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Abstract 

A fundamental topological principle is that the container always shapes the content. In 
neuroscience, this translates into how the brain anatomy shapes brain dynamics. From 
neuroanatomy, the topology of the mammalian brain can be approximated by local connectivity, 
accurately described by an exponential distance rule (EDR). The compact, folded geometry of the 
cortex is shaped by this local connectivity and the geometric harmonic modes can reconstruct much 
of the functional dynamics. However, this ignores the fundamental role of the rare long-range 
cortical connections, crucial for improving information processing in the mammalian brain, but not 
captured by local cortical folding and geometry. Here we show the superiority of harmonic modes 
combining rare long-range connectivity with EDR (EDR+LR) in capturing functional dynamics 
(specifically long-range functional connectivity and task-evoked brain activity) compared to 
geometry and EDR representations. Importantly, the orchestration of dynamics is carried out by a 
more efficient manifold made up of a low number of fundamental EDR+LR modes. Our results show 
the importance of rare long-range connectivity for capturing the complexity of functional brain 
activity through a low-dimensional manifold shaped by fundamental EDR+LR modes. 

Significance Statement 

Explaining how structure of the brain gives rise to its emerging dynamics is a primary pursuit in 
neuroscience. We describe a fundamental anatomical constraint that emphasises the key role of 
rare long-range connections in explaining functional organisation of the brain in terms of 
spontaneous and task-evoked activity. Specifically, this constraint unifies brain geometry and local 
connectivity through the Exponential Distance Rule while considering the long-range exceptions to 
this local connectivity as derived from the structural connectome. In addition, when using this 
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structural information, we show that the task-evoked brain activity is described by a low-
dimensional manifold of several modes suggesting that less is more for the efficient information 
processing in the brain. 

Main Text 
 
Introduction 
How brain underlying anatomy shapes functional dynamics is an unresolved question being studied 
from the perspective of network neuroscience (1), brain modelling (2), graph signal theory (3) and 
neural field theories with different assumptions on the underlying anatomy (4, 5). Therefore, the 
choice of underlying anatomical features is of paramount importance in deriving the most simple 
and parsimonious description of the emerging spatiotemporal brain dynamics.  

In previous work on retrograde tract tracing in non-human primates, Kennedy and colleagues 
have shown that the brain white-matter wiring can be analytically approximated by the Exponential 
Distance Rule (EDR) (6). This rule explains the local connectivity of the brain solely in terms of the 
geodesic distance between points on the cortical surface. And so, it follows that the compact, folded 
geometry of the cortex with its many sulci and gyri is formed by this local connectivity. This corollary 
implies that the brain anatomical wiring and cortical geometry are the two sides of the same coin, 
and it makes sense to speak of them in agreement. Furthermore, this reflects theoretical work 
showing that the heat kernel (exponential) is the optimal solution for minimising distance between 
neighbouring points (7). Indeed, recent work has suggested that the cortical geometry alone (as a 
proxy for the underlying anatomical connectivity) can be considered as an important feature driving 
brain spatiotemporal activity (5, 8, 9).  

However, after deriving the EDR Henry Kennedy famously said; “I am not interested in the EDR 
itself but mainly the exceptions to the rule”. Indeed, Kennedy and colleagues have shown that in 
addition to the EDR, the brain possesses a small subset of rare long-range (LR) exceptions to the 
EDR of brain wiring (10, 11). Furthermore, new evidence using turbulence has demonstrated the 
fundamental role of the rare long-range anatomical connections in shaping optimal brain 
information processing (12). Intuitively, brain cortical foldings defined according to the EDR are 
indeed the optimal way for brain wiring but they don’t reflect the rare long-range connections i.e. it 
is for example impossible to fold anterior-posterior brain regions in a meaningful way. Therefore, 
we suggest that the unique contribution of these rare long-range cortical connections’ changes 
disproportionately the topological structure of the brain wiring in such a way as to optimise the 
information processing of the brain. In this work we test this hypothesis that EDR and LR exceptions 
are fundamental to the parsimonious description of the emerging spatiotemporal dynamics. 

In the natural world, a fundamental principle that governs the dynamics of a system constrained 
by its structure in numerous physical and biological phenomena is the mathematical framework of 
harmonic modes. Standing wave patterns manifest in many context such as in music with sound-
induced vibrations of a guitar string, in physics with the electron wave function of a free particle 
described by the time-independent Schrödinger equation, or biology with patterns emerging within 
complex dynamical systems like reaction-diffusion model (13). The beauty of the mathematical 
formalism of this phenomenon is that it links in a single equation, the Helmholtz equation, the 
specific structure on which the spatiotemporal pattern emerges together with the temporal 
description in terms of oscillations and spatial description in terms of patterns of synchrony of the 
standing wave pattern itself. 

