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ABSTRACT

Structured connectivity in the brain organizes information by constraining neuronal dynamics.
Theoretical models predict that memories are represented by balanced assemblies of excitatory
and inhibitory neurons, but the existence and functions of such EI assemblies are difficult to
explore. We addressed these issues in telencephalic area Dp of adult zebrafish, the homolog of
piriform cortex, using computational modeling, population activity measurements, and
optogenetic perturbations. Modeling revealed that precise balance of EI assemblies is important
to prevent not only excessive firing rates (“runaway activity”’) but also the stochastic
occurrence of high pattern correlations (“runaway correlations”). Consistent with model-
derived predictions, runaway correlations emerged in Dp when synaptic balance was perturbed
by optogenetic manipulations of fast-spiking feedback interneurons. Moreover, runaway
correlations were driven by sparse subsets of strongly active neurons, rather than by a general
broadening of tuning curves. These results reveal novel computational functions of EI
assemblies in an autoassociative olfactory memory network and support the hypothesis that EI
assemblies organize information on continuous representational manifolds rather than discrete
attractor landscapes.

INTRODUCTION

Cognition relies on systematic internal representations of knowledge that are thought to be
formed by the activity-dependent modification of synaptic connectivity 2. Representational
learning is a main function of autoassociative memory networks, which store relevant
information by modifying recurrent synaptic connectivity between specific neuronal
assemblies 3. In classical models of autoassociative memory, assemblies consist of excitatory
(E) neurons while the connectivity of inhibitory (I) neurons remains random #. Such assemblies
can define stable attractor states and, thus, support the classification of inputs by pattern
separation and completion >, However, enhanced feedback excitation within assemblies is
prone to destabilize networks and generate pathologically high “runaway activity”. Moreover,
putative autoassociative brain areas such as hippocampal area CA3 or piriform cortex exhibit
activity patterns that are atypical of classical attractor networks such as irregular firing,
transient responses to inputs, and high trial-to-trial variability "~!!

Biologically realistic firing patterns are generated by networks operating in a regime of
inhibition-stabilized synaptic balance (“inhibition-stabilized networks” [ISNs]) >4, In such
networks, individual neurons receive large E and I synaptic inputs that define a membrane
potential near spike threshold and generate fluctuation-driven, irregular spike trains. Because
small variations in the E/I current ratio cause large firing rate changes, network stability
requires co-tuning of E and I synaptic inputs in individual neurons across external stimuli and
time, which is referred to as “precise synaptic balance” '>!°. E/I co-tuning requires specific
higher-order connectivity that can emerge from activity-dependent synaptic plasticity in
computational models '7-1°. Experimentally, E/I co-tuning has been observed in multiple brain
areas including sensory cortices 2% but the underlying network organization remains unclear.
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In autoassociative networks, E/I co-tuning may be established by assemblies including
both E and I neurons. In such “El assemblies”, feedback inhibition tracks the activity of E
neurons and, thus, curbs runaway excitation without non-specific network-wide suppression of
activity 12131826 Tn ISNs, assemblies do not necessarily establish discrete attractor states but
ISNs with structured connectivity may exhibit diverse dynamics including chaotic firing
patterns and transient responses 2’3°. Nonetheless, ISNs with EI assemblies can represent
learned inputs and support pattern classification by confining activity to manifolds in activity
space '8, Generally, recurrent networks with precise synaptic balance can be trained to
efficiently perform different computations, conveying a high amount of information per action
potential !>2631, However, computational functions of EI assemblies in ISNs are not fully
understood and anatomical evidence is still circumstantial because direct structural analyses of
complex network motifs are difficult *2.

We addressed these questions in the posterior compartment of telencephalic area Dp
(pDp) of adult zebrafish, the homologue of piriform cortex 33-**, which is assumed to function
as an autoassociative memory network -6, Dp/piriform cortex are the main targets of the
olfactory bulb (OB) and respond to odors with distributed activity that is modified by repeated
odor stimulation and learning 37-*!. Odor-evoked E currents are dominated by recurrent inputs
and balanced by inhibition 24244, In pDp, voltage clamp recordings directly demonstrated that
pDp enters a state of precise synaptic balance during the initial phase of an odor response 2.

To explore mechanisms underlying precise synaptic balance in pDp we targeted
interneurons contributing to different microcircuits. In piriform cortex, superficial interneurons
receive input primarily from the OB and mediate feed-forward inhibition (FFI) whereas deep
interneurons receive input from pyramidal neurons and mediate feedback inhibition (FBI)**7,
In zebrafish, pDp contains scattered GABAergic interneurons *7#® that have not been
characterized in detail. It may be expected that precise synaptic balance depends primarily on
interneurons mediating FBI, which tracks population activity, but the identity of these
interneurons remains to be determined.

We identified two types of fast-spiking interneurons in pDp that mediated FFI and FBI,
respectively, and explored their functions by activity measurements, optogenetic manipulations
and network simulations. Using a computational model constrained by data we discovered that
the structured connectivity of assemblies can generate high correlations between subsets of
input patterns when excitation is not precisely balanced by FBI. These “runaway correlations”
can impair pattern classification, occur independently of runaway activity, and depend on
stochastic relationships between inputs and assemblies. Consistent with these computational
results, optogenetic reduction of inhibition, particularly FBI, generated runaway correlations
in pDp by mechanisms consistent with model predictions. These results indicate that precise
synaptic balance is important not only to stabilize global activity but also to prevent runaway
correlations in recurrent networks with structured connectivity. Moreover, experimental
evidence for EI assemblies supports the hypothesis that pDp generates joint representations of
odor space and an individual’s experience by confining dynamics to continuous manifolds in
activity space '8.
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RESULTS

Genetic targeting of interneuron subtypes

To explore functions of inhibition in a recurrent memory network we genetically
targeted two populations of interneurons in pDp using transgenic zebrafish lines (Fig. 1A). One
line (Tg[SAGFF(LF)212C:Gal4]; abbreviated 212C) was generated in an enhancer/gene trap
screen and expressed Gal4 from an insertion near the ppfia3 locus !, The other lines
(abbreviated dIx) expressed the Tet trans-activator (itTA) or green fluorescent protein (GFP)
under the control of dlx4/6 promoter/enhancer elements >3, Previous results showed that dix
elements drive expression in subsets of GABAergic interneurons in the OB of adult
zebrafish®*>%, In the telencephalon, 212C and dlx lines exhibited expression in sparse, largely
non-overlapping subsets of neurons (Fig. 1B; on average, 6% of 212C" neurons were also dIx",
and 7% of dIx™ neurons were also 212C*; N = 7 fish). Both lines did not show obvious
expression in projection neurons and targeted substantially fewer neurons than the gadlb
promoter in pDp (Tg[gad1b:GFP], Tg[gad1b:Gal4,UAS:eNpHR3.0YFP]; Frank et al., 2019).

To functionally characterize 212C* and dlx* neurons in pDp we crossed drivers to
responder lines expressing channelrhodopsin-2-YFP (Chr2YFP) and performed whole-cell
voltage clamp recordings in an ex vivo preparation of the intact brain and nose (Fig. 1C) .
Electrophysiological recordings were performed in the center of pDp and at the boundary
between pDp and the nucleus taeniae (NT) ?°. In these regions, 212C-GFP" and dIx:GFP" fibers
are abundant but 212C-GFP" and dlx:GFP" somata are sparse. The vast majority of GFP™
somata in this region are most likely principal neurons because they do not express the
GABAergic marker gadlb-GFP 37, We measured E and I postsynaptic currents (EPSCs and
IPSCs) in Chr2YFP neurons held at the reversal potentials of GABAergic and glutamatergic
synaptic currents (—60 mV and 0 mV, respectively). Activation of Chr2YFP by trains of full-
field blue light pulses (0.5 ms duration; 10 pulses at 20 Hz) evoked prominent IPSCs but no
obvious EPSCs in all recorded neurons (Fig. 1C-E). Averaged IPSCs showed a weak
depression in 212C-Chr2YFP and a weak summation in dlx-Chr2YFP fish (Fig. S1). These
results show that 212C- and dlx-neurons are inhibitory, presumably GABAergic, interneurons.

