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Abstract

Studies of the aging transcriptome focus on genes that change with age. But what can we learn from
age-invariant genes—those that remain unchanged throughout the aging process? These genes also
have a practical application: they serve as reference genes (often called housekeeping genes) in
expression studies. Reference genes have mostly been identified and validated in young organisms, and
no systematic investigation has been done across the lifespan. Here, we build upon a common pipeline
for identifying reference genes in RNA-seq datasets to identify age-invariant genes across seventeen
C57BL/6 mouse tissues (brain, lung, bone marrow, muscle, white blood cells, heart, small intestine,
kidney, liver, pancreas, skin, brown, gonadal, marrow, and subcutaneous adipose tissue) spanning 1 to
21+ months of age. We identify 9 pan-tissue age-invariant genes and many tissue-specific age-invariant
genes. These genes are stable across the lifespan and are validated in independent bulk RNA-seq
datasets and RT-qPCR. We find age-invariant genes have shorter transcripts on average and are enriched
for CpG islands. Interestingly, pathway enrichment analysis for age-invariant genes identifies an
overrepresentation of molecular functions associated with some, but not all, hallmarks of aging. Thus,
though hallmarks of aging typically involve changes in cell maintenance mechanisms, select genes
associated with these hallmarks resist fluctuations in expression with age. Finally, our analysis concludes
no classical reference gene is appropriate for aging studies in all tissues. Instead, we provide tissue-
specific and pan-tissue genes for assays utilizing reference gene normalization (i.e., RT-gPCR) that can be

applied to animals across the lifespan.
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Introduction

Aging, the accumulation of cellular, molecular, and physiological alterations in an organism over
time, increases the risk of dysfunction, chronic disease, and mortality [1]. The advent of next-generation
sequencing and other high-throughput technologies has allowed for data-driven analyses to discover
age-linked gene expression changes and dysregulation. However, little effort has been directed toward
identifying and understanding age-invariant genes — those that remain unchanged throughout the aging
process. The utility of such genes would be twofold: 1) they can be used as reference genes in
guantitative assays, and 2) they may share molecular features that allow them to resist changes with
age.

The transcriptome has been shown to exhibit substantial remodeling during the aging process,
and there is evidence that many of these changes may drive declines in cellular function. By employing
bulk RNA-seq across 17 mouse tissues, Schaum et al. identified clusters of genes with similar age
trajectories associated with the hallmarks of aging [2]. Gene clusters increasing in expression included
immune and stress response genes, while those decreasing in expression included genes involved in the
extracellular matrix, mitochondria, and protein folding [2]. Overall, a global decrease in gene expression
has been reported to occur with aging, such that when comparing older animals to younger animals,
differentially expressed genes tend towards downregulation [3]. For tissue-specific genes, a divergence
or specialization of distinct cell types is observed during development, whereas aging has been
associated with a loss of specificity in transcriptional profiles [4] and an increase in transcriptional noise
(increased variance between individuals) [5—7]. Interestingly, genes subject to age-related change have
been linked to specific features, including transcript length and association with CpG islands [8,9].

Studying age-invariant genes that do not change their expression and remain stable throughout
the aging process may uncover complementary aging mechanisms. The notion of invariant genes has

been a focus of biomedical research for over 50 years, but their study has been confined to young
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organisms or cell line perturbations [10]. Due to their relative stability, invariant genes have been
utilized as internal reference controls for gene expression assays. Initially coined as housekeeping genes,
these invariant genes are constitutively expressed at high levels, are subject to low fluctuations, and are
often essential for proper cellular function [10-12]. The changing definition of the term “housekeeping
gene” led the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE)
guidelines to update the term used for normalization to reference genes (RGs) [13], and we will utilize
this term. There is no absolute standard list of RGs; many classical RGs, including glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), actin  (ACTB), and B2-microglobulin (B2M), were found to be
highly variable in certain contexts [11,14]. Although an ultimate RG may not exist (consistent across all
possible tissues, cell types, cell cycle stages, experimental conditions, and developmental phases),
identification of invariant genes in specific contexts and sample types is possible [14,15].

Little work has been done to identify and validate RGs that are stable throughout the aging
process, i.e., age-invariant reference genes. These genes would be invariant across the lifespan, either
within any given tissue (tissue-specific) or across all tissues (pan-tissue). Aging is known to impact
classical reference gene expression: a mouse study, for example, found age, sex, and frailty explicitly
alter the expression of a majority of classical RGs examined [16].[11,14] [29]. Within the aging field,
studies are restricted to RGs identified in other fields rather than using a novel, aging-focused analysis.
The few available studies examining RGs in aging employ targeted RT-gPCR validation of some of the
aforementioned classical transcripts and recommend different RGs based on the genes and the
parameters included. For example, GUSB increased with age in mouse skeletal muscle, making it a poor
RG in that context, but it was the best RG candidate in human peripheral blood mononuclear cells [16—
20]. Another salient example for aging is Cdknla/p21. Cdknla/p21 is often utilized as a reference gene

in RT-gPCR normalization literature [20], even though it simultaneously serves as a marker of cellular
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senescence—one of the major halimarks of aging, which is defined by change over time [21,22]. Thus
there is a pressing need to identify RGs appropriate for aging studies.

We now have the tools and datasets to identify age-invariant RGs. The first iterations of
reference genes, which compose a majority of popular RGs, were not experimentally determined but
selected because they were detected in all tissues and assumed to have little variability [10,23]. With
the development of 21st-century microarray and next-generation sequencing technologies, this
qguestion can finally be tackled from a data-rich perspective [23]. RNA-seq datasets have been
successfully used to experimentally identify RGs in healthy human tissue [10,11], mammalian animal
models [14,24], non-mammalian organisms [25], disease conditions [26] and even single-cell
populations [27]. The variables included in the datasets for these analyses determine the application
constraints of the resulting RGs. Novel data-rich unsupervised techniques paired with next-generation
sequencing data remain an untapped resource for identifying RGs for aging studies and more fully
understanding the dynamics of transcriptional change (or lack thereof) with aging.