Here we used Laplacian decomposition of four different graph representations of the underlying 
anatomy to derive anatomical brain modes: exponential-distance rule (EDR) (6) and long-range 
exceptions (EDR+LR), geometry-based modes (geometry) and EDR modes (EDR binary and EDR 
continuous) (Figure 1A, 1B, 1C). Our results show that EDR+LR achieves statistically better 
reconstruction of long-range functional connectivity (FC) compared to the other mode 
representations (Figure 1D). Furthermore, pertinent to time-critical information processing, we 
show that a small subset of modes achieves a disproportionately high reconstruction of task MRI 
activity. When this subset of modes is considered, EDR+LR achieves better reconstruction for the 
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47 HCP tasks compared to the geometric mode representations, suggesting that less is more for 
information processing in the brain (Figure 1E). 
 
Results  

EDR+LR reconstructs FC-SC long-range connectivity 
To examine how exponential distance rule with long-range exceptions can describe brain activity, 
we derived the EDR+LR harmonic modes from the EDR matrix fitted to the structural connectome 
with lambda of 0.162 and added the long-range exceptions to the EDR defined in terms of three 
standard deviations from a given Euclidean distance range larger than 40mm. We constructed the 
normalised graph Laplacian and solved its eigenvalue problem (Figure 1B). The eigenvectors of 
the solution represent the harmonic modes with the eigenvalues sorted in ascending order and 
reflecting the spatial frequency of the modes with lower modes representing lower spatial 
frequencies and higher modes representing higher spatial frequencies. Overall, the spatiotemporal 
activity can be perceived as a weighted contribution of these fundamental bases unfolding over the 
whole time recording for the spontaneous fMRI or as a weighted contribution of these fundamental 
bases reconstructing the task-based activations. 

One of the features of functional connectivity is the surprisingly high functional connectivity 
between distant regions (14). We first investigated to what extent the different anatomical 
representations reconstruct the long-range connections. These were derived as an intersection of 
FC connections above 0.5 FC correlations and geodesic distance between the nodes above 40mm 
(Figure 2A). We then reconstructed these connectivity profiles with an increasing number of modes 
(1-200) derived from the four representative graphs (Geometry, EDR binary, EDR continuous and 
EDR+LR) (Figure 2B). The modes are ordered sequentially according to their spatial wavelength 
represented by their eigenvalues (i.e. mode 1 has the longest spatial wavelength). For all four 
graphs they monotonically decrease the reconstruction distance reaching on average 0.03 mse 
distance with about 20 modes and by 100 modes reach on average 0.01 mse distance before 
plateauing close to 0.005 mse distance on average for the full 200 modes. One noteworthy aspect 
is that much of the distance reconstruction happens between 0 and 20 harmonics suggesting that 
a small number of harmonics is responsible for most of the reconstruction. At 200 modes the 
EDR+LR outperforms the other spatial basis (Geometry, EDR continuous, EDR binary, paired t-
test p<10-4). To assess the uniqueness of the LR connections within the EDR graph, we created a 
null model where we shuffled the LR connections in the EDR+LR graph representation. As 
expected, the specific rare long-range connectivity is important since the shuffled EDR+LR modes 
were unable to reconstruct the long-range functional connectivity to the same extent as the 
EDR+LR (Figure S4). Furthermore, to assess whether the EDR+LR performance is due to the 
unique combination of EDR and LR connectivity, we computed the reconstruction when using the 
structural connectome that implicitly contains the short-range and long-range connectivity, and 
long-range connectivity exceptions. However, as expected, the structural connectome graph 
representation showed less reconstruction capacity in comparison to the other representations 
(Figure S5). Lastly, to ensure robustness of the result, we carried out the analysis on an additional 
subset of 100 HCP participants reporting the same statistical significance between EDR+LR and 
Geometry (Figure S11). 

 