When action potentials were evoked in current clamp by depolarizing step currents
(500 ms) of increasing amplitude, 212C-GFP" and dlx:GFP" neurons both had lower threshold
currents (rheobase) than GFP™ neurons (212C-GFP*: 34 £4 pA, n =40; dIx:GFP": 32 £4 pA,
n=27; GFP™: 122 + 14 pA, n = 37; Kruskal-Wallis test, n = 104, H = 34.77, p < 107®) and
steeper input-output functions (Fig. 1F, G). Unlike GFP™ neurons, both types of GFP* neurons
generated sustained high-frequency trains of action potentials in response to current steps.
Moreover, GFP" neurons of both lines had lower action potential thresholds, smaller action
potential amplitudes, and shorter action potential durations than GFP~ neurons (Fig. S1),
consistent with previous observations in GABAergic interneurons in Dp . None of the
electrophysiological analyses revealed significant differences between 212C-GFP* and
dIx:GFP* neurons, except for a more pronounced after-hyperpolarization following action
potentials in dIx:GFP* neurons (p < 0.01; Fig. S1). These results indicate that 212C and dlx
target distinct types of fast-spiking interneurons in pDp.
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Afferent input from mitral cells in the OB may target pDp neurons directly via
monosynaptic connections or indirectly via polysynaptic connectivity, which can be
distinguished by measurements of synaptic latencies >’. We therefore electrically stimulated
the medial olfactory tract (mOT) and recorded EPSCs in pDp neurons by targeted voltage
clamp recordings 7. All neurons showed prominent EPSCs of variable latencies, indicating
that synaptic inputs were mono- and polysynaptic. However, short latencies (< 3.8 ms)
occurred only in 212C-GFP" and GFP™ neurons but not in dIx:GFP* (Fig. 1I). When analyzing
the shortest 33% of latencies in each dataset, latency distributions were indistinguishable
among 212C-GFP*, 212C-GFP ", and dIx:GFP™ neurons but shifted significantly towards
longer latencies in dIx:GFP" neurons (p = 0.0002.; Fig. 1J). These observations indicate that
dIx:GFP* neurons do not receive monosynaptic input from mitral cells. Hence, 212C-GFP*
interneurons can provide FFI to other Dp neurons, possibly in combination with FBI, whereas
dIx:GFP" interneurons mediate only FBI. 212C-GFP" and dIx:GFP" interneurons are therefore
biophysically similar but integrated differently into the synaptic circuitry of Dp.

Odor-evoked activity of inhibitory interneurons in Dp

We next examined odor responses of 212C and dIx interneurons in Dp. Previous studies
indicate that at least some interneurons in piriform cortex and pDp respond selectively to
odors?%8 but tuning properties of interneurons have not been characterized systematically. We
measured odor responses of pDp neurons in 212C-GFP or dIx:GFP fish by 2-photon Ca?*
imaging after bolus-loading of the red-fluorescent Ca** indicator rhod-2 *!* and inferred action
potential firing from the measured fluorescence signals using CASCADE, a pretrained and
calibrated artificial network ©°. This procedure allowed us to directly compare suprathreshold
odor responses between 212C-GFP* or dlx:GFP" interneurons and simultaneously recorded
GFP~ neurons (Figs. 2A-C). The stimulus panel comprised twelve structurally diverse
odorants including amino acids, bile acids, and nucleotides. Odor stimulation (duration: ~3 s)
evoked robust responses in GFP neurons and both types of interneurons. The inferred firing
rates started to decline before the end of odor stimulation, consistent with previous
observations>®%°

To characterize tuning, we averaged responses of individual neurons over the first 3 s
after response onset and sorted them by firing rate to obtain rank-ordered tuning curves. On
average, 212C-GFP" and dIx:GFP" neurons were more broadly tuned than GFP- neurons (Fig.
2D). Consistent with this observation, odor responses of 212C-GFP" and dlx:GFP" neurons
exhibited significantly lower lifetime sparseness than GFP™ neurons (212C: p < 0.001; dIx: p
<0.001; Fig. 2E) and correlations between odor-evoked activity patterns across 212C-GFP" or
dIx:GFP* neurons were significantly higher than correlations across GFP™ neurons (Fig. S2).
However, differences in odor selectivity were modest, and both types of interneurons showed
differential responses to odors. Hence, 212C and dlx interneurons exhibited specific responses
to different odors although tuning was slightly broader than in principal neurons.
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Effects of inhibitory interneurons on odor-evoked activity in Dp

To examine how interneurons shape odor representations we measured odor responses
in transgenic fish expressing the proton pump Archeorhodopsin (212C-ArchTGFP) #%! or the
chloride pump Halorhodopsin (dIx-NpHR3.0YFP) 6%%3; Fig. 3). Odor-evoked Ca?" signals
were detected by 2-photon imaging after bolus-loading of Oregon Green 488 BAPTA-1-AM
(OGB-1) 7. In 50% of the trials, 212C or dlx interneurons were hyperpolarized by targeted
illumination of pDp with orange light (594 nm) through an optical fiber for 6.2 s, starting
approximately 500 ms prior to odor onset (Fig. 3A). In both 212C and dIx fish, photoinhibition
of interneurons (PIN) increased odor-evoked population activity, consistent with disinhibition
(Figs. 3B, C). To quantify changes in firing rate by a measure reflecting feedback gain we
normalized the mean firing rate of pDp neurons during PIN (Fig. 3C) to the firing rate under
control conditions. This “gain index” was calculated for each odor based on the pooled activity
of all neurons recorded simultaneously within a given field of view (fov; Fig. 3D; Methods).
Consistent with disinhibition, the median gain index was >1 in 212C and dIx lines (p < 1075
with a skewed distribution, and larger for PIN of dIx interneurons (212C vs. dIx: p < 10_4). We
further observed that PIN of 212C or dlx interneurons (PINzi2c or PINgix, respectively) reduced
the steepness of rank-ordered tuning curves (Fig. 3E), indicating broader tuning. Consistent
with these observations, PIN212c and PINaix decreased lifetime sparseness (Figs. 3F; 212C: p <
10°1%; dix: p < 10°'%; Fig. 3G; 212C vs. dIx: p = 0.09) and population sparseness (Fig. S3) of
odor-evoked activity.

We next examined whether inhibitory effects were primarily subtractive or divisive.
Subtractive inhibition decreases all responses by a constant amount, which sharpens tuning and
sparsifies population activity. This form of inhibition has been observed in piriform cortex
upon silencing of somatostatin-expressing interneurons 8. Divisive inhibition, in contrast,
changes the response gain and therefore scales activity patterns without reorganizing their
structure. This form of inhibition occurs in dorsal pDp upon non-specific photoinhibition of
multiple interneuron types 37 and in piriform cortex upon photoinhibition of parvalbumin-
expressing interneurons 8. Fitting linear functions to odor responses of individual neurons
during control conditions and PIN (Fig. 3H) yielded slopes >1 for both types of interneurons
(212C: m = 1.36 = 0.09, N = 12 fovs; dlx: m = 2.95 + 0.75, N = 19 fovs; both p < 10_5; Fig.
3I). The y-intercept was slightly different from zero for PIN212c but not for PINax (212C: b =
0.06£0.01,p< 10_5; dix: b=10.00 £ 0.02; p = 0.89; Fig. 3J). These observations indicate that
dlx and 212C interneurons mediate primarily divisive inhibition. However, linear fits
accounted only for a fraction of the variance in the data (212C: 74 + 4%, dlx: 51 =5 %; 212C
vs. dlx: p = 0.006; 212C, N = 12 fovs; dIx, N = 19 fovs; Fig. 3K). Hence, linear models of
uniform divisive and subtractive inhibition cannot fully account for the observed modulation
of responses, particularly by PINqix (Fig. 3H, K), implying that inhibition also has non-uniform
effects on odor responses.
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A spiking network model of Dp with feed-forward and feed-back inhibition

To analyze functions of FFI and FBI more systematically we modified a spiking network
model of pDp with a single interneuron population '* by introducing two populations of I
neurons. The network consisted of 4000 recurrently connected E neurons and a total of 1000 I
neurons (Fig. 4A), corresponding approximately to the number of neurons in the central region
of pDp. E neurons received E input from 1500 afferents (“mitral cells”), consistent with the
number of mitral cells in the OB. 500 I neurons received direct E input from mitral cells and
mediated FFI while the other 500 I neurons received E input from the E neuron population and
mediated FBI (Fig. 4A). Both types of interneurons also made I connections within the same
population but potential connections between FFI and FBI neurons or additional feed-back
connectivity of FFI neurons were not included for simplicity.

