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Abstract 12 

Studies of the aging transcriptome focus on genes that change with age. But what can we learn from 13 

age-invariant genes—those that remain unchanged throughout the aging process? These genes also 14 

have a practical application: they serve as reference genes (often called housekeeping genes) in 15 

expression studies. Reference genes have mostly been identified and validated in young organisms, and 16 

no systematic investigation has been done across the lifespan. Here, we build upon a common pipeline 17 

for identifying reference genes in RNA-seq datasets to identify age-invariant genes across seventeen 18 

C57BL/6 mouse tissues (brain, lung, bone marrow, muscle, white blood cells, heart, small intestine, 19 

kidney, liver, pancreas, skin, brown, gonadal, marrow, and subcutaneous adipose tissue) spanning 1 to 20 

21+ months of age. We identify 9 pan-tissue age-invariant genes and many tissue-specific age-invariant 21 

genes. These genes are stable across the lifespan and are validated in independent bulk RNA-seq 22 

datasets and RT-qPCR. We find age-invariant genes have shorter transcripts on average and are enriched 23 

for CpG islands. Interestingly, pathway enrichment analysis for age-invariant genes identifies an 24 

overrepresentation of molecular functions associated with some, but not all, hallmarks of aging. Thus, 25 

though hallmarks of aging typically involve changes in cell maintenance mechanisms, select genes 26 

associated with these hallmarks resist fluctuations in expression with age. Finally, our analysis concludes 27 

no classical reference gene is appropriate for aging studies in all tissues. Instead, we provide tissue-28 

specific and pan-tissue genes for assays utilizing reference gene normalization (i.e., RT-qPCR) that can be 29 

applied to animals across the lifespan.  30 
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Introduction  31 

Aging, the accumulation of cellular, molecular, and physiological alterations in an organism over 32 

time, increases the risk of dysfunction, chronic disease, and mortality [1]. The advent of next-generation 33 

sequencing and other high-throughput technologies has allowed for data-driven analyses to discover 34 

age-linked gene expression changes and dysregulation. However, little effort has been directed toward 35 

identifying and understanding age-invariant genes – those that remain unchanged throughout the aging 36 

process. The utility of such genes would be twofold: 1) they can be used as reference genes in 37 

quantitative assays, and 2) they may share molecular features that allow them to resist changes with 38 

age. 39 

 The transcriptome has been shown to exhibit substantial remodeling during the aging process, 40 

and there is evidence that many of these changes may drive declines in cellular function. By employing 41 

bulk RNA-seq across 17 mouse tissues, Schaum et al. identified clusters of genes with similar age 42 

trajectories associated with the hallmarks of aging [2]. Gene clusters increasing in expression included 43 

immune and stress response genes, while those decreasing in expression included genes involved in the 44 

extracellular matrix, mitochondria, and protein folding [2]. Overall, a global decrease in gene expression 45 

has been reported to occur with aging, such that when comparing older animals to younger animals,  46 

differentially expressed genes tend towards downregulation [3]. For tissue-specific genes, a divergence 47 

or specialization of distinct cell types is observed during development, whereas aging has been 48 

associated with a loss of specificity in transcriptional profiles [4] and an increase in transcriptional noise 49 

(increased variance between individuals) [5–7]. Interestingly, genes subject to age-related change have 50 

been linked to specific features, including transcript length and association with CpG islands [8,9]. 51 

Studying age-invariant genes that do not change their expression and remain stable throughout 52 

the aging process may uncover complementary aging mechanisms. The notion of invariant genes has 53 

been a focus of biomedical research for over 50 years, but their study has been confined to young 54 
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organisms or cell line perturbations [10]. Due to their relative stability, invariant genes have been 55 

utilized as internal reference controls for gene expression assays. Initially coined as housekeeping genes, 56 

these invariant genes are constitutively expressed at high levels, are subject to low fluctuations, and are 57 

often essential for proper cellular function [10–12]. The changing definition of the term “housekeeping 58 

gene” led the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) 59 

guidelines to update the term used for normalization to reference genes (RGs) [13], and we will utilize 60 

this term.  There is no absolute standard list of RGs; many classical RGs, including glyceraldehyde-3-61 

phosphate dehydrogenase (GAPDH), actin β (ACTB), and β2-microglobulin (B2M), were found to be 62 

highly variable in certain contexts [11,14]. Although an ultimate RG may not exist (consistent across all 63 

possible tissues, cell types, cell cycle stages, experimental conditions, and developmental phases), 64 

identification of invariant genes in specific contexts and sample types is possible [14,15]. 65 

Little work has been done to identify and validate RGs that are stable throughout the aging 66 

process, i.e., age-invariant reference genes. These genes would be invariant across the lifespan, either 67 

within any given tissue (tissue-specific) or across all tissues (pan-tissue). Aging is known to impact 68 

classical reference gene expression: a mouse study, for example, found age, sex, and frailty explicitly 69 

alter the expression of a majority of classical RGs examined [16].[11,14] [29]. Within the aging field, 70 

studies are restricted to RGs identified in other fields rather than using a novel, aging-focused analysis. 71 

The few available studies examining RGs in aging employ targeted RT-qPCR validation of some of the 72 

aforementioned classical transcripts and recommend different RGs based on the genes and the 73 

parameters included. For example, GUSB increased with age in mouse skeletal muscle, making it a poor 74 

RG in that context, but it was the best RG candidate in human peripheral blood mononuclear cells [16–75 

20].  Another salient example for aging is Cdkn1a/p21. Cdkn1a/p21 is often utilized as a reference gene 76 

in RT-qPCR normalization literature [20], even though it simultaneously serves as a marker of cellular 77 
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senescence–one of the major hallmarks of aging, which is defined by change over time [21,22]. Thus 78 

there is a pressing need to identify RGs appropriate for aging studies. 79 

We now have the tools and datasets to identify age-invariant RGs. The first iterations of 80 

reference genes, which compose a majority of popular RGs, were not experimentally determined but 81 

selected because they were detected in all tissues and assumed to have little variability [10,23]. With 82 

the development of 21st-century microarray and next-generation sequencing technologies, this 83 

question can finally be tackled from a data-rich perspective [23]. RNA-seq datasets have been 84 

successfully used to experimentally identify RGs in healthy human tissue [10,11], mammalian animal 85 

models [14,24], non-mammalian organisms [25], disease conditions [26] and even single-cell 86 

populations [27]. The variables included in the datasets for these analyses determine the application 87 

constraints of the resulting RGs. Novel data-rich unsupervised techniques paired with next-generation 88 

sequencing data remain an untapped resource for identifying RGs for aging studies and more fully 89 

understanding the dynamics of transcriptional change (or lack thereof) with aging. 90 