Here, we leverage published approaches for RG identification [10] with appropriate refinements
(Figure 1A) and apply them to public bulk RNA-seq datasets with samples collected across the full
lifespan (Figure 1B) to identify age-invariant genes. We show that, unlike our age-invariant genes, no
classical RG is suitable for aging studies across all tissues (Figure 1C); and characterize features and
functions of these age-invariant genes (Figure 1D). Of note, we opted to focus on the subset of age-
invariant genes that can also serve as RGs - those that are also relatively highly expressed - due to their

practical applications.

Results

Identification of candidate age-invariant genes from RNA-Seq data
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Bulk RNA-seq data from the Tabula Muris Senis study [2] were utilized for age-invariant RG
discovery. We analyzed 17 tissues: brown adipose tissue (BAT), bone, brain, gonadal adipose tissue
(GAT), heart, kidney, limb, liver, lung, marrow, mesenteric adipose tissue (MAT), pancreas,
subcutaneous adipose tissue (SCAT), skin, small intestine, spleen and white blood cells (WBCs). We
performed quality control and only utilized samples where we could verify the tissue label
(Supplementary Figure 1; Methods). The dataset contained female and male mice representing the 4
major lifespan stages: adolescent (1mo), young (3 and 6mo), middle-aged (9, 12, and 15mo), and old
(21, 24, and 27mo) [28] (Figure 1A-B).

Tissues were independently analyzed by sequentially applying 7 filtering criteria through each
tissue’s gene set (Figure 1A). Here, we utilize expression counts normalized to Transcripts Per Million
(TPM) [29], which is similar to RT-gPCR as it approximates relative molar RNA concentration, as well as
Trimmed Mean of M (TMM) [30], which leverages inter-sample information to reduce sensitivity to
gene outliers. Both normalization techniques performed similarly well at identifying RGs in a recent
systematic comparison of normalization methods [26]. Our approach leverages two different
normalization techniques to reduce artifacts specific to individual methods. Each criterion, or filter, was
applied to each tissue individually with both normalization methods; genes were only included in the
tissue-filter gene list if they satisfied the requirement in both TPM and TMM normalized datasets.

Our filtering criteria are listed below. The filtering pipeline was applied to each tissue separately,
with samples spanning the lifespan stages defined in Figure 1B. Although some genes have been
identified as age-invariant within multiple tissues, this does not suggest they are invariant to tissue type
and thus should still be applied in a tissue-specific manner. Criteria 1-4 are adapted from an approach
frequently used for RG identification from RNA-seq data [10,25]:

1. Continuous expression: Non-zero expression in all samples.
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124 2. Low variance: The standard deviation (SD) of the log2 normalized gene (x) expression for all
125 samples (i) is less than 1. ¥, (()) < 1

126 3. No exceptional expression/outliers: log2 normalized values are within two units of the gene’s
127 mean(removing genes with data points four-fold away from the gene mean).v, | ,() — () | <
128 2

129 4. Medium to high gene expression: the gene’s log2 normalized expression mean is above the

130 mean of all the genes expressed in the particular tissue V, () = (())

131

132  To ensure age-invariant gene list quality, we added two new filters to the identification criteria:

133 5. Low coefficient of variation (CV): The percent coefficient of variation (%CV), the ratio of the
134 standard deviation to the mean, is lower than 20%. ¥, (b)) / GO) < 20

135 6. No correlation between gene expression and age: Gene expression correlation with age is not
136 statistically significant (no p-value under 0.05)

137 Finally, we performed external validation:

138 7. Filters 5 and 6 were applied in publicly available validation datasets with bulk tissue RNA-seq
139 data from mice. Tissues with a validation dataset were BAT, brain, heart, kidney, muscle, liver,
140 lung, SCAT, skin, small intestine, and WBCs (11).

141

142 The filters progressively refined the list of both tissue-specific (Figure 2A, Supplementary Table

143 1) and pan-tissue age-invariant genes (Figure 2B, Table 1). For reference, Supplementary Table 2 lists
144 information on each gene’s %CV, slope with age, and correlation with age in each tissue, allowing
145 readers to select their own cutoffs if they choose. Supplementary Tables 3-9 contain lists of all genes

146  that passed each consecutive filter in each tissue.
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There were a few notable modifications to the original pipeline. First, we modified Criterion 4,
which selects for relatively highly expressed genes and, therefore, is easily detected by RT-qPCR [10].
Because each tissue had different gene count distributions (Supplementary Figure 2A), we deviated
from the previous use of an arbitrary cutoff and employed an adjusted cutoff, removing genes with
means below the mean of all genes expressed in a given tissue (log2 transformed) [25]. Consistent with
previous publications [25], the cumulative effect of filters 2 (standard deviation cut-off) and 4 (mean
cut-off) resulted in a percent coefficient of variation (%CV) of about 20% in most tissues (Figure 2C).
However, given the lower average normalized gene expression in some tissues (Bone, Pancreas, Spleen
WABC), genes in these tissues surpassed this threshold. To ensure the genes obtained were truly low
variance, we applied a hard cut-off of 20% CV (Filter 5). This approach combines Eisenberg et al.’s low
variance definition of RGs and their alternative approach: mid-to-high expression [10].