Less is more - EDR+LR reconstructs task with fewer modes 
Using the same approach, we further investigated how well the different bases reconstruct the task-
evoked brain activity from 255 healthy HCP participants. We used the 47 task-based contrasts 
derived from 7 HCP tasks each representing a different activation brain map and reconstructed 
them for an increasing number of modes (mode 1-200). For the 7 representative tasks the different 
bases demonstrate a similar monotonic pattern with steep fall in reconstructed mse distance before 
a slowdown with a near plateau-like behaviour around 200 modes and reconstructed mse distance 
values approximating 0.02 for most of the bases and tasks (Figure 3A Top). To analyse the 
reconstruction pattern, we computed the FC mse contribution of a given mode when added to the 
reconstruction. This demonstrates that the apparent bulk of the reconstruction is being obtained 
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from a relatively small number of modes 0-20 in comparison to the rest (Figure 3A Bottom). This 
shows that reconstructing both spontaneous and task-evoked activity is represented in a very small 
space of 0-20 modes, suggesting that both types of dynamics, spontaneous and task-evoked, lie 
in a lower-dimensional manifold. Focusing only on the first 20 modes, we examined how the 47 
task-evoked activations maps are reconstructed in comparison to the geometric modes. On 
average EDR+LR compared to Geometry shows the most accurate reconstruction across tasks up 
to 20 reconstructed modes (Figure 3B). By construction, the modes span an orthogonal basis set 
in which the individual mode contributions are mapped to. To motivate the neatness and accuracy 
of reconstructing the activation maps with as little EDR+LR as possible, we visually demonstrate 
the reconstruction of relational tasks for 5, 10, 15 and 20 modes showing the indistinguishable 
similarity to the activation map itself (Figure 3C). Moreover, it is not surprising that the EDR+LR 
basis, due to their unique topology, reconstructs with fewer modes more accurately the tasks as it 
can be appreciated in the motor tasks where more nuanced features are picked up in comparison 
to the geometric modes (Figure 3D).  

 
 
Discussion  
 
The unique mathematical formulation of harmonic modes links the description of how structure 
gives rise to the emerging spatiotemporal activity of brain dynamics. We show that EDR+LR modes 
have the smallest reconstruction distance for an increasing number of modes when describing the 
FC long-range connections of spontaneous fMRI activity. Furthermore, for the reconstruction of the 
7 activation task fMRI maps lower frequency modes contribute disproportionately more toward the 
reconstruction error. We therefore reconstructed the error for the 47 HCP tasks benchmarked 
against the geometrical modes for the first 20 modes. On average EDR+LR showed the most 
accurate reconstruction across tasks and number of reconstructed modes 1-20. Our results 
demonstrate the importance of long-range connectivity as a key feature of shaping brain functional 
activity both for the spontaneous and task-based fMRI. Moreover, functional brain activity is shown 
to be on a lower-dimensional manifold span by a subset of these fundamental modes with the most 
appropriate representation from the EDR+LR graph, suggesting that less is more for efficient 
information processing in the brain. 

In both spontaneous and task-based reconstruction cases, the EDR+LR demonstrate high 
reconstruction only with a subset of modes from its harmonic repertoire. Despite the overall better 
performance of the EDR+LR harmonic modes, it is remarkable that the other harmonic bases, 
geometric and EDR-based, performed strongly as well. This excellence can be seen from the fact 
that all four reconstruction schemes are able to predict behavioural measures fluid intelligence and 
participant’s processing speed. The results show that this prediction is driven by the brain state 
(task-evoked over spontaneous fMRI) consistently across the four graph representations (Figure 
S6-8). This reflects a fundamental insight where large-scale brain organisation can be described 
as lying in a low-dimensional manifold. This in part can be explained by the brain’s coordinated 
cognition and behaviour which cannot happen without integrative tendencies of its underlying 
dynamics. Indeed, brain dynamics operating in a reduced number of dimensions have been shown 
to predict more effectively the brain's behaviour (15).  As such one can talk of brain activity as a 
flow on this low dimensional manifold embedded in the space of these relatively few harmonic 
modes (16).  

One of the fundamental considerations is what type of brain’s dynamics we wish to reconstruct. 
Unlike the traditional approach where the whole static functional connectivity is reconstructed (5), 
we focused on reconstructing the most salient features of the brain's spontaneous fMRI activity, 
namely the functionally strong  long-range connection. Our work underscores the cardinal role of 
long-range connectivity in cognitive processing and advocates for prioritising the reconstruction of 
exceptional connections over exhaustive coverage of the entire functional connectivity matrix. With 
similar logic, we did not regress out the global signal from the spontaneous fMRI as we consider 
the global and fluctuating fMRI activity an important feature of emergent network effects of 
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interacting non-linear regional dynamics (17). As expected, when we computed the analysis, 
applying global signal regression, the reconstruction of EDR+LR and Geometry were statistically 
non-significant (Figure S9). Moving beyond, it is important to consider temporally evolving 
descriptions of brain dynamics as recent work has demonstrated the relevance of dynamics in 
understanding brain function and its related pathologies (18). Also, many whole-brain modelling 
techniques have been suggesting the need to consider further descriptors of brain activity that goes 
beyond the static FC description (19). Ultimately, as recently suggested by the spatiotemporal 
neuroscience of Northoff and colleagues (20, 21), the brain’s dynamic spatiotemporal organisation 
might reveal the link between the neuronal and mental features to elucidate concepts such as 
consciousness, self and time speed perception. 