Here, we leverage published approaches for RG identification [10] with appropriate refinements 91 

(Figure 1A) and apply them to public bulk RNA-seq datasets with samples collected across the full 92 

lifespan (Figure 1B) to identify age-invariant genes. We show that, unlike our age-invariant genes, no 93 

classical RG is suitable for aging studies across all tissues (Figure 1C); and characterize features and 94 

functions of these age-invariant genes (Figure 1D). Of note, we opted to focus on the subset of age-95 

invariant genes that can also serve as RGs - those that are also relatively highly expressed - due to their 96 

practical applications.  97 

 98 

Results 99 

Identification of candidate age-invariant genes from RNA-Seq data 100 
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Bulk RNA-seq data from the Tabula Muris Senis study [2] were utilized for age-invariant RG 101 

discovery. We analyzed 17 tissues: brown adipose tissue (BAT), bone, brain, gonadal adipose tissue 102 

(GAT), heart, kidney, limb, liver, lung, marrow, mesenteric adipose tissue (MAT), pancreas, 103 

subcutaneous adipose tissue (SCAT), skin, small intestine, spleen and white blood cells (WBCs). We 104 

performed quality control and only utilized samples where we could verify the tissue label 105 

(Supplementary Figure 1; Methods). The dataset contained female and male mice representing the 4 106 

major lifespan stages: adolescent (1mo), young (3 and 6mo), middle-aged (9, 12, and 15mo), and old 107 

(21, 24, and 27mo) [28] (Figure 1A-B).   108 

Tissues were independently analyzed by sequentially applying 7 filtering criteria through each 109 

tissue’s gene set (Figure 1A). Here, we utilize expression counts normalized to Transcripts Per Million 110 

(TPM) [29], which is similar to RT-qPCR as it approximates relative molar RNA concentration, as well as 111 

Trimmed Mean of M (TMM) [30], which leverages inter-sample information to reduce sensitivity to 112 

gene outliers. Both normalization techniques performed similarly well at identifying RGs in a recent 113 

systematic comparison of normalization methods [26]. Our approach leverages two different 114 

normalization techniques to reduce artifacts specific to individual methods. Each criterion, or filter, was 115 

applied to each tissue individually with both normalization methods; genes were only included in the 116 

tissue-filter gene list if they satisfied the requirement in both TPM and TMM normalized datasets. 117 

Our filtering criteria are listed below. The filtering pipeline was applied to each tissue separately, 118 

with samples spanning the lifespan stages defined in Figure 1B. Although some genes have been 119 

identified as age-invariant within multiple tissues, this does not suggest they are invariant to tissue type 120 

and thus should still be applied in a tissue-specific manner. Criteria 1-4 are adapted from an approach 121 

frequently used for RG identification from RNA-seq data [10,25]:  122 

1. Continuous expression:  Non-zero expression in all samples. 123 
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2. Low variance: The standard deviation (SD) of the log2 normalized gene (x) expression for all 124 

samples (i) is less than 1. � ,  �   2�  ��  �  1 125 

3. No exceptional expression/outliers: log2 normalized values are within two units of the gene’s 126 

mean(removing genes with data points four-fold away from the gene mean).� , |    2�  � �  �   2� �� |  	127 

 2 128 

4. Medium to high gene expression: the gene’s log2 normalized expression mean is above the 129 

mean of all the genes expressed in the particular tissue � ,  �   2� �� 
   �   2�         �� 130 

 131 

To ensure age-invariant gene list quality, we added two new filters to the identification criteria:  132 

5. Low coefficient of variation (CV): The percent coefficient of variation (%CV), the ratio of the 133 

standard deviation to the mean, is lower than 20%. � ,  �   2�  �� /  �   2� ��   	  20 134 

6. No correlation between gene expression and age: Gene expression correlation with age is not 135 

statistically significant (no p-value under 0.05) 136 

Finally, we performed external validation:  137 

7. Filters 5 and 6 were applied in publicly available validation datasets with bulk tissue RNA-seq 138 

data from mice. Tissues with a validation dataset were BAT, brain, heart, kidney, muscle, liver, 139 

lung, SCAT, skin, small intestine, and WBCs (11).    140 

 141 

The filters progressively refined the list of both tissue-specific (Figure 2A, Supplementary Table 142 

1) and pan-tissue age-invariant genes (Figure 2B, Table 1). For reference, Supplementary Table 2 lists 143 

information on each gene’s %CV, slope with age, and correlation with age in each tissue, allowing 144 

readers to select their own cutoffs if they choose. Supplementary Tables 3-9 contain lists of all genes 145 

that passed each consecutive filter in each tissue.  146 
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There were a few notable modifications to the original pipeline. First, we modified Criterion 4, 147 

which selects for relatively highly expressed genes and, therefore, is easily detected by RT-qPCR [10]. 148 

Because each tissue had different gene count distributions (Supplementary Figure 2A), we deviated 149 

from the previous use of an arbitrary cutoff and employed an adjusted cutoff, removing genes with 150 

means below the mean of all genes expressed in a given tissue (log2 transformed) [25]. Consistent with 151 

previous publications [25], the cumulative effect of filters 2 (standard deviation cut-off) and 4 (mean 152 

cut-off) resulted in a percent coefficient of variation (%CV) of about 20% in most tissues (Figure 2C). 153 

However, given the lower average normalized gene expression in some tissues (Bone, Pancreas, Spleen 154 

WBC), genes in these tissues surpassed this threshold. To ensure the genes obtained were truly low 155 

variance, we applied a hard cut-off of 20% CV (Filter 5). This approach combines Eisenberg et al.’s low 156 

variance definition of RGs and their alternative approach: mid-to-high expression [10].  157 

Second, we added Filter 6 to ensure age invariance. We had initially hypothesized that simply 158 

analyzing samples with a wide age range using the typical RG pipeline (filters 1-4) would be sufficient to 159 

filter out genes that change with age. Indeed, adding age groups to the analysis progressively discarded 160 

genes during the filtering process (Supplementary Figure 3A). This, however, could be due to the 161 

increase in samples (n) included in the analysis. To test whether the wide age range alone contributes 162 

important information, we applied the steps of the standard pipeline (filters 1-4) on samples belonging 163 

to only a particular lifespan stage and compared it to a cross-stage control with the same n. Including a 164 

wide range of ages by using cross-stage analysis discarded more genes compared to single-stage analysis 165 

for adolescent, middle-aged, and old stages (Supplementary Figure 3B). Surprisingly, this was not the 166 

case for the young adult stage (3-6mo old); we found this was likely due to a subset of genes that have 167 

high expression variability in young adults but are stable in other life stages (Supplementary Figure 3C-168 