Second, we added Filter 6 to ensure age invariance. We had initially hypothesized that simply
analyzing samples with a wide age range using the typical RG pipeline (filters 1-4) would be sufficient to
filter out genes that change with age. Indeed, adding age groups to the analysis progressively discarded
genes during the filtering process (Supplementary Figure 3A). This, however, could be due to the
increase in samples (n) included in the analysis. To test whether the wide age range alone contributes
important information, we applied the steps of the standard pipeline (filters 1-4) on samples belonging
to only a particular lifespan stage and compared it to a cross-stage control with the same n. Including a
wide range of ages by using cross-stage analysis discarded more genes compared to single-stage analysis
for adolescent, middle-aged, and old stages (Supplementary Figure 3B). Surprisingly, this was not the
case for the young adult stage (3-6mo old); we found this was likely due to a subset of genes that have
high expression variability in young adults but are stable in other life stages (Supplementary Figure 3C-
F). Regardless of lifestage analyzed, this pattern held true. Genes identified as age-invariant (with filters

1-4) only in young samples (Supplementary Figure 3C); in young samples and other lifestages (analyzed
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separately)(Supplementary Figure 3D); in lifestages except young (Supplementary Figure 3E); or with
the full dataset, i.e., all lifespan stages, (Supplementary Figure 3F) reveal a similar pattern: some genes
have higher variance (%CV) in young and old populations. This is reflected by the rightward shift in
young and old samples. Young samples have an overall higher proportion of high variance (over the
20%CV dotted line) genes than old ones (Supplementary Figure 3C-F). Thus, simply utilizing a wide age
range in the typical pipeline does not necessarily help identify age-invariant genes. Furthermore, we
found that some genes obtained through filters 1-5 still changed with age (Figure 2 D-E). To address this
finding, we added criterion 6, removing genes with statistically significant correlations with age for each
tissue (Figure 2D).

Finally, to decrease the number of false positives, we validated the gene lists using a second bulk
mRNA-seq dataset for 11 out of 17 tissues (except for bone, GAT, marrow, MAT, pancreas, and spleen).
The number of validated genes is displayed in Figure 2A-B as Step 7. Specific counts and percentages can
be found in Supplementary Table 1. For nearly all tissues, a supermajority (>70%) of candidate age-
invariant genes were validated, except in the liver (54%) and lung (62%). The fewest number of age-
invariant genes was observed in WBCs, possibly due to large changes in distributions of cell types over

shorter timescales [31,32](Figure 2A).

RT-gPCR validation of Novel age-invariant reference genes

Our analysis identified many tissue-specific age-invariant RGs (Supplementary Table 9), as well
as 9 such genes common to all tissues (pan-tissue). Some classical RGs are not age-invariant genes
(Figure 3A-C). In fact, no classical RGs were age-invariant across every tissue (Figure 3A). Thus, we
propose a new list of 9 age-invariant genes common to all 17 tissues that can be used in studies with

aged animals (Table 1).
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These RG sets can be utilized in the context of northern blot, RT-qPCR, and some RNA-seq
normalization strategies in aging studies. Researchers have the choice of selecting from a tissue-specific
gene list or from the nine pan-tissue genes. To validate this, independent samples were used to
generate RT-gPCR data for three age-invariant genes identified by our computational pipeline: Atp6v1f,
Srp14, and Tomm?22 (Figure 3B-D). Atp6vifis an age-invariant gene shared by the two tissues assayed:
the liver and heart. The other two are pan-tissue age-invariant genes. The novel samples consisted of
mouse heart and liver samples in four categories: old (~19mo) female, old male, young (~8mo old)
female, and young male. We compared these against three classical RGs: Cdknla, Tbp, and Tfrc. Classical
reference genes generally had a wider cycle threshold distribution than the age-invariant genes, with
Tbp being the most stable among them, followed by Tfrc and Cdknla (Figure 3B-C). Cdknla codes for
cyclin-dependent kinase inhibitor 1A, also known as p21. Given that Cdknla is widely used as a marker
of cell senescence [22], it is not surprising that it has a high degree of variability despite it being widely
considered an RG in RT-qPCR normalization literature [17].

To assess gene RT-gPCR stability in the context of aging, we calculated the expression stability
across multiple algorithms: BestKeeper [33] (Supplementary Figure 4A-B), geNorm [34] (Supplementary
Figure 4C-D), NormFinder [35] (Supplementary Figure 4E-F), and delta-CT method [36] (Supplementary
Figure 4G-H). These scores were utilized to calculate the summary RefFinder score (Figure 3D,
Supplementary Figure 4l) [37]. TPM %CV for the discovery (Supplementary Figure 4A, C, E, G, J) and
validation (Figure 3D, Supplementary Figure 4B, D, F, H) RNA-seq datasets strongly correlate with all
stability algorithm values calculated on our in-house samples. Figure 3D displays the correlation
between the TPM %CV values of the external validation dataset and the RefFinder score of our in-house
validation samples (Pearson correlation = 0.81, p-value = 0.0027). This suggests that %CV from
normalized RNA-seq samples could be used as an indicator of candidate reference genes for RT-qPCR

experiments subject to the same conditions. By both metrics, the newly identified age-invariant genes

10
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outperformed the classical RGs: these RGs are statistically different in both %CV (Welch Two Sample t-
test p-value= 0.006553) and RefFinder qPCR scores (Welch Two Sample t-test p-value = 0.02401) This
suggests age-invariant genes common across all tissues (Srp14 and Tomm22) or particular tissues
(Atp6v1f in heart and liver) could be applied as part of normalization in age-related transcriptomic
research. A combination of more than one of the age-invariant genes is recommended for RT-qPCR

experiments, per the MIQE guidelines [13].

Overlapping pathways for aging stable and aging dysregulated genes

Gene enrichment analysis of the tissue-specific age-invariant genes revealed a large number of
statistically significant GO biological pathway terms (Supplementary Figure 5). As expected, the most
enriched terms were largely involved in basic metabolic and structural processes (Figure 4A). We also
noted many enriched terms were related to the hallmarks of aging [38], which was surprising
considering that hallmarks of aging are typically thought to involve processes that change with age. As
an initial step to systematically assess the presence of stably transcribed genes in these hallmarks, we
compared the enrichment scores of our tissue age-invariant gene lists with previously published
enrichment terms associated with age dysregulation and disease [2,39].

