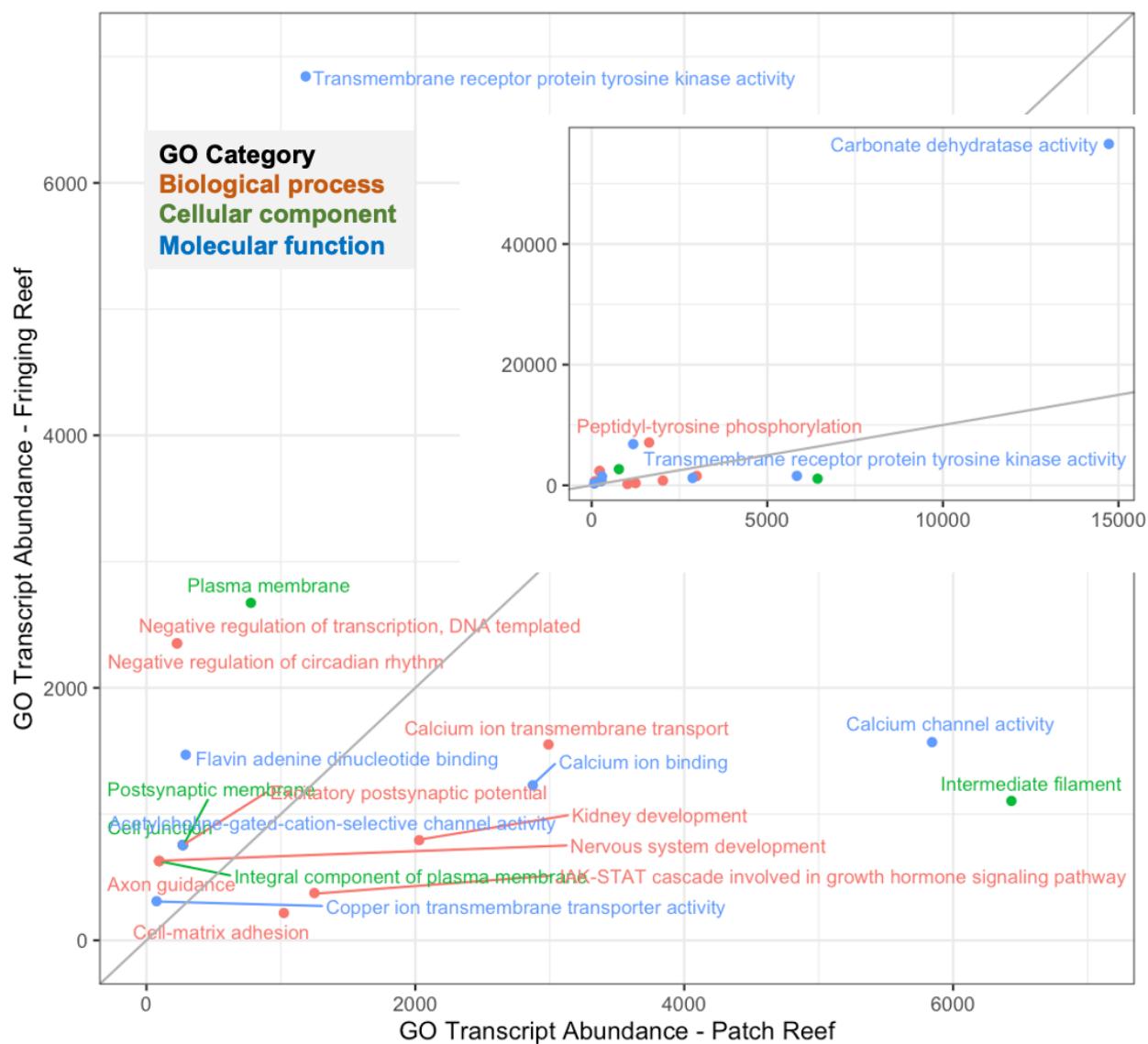
1100

1101

1102

1103

1104


1105

1106 **Figure 7**

1107 **GO terms enriched in the significant DEGs between reef types. Transcript abundance for**
1108 **the patch reef for each GO term is plotted on the x-axis and abundance for the fringing**
1109 **reef is on the y-axis. Terms are colored by GO category. The gray line represents the 1:1**
1110 **line such that GO terms lying above the line are at higher abundance in fringing reef**
1111 **transcriptomes and those below the line are at higher abundance from the patch reef.**
1112 **The inset graph is the entire dataset; the full plot is zoomed in to exclude the highly**
1113 **expressed carbonate dehydratase activity.**

1114

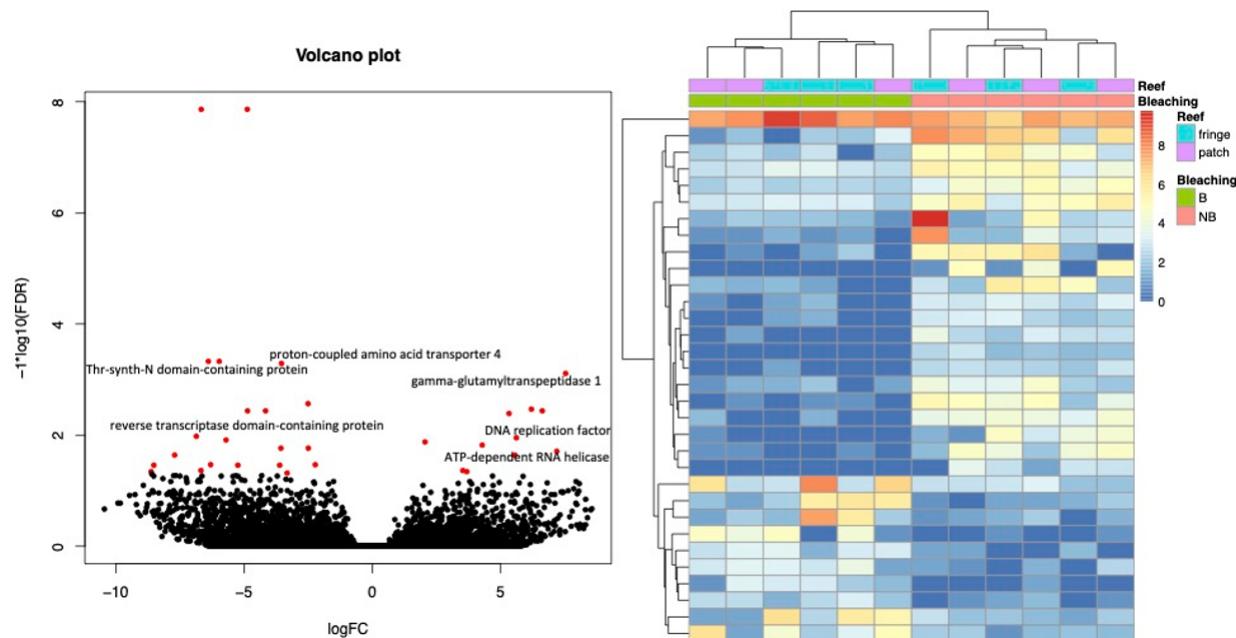
1115

1116

1117

1118

1119


1120

1121

1122 **Figure 8**

1123 **Differentially expressed genes between bleached and non-bleached corals. The volcano**
1124 **plot (left) shows the 32 DEGs in red; transcripts not differentially expressed are in black.**
1125 **Positive log fold change (LFC) transcripts were higher in bleached corals and negative**
1126 **LFC transcripts were higher in non-bleached. The heat map on the right represents the**
1127 **DEG transcripts in each sample, with blue representing lower expression and red**
1128 **representing higher expression.**

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150