F). Regardless of lifestage analyzed, this pattern held true. Genes identified as age-invariant (with filters 169 

1-4) only in young samples (Supplementary Figure 3C); in young samples and other lifestages  (analyzed 170 
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separately)(Supplementary Figure 3D); in lifestages except young  (Supplementary Figure 3E); or with 171 

the full dataset, i.e., all lifespan stages, (Supplementary Figure 3F) reveal a similar pattern: some genes 172 

have higher variance (%CV) in young and old populations. This is reflected by the rightward shift in 173 

young and old samples. Young samples have an overall higher proportion of high variance (over the 174 

20%CV dotted line) genes than old ones (Supplementary Figure 3C-F). Thus, simply utilizing a wide age 175 

range in the typical pipeline does not necessarily help identify age-invariant genes. Furthermore, we 176 

found that some genes obtained through filters 1-5 still changed with age (Figure 2 D-E). To address this 177 

finding, we added criterion 6, removing genes with statistically significant correlations with age for each 178 

tissue (Figure 2D). 179 

Finally, to decrease the number of false positives, we validated the gene lists using a second bulk 180 

mRNA-seq dataset for 11 out of 17 tissues (except for bone, GAT, marrow, MAT, pancreas, and spleen). 181 

The number of validated genes is displayed in Figure 2A-B as Step 7. Specific counts and percentages can 182 

be found in Supplementary Table 1. For nearly all tissues, a supermajority (>70%) of candidate age-183 

invariant genes were validated, except in the liver (54%) and lung (62%). The fewest number of age-184 

invariant genes was observed in WBCs, possibly due to large changes in distributions of cell types over 185 

shorter timescales [31,32](Figure 2A). 186 

 187 

RT-qPCR validation of Novel age-invariant reference genes  188 

Our analysis identified many tissue-specific age-invariant RGs (Supplementary Table 9), as well 189 

as 9 such genes common to all tissues (pan-tissue). Some classical RGs are not age-invariant genes 190 

(Figure 3A-C). In fact, no classical RGs were age-invariant across every tissue (Figure 3A). Thus, we 191 

propose a new list of 9 age-invariant genes common to all 17 tissues that can be used in studies with 192 

aged animals (Table 1).  193 
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 These RG sets can be utilized in the context of northern blot, RT-qPCR, and some RNA-seq 194 

normalization strategies in aging studies. Researchers have the choice of selecting from a tissue-specific 195 

gene list or from the nine pan-tissue genes. To validate this, independent samples were used to 196 

generate RT-qPCR data for three age-invariant genes identified by our computational pipeline: Atp6v1f, 197 

Srp14, and Tomm22 (Figure 3B-D).  Atp6v1f is an age-invariant gene shared by the two tissues assayed: 198 

the liver and heart. The other two are pan-tissue age-invariant genes.  The novel samples consisted of 199 

mouse heart and liver samples in four categories: old (~19mo) female, old male, young (~8mo old) 200 

female, and young male. We compared these against three classical RGs: Cdkn1a, Tbp, and Tfrc. Classical 201 

reference genes generally had a wider cycle threshold distribution than the age-invariant genes, with 202 

Tbp being the most stable among them, followed by Tfrc and Cdkn1a (Figure 3B-C).  Cdkn1a codes for 203 

cyclin-dependent kinase inhibitor 1A, also known as p21. Given that Cdkn1a is widely used as a marker 204 

of cell senescence [22], it is not surprising that it has a high degree of variability despite it being widely 205 

considered an RG in RT-qPCR normalization literature [17].  206 

 To assess gene RT-qPCR stability in the context of aging, we calculated the expression stability 207 

across multiple algorithms: BestKeeper [33] (Supplementary Figure 4A-B), geNorm [34] (Supplementary 208 

Figure 4C-D), NormFinder [35] (Supplementary Figure 4E-F), and delta-CT method [36] (Supplementary 209 

Figure 4G-H). These scores were utilized to calculate the summary RefFinder score (Figure 3D, 210 

Supplementary Figure 4I) [37]. TPM %CV for the discovery (Supplementary Figure 4A, C, E, G, J) and 211 

validation (Figure 3D, Supplementary Figure 4B, D, F, H) RNA-seq datasets strongly correlate with all 212 

stability algorithm values calculated on our in-house samples. Figure 3D displays the correlation 213 

between the TPM %CV values of the external validation dataset and the RefFinder score of our in-house 214 

validation samples (Pearson correlation = 0.81, p-value = 0.0027). This suggests that %CV from 215 

normalized RNA-seq samples could be used as an indicator of candidate reference genes for RT-qPCR 216 

experiments subject to the same conditions. By both metrics, the newly identified age-invariant genes 217 
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outperformed the classical RGs: these RGs are statistically different in both %CV (Welch Two Sample t-218 

test p-value= 0.006553) and RefFinder qPCR scores (Welch Two Sample t-test p-value = 0.02401) This 219 

suggests age-invariant genes common across all tissues (Srp14 and Tomm22) or particular tissues 220 

(Atp6v1f in heart and liver) could be applied as part of normalization in age-related transcriptomic 221 

research. A combination of more than one of the age-invariant genes  is recommended for RT-qPCR 222 

experiments, per the MIQE guidelines [13].  223 

 224 

Overlapping pathways for aging stable and aging dysregulated genes 225 

 Gene enrichment analysis of the tissue-specific age-invariant genes revealed a large number of 226 

statistically significant GO biological pathway terms (Supplementary Figure 5). As expected, the most 227 

enriched terms were largely involved in basic metabolic and structural processes (Figure 4A). We also 228 

noted many enriched terms were related to the hallmarks of aging [38], which was surprising 229 

considering that hallmarks of aging are typically thought to involve processes that change with age. As 230 

an initial step to systematically assess the presence of stably transcribed genes in these hallmarks, we 231 

compared the enrichment scores of our tissue age-invariant gene lists with previously published 232 

enrichment terms associated with age dysregulation and disease [2,39].  233 

 We first compared our enrichment scores with the top terms associated with mouse 234 

transcriptome aging clusters, each displaying a different trajectory with aging (Figure 4A). The top 235 

enrichments of these 10 clusters, obtained from the same dataset we performed our discovery on, are 236 

