

1 **Title** Age-Invariant Genes: Multi-Tissue Identification and Characterization of Murine Reference Genes

2

3 **Authors:** John T. González¹, Kyra Thrush², Margarita Meer², Morgan E. Levine^{1,2}, Albert T. Higgins-Chen^{1,3}

4 **Affiliations**

5 ¹ Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.

6 ² Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA

7 ³ Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA.

8 **Corresponding Author:** Albert T. Higgins-Chen (a.higginschen@yale.edu)

9 **Keywords:** housekeeping genes; organ aging; RT-qPCR normalization; stable expression; mammalian
10 transcriptome

11 **Notes:** 4 figures, 1 table, 9 supplementary figures and, 17 supplementary tables

12 **Abstract**

13 Studies of the aging transcriptome focus on genes that change with age. But what can we learn from
14 age-invariant genes—those that remain unchanged throughout the aging process? These genes also
15 have a practical application: they serve as reference genes (often called housekeeping genes) in
16 expression studies. Reference genes have mostly been identified and validated in young organisms, and
17 no systematic investigation has been done across the lifespan. Here, we build upon a common pipeline
18 for identifying reference genes in RNA-seq datasets to identify age-invariant genes across seventeen
19 C57BL/6 mouse tissues (brain, lung, bone marrow, muscle, white blood cells, heart, small intestine,
20 kidney, liver, pancreas, skin, brown, gonadal, marrow, and subcutaneous adipose tissue) spanning 1 to
21 21+ months of age. We identify 9 pan-tissue age-invariant genes and many tissue-specific age-invariant
22 genes. These genes are stable across the lifespan and are validated in independent bulk RNA-seq
23 datasets and RT-qPCR. We find age-invariant genes have shorter transcripts on average and are enriched
24 for CpG islands. Interestingly, pathway enrichment analysis for age-invariant genes identifies an
25 overrepresentation of molecular functions associated with some, but not all, hallmarks of aging. Thus,
26 though hallmarks of aging typically involve changes in cell maintenance mechanisms, select genes
27 associated with these hallmarks resist fluctuations in expression with age. Finally, our analysis concludes
28 no classical reference gene is appropriate for aging studies in all tissues. Instead, we provide tissue-
29 specific and pan-tissue genes for assays utilizing reference gene normalization (i.e., RT-qPCR) that can be
30 applied to animals across the lifespan.

31 **Introduction**

32 Aging, the accumulation of cellular, molecular, and physiological alterations in an organism over
33 time, increases the risk of dysfunction, chronic disease, and mortality [1]. The advent of next-generation
34 sequencing and other high-throughput technologies has allowed for data-driven analyses to discover
35 age-linked gene expression changes and dysregulation. However, little effort has been directed toward
36 identifying and understanding **age-invariant genes** – those that remain unchanged throughout the aging
37 process. The utility of such genes would be twofold: 1) they can be used as reference genes in
38 quantitative assays, and 2) they may share molecular features that allow them to resist changes with
39 age.

40 The transcriptome has been shown to exhibit substantial remodeling during the aging process,
41 and there is evidence that many of these changes may drive declines in cellular function. By employing
42 bulk RNA-seq across 17 mouse tissues, Schaum et al. identified clusters of genes with similar age
43 trajectories associated with the hallmarks of aging [2]. Gene clusters increasing in expression included
44 immune and stress response genes, while those decreasing in expression included genes involved in the
45 extracellular matrix, mitochondria, and protein folding [2]. Overall, a global decrease in gene expression
46 has been reported to occur with aging, such that when comparing older animals to younger animals,
47 differentially expressed genes tend towards downregulation [3]. For tissue-specific genes, a divergence
48 or specialization of distinct cell types is observed during development, whereas aging has been
49 associated with a loss of specificity in transcriptional profiles [4] and an increase in transcriptional noise
50 (increased variance between individuals) [5–7]. Interestingly, genes subject to age-related change have
51 been linked to specific features, including transcript length and association with CpG islands [8,9].

52 Studying age-invariant genes that do not change their expression and remain stable throughout
53 the aging process may uncover complementary aging mechanisms. The notion of invariant genes has
54 been a focus of biomedical research for over 50 years, but their study has been confined to young

55 organisms or cell line perturbations [10]. Due to their relative stability, invariant genes have been
56 utilized as internal reference controls for gene expression assays. Initially coined as housekeeping genes,
57 these invariant genes are constitutively expressed at high levels, are subject to low fluctuations, and are
58 often essential for proper cellular function [10–12]. The changing definition of the term “housekeeping
59 gene” led the *Minimum Information for Publication of Quantitative Real-Time PCR Experiments* (MIQE)
60 guidelines to update the term used for normalization to **reference genes (RGs)** [13], and we will utilize
61 this term. There is no absolute standard list of RGs; many classical RGs, including glyceraldehyde-3-
62 phosphate dehydrogenase (GAPDH), actin β (ACTB), and β 2-microglobulin (B2M), were found to be
63 highly variable in certain contexts [11,14]. Although an ultimate RG may not exist (consistent across all
64 possible tissues, cell types, cell cycle stages, experimental conditions, and developmental phases),
65 identification of invariant genes in specific contexts and sample types is possible [14,15].

66 Little work has been done to identify and validate RGs that are stable throughout the aging
67 process, i.e., age-invariant reference genes. These genes would be invariant across the lifespan, either
68 within any given tissue (tissue-specific) or across all tissues (pan-tissue). Aging is known to impact
69 classical reference gene expression: a mouse study, for example, found age, sex, and frailty explicitly
70 alter the expression of a majority of classical RGs examined [16].[11,14] [29]. Within the aging field,
71 studies are restricted to RGs identified in other fields rather than using a novel, aging-focused analysis.
72 The few available studies examining RGs in aging employ targeted RT-qPCR validation of some of the
73 aforementioned classical transcripts and recommend different RGs based on the genes and the
74 parameters included. For example, GUSB increased with age in mouse skeletal muscle, making it a poor
75 RG in that context, but it was the best RG candidate in human peripheral blood mononuclear cells [16–
76 20]. Another salient example for aging is Cdkn1a/p21. Cdkn1a/p21 is often utilized as a reference gene
77 in RT-qPCR normalization literature [20], even though it simultaneously serves as a marker of cellular

78 senescence—one of the major hallmarks of aging, which is defined by change over time [21,22]. Thus
79 there is a pressing need to identify RGs appropriate for aging studies.

80 We now have the tools and datasets to identify age-invariant RGs. The first iterations of
81 reference genes, which compose a majority of popular RGs, were not experimentally determined but
82 selected because they were detected in all tissues and assumed to have little variability [10,23]. With
83 the development of 21st-century microarray and next-generation sequencing technologies, this
84 question can finally be tackled from a data-rich perspective [23]. RNA-seq datasets have been
85 successfully used to experimentally identify RGs in healthy human tissue [10,11], mammalian animal
86 models [14,24], non-mammalian organisms [25], disease conditions [26] and even single-cell
87 populations [27]. The variables included in the datasets for these analyses determine the application
88 constraints of the resulting RGs. Novel data-rich unsupervised techniques paired with next-generation
89 sequencing data remain an untapped resource for identifying RGs for aging studies and more fully
90 understanding the dynamics of transcriptional change (or lack thereof) with aging.

91 Here, we leverage published approaches for RG identification [10] with appropriate refinements
92 (**Figure 1A**) and apply them to public bulk RNA-seq datasets with samples collected across the full
93 lifespan (**Figure 1B**) to identify age-invariant genes. We show that, unlike our age-invariant genes, no
94 classical RG is suitable for aging studies across all tissues (**Figure 1C**); and characterize features and
95 functions of these age-invariant genes (**Figure 1D**). Of note, we opted to focus on the subset of age-
96 invariant genes that can also serve as RGs - those that are also relatively highly expressed - due to their
97 practical applications.

98

99 **Results**

100 Identification of candidate age-invariant genes from RNA-Seq data

101 Bulk RNA-seq data from the Tabula Muris Senis study [2] were utilized for age-invariant RG
102 discovery. We analyzed 17 tissues: brown adipose tissue (BAT), bone, brain, gonadal adipose tissue
103 (GAT), heart, kidney, limb, liver, lung, marrow, mesenteric adipose tissue (MAT), pancreas,
104 subcutaneous adipose tissue (SCAT), skin, small intestine, spleen and white blood cells (WBCs). We
105 performed quality control and only utilized samples where we could verify the tissue label
106 (**Supplementary Figure 1; Methods**). The dataset contained female and male mice representing the 4
107 major lifespan stages: adolescent (1mo), young (3 and 6mo), middle-aged (9, 12, and 15mo), and old
108 (21, 24, and 27mo) [28] (**Figure 1A-B**).

109 Tissues were independently analyzed by sequentially applying 7 filtering criteria through each
110 tissue's gene set (**Figure 1A**). Here, we utilize expression counts normalized to **Transcripts Per Million**
111 (**TPM**) [29], which is similar to RT-qPCR as it approximates relative molar RNA concentration, as well as
112 **Trimmed Mean of M (TMM)** [30], which leverages inter-sample information to reduce sensitivity to
113 gene outliers. Both normalization techniques performed similarly well at identifying RGs in a recent
114 systematic comparison of normalization methods [26]. Our approach leverages two different
115 normalization techniques to reduce artifacts specific to individual methods. Each criterion, or filter, was
116 applied to each tissue individually with both normalization methods; genes were only included in the
117 tissue-filter gene list if they satisfied the requirement in both TPM and TMM normalized datasets.

118 Our filtering criteria are listed below. The filtering pipeline was applied to each tissue separately,
119 with samples spanning the lifespan stages defined in **Figure 1B**. Although some genes have been
120 identified as age-invariant within multiple tissues, this does not suggest they are invariant to tissue type
121 and thus should still be applied in a tissue-specific manner. Criteria 1-4 are adapted from an approach
122 frequently used for RG identification from RNA-seq data [10,25]:
123 1. Continuous expression: Non-zero expression in all samples.

124 2. Low variance: The **standard deviation (SD)** of the log2 normalized gene (x) expression for all
125 samples (i) is less than 1. $\forall, (\sigma_x) < 1$

126 3. No exceptional expression/outliers: log2 normalized values are within two units of the gene's
127 mean (removing genes with data points four-fold away from the gene mean). $\forall, |x_i - \bar{x}| \leq$
128 2

129 4. Medium to high gene expression: the gene's log2 normalized expression mean is above the
130 mean of all the genes expressed in the particular tissue $\forall, (\bar{x}) \geq (\bar{x})$

131

132 To ensure age-invariant gene list quality, we added two new filters to the identification criteria:

133 5. Low coefficient of variation (CV): The percent coefficient of variation (%CV), the ratio of the
134 standard deviation to the mean, is lower than 20%. $\forall, (\sigma_x) / (\bar{x}) \leq 20$

135 6. No correlation between gene expression and age: Gene expression correlation with age is not
136 statistically significant (no p-value under 0.05)

137 Finally, we performed external validation:

138 7. Filters 5 and 6 were applied in publicly available validation datasets with bulk tissue RNA-seq
139 data from mice. Tissues with a validation dataset were BAT, brain, heart, kidney, muscle, liver,
140 lung, SCAT, skin, small intestine, and WBCs (11).

141

142 The filters progressively refined the list of both tissue-specific (**Figure 2A, Supplementary Table**
143 **1**) and pan-tissue age-invariant genes (**Figure 2B, Table 1**). For reference, **Supplementary Table 2** lists
144 information on each gene's %CV, slope with age, and correlation with age in each tissue, allowing
145 readers to select their own cutoffs if they choose. **Supplementary Tables 3-9** contain lists of all genes
146 that passed each consecutive filter in each tissue.

147 There were a few notable modifications to the original pipeline. First, we modified Criterion 4,
148 which selects for relatively highly expressed genes and, therefore, is easily detected by RT-qPCR [10].
149 Because each tissue had different gene count distributions (**Supplementary Figure 2A**), we deviated
150 from the previous use of an arbitrary cutoff and employed an adjusted cutoff, removing genes with
151 means below the mean of all genes expressed in a given tissue (log2 transformed) [25]. Consistent with
152 previous publications [25], the cumulative effect of filters 2 (standard deviation cut-off) and 4 (mean
153 cut-off) resulted in a percent coefficient of variation (%CV) of about 20% in most tissues (**Figure 2C**).
154 However, given the lower average normalized gene expression in some tissues (Bone, Pancreas, Spleen
155 WBC), genes in these tissues surpassed this threshold. To ensure the genes obtained were truly low
156 variance, we applied a hard cut-off of 20% CV (Filter 5). This approach combines Eisenberg et al.'s low
157 variance definition of RGs and their alternative approach: mid-to-high expression [10].

158 Second, we added Filter 6 to ensure age invariance. We had initially hypothesized that simply
159 analyzing samples with a wide age range using the typical RG pipeline (filters 1-4) would be sufficient to
160 filter out genes that change with age. Indeed, adding age groups to the analysis progressively discarded
161 genes during the filtering process (**Supplementary Figure 3A**). This, however, could be due to the
162 increase in samples (n) included in the analysis. To test whether the wide age range alone contributes
163 important information, we applied the steps of the standard pipeline (filters 1-4) on samples belonging
164 to only a particular lifespan stage and compared it to a cross-stage control with the same n. Including a
165 wide range of ages by using cross-stage analysis discarded more genes compared to single-stage analysis
166 for adolescent, middle-aged, and old stages (**Supplementary Figure 3B**). Surprisingly, this was not the
167 case for the young adult stage (3-6mo old); we found this was likely due to a subset of genes that have
168 high expression variability in young adults but are stable in other life stages (**Supplementary Figure 3C-F**). Regardless of lifestage analyzed, this pattern held true. Genes identified as age-invariant (with filters
169 1-4) only in young samples (**Supplementary Figure 3C**); in young samples and other lifestages (analyzed
170

171 separately) (**Supplementary Figure 3D**); in lifestages except young (**Supplementary Figure 3E**); or with
172 the full dataset, i.e., all lifespan stages, (**Supplementary Figure 3F**) reveal a similar pattern: some genes
173 have higher variance (%CV) in young and old populations. This is reflected by the rightward shift in
174 young and old samples. Young samples have an overall higher proportion of high variance (over the
175 20%CV dotted line) genes than old ones (**Supplementary Figure 3C-F**). Thus, simply utilizing a wide age
176 range in the typical pipeline does not necessarily help identify age-invariant genes. Furthermore, we
177 found that some genes obtained through filters 1-5 still changed with age (**Figure 2 D-E**). To address this
178 finding, we added criterion 6, removing genes with statistically significant correlations with age for each
179 tissue (**Figure 2D**).