Afferent inputs were simulated as Poisson processes with a spontaneous mean rate of 6 Hz.
Odor stimuli were modeled as firing rate increases and decreases of 225 and 75 mitral cells,
respectively (Fig. 4B), mimicking experimental observations in adult zebrafish 4%, Neurons
were modeled as conductance-based integrate and fire units with sparse connectivity
(connection probabilities <10% between all cell types and <5% between E neurons). Neuronal
parameters were defined based on experimental data when available (membrane time
constants; excitatory and inhibitory reversal potentials, spiking thresholds). The remaining
neuronal parameters were adjusted to approximate the observed input-output function of E and
I neurons in pDp (reset potential, refractory period, firing rate adaptation of E neurons,
Methods). Connection strengths were then fitted to reproduce experimental observations
including a mean odor-evoked firing rate of ~1 Hz (Fig. 4B) 20, Importantly, the network
entered a state of synaptic balance during odor stimulation with dominance of recurrent
synaptic inputs over afferent inputs (Fig. 4C; Fig. S4). Very similar activity was generated
previously by a simulation of pDp with a single interneuron population '8,

To examine the storage of information in synaptic connectivity we simulated two sets of
networks: (1) randomly connected networks (rand) and (2) structured networks (struct)
containing EI assemblies with enhanced connectivity. Assemblies were introduced into rand
networks by increasing connection probabilities among the 60 — 100 E neurons that received
most connections from afferents representing a given (“learned”) odor. In addition, the
connection probability onto the subset of E neurons was increased from the 10 —25 FBI
neurons that received most connections from these E neurons (Fig. 4D, see Methods for
details). To maintain the number of input connections per neuron, enhanced connectivity within
EI assemblies was compensated for by randomly eliminating connections outside assemblies
(Methods). Including FBI neurons in EI assemblies stabilized the network against runaway
activity. This could not be achieved by similar modifications of FFI-to-E neuron connectivity
because FFI cannot track the activity of E neurons within the assembly %18,

We simulated multiple sets of rand and struct networks starting from different
initializations. In each rand network, we created EI assemblies representing 20 virtual odors
(“learned odors™), resulting in a corresponding struct network with 20 memories. Hence,
structural odor memories were introduced into the connectivity matrix by enhancing
connectivity among small assemblies of E and FBI neurons without modifying FFI. The
formation of an assembly involved the modification of only ~0.15% of the synapses in the
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corresponding rand network. Hence, after creating 20 EI assemblies, ~3% of synapses were
changed, assembly E neurons still received ~90% of their inputs from neurons outside the
assembly, >65% of E neurons remained not affiliated with any assembly, and the majority of
connections (~97%) was shared between struct and the corresponding rand networks (Fig.
S4B).

We then simulated responses of these networks to 20 virtual odors that were different from
learned odors, resembling the situation of an experimenter who presents odor stimuli to an
animal that has previously formed an unknown set of odor memories (Fig. S4A). As observed
previously in networks with a single I neuron population '8, the mean firing rate, the lifetime
sparseness, and other response properties were similar between rand and struct networks
(Fig. 4E and Fig. S4C, D, F). However, correlated E and I connectivity within assemblies
enhanced co-tuning of E and I synaptic currents in individual neurons of struct networks (Fig.
S4G), consistent with experimental observations in pDp 2°.

We next simulated PIN by reducing FFI or FBI, which enhanced activity of E neurons
(Fig. 4F, G). Complete elimination of FBI resulted in runaway excitation, which can occur in
Dp when inhibition is blocked globally (Fig. S4H; ). To mimic experimental observations,
we therefore silenced randomly selected subsets of FFI or FBI neurons and adjusted the
silenced fraction to approximate PIN-induced increases in population activity (Fig. 3C;
Methods). Consistent with experimental observations (Fig. 3H), this “virtual PIN” (VPIN)
revealed primarily divisive inhibition by FFI and FBI neurons. The magnitude of divisive FFI
(slope of the linear fit: 1.2) was similar in rand and struct networks while divisive FBI was
more pronounced in struct networks (slope: 1.3 in rand networks and 1.5 in struct networks,
Fig. 41-J). As observed in PIN experiments in pDp, linear fits could not fully explain the
variance of responses, particularly during vPINFg: in struct networks, implying that inhibition
also had non-uniform effects on odor responses (Fig. 41-J). Furthermore, vPINrrr and vPINgg;
slightly but significantly decreased the lifetime and population sparseness of E neuron
responses (Fig. 4H and Fig. S41, J). Simulated networks, particularly those with EI assemblies,
therefore reproduced characteristic features of odor-evoked activity in pDp.

Synaptic balance within EI assemblies prevents runaway correlations

We next examined the transformation of pattern correlations, which quantify the similarity
between odor representations. In rand networks, correlations between activity patterns across
E neurons (“output correlations”) were approximately linearly related to correlations between
afferent activity patterns (“input correlations”), consistent with theoretical predictions for
random networks %%’ In struct networks, output correlations were slightly higher but the linear
relationship was largely preserved (Fig. SA). Hence, EI assemblies had only minor effects on
global pattern correlations and did not drive pattern separation or completion, as observed in a
closely related network simulation with a single interneuron population '8,

VPINEr had minor effects on output correlations in both rand and struct networks (Ar =
rpiN - ol = 0.02) while vPINFgr modestly increased output correlations (Fig. 5B, C). Although
the mean effect of vPINrgr was similar in rand (Ar = 0.06) and struct networks (Ar = 0.08),
distributions of Ar differed substantially. In struct but not rand networks, vPINEp! strongly
increased a subset of output correlations (Fig. SD, E). While Ar never exceeded 0.2 in rand
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networks (n = 1900 odor pair/network combinations), Ar was >0.2 in ~10 % of the cases and
>0.25 in ~2.5% of cases in struct networks. Hence, vPINgg: resulted in high correlations
between a subset of odor representations. Such “runaway correlations”, which occurred in the
absence of excessively high “runaway activity”, can impair the storage of independent
memories.

To understand how runaway correlations are generated we first focused on pattern
correlations that underwent a large increase upon VPINgpr (Ar > 0.25). In this subset of
input/network combinations, the mean pattern correlation during vPINgp; was » = 0.41 + 0.11;
mean + SD; Fig. SF). Under control conditions, the corresponding pattern correlations were
substantially lower (» = 0.09 + 0.08), similar to the corresponding input correlations (r =
0.08 £ 0.09), and similar to pattern correlations that were not strongly increased by vPINEg:
(Ar<0.25,r=0.06 = 0.08, Fig. 5F). Hence, runaway correlations could not be predicted from
input correlations or from output correlations when FBI was intact. Runaway correlations are
therefore a consequence of structured connectivity when excitation is not precisely balanced
by FBI.

We further observed that the main contributions to high pattern correlations in struct
networks during vPINggr came from small subsets of E neurons that responded strongly to both
odors in a pair, rather than from weakly responsive, non-selective subpopulations (Fig. 5G).
These E neurons with high contributions to pattern correlations were dominated by assembly
neurons (Fig. SH). Moreover, when odor-evoked input to an assembly was high, activity within
the assembly was amplified more than in other assemblies or outside assemblies (Fig. SI). We
therefore reasoned that vPINgpr causes runaway correlations when two odors provide strong
input to overlapping sets of assemblies because the reduction of FBI results in a nonlinear
amplification of activity within these assemblies (Fig. S5).

This hypothesis relies on two basic assumptions: First, inputs should be more strongly
amplified within assemblies than outside assemblies because excitatory feedback connectivity
is denser within assemblies. Second, the amplification of activity (gain) should increase with
the total input to an assembly because the number of neurons that become suprathreshold — and
thus contribute to amplification — increases with input strength. Pattern correlations may
therefore be enhanced when stimuli activate common sets of assemblies because the
amplification of overlapping pattern components will then exceed the mean amplification-
Because assemblies are small, the overlap between activity across all neurons is not a strong
predictor of the overlap between the activation of assemblies. Nonlinear amplification within
assemblies may thus generate high output correlations even when the global input correlation
is low. Hence, runaway correlations may occur stochastically depending on the structure of
input patterns and network connectivity when excitation within assemblies is not precisely
balanced by FBI (Fig. S5).

