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ABSTRACT

Induced pluripotent stem cell (iPSC) derived hippocampal dentate granule cell-like neurons from individuals with bipolar
disorder (BD) are hyperexcitable and more spontaneously active relative to healthy control (HC) neurons. These abnormalities
are normalised after the application of lithium in neurons derived from lithium responders (LR) only. How these abnormalities
impact hippocampal microcircuit computation is not understood. We aimed to investigate the impacts of BD-associated
abnormal granule cell (GC) activity on pattern separation (PS) using a computational model of the dentate gyrus (DG). We
used parameter optimization to fit the parameters of biophysically realistic granule cell (GC) models to electrophysiological
data from iPSC GCs from patients with BD. These cellular models were incorporated into DG networks to assess impacts
on PS using an adapted spatiotemporal task. Relationships between BD, lithium and spontaneous activity were analysed
using linear mixed effects modelling. Lithium and BD negatively impacted PS, consistent with clinical reports of cognitive
slowing and memory impairment during lithium therapy. By normalising spontaneous activity levels, lithium improved PS
performance in LRs only. Improvements in PS after lithium therapy in LRs may therefore be attributable to the normalisation
of spontaneous activity levels, rather than reductions in GC intrinsic excitability as we hypothesised. Our results agree with a
hypothesised relationship between behavioural mnemonic discrimination and DG PS, as previous research has suggested that
mnemonic discrimination improves after lithium therapy in lithium responders only. Our work can be expanded on in the
future by simulating the effects of lithium-induced neurogenesis on PS.

1 INTRODUCTION

Bipolar disorder (BD) is a mood disorder with unknown aeti-
ology characterised by recurrent episodes of mania and depres-
sion [1], as well as cognitive impairments that are functionally
impactful [2, 3] and persist during euthymia [4]. Both encod-
ing and retrieval processes for verbal material are impacted
[5–7], and additional studies link BD with poor autobiographi-
cal memory specificity [8–10] and recognition memory deficits
[11, 12]. Identifying the neural mechanisms of neurocognitive
impairment may inform treatment development and reduce
disease burden.

The hippocampus is important for both memory and emo-
tion, and may be involved in the pathogenesis of BD. The
hippocampus is critical for encoding complex associative and
autobiographical memories [13–15], and is ideally suited to
promote contextually appropriate responses because of its con-
nectivity with brain systems involved in executive functioning,

motivation, stress response, and emotion [16, 17]. Recent theo-
ries have proposed that temporal context-dependent represen-
tations created by the integration of amygdalar and prefrontal
inputs by the hippocampus may constrain emotional responses
to their appropriate contexts, which may protect against psy-
chopathology [17]. Disruptions in hippocampal function will
therefore not only impact memory processes, but also have
downstream impacts on emotion and cognition by influencing
dynamics within cortico-limbic-subcortical circuits, and this
dynamic role of the hippocampus has been proposed to play a
large role in BD pathogenesis [18]. Indeed, anatomical, func-
tional imaging, and physiological hippocampal abnormalities
have been reported in BD, and are reviewed briefly below.

Hippocampal abnormalities in BD include reduced hip-
pocampal volume, reduced inhibitory interneuron expression,
and an increase in recurrent excitatory projections between
dentate granule cells as reported in post-mortem studies [19–
21] (for review, see [18]). A meta-analysis of functional mag-
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netic resonance imaging studies has reported hyperactivity in
limbic (i.e., parahippocampal, hippocampal and amygdalar)
areas in BD relative to healthy individuals [22]. Lithium,
the gold-standard prophylactic for BD, may protect against
BD-associated hippocampal volume loss [23, 24]. In summary,
these studies demonstrate that the hippocampus is a brain
area of interest in BD, but do not describe the physiological
abnormalities that would impact neural computation, leading
to the cognitive deficits described earlier.