180 Finally, to decrease the number of false positives, we validated the gene lists using a second bulk
181 mRNA-seq dataset for 11 out of 17 tissues (except for bone, GAT, marrow, MAT, pancreas, and spleen).
182 The number of validated genes is displayed in **Figure 2A-B** as Step 7. Specific counts and percentages can
183 be found in **Supplementary Table 1**. For nearly all tissues, a supermajority (>70%) of candidate age-
184 invariant genes were validated, except in the liver (54%) and lung (62%). The fewest number of age-
185 invariant genes was observed in WBCs, possibly due to large changes in distributions of cell types over
186 shorter timescales [31,32] (**Figure 2A**).

187

188 RT-qPCR validation of Novel age-invariant reference genes

189 Our analysis identified many tissue-specific age-invariant RGs (**Supplementary Table 9**), as well
190 as 9 such genes common to all tissues (pan-tissue). Some classical RGs are not age-invariant genes
191 (**Figure 3A-C**). In fact, no classical RGs were age-invariant across every tissue (**Figure 3A**). Thus, we
192 propose a new list of 9 age-invariant genes common to all 17 tissues that can be used in studies with
193 aged animals (**Table 1**).

194 These RG sets can be utilized in the context of northern blot, RT-qPCR, and some RNA-seq
195 normalization strategies in aging studies. Researchers have the choice of selecting from a tissue-specific
196 gene list or from the nine pan-tissue genes. To validate this, independent samples were used to
197 generate RT-qPCR data for three age-invariant genes identified by our computational pipeline: Atp6v1f,
198 Srp14, and Tomm22 (**Figure 3B-D**). Atp6v1f is an age-invariant gene shared by the two tissues assayed:
199 the liver and heart. The other two are pan-tissue age-invariant genes. The novel samples consisted of
200 mouse heart and liver samples in four categories: old (~19mo) female, old male, young (~8mo old)
201 female, and young male. We compared these against three classical RGs: Cdkn1a, Tbp, and Tfrc. Classical
202 reference genes generally had a wider cycle threshold distribution than the age-invariant genes, with
203 Tbp being the most stable among them, followed by Tfrc and Cdkn1a (**Figure 3B-C**). Cdkn1a codes for
204 cyclin-dependent kinase inhibitor 1A, also known as p21. Given that Cdkn1a is widely used as a marker
205 of cell senescence [22], it is not surprising that it has a high degree of variability despite it being widely
206 considered an RG in RT-qPCR normalization literature [17].

207 To assess gene RT-qPCR stability in the context of aging, we calculated the expression stability
208 across multiple algorithms: BestKeeper [33] (**Supplementary Figure 4A-B**), geNorm [34] (**Supplementary**
209 **Figure 4C-D**), NormFinder [35] (**Supplementary Figure 4E-F**), and delta-CT method [36] (**Supplementary**
210 **Figure 4G-H**). These scores were utilized to calculate the summary RefFinder score (**Figure 3D**,
211 **Supplementary Figure 4I**) [37]. TPM %CV for the discovery (**Supplementary Figure 4A, C, E, G, J**) and
212 validation (**Figure 3D, Supplementary Figure 4B, D, F, H**) RNA-seq datasets strongly correlate with all
213 stability algorithm values calculated on our in-house samples. **Figure 3D** displays the correlation
214 between the TPM %CV values of the external validation dataset and the RefFinder score of our in-house
215 validation samples (Pearson correlation = 0.81, p-value = 0.0027). This suggests that %CV from
216 normalized RNA-seq samples could be used as an indicator of candidate reference genes for RT-qPCR
217 experiments subject to the same conditions. By both metrics, the newly identified age-invariant genes

218 outperformed the classical RGs: these RGs are statistically different in both %CV (Welch Two Sample t-
219 test p-value= 0.006553) and RefFinder qPCR scores (Welch Two Sample t-test p-value = 0.02401) This
220 suggests age-invariant genes common across all tissues (Srp14 and Tomm22) or particular tissues
221 (Atp6v1f in heart and liver) could be applied as part of normalization in age-related transcriptomic
222 research. A combination of more than one of the age-invariant genes is recommended for RT-qPCR
223 experiments, per the MIQE guidelines [13].

224

225 Overlapping pathways for aging stable and aging dysregulated genes

226 Gene enrichment analysis of the tissue-specific age-invariant genes revealed a large number of
227 statistically significant GO biological pathway terms (**Supplementary Figure 5**). As expected, the most
228 enriched terms were largely involved in basic metabolic and structural processes (**Figure 4A**). We also
229 noted many enriched terms were related to the hallmarks of aging [38], which was surprising
230 considering that hallmarks of aging are typically thought to involve processes that change with age. As
231 an initial step to systematically assess the presence of stably transcribed genes in these hallmarks, we
232 compared the enrichment scores of our tissue age-invariant gene lists with previously published
233 enrichment terms associated with age dysregulation and disease [2,39].

234 We first compared our enrichment scores with the top terms associated with mouse
235 transcriptome aging clusters, each displaying a different trajectory with aging (**Figure 4A**). The top
236 enrichments of these 10 clusters, obtained from the same dataset we performed our discovery on, are
237 associated with hallmarks of aging like protein folding, inflammation, and mitochondrial function [2]. We
238 found our tissue gene sets were significantly enriched in many, but not all, of the clusters. Of note is
239 cluster 3, linked to mitochondrial dysfunction, where age-invariant genes are highly enriched for every
240 term of this cluster. Age-invariant genes are also heavily represented in stress response (cluster 5),
241 signaling (cluster 2), and protein stability (cluster 7). Interestingly, within the protein stability cluster,

242 age-invariant genes were enriched in terms involved in protein folding, processing, and stabilization but
243 not in terms involved in protein localization. The clusters with the least age-invariant genes were those
244 associated with immune response and extracellular matrix. This suggests that hallmarks themselves, or
245 mechanisms within an aging hallmark, can be separated by the presence or absence of age-invariant
246 genes.

247 Cluster 1 from Schaum et al. is defined as genes that do not change with age and, as expected,
248 has a large overlap with our tissue age-invariant gene sets. Cluster 1 was defined by having the least
249 amplitude (change with age) and least variability. Interestingly, throughout the 17 tissues, only ~33-40%
250 of our age-invariant genes were in Schaum et al.'s cluster 1. The genes not shared between both
251 methods likely reflect the difference between relatively a stable group of genes identified by hierarchical
252 clustering and individual age-invariant genes identified due to their characteristics (as well as our RG
253 requirement that genes be highly expressed) [2,40]. In RNA-seq, genes with low expression demonstrate
254 significant technical noise making it difficult to assess true biological variability related to age or other
255 factors, and are often filtered out of differential expression studies [41], so our requirement for high
256 expression is useful for focusing on age-invariant genes.

257 The other ontology terms we examined came from an analysis of age-related diseases and aging
258 hallmarks (**Figure 4B**). Unlike Schaum et al., who used a completely unsupervised approach, Fraser et al.
259 used genes associated with human age-related diseases in a genome-wide association study to define
260 GO biological pathways related to both disease and at least one aging hallmark [39]. Most hallmarks
261 have at least one GO term enriched for age-invariant genes across most of the tissues analyzed (e.g.,
262 "steroid hormone-mediated signaling pathway" in altered intercellular communication; "cellular
263 response to insulin stimulus" and "response to nutrient levels" in deregulated nutrient sensing;
264 "macroautophagy" and "regulation of autophagy" for loss of proteostasis; "reactive oxygen species
265 metabolic process" in mitochondrial dysfunction; and "telomere maintenance" in telomere attrition). On

266 the other hand, virtually no GO term related to cellular senescence and epigenetic alterations had high
267 proportions of stably transcribed genes. According to this alternative way of identifying gene ontology
268 terms associated with aging hallmarks, age-invariant genes continue to be enriched in these terms.

269 To better understand the implications of some of these stable pathways, we used the
270 comprehensive resource of mammalian protein complexes (CORUM) database to perform enrichment
271 analysis (**Figure 4C**)[42]. The enriched complexes are consistent with our enrichment results in this data
272 thus far. Complexes involved in mitochondrial function (respiratory chain complex I and cytochrome c
273 oxidase), stress response & signaling (Regulator-AXIN/LKB1-AMPK complexes), and protein stability
274 (COP9 signalosome, proteasome, Parvulin-associated pre-rRNP, and Chaperonin containing TCP1
275 Complex) are enriched in age-invariant genes.

276 Our analyses reveal multiple age-invariant genes within pathways that are either dysregulated
277 with aging (**Figure 4A, C**) or associated with aging pathologies (**Figure 4B**). Pathways related to the
278 extracellular matrix, cellular senescence, and epigenetic alterations seem particularly devoid of stably
279 expressed genes. These findings are not due to the high expression requirement for our age-invariant
280 genes, as removing this requirement produced similar results (**Supplementary Figure 6**).

281

282 Age-invariant gene features

283 Features of genes that change with age have long been a point of discussion in aging
284 transcriptome research, but little is known about the genes that are able to withstand the effects of
285 time. We tested whether our genes have the opposite features to those described in age-dysregulated
286 transcriptome analyses. The features examined are CpG content, DNA methylation (**Supplementary**
287 **Figures 7-8**), and gene length (**Supplementary Figures 7 and 9**), given that these features have been
288 implicated in age-associated transcriptional drift [8,9].

289 Lee and colleagues reported that genes with CpG islands (CGI+) are less likely to change with age
290 than genes without CpG islands (CGI-) [9]. Accordingly, we found that the proportion of genes with CpG
291 islands located in their promoters increased as a function of our filtering process, suggesting that as we
292 more rigorously select for age-invariant genes, the more prevalent promoter CpG islands become
293 (**Supplementary Figure 7A**). The transcripts themselves were not enriched for greater %CG content,
294 suggesting there is biological specificity of the function of these islands versus an overall increase in CG
295 content in the region (**Supplementary Figure 9D**). We next investigated whether age-invariant genes
296 also showed greater stability in promoter methylation status during in vitro passaging or in vivo aging
297 using reduced-representation bisulfite sequencing (RRBS) datasets. For mouse embryonic fibroblasts
298 serially passaged into senescence, we found both age-variance (based on our skin tissue-specific
299 notation) (**Supplementary Figure 8A**), and CGI (**Supplementary Figure 8B**) status influenced methylation
300 variability. Regardless of age-invariant RG status, CGI+ genes are more stable than CGI- genes
301 (**Supplementary Figure 8A**). However, this pattern was not observed in mouse tissues, including liver,
302 brain, heart, lung, or WBC (**Supplementary Figure 8B**).

303 Stroeger et al. report that median transcript length is the factor most associated with age-
304 related change, with longer transcripts tending to be downregulated and shorter transcripts tending to
305 be upregulated with age [8]. Complementing these findings, we found that age-invariant genes tend to
306 be shorter than age-variant genes when comparing minimum transcript length (**Supplementary Figure**
307 **7B**). However, the opposite is true when comparing either maximum (**Supplementary Figure 9A**) or
308 Ensembl canonical (**Supplementary Figure 9C**) transcript length.

309

310 **Discussion**

311 Much of aging biology research has focused on changes that occur across the organismal
312 lifespan and the contribution of these changes to age-related mortality, morbidity, and functional

313 decline [1,38]. Molecular signatures that are robust to aging – specifically, age-invariant genes – have
314 received comparatively little attention. Identifying age-invariant genes allows for further study of why
315 they do not change with age. Lessons from these age-resilient genes provide a complementary view of
316 aging and the stability of biological systems with time. Also, from a practical perspective, because many
317 genes change with age, it is important to identify age-invariant genes for use as **reference genes (RGs)**
318 for gene expression normalization [13]. By adopting a pipeline for identifying RGs from RNA-seq data,
319 we find that there are, in fact, hundreds to thousands of age-invariant genes per tissue. Strikingly, there
320 is poor agreement between the pan-tissue age-invariant genes and commonly used classical RGs.
321 According to our results, none of the classical RGs are suitable for use in cross-sectional aging studies
322 across the 17 tissues studied (**Figure 3A**), and some canonical tissue-gene pairings (e.g., GAPDH in the
323 liver) are not age-invariant [43]. Our novel age-invariant genes are, therefore, better suited than
324 classical RGs for performing normalization for RT-qPCR experiments in aging tissues.

325 We report nine pan-tissue age-invariant genes in mice (**Table 1**). Reference and housekeeping
326 gene literature postulates that continuously and stably expressed genes serve essential cellular and
327 organismal functions [12]. Consistent with this hypothesis, depletion of 7 out of 9 of our pan-tissue age-
328 invariant genes have already been reported to induce cell (1110004F10Rik) or embryonic lethality when
329 completely knocked out (Brk1, Rer1, Psmd4, Reco2, Tomm22, and Fis1) [44–49], according to the Mouse
330 Genome Informatics database (www.informatics.jax.org) or International Mouse Phenotyping
331 Consortium database (www.mousephenotype.org). The remaining two transcripts, Srp14 and Gemin7,
332 have no reported knockout mouse strain or phenotypes, but we hypothesize would be lethal if absent.