associated with hallmarks of aging like protein folding, inflammation, and mitochondrial function [2]. We 237 

found our tissue gene sets were significantly enriched in many, but not all, of the clusters. Of note is 238 

cluster 3, linked to mitochondrial dysfunction, where age-invariant genes are highly enriched for every 239 

term of this cluster. Age-invariant genes are also heavily represented in stress response (cluster 5), 240 

signaling (cluster 2), and protein stability (cluster 7). Interestingly, within the protein stability cluster, 241 
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age-invariant genes were enriched in terms involved in protein folding, processing, and stabilization but 242 

not in terms involved in protein localization. The clusters with the least age-invariant genes were those 243 

associated with immune response and extracellular matrix. This suggests that hallmarks themselves, or 244 

mechanisms within an aging hallmark, can be separated by the presence or absence of age-invariant 245 

genes. 246 

Cluster 1 from Schaum et al. is defined as genes that do not change with age and, as expected, 247 

has a large overlap with our tissue age-invariant gene sets. Cluster 1 was defined by having the least 248 

amplitude (change with age) and least variability. Interestingly, throughout the 17 tissues, only ~33-40% 249 

of our age-invariant genes were in Schaum et al.’s cluster 1. The genes not shared between both 250 

methods likely reflect the difference between relatively a stable group of genes identified by hierarchical 251 

clustering and individual age-invariant genes identified due to their characteristics (as well as our RG 252 

requirement that genes be highly expressed) [2,40]. In RNA-seq, genes with low expression demonstrate 253 

significant technical noise making it difficult to assess true biological variability related to age or other 254 

factors, and are often filtered out of differential expression studies [41], so our requirement for high 255 

expression is useful for focusing on age-invariant genes.  256 

The other ontology terms we examined came from an analysis of age-related diseases and aging 257 

hallmarks (Figure 4B). Unlike  Schaum et al., who used a completely unsupervised approach, Fraser et al. 258 

used genes associated with human age-related diseases in a genome-wide association study to define 259 

GO biological pathways related to both disease and at least one aging hallmark [39]. Most hallmarks 260 

have at least one GO term enriched for age-invariant genes across most of the tissues analyzed (e.g., 261 

“steroid hormone-mediated signaling pathway” in altered intercellular communication; “cellular 262 

response to insulin stimulus” and “response to nutrient levels” in deregulated nutrient sensing; 263 

“macroautophagy” and “regulation of autophagy” for loss of proteostasis; “reactive oxygen species 264 

metabolic process” in mitochondrial dysfunction; and “telomere maintenance” in telomere attrition). On 265 
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the other hand, virtually no GO term related to cellular senescence and epigenetic alterations had high 266 

proportions of stably transcribed genes. According to this alternative way of identifying gene ontology 267 

terms associated with aging hallmarks, age-invariant genes continue to be enriched in these terms.  268 

To better understand the implications of some of these stable pathways, we used the 269 

comprehensive resource of mammalian protein complexes (CORUM) database to perform enrichment 270 

analysis (Figure 4C)[42]. The enriched complexes are consistent with our enrichment results in this data 271 

thus far. Complexes involved in mitochondrial function (respiratory chain complex I and cytochrome c 272 

oxidase), stress response & signaling (Regulator-AXIN/LKB1-AMPK complexes), and protein stability 273 

(COP9 signalosome, proteasome, Parvulin-associated pre-rRNP, and Chaperonin containing TCP1 274 

Complex) are enriched in age-invariant genes.  275 

Our analyses reveal multiple age-invariant genes within pathways that are either dysregulated 276 

with aging (Figure 4A, C) or associated with aging pathologies (Figure 4B). Pathways related to the 277 

extracellular matrix, cellular senescence, and epigenetic alterations seem particularly devoid of stably 278 

expressed genes. These findings are not due to the high expression requirement for our age-invariant 279 

genes, as removing this requirement produced similar results (Supplementary Figure 6).  280 

 281 

Age-invariant gene features   282 

 Features of genes that change with age have long been a point of discussion in aging 283 

transcriptome research, but little is known about the genes that are able to withstand the effects of 284 

time. We tested whether our genes have the opposite features to those described in age-dysregulated 285 

transcriptome analyses. The features examined are CpG content, DNA methylation (Supplementary 286 

Figures 7-8), and gene length (Supplementary Figures 7 and 9), given that these features have been 287 

implicated in age-associated transcriptional drift [8,9].   288 
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 Lee and colleagues reported that genes with CpG islands (CGI+) are less likely to change with age 289 

than genes without CpG islands (CGI-) [9]. Accordingly, we found that the proportion of genes with CpG 290 

islands located in their promoters increased as a function of our filtering process, suggesting that as we 291 

more rigorously select for age-invariant genes, the more prevalent promoter CpG islands become  292 

(Supplementary Figure 7A). The transcripts themselves were not enriched for greater %CG content, 293 

suggesting there is biological specificity of the function of these islands versus an overall increase in CG 294 

content in the region (Supplementary Figure 9D). We next investigated whether age-invariant genes 295 

also showed greater stability in promoter methylation status during in vitro passaging or in vivo aging 296 

using reduced-representation bisulfite sequencing (RRBS) datasets. For mouse embryonic fibroblasts 297 

serially passaged into senescence, we found both age-variance (based on our skin tissue-specific 298 

notation) (Supplementary Figure 8A), and CGI (Supplementary Figure 8B) status influenced methylation 299 

variability. Regardless of age-invariant RG status, CGI+ genes are more stable than CGI- genes 300 

(Supplementary Figure 8A). However, this pattern was not observed in mouse tissues, including liver, 301 

brain, heart, lung, or WBC  (Supplementary Figure 8B).  302 

Stroeger et al. report that median transcript length is the factor most associated with age-303 

related change, with longer transcripts tending to be downregulated and shorter transcripts tending to 304 

be upregulated with age [8]. Complementing these findings, we found that age-invariant genes tend to 305 

be shorter than age-variant genes when comparing minimum transcript length(Supplementary Figure 306 

7B). However, the opposite is true when comparing either maximum (Supplementary Figure 9A) or 307 