Flexible human cognition and behaviour reflect a highly dynamic balance of functional 
integration and segregation. This in turn is supported by the rich topology of the structural 
connectome (22). A growing body of literature has shown that these dynamics are poised at the 
edge of criticality, a dynamic regime with long-range spatial and temporal correlations in which 
information can be optimally processed (19). This is consistent with a novel computational 
framework by Jaeger and colleagues (23), suggesting that an understanding of computing comes 
from an understanding of the structuring of processes, rather than how classical models of 
computing systems describe the processing of structures. They also stress how this can come via 
an understanding of modelling physical computing systems bottom-up, which is the main aim of 
the investigation here, where the topology of the computing system, here the brain, shapes the 
near-critical dynamics of the system. In the brain, the rare long-range structural connections are 
some of the key anatomical features supporting time-critical information processing. Their spatially 
specific location has been linked to the emergence of known resting-state networks and are 
important for task-based processing (12). We therefore hypothesise that evolutionary pressures 
are likely to have refined EDR connectivity with long-range exceptions enabling more complex 
cognitive functions. This hypothesis should be investigated in future cross-species studies. 

In this work, we derived both EDR binary and EDR continuous harmonic modes. These reflect 
different methodological considerations when calculating the Laplacian eigenmaps (7). We have 
applied the continuous form of the graph Laplacian on the EDR (EDR continuous) showing that this 
simple change improves the reconstruction accuracy by about 0.0025 distance to the binarized 
version (EDR binary) making it practically on the same footing as the geometric bases (EDR 
continuous and geometry are not statistically different from each other). Reassuringly, recent work 
has reported similar observations when comparing the non-binarised structural connectomes graph 
representation to the geometric modes (24). It is therefore warranted to unify the methodological 
approaches before comparing the superiority of the different anatomical features as the differences 
might be simply explained by methodological choices themselves. Therefore, we caution future 
research to unify the applied methodologies in this direction. 

Given the relevance of rare long-range connectivity for complex brain dynamics in humans, it is 
also important to consider how these findings might translate to other non-human species. 
Unfortunately, a direct comparison between species is challenging due to the different 
methodologies used. Unlike non-human species studies that use track tracing studies to describe 
the anatomical connectivity of the brain, human experiments rely on non-invasive techniques like 
diffusion MRI. Furthermore, the challenges in estimating long-range connectivity via dMRI further 
complicates the direct comparison (25, 26). Yet, a growing body of non-human species studies 
have converged on a general principle that smaller brains such as the mice brain are denser, all-
to-all connected, whereas larger brains such as the primate brains are sparser with weak long-
range connections reflecting further regional specialisation  (27, 28). Therefore, it can be 
hypothesised that long-range EDR connections together with the rare connectivity exceptions play 
an important role in the emergence of complex computational capabilities. This opens up exciting 
future cross-species research of the impact of rare long-range connections on the brain's 
computational capabilities. 

Understanding rare long-range connections’ impact on the emergent brain dynamics will also 
help clinical diagnosis in neuropsychiatry and neurology and inform novel clinical treatments. For 
instance, the weak nature of these rare long-range connections might be abnormally affected in 
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disconnection syndromes such as Alzheimer’s disease and schizophrenia and this in turn might 
have a disproportionate impact on the large-scale emergent dynamics affecting cognition and 
behaviour (27). Moreover, novel treatment solutions, such as transcranial electrical stimulation, will 
rely on model optimization where anatomical connectivity plays an important role (29, 30). In the 
future, the specific inclusion of rare long-range connections in the models might ensure more 
accurate description of the disorders as well as more efficient stimulation protocol for possible 
treatments. 
 
Materials and Methods 
 
Experimental Data 

HCP Functional MRI 

We used the publicly available Human Connectome Project (HCP) dataset, Principal Investigators: 
David Van Essen and Kamil Ugurbil: 1U54MH091657) with the funding coming from sixteen NIH 
Institutes and Centres supporting the NIH Blueprint for Neuroscience Research; and by the 
McDonell Centre for Systems Neuroscience at Washington University. All participants joined 
voluntarily and provided informed consent. The open-access data used in this study were obtained 
through the WU–Minn HCP consortium, following approval from the local ethics committee. The 
data were shared with the authors in accordance with the terms specified by the HCP for data 
usage. All procedures conducted in this study adhered to the protocols outlined in these data use 
terms. For a comprehensive description of the image acquisition protocol, preprocessing pipelines 
(31), and ethics oversight, please refer to the detailed account provided (31, 32). 