To examine whether this hypothesis can account for runaway correlations we first analyzed
firing rates of E neurons within assemblies of struct networks as a function of input strength
(total firing rate of afferent inputs to the assembly). For comparison, we analyzed firing rates
across the same neurons in the corresponding rand networks (“pseudo-assemblies”). Firing
rates were higher in assemblies than in the corresponding pseudo-assemblies, particularly when
input strength was high (Fig. 6A). Moreover, vPINrs! predominantly enhanced strong inputs
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in assemblies but not in pseudo-assemblies (Fig. 6A). These results support the assumptions
that the amplification of inputs is higher within assemblies than outside, and that amplification
increases nonlinearly as a function of input strength when precise E-I balance is perturbed.

We further characterized effects of inhibition by quantifying the gain index (ratio of mean
firing rates during vPIN and control conditions). In assemblies of struct networks, the gain
index for FFI decreased slightly with input strength whereas the gain index increased for FBI
(Fig. 6B). In the corresponding pseudo-assemblies, in contrast, the gain index of FBI decreased
with input strength, as observed for FFI. Similar observations were made also when activity
was averaged across all E neurons, rather than within assemblies (Fig. 6C). These results
confirm that the feedback gain increases with input strength when recurrent excitation is not
counterbalanced by specific feedback inhibition.

We next examined whether runaway correlations were associated with the strong activation
of overlapping sets of assemblies. An assembly was defined as “strongly activated” when its
mean afferent input exceeded a given threshold (Fig.6A). We found that vPINggr often
produced large increases in correlations (Ar > 0.25) when odors shared strongly activated
assemblies but rarely otherwise (Fig. 6D), supporting the conclusion that runaway correlations
depend primarily on the overlap between activated assemblies.

Functional signatures of EI assemblies in pDp

To examine whether pDp exhibits signatures of EI assemblies we experimentally tested
model-derived predictions. We first tested the general hypothesis that FBI counteracts
nonlinear recurrent amplification. If so, the gain index during PINgs: should increase with
stimulus strength. To test this prediction, we electrically stimulated the mOT (2 s; 10 Hz) in
bulbectomized brain explants (Fig. 7A; Methods), measured responses of pDp neurons by 2-
photon Ca?" imaging, and transformed Ca?’ signals into firing rate estimates using
CASCADE®. This approach allowed us to measure responses to stimuli of different amplitude
under control conditions and during PIN in interleaved trials. As observed during odor
stimulation (Fig. 3B, C), PIN2ioc and PINax increased evoked activity (Fig. 7B-E). For
PIN212c, the gain index remained within a narrow range, indicating that responses were scaled
by a similar factor, independent of stimulus intensity. The gain index for PINax, in contrast,
was larger and increased with stimulus strength (Fig. 7F), as observed in simulations (Fig. 6C).
Furthermore, at high stimulus intensities, activity outlasted electrical stimulation (Figs. 7B-E),
consistent with unbalanced recurrent excitation. This sustained activity was strongly enhanced
by PINax (Fig 7C, D), resulting in large gain indices at high stimulation intensities (Fig 7F),
but was nearly unaffected by PIN2ioc (Fig. 7B, D). These observations support the hypothesis
that FBI mediated by dlx neurons counteracts nonlinear amplification.

We next examined signatures of non-linear FBI in responses to odors (Fig. 7G). During an
odor response, pDp neurons receive synaptic inputs mostly from other E neurons in pDp and
potentially other telencephalic areas 2. As activity within pDp varies over time (Figs. 2, 3), the
gain index for FBI should co-vary with this activity if amplification and FBI vary with input
strength. To address this prediction, we focused on the time window between the response peak
and its decay to 50%, which typically occurred within approximately 2 s (Fig. 7H; the initial
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response transient was not analyzed because activity changed rapidly ¢°°). While the gain
index for PIN212c remained almost constant during this time, the gain index for PINaix decreased
together with the firing rate (Fig. 7H). Consequently, the change in gain index was significantly
larger for PINaix than for PIN2ioc (Fig. 7I; p < 0.01). These observations further support the
conclusion that 212C neurons scale activity by a constant factor whereas dlx neurons balance
nonlinear, activity-dependent amplification.

To directly examine whether unbalanced activity generates runaway correlations, we
compared correlations between activity patterns evoked by eight different odors under control
conditions and during PIN (Fig. 8A). The mean pattern correlation was not affected by PIN212c
(Ar: 0.04 £ 0.04, mean + s.e.m., p = 0.21, bootstrap test; Fig. 8B) but significantly increased
by PINgix (Ar: 0.12 + 0.04, mean + s.e.m., p < 0.001, bootstrap test; Fig. 8B). Large increases
in correlations occurred between subsets of activity patterns upon PINgx but rarely upon
PINz12c (Fig. 8E, F). As a consequence, effects of PIN212c and PINgix were uncorrelated (Fig.
8C), despite a high similarity between correlation matrices under control conditions (Fig. 8D).
As observed in simulations during vPINgg, high pattern correlations were driven by small
subsets of neurons that responded with high firing rates to both odors during PINqix but not
under control conditions (Fig. 8H). During PIN2i2c, in contrast, high contributions of
individual neurons to pattern correlations were rare and not associated with high firing rates
(Fig. 8G). We therefore conclude that perturbations of FBI can generate runaway correlations
in pDp due to changes in the activity of small subsets of neurons, consistent with assembly-
driven runaway correlations observed in the computational model.

DISCUSSION

EI assemblies can establish precise synaptic balance in ISNs, which is thought to
stabilize recurrent memory networks against runaway activity 121618, However, direct evidence
for EI assemblies in biological networks and a comprehensive understanding of their
computational functions is lacking. Using computational modeling we found that precise E/I
balance is important not only for network stability but also to prevent runaway correlations
between subsets of inputs. These runaway correlations are high pattern correlations driven by
sparse subsets of neurons whose firing rates are modest under control conditions but strongly
increased when E/I balance is perturbed. To explore functions of EI assemblies in pDp we
photoinhibited different types of fast-spiking interneurons and found signatures of EI
assemblies primarily during manipulations of FBI, consistent with model-derived predictions.
These results show that connectivity motifs generating precise synaptic balance are critical for
efficient memory storage in recurrent circuits, and that balanced EI assemblies are likely to
mediate memory-related computations in pDp.

Functional characterization of interneurons in pDp

We characterized two distinct populations of fast-spiking I interneurons with similar
biophysical properties, dlx and 212C, that mediate FBI and FFI (possibly in combination with
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FBI), respectively. IPSCs generated by 212C and dlx neurons exhibited depression and
summation, respectively, similar to short-term synaptic plasticity of FFI and FBI interneurons
in piriform cortex *>*¢, During prolonged odor responses, the relative weight of inhibition may
therefore shift from FFI to FBI. However, 212C and dlx neurons presumably represent only a
subset of all interneurons in pDp.

Optogenetic hyperpolarization of 212C and dlx neurons caused disinhibition without
triggering runaway excitation, which allowed us to dissect computational functions of defined
interneurons in an ISN. Both interneuron types mediated primarily divisive inhibition, as
observed for fast-spiking parvalbumin neurons in piriform cortex °8. Divisive inhibition is well-
suited to scale and globally stabilize population activity in recurrent networks . In rodents,
FBI has also been proposed to contribute to concentration-invariant odor identity coding by
curtailing long-latency afferent input during a sniff cycle 7!, It remains to be determined
whether FBI has similar functions in zebrafish given that the kinetics of odor responses is
slower and not modulated by sniffing.

While linear models of inhibition could account for most effects of PIN212¢, PINgix had
additional neuron- and stimulus-specific effects on odor responses. Consistent with this
finding, correlations between odor-evoked activity patterns were modified substantially by
PINaix but not by PIN212¢, even though both manipulations increased mean firing by similar
amounts. DIx neurons therefore have non-uniform effects on population activity that
suppressed runaway correlations, indicating that they contribute to the specificity of odor
representations in pDp.