Induced pluripotent stem cell (iPSC) technology has been
recently used to create hippocampal cell models in vitro from
stem cells derived from individuals with BD, to facilitate
study of the cellular physiological abnormalities of BD [25, 26].
Lithium responsive and non-responsive BD iPSC models of
the pyramidal CA3 neuron and dentate granule cell (GC) have
been created to date, and these neurons indeed have abnormal
physiological properties that differ between models derived
from lithium responders (LR) and lithium non-responders
(NR)[25–28]. Both LR and NR iPSC neurons are hyperex-
citable relative to healthy controls, and this hyperexcitability
is normalised after application of lithium only for neurons
derived from LRs [26]. LR-BD cell models also demonstrate
elevated spontaneous activity levels relative to NR-BD and
healthy control models; lithium normalises spontaneous activ-
ity levels in LR neurons as well as hyperexcitability [25]. In
other words, response to lithium at the cellular level corre-
sponds to the patient’s clinical response to lithium, suggesting
that this cellular phenomenon may be a useful biomarker of
treatment response in BD. These neurons may also play a core
role in BD’s pathophysiology, and explain lithium’s mechanism
of action. How these abnormalities impact hippocampal mi-
crocircuit neural computation, contributing to BD-associated
cognitive and memory impairments, is not yet understood.

The present study aims to investigate the impacts of GC
hyperexcitability in lithium responsive and nonresponsive BD
on the neural computation called pattern separation (PS)
widely attributed to the hippocampal dentate gyrus (DG).
PS is a computation that involves mapping highly overlap-
ping and similar inputs onto less overlapping and dissimilar
outputs [29], aiding the hippocampus with encoding precise
memories with minimal interference. The DG is ideally suited
to perform this computation due to the sparse, competitive
firing of mature GCs that are tightly controlled by powerful
inhibitory interneurons [30–32]. Evidence from rodent elec-
trophysiology supports the idea of the DG performing PS by
demonstrating that there is less correlated activity in the DG
than in the entorhinal cortex and CA3 in response to slight
changes in environmental stimuli [33, 34]. GCs themselves
also have been shown to produce separated representations
of inputs by shifting output spike times [35, 36], highlighting
the importance of GC physiology for PS. PS within the DG
may also be behaviourally relevant, as it has been hypothe-
sised to underlie performance on high-interference memory
tasks, such as mnemonic discrimination (MD) [37], which is
a phenomenon that involves discerning between stimuli with
highly overlapping qualitative properties [38]. Following this
hypothesis, DG PS deficits may therefore serve as predictors
for deficits in performance on high-interference memory tasks,

such as MD, in BD. Interestingly, results from a pilot study
of MD performance in BD have suggested that lithium may
improve MD in LRs only [39].

This work aims to predict what the consequences of GC
hyperexcitability on DG PS are, building a bridge between in
vitro iPSC [26, 27, 40] and in vivo behavioural work [39]. We
hypothesise that BD-specific GC hyperexcitability will lead to
PS impairments, which will resolve after the normalisation of
hyperexcitability via application of lithium in LRs. We test
this hypothesis by integrating detailed biophysical models of
these abnormal BD GCs into a larger DG network model, and
evaluate the network’s PS abilities. Our study will help elu-
cidate neural computations underlying some of the cognitive
and memory-related impairments in BD.

2 METHODS

To study the effects of LR and NR GC hyperexcitability, spon-
taneous activity, and effects of lithium on PS, we developed
biophysically realistic computational models based on empiri-
cal data from patient-derived iPSC neurons. We outline details
of our approach in the Supplementary Materials, and present
an intuitive description here. A schematic walk-through of our
methods is shown in Figure 1.

2.1 Developing GC Models

2.1.1 Description of iPSC-derived Dentate Gyrus
Granule Cell-Like Neurons

First, iPSC neurons were reprogrammed from lymphocytes
and peripheral blood mononuclear cells (PBMC) taken from
blood samples from consenting participants. Detailed method-
ology describing iPSC differentiation and cell culture protocols
for the iPSC neurons used to inform our modelling have been
previously described [40]. Briefly, blood samples were col-
lected from 8 BD patients (4 LRs, and 4 NRs), and 5 healthy
control (HC) participants (Figure 1A). After lymphocyte and
PBMC isolation, followed by iPSC differentiation as described
previously [26, 40], about half of the neurons per group were
exposed to therapeutic levels of lithium ( 1.5 mM), for 7 days.
Therefore, there were the following number of iPSC GC-like
neurons per group used for whole-cell patch-clamp recordings:
LR: (nLi= 49 , nCTRL= 55); NR: (nLi = 41 , nCTRL= 45);
HC: (nLi = 42, nCTRL=40). Sodium and potassium current-
voltage (IV), and frequency-current (FI) relationships were
acquired in voltage-clamp and current-clamp modes respec-
tively.