Spontaneous fMRI dataset 

We used the spontaneous fMRI dataset from the freely accessible database with connectome DB 
account at https://db.humanconnectome.org. Timeseries were minimally processed. Consistent 
with work of Pang and colleagues (5), we used a subset of 255 participants (22-35yo,  132 F and 
123 M) who completed all spontaneous and tasks-based fMRI recordings, further excluding twins 
and siblings. For the auxiliary dataset we used a subset of 100 HCP participants which were 
different to the main analysis performed with the 255 HCP participants. The neuroimaging 
acquisition was carried out on a 3-T connectome-Skyra scanner (Siemens). A single spontaneous 
fMRI acquisition, lasting approximately 15 minutes, was conducted on the same day. During this 
session, participants kept their eyes open with relaxed fixation on a projected bright crosshair 
against a dark background. The HCP website offers comprehensive details on participant 
information, acquisition protocols, and data preprocessing for both spontaneous and the seven 
tasks. In summary, the data underwent preprocessing using the HCP pipeline, which employs 
standardised methods with FSL (FMRIB Software Library), FreeSurfer, and Connectome 
Workbench software. This standardised preprocessing encompassed correction for spatial and 
gradient distortions, head motion correction, intensity normalisation, bias field removal, registration 
to the T1-weighted structural image, transformation to the 2-mm MNI space, and application of the 
FIX artefact removal procedure. Head motion parameters were regressed out, and structured 
artefacts were removed using independent component analysis, followed by FMRIB’s ICA-based 
X-noiseifier (ICA+FIX) processing. The preprocessed time series for all grayordinates were in the 
HCP CIFTI grayordinates standard space, available in the surface-based CIFTI file for each 
participant during spontaneous fMRI. Lastly, for Figure S9, we also regressed out the global signal 
before carrying on with further analysis on the spontaneous fMRI. 

 

Tasks-based fMRI dataset 

For the task-based fMRI analysis, we obtained fMRI data from 7 distinct task domains known to 
reliably engage a diverse range of neural systems (5, 31). The tasks included were social, motor, 
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gambling, working memory (WM), language, emotion, and relational. We used the specific 
contrasts within each task domain, highlighting the key contrast investigated in this study. These 
contrasts were provided by work of Pang and colleagues (5) from https://osf.io/xczmp/ in 
“S255_tfMRI_ALLTASKS_raw_lh” .mat file. In total, the analysis encompassed 47 contrasts, 
incorporating the 7 key contrasts. In brief, the analysis was performed on individual task-activation 
maps generated through FSL's cross-run (Level 2) FEAT analysis (33). The task maps, provided 
by the Human Connectome Project (HCP), were used with minimal smoothing (2 mm), and mapped 
onto the fsLR-32k CIFTI space. This mapping was achieved using multimodal surface matching, 
resulting in a representation of each individual's task data (32,492 vertices). Additional information 
about each task and contrast as well as further details on the data are provided elsewhere (5, 31). 
The task-evoked fMRI reconstruction distance was computed on the parcellated activation maps, 
unlike those using spontaneous fMRI, where the reconstruction distance was performed on the 
parcellated functional long-range connections. 

 

fMRI parcellation 

A custom MATLAB script, utilising the 'ft_read_cifti' function from the Fieldtrip toolbox, was 
employed to extract the average time series of all grayordinates in each region defined by the 
Glasser360 parcellations (180 regions per hemisphere) in the HCP CIFTI grayordinates standard 
space. For each hemisphere the vertex-space to ROI-space meant going from 32,492x1200 to 
180x1200 for spontaneous fMRI and 32,492x1 to 180x1 for task-based fMRI. Consistent with work 
by Pang and colleagues (5) our analysis focused on the left hemisphere only. 

 

HCP Diffusion MRI 

To obtain the structural connectivity for the fitting of the EDR and derivation of long-range 
exceptions to the EDR, we used the high-resolution connectivity maps from dMRI tractography 
(34). These were provided by work of Pang and colleagues (5) in “S255_high-
resolution_group_average _connectome_cortex_nomedial-lh” .mat file. In brief, the connectome 
was derived by estimating the connectivity of each of the 32,492 vertices within the cortical surface 
mesh by tracing streamlines from each point until they terminated at another point. Connection 
weights between vertices, treated as nodes, were determined as the number of interconnecting 
streamlines without normalisation (35). The dMRI tractography was conducted on individuals from 
the Human Connectome Project (HCP). Subsequently, the individual weighted connectivity 
matrices were combined, each of size 32,492 × 32,492, to generate a group-averaged connectome. 
The weights in this connectome represented the average number of streamlines, providing a 
comprehensive depiction of group-level connectivity. Further details can be found in previous 
publication by Pang and colleagues (5). 

Structural MRI 

For the fitting of the EDR, we used the Euclidean distance (on a flattened cortical surface) between 
the vertices of the cortical mesh representation for the left hemisphere (32,492x32,492). This mesh 
was derived from the FreeSurfer’s fsaverage population-averaged template available on 
github.com/ThomasYeoLab/ CBIG/tree/master/ data/templates/surface/fs_LR_32k. It is to be 
noted, we used the version provided by Pang and colleagues (5) in the “fsLR_32k_midthickness-
lh” .vtk file. 