333 Two biological processes— mitochondrial function (Fis1, Rexo2, and Tomm22) and proteostasis
334 (Psmd4, Rer1, and Srp14)— emerge from these 9 genes. Although these biological processes are
335 implicated in aging changes, they may also contain components that remain highly stable across the
336 lifespan. Rexo2 (RNA exonuclease 2) was recently shown to increase mitochondrial gene transcription,

337 mediate RNA turnover, and enforce promoter specificity in mammalian mitochondrial transcription [48].
338 Rer1 returns rogue ER-resident proteins or unassembled subunits in the Golgi apparatus back to the
339 endoplasmic reticulum [46]. Little is known about the molecular function of the small acidic protein
340 1110004F10Rik (also known as Smap) or its human ortholog C11orf58, but given its high stability and
341 requirement for cell survival, this protein may merit further attention [44]. Thus, the stability of these 9
342 genes may have evolved as a result of these genes being critical for mitochondrial and proteostatic
343 function, and for continued life in the face of age-related deterioration.

344 Simply including older mice in our study and utilizing the standard RG identification pipeline was
345 insufficient at filtering out age-invariant genes. Rather, selecting for age-invariant genes required an
346 additional step of explicitly removing genes that are correlated with age. We also find that the variance
347 in expression of a given gene often changes across life stages. For instance, we identified more genes
348 having high variance in young age than in middle or old ages (**Supplementary Figure 4**). Although
349 perhaps surprising, this finding is consistent with reports indicating the proportion of genes decreasing
350 in variance with age is greater than those increasing in variance with age [6,7,50]. It is possible that
351 younger animals show greater variance related to circadian rhythms, the estrous cycles, sex differences,
352 response to stress, or other adaptive and cyclical factors.

353 Some limitations and caveats constrain our study. First, some of the specific cutoffs we utilized
354 were based on prior work, while others (e.g., exact age correlation cutoff) were based on our best
355 judgment. We provide a complete table of filter results in **Supplementary Table 2** in case others wish to
356 utilize different cutoffs in selecting RGs. To ensure the list of genes provided are useful reference genes
357 in normalization strategies, including RT-qPCR and even some RNA-sequencing normalization
358 approaches, we required high transcript expression through Filter 4. Although consistent with
359 normalization transcript identification strategies in RNA-seq, many low-expression age-invariant genes
360 are absent. Thus, our lists report age-stable, high-expression genes only. Our findings are influenced by

361 the technical limitations of RNA-seq [10,51] and the analytical limitations of high dimensional data,
362 including subsampling of highly heterogeneous samples like aged organisms previously described in the
363 literature [10,51,52]. However, variance in sample collection, processing, and preparation across these
364 datasets likely compensate for any individual source's batch and degradation bias (e.g., each of the four
365 datasets used employs a different poly-A sample preparation kit). Our final 9 pan-tissue age-invariant
366 genes have been tested individually in 17 tissues and four datasets, totaling 1120 samples, thereby
367 reducing the risk of, for example, a type I error (wrongly identifying a gene as age-invariant). Finally, an
368 important assumption not usually discussed in aging transcriptome literature may influence
369 interpretation in the context of aging: consistent RNA mass. A few studies suggest a decline in total
370 cellular RNA mass with aging [53,54]. This is different from the reported downward trend of
371 differentially expressed genes with age [3]. Current RNA sequencing analysis techniques use
372 proportional estimates (counts per million, fragments per kilobase of transcript per million, transcripts
373 per million, etc.) to normalize samples in order to compare transcript dynamics across samples.
374 Similarly, RT-qPCR protocols typically rely on standardizing total RNA input. If total RNA mass reduction
375 is a global feature of cellular aging, our age-invariant genes are proportionally stable but may decrease
376 in mass with age. Similarly, a gene identified to be overexpressed in old age may maintain constant
377 molar concentration within a cell or tissue. We recommend readers keep these considerations in mind
378 when interpreting any gene expression study in the context of aging.

379 The existence and study of age-invariant genes have the potential to provide the field of aging
380 with novel insights. It was interesting to find that age-invariant genes were enriched for some pathways
381 associated with hallmarks or pillars of aging (**Figure 4**), specifically nutrient sensing, proteostasis,
382 mitochondrial function, and immune function. This is somewhat puzzling given that such hallmarks are
383 defined by changes thought to play putatively causal roles in aging [22,55] indeed, genes that most
384 clearly change with age are enriched in the same hallmarks [2]. It is possible enrichment in pathways

385 associated with hallmarks of aging may simply reflect the fact that hallmarks of aging are broad and
386 cover much of biology. In that case, it may be necessary to more specifically delineate each hallmark of
387 aging, e.g., perhaps only a subset of nutrient sensing processes should be considered as a hallmark.
388 However, this broadness would not explain why some hallmarks of aging are associated while others are
389 not. What might be the significance of genes associated with hallmarks of aging that remain stably
390 expressed throughout aging? We note that a prior report indicated that essential genes are enriched for
391 pro-longevity functions, as experimental overexpression of essential genes tends to increase lifespan in
392 yeast [56]. We also find that age-invariant genes are present in pathways linked to human age-related
393 diseases (**Figure 4A-B**). If age-invariant genes are essential for life, then organisms may have evolved
394 mechanisms to keep these genes stable in the face of pervasive age-related changes in the rest of the
395 pathway or network. One potential example highlighted here is the age-invariant gene enrichment of
396 protein complexes in the electron transport chain. NADH:ubiquinone oxidoreductase, or Mitochondrial
397 Respiratory Complex I, is the only age-invariant gene-enriched ECT complex throughout most tissues
398 (**Figure 4C**). Although the downregulation of ETC genes is one of the most established transcriptional
399 events in aging [52] and protein Complex I proteins undergo major changes in abundance with age [57],
400 stability in some ETC components is likely required for continued life. This is consistent with Complex I
401 being one of the ETC complexes that can be traced back to the last universal common ancestor of all
402 living organisms [58]. Significant dysregulation of such essential components may be incompatible with
403 life, and evolutionary forces may ensure stability throughout the lifespan. It will be interesting to
404 determine whether further bolstering the expression or stability of such age-invariant genes may be a
405 pro-longevity strategy or, if given their continuous expression stable genes are good aging
406 pharmacological targets. The putative aging intervention metformin, for example, may benefit from the
407 stable expression of its target, Complex I [59].

408 In contrast, age-invariant genes were not enriched in some hallmarks, including epigenetic

409 alterations, cellular senescence, and the extracellular matrix. Our results suggest that these three are
410 the most vulnerable to aging as not many genes related to these hallmarks resist age-related change. In
411 agreement with this finding, these hallmarks are key targets across many existing longevity
412 interventions, i.e., epigenetic reprogramming, senolytics, and enhancing extracellular matrix
413 homeostasis [60–62]. Considering that age-invariant genes tend to be essential for life, one hypothesis is
414 that early changes in these hallmarks may not be particularly detrimental for the organism and thus lack
415 the selective pressure to evolve stability mechanisms in aging. The cumulative long-term burden of
416 changes, however, may contribute to pathological aging. Alternatively, these variant hallmarks may
417 reflect adaptive processes that evolved to change dynamically with aging for the benefit of the
418 organism.

419 Future analyses could focus on the processes that maintain the stability of age-invariant genes.
420 Our initial investigations demonstrate that age-invariant genes are enriched in CpG islands, consistent
421 with a previous report that genes with CpG islands are more resistant to age-related dysregulation than
422 those without CpG islands, which are misexpressed during age-related heterochromatin decondensation
423 [9]. However, further analyses are needed to determine whether the resistance to changes in the
424 methylome of CpG-rich promoters was responsible for the stability of gene expression over time. For
425 instance, whether increased CpG density is better able to reinforce a stable epigenetic state.

426 We also found that age-invariant genes tend to be shorter than others, confirming a previous
427 study reported that the longest genes show the greatest degree of downregulation [8]. Further study is
428 needed to better understand the relationship between expression dynamics and transcript length. Of
429 note, classical RGs in general have been reported to exhibit shorter introns and exons, low promoter
430 region conservation, 5' regions with fewer repeated sequences, low nucleosome formation potential,
431 and a higher SINE to LINE ratio [10,24]. It will be important to determine if and how these factors may
432 contribute to the stability of age-invariant genes.

433 Lastly, it will be important to determine the translatability of our age-invariant transcripts, both
434 to other organisms as well as to protein expression. In a recent study, 52% of human reference genes
435 were matched to independently analyzed mouse reference gene orthologs [14]. Protein abundance can
436 be inferred from transcriptomic data at the tissue and single-cell level, particularly for genes
437 continuously and stably expressed [63,64]. These transcripts show a high correlation (~ 0.7) with their
438 protein product except when variability is introduced by cellular state and microenvironment
439 conditions. Given that age-invariant genes are assumed to be expressed in steady-state, many of these
440 genes may also be age-invariant at the protein level.

441 Here, we provide the aging field with a list of 9 pan-tissue age-invariant genes for use in
442 normalization strategies, e.g., RT-qPCT; we observe that age-invariant genes are enriched in ontology
443 terms associated with some, but not all, hallmarks of aging; and we explore some common features of
444 age-invariant genes (CpG island status and transcript length). Be it for understanding the basic biology of
445 aging, establishing rigorous methodology in the field, investigating the mechanisms promoting age-
446 invariance vs. age-variance, or finding aging therapeutic targets, age-invariant genes are an important
447 area of study.

448

449

450 **Methods**

451 Data Preparation and Normalization

452 Four datasets were utilized in this analysis. The Discovery Dataset (GSE132040) consisted of 17
453 male and female tissues from mice spanning the 4 major life span stages (**Figure 1B**). 11 of 17 tissues
454 were validated with three datasets of bulk-RNA tissue data from male mice: GSE167665, GSE111164,
455 and GSE141252. Count tables were obtained from GEO and normalized as described below. Sample
456 preparation and alignment can be found in their respective publications [2,4,8]. 5 million counts/sample

457 were set as the count threshold for a sample to be included in normalization and further analysis. In the
458 discovery dataset, hierarchical clustering identified a small number of samples that clustered away from
459 their labeled tissue (**Supplementary Figure 1A**), and examination of tissue-specific markers confirmed
460 they may be mislabeled and, therefore, were removed from analysis (**Supplementary Figure 1B**). The
461 number of samples removed per tissue and lifestage can be seen in **Supplementary Table 11** and those
462 used in the rest of the analysis in **Supplementary Table 10**. GEO accession number, tissue type, and life
463 stage counts can be found in **Supplementary Table 12** for validation datasets. Here, intestine labels
464 refer to samples from both the large and small intestine; and brain to those from both the cerebellum
465 and the frontal cortex.

466 RNA-seq normalization is essential for proper downstream analysis of datasets. In this study, we
467 identified our genes with two normalization approaches: TPM and TMM. The original reference gene
468 discovery approach described by Eisenberg and Levanon in 2013 [10], utilized RPKM normalized data.
469 Around the same time, conversations about proper data processing produced **Transcript Per Million**
470 (**TPM**), an intra-sample normalization method that approximates **relative molar RNA concentration**
471 (**rmc**) [29]. TPM was only incorporated into this RG identification approach in 2019 [25]. Another major
472 strategy for data normalization techniques involves between-sample normalization. To prevent
473 normalization-based artifacts, and given there is no single best normalization approach, the discovery
474 data was normalized with two different approaches: TPM and **Trimmed Mean of M (TMM)** [30]. TMM,
475 an inter-sample normalization method, generates a normalization factor assuming most genes are not
476 differentially expressed. Therefore, TPM is akin to RT-qPCR due to its similarity with rmc while TMM
477 leverages inter-sample information and is less sensitive to gene outliers. Both performed similarly well
478 at identifying RGs in a recent systematic comparison of normalization methods [26].

479 TPM normalized data was calculated following the formula:

480
$$\text{TPM} = \frac{\text{# reads mapped to transcript}}{\text{transcript length}} \times 10^6$$

481 Sum(#reads mapped to transcript/ transcript length)
482 Transcript lengths used in the above formula were obtained with EDASeq package's (version 3.13)
483 getGeneLengthAndGCContent function. TMM was calculated using the calcNormFactors function from
484 the edgeR package (version 3.40.1).

485 Gene expression plotting and validation data were performed only with TPM normalized data.

486 Plots were generated with `ggplot2`(version 3.4.0), `ggforce` (version 0.4.1) and `ggdendro` (version 0.1.23).

487 Gene Filtering Process

488 Filters were applied sequentially in R (version 4.2.2) as described in Results. Most mathematical
489 calculations used the r base and MatrixStats package (version 0.63.0). The filter criteria were applied
490 sequentially in both TMM and TPM normalized data, separately for each tissue, thus yielding different
491 lists for each tissue. For each filter, x is either TMM or TPM, and genes were required to pass the filter
492 for both TMM and TPM. Requirements were defined as follows:

493 1. For each gene: no empty or 0 values

494 2. For each gene: $\forall, (_2()) < 1$

495 3. For each gene: $\forall, | _2() - (_2()) | \leq 2$

496 4. For each gene: $\forall, (_2()) \geq (_2())$

497 5. For each gene: $\%CV \leq 20. \forall, (_2()) / (_2()) 100 \leq 20$

498 6. For each gene: No correlation with age, based on Pearson's correlation p-value= $0.05/n$. WGCNA

499 package (version 1.71) function corAndPvalue was used to obtain correlation coefficients and p-

500 values. Because each tissue had a 5% chance of finding an association by chance with a fixed

501 0.05 p-value, a gene present in 17 tissues would have a 58% chance of being erroneously

502 discarded $1-(0.095)^{17}$. We applied a fractional threshold of a 0.05 p-value, where the p-value

503 threshold applied was $0.05/n$, where n is the number of tissues in which the gene in question

504 passed filters 1-4.