We first compared our enrichment scores with the top terms associated with mouse
transcriptome aging clusters, each displaying a different trajectory with aging (Figure 4A). The top
enrichments of these 10 clusters, obtained from the same dataset we performed our discovery on, are
associated with hallmarks of aging like protein folding, inflammation, and mitochondrial function [2]. We
found our tissue gene sets were significantly enriched in many, but not all, of the clusters. Of note is
cluster 3, linked to mitochondrial dysfunction, where age-invariant genes are highly enriched for every
term of this cluster. Age-invariant genes are also heavily represented in stress response (cluster 5),

signaling (cluster 2), and protein stability (cluster 7). Interestingly, within the protein stability cluster,

11
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age-invariant genes were enriched in terms involved in protein folding, processing, and stabilization but
not in terms involved in protein localization. The clusters with the least age-invariant genes were those
associated with immune response and extracellular matrix. This suggests that hallmarks themselves, or
mechanisms within an aging hallmark, can be separated by the presence or absence of age-invariant
genes.

Cluster 1 from Schaum et al. is defined as genes that do not change with age and, as expected,
has a large overlap with our tissue age-invariant gene sets. Cluster 1 was defined by having the least
amplitude (change with age) and least variability. Interestingly, throughout the 17 tissues, only ~33-40%
of our age-invariant genes were in Schaum et al.’s cluster 1. The genes not shared between both
methods likely reflect the difference between relatively a stable group of genes identified by hierarchical
clustering and individual age-invariant genes identified due to their characteristics (as well as our RG
requirement that genes be highly expressed) [2,40]. In RNA-seq, genes with low expression demonstrate
significant technical noise making it difficult to assess true biological variability related to age or other
factors, and are often filtered out of differential expression studies [41], so our requirement for high
expression is useful for focusing on age-invariant genes.

The other ontology terms we examined came from an analysis of age-related diseases and aging
hallmarks (Figure 4B). Unlike Schaum et al., who used a completely unsupervised approach, Fraser et al.
used genes associated with human age-related diseases in a genome-wide association study to define
GO biological pathways related to both disease and at least one aging hallmark [39]. Most hallmarks
have at least one GO term enriched for age-invariant genes across most of the tissues analyzed (e.g.,
“steroid hormone-mediated signaling pathway” in altered intercellular communication; “cellular
response to insulin stimulus” and “response to nutrient levels” in deregulated nutrient sensing;
“macroautophagy” and “regulation of autophagy” for loss of proteostasis; “reactive oxygen species

metabolic process” in mitochondrial dysfunction; and “telomere maintenance” in telomere attrition). On

12
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the other hand, virtually no GO term related to cellular senescence and epigenetic alterations had high
proportions of stably transcribed genes. According to this alternative way of identifying gene ontology
terms associated with aging hallmarks, age-invariant genes continue to be enriched in these terms.

To better understand the implications of some of these stable pathways, we used the
comprehensive resource of mammalian protein complexes (CORUM) database to perform enrichment
analysis (Figure 4C)[42]. The enriched complexes are consistent with our enrichment results in this data
thus far. Complexes involved in mitochondrial function (respiratory chain complex | and cytochrome ¢
oxidase), stress response & signaling (Regulator-AXIN/LKB1-AMPK complexes), and protein stability
(COP9 signalosome, proteasome, Parvulin-associated pre-rRNP, and Chaperonin containing TCP1
Complex) are enriched in age-invariant genes.

Our analyses reveal multiple age-invariant genes within pathways that are either dysregulated
with aging (Figure 4A, C) or associated with aging pathologies (Figure 4B). Pathways related to the
extracellular matrix, cellular senescence, and epigenetic alterations seem particularly devoid of stably
expressed genes. These findings are not due to the high expression requirement for our age-invariant

genes, as removing this requirement produced similar results (Supplementary Figure 6).

Age-invariant gene features

Features of genes that change with age have long been a point of discussion in aging
transcriptome research, but little is known about the genes that are able to withstand the effects of
time. We tested whether our genes have the opposite features to those described in age-dysregulated
transcriptome analyses. The features examined are CpG content, DNA methylation (Supplementary
Figures 7-8), and gene length (Supplementary Figures 7 and 9), given that these features have been

implicated in age-associated transcriptional drift [8,9].
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Lee and colleagues reported that genes with CpG islands (CGl+) are less likely to change with age
than genes without CpG islands (CGI-) [9]. Accordingly, we found that the proportion of genes with CpG
islands located in their promoters increased as a function of our filtering process, suggesting that as we
more rigorously select for age-invariant genes, the more prevalent promoter CpG islands become
(Supplementary Figure 7A). The transcripts themselves were not enriched for greater %CG content,
suggesting there is biological specificity of the function of these islands versus an overall increase in CG
content in the region (Supplementary Figure 9D). We next investigated whether age-invariant genes
also showed greater stability in promoter methylation status during in vitro passaging or in vivo aging
using reduced-representation bisulfite sequencing (RRBS) datasets. For mouse embryonic fibroblasts
serially passaged into senescence, we found both age-variance (based on our skin tissue-specific
notation) (Supplementary Figure 8A), and CGI (Supplementary Figure 8B) status influenced methylation
variability. Regardless of age-invariant RG status, CGl+ genes are more stable than CGI- genes
(Supplementary Figure 8A). However, this pattern was not observed in mouse tissues, including liver,
brain, heart, lung, or WBC (Supplementary Figure 8B).

Stroeger et al. report that median transcript length is the factor most associated with age-
related change, with longer transcripts tending to be downregulated and shorter transcripts tending to
be upregulated with age [8]. Complementing these findings, we found that age-invariant genes tend to
be shorter than age-variant genes when comparing minimum transcript length(Supplementary Figure
7B). However, the opposite is true when comparing either maximum (Supplementary Figure 9A) or

Ensembl canonical (Supplementary Figure 9C) transcript length.