Exponential Distance Rule (EDR) 

Previous work has demonstrated that the brain white-matter wiring, based on retrograde tract 
tracing in non-human primates, can be analytically approximated by the Exponential Distance Rule 
(EDR) (6). Here, we derived the Exponential Distance Rule of the underlying human anatomy using 
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diffusion MRI (Figure S3).  Mathematically, the exponential distance rule can be described with 
exponential decay function as follows: 

𝐶𝑖,𝑗
𝐸𝐷𝑅  =  𝐴𝑒−𝜆(𝑟(𝑖,𝑗)) 

where 𝑟(𝑖, 𝑗) is the geodesic distance between vertices 𝑖 and 𝑗 and 𝜆 is the decay. Consistent with 

previous literature, we estimated the parameters (𝐴 and 𝜆 ) for the exponential decay model using 

a least-squares method as follows  𝑦 =  𝐴𝑒−𝜆𝑥 , where 𝑦 represents a mean connection weight of 

a given geodesic distance and 𝑥 represents the given geodesic distance (12). In detail, we have 

generated 400 bins of equal geodesic distance taking the bins spanning 10mm to 170mm (thus 
excluding the first 25 bins in the fitting procedure). The estimation yielded 𝐴 =  0.066 and 𝜆 =
 0.162 mm−1 where the exponential decay parameter lambda is consistent with previous literature 

(10, 12). We used this estimation for the construction of the EDR+LR graph. For the EDR binary 
and EDR continuous, we used previously reported exponential decay parameter of  𝜆 =
 0.12 mm−1 to be consistent with work of Pang and colleagues (5) (See sections EDR binary and 

EDR continuous). 

Relationship to Belkin and Niyogi 

The exponential distance rule, as an optimal solution for connecting distance-separated brain 
regions in the brain, can also be intuitively understood from first principles. Belkin and colleagues 
have analytically shown the relationship between graph Laplacian, Laplace Beltrami Operator and 
the heat kernel which is the optimal solution for locality preservation - formally as 

𝑊𝑖𝑗 = 𝑒
−||𝑥𝑖−𝑥𝑗||

2

𝑡

 

where 𝑡 is the decay parameter of the heat kernel (7). It can thus be appreciated 

that this equation also follows exponential decay (gaussian) similar to the EDR. 

Harmonic Modes 

In this work, we used four different types of graph representations to describe various aspects of 
anatomical features or methodological approaches. Namely, we carried out the analysis on what 
we call Geometric, EDR binary, EDR continuous and EDR+LR modes. In what follows, we describe 
the remaining three types of harmonic modes representations. 

EDR binary: For the EDR binary, we use the EDR with the same parameters as in work of Pang 
and colleagues (5) to define the weight of a given edge between vertices 𝑖 and 𝑗.  In other words, 

the weight is determined by the geodesic distance between regions 𝑖 and 𝑗 and the fitted lambda 

parameter, 𝜆 =  0.12 mm−1 (see section Exponential Distance Rule). Then, as in work by Pang and 
colleagues (5), we created a binary adjacency matrix where nodes 𝑖 and 𝑗 are retained and 

binarized only if the weight strength surpasses randomly distributed distribution of the weights. This 
option results in a binary adjacency matrix whereby 𝐶𝑖𝑗 = 1 if i and j are above randomly distributed 

distribution of the weights and 𝐶𝑖𝑗 = 0 if i and j are below the randomly distributed distribution of the 

weights. The choice of this approach was motivated to stay consistent with previous work by Pang 
and colleagues (5) in order for the results to be directly comparable. 

EDR continuous: For the EDR continuous, we similarly use the EDR with the same parameters 
to define the weight of a given edge between vertices 𝑖 and 𝑗 using the EDR with 𝜆 =  0.12 mm−1. 

Unlike the thresholding in EDR binary (applied in work of Pang and colleagues (5)) where 
connections are retained and binarized if they surpass connection weights from a randomly derived 
distribution, here all the connections and their weights are kept. This option results in a weighted 

adjacency matrix whereby 𝑊𝑖𝑗 =  𝐴𝑒−𝜆(𝑟(𝑖,𝑗)). Furthermore, we argue in this paper that this detailed 

explanation between EDR binary and EDR continuous adjacency matrices is warranted as it zeroes 
in on what is an appropriate comparison between graph Laplacian, and continuous Laplace-
Beltrami analysis and we motivate future comparative research in this direction. 
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Geometry: The geometric modes were calculated using the Laplace Beltrami Operator (LBO) on 
the cortical mesh. We used the publicly available version from previously published work by Pang 
and colleagues which can be downloaded from https://osf.io/xczmp/ in “fsLR_32k_midthickness-
lh_emode_200” .txt  file (5). In brief, the LBO is in general defined as follows: 