505 7. For each gene: %CV≤ 20 and Spearman correlation p-value= 0.05/n in a validation dataset. n=

506 number of tissues a given gene is present in at filter criteria 6. This step was applied only to TPM

507 normalized data

508 RNA isolation and cDNA synthesis

509 Frozen liver and heart tissues were gifts from Prof. Ron Korstanje at The Jackson Laboratories. Groups

510 consisted of 3 samples per age (8 and 18 months) and sex (female and male), except there was only one

511 sample for an 18-month-old female liver. RNA was isolated with RNeasy Plus Mini Kit (Qiagen #74134)

512 with pestle and syringe homogenization. cDNA was generated using Iscript gDNA Clear cDNA Synthesis

513 (Bio-Rad #1725035) and equivalent RNA mass per 20uL reaction (500ng of heart and 1ug of liver). RNA

514 concentrations were determined with a Qubit 4 fluorometer (Thermo Fisher #Q33238) and RNA BR

515 Assay Kit (Thermo Fisher Q10210).

516 Expression data and RG stability

517 RT-qPCR reactions were assembled with equivalent SsoAdvanced Universal SYBR Green Supermix (Bio-

518 Rad #1725272), cDNA, and respective PrimePCR SYBR Green primers (Bio-Rad #10025636, AssayIDs

519 Atp6v1f: qMmuCID0014923, Cdkn1a:qMmuCED0046265, Srp14: qMmuCID0020464,

520 Tbp:qMmuCID0040542, Tfrc:qMmuCID0039655, Tomm22: qMmuCED0046631). RT-qPCR was

521 performed in a CFX96 thermocycler (Bio-Rad). Stability algorithms NormFinder [35], BestKeeper [33],

522 geNorm [34], and delta-CT method [36] were calculated and integrated into RefFinder [37]. All

523 calculations were performed in R. geNorm and BestKeeper were calculated with the ctrlGene package

524 (version 1.0.1) [65], Normfinder algorithm was downloaded from moma.dk, delta-CT method and

525 RefFinder functions were recreated as originally described. Metadata for the samples used can be found

526 in **Supplementary Table 13**, cycle threshold results in **Supplementary Table 14** for the heart, and

527 **Supplementary Table 15** for the liver.

528 CpG island and methylation variability analysis

529 Gene CpG island (CGI) status was mapped to the annotated list from Lee et al. [9]. Gene names passing
530 each criterion/filter for each tissue were annotated, and percent positive and negative CGI proportion
531 was calculated. Mean and standard deviation were calculated across tissues for each criterion/filter.
532 Counts and percentages of CGI distributions in tissue lists by filter, the odds ratio, statistical test used,
533 and associated p-value are listed in **Supplementary Table 17**.
534 Composite multi-tissue murine RRBS data [66] was mapped to the mm9 gtf gencode genome. For mouse
535 embryonic fibroblasts, data alignment was previously described [67]. For both datasets, CpG sites
536 common to at least 10 samples and covered by more than 5 reads were analyzed. The methylation
537 status of the promoter region was estimated by averaging the CpG beta values enclosed within 1kb of
538 the transcription start site. Standard deviation was calculated for the methylation of each promoter.

539 Enrichment gene analysis

540 Enrichment analysis was performed using gprofiler2's (0.2.1) gost function. Electronically annotated GO
541 terms were included in the analysis, and a common custom background of genes expressed at least once
542 in every tissue was imputed. Bonferroni correction was used to calculate enrichment significance. Aging
543 hallmark trajectory enrichment terms were obtained from Schaum et al. [2], while GO biological process
544 terms associated with age-related disease and aging hallmarks were obtained from Fraser et al. 2022
545 [39]. A few GO terms identified by Schaum et. al. have been discontinued and are marked as obsolete.
546 These terms were excluded from our analysis. Lastly, the top 20 age-invariant GO (biological process,
547 cellular component, and molecular function), KEGG, and Reactome terms were determined by ranking
548 p-values within tissues and taking the lowest 20 gene rank sums across tissues.
549 For the enrichment maps, all 17 sets of enrichment terms (one per tissue) were used in EnrichmentMap
550 in Cytoscape to generate a consensus network. Different consensus parameters used were used for the
551 CORUM [42] (P-value: 0.05, FDR Q-value: 0.05, Jaccard Overlap Combined: 0.375, test used: Jaccard
552 Overlap Combined Index, k constant = 0.5) and GO:BP terms (P-value: 0.01, FDR Q-value: 0.01, Jaccard:

553 0.25, test used: Jaccard Index) networks. AutoAnnotate identified common terms for clusters of
554 interconnected nodes. Each node is a pie chart with each slice colored by the enrichment score of each
555 tissue [68].

556 **Acknowledgements**

557 The research presented here would not have been possible without the exceptional insight of our Biorad
558 Sales Manager, Julie Brunelle. We also thank Profs. Silvia Vilarinho, Rachel Perry and Chen Liu for their
559 insight, support, and advice. We thank Raghav Seghal, Yaroslav Markov, Jessica Kasamoto and Jenel Fraij
560 Armstrong for comments on the manuscript.

561 **Author Contributions**

562 JTG conceived the study. ATCH, MEL, and JTG designed the study and interpreted the data. JTG
563 performed all experiments and data adquisition in this paper. JTG, MM, and KT developed the R code
564 used. JTG and ATCH wrote the article with feedback from the other authors. All authors approved of the
565 submitted manuscript.

566 **Conflicts of Interest**

567 A.H.C. has received consulting fees from TruDiagnostic and FOXO Biosciences for work unrelated to this
568 publication. All other authors report no biomedical financial interests or potential conflicts of interest.

569 **Funding**

570 This work was supported by the National Institute on Aging (NIA: 5R01AG065403) and by the National
571 Institutes of Health grant to The Jackson Laboratory Nathan Shock Center of Excellence in the Basic
572 Biology of Aging (P30AG038070)

573 **References**

574

575 1. Aging Biomarker Consortium, Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen
576 Y, Chen Z, Chhetri JK, Ding Y, et al. Biomarkers of aging. *Sci China Life Sci* [Internet]. 2023; 66: 893–
577 1066. Available from: <http://dx.doi.org/10.1007/s11427-023-2305-0>

578 2. Schaum N, Lehallier B, Hahn O, Pálovics R, Hosseinzadeh S, Lee SE, Sit R, Lee DP, Losada PM,
579 Zardeneta ME, Fehlmann T, Webber JT, McGeever A, et al. Ageing hallmarks exhibit organ-specific
580 temporal signatures. *Nature* [Internet]. 2020; 583: 596–602. Available from:
581 <http://dx.doi.org/10.1038/s41586-020-2499-y>

582 3. Zhang MJ, Pisco AO, Darmanis S, Zou J. Mouse aging cell atlas analysis reveals global and cell type-
583 specific aging signatures. *eLife* [Internet]. 2021; 10. Available from:
584 <http://dx.doi.org/10.7554/eLife.62293>

585 4. Izgi H, Han D, Isildak U, Huang S, Kocabiyik E, Khaitovich P, Somel M, Dönertas HM. Inter-tissue
586 convergence of gene expression during ageing suggests age-related loss of tissue and cellular
587 identity. *eLife* [Internet]. 2022; 11. Available from: <http://dx.doi.org/10.7554/eLife.68048>

588 5. Kedlian VR, Donertas HM, Thornton JM. The widespread increase in inter-individual variability of
589 gene expression in the human brain with age. *Aging* [Internet]. 2019; 11: 2253–80. Available from:
590 <http://dx.doi.org/10.18632/aging.101912>

591 6. Viñuela A, Brown AA, Buil A, Tsai P-C, Davies MN, Bell JT, Dermitzakis ET, Spector TD, Small KS. Age-
592 dependent changes in mean and variance of gene expression across tissues in a twin cohort. *Hum
593 Mol Genet* [Internet]. 2018; 27: 732–41. Available from: <http://dx.doi.org/10.1093/hmg/ddx424>

594 7. Barth E, Srivastava A, Stojiljkovic M, Frahm C, Aixer H, Witte OW, Marz M. Conserved aging-related
595 signatures of senescence and inflammation in different tissues and species. *Aging* [Internet]. 2019;
596 11: 8556–72. Available from: <http://dx.doi.org/10.18632/aging.102345>

597 8. Stoeger T, Grant RA, McQuattie-Pimentel AC. Aging is associated with a systemic length-associated
598 transcriptome imbalance. *Nature Aging* [Internet]. nature.com; 2022; . Available from:
599 <https://www.nature.com/articles/s43587-022-00317-6>

600 9. Lee J-Y, Davis I, Youth EHH, Kim J, Churchill G, Godwin J, Korstanje R, Beck S. Misexpression of genes
601 lacking CpG islands drives degenerative changes during aging. *Sci Adv* [Internet]. 2021; 7: eabj9111.
602 Available from: <http://dx.doi.org/10.1126/sciadv.abj9111>

603 10. Eisenberg E, Levanon EY. Human housekeeping genes, revisited [Internet]. *Trends in Genetics*.
604 2013. p. 569–74. Available from: <http://dx.doi.org/10.1016/j.tig.2013.05.010>

605 11. Caracausi M, Piovesan A, Antonaros F, Strippoli P, Vitale L, Pelleri MC. Systematic identification of
606 human housekeeping genes possibly useful as references in gene expression studies. *Mol Med Rep*
607 [Internet]. 2017; 16: 2397–410. Available from: <http://dx.doi.org/10.3892/mmr.2017.6944>

608 12. Zhu J, He F, Song S, Wang J, Yu J. How many human genes can be defined as housekeeping with
609 current expression data? *BMC Genomics* [Internet]. 2008; 9: 172. Available from:
610 <http://dx.doi.org/10.1186/1471-2164-9-172>

611 13. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW,
612 Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for
613 publication of quantitative real-time PCR experiments. *Clin Chem* [Internet]. 2009; 55: 611–22.
614 Available from: <http://dx.doi.org/10.1373/clinchem.2008.112797>

615 14. Hounkpe BW, Chenou F, de Lima F, De Paula EV. HRT Atlas v1.0 database: redefining human and

616 mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq
617 datasets. *Nucleic Acids Res* [Internet]. 2021; 49: D947–55. Available from:
618 <http://dx.doi.org/10.1093/nar/gkaa609>

619 15. Andersen, Jensen, Ørntoft. Normalization of real-time quantitative reverse transcription-PCR data:
620 a model-based variance estimation approach to identify genes suited for normalization, applied
621 *Cancer Res* [Internet]. Available from: <https://aacrjournals.org/cancerres/article-abstract/64/15/5245/511517>

623 16. Mishra M, Kane AE, Young AP, Howlett SE. Age, sex, and frailty modify the expression of common
624 reference genes in skeletal muscle from ageing mice. *Mech Ageing Dev* [Internet]. 2023; 210:
625 111762. Available from: <http://dx.doi.org/10.1016/j.mad.2022.111762>

626 17. González-Bermúdez L, Anglada T, Genescà A, Martín M, Terradas M. Identification of reference
627 genes for RT-qPCR data normalisation in aging studies. *Sci Rep* [Internet]. 2019; 9: 13970. Available
628 from: <http://dx.doi.org/10.1038/s41598-019-50035-0>

629 18. Touchberry CD, Wacker MJ, Richmond SR, Whitman SA, Godard MP. Age-related changes in relative
630 expression of real-time PCR housekeeping genes in human skeletal muscle. *J Biomol Tech*
631 [Internet]. 2006; 17: 157–62. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/16741243>

632 19. Zampieri M, Ciccarone F, Guastafierro T, Bacalini MG, Calabrese R, Moreno-Villanueva M, Reale A,
633 Chevanne M, Bürkle A, Caiafa P. Validation of suitable internal control genes for expression studies
634 in aging. *Mech Ageing Dev* [Internet]. 2010; 131: 89–95. Available from:
635 <http://dx.doi.org/10.1016/j.mad.2009.12.005>

636 20. Uddin MJ, Cinar MU, Tesfaye D, Looft C, Tholen E, Schellander K. Age-related changes in relative
637 expression stability of commonly used housekeeping genes in selected porcine tissues. *BMC Res
638 Notes* [Internet]. 2011; 4: 441. Available from: <http://dx.doi.org/10.1186/1756-0500-4-441>

639 21. González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in
640 vitro and in vivo. *FEBS J* [Internet]. 2021; 288: 56–80. Available from:
641 <http://dx.doi.org/10.1111/febs.15570>

642 22. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding
643 universe. *Cell* [Internet]. 2023; 186: 243–78. Available from:
644 <http://dx.doi.org/10.1016/j.cell.2022.11.001>

645 23. Wright Muelas M, Mughal F, O'Hagan S, Day PJ, Kell DB. The role and robustness of the Gini
646 coefficient as an unbiased tool for the selection of Gini genes for normalising expression profiling
647 data. *Sci Rep* [Internet]. 2019; 9: 17960. Available from: [http://dx.doi.org/10.1038/s41598-019-54288-7](http://dx.doi.org/10.1038/s41598-019-
648 54288-7)

649 24. Zeng J, Liu S, Zhao Y, Tan X, Aljohi HA, Liu W, Hu S. Identification and analysis of house-keeping and
650 tissue-specific genes based on RNA-seq data sets across 15 mouse tissues. *Gene* [Internet]. 2016;
651 576: 560–70. Available from: <http://dx.doi.org/10.1016/j.gene.2015.11.003>