2.1.2 Computational Model of a Dentate GC

We then adapted an established computational model of the
hippocampal dentate GC [41–44] implemented in the NEU-
RON simulation environment (v. 8.0) [45]. This model has
two identical dendrites with four compartments each, and a
single compartment for the soma (Figure 1B). Distributed
along the somatodendritic tree are 11 different ion-channels:
fast sodium (Na), fast and slow delayed rectifier potassium, A-
type potassium, large conductance calcium, voltage-dependent
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potassium, small conductance calcium-dependent potassium,
T-type, N-type, and L-type voltage-gated calcium, inward-
rectifier potassium and the tonic GABAA chloride channel.
The dynamics of each of these channels are described by sets
of differential equations that are parameterized to produce
behaviour consistent with what is observed in real-world GCs.
Together, these parameters govern the intrinsic excitability
and behaviour of these model neurons. To ensure these models
captured the behaviour of real-world iPSC-derived neurons
from BD and HC participants, we fit these parameters using
numerical optimization to electrophysiological data described
in Section 2.1.1 (Figure 1B).

2.1.3 Numerical Optimization-Based Fitting of Com-
putational Models to Cellular Data

Parameter optimization was done using evolutionary algo-
rithms in the inspyred (v. 1.0) and NetPyNe (v. 1.0.0.2)
Python packages. The objective function minimized was the
averaged mean squared error between model and iPSC-neuron
FI and IV curves, for iPSC neurons with and without exposure
to lithium (“LITM” and “CTRL”, respectively). This proce-
dure therefore generated six models: HC-CTRL, HC-LITM,
LR-CTRL, LR-LITM, NR-CTRL and NR-LITM. Evolution-
ary algorithms perform parameter optimization by iteratively
mutating, then evaluating the “fitness” of a parameter set [46].
We deemed the model fits to be satisfactory if each simulated
data point fell within the empirical standard error of the mean.

2.1.4 Granule Cell-Like Neuron Models for Lithium
Nonresponders

Experimental data failed to show a statistically significant
effect of lithium exposure on FI and IV relationships for the
NR iPSC GCs, meaning these two curves were statistically
identical. Therefore, to produce a NR-LITM model, we began
with the fitted NR-CTRL model and modified the parameters
by increasing or decreasing their values by a random value
less than 2% of the original parameter’s value to introduce
some noise. This approach yielded two models with slight
differences that have comparable parameter values and bio-
physical behaviour, which we believe are good candidates for
simulating NR-CTRL and NR-LITM conditions.

2.1.5 Simulation of Spontaneous Activity

Randomly selected GCs within the network were equipped
with Poisson spike generators, synapsed onto GC somata, that
randomly produced spikes at the following rates during the
simulation: HC and NRs = 0.25 Hz; LRs = 1Hz, following

previous experimental reports of spontaneous activity levels
[25]. The effect of lithium on spontaneous activity was cap-
tured by setting the LR spontaneous activity level back to HC
levels of 0.25 Hz [25].

2.2 Biophysical Network Model of the Dentate Gyrus

We then incorporated the model GCs into a DG network,
to assess how BD-associated GC electrophysiological abnor-
malities may interfere with PS functioning. We employed a
previously established conductance-based biophysical model of
the DG [42–44], also implemented in the NEURON simulation
environment [45], and used the original model’s geometric and
topological features. Our model included 500 glutamatergic
GCs (as described earlier), 6 GABAergic basket cells (BCs), 15
glutamatergic mossy cells (MCs), 6 GABAergic hilar perforant
path cells (HIPP), and 100 excitatory entorhinal perforant
path (PP) cells (Figure 1C) . As with the GCs, the other cells
in the network (BCs, MCs, HIPP) were modelled as multicom-
partmental Hodgkin-Huxley style neurons with a soma and
varying numbers of dendrites. Details regarding these neurons
can be found in our Supplementary Materials. PP cells were
modelled as point processes that stimulated GCs and BCs.

All biophysical properties were kept the same as in the
original model [42–44]. Parameter values for the connectivity,
cellular biophysics, and synaptic double-exponential functions
can also be found in our Supplementary Materials, and are
also described in our previous study that employed this model
[44].