𝛥: =
1

𝑊
𝛴𝑖,𝑗

𝛿

𝛿𝑥𝑖
(𝑔𝑖𝑗𝑊

𝛿

𝛿𝑥𝑗
), 

With 𝑔𝑖𝑗 being the inverse of the inner product metric tensor 𝑔𝑖𝑗: =<
𝛿

𝛿𝑥𝑖
,

𝛿

𝛿𝑥𝑗
>, 𝑊: = √ 𝑑𝑒𝑡(𝐺) and 𝐺: =

(𝑔𝑖𝑗). The solution of the eigenvalue problem was implemented in a python package LaPy using 

the cubic finite element method (36). For further details consult work by Pang and colleagues (5). 
Although not explicitly stated, the derivation leverages an exponential kernel that is reminiscent of 
the EDR. 

EDR+LR: Previous research has shown that human as well as non-primate anatomy is 
characterised by a relatively small proportion of long-range outliers to the EDR (10, 12). Therefore, 
for the EDR continuous adjacency matrix we wanted to implement a version where these long-
range (LR) exceptions are taken into account. Using the structural connectivity matrix, we 
computed the binned distribution (400 bins) as a function of geodesic distance. We defined 
connectivity exceptions as 3 standard deviations above the mean for a given distance bin that are 
longer than 40mm (Figure S2). To derive the EDR+LR connectivity matrix we combine the EDR 
continuous with LR exceptions to the EDR. Moreover, we also created a shuffled EDR+LR where 
the locations of the LR were randomly assigned in the connectivity matrix (Figure S4). 

EDR+LR relationship to Connectome Harmonics 

Combining short-range and long-range connectivity can be performed in many ways. Indeed our 
previous work on connectome harmonics has defined the anatomical connectivity in terms of short-
range, nearest-neighbour connections on the cortical surface, combined together with long-range 
connections, derived from the diffusion MRI in terms of the connectome (4). In this light, here, we 
derive the short-range connections in a more principled way through the “EDR continuous” while 
accounting for the long-range connections in terms of the exceptions to the EDR as stated above. 
Furthermore, we avoid binarization of the adjacency matrix for the calculation of the Laplacian as 
it has shown to retain important information in the reconstruction of both spontaneous and task-
evoked fMRI from our results on binary and continuous EDR brain modes. 

Laplacian Decomposition 

Having derived the EDR+LR, EDR binary and EDR continuous adjacency matrix, we calculated the 
normalised graph Laplacian as  

𝐿 
𝑛𝑜𝑟𝑚  =  𝐷−1/2𝐿 𝐷−1/2 

with  𝐿 = 𝐷 − 𝐴 where D is the diagonal degree matrix defined as 𝐷 = ∑  𝑛
𝑖=1  𝐴(𝑖, 𝑗). Finally, the 

harmonic modes were computed as eigenvectors of the following eigenvalue problem 

𝛥𝐴𝜓𝑘(𝑥𝑖)  =  𝜆𝜓𝑘(𝑥𝑖)  , ∀𝑥𝑖  𝜖 𝜐 

with 𝜆𝑘 , 𝑘 𝜖 1, . . . , 𝑛 are the eigenvalues of 𝛥𝐴 and 𝜓𝑘 is the 𝑘𝑡ℎ harmonic mode. We report visually 

the harmonic modes for EDR+LR, Geometry, EDR continuous, EDR binary rendered on the brain 
(Figure S1). 

Decomposition of brain activity with harmonic modes 

We can represent the spatiotemporal spontaneous fMRI recording and the activation maps of task-
based fMRI as a weighted contribution of the harmonic modes as follows 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.04.09.588757doi: bioRxiv preprint 

https://osf.io/xczmp/
https://doi.org/10.1101/2024.04.09.588757
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

10 

 

𝐹(𝑥, 𝑡)  =  ∑  

𝑁

𝑘=1

 𝑎𝑘(𝑡)𝜓𝑘(𝑥) 

Where 𝐹 is the spatiotemporal timercordings for each subjects with dimension 32,492x1200 (𝑥, 𝑡), 
𝑎𝑘(𝑡) has dimension 1x1200 and is the contribution of 𝑘𝑡ℎ harmonic to the F timecourse at time t. 

Note that for the purely spatial data of task-based fMRI the same applies except of the contributions 
being independent of time ie 𝑎𝑘(𝑡) → 𝑎𝑘.  Both in spontaneous and task-based fMRI, the 

contributions are computed as the inner product between the spatial patterns and harmonic modes 

 

𝑎𝑘(𝑡)  = < 𝐹(𝑥, 𝑡), 𝜓𝑘(𝑥) >. 