Signatures of structured connectivity in inhibition-stabilized networks

Important functions of inhibition include the stabilization of recurrent networks against
runaway excitation, the modulation of tuning curves, and temporal patterning of activity 7.
Our results indicate that a further function of inhibition in memory networks is the suppression
of runaway correlations, which can emerge from structured connectivity during learning.

This insight was obtained using an ISN model constrained by data from pDp !8:20-5659,
When recurrent excitation was not precisely balanced by FBI, assemblies strongly increased
subsets of pattern correlations without generating runaway activity, implying that runaway
correlations were not caused by global E/I imbalance. Rather, high correlations were driven by
sparse and strong responses of E neurons within specific assemblies (Fig. S5). Hence, runaway
correlations could not be predicted from global pattern correlations but were a direct
consequence of structured connectivity, which is established during learning. In our
computational model, the nonlinearity in the amplification of activity within assemblies
depended entirely on the threshold-nonlinearity of neuronal input-output functions (action
potential generation). In piriform cortex and other brain areas, E neurons contain additional
nonlinearities 7>7* that are likely to further enhance nonlinear amplification within assemblies.

While experience-dependent changes in correlations due to the formation of structured
connectivity could, in principle, have different functions 7>, high correlations generally impair
autoassociative memory by limiting discriminability and storage capacity. The suppression of
runaway correlations may thus be important, and possibly critical, for the function of recurrent
memory networks. It may therefore be expected that runaway correlations are rarely observed
in biological memory networks without perturbations of E/I balance. Nonetheless, runaway

12


https://doi.org/10.1101/2024.04.09.588702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.09.588702; this version posted April 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

correlations may occur naturally under certain conditions of imprecise E/I balance, for example
during learning, in response to neuromodulatory inputs, or when the computational function of
a network is supported by high correlations.

Coordinated E-I connectivity underlying precise synaptic balance may be established
by different motifs including EI assemblies, which can be generated by biologically plausible
learning rules !>76. However, experimental evidence for EI assemblies remains indirect. In
primary visual cortex, for example, interactions between E and I neurons depend on orientation
tuning 77-8° but the statistical knowledge obtained by sparse sampling of neurons is insufficient
to resolve higher-order connectivity motifs in large networks 8!%2, We therefore examined
diagnostic features of EI assemblies in population activity by manipulations of inhibitory
interneurons. Runaway correlations were observed primarily during PINaix, consistent with a
suppression of runaway correlations by FBI under control conditions. PINgix-induced runaway
correlations were driven by strong responses of sparse neuronal subsets rather than by a general
broadening of response selectivity, consistent with the mechanism underlying runaway
correlations in simulations. While PIN»12c also increased a subset of correlations, possibly due
to a feedback component of 212C neurons, effects were smaller and not driven by sparse and
strong responses. These results support the hypothesis that precise synaptic balance in pDp 2°
is established, at least in part, by EI assemblies.

In the OB, principal neurons (mitral cells) receive E input predominantly from sensory
afferents while recurrent E connections are very rare 84, As revealed by a combination of
activity measurements and dense circuit reconstructions (“dynamical connectomics”), mitral
cells receiving co-tuned sensory input preferentially inhibit each other via reciprocal
connectivity with common interneurons, thereby attenuating correlated activity 83. This
mechanism of pattern decorrelation in the olfactory bulb is similar to the suppression of
runaway correlations in EI assemblies although correlated activity of mitral cells is generated
by common input rather than recurrent excitation. Pattern decorrelation by specific FBI of
correlated activity may thus be a common computational motif in different types of networks.

Computational functions of EI assemblies in pDp

Piriform cortex and pDp are thought to generate experience-dependent representations
of olfactory objects, environments or tasks by autoassociative mechanisms 33368, Unlike
classical attractor models, piriform cortex and Dp generate transient, variable and irregular
firing patterns #!-56-:60.86-88 ‘Thege observations were reproduced by a recent ISN model of pDp'®,.
This model indicates that EI assemblies project odor representations of learned inputs into
activity subspaces by locally confining activity onto manifolds, resulting in continuous
representations that nonetheless enhanced classification of learned inputs by assembly neurons.
Hence, EI assemblies may cause geometric modifications of coding space that support
continuous computations such as navigation or measurements of relevant distances, possibly
in the context of cognitive maps.

ISN models generating continuous representational manifolds assume that experience
drives the formation of EI assemblies. Our results provide experimental support for these
models by providing indirect evidence for EI assemblies in pDp. Representational manifolds
combine a sensory map of olfactory stimulus space — transmitted from the olfactory bulb — with
an individual’s experience, suggesting that pDp generates representations of odor space with
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individualized geometries. This hypothesis predicts that learning geometrically modifies
(“distorts”) a pre-existing and continuous map of odor space, rather than establishing discrete
representations of specific odors. Consistent with this hypothesis, repeated odor stimulation
gradually modified odor-evoked activity patterns, and representations of novel and learned
odors were not categorically different in pDp 37#!. Gradual rather than categorical
modifications of odor representations were also observed in piriform cortex as a consequence
of passive odor presentation or active learning 3>, Continuous representational manifolds
may support fast classification and interpretation of inputs, complementary to integrative
functions of continuous attractor networks. Future studies may take advantage of the small size
of pDp to directly analyze the underlying network structure by combining activity
measurements with dense reconstructions of neuronal wiring diagrams 32,
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METHODS

Animals and transgenic lines

Experiments were performed using adult (>3 months) zebrafish (Danio rerio) of both sexes.
Fish were raised and kept under standard laboratory conditions (26 — 28 °C; 13/11 or 14/10
light/dark cycle). All animals are sacrificed prior to the removal of organs in accordance with
the Veterinary Department of the Canton Basel-Stadt (Switzerland) or the European
Commission Recommendations for the euthanasia of experimental animals (Part 1 and Part 2).
Experiments involved the following transgenic lines:

Short name Systematic name References
212C-mCherry Tg(SAGFF(LF)212C:Gal4, UAS:mCherry) 49 this study
212C-GFP To(SAGFF(LF)212C:Gal4, UAS:GFP) 4951
dIx:GFP Tg(nccr.i56i-i56ii-dix6a: GFP) 32
vglut2a:DsRed TgBAC(slcl7a6b:LOXP-DsRed-LOXP-GFP) |*°
212C-Chr2YFP Tg(SAGFF(LF)212C:Gal4, 5xUAS:-wtChR2- | %, this study
EYFP)
212C-ArchTGFP | Te(SAGFF(LF)212C-Gal4, 4
SxUAS:Htp.ArchT-GFP,myl7: EGFP)mi13
dix-Chr2YFP Tg(dlx5a-dix6a:ITETA; PTET:Cr.Cop4- >3
YFP)tmio
dix-eNpHR3.0YFP | Tg(5xUAS:ITETA,PTET:eNpHR3- 63
YEP,myl7:EGFP)fmii4

The UAS:Chr2YFP expression construct was generated using the Tol2Kit °!, which involved
a multisite recombination reaction (Invitrogen Multisite Gateway manual v.D, 2007) between
p5SE-UAS (5xUAS and E1b minimal promoter; Distel et al., 2009), pME-wtChr2 YFP; °2) and
p3E—polyA as entry vectors, and pDestTol2CG2 as destination vector °!. Stable transgenic
founder lines (UAS:Chr2YFP, UAS:mCherry) were generated using standard procedures *3

Experimental preparation

Electrophysiological measurements, Ca?" imaging, and imaging of fluorescent reporter
expression were performed in an ex-vivo preparation of the entire zebrafish brain and nose .
Briefly, adult zebrafish were either cold-anesthetized or, for some experiments to characterize
expression patterns, anesthetized by immersion in MS-222 and decapitated. The forebrain was
exposed ventrally after removing the eyes, jaws and palate. The preparation was placed in a
custom-made flow-chamber, continuously superfused with teleost artificial cerebrospinal fluid
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(ACSF) and slowly warmed up to room temperature. ACSF contained (in mM): 124 NaCl, 2
KCl, 1.25 KH2PO4, 1.6 MgSOy4, 22 D-(+)-Glucose, 2 CaCly, 24 NaHCOs3, pH 7.2. Chemicals
were obtained from Sigma-Aldrich. In some experiments (see below) both olfactory bulbs were
surgically removed (“bilateral bulbectomy’) while the rest of the telencephalon remained
intact.