2.2.1 Spatiotemporal PS task

We adopted a previously established spatiotemporal PS task
to assess our network’s PS functioning [42, 44, 47]. This pro-
tocol involved simulating 24 partially overlapping patterns,
varying smoothly in degrees of overlap, of PP inputs over a 200
ms window. We then assessed whether pairs of the resulting
output pattern representations in the GC layer of our network
were less correlated than the inputs by computing Pearson
correlations (Figure 1D). By using the correlation of input
patterns as x coordinates and the correlation of output repre-
sentations as y coordinates, plotting this relationship between
inputs and outputs will produce a curve that falls below the
leading diagonal if the network is performing PS (Figure 1D).
In other words, highly correlated inputs should be mapped
onto less correlated outputs. We computed a summary PS
index defined as the area between the leading diagonal and
the PS curve (AUCPS). Higher values of AUCPS indicate
stronger PS by the DG network (Figure 1D).
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Figure 1: Schematic of study methodology: from human participants to computational modelling. A) Blood samples were
first collected from individuals with bipolar disorder (BD) (both lithium responders, LRs, and non-responders, NRs) and
healthy controls (HCs), and cells were reprogrammed into granule cell (GC)-like neurons. Half of the GCs were exposed to
lithium, and the electrophysiological properties of these neurons were studied. These results have been previously reported
by Khayachi et al., 2023 [40]. B) We used these electrophysiological data (frequency-current and current-voltage curves
specifically) to fit the parameters of a model GC such that the model generated the same electrophysiological behaviour as
the in vitro GCs. Note: spike trains shown here are for illustrative purposes only, and are not real GC spike trains. C) These
model GCs were then incorporated into a biophysical dentate gyrus (DG) network, to form model DGs for LRs, NRs and
HCs. PP: perforant path, BC: basket cell, HIPP: hilar perforant path cells, MC: mossy cell. Solid lines indicate excitatory
connections, and dashed lines indicate inhibitory connections. N indicates the number of cells per population. This circuit
diagram was adapted from our previous paper [44]. D) The pattern separation (PS) performance of these networks were
then assessed, by presenting the network with a series of partially overlapping PP input patterns, and assessing whether the
resulting output patterns were less correlated. Plotting the correlation between pairs of input patterns and resulting output
patterns against each other generated a PS curve. The area between the diagonal and this pattern separation curve (AUCPS)
summarised the network’s PS abilities, with larger AUCPS values representing better PS.
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2.3 Statistical Analysis

The predicted impacts of group (HC, NR, LR), treatment
(with lithium and without) and spontaneous activity (baseline
vs. pathological) on standardised (i.e., z-scored) PS scores
(AUCPS) were characterised by the following linear mixed
effects model, presented here in R syntax for the lme4 package
in the R programming language [48]:

AUCPS ∼ Group ∗ Lithium ∗ SpontActiv + (1|ID)

where ID refers to each simulation run, which is initialised
with a different random seed to incorporate variability in net-
work connectivity and which GCs are spontaneously active. A
priori power calculations using the simR package in R showed
that 14 simulation runs per experimental condition offered
80% power to detect a 5% change in AUCPS at a statistical
significance threshold of α=0.05 for the three-way interaction.
Model coefficients are reported as standardised effects, in the
number of standard deviations of AUCPS .

2.4 Assessing k winner-take-all dynamics

One strategy proposed to promote PS in the DG is the com-
petitive activation of GCs facilitated by BC lateral inhibition.
In our network, GCs are organised into lamellar clusters de-
fined by BC number, with BCs projecting onto 100 GCs each.
Under a winner-take-all (WTA) paradigm, the stimulation of a
few GCs should lead to the inhibition of the other GCs within
each lamella via the BC projections. This will promote the
selection of only a few GCs to fire, or a sparse coding regime,
supporting PS [32, 49–53]. To further understand the effects
of BD and lithium on PS, we analysed our network’s winner-
take-all dynamics as follows. We treated each spontaneous
stimulation event (described in section 2.1.4) as a randomised

trial, and assessed the aggregate population-level behaviour of
the GCs directly stimulated (or directly activated, “AC”), and
those that were not stimulated (or remaining, “RM”), within
a 10 ms window post-stimulation, one lamella at a time. This
population activity was averaged across 14 simulation runs.
Under a WTA paradigm, we expect a peak in activity within
GCs that are directly activated (these neurons are therefore
the “winners”), and little to no change in behaviour within
GCs that are not directly activated, suggesting tight inhibitory
control, and thus a strict “selection” process, of the neurons
within these lamellar microcircuits.