Reconstruction error 

To compare both the spontaneous and task-based empirical fMRI data with the reconstructed data 
with a subset of harmonic modes, we first parcellated the data to Glasser360 parcellation (we 
focused on the left hemisphere resulting in 180 nodes). For the spontaneous fMRI, we calculated 
the interregional functional connectivity (FC -180x180) and focused on the most salient features by 
reconstructing the long-range functional connectivity derived as a subset of connections with high-
correlation values (> 0.5 correlation) and a long Euclidean distance (> 40mm). Then, we calculated 
the reconstruction error as the mean squared error (mse) distance between the empirical and 
reconstructed long-range functional connectivity. For the task-based fMRI we calculated the 
reconstruction error as the mse distance between the empirical and reconstructed activation maps. 
Lastly, for the behavioural analysis of Figure S6-8, we correlated the reconstruction (for 200 
modes) of spontaneous and task-evoked activity with fluid intelligence of participants in terms of 
three variables in the HCP data, namely 1) the number of correct responses in the PMAT24 A test 
and 2) processing speed in terms of Pattern Completion Processing Speed (CardSort_UnAdj and 
ProcSpeed_Unadj) (37). 
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Figure 1. The crucial role of long-range connectivity for accurately describing whole-brain 
dynamics. A) The functional dynamics measured with fMRI emerge from the underlying 
anatomical structural connectivity which can be represented as graphs. Here, we study the four 
main graph representations: 1) geometrical modes (5); 2) exponential distance rule (EDR, 
binarized); 3) EDR (continuous) and 4) EDR with long-range exceptions (EDR+LR). B) With 
regards to the graph representations, i) the different modes are derived from applying the Laplace 
decomposition on the graph representation by solving the eigenvalue problem. The different modes 
are in ascending spatial frequency.  ii) These modes are used to reconstruct the fMRI activity by a 
linear combination of their contributions. iii) This is used to reconstruct the spontaneous fMRI 
activity, and particularly the functional long-range connectivity exceptions (derived as high-
correlation values, >0.5 correlation, and over a long Euclidean distance, >40mm, see Methods), as 
well as all the 47 task fMRI activation maps. C) The four different graph representations were 
constructed and decomposed into their associated modes. D) Demonstrating the importance of 
long-range connections, EDR+LR achieves a superior reconstruction of long-range fMRI 
connectivity compared to geometric, EDR (binary) and EDR (continuous) graph representations. 
E) Equally important, the EDR+LR needs fewer modes to reconstruct task data compared to the 
three other graph representations, demonstrating the importance of long-range connectivity. Parts 
of the figure have been modified from work by Pang and colleagues (5).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.04.09.588757doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588757
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

15 

 

 

 

 

Figure 2. Better reconstructions of brain dynamics are found with EDR and rare long-range 
exceptions in the graph representation. A) One of the most important features of cortical 
dynamics are long-range functional connections (defined by high correlation values, >0.5 
correlation, and Euclidean distance, >40mm). B) The reconstruction of FC long-range connections 
for an increasing number of modes (1-200) for the four representative graph representations. The 
individual lines show the average across all 255 HCP participants. C) EDR+LR is significantly better 
than the other graph representations when using a reconstruction with 200 modes as shown by the 
average result for the distance values across all the 255 HCP subjects (bonferroni corrected two-
tailed paired t-test, EDR+LR and Geometry p<0.0005, EDR+LR and EDR continuous p<10-4,  
EDR+LR and EDR binary p<10-4, EDR continuous and Geometry n.s., * p<0.05, ** p<0.01, *** 
p<0.001).  
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Figure 3. EDR+LR uses fewest harmonic modes to reconstruct task activity. A) For each of 
four graph representations (top panel) is shown the reconstruction of seven representative 
activation task fMRI maps in terms of normalised mse distance (distance normalised by the max of 
each task). As can be seen, lower frequency modes contribute disproportionately more toward the 
reconstruction distance as it can be seen by the elbow around 20 modes (lower panel). B) This can 
also be seen in the reconstruction mse distance for all 47 HCP tasks for the EDR+LR, EDR binary 
and EDR continuous, each benchmarked against the geometrical modes for the first 20 modes, 
where the top panel shows hues of blue with better performance of the EDR modes while red hues 
mean better performance of the geometric modes. The lower panel shows the average across the 
47 HCP tasks. C) Individual mode contribution towards the reconstruction of the relational task. We 
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show the disproportional contribution of some modes (1, 2, 3, 4, 6, 15) to the overall reconstruction, 
where the brain renderings show the mse distance reconstruction to the overall activation map (far 
left). D) Similarly, for the motor task target (far left), we compare the overall correlational 
contributions of the number of modes (using 20, 15, 10 and 5 modes) when using EDR+LR and 
geometry as the underlying representations. As can be seen, the reconstruction with EDR+LR 
converges more quickly for lower modes than geometry. 
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