Electrophysiology, optogenetics and olfactory tract stimulation

Voltage clamp and current clamp recordings were performed using patch pipettes that were
pulled from 1-mm borosilicate glass capillaries (Hilgenberg) with a resistance of 5-8 MQ, a
Multiclamp 700B amplifier (Molecular Devices) and Ephus software °. Pipettes were filled
with an intracellular solution that contained (in mM): 129 K-gluconate, 10 HEPES (free acid),
0.1 EGTA, 4 Na;-ATP, 10 Naz-phosphocreatine, 0.3 Na-GTP, 5 L-glutathione and 13.1 KOH
(pH 7.2, 305 mOsm; all Merck / Sigma). Neurons were targeted by a combination of contrast-
enhanced transmitted-light optics and multiphoton fluorescence using the shadow-patching
technique with 50 - 100 uM Alexa Fluor 594 or Alexa Fluor 488 (Thermo Fisher Scientific) in
the internal solution. Prior to recordings, we usually removed the dura mater over pDp. Before
making a seal, neurons were approached with low pressure (approximately 20 mbar).
Measurements were not corrected for the liquid junction potential and signals were digitized at
10 kHz after low-pass filtering. All recordings were performed in pDp 2. In current clamp
recordings (Fig. 1F, G; Fig. S1B-F), we evoked action potentials by current injection at
different amplitudes in 212C-GFP (N = 12 fish) or dIx:GFP fish (N = 7). For the analysis of
firing rates as a function of input current, five trials were averaged per cell and amplitude (Fig.
1F, G). Detailed analyses of action potentials (Fig. S1B-F) were restricted to the first action
potential at rheobase.

Optical stimulation of Chr2YFP (Fig. 1C, D; Fig. S1F, G) was performed as
described> using a digital micromirror device (DMD) that was optically coupled into a
multiphoton microscope and illuminated with a blue laser (457 nm, 500 mW unattenuated laser
output). “Full-field” optical stimulation (600 x 600 pixels) covered the majority of pDp in its
anterior-posterior and medio-lateral extent, and possibly small parts of adjacent areas. Ten light
pulses of 0.5 ms duration were delivered at 20 Hz. Inhibitory (IPSCs) and excitatory
postsynaptic currents (EPSCs) were recorded from Chr2-negative, vglut2a-positive
(excitatory) neurons in pDp using whole-cell patch-clamp recordings at holding potentials of
0 mV or —60 mV, respectively (averages over five trials).

To measure EPSC latencies (Fig. 1H-J) we electrically stimulated the medial olfactory
tract (mOT) as described *7 with minor modifications of previous procedures. We stimulated
the mOT unilaterally about 100 pm posterior from the border of the OB using glass pipettes
with a tip diameter of ~10 — 20 pm. Pipettes were filled with 1 M NaCl. Stimulus amplitude
(usually ~—30 V) was adjusted to evoke responses of intermediate amplitude and EPSCs were
recorded at —70 mV. Ten stimuli (0.5 ms) were applied at 20 Hz, resulting in ten post-stimulus
segments for EPSC analysis. At least five trials were recorded in each neuron, resulting in at
least 50 segments per neuron. Latencies of the first EPSC in individual segments were analyzed
in a semi-automatic fashion using custom scripts written in IgorPro (Wavemetrics). The
procedure first used a published event detection algorithm *° followed by visual inspection and,
if necessary, manual correction of the EPSC onset. Importantly, all latency analyses were
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performed blind with regard to the recorded cell type. To avoid spurious effects of
spontaneously occurring EPSCs we averaged latency values for each segment across trials, and
report the minimum of these segment averages for each neuron.

Loading of the Ca** indicator, odor application, and tract stimulation

Rhod2-AM (Fig. 2 and Fig. S2) or Oregon Green 488 BAPTA-1-AM (OGB-1; other
figures; all ThermoFisher Scientific) were bolus-loaded as described >° with minor
modifications. 50 pg of AM dye was dissolved in 30 pL of DMSO/Pluronic F-127 (80/20;
ThermoFisher Scientific) and stored in 4 pL aliquots at —20°C. Prior to each experiment, an
aliquot was diluted 1:5 in ACSF and loaded into a glass pipette with a tip diameter of
approximately 5 pm. Pressure injections were targeted to the lateral telencephalon, posterior to
the prominent furrow and blood vessel and within or slightly dorsal to Dp. One or a few
injections were made up to 100 um dorsal to the subsequent imaging field of view (fov).
Progress of dye uptake was monitored by snapshots of multiphoton images and pressure was
adjusted to minimize swelling of the tissue.

Odor application started >1 h after dye injection. Food extract was prepared as
described ?°. Other odors (Sigma Aldrich) were prepared as 1000x stock solutions in deionized
water (Fluka), vortexed, sonicated, and stored at —20°C. Fresh aliquots were diluted in ACSF
to the final concentration before each experiment. For characterization of odor responses in
interneurons (Fig. 2; Fig. S2), we used the following odor set (concentrations in uM): 10
Amino acid mix (equal parts of: ), 10 L-Arginine (Arg), 10 eL-Lysine (Lys), 10 L-
Phenylalanine (Phe), 10 L-Tryptophan (Trp), 10 L-Methionine (Met), 10 L-Histidine (His), 1
bile acid mix (Bmx; equal parts of: Taurodeoxycholic acid (TDCA), Taurocholic acid (TCA),
Glycocholic acid (GCA)), 1 TDCA, 1 GCA, 10 nucleotide mix (Nmx; equal parts: Adenosine
5’-triphosphate (ATP) and Inosine 5’-monophosphate), 10 ATP. In each fov, each odor was
applied twice in two separate sequences such that all odors were presented once before the
second sequence started. The order of odors was newly randomized for each sequence and fov.

For characterization of odor responses upon PIN (Figs. 3, 7, 8; Fig. S3), we used the
following odor set (concentrations in uM): 10 Phe (F), 10 Trp (W), 10 Met (M), 10 Lys (K),
20 Phe + Met mix (F+M; equal parts), 20 Trp + Lys mix (W+K: equal parts), 1 bile acid mix
(Bmx; equal parts of: TDCA, TCA, GCA), and 1:1000 dilution of food odor (Fex). In each fov,
each odor was applied four times in four separate sequences. For each odor, two control and
two PIN trials were interleaved in these four sequences. Two sequences were always paired
such that a given odor was presented under 594 nm illumination (PIN) in the first sequence and
under control conditions (Ctrl) in the second sequence or vice versa. The order of odors and
photostimulation conditions was newly pseudo-randomized for the first sequence of each pair
in each fov. Inter-stimulus intervals were between 2 and 3 min.

Odors were applied to the nasal epithelium for ~ 3 s through a constant stream of ACSF
using a computer-controlled, pneumatically actuated HPLC injection valve (Rheodyne,
Rohnert Park, CA, USA) as described >°. One to four fovs were recorded in each fish (N = 12
fovs from five 212C-ArchTGFP fish; N = 19 fovs from eight dIx-eNpHR3.0YFP fish).
Electrical stimulation of the mOT in conjunction with Ca?* imaging (Fig. 7) was performed as
described above, except that we applied ten stimuli (0.5 ms) at 5 Hz starting 0.2 s after the
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onset of 594 nm illumination in PIN trials. In each fov, a total of six stimulation amplitudes (5
V,10V,20V,30V, 50V, and 75 V) were applied four times each. Ctrl and PIN trials were
pseudo-randomized and paired as described above for odor stimulation. All these electrical
stimulation experiments were performed following a bilateral bulbectomy. One to maximally
six fovs were recorded in each fish (N = 12 fovs from five 212C-ArchTGFP fish; N = 18 fovs
from six dlx-eNpHR3.0YFP fish).