652 25. Li Y, Zhang L, Li R, Zhang M, Li Y, Wang H, Wang S, Bao Z. Systematic identification and validation of
653 the reference genes from 60 RNA-Seq libraries in the scallop *Mizuhopecten yessoensis*. *BMC
654 Genomics* [Internet]. 2019; 20: 288. Available from: <http://dx.doi.org/10.1186/s12864-019-5661-x>

655 26. Wang Z, Lyu Z, Pan L, Zeng G, Randhawa P. Defining housekeeping genes suitable for RNA-seq
656 analysis of the human allograft kidney biopsy tissue. *BMC Med Genomics* [Internet]. 2019; 12: 86.
657 Available from: <http://dx.doi.org/10.1186/s12920-019-0538-z>

658 27. Lin Y, Ghazanfar S, Strbenac D, Wang A, Patrick E, Lin DM, Speed T, Yang JYH, Yang P. Evaluating
659 stably expressed genes in single cells. *Gigascience* [Internet]. 2019; 8. Available from:
660 <http://dx.doi.org/10.1093/gigascience/giz106>

661 28. Flurkey K, M. Currer J, Harrison DE. Chapter 20 - Mouse Models in Aging Research. In: Fox JG,
662 Davisson MT, Quimby FW, Barthold SW, Newcomer CE, Smith AL, editors. *The Mouse in Biomedical
663 Research (Second Edition)* [Internet]. Burlington: Academic Press; 2007. p. 637–72. Available from:
664 <https://www.sciencedirect.com/science/article/pii/B9780123694546500741>

665 29. Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM
666 measure is inconsistent among samples. *Theory Biosci* [Internet]. 2012; 131: 281–5. Available from:
667 <http://dx.doi.org/10.1007/s12064-012-0162-3>

668 30. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of
669 RNA-seq data. *Genome Biol* [Internet]. 2010; 11: R25. Available from:
670 <http://dx.doi.org/10.1186/gb-2010-11-3-r25>

671 31. He W, Holtkamp S, Hergenhan SM, Kraus K, de Juan A, Weber J, Bradfield P, Grenier JMP, Pelletier J,
672 Druzd D, Chen C-S, Ince LM, Bierschenk S, et al. Circadian Expression of Migratory Factors
673 Establishes Lineage-Specific Signatures that Guide the Homing of Leukocyte Subsets to Tissues.
674 *Immunity* [Internet]. 2018; 49: 1175–90.e7. Available from:
675 <http://dx.doi.org/10.1016/j.immuni.2018.10.007>

676 32. Born J, Lange T, Hansen K, Mölle M, Fehm HL. Effects of sleep and circadian rhythm on human
677 circulating immune cells. *J Immunol* [Internet]. 1997; 158: 4454–64. Available from:
678 <https://www.ncbi.nlm.nih.gov/pubmed/9127011>

679 33. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes,
680 differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-
681 wise correlations. *Biotechnol Lett* [Internet]. Springer Nature; 2004; 26: 509–15. Available from:
682 https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1023/B:BILE.0000019559.84305.47&casa_token=uGEU4e8oJrYAAAAA:RApADTvJOFk1Rx2yF3_Y3_zL623wyR7WaOAJ0LConLjckuql1o5NhxEI4zXgwZjgLyFCo1kmJCB8zoXL

685 34. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate
686 normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal
687 control genes. *Genome Biol* [Internet]. 2002; 3: RESEARCH0034. Available from:
688 <http://dx.doi.org/10.1186/gb-2002-3-7-research0034>

689 35. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-
690 PCR data: a model-based variance estimation approach to identify genes suited for normalization,
691 applied to bladder and colon cancer data sets. *Cancer Res* [Internet]. AACR; 2004; 64: 5245–50.
692 Available from: <https://aacrjournals.org/cancerres/article-abstract/64/15/5245/511517>

693 36. Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in
694 human reticulocytes using real-time PCR. *BMC Mol Biol* [Internet]. 2006; 7: 33. Available from:

695 http://dx.doi.org/10.1186/1471-2199-7-33

696 37. Xie F, Wang J, Zhang B. RefFinder: a web-based tool for comprehensively analyzing and identifying
697 reference genes. *Funct Integr Genomics* [Internet]. 2023; 23: 125. Available from:
698 <http://dx.doi.org/10.1007/s10142-023-01055-7>

699 38. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. *Cell* [Internet].
700 2013; 153: 1194–217. Available from: <http://dx.doi.org/10.1016/j.cell.2013.05.039>

701 39. Fraser HC, Kuan V, Johnen R, Zwierzyna M, Hingorani AD, Beyer A, Partridge L. Biological
702 mechanisms of aging predict age-related disease co-occurrence in patients. *Aging Cell* [Internet].
703 2022; 21: e13524. Available from: <http://dx.doi.org/10.1111/acel.13524>

704 40. Simpson DJ, Olova NN, Chandra T. Cellular reprogramming and epigenetic rejuvenation. *Clin*
705 *Epigenetics* [Internet]. 2021; 13: 170. Available from: <http://dx.doi.org/10.1186/s13148-021-01158-7>

706 41. Sha Y, Phan JH, Wang MD. Effect of low-expression gene filtering on detection of differentially
707 expressed genes in RNA-seq data. *Conf Proc IEEE Eng Med Biol Soc* [Internet]. 2015; 2015: 6461–4.
708 Available from: <http://dx.doi.org/10.1109/EMBC.2015.7319872>

709 42. Tsitsirisidis G, Steinkamp R, Giurgiu M, Brauner B, Fobo G, Frishman G, Montrone C, Ruepp A.
710 CORUM: the comprehensive resource of mammalian protein complexes—2022. *Nucleic Acids Res*
711 [Internet]. Oxford Academic; 2022 [cited 2023 Dec 11]; 51: D539–45. Available from:
712 <https://academic.oup.com/nar/article-abstract/51/D1/D539/6830667>

713 43. Perry RJ, Zhang X-M, Zhang D, Kumashiro N, Camporez J-PG, Cline GW, Rothman DL, Shulman GI.
714 Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. *Nat Med*
715 [Internet]. 2014; 20: 759–63. Available from: <http://dx.doi.org/10.1038/nm.3579>

716 44. Saran S, Tran DDH, Ewald F, Koch A, Hoffmann A, Koch M, Nashan B, Tamura T. Depletion of three
717 combined THOC5 mRNA export protein target genes synergistically induces human hepatocellular
718 carcinoma cell death. *Oncogene* [Internet]. 2016; 35: 3872–9. Available from:
719 <http://dx.doi.org/10.1038/onc.2015.433>

720 45. Escobar B, de Cácer G, Fernández-Miranda G, Cascón A, Bravo-Cordero JJ, Montoya MC, Robledo
721 M, Cañamero M, Malumbres M. Brick1 is an essential regulator of actin cytoskeleton required for
722 embryonic development and cell transformation. *Cancer Res* [Internet]. 2010; 70: 9349–59.
723 Available from: <http://dx.doi.org/10.1158/0008-5472.CAN-09-4491>

724 46. Annaert W, Kaether C. Bring it back, bring it back, don't take it away from me - the sorting receptor
725 RER1. *J Cell Sci* [Internet]. The Company of Biologists; 2020 [cited 2023 Jul 11]; 133: jcs231423.
726 Available from: <https://journals.biologists.com/jcs/article-abstract/133/17/jcs231423/226312>

727 47. Hamazaki J, Sasaki K, Kawahara H, Hisanaga S-I, Tanaka K, Murata S. Rpn10-mediated degradation
728 of ubiquitinated proteins is essential for mouse development. *Mol Cell Biol* [Internet]. 2007; 27:
729 6629–38. Available from: <http://dx.doi.org/10.1128/MCB.00509-07>

730 48. Nicholls TJ, Spåhr H, Jiang S, Siira SJ, Koolmeister C, Sharma S, Kauppila JHK, Jiang M, Kaever V,
731 Rackham O, Chabes A, Falkenberg M, Filipovska A, et al. Dinucleotide Degradation by REXO2

733 Maintains Promoter Specificity in Mammalian Mitochondria. *Mol Cell* [Internet]. 2019; 76: 784–
734 96.e6. Available from: <http://dx.doi.org/10.1016/j.molcel.2019.09.010>

735 49. Groza T, Gomez FL, Mashhadi HH, Muñoz-Fuentes V, Gunes O, Wilson R, Cacheiro P, Frost A,
736 Keskivali-Bond P, Vardal B, McCoy A, Cheng TK, Santos L, et al. The International Mouse
737 Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human
738 disease. *Nucleic Acids Res* [Internet]. 2023; 51: D1038–45. Available from:
739 <http://dx.doi.org/10.1093/nar/gkac972>

740 50. Barth E, Srivastava A, Wengerdt D, Stojiljkovic M, Axer H, Witte OW, Kretz A, Marz M. Age-
741 dependent expression changes of circadian system-related genes reveal a potentially conserved
742 link to aging. *Aging* [Internet]. 2021; 13: 25694–716. Available from:
743 <http://dx.doi.org/10.1863/aging.203788>

744 51. Xiong B, Yang Y, Fineis FR, Wang J-P. DegNorm: normalization of generalized transcript degradation
745 improves accuracy in RNA-seq analysis [Internet]. *Genome Biology*. 2019. Available from:
746 <http://dx.doi.org/10.1186/s13059-019-1682-7>

747 52. Cellerino A, Ori A. What have we learned on aging from omics studies? *Semin Cell Dev Biol*
748 [Internet]. 2017; 70: 177–89. Available from:
749 <https://www.sciencedirect.com/science/article/pii/S1084952116303160>

750 53. Tahoe NMA, Mokhtarzadeh A, Curtsinger JW. Age-related RNA decline in adult *Drosophila*
751 *melanogaster*. *J Gerontol A Biol Sci Med Sci* [Internet]. 2004; 59: B896–901. Available from:
752 <http://dx.doi.org/10.1093/gerona/59.9.b896>

753 54. Uemura E, Hartmann HA. RNA content and volume of nerve cell bodies in human brain. I. Prefrontal
754 cortex in aging normal and demented patients. *J Neuropathol Exp Neurol* [Internet]. 1978; 37: 487–
755 96. Available from: <http://dx.doi.org/10.1097/00005072-197809000-00004>

756 55. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ,
757 Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, et al. *Geroscience: Linking aging to*
758 *chronic disease*. *Cell* [Internet]. Elsevier Inc.; 2014; 159: 709–13. Available from:
759 <http://dx.doi.org/10.1016/j.cell.2014.10.039>

760 56. Oz N, Vayndorf EM, Tsuchiya M, McLean S, Turcios-Hernandez L, Pitt JN, Blue BW, Muir M, Kiflezghi
761 MG, Tyshkovskiy A, Mendenhall A, Kaeberlein M, Kaya A. Evidence that conserved essential genes
762 are enriched for pro-longevity factors. *Geroscience* [Internet]. 2022; 44: 1995–2006. Available
763 from: <http://dx.doi.org/10.1007/s11357-022-00604-5>

764 57. Kruse SE, Karunadharma PP, Basisty N, Johnson R, Beyer RP, MacCoss MJ, Rabinovitch PS, Marcinek
765 DJ. Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner.
766 *Aging Cell* [Internet]. 2016; 15: 89–99. Available from: <http://dx.doi.org/10.1111/ace.12412>

767 58. Goldman AD, Weber JM, LaRowe DE, Barge LM. Electron transport chains as a window into the
768 earliest stages of evolution. *Proc Natl Acad Sci U S A* [Internet]. 2023; 120: e2210924120. Available
769 from: <http://dx.doi.org/10.1073/pnas.2210924120>

770 59. McElroy GS, Chakrabarty RP, D'Alessandro KB, Hu Y-S, Vasan K, Tan J, Stoolman JS, Weinberg SE,
771 Steinert EM, Reyfman PA, Singer BD, Ladiges WC, Gao L, et al. Reduced expression of mitochondrial

772 complex I subunit Ndufs2 does not impact healthspan in mice. *Sci Rep* [Internet]. 2022; 12: 5196.
773 Available from: <http://dx.doi.org/10.1038/s41598-022-09074-3>

774 60. Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied
775 Hallmark of Aging and Longevity. *Aging Dis* [Internet]. 2023; 14: 670–93. Available from:
776 <http://dx.doi.org/10.14336/AD.2022.1116>

777 61. Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL. Reducing Senescent Cell Burden in Aging and
778 Disease. *Trends Mol Med* [Internet]. 2020; 26: 630–8. Available from:
779 <http://dx.doi.org/10.1016/j.molmed.2020.03.005>

780 62. Browder KC, Reddy P, Yamamoto M, Haghani A, Guillen IG, Sahu S, Wang C, Luque Y, Prieto J, Shi L,
781 Shojima K, Hishida T, Lai Z, et al. In vivo partial reprogramming alters age-associated molecular
782 changes during physiological aging in mice. *Nature Aging* [Internet]. Nature Publishing Group; 2022
783 [cited 2022 Oct 19]; 2: 243–53. Available from: <https://www.nature.com/articles/s43587-022-00183-2>

785 63. Popovic D, Koch B, Kueblbeck M, Ellenberg J, Pelkmans L. Multivariate Control of Transcript to
786 Protein Variability in Single Mammalian Cells. *Cell Syst* [Internet]. 2018; 7: 398–411.e6. Available
787 from: <http://dx.doi.org/10.1016/j.cels.2018.09.001>

788 64. Edfors F, Danielsson F, Hallström BM, Käll L, Lundberg E, Pontén F, Forsström B, Uhlén M. Gene-
789 specific correlation of RNA and protein levels in human cells and tissues. *Mol Syst Biol* [Internet].
790 2016; 12: 883. Available from: <http://dx.doi.org/10.15252/msb.20167144>