Ensembl canonical (Supplementary Figure 9C) transcript length. 308 

 309 

Discussion  310 

Much of aging biology research has focused on changes that occur across the organismal 311 

lifespan and the contribution of these changes to age-related mortality, morbidity, and functional 312 
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decline [1,38].  Molecular signatures that are robust to aging – specifically, age-invariant genes – have 313 

received comparatively little attention. Identifying age-invariant genes allows for further study of why 314 

they do not change with age. Lessons from these age-resilient genes provide a complementary view of 315 

aging and the stability of biological systems with time. Also, from a practical perspective, because many 316 

genes change with age, it is important to identify age-invariant genes for use as reference genes (RGs) 317 

for gene expression normalization [13]. By adopting a pipeline for identifying RGs from RNA-seq data, 318 

we find that there are, in fact, hundreds to thousands of age-invariant genes per tissue. Strikingly, there 319 

is poor agreement between the pan-tissue age-invariant genes and commonly used classical RGs. 320 

According to our results, none of the classical RGs are suitable for use in cross-sectional aging studies 321 

across the 17 tissues studied (Figure 3A), and some canonical tissue-gene pairings (e.g., GAPDH in the 322 

liver) are not age-invariant [43]. Our novel age-invariant genes are, therefore, better suited than 323 

classical RGs for performing normalization for RT-qPCR experiments in aging tissues.  324 

We report nine pan-tissue age-invariant genes in mice (Table 1). Reference and housekeeping 325 

gene literature postulates that continuously and stably expressed genes serve essential cellular and 326 

organismal functions [12]. Consistent with this hypothesis, depletion of 7 out of 9 of our pan-tissue age-327 

invariant genes have already been reported to induce cell (1110004F10Rik) or embryonic lethality when 328 

completely knocked out (Brk1, Rer1, Psmd4, Reco2, Tomm22, and Fis1) [44–49], according to the Mouse 329 

Genome Informatics database (www.informatics.jax.org) or International Mouse Phenotyping 330 

Consortium database (www.mousephenotype.org). The remaining two transcripts, Srp14 and Gemin7, 331 

have no reported knockout mouse strain or phenotypes, but we hypothesize would be lethal if absent.  332 

Two biological processes— mitochondrial function (Fis1, Rexo2, and Tomm22) and proteostasis 333 

(Psmd4, Rer1, and Srp14)— emerge from these 9 genes. Although these biological processes are 334 

implicated in aging changes, they may also contain components that remain highly stable across the 335 

lifespan. Rexo2 (RNA exonuclease 2) was recently shown to increase mitochondrial gene transcription, 336 
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mediate RNA turnover, and enforce promoter specificity in mammalian mitochondrial transcription [48]. 337 

Rer1 returns rogue ER-resident proteins or unassembled subunits in the Golgi apparatus back to the 338 

endoplasmic reticulum [46]. Little is known about the molecular function of the small acidic protein 339 

1110004F10Rik (also known as Smap) or its human ortholog C11orf58, but given its high stability and 340 

requirement for cell survival, this protein may merit further attention [44]. Thus, the stability of these 9 341 

genes may have evolved as a result of these genes being critical for mitochondrial and proteostatic 342 

function, and for continued life in the face of age-related deterioration. 343 

Simply including older mice in our study and utilizing the standard RG identification pipeline was 344 

insufficient at filtering out age-invariant genes. Rather, selecting for age-invariant genes required an 345 

additional step of explicitly removing genes that are correlated with age. We also find that the variance 346 

in expression of a given gene often changes across life stages. For instance, we identified more genes 347 

having high variance in young age than in middle or old ages (Supplementary Figure 4). Although 348 

perhaps surprising, this finding is consistent with reports indicating the proportion of genes decreasing 349 

in variance with age is greater than those increasing in variance with age [6,7,50]. It is possible that 350 

younger animals show greater variance related to circadian rhythms, the estrous cycles, sex differences, 351 

response to stress, or other adaptive and cyclical factors. 352 

Some limitations and caveats constrain our study. First, some of the specific cutoffs we utilized 353 

were based on prior work, while others (e.g., exact age correlation cutoff) were based on our best 354 

judgment. We provide a complete table of filter results in Supplementary Table 2 in case others wish to 355 

utilize different cutoffs in selecting RGs. To ensure the list of genes provided are useful reference genes 356 

in normalization strategies, including RT-qPCR and even some RNA-sequencing normalization 357 

approaches, we required high transcript expression through Filter 4. Although consistent with 358 

normalization transcript identification strategies in RNA-seq, many low-expression age-invariant genes 359 

are absent. Thus, our lists report age-stable, high-expression genes only. Our findings are influenced by 360 
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the technical limitations of RNA-seq [10,51] and the analytical limitations of high dimensional data, 361 

including subsampling of highly heterogeneous samples like aged organisms previously described in the 362 

literature [10,51,52]. However, variance in sample collection, processing, and preparation across these 363 

datasets likely compensate for any individual source's batch and degradation bias (e.g., each of the four 364 

datasets used employs a different poly-A sample preparation kit). Our final 9 pan-tissue age-invariant 365 

genes have been tested individually in 17 tissues and four datasets, totaling 1120 samples, thereby 366 

reducing the risk of, for example, a type I error (wrongly identifying a gene as age-invariant). Finally, an 367 

important assumption not usually discussed in aging transcriptome literature may influence 368 

interpretation in the context of aging: consistent RNA mass. A few studies suggest a decline in total 369 

cellular RNA mass with aging [53,54]. This is different from the reported downward trend of 370 

differentially expressed genes with age [3]. Current RNA sequencing analysis techniques use 371 

proportional estimates (counts per million, fragments per kilobase of transcript per million,  transcripts 372 

per million, etc.) to normalize samples in order to compare transcript dynamics across samples. 373 

Similarly, RT-qPCR protocols typically rely on standardizing total RNA input. If total RNA mass reduction 374 

is a global feature of cellular aging, our age-invariant genes are proportionally stable but may decrease 375 

in mass with age. Similarly, a gene identified to be overexpressed in old age may maintain constant 376 

molar concentration within a cell or tissue. We recommend readers keep these considerations in mind 377 

when interpreting any gene expression study in the context of aging. 378 

The existence and study of age-invariant genes have the potential to provide the field of aging 379 

with novel insights. It was interesting to find that age-invariant genes were enriched for some pathways 380 

associated with hallmarks or pillars of aging (Figure 4), specifically nutrient sensing, proteostasis, 381 

mitochondrial function, and immune function. This is somewhat puzzling given that such hallmarks are 382 

defined by changes thought to play putatively causal roles in aging [22,55] indeed, genes that most 383 

clearly change with age are enriched in the same hallmarks [2]. It is possible enrichment in pathways 384 
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associated with hallmarks of aging may simply reflect the fact that hallmarks of aging are broad and 385 

cover much of biology. In that case, it may be necessary to more specifically delineate each hallmark of 386 

aging, e.g., perhaps only a subset of nutrient sensing processes should be considered as a hallmark. 387 