Discussion
Much of aging biology research has focused on changes that occur across the organismal

lifespan and the contribution of these changes to age-related mortality, morbidity, and functional
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decline [1,38]. Molecular signatures that are robust to aging — specifically, age-invariant genes — have
received comparatively little attention. Identifying age-invariant genes allows for further study of why
they do not change with age. Lessons from these age-resilient genes provide a complementary view of
aging and the stability of biological systems with time. Also, from a practical perspective, because many
genes change with age, it is important to identify age-invariant genes for use as reference genes (RGs)
for gene expression normalization [13]. By adopting a pipeline for identifying RGs from RNA-seq data,
we find that there are, in fact, hundreds to thousands of age-invariant genes per tissue. Strikingly, there
is poor agreement between the pan-tissue age-invariant genes and commonly used classical RGs.
According to our results, none of the classical RGs are suitable for use in cross-sectional aging studies
across the 17 tissues studied (Figure 3A), and some canonical tissue-gene pairings (e.g., GAPDH in the
liver) are not age-invariant [43]. Our novel age-invariant genes are, therefore, better suited than
classical RGs for performing normalization for RT-qPCR experiments in aging tissues.

We report nine pan-tissue age-invariant genes in mice (Table 1). Reference and housekeeping
gene literature postulates that continuously and stably expressed genes serve essential cellular and
organismal functions [12]. Consistent with this hypothesis, depletion of 7 out of 9 of our pan-tissue age-
invariant genes have already been reported to induce cell (1110004F10Rik) or embryonic lethality when
completely knocked out (Brki, Rerl, Psmd4, Reco2, Tomm22, and Fis1) [44—-49], according to the Mouse
Genome Informatics database (www.informatics.jax.org) or International Mouse Phenotyping
Consortium database (www.mousephenotype.org). The remaining two transcripts, Srp14 and Gemin7,

have no reported knockout mouse strain or phenotypes, but we hypothesize would be lethal if absent.

Two biological processes— mitochondrial function (Fis1, Rexo2, and Tomm22) and proteostasis
(Psmd4, Rer1, and Srp14)— emerge from these 9 genes. Although these biological processes are
implicated in aging changes, they may also contain components that remain highly stable across the

lifespan. Rexo2 (RNA exonuclease 2) was recently shown to increase mitochondrial gene transcription,
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mediate RNA turnover, and enforce promoter specificity in mammalian mitochondrial transcription [48].
Rerl returns rogue ER-resident proteins or unassembled subunits in the Golgi apparatus back to the
endoplasmic reticulum [46]. Little is known about the molecular function of the small acidic protein
1110004F10Rik (also known as Smap) or its human ortholog C110rf58, but given its high stability and
requirement for cell survival, this protein may merit further attention [44]. Thus, the stability of these 9
genes may have evolved as a result of these genes being critical for mitochondrial and proteostatic

function, and for continued life in the face of age-related deterioration.

Simply including older mice in our study and utilizing the standard RG identification pipeline was
insufficient at filtering out age-invariant genes. Rather, selecting for age-invariant genes required an
additional step of explicitly removing genes that are correlated with age. We also find that the variance
in expression of a given gene often changes across life stages. For instance, we identified more genes
having high variance in young age than in middle or old ages (Supplementary Figure 4). Although
perhaps surprising, this finding is consistent with reports indicating the proportion of genes decreasing
in variance with age is greater than those increasing in variance with age [6,7,50]. It is possible that
younger animals show greater variance related to circadian rhythms, the estrous cycles, sex differences,

response to stress, or other adaptive and cyclical factors.

Some limitations and caveats constrain our study. First, some of the specific cutoffs we utilized
were based on prior work, while others (e.g., exact age correlation cutoff) were based on our best
judgment. We provide a complete table of filter results in Supplementary Table 2 in case others wish to
utilize different cutoffs in selecting RGs. To ensure the list of genes provided are useful reference genes
in normalization strategies, including RT-qPCR and even some RNA-sequencing normalization
approaches, we required high transcript expression through Filter 4. Although consistent with
normalization transcript identification strategies in RNA-seq, many low-expression age-invariant genes

are absent. Thus, our lists report age-stable, high-expression genes only. Our findings are influenced by
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the technical limitations of RNA-seq [10,51] and the analytical limitations of high dimensional data,
including subsampling of highly heterogeneous samples like aged organisms previously described in the
literature [10,51,52]. However, variance in sample collection, processing, and preparation across these
datasets likely compensate for any individual source's batch and degradation bias (e.g., each of the four
datasets used employs a different poly-A sample preparation kit). Our final 9 pan-tissue age-invariant
genes have been tested individually in 17 tissues and four datasets, totaling 1120 samples, thereby
reducing the risk of, for example, a type | error (wrongly identifying a gene as age-invariant). Finally, an
important assumption not usually discussed in aging transcriptome literature may influence
interpretation in the context of aging: consistent RNA mass. A few studies suggest a decline in total
cellular RNA mass with aging [53,54]. This is different from the reported downward trend of
differentially expressed genes with age [3]. Current RNA sequencing analysis techniques use
proportional estimates (counts per million, fragments per kilobase of transcript per million, transcripts
per million, etc.) to normalize samples in order to compare transcript dynamics across samples.
Similarly, RT-gPCR protocols typically rely on standardizing total RNA input. If total RNA mass reduction
is a global feature of cellular aging, our age-invariant genes are proportionally stable but may decrease
in mass with age. Similarly, a gene identified to be overexpressed in old age may maintain constant
molar concentration within a cell or tissue. We recommend readers keep these considerations in mind

when interpreting any gene expression study in the context of aging.