791 65. Zhong S, Zhou S, Yang S, Yu X, Xu H, Wang J, Zhang Q, Lv M, Feng J. Identification of internal control
792 genes for circular RNAs. *Biotechnol Lett* [Internet]. 2019; 41: 1111–9. Available from:
793 <http://dx.doi.org/10.1007/s10529-019-02723-0>

794 66. Meer MV, Podolskiy DI, Tyshkovskiy A, Gladyshev VN. A whole lifespan mouse multi-tissue DNA
795 methylation clock. *eLife* [Internet]. 2018; 7. Available from: <http://dx.doi.org/10.7554/eLife.40675>

796 67. Minteer C, Morselli M, Meer M, Cao J, Higgins-Chen A, Lang SM, Pellegrini M, Yan Q, Levine ME.
797 Tick tock, tick tock: Mouse culture and tissue aging captured by an epigenetic clock. *Aging Cell*
798 [Internet]. 2022; 21: e13553. Available from: <http://dx.doi.org/10.1111/acel.13553>

799 68. Thrush KL, Bennett DA, Gaiteri C, Horvath S, van Dyck CH, Higgins-Chen AT, Levine ME. Aging the
800 brain: multi-region methylation principal component based clock in the context of Alzheimer's
801 disease. *Aging* [Internet]. 2022; 14: 5641–68. Available from:
802 <http://dx.doi.org/10.18632/aging.204196>

803

804

805 **Tables**

806 Table 1

1110004F10Rik (MGI:1929274)	Fis1 (MGI:1913687)	Psmd4 (MGI:1201670)	Rexo2 (MGI:1888981)	Tomm22 (MGI:2450248)
Brk1 (MGI:1915406)	Gemin7 (MGI:1916981)	Rer1 (MGI:1915080)	Srp14 (MGI:107169)	

807

808 **Legends**

809 Table 1:

810 MGI symbol and ID for our 9 pan-tissue age-invariant genes. These genes were present across all tissues
811 after all filtering steps and validation.

812

813 Figure 1: Visual Diagram of Article Contents

814 A) Bulk RNA-seq data from 17 murine tissues (GSE132040) were sequentially filtered through 7 criteria.
815 Steps 1-4 are adapted from previous publications. We added criteria filters 5 and 6 to ensure low
816 variation and no correlation with age. Criteria filter 7 was validation of low variation and no age
817 correlation, performed in a second dataset for 11 of the 17 tissues. B) Sample gender, age and life stage
818 distributions of the samples in the dataset. A full table of samples can be found in Supplementary Table
819 10. C) Canonical reference genes are not applicable to all tissues in an aging context but age-invariant
820 genes introduced here are. D) Tissue aging-invariant genes are enriched to different extents for gene
821 ontology terms associated with hallmarks of aging. Age-invariant genes have low enrichment in some
822 (e.g. epigenetic alterations GO terms) and high enrichment in others (e.g. loss of proteostasis GO terms).

823 Created with BioRender.com

824

825 Figure 2: Gene Selection Process and Rationale

826 A) Gene count number remaining after each criteria/filter step for each tissue. B) Gene count present
827 across all tissues at each step, presented on a log2 scale. C) % Coefficient of Variance (CV) for each gene
828 calculated as SD/mean*100 distribution of log2 TPM gene expression values. Genes that satisfy every
829 subsequent filter are plotted by the last filter applied. Filters 1-3 slowly decrease %CV and the
830 cumulative effect of filters 1-4 generally results in a %CV of approximately 20%. Filter 5 imposes a strict
831 %CV < 20% requirement for all tissue-gene pairs. D) Age information must be included in exclusion
832 criteria as low variation genes can still have a high correlation with age. Filter 6 (Spearman correlation p-
833 value based removal) removes highly age-correlated genes. Dashed line corresponds to a correlation
834 coefficient (y-axis) of 0.4, which for most tissues corresponds to a significant correlation with $p = 0.05$.
835 Exact CV and age correlation information is found in Supplementary Table 2, in case readers wish to
836 utilize other cutoffs in selecting RGs. E) Log2 TPM (y-axis) values by life stage (color) for specific gene-
837 tissue pairs (x-axis) for genes that satisfy filters 1-5, but are eliminated by filter 6. Boxplot line represents
838 the group median while lower and upper limits of the boxplot correspond to the first (25%) and third
839 (75%) quartiles.

840

841 Figure 3: Classical & Novel RG Performance in Aging Samples

842 A) Aging RG status of classical reference gene by tissue. Genes that are age-invariant and therefore valid
843 RGs are depicted in blue while their age-variant counterparts, which were not present in the gene list
844 after filtering, appear in red. B-C) Individual gene cycle threshold (Ct) results from validation RT-qPCR
845 tissues in heart (B) and liver (C) for selected classical RGs and novel age-invariant RGs. D) RT-qPCR Gene
846 RefFinder score and mRNA-seq %CV in heart and liver. Age-invariant genes are distinct from and
847 outperform canonical RGs in %CV (Welch Two Sample t-test p -value= 0.006553) and RefFinder qPCR
848 scores(Welch Two Sample t-test p -value = 0.02401). RefFinder and %CV scores were calculated from in-
849 house and public validation datasets respectively. RefFinder score was based on BestKeeper,

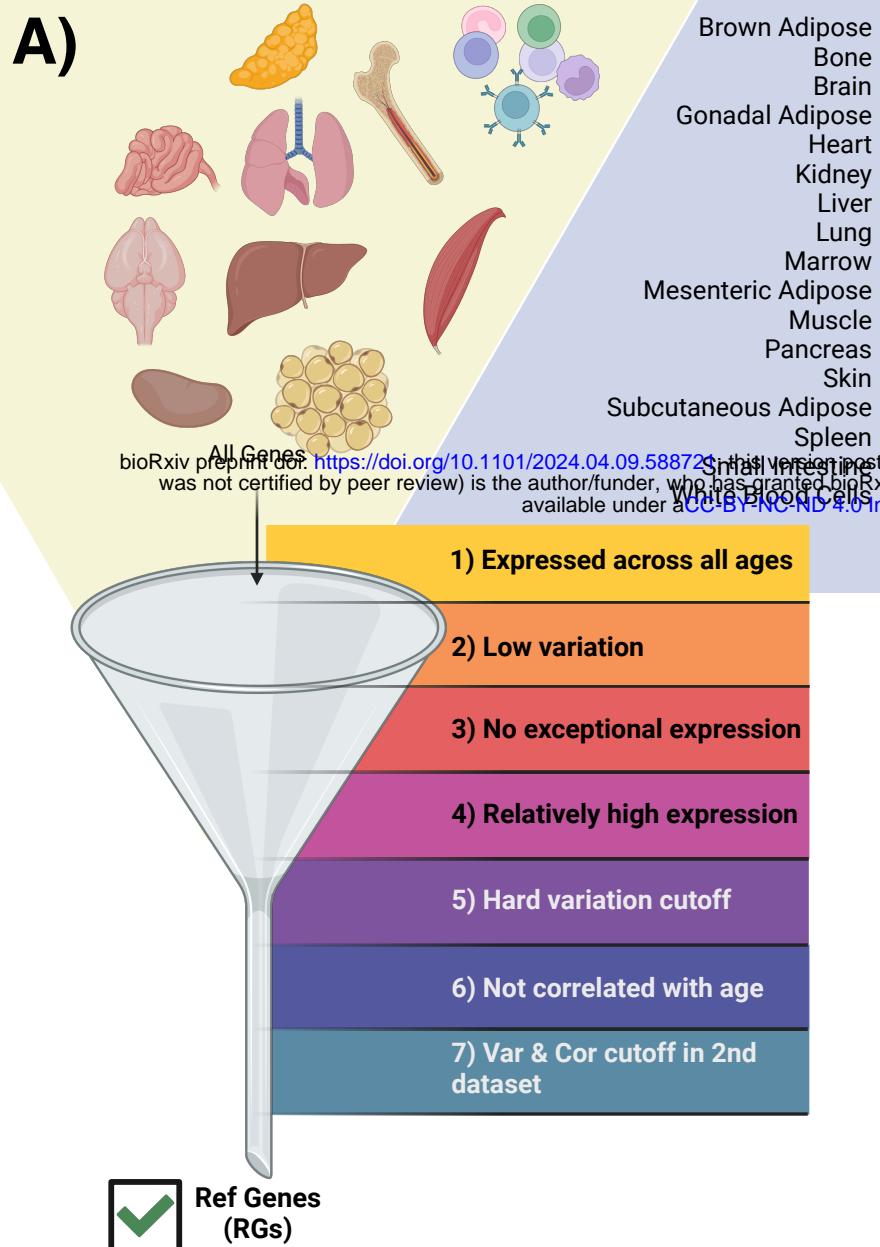
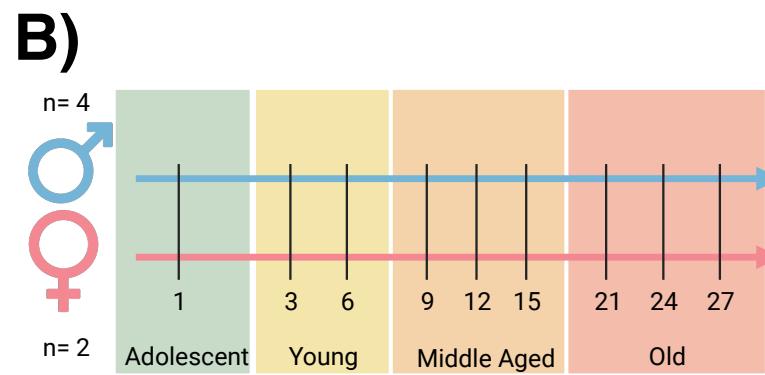
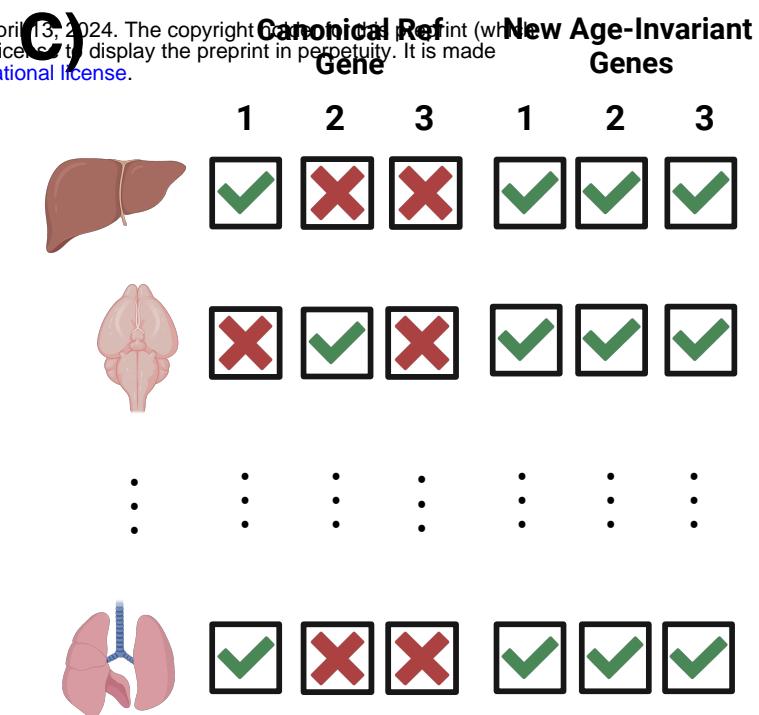
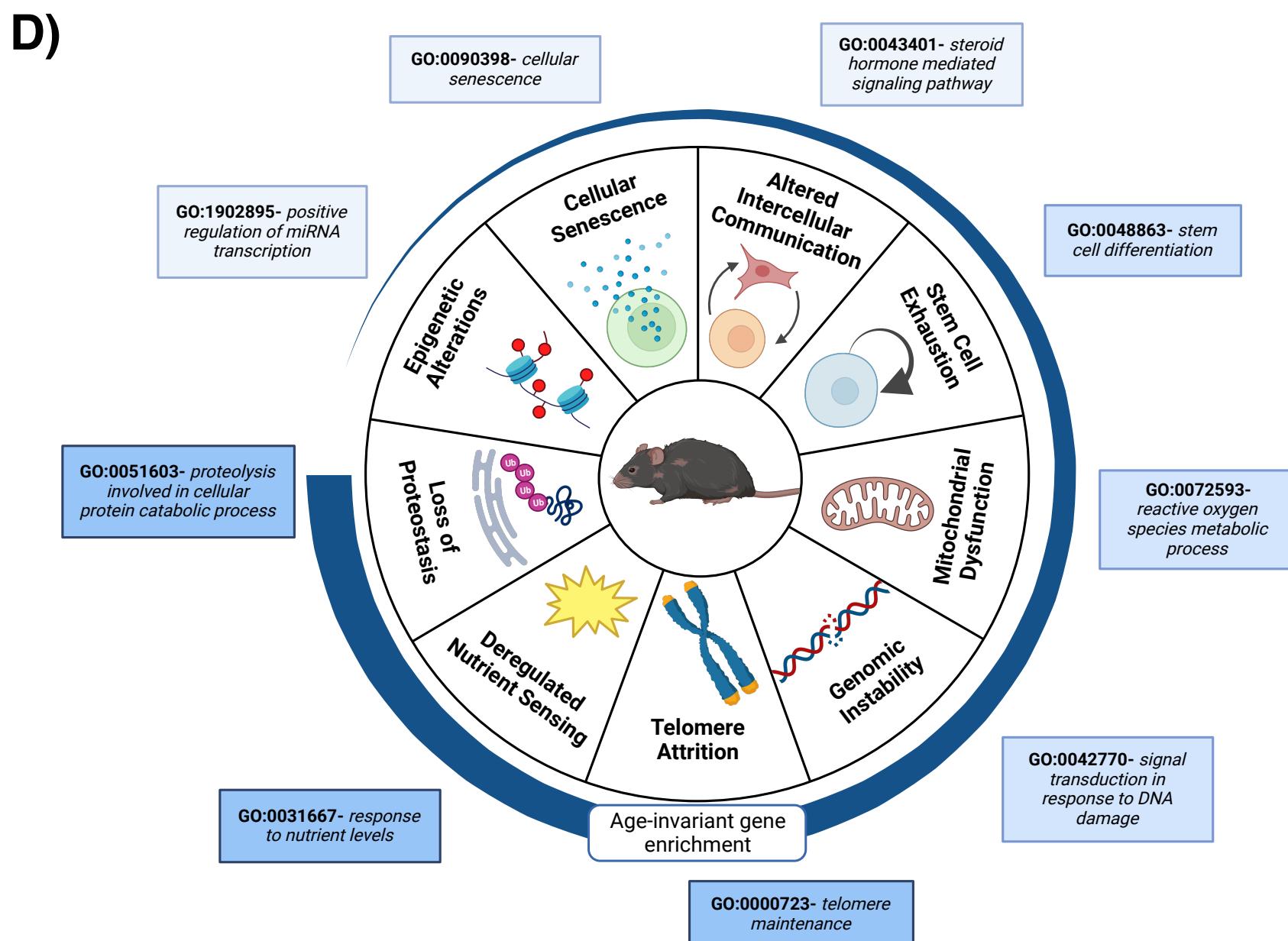
850 NormFinder, GeNorm and comparative delta-Ct values. Circled points indicate novel age-invariant RGs
851 (Two pan-tissue: Tomm22 and Srp14; and one heart and liver age-invariant gene: Atp6v1f) while
852 uncircled points specify classical RGs from Figure 3A.