Image acquisition and optical stimulation (PIN)

In most experiments, multiphoton Ca?" imaging in pDp was performed using a custom-
built multiphoton microscope with a Galvo-Galvo scan head >°, a 20x water-immersion
objective (NA 1.0, Zeiss), GaAsP photomultiplier tubes (PMT; Hamamatsu), and
Scanimage/Ephus software **°7. In each trial, images with 256 lines (256 pixels/line for rhod-
2 imaging, and 512 pixels / line for OGB-1 imaging) were acquired at 128 ms per frame. After
each trial, the field of view was readjusted to compensate for potential drifts using an automated
routine that acquired a small z stack of + 3 pum (step size, 0.5 um). For rhod-2 imaging,
fluorescence was excited at 860 nm. Red (rhod-2) and green (GFP) emitted light were detected
simultaneously through bandpass filters (645/75 nm and 515/30 nm, respectively). For OGB-
1 imaging, fluorescence was excited at 928 nm and emission was detected through a bandpass
filter (535/50 nm) by a gated GaAsP PMT (Hamamatsu) that was further protected by a narrow
blocking filter centered on 594 nm. The intensity of the 2-photon excitation light was adjusted
in each fov to minimize photobleaching.

Optogenetic stimulation (PIN) during Ca** imaging was performed as described (Frank
et al., 2019). Briefly, orange laser light (594 nm) was directed at pDp through an optical fiber
(200 um diameter; ThorLabs) positioned approximately 100 — 200 um from the brain surface.
Brief pulses of light (450 ps) were coupled into the fiber using a digital micromirror device
(DMD; Texas Instruments; °°) and synchronized to every second line of image acquisition.
Simultaneously, the PMT gate was switched off. After data acquisition, blanked lines were
removed from images. The same processing step was applied to trials without
photostimulation, resulting in final images with 128 lines and a fill fraction of approximately
40% under all conditions. The intensity of orange light at the tip of the fiber, averaged over the
duty cycle, was 6 — 8 mW.

Most odor responses were measured in the core section of Dp between ~100 pm and
260 um from the ventral-most aspect (Figs. 3, 7, 8; Fig. S3). This section is densely innervated
by processes of interneurons but contains few interneuron somata. To characterize odor
responses in interneurons (Fig. 2; Fig. S2), images were acquired ~50 — 85 um or 50 — 120 pm
from the most ventral aspect of Dp in 212C-GFP and dIx:GFP, respectively. At these depth,
interneuron somata are more abundant than in the core section of Dp albeit still sparse
compared to other neuron (unpublished observations). Subtle differences between odor
responses measured in 212C-GFP and dIx:GFP fish (Fig. 2; Fig. S2) may be due to slight
differences in imaging depth.

For co-expression analysis of 212C-mCherry and dlx:GFP, some images were acquired
using a Resonant-Galvo scan head, excitation at 800 nm, and detection through bandpass
emission filters (GFP: 515/30 nm; mCherry: 641/75 nm). Images were collected throughout
the full dorso-ventral extent of pDp (~300 um).
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Analysis of Ca2* signals

Images were registered across trials and regions of interest (ROIs) were drawn manually over
all visible somata in each image fov using custom software (https://github.com/i-
namekawa/Pymagor). For each ROI, we calculated the relative change in fluorescence AF/F.

The baseline fluorescence F was averaged over a 1 s time prior to stimulus onset. AF/F traces
were transformed into firing rate estimates by a deep learning-based spike inference algorithm
(“Cascade”. %) using the model “OGB_zf pDp 7.5Hz smoothing200ms_causalkernel”
(available at https://github.com/HelmchenlLabSoftware/Cascade) for both rhod-2 and OGB-1
data sets.

To quantify responses of neurons to odors or electrical stimulation (neuron-odor or
neuron-stimulus pairs), inferred firing rates were averaged over a temporal response window
of 3 s in odor stimulation experiments, starting with the onset odor stimulation, unless stated
otherwise. In electrical stimulation experiments, a longer response window of 11 s was chosen
to include the prolonged activity in response to high stimulus amplitudes (Fig. 7). Neurons that
showed no response to at least one odor or electrical stimulus were excluded from further
analyses; we used a threshold of 0.128 for the summed number of estimated spikes as a -
conservative - criterion.

Network model

Model. The simulation of pDp consists of 4000 E neurons, 500 FFI neurons and 500
FBI neurons that were modeled as leaky integrate-and-fire units with conductance-based
synapses. A spike emitted by neuron y from population Y triggers an increase in the

conductance gy, in the postsynaptic neuron x:
dg .
Tsyny TYX = —Ivrx + Tsyny Zy Wyx 5(t - tspike,y) (equatlon 1)
Conductance changes triggered by the OB and local populations P affect the membrane

potential of neuron x which evolves according to equation (2).
vy )
CX E = grest,X(Erest,X - Vx) + gOBx(Eexc - Vx) + ZP ng(EP - Vx) — Zy (equatlon 2)

When the membrane potential reaches a threshold Vi, the neuron emits a spike and its
membrane potential is reset and clamped to E,.; during a refractory period

T‘r'ef'
Excitatory neurons are endowed with adaptation with the following dynamics %
T, % = a(V — E) — z, with z - z + b after each spike (equation 3).

Neuronal parameters were similar to '® (Table 1). The time constants of inhibitory and
excitatory synapses (Tsyy,; and Ty ) were 10 ms and 30 ms, respectively.

To show that the results were consistent across a wide range of parameters, we simulated 10
sparsely connected random networks with different connection probabilities pyx and synaptic
strengths wyx as summarized in Table 2. Connections between neurons were drawn from a
Bernoulli distribution with probability pyx. Synaptic strengths wyx were then fitted to
reproduce observations in ex-vivo pDp, as described in '®. Simulations were performed using
Matlab. Differential equations were solved using forward Euler and an integration time step of
dt=0.1 ms.
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Neuronal parameters Symbol Value

Excitatory neuron | Inhibitory neuron
Membrane time constant Ty 85 ms 50 ms
Resting conductance rest 1.35nS 0.9nS
Resting potential Epest -60 mV -60 mv
EPSC reversal potential Eoyxe 0mV 0 mV
IPSC reversal potential Einn -70 mV -70 mV
Spike threshold Vin -38 mV -45 mV
Reset potential Erest -60 mV -60 mV
Refractory period Tref 8 ms 8 ms
Adaptation time constant T, 40 ms /
Subthreshold adaptation a I nS /
Spike-triggered adaptation b 5pA /

Table 1 Neuronal parameters.

Connectivity Probability of connections pyx | Synaptic strengths was (pS)
OB —>E 0.02 84-85

OB > Iy 0.04-0.05 19-24

E—>E 0.05 110

E—Ip 0.05-0.06 64-82

In>E 0.09-0.1 410-450

Iy—>E 0.04-0.06 410-450

Iy— Iy 0.04-0.05 300-380

Ip > 1Ip 0.08-0.10 300-380

Table 2 Values of the connectivity parameters used (for simplicity, wist.1= Wifp-1 and wigr.g=

WIfb-E)
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Afferent input. Each E and FFI neuron received external excitatory input from a pool
of 1500 mitral cells. During baseline activity, mitral cells fired at 6 Hz. During odor
presentation (2 s) firing rates of 75 mitral cells were decreased (“inhibited”): rates were drawn
from a discrete uniform distribution between 0 to 5 Hz, and the onset latency was drawn from
a discrete uniform distribution between 0 to 200 ms. At odor onset, firing rates of 150 mitral
cells increased (“activated” cells). Their firing rates were drawn from a uniform distribution
ranging from 8 to 32 Hz and the onset latency was drawn from a uniform distribution between
0 to 200 ms. After odor onset, their firing rate decreased back to baseline with a time constant
of 1, 2 or 4 s (equally distributed). Spike trains were then generated by Poisson processes.

Assemblies. Unless stated otherwise we created 20 assemblies (“odor memories™) in
each network. For each learned odor, we selected the 60 to 100 E neurons (fixed number for
each network) that received the highest number of connections from activated mitral cells. We
then created additional connections between these assembly E neurons and eliminated existing
connections between other neurons and assembly E neurons to maintain a constant number of
E input connections per E neuron. The connection probability between assembly E neurons
was therefore in average 5-fold higher than the probability among E neurons outside
assemblies. We then selected the 10 — 25 FBI neurons (fixed number for each network) that
received the highest number of connections from assembly E neurons and increased the
probability of connection from these assembly I neurons to assembly E neurons by a factor 10
in average, resulting in an EI assembly containing both E and I neurons. Similar to E
connections, we eliminated existing connections between non-assembly I neurons and
assembly E neurons to maintain a constant number of I input connections per E neuron. In total,
5 sets of 2 rand and 4 struct networks which shared the same OB>E, OB—>1, I>1 and E->1
connectivity were simulated (2 struct networks per rand network, as 2 different sets of 20
learned odors were used to create assemblies).