The existence and study of age-invariant genes have the potential to provide the field of aging
with novel insights. It was interesting to find that age-invariant genes were enriched for some pathways
associated with hallmarks or pillars of aging (Figure 4), specifically nutrient sensing, proteostasis,
mitochondrial function, and immune function. This is somewhat puzzling given that such hallmarks are
defined by changes thought to play putatively causal roles in aging [22,55] indeed, genes that most

clearly change with age are enriched in the same hallmarks [2]. It is possible enrichment in pathways
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385  associated with hallmarks of aging may simply reflect the fact that hallmarks of aging are broad and
386  cover much of biology. In that case, it may be necessary to more specifically delineate each hallmark of
387 aging, e.g., perhaps only a subset of nutrient sensing processes should be considered as a hallmark.
388 However, this broadness would not explain why some hallmarks of aging are associated while others are
389  not. What might be the significance of genes associated with hallmarks of aging that remain stably

390 expressed throughout aging? We note that a prior report indicated that essential genes are enriched for
391 pro-longevity functions, as experimental overexpression of essential genes tends to increase lifespan in
392  yeast [56]. We also find that age-invariant genes are present in pathways linked to human age-related
393 diseases (Figure 4A-B). If age-invariant genes are essential for life, then organisms may have evolved
394  mechanisms to keep these genes stable in the face of pervasive age-related changes in the rest of the
395 pathway or network. One potential example highlighted here is the age-invariant gene enrichment of
396 protein complexes in the electron transport chain. NADH:ubiquinone oxidoreductase, or Mitochondrial
397 Respiratory Complex |, is the only age-invariant gene-enriched ECT complex throughout most tissues
398  (Figure 4C). Although the downregulation of ETC genes is one of the most established transcriptional
399  eventsinaging [52] and protein Complex | proteins undergo major changes in abundance with age [57],
400 stability in some ETC components is likely required for continued life. This is consistent with Complex |
401  being one of the ETC complexes that can be traced back to the last universal common ancestor of all
402 living organisms [58]. Significant dysregulation of such essential components may be incompatible with
403 life, and evolutionary forces may ensure stability throughout the lifespan. It will be interesting to

404  determine whether further bolstering the expression or stability of such age-invariant genes may be a
405 pro-longevity strategy or, if given their continous expression stable genes are good aging

406 pharmacological targets. The putative aging intervention metformin, for example, may benefit from the

407  stable expression of it’s target, Complex | [59].

408 In contrast, age-invariant genes were not enriched in some hallmarks, including epigenetic
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alterations, cellular senescence, and the extracellular matrix. Our results suggest that these three are
the most vulnerable to aging as not many genes related to these hallmarks resist age-related change. In
agreement with this finding, these hallmarks are key targets across many existing longevity
interventions, i.e., epigenetic reprogramming, senolytics, and enhancing extracellular matrix
homeostasis [60—62]. Considering that age-invariant genes tend to be essential for life, one hypothesis is
that early changes in these hallmarks may not be particularly detrimental for the organism and thus lack
the selective pressure to evolve stability mechanisms in aging. The cumulative long-term burden of
changes, however, may contribute to pathological aging. Alternatively, these variant hallmarks may
reflect adaptive processes that evolved to change dynamically with aging for the benefit of the

organism.

Future analyses could focus on the processes that maintain the stability of age-invariant genes.
Our initial investigations demonstrate that age-invariant genes are enriched in CpG islands, consistent
with a previous report that genes with CpG islands are more resistant to age-related dysregulation than
those without CpG islands, which are misexpressed during age-related heterochromatin decondensation
[9]. However, further analyses are needed to determine whether the resistance to changes in the
methylome of CpG-rich promoters was responsible for the stability of gene expression over time. For

instance, whether increased CpG density is better able to reinforce a stable epigenetic state.

We also found that age-invariant genes tend to be shorter than others, confirming a previous
study reported that the longest genes show the greatest degree of downregulation [8]. Further study is
needed to better understand the relationship between expression dynamics and transcript length. Of
note, classical RGs in general have been reported to exhibit shorter introns and exons, low promoter
region conservation, 5’ regions with fewer repeated sequences, low nucleosome formation potential,
and a higher SINE to LINE ratio [10,24]. It will be important to determine if and how these factors may

contribute to the stability of age-invariant genes.
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Lastly, it will be important to determine the translatability of our age-invariant transcripts, both
to other organisms as well as to protein expression. In a recent study, 52% of human reference genes
were matched to independently analyzed mouse reference gene orthologs [14]. Protein abundance can
be inferred from transcriptomic data at the tissue and single-cell level, particularly for genes
continuously and stably expressed [63,64]. These transcripts show a high correlation (~0.7) with their
protein product except when variability is introduced by cellular state and microenvironment
conditions. Given that age-invariant genes are assumed to be expressed in steady-state, many of these

genes may also be age-invariant at the protein level.

Here, we provide the aging field with a list of 9 pan-tissue age-invariant genes for use in
normalization strategies, e.g., RT-qPCT; we observe that age-invariant genes are enriched in ontology
terms associated with some, but not all, hallmarks of aging; and we explore some common features of
age-invariant genes (CpG island status and transcript length). Be it for understanding the basic biology of
aging, establishing rigorous methodology in the field, investigating the mechanisms promoting age-
invariance vs. age-variance, or finding aging therapeutic targets, age-invariant genes are an important

area of study.

Methods

Data Preparation and Normalization

Four datasets were utilized in this analysis. The Discovery Dataset (GSE132040) consisted of 17
male and female tissues from mice spanning the 4 major life span stages (Figure 1B). 11 of 17 tissues
were validated with three datasets of bulk-RNA tissue data from male mice: GSE167665, GSE111164,
and GSE141252. Count tables were obtained from GEO and normalized as described below. Sample

preparation and alignment can be found in their respective publications [2,4,8]. 5 million counts/sample
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were set as the count threshold for a sample to be included in normalization and further analysis. In the
discovery dataset, hierarchical clustering identified a small number of samples that clustered away from
their labeled tissue (Supplementary Figure 1A), and examination of tissue-specific markers confirmed
they may be mislabeled and, therefore, were removed from analysis (Supplementary Figure 1B). The
number of samples removed per tissue and lifestage can be seen in Supplementary Table 11 and those
used in the rest of the analysis in Supplementary Table 10. GEO accession number, tissue type, and life
stage counts can be found in Supplementary Table 12 for validation datasets. Here, intestine labels
refer to samples from both the large and small intestine; and brain to those from both the cerebellum
and the frontal cortex.