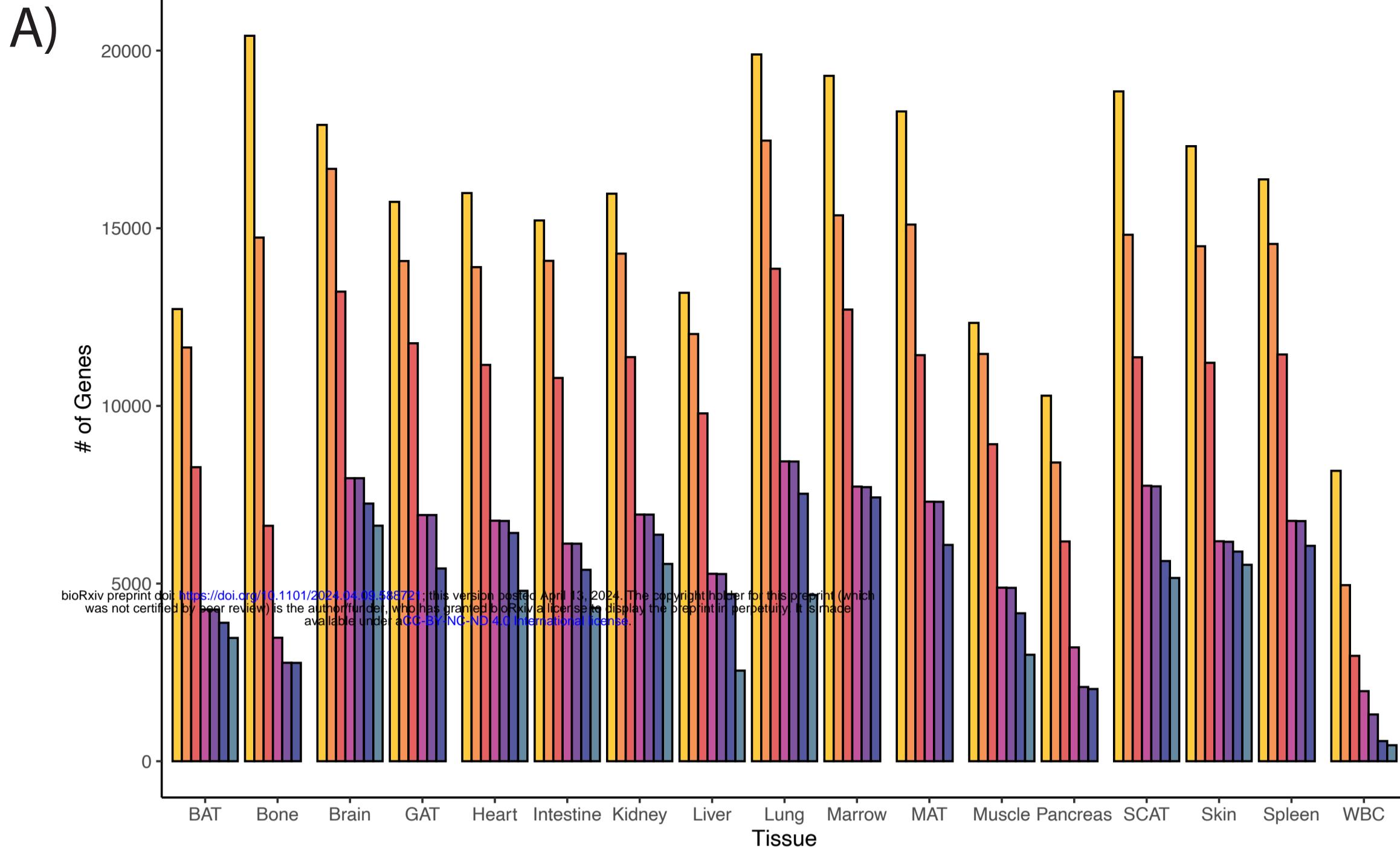
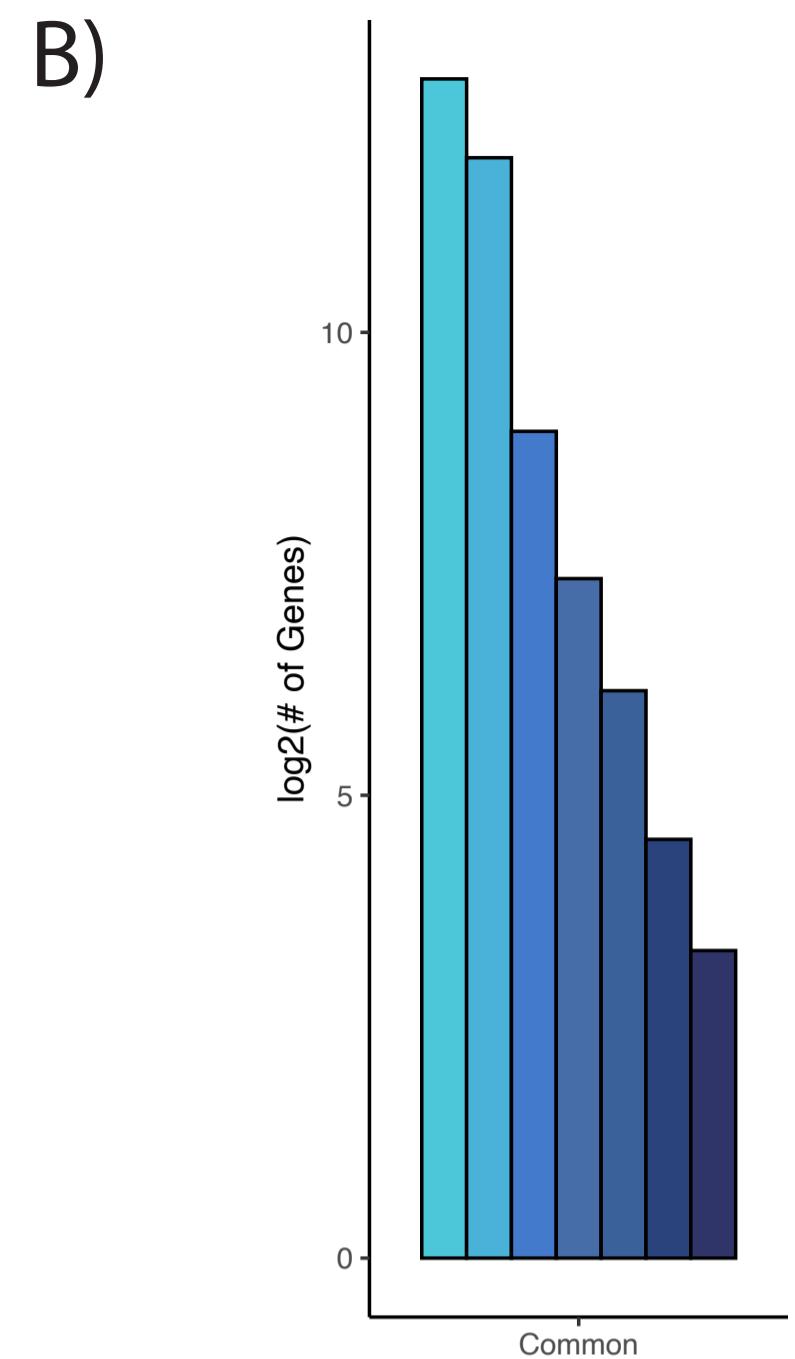
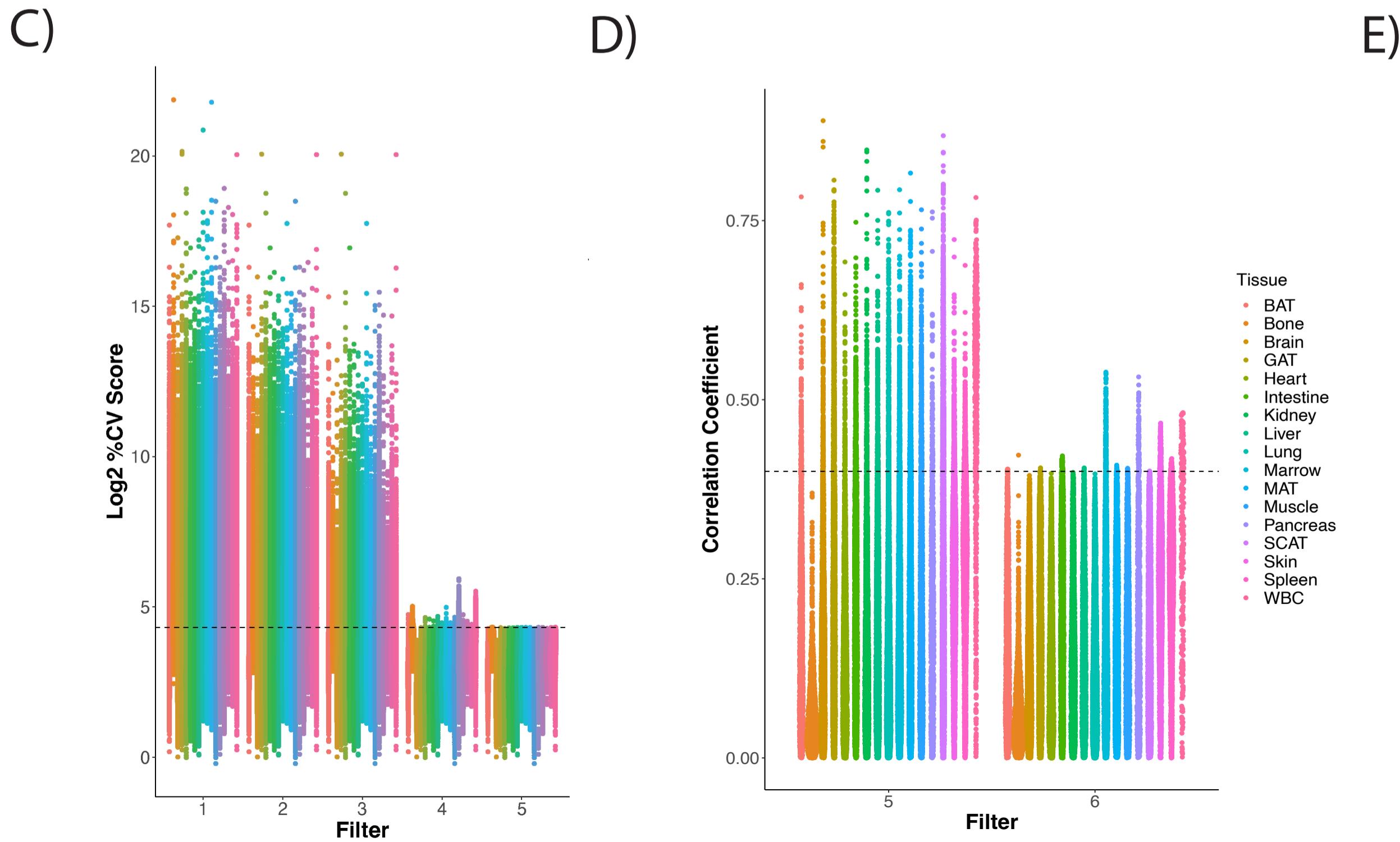
853