2.5 Cellular response to negative currents

Given that a WTA mechanism for PS is dependent on the inhi-
bition of GCs, studying GC neuronal sensitivity to inhibition
is essential. For this protocol, current was injected into the
somatic compartment for 1s from -33pA to 0pA in 3pA steps,
and the overall membrane potential was recorded, mirroring
the protocol used for the iPSC GCs in vitro.

3 RESULTS

3.1 Fitting GC model to iPSC data

Results from our parameter fitting procedure are shown in
Supplementary Figure 1, with spike trains for each model
shown in Supplementary Figure 2. Lithium reduces GC hy-
perexcitability in LRs, but not NRs (Figure 2A). Sodium and
potassium current magnitudes are also reduced after lithium
administration in LRs (Figure 2B and C). Lithium also reduces
excitability and sodium and potassium conductances in HCs
(Figure 2). Resulting parameter values after model fitting can
be found in Supplementary Materials, Table 4.

BA C

Figure 2: Model GC electrophysiology for HC, LR and NR models, with and without lithium. A) frequency-current
relationships. BD models are more excitable than HC models, and excitability is reduced for LRs and HCs after lithium
exposure. B) Sodium current-voltage relationships. Lithium reduces sodium currents for LRs and HCs. C) Potassium
current-voltage relationships. NRs have greater potassium currents than LRs and HCs.
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3.2 Effects of BD hyperexcitability and lithium on
PS

The resulting PS performance for DG networks with HC and
BD GC models, for baseline and pathological levels of sponta-
neous activity, are shown in Figure 3, and results from fitting
the linear mixed effects model to the simulated data are shown
in Supplementary Table 1. BD DG models performed signifi-
cantly poorer PS than HC models, regardless of spontaneous
activity levels and lithium treatment (LR: β= -2.37, CI: -2.46
– -2.29, p<0.001; NR: β = -0.75, CI: -0.83 – -0.66, p<0.001)

(Figure 3). Lithium, independent of Group or Spontaneous
Activity, significantly and negatively impacted PS in general
(β = -1.32, CI: -1.41 – -1.24, p<0.001) (Figure 3). Although
lithium reduced the excitability of HC GCs (Figure 2A), it
also reduced HC PS performance (Figure 3A).

Elevated spontaneous activity levels in LRs without lithium
therapy negatively impacted PS (Figure 3B) (LR x Sponta-
neous Activity; β = -0.45, CI: -0.57 – -0.33, p<0.001). Lithium
therapy however protected against the deleterious effects of
spontaneous activity on PS for LRs (Figure 3B) (LR x Lithium
x Spontaneous Activity; β = 0.39, CI: 0.22 – 0.56, p<0.001).

A BHC and NR with healthy SA levels LR PS performance

Figure 3: Effects of BD models on pattern separation (PS). A) Healthy levels of spontaneous activity (SA) used for HC and
NR models (0.1 Hz [25]), and B) pathological levels of spontaneous activity used for the LR condition (Healthy = 0.1 Hz;
BD = 1 Hz, normalised to healthy levels after lithium exposure [25]. Error bars show standard error of the mean, for 14
simulation runs initialised with different random seeds to incorporate variability in network connectivity and granule cells
selected for spontaneous activation.

3.3 Lithium disrupts WTA dynamics in HCs by re-
ducing neuronal sensitivity to negative currents

HC GC population behaviour within the third DG lamella 10
ms post-spontaneous activation is shown in Figure 4 for the
GCs directly activated (“AC”) and the remaining GCs within
the lamella (“RM”). Without lithium (“CTRL”), GC popu-
lation activity increased 2 ms post-stimulation, and declined
steadily for 3 ms before reaching a steady state of low activity
(Figure 4A). The RM population did not show a change in
activity levels as well (Figure 4B, “CTRL-RM”). In the lithium-
exposed GC model, the directly activated GCs fired more than
the CTRL condition post-stimulation, with a similar reduction
and stabilisation of activity 3ms post-peak activity (Figure
4A, “LITM-AC”). In the remaining GCs however, there was