However, this broadness would not explain why some hallmarks of aging are associated while others are 388 

not. What might be the significance of genes associated with hallmarks of aging that remain stably 389 

expressed throughout aging?  We note that a prior report indicated that essential genes are enriched for 390 

pro-longevity functions, as experimental overexpression of essential genes tends to increase lifespan in 391 

yeast [56]. We also find that age-invariant genes are present in pathways linked to human age-related 392 

diseases (Figure 4A-B). If age-invariant genes are essential for life, then organisms may have evolved 393 

mechanisms to keep these genes stable in the face of pervasive age-related changes in the rest of the 394 

pathway or network. One potential example highlighted here is the age-invariant gene enrichment of 395 

protein complexes in the electron transport chain. NADH:ubiquinone oxidoreductase, or Mitochondrial 396 

Respiratory Complex I, is the only age-invariant gene-enriched ECT complex throughout most tissues 397 

(Figure 4C). Although the downregulation of ETC genes is one of the most established transcriptional 398 

events in aging [52] and protein Complex I proteins undergo major changes in abundance with age [57], 399 

stability in some ETC components is likely required for continued life. This is consistent with Complex I 400 

being one of the ETC complexes that can be traced back to the last universal common ancestor of all 401 

living organisms [58]. Significant dysregulation of such essential components may be incompatible with 402 

life, and evolutionary forces may ensure stability throughout the lifespan. It will be interesting to 403 

determine whether further bolstering the expression or stability of such age-invariant genes may be a 404 

pro-longevity strategy or, if given their continous expression stable genes are good aging 405 

pharmacological targets. The putative aging intervention metformin, for example, may benefit from the 406 

stable expression of it’s target, Complex I [59]. 407 

In contrast, age-invariant genes were not enriched in some hallmarks, including epigenetic 408 
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alterations, cellular senescence, and the extracellular matrix. Our results suggest that these three are 409 

the most vulnerable to aging as not many genes related to these hallmarks resist age-related change. In 410 

agreement with this finding, these hallmarks are key targets across many existing longevity 411 

interventions, i.e., epigenetic reprogramming, senolytics, and enhancing extracellular matrix 412 

homeostasis [60–62]. Considering that age-invariant genes tend to be essential for life, one hypothesis is 413 

that early changes in these hallmarks may not be particularly detrimental for the organism and thus lack 414 

the selective pressure to evolve stability mechanisms in aging. The cumulative long-term burden of 415 

changes, however, may contribute to pathological aging. Alternatively, these variant hallmarks may 416 

reflect adaptive processes that evolved to change dynamically with aging for the benefit of the 417 

organism. 418 

Future analyses could focus on the processes that maintain the stability of age-invariant genes. 419 

Our initial investigations demonstrate that age-invariant genes are enriched in CpG islands, consistent 420 

with a previous report that genes with CpG islands are more resistant to age-related dysregulation than 421 

those without CpG islands, which are misexpressed during age-related heterochromatin decondensation 422 

[9]. However, further analyses are needed to determine whether the resistance to changes in the 423 

methylome of CpG-rich promoters was responsible for the stability of gene expression over time.  For 424 

instance, whether increased CpG density is better able to reinforce a stable epigenetic state.  425 

We also found that age-invariant genes tend to be shorter than others, confirming a previous 426 

study reported that the longest genes show the greatest degree of downregulation [8]. Further study is 427 

needed to better understand the relationship between expression dynamics and transcript length. Of 428 

note, classical RGs in general have been reported to exhibit shorter introns and exons, low promoter 429 

region conservation, 5’ regions with fewer repeated sequences, low nucleosome formation potential, 430 

and a higher SINE to LINE ratio [10,24]. It will be important to determine if and how these factors may 431 

contribute to the stability of age-invariant genes. 432 
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Lastly, it will be important to determine the translatability of our age-invariant transcripts, both 433 

to other organisms as well as to protein expression. In a recent study, 52% of human reference genes 434 

were matched to independently analyzed mouse reference gene orthologs [14]. Protein abundance can 435 

be inferred from transcriptomic data at the tissue and single-cell level, particularly for genes 436 

continuously and stably expressed [63,64]. These transcripts show a high correlation (~0.7) with their 437 

protein product except when variability is introduced by cellular state and microenvironment 438 

conditions. Given that age-invariant genes are assumed to be expressed in steady-state, many of these 439 

genes may also be age-invariant at the protein level.  440 

 Here, we provide the aging field with a list of 9 pan-tissue age-invariant genes for use in 441 

normalization strategies, e.g., RT-qPCT; we observe that age-invariant genes are enriched in ontology 442 

terms associated with some, but not all, hallmarks of aging; and we explore some common features of 443 

age-invariant genes (CpG island status and transcript length). Be it for understanding the basic biology of 444 

aging, establishing rigorous methodology in the field, investigating the mechanisms promoting age-445 

invariance vs. age-variance, or finding aging therapeutic targets, age-invariant genes are an important 446 

area of study. 447 

 448 

 449 

Methods 450 

Data Preparation and Normalization  451 

Four datasets were utilized in this analysis. The Discovery Dataset (GSE132040) consisted of 17 452 

male and female tissues from mice spanning the 4 major life span stages (Figure 1B). 11 of 17 tissues 453 

were validated with three datasets of bulk-RNA tissue data from male mice: GSE167665, GSE111164, 454 

and GSE141252. Count tables were obtained from GEO and normalized as described below. Sample 455 

preparation and alignment can be found in their respective publications [2,4,8]. 5 million counts/sample 456 
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were set as the count threshold for a sample to be included in normalization and further analysis. In the 457 

discovery dataset, hierarchical clustering identified a small number of samples that clustered away from 458 

their labeled tissue (Supplementary Figure 1A), and examination of tissue-specific markers confirmed 459 

they may be mislabeled and, therefore, were removed from analysis (Supplementary Figure 1B). The 460 

number of samples removed per tissue and lifestage can be seen in Supplementary Table 11 and those 461 

used in the rest of the analysis in Supplementary Table 10.  GEO accession number, tissue type, and life 462 

stage counts can be found in Supplementary Table 12 for validation datasets. Here, intestine labels 463 

refer to samples from both the large and small intestine; and brain to those from both the cerebellum 464 

and the frontal cortex.  465 

 RNA-seq normalization is essential for proper downstream analysis of datasets. In this study, we 466 

identified our genes with two normalization approaches: TPM and TMM. The original reference gene 467 

discovery approach described by Eisenberg and Levanon in 2013 [10], utilized RPKM normalized data. 468 