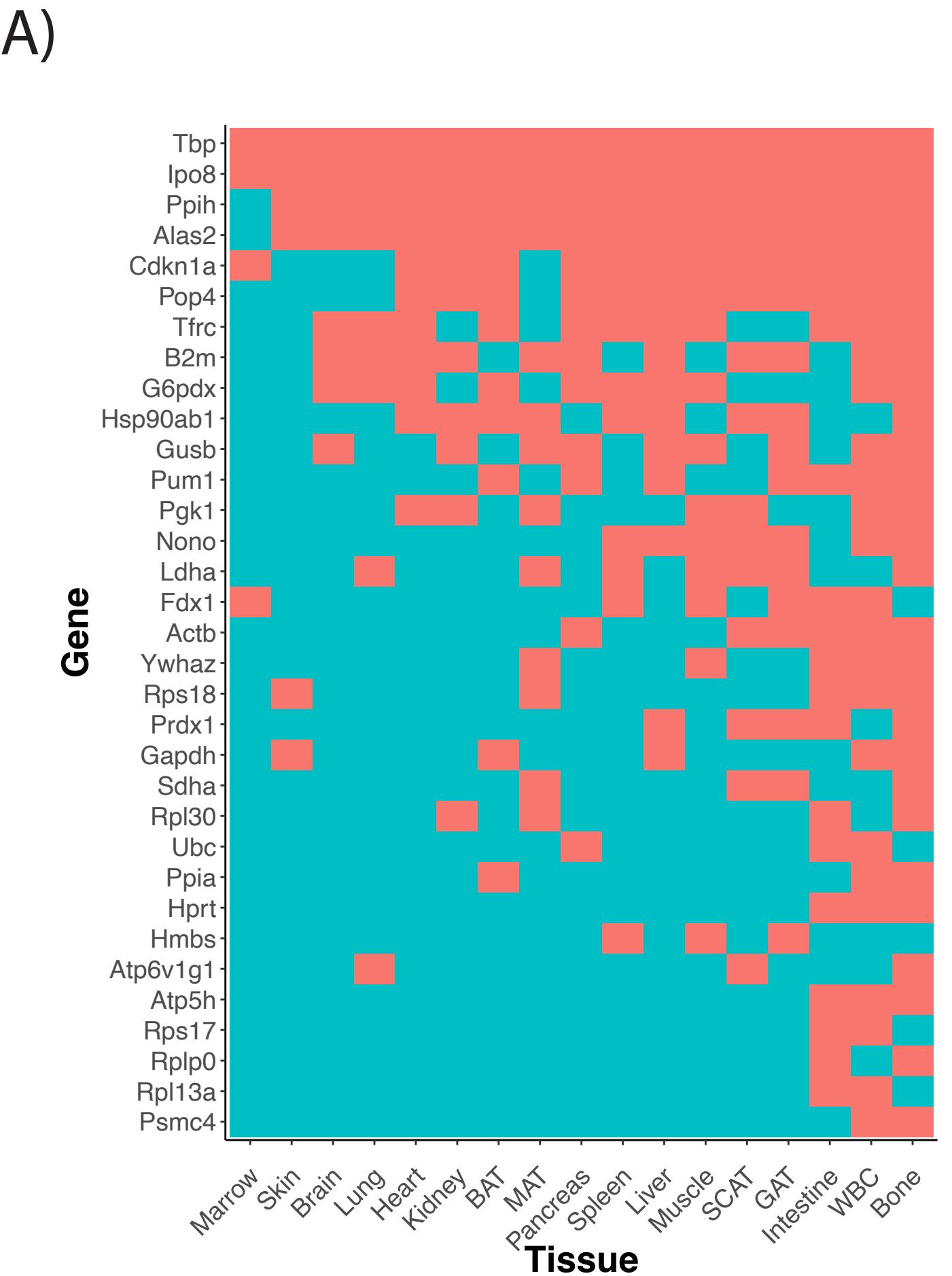
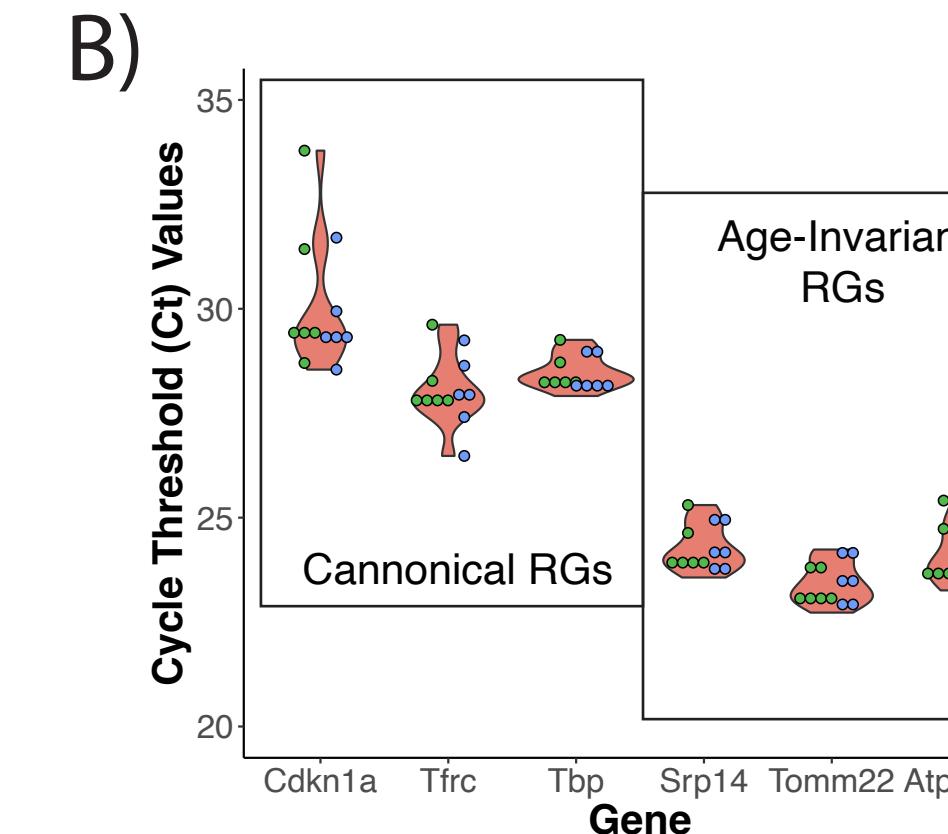
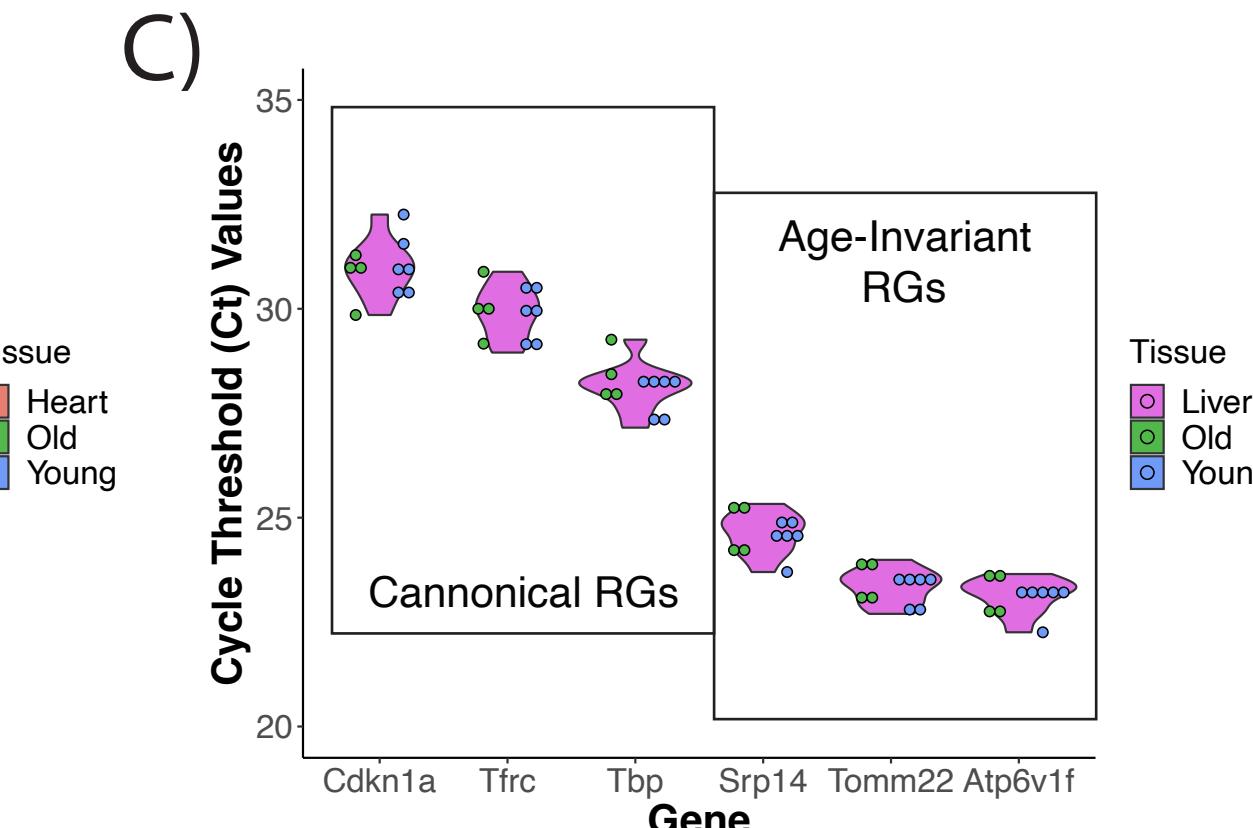
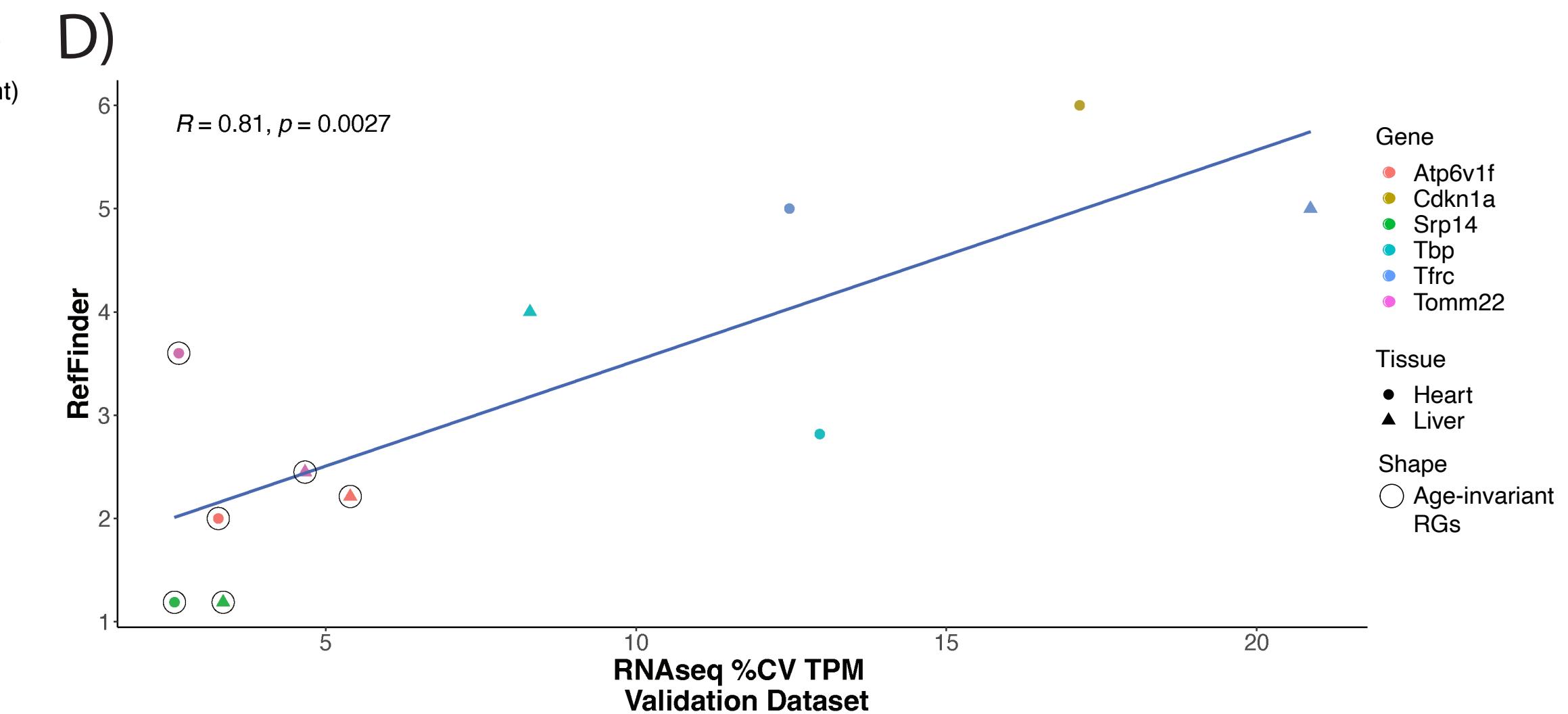
854 Figure 4: Age-Invariant Genes are Enriched for Dysregulated and Aging Disease Associated Gene
855 Functions

856 A) Tissue age-invariant genes are enriched for some GO, KEGG and REACTOME terms associated with
857 linear and non-linear aging trajectories. Left labels correspond to enrichment terms originally classified
858 in 9 trajectory groups. Age-invariant labels at the very bottom (pink) refer to genes identified in this
859 paper. Heatmap columns correspond to different tissues, while rows correspond to different terms. B)
860 Age-invariant genes are enriched for GO Biological Processes associated with age-related disease in
861 humans. C) Tissue age-invariant genes are enriched for certain protein complexes. Gene lists are
862 enriched for CCT complex, electron transport chain (respiratory complex I and cytochrome C),
863 proteasome, Cop9 signalosome, PYR, Parvulin-associated pre-rRNP and Regulator-AXIN/LKB1-AMPK
864 complexes in CORUM analysis.

865
866







A)

B)



C)