a substantial and sustained increase in population activity
in the lithium-exposed model, despite these GCs not being
directly stimulated (Figure 4B, “LITM-RM”). This behaviour
was consistent across lamellae, and also for the BD NR models
(Supplementary Figure 4). LR models demonstrated similar
behaviour, but with a smaller change in the RM activity lev-
els between lithium and control conditions (Supplementary
Figure 3). At the cellular level, our lithium-exposed HC GC
model demonstrated less sensitivity (i.e., less hyperpolarized
response) to negative currents than the control model (Figure
4C). These results align qualitatively with electrophysiological
data collected from iPSC GCs in vitro (Figure 4D). Lithium
increases sensitivity to negative currents in both our LR GC
models, and in iPSC GCs in vitro (Supplementary Figure 3).
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A B

C D

Figure 4: Effects of lithium on healthy control WTA dynamics in DG model (A and B), and cellular response to negative
currents in GC model and in vitro (C and D respectively). A) GC activity post activation from spontaneous activity generator
(“-AC”), and B) activity of remaining GCs not directly stimulated by spontaneous activity (“-RM”) in lamella 3 only. C)
HC-CTRL and HC-LITM GC computational model behaviour in response to negative current injection, and D) HC-CTRL
and HC-LITM iPSC GC in vitro behaviour in response to negative current injection. Error bars show standard error of the
mean.

4 DISCUSSION

GC hyperexcitability as observed in iPSC GCs derived from
BD patients lead disrupted PS relative to HCs in our compu-
tational model (Figure 3). Given that PS within the DG is
thought to be supported by the intrinsically sparse firing of
mature GCs [32, 50, 54, 55], we hypothesised that increased
intrinsic excitability of these neurons would lead to PS im-
pairments, which our simulations support. By reducing GC
intrinsic excitability, we expected lithium to improve PS in
the LR and HC models. Instead, lithium-induced reductions
in GC excitability in LRs and HCs impaired PS relative to
baseline (i.e., without lithium) models (Figure 3); lithium
therefore may not ameliorate PS deficits in LRs by reducing
GC intrinsic excitability. Instead, lithium may protect against
the loss of PS that would occur with higher spontaneous ac-
tivity levels in LRs (Figure 3B). Additionally, we identified
that lithium not only reduces excitability in HCs, but also
sensitivity to negative injected currents (Figure 4C and D).
Reducing sensitivity to negative injected currents may prevent
effective BC inhibition, leading to inappropriately elevated
network activity (Figure 4A and B), which may explain why
lithium impairs PS in HCs. Therefore, GC hyperexcitability

in BD may lead to PS disruptions, and lithium may prevent
these deficits in LRs not by normalising hyperexcitability, but
by reducing spontaneous activity levels.

We simulated spontaneous activity by randomly selecting
a subset of GCs within the network for stimulation using Pois-
son spike generators, as the cellular or network mechanism
by which this spontaneous activity arises has not yet been
identified. Spontaneous activity has been attributable to depo-
larizing GABA currents [56] and the interplay between sodium
and calcium discharges [57] in developing hippocampal circuits,
and is thought to tune the development of and promote appro-
priate synchrony within and between networks [58, 59], raising
questions about the implications of elevated spontaneous ac-
tivity on synaptic plasticity and the functioning of memory
systems at the brain network-level in BD. Interestingly, el-
evated spontaneous activity within the large-scale intrinsic
brain networks measured using fMRI may predict diagnosis
conversion from major depressive disorder to BD [60], high-
lighting the importance of understanding spontaneous activity
in BD further. Identifying the neural mechanisms of the form
of spontaneous activity observed in iPSC GCs, and whether
this mechanism also exists in vivo, are worthwhile avenues for
future investigation. Based on our results, we would predict
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that treatments that reduce spontaneous activity levels in
LRs may preserve PS without the negative effects of lithium
therapy.