RNA-seq normalization is essential for proper downstream analysis of datasets. In this study, we
identified our genes with two normalization approaches: TPM and TMM. The original reference gene
discovery approach described by Eisenberg and Levanon in 2013 [10], utilized RPKM normalized data.
Around the same time, conversations about proper data processing produced Transcript Per Million
(TPM), an intra-sample normalization method that approximates relative molar RNA concentration
(rmc) [29]. TPM was only incorporated into this RG identification approach in 2019 [25]. Another major
strategy for data normalization techniques involves between-sample normalization. To prevent
normalization-based artifacts, and given there is no single best normalization approach, the discovery
data was normalized with two different approaches: TPM and Trimmed Mean of M (TMM) [30]. TMM,
an inter-sample normalization method, generates a normalization factor assuming most genes are not
differentially expressed. Therefore, TPM is akin to RT-qPCR due to its similarity with rmc while TMM
leverages inter-sample information and is less sensitive to gene outliers. Both performed similarly well
at identifying RGs in a recent systematic comparison of normalization methods [26].

TPM normalized data was calculated following the formula:

TPM = # reads mapped to transcript/transcript length  x 10°
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Sum(#reads mapped to transcript/ transcript length)
Transcript lengths used in the above formula were obtained with EDASeq package’s (version 3.13)
getGenelLengthAndGCContent function. TMM was calculated using the calcNormFactors function from
the edgeR package (version 3.40.1).
Gene expression plotting and validation data were performed only with TPM normalized data.
Plots were generated with ggplot2(version 3.4.0), ggforce (version 0.4.1) and ggdendro (version 0.1.23).

Gene Filtering Process

Filters were applied sequentially in R (version 4.2.2) as described in Results. Most mathematical
calculations used the r base and MatrixStats package (version 0.63.0). The filter criteria were applied
sequentially in both TMM and TPM normalized data, separately for each tissue, thus yielding different
lists for each tissue. For each filter, x is either TMM or TPM, and genes were required to pass the filter
for both TMM and TPM. Requirements were defined as follows:

1. Foreach gene: no empty or O values

2. Foreachgene:V,(5()) < 1

3. Foreachgene:v,|,0—-GO)| < 2

4. Foreachgene: V,(0)) = (GO)

5. Foreach gene: %CV<20.V¥, (GO))/ (GO) 100 < 20

6. Foreach gene: No correlation with age, based on Pearson's correlation p-value= 0.05/n. WGCNA

package (version 1.71) function corAndPvalue was used to obtain correlation coefficients and p-

values. Because each tissue had a 5% chance of finding an association by chance with a fixed

0.05 p-value, a gene present in 17 tissues would have a 58% chance of being erroneously

discarded 1-(0.095)"’. We applied a fractional threshold of a 0.05 p-value, where the p-value

threshold applied was 0.05/n, where n is the number of tissues in which the gene in question

passed filters 1-4.
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7. Foreach gene: %CV< 20 and Spearman correlation p-value= 0.05/n in a validation dataset. n=
number of tissues a given gene is present in at filter criteria 6. This step was applied only to TPM
normalized data

RNA isolation and cDNA synthesis

Frozen liver and heart tissues were gifts from Prof. Ron Korstanje at The Jackson Laboratories. Groups
consisted of 3 samples per age (8 and 18 months) and sex (female and male), except there was only one
sample for an 18-month-old female liver. RNA was isolated with RNeasy Plus Mini Kit (Qiagen #74134)
with pestle and syringe homogenization. cDNA was generated using Iscript gDNA Clear cDNA Synthesis
(Bio-Rad #1725035) and equivalent RNA mass per 20ul reaction (500ng of heart and 1ug of liver). RNA
concentrations were determined with a Qubit 4 fluorometer (Thermo Fisher #Q33238) and RNA BR
Assay Kit (Thermo Fisher Q10210).

Expression data and RG stability

RT-gPCR reactions were assembled with equivalent SsoAdvanced Universal SYBR Green Supermix (Bio-
Rad #1725272), cDNA, and respective PrimePCR SYBR Green primers (Bio-Rad #10025636, AssaylDs
Atpbvlf: gMmuCiD0014923, Cdknla:gMmuCED0046265, Srpl4: gMmuClD0020464,
Tbp:gMmuCID0040542, Tfrc:gMmuCID0039655, Tomm?22: gqMmuCED0046631). RT-gPCR was
performed in a CFX96 thermocycler (Bio-Rad). Stability algorithms NormFinder [35], BestKeeper [33],
geNorm [34], and delta-CT method [36] were calculated and integrated into RefFinder [37]. All
calculations were performed in R. geNorm and BestKeeper were calculated with the ctriGene package
(version 1.0.1) [65], Normfinder algorithm was downloaded from moma.dk, delta-CT method and
RefFinder functions were recreated as originally described. Metadata for the samples used can be found
in Supplementary Table 13, cycle threshold results in Supplementary Table 14 for the heart, and
Supplementary Table 15 for the liver.

CpG island and methylation variability analysis
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Gene CpG island (CGl) status was mapped to the annotated list from Lee et al. [9]. Gene names passing
each criterion/filter for each tissue were annotated, and percent positive and negative CGI proportion
was calculated. Mean and standard deviation were calculated across tissues for each criterion/filter.
Counts and percentages of CGl distributions in tissue lists by filter, the odds ratio, statistical test used,
and associated p-value are listed in Supplementary Table 17.

Composite multi-tissue murine RRBS data [66] was mapped to the mm9 gtf gencode genome. For mouse
embryonic fibroblasts, data alignment was previously described [67]. For both datasets, CpG sites
common to at least 10 samples and covered by more than 5 reads were analyzed. The methylation
status of the promoter region was estimated by averaging the CpG beta values enclosed within 1kb of
the transcription start site. Standard deviation was calculated for the methylation of each promoter.