Around the same time, conversations about proper data processing produced Transcript Per Million 469 

(TPM), an intra-sample normalization method that approximates relative molar RNA concentration 470 

(rmc) [29]. TPM was only incorporated into this RG identification approach in 2019 [25]. Another major 471 

strategy for data normalization techniques involves between-sample normalization. To prevent 472 

normalization-based artifacts, and given there is no single best normalization approach, the discovery 473 

data was normalized with two different approaches: TPM and Trimmed Mean of M (TMM) [30]. TMM, 474 

an inter-sample normalization method, generates a normalization factor assuming most genes are not 475 

differentially expressed. Therefore, TPM is akin to RT-qPCR due to its similarity with rmc while TMM 476 

leverages inter-sample information and is less sensitive to gene outliers. Both performed similarly well 477 

at identifying RGs in a recent systematic comparison of normalization methods [26].  478 

TPM normalized data was calculated following the formula:  479 

TPM =  #            reads mapped to transcript/transcript length    x 106 480 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.09.588721doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588721
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 

 Sum(#reads mapped to transcript/ transcript length) 481 

Transcript lengths used in the above formula were obtained with EDASeq package’s (version 3.13) 482 

getGeneLengthAndGCContent function. TMM was calculated using the calcNormFactors function from 483 

the edgeR package (version 3.40.1).   484 

Gene expression plotting and validation data were performed only with TPM normalized data. 485 

Plots were generated with ggplot2(version 3.4.0), ggforce (version 0.4.1) and ggdendro (version 0.1.23).  486 

Gene Filtering Process  487 

 Filters were applied sequentially in R (version 4.2.2) as described in Results. Most mathematical 488 

calculations used the r base and MatrixStats package (version 0.63.0). The filter criteria were applied 489 

sequentially in both TMM and TPM normalized data, separately for each tissue, thus yielding different 490 

lists for each tissue. For each filter, x is either TMM or TPM, and genes were required to pass the filter 491 

for both TMM and TPM. Requirements were defined as follows:   492 

1. For each gene: no empty or 0 values  493 

2. For each gene: � ,  �   2�  ��  �  1 494 

3. For each gene: � , |    2�  � �  �   2� �� |  	  2 495 

4. For each gene:  � ,  �   2� �� 
   �   2�         � 496 

5. For each gene: %CV≤ 20. � ,  �   2�  �� /  �   2� ��   100  	  20 497 

6. For each gene: No correlation with age, based on Pearson's correlation p-value= 0.05/n. WGCNA 498 

package (version 1.71) function corAndPvalue was used to obtain correlation coefficients and p-499 

values. Because each tissue had a 5% chance of finding an association by chance with a fixed 500 

0.05 p-value, a gene present in 17 tissues would have a 58% chance of being erroneously 501 

discarded 1-(0.095)17. We applied a fractional threshold of a 0.05 p-value, where the p-value 502 

threshold applied was 0.05/n, where n is the number of tissues in which the gene in question 503 

passed filters 1-4. 504 
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7. For each gene: %CV≤ 20 and Spearman correlation p-value= 0.05/n in a validation dataset. n= 505 

number of tissues a given gene is present in at filter criteria 6. This step was applied only to TPM 506 

normalized data 507 

RNA isolation and cDNA synthesis 508 

Frozen liver and heart tissues were gifts from Prof. Ron Korstanje at The Jackson Laboratories. Groups 509 

consisted of 3 samples per age (8 and 18 months) and sex (female and male), except there was only one 510 

sample for an 18-month-old female liver. RNA was isolated with RNeasy Plus Mini Kit (Qiagen #74134) 511 

with pestle and syringe homogenization. cDNA was generated using Iscript gDNA Clear cDNA Synthesis 512 

(Bio-Rad #1725035) and equivalent RNA mass per 20uL reaction (500ng of heart and 1ug of liver). RNA 513 

concentrations were determined with a Qubit 4 fluorometer (Thermo Fisher #Q33238) and RNA BR 514 

Assay Kit (Thermo Fisher Q10210).  515 

Expression data and RG stability 516 

 RT-qPCR reactions were assembled with equivalent SsoAdvanced Universal SYBR Green Supermix (Bio-517 

Rad #1725272), cDNA, and respective PrimePCR SYBR Green primers (Bio-Rad #10025636,  AssayIDs 518 

Atp6v1f: qMmuCID0014923, Cdkn1a:qMmuCED0046265, Srp14: qMmuCID0020464, 519 

Tbp:qMmuCID0040542, Tfrc:qMmuCID0039655, Tomm22: qMmuCED0046631).  RT-qPCR was 520 

performed in a CFX96 thermocycler (Bio-Rad). Stability algorithms NormFinder [35],  BestKeeper [33], 521 

geNorm [34], and delta-CT method [36] were calculated and integrated into RefFinder [37]. All 522 

calculations were performed in R. geNorm and BestKeeper were calculated with the ctrlGene package 523 

(version 1.0.1) [65], Normfinder algorithm was downloaded from moma.dk, delta-CT method and 524 

RefFinder functions were recreated as originally described. Metadata for the samples used can be found 525 

in Supplementary Table 13, cycle threshold results in Supplementary Table 14 for the heart, and 526 

Supplementary Table 15 for the liver.  527 

CpG island and methylation variability analysis 528 
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Gene CpG island (CGI) status was mapped to the annotated list from Lee et al. [9]. Gene names passing 529 

each criterion/filter for each tissue were annotated, and percent positive and negative CGI proportion 530 

was calculated. Mean and standard deviation were calculated across tissues for each criterion/filter. 531 

Counts and percentages of CGI distributions in tissue lists by filter, the odds ratio, statistical test used, 532 

and associated p-value are listed in Supplementary Table 17. 533 

Composite multi-tissue murine RRBS data [66] was mapped to the mm9 gtf gencode genome. For mouse 534 

embryonic fibroblasts, data alignment was previously described [67]. For both datasets, CpG sites 535 

common to at least 10 samples and covered by more than 5 reads were analyzed. The methylation 536 

status of the promoter region was estimated by averaging the CpG beta values enclosed within 1kb of 537 

the transcription start site. Standard deviation was calculated for the methylation of each promoter. 538 

Enrichment gene analysis  539 

Enrichment analysis was performed using gprofiler2’s (0.2.1) gost function. Electronically annotated GO 540 

terms were included in the analysis, and a common custom background of genes expressed at least once 541 

in every tissue was imputed. Bonferroni correction was used to calculate enrichment significance. Aging 542 

hallmark trajectory enrichment terms were obtained from Schaum et al. [2], while GO biological process 543 

terms associated with age-related disease and aging hallmarks were obtained from Fraser et al. 2022 544 