Indeed, lithium impaired PS for all groups when controlling
for spontaneous activity levels (Figure 3A), despite lithium-
associated reductions in GC excitability in HCs and LRs,
motivating the study of WTA dynamics in our network. In
our HC model without lithium, only the directly stimulated
GCs fire post-stimulation, with no changes in activity in the
remaining GC population (Figure 4A and B), suggesting that
BCs are providing sufficient inhibition throughout the network.
The elevated and sustained population firing response in our
HC-LITM GCs without direct activation (Figure 4B), sug-
gests that BCs are unable to quiet the remaining GCs in the
network, or in other words, a deficit in WTA dynamics. Since
we did not manipulate the BCs in our network, we hypothe-
sised that this effect may be attributable to change in HC GC
sensitivity to inhibition; indeed, our simulations demonstrate
that lithium reduces HC GC sensitivity to negative currents
(Figure 4C), which agrees with in vitro behaviour of iPSC HC
GCs (Figure 4D). We present a schematic of this interpretation
in Supplementary Figure 5. In summary, although reducing
excitability via lithium exposure is theoretically beneficial for
neural computations that are reliant on sparse coding such
as PS, the effects of lithium on cellular response to inhibition
should not be ignored, as it is excitation/inhibition balance
within networks that will ultimately promote effective neural
computation.

Our cellular and circuit-level results of lithium’s mixed (ie.,
both beneficial and deleterious) effects for individuals with BD
echo clinical discussions of whether lithium is neuroprotective
or neurotoxic [61]. There have been reports of lithium-induced
cognitive side effects such as memory impairments and a sub-
jective sense of mental “slowness” [62]. Despite these negative
effects, lithium is effective at preventing suicide and self-harm
in individuals with mood disorders [63] and relapse in individ-
uals with BD [64]. Our results predict that lithium may lead
to memory impairments in healthy individuals, motivating a
future controlled trial in this group. Finally, our simulations
highlight the importance of identifying predictors of lithium
response, such that the potential risks to memory systems
are mitigated in non-responders, while allowing for excellent
responders to benefit from lithium therapy.

One area of promise for identifying predictors may be be-
havioural tasks that are hypothesised to probe lower-level DG
neural computational functioning, such as MD. In a previous
study, we hypothesised that PS may underlie MD performance
[44], based on two lines of evidence for the DG’s involvement
1) during MD [37, 65], and 2) in PS [33, 34]. Interestingly,
a pilot study of the effects of lithium therapy in BD on MD
performance demonstrated that lithium therapy significantly
improved MD performance in LRs only [39]. Our simula-
tions predict that these MD improvements in LRs may be
attributable to lithium-induced reductions in spontaneous ac-
tivity. We make this statement speculatively, given that 1) a
direct empirical demonstration that PS underlies MD has yet
to be reported, and 2) the results from our PS simulations
must be validated in vivo. Further, lithium has been demon-

strated to increase hippocampal neurogenesis [66, 67], which
has also been shown to improve MD [68–70]. Whether lithium-
induced MD improvements are attributable to improvements
in PS, increased neurogenesis, or some combination of the two
is another avenue for future work, which we discuss further
below. Future lines of research addressing these questions
will contribute to our understanding of how cellular behaviour
impacts neural computation, and how those impacts then
translate to behaviour. Forming these mechanistic links across
levels of biological hierarchy will allow for the translation of
identified cellular-level deficits and drug response to potential
mechanistic deficits underlying disease aetiology, observable
through patient behaviour.

4.1 Strengths and Limitations

4.1.1 Model Fitting procedure

One of our study’s strengths is good model face and predic-
tive validity [71]. Face validity refers to a model’s ability to
simulate or capture the behaviour of the system of interest
[71]. Our cellular models have face validity because they are
directly fit to electrophysiological behaviour of patient- and
HC-derived iPSC GCs (Supplementary Figure 1). Predictive
validity assesses a model’s ability to predict the effects of in-
terventions and experimental manipulations on the underlying
condition [71]. A model with strong predictive validity will be
able to generate testable predictions for a set of manipulations
in the form of “synthetic” data that can later be compared
against real-world data. After model fitting, we assessed our
models’ predictive validity by comparing our models’ and iPSC
GCs’ membrane response to negative currents (negative IV
curve) with and without lithium and found that our models
were able to predict lithium-induced 1) reductions in sensitiv-
ity to negative currents observed in HCs (Figure 4C and D),
and 2) increases in sensitivity to negative currents observed in
LRs (Supplementary Figure 3C and D), despite fitting these
models to the positive IV and FI data only. Additionally,
our simulations are consistent with the effects of lithium on
MD performance in individuals with BD [39]. Therefore our
fitted GC models exhibit good face and predictive validity,
supporting the plausibility of our simulation results.