Enrichment gene analysis

Enrichment analysis was performed using gprofiler2’s (0.2.1) gost function. Electronically annotated GO
terms were included in the analysis, and a common custom background of genes expressed at least once
in every tissue was imputed. Bonferroni correction was used to calculate enrichment significance. Aging
hallmark trajectory enrichment terms were obtained from Schaum et al. [2], while GO biological process
terms associated with age-related disease and aging hallmarks were obtained from Fraser et al. 2022
[39]. A few GO terms identified by Schaum et. al. have been discontinued and are marked as obsolete.
These terms were excluded from our analysis. Lastly, the top 20 age-invariant GO (biological process,
cellular component, and molecular function), KEGG, and Reactome terms were determined by ranking
p-values within tissues and taking the lowest 20 gene rank sums across tissues.

For the enrichment maps, all 17 sets of enrichment terms (one per tissue) were used in EnrichmentMap
in Cytoscape to generate a consensus network. Different consensus parameters used were used for the
CORUM [42] (P-value: 0.05, FDR Q-value: 0.05, Jaccard Overlap Combined: 0.375, test used: Jaccard

Overlap Combined Index, k constant = 0.5) and GO:BP terms (P-value: 0.01, FDR Q-value: 0.01, Jaccard:
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0.25, test used: Jaccard Index) networks. AutoAnnotate identified common terms for clusters of
interconnected nodes. Each node is a pie chart with each slice colored by the enrichment score of each
tissue [68].
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808 Legends

809 Tablel:

810 MGl symbol and ID for our 9 pan-tissue age-invariant genes. These genes were present across all tissues
811  after all filtering steps and validation.

812

813 Figure 1: Visual Diagram of Article Contents

814  A) Bulk RNA-seq data from 17 murine tissues (GSE132040) were sequentially filtered through 7 criteria.
815  Steps 1-4 are adapted from previous publications. We added criteria filters 5 and 6 to ensure low

816  variation and no correlation with age. Criteria filter 7 was validation of low variation and no age

817  correlation, performed in a second dataset for 11 of the 17 tissues. B) Sample gender, age and life stage
818  distributions of the samples in the dataset. A full table of samples can be found in Supplementary Table
819 10. C) Canonical reference genes are not applicable to all tissues in an aging context but age-invariant
820  genes introduced here are. D) Tissue aging-invariant genes are enriched to different extents for gene
821 ontology terms associated with hallmarks of aging. Age-invariant genes have low enrichment in some
822  (e.g. epigenetic alterations GO terms) and high enrichment in others (e.g. loss of proteostasis GO terms).
823  Created with BioRender.com

824

825 Figure 2: Gene Selection Process and Rationale
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A) Gene count number remaining after each criteria/filter step for each tissue. B) Gene count present
across all tissues at each step, presented on a log2 scale. C) % Coefficient of Variance (CV) for each gene
calculated as SD/mean*100 distribution of log2 TPM gene expression values. Genes that satisfy every
subsequent filter are plotted by the last filter applied. Filters 1-3 slowly decrease %CV and the
cumulative effect of filters 1-4 generally results in a %CV of approximately 20%. Filter 5 imposes a strict
%CV < 20% requirement for all tissue-gene pairs. D) Age information must be included in exclusion
criteria as low variation genes can still have a high correlation with age. Filter 6 (Spearman correlation p-
value based removal) removes highly age-correlated genes. Dashed line corresponds to a correlation
coefficient (y-axis) of 0.4, which for most tissues corresponds to a significant correlation with p = 0.05.
Exact CV and age correlation information is found in Supplementary Table 2, in case readers wish to
utilize other cutoffs in selecting RGs. E) Log2 TPM (y-axis) values by life stage (color) for specific gene-
tissue pairs (x-axis) for genes that satisfy filters 1-5, but are eliminated by filter 6. Boxplot line represents
the group median while lower and upper limits of the boxplot correspond to the first (25%) and third

(75%) quartiles.

Figure 3: Classical & Novel RG Performance in Aging Samples

A) Aging RG status of classical reference gene by tissue. Genes that are age-invariant and therefore valid
RGs are depicted in blue while their age-variant counterparts, which were not present in the gene list
after filtering, appear in red. B-C) Individual gene cycle threshold (Ct) results from validation RT-gPCR
tissues in heart (B) and liver (C) for selected classical RGs and novel age-invariant RGs. D) RT-qPCR Gene
RefFinder score and mRNA-seq %CV in heart and liver. Age-invariant genes are distinct from and
outperform canonical RGs in %CV (Welch Two Sample t-test p-value= 0.006553) and RefFinder qPCR
scores(Welch Two Sample t-test p-value = 0.02401). RefFinder and %CV scores were calculated from in-

house and public validation datasets respectively. RefFinder score was based on BestKeeper,

33


https://doi.org/10.1101/2024.04.09.588721
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.09.588721,; this version posted April 13, 2024. The copyright holder for this preprint (which

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865
866

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

NormFinder, GeNorm and comparative delta-Ct values. Circled points indicate novel age-invariant RGs

(Two pan-tissue: Tomm22 and Srpl4; and one heart and liver age-invariant gene: Atp6v1f) while

uncircled points specify classical RGs from Figure 3A.

Figure 4: Age-Invariant Genes are Enriched for Dysregulated and Aging Disease Associated Gene

Functions

A) Tissue age-invariant genes are enriched for some GO, KEGG and REACTOME terms associated with
linear and non-linear aging trajectories. Left labels correspond to enrichment terms originally classified
in 9 trajectory groups. Age-invariant labels at the very bottom (pink) refer to genes identified in this
paper. Heatmap columns correspond to different tissues, while rows correspond to different terms. B)
Age-invariant genes are enriched for GO Biological Processes associated with age-related disease in
humans. C) Tissue age-invariant genes are enriched for certain protein complexes. Gene lists are
enriched for CCT complex, electron transport chain (respiratory complex | and cytochrome C),
proteasome, Cop9 signalosome, PYR, Parvulin-associated pre-rRNP and Regulator-AXIN/LKB1-AMPK

complexes in CORUM analysis.
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