[39]. A few GO terms identified by Schaum et. al. have been discontinued and are marked as obsolete. 545 

These terms were excluded from our analysis. Lastly, the top 20 age-invariant GO (biological process, 546 

cellular component, and molecular function), KEGG, and Reactome terms were determined by ranking 547 

p-values within tissues and taking the lowest 20 gene rank sums across tissues.  548 

For the enrichment maps, all 17 sets of enrichment terms (one per tissue) were used in EnrichmentMap 549 

in Cytoscape to generate a consensus network. Different consensus parameters used were used for the 550 

CORUM [42] (P-value: 0.05, FDR Q-value: 0.05, Jaccard Overlap Combined: 0.375, test used: Jaccard 551 

Overlap Combined Index, k constant = 0.5) and GO:BP terms (P-value: 0.01, FDR Q-value: 0.01, Jaccard: 552 
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0.25,  test used: Jaccard Index) networks. AutoAnnotate identified common terms for clusters of 553 

interconnected nodes.  Each node is a pie chart with each slice colored by the enrichment score of each 554 

tissue [68].  555 
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Tables  805 

Table 1 806 

1110004F10Rik 

(MGI:1929274) 

Fis1  

(MGI:1913687) 

Psmd4 

(MGI:1201670) 

Rexo2 

(MGI:1888981) 

Tomm22 

(MGI:2450248) 

Brk1  

(MGI:1915406) 

Gemin7 

(MGI:1916981) 

Rer1 

(MGI:1915080) 

Srp14  

(MGI:107169) 

 

 807 
Legends 808 

Table 1:  809 

MGI symbol and ID for our 9 pan-tissue age-invariant genes.  These genes were present across all tissues 810 

after all filtering steps and validation.  811 

 812 

Figure 1: Visual Diagram of Article Contents 813 

A) Bulk RNA-seq data from 17 murine tissues (GSE132040) were sequentially filtered through 7 criteria. 814 

Steps 1-4 are adapted from previous publications. We added criteria filters 5 and 6 to ensure low 815 

variation and no correlation with age. Criteria filter 7 was validation of low variation and no age 816 

correlation, performed in a second dataset for 11 of the 17 tissues. B) Sample gender, age and life stage 817 

distributions of the samples in the dataset. A full table of samples can be found in Supplementary Table 818 

10. C) Canonical reference genes are not applicable to all tissues in an aging context but age-invariant 819 

genes introduced here are. D) Tissue aging-invariant genes are enriched to different extents for gene 820 

ontology terms associated with hallmarks of aging. Age-invariant genes have low enrichment in some 821 

(e.g. epigenetic alterations GO terms) and high enrichment in others (e.g. loss of proteostasis GO terms). 822 

Created with BioRender.com 823 

 824 

Figure 2: Gene Selection Process and Rationale 825 
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A) Gene count number remaining after each criteria/filter step for each tissue. B) Gene count present 826 

across all tissues at each step, presented on a log2 scale. C) % Coefficient of Variance (CV) for each gene 827 

calculated as SD/mean*100 distribution of log2 TPM gene expression values. Genes that satisfy every 828 

subsequent filter are plotted by the last filter applied. Filters 1-3 slowly decrease %CV and the 829 

cumulative effect of filters 1-4 generally results in a %CV of approximately 20%. Filter 5 imposes a strict 830 

%CV < 20%  requirement for all tissue-gene pairs. D) Age information must be included in exclusion 831 

criteria as low variation genes can still have a high correlation with age. Filter 6 (Spearman correlation p-832 

value based removal) removes highly age-correlated genes. Dashed line corresponds to a correlation 833 

coefficient (y-axis) of 0.4, which for most tissues corresponds to a significant correlation with p = 0.05. 834 

Exact CV and age correlation information is found in Supplementary Table 2, in case readers wish to 835 

utilize other cutoffs in selecting RGs. E) Log2 TPM (y-axis) values by life stage (color) for specific gene-836 

tissue pairs (x-axis) for genes that satisfy filters 1-5, but are eliminated by filter 6. Boxplot line represents 837 

the group median while lower and upper limits of the boxplot correspond to the first (25%) and third 838 

(75%) quartiles.  839 

 840 

Figure 3: Classical & Novel RG Performance in Aging Samples 841 

A) Aging RG status of classical reference gene by tissue. Genes that are age-invariant and therefore valid 842 

RGs are depicted in blue while their age-variant counterparts, which were not present in the gene list 843 

after filtering, appear in red.  B-C) Individual gene cycle threshold (Ct) results from validation RT-qPCR 844 

tissues in heart (B) and liver (C) for selected classical RGs and novel age-invariant RGs. D) RT-qPCR Gene 845 

RefFinder score and mRNA-seq %CV in heart and liver. Age-invariant genes are distinct from and 846 

outperform canonical RGs in %CV (Welch Two Sample t-test p-value= 0.006553) and RefFinder qPCR 847 

scores(Welch Two Sample t-test p-value = 0.02401). RefFinder and %CV scores were calculated from in-848 

house and public validation datasets respectively.  RefFinder score was based on BestKeeper, 849 
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NormFinder, GeNorm and comparative delta-Ct values. Circled points indicate novel age-invariant RGs 850 

(Two pan-tissue: Tomm22 and Srp14; and one heart and liver age-invariant gene: Atp6v1f) while 851 

uncircled points specify classical RGs from Figure 3A. 852 

 853 

Figure 4: Age-Invariant Genes are Enriched for Dysregulated and Aging Disease Associated Gene 854 

Functions  855 

A) Tissue age-invariant genes are enriched for some GO, KEGG and REACTOME terms associated with 856 

linear and non-linear aging trajectories. Left labels correspond to enrichment terms originally classified 857 

in 9 trajectory groups. Age-invariant labels at the very bottom (pink) refer to genes identified in this 858 

paper. Heatmap columns correspond to different tissues, while rows correspond to different terms. B) 859 

Age-invariant genes are enriched for GO Biological Processes associated with age-related disease in 860 

humans. C)  Tissue age-invariant genes are enriched for certain protein complexes.  Gene lists are 861 

enriched for CCT complex, electron transport chain (respiratory complex I and cytochrome C), 862 

proteasome, Cop9 signalosome, PYR, Parvulin-associated pre-rRNP and Regulator-AXIN/LKB1-AMPK 863 

complexes in CORUM analysis. 864 

 865 
 866 
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