Although our model fitting procedure was generally suc-
cessful in producing the iPSC GC behaviour, we had diffi-
culties with fitting the potassium IV curves (Supplementary
Figure 1). The potassium channels for all of our computa-
tional models were, as a result, more resistant to negative
currents than their iPSC counterparts. This issue may be
attributable to inaccurate modelling of the potassium channel
dynamics and/or a missing additional potassium channel; the
baseline GC model used for this study should therefore be
re-visited after further genetic analysis, electrophysiology and
immunohistochemistry to identify other relevant channel types,
their dynamics, and their location on the somatodendritic tree.
Additionally, to improve the data available for model fitting
purposes, we encourage researchers to follow the electrophys-
iology protocols outlined by the Allen Brain Institute [72].
Overall, we do not believe that this effect would change the
general result of our study as every group/condition was im-
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pacted and we were more interested in the relative differences
in PS between groups/condition; instead, we believe that this
limitation should be addressed in the future, to further improve
model face validity.

4.1.2 Improving our Model Design

We made a number of simplifications to our model design
that limit biological plausibility. The DG is known to have a
subpopulation of adult-born immature GCs that, in contrast
to their mature counterparts, are highly intrinsically excitable
[73], plastic [74], and are not yet regulated by inhibitory in-
terneurons [75, 76]. Simulations have suggested that these
neurons may in fact reduce PS but increase performance on
high interference memory tasks [77], which is consistent with
studies demonstrating the positive impacts of neurogenesis on
discrimination performance [68–70]. As discussed previously,
lithium improves MD performance in LRs [39], and also may
upregulate neurogenesis in the DG [66, 67]. A natural progres-
sion of this model would be to incorporate a sub-population
of immature GCs and evaluate PS and performance on a high
interference memory task, following previous modellers [77],
to test the combined impact of lithium-induced 1) reductions
in mature GC intrinsic excitability and spontaneous activity
(as we have done here), and 2) upregulated neurogenesis on
both PS and MD, to provide us with a more comprehensive
and nuanced understanding of lithium’s impacts on DG neural
computation.

There have been two iPSC hippocampal neuronal models
created to date: the DG GC, and the CA3 pyramidal neuron
[25–28]. BD and lithium may also impact the inhibitory in-
terneurons within the hippocampus and DG, of which iPSC
neuronal models have not yet been reported. Given that
our simulations demonstrated that negative cellular currents
modulate network dynamics and PS, motivating future iPSC
work on these inhibitory neurons as well. Incorporating de-
tailed models of BD inhibitory interneurons into our network
will further improve biological plausibility, and allow for de-
tailed investigation of the complex interplay of abnormal exci-
tatory/inhibitory network dynamics in BD, and subsequent
impacts on PS.

Since the time of earlier hippocampal computational mod-
els [50, 78], hippocampal research has suggested that the DG
performs a number of other computations along with PS, such
as contextual binding, novelty detection, temporal tagging,
and indexing [79]. We study PS here as a fundamental com-
putation that the DG is ideally suited to perform, but also
recognise that future work investigating the impacts of BD on
these other computations would be beneficial. PS, although
just one of the many computations performed by the DG,
seemingly does not conflict with any of the other proposed
computations [79], meaning these future results may not con-
tradict the results we have presented here, but rather add to

our understanding of DG function in BD. How those other
computations then relate to behaviour, and what the clinical
implications may be, are yet additional questions.

4.2 Conclusions

We presented the first detailed biophysical computational
model of GC hyperexcitability and effects of lithium therapy
in BD and HCs. We evaluated impacts of the abnormal cel-
lular behaviour on PS using network models, and found that
1) both BD and lithium impair PS in general, 2) lithium may
protect against the loss of PS attributable to high spontaneous
activity levels in LRs, and 3) lithium reduces sensitivity to
negative currents in HCs, impairing GC inhibitory control.
Our results are consistent with clinical reports of BD and
lithium-associated cognitive slowing and memory impairments,
and also with a hypothesised relationship between DG PS and
MD. Future work should include a subpopulation of immature
GCs to investigate the additional effects of lithium-induced
neurogenesis on PS and MD. In conclusion, we presented a
first step in translating abnormal iPSC neuronal behaviour
derived from BD patients to neural computational deficits;
these neural computational deficits may underlie some of the
cognitive and memory deficits observed in individuals with
BD.
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