Odors presented to simulated networks were generated by random selection of mitral
cells as described and did not match assemblies. This procedure mimicked an experimental
setting in which an animal with an unknown history is presented random odor stimuli.

Inhibiting the inhibitory neurons. To mimic PIN, we deleted the output connections
of a random subset of inhibitory neurons 500 ms before odor onset until the end of the odor
presentation. 34% of the FFI or 51% of the FBI were inhibited. The percentage of inhibited
neurons was set to obtain an average modulation (firing rate during vPIN normalized by control
firing rate) as close as the one observed experimentally by PIN212c and PINaix in pDp.

Analysis. Unless stated otherwise, odor responses were time-averaged over the first 1.5
seconds of odor presentations, averaged over 20 different odors, and then averaged over
neurons.

Data analyses (experiments and simulations)
Lifetime and population sparseness. Lifetime and population sparseness were

calculated using the metric *°:
R LAY / o
N N

1
-5

Sparseness =
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This normalized metric describes the ‘peakiness’ of a distribution and ranges between
0 (all responses equal) and 1 (only one non-zero response). Lifetime sparseness: distribution of
response amplitudes across odors in single neurons. Population sparseness: distribution of
response amplitudes to a single odor across neurons. (Vinje and Gallant, 2000)

Gain index. The gain index was defined as the ratio between the mean firing rates of E
neurons during vPIN or PIN and under control conditions. This index is not a direct measure
of total inhibition because inhibition was only partially eliminated during vPIN/PIN.
Nonetheless, it provides an experimentally accessible measure of the “inhibitory gain” that
counteracts recurrent amplification in the balanced state. Normalization by the mean firing rate
under control conditions avoids problems with division by firing rates which can be close to
Zero.

Linear regression. Linear fits (Figs. 3, 4, 7, 8) were performed using a total least
squares procedure, which minimizes the orthogonal distance of the regression line from the
data points. Thus, this method does not distinguish between dependent and independent
variables and accounts for the equality of measurement errors in the two variables.

Contribution to r. The contribution of individual neurons to the correlation between
activity patterns is determined by the corresponding element in the Pearson correlation, which
is the sum over the individual contributions of all neurons. For each simulated network, the
odor pairs for which pattern correlations increased strongly upon VPINgsr (Ar = rpiN - Fou >
0.25) were selected and for each pair of odor-response pattern, 2% of neurons (80) were
randomly selected. In Fig 8, all odor pairs are shown.

Statistics

Unless stated otherwise, sample means are reported =+ their standard error (+ s.e.m.). N
indicates the number of fovs, and, unless stated otherwise, n indicates number of neurons. No
statistical methods were used to predetermine sample sizes, but our sample sizes are similar to
those in prior reports and are typical for the field. To test whether the linear correlation between
two variables was statistically significant, we performed a t test of the null hypothesis that the
observed correlation coefficient r comes from a population with r = 0. To test whether the
regression slope of linear fits was significantly larger than 1 (Fig. 3), we used bootstrapping to
estimate the sampling distribution of the regression slope (sampling with replacement, repeated
10°000 times). All statistical tests were two-sided unless stated otherwise, and p < 0.05 was
considered statistically significant. Significance levels are indicated as follows: p 2 0.05: ns;

p <0.05: % p<0.01: **; p<0.001: ***,

DATA AND CODE AVAILABILITY.

Matlab code to simulate pDpsim is available at https://github.com/clairemb90/pDp-model.
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FIGURE LEGENDS

Figure 1 | Fast-spiking inhibitory interneurons in pDp. (A) Schematic: lateral view of the
adult zebrafish brain and two coronal cross sections through the telencephalon (Tel),
highlighting the location of pDp. Scale bars represent approximations. OB: olfactory bulb;
TeO: optic tectum. Dm, Dc, DI: medial, central, lateral portions of the dorsal telencephalon,
respectively. (B) Expression of fluorescent markers in 212C (purple) and dlx neurons (green)
in pDp (Tg[SAGFF212C:Gal4,UAS:mCherry,dlx4/6:GFP] fish; maximum intensity
projection). Sale bar: 50 um. (C) Schematic: optogenetic stimulation of interneurons and
whole-cell patch-clamp recording of evoked IPSCs and EPSCs in putative principal neurons.
(D) Mean IPSCs (holding potential: 0 mV; + s.e.m.) and EPSCs (—60 mV) in putative principal
neurons in response to 0.5 ms full-field stimulation (457 nm; blue bars) in 212C-Chr2YFP fish
(top; n = 4) and dIx-Chr2YFP fish (bottom; n = 2; 10 pulses at 20 Hz; pulses 3 - 9 are not
shown). Note absence of optically evoked EPSCs. (E) IPSCs (gray: individual neurons; black:
average) evoked by trains of blue light pulses (0.5 ms) in putative principal neurons in 212C-
Chr2 (n=11) and dIx-Chr2 fish (n = 16). Only one neuron (red trace) showed no IPSCs. (F)
Representative firing patterns evoked by current injections (two amplitudes) in interneurons
and a putative principal neuron (GFP") in pDp. (G) Mean firing rates in the three neuronal
populations as a function of injected current. (H) Schematic: stimulation of the medial olfactory
tract (mOT) and whole-cell recording in pDp. (I) Distribution of EPSC latencies in the two
interneuron populations (GFP") and the corresponding putative principal neurons (GFP").
EPSC latencies of dIx:GFP* neurons, but not 212C-GFP" neurons, were higher than in putative
principal neurons (Wilcoxon rank-sum test: dIx:GFP": p=0.0003, n =27 vs dIx:GFP",n=21;
212C-GFP": p=10.63, n =34 vs 212C-GFP", n = 53). (J) Distribution of 33% shortest EPSC
latencies in each neuronal population (subset of data in (H)). Short-latency EPSCs were lacking
in dIx:GFP" neurons (Wilcoxon rank-sum test: p=0.0002; dIx:GFP",n=9; dIx:GFP",n=7),
but not 212C-GFP* neurons (p = 0.65; 212C-GFP*,n=12; 212C-GFP~, n = 18).

Figure 2 | Odor-evoked responses in populations of putative principal cells and
interneurons. (A) Responses of 50 randomly selected putative principal cells (GFP™) in pDp
to two amino acid odors (107> M; average of two trials), measured by 2-photon Ca?" imaging
after bolus-loading of rhod-2. (B) Odor responses of 50 randomly selected dlx interneurons
from the same regions as the GFP- neurons in (A). (C) Firing rates inferred from Ca®* signals
(see Methods) in interneurons (GFP*) and putative principal neurons (GFP"), averaged over all
trials (n = 2), odors (n = 12) and neurons (212C-GFP: n= 1515 GFP™ and n = 50 GFP* from N
=5 fovs; dIx:GFP: n = 1750 GFP~ and n = 65 GFP" from N = 12 fovs). Black bar indicates
approximate duration of odor stimulation. (D) Mean tuning curves of interneurons (GFP") and
putative principal cells (GFP™) from the same fovs, constructed by rank ordering of odor
responses in each neuron. Shading shows s.d. (E) Lifetime sparseness of odor responses in
interneurons (212C-GFP" and dIx:GFP*) and putative principal neurons (GFP~; 212C:
Wilcoxon rank-sum test: p < 107%; 212C-GFP*, n = 50; 212C-GFP~, n=1515; dIx: p<107%;
dIx:GFP*, n = 65; dIx:GFP~, n = 1750). Lower lifetime sparseness in interneurons indicates
broader tuning.
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Figure 3 | Modulation of odor responses by interneurons in pDp. (A) Schematic:
photoinhibition (PIN) of 212C or dIx interneurons during odor stimulation and 2-photon Ca?*
imaging in 212C-ArchTGFP or dix-NpHR3YFP fish, respectively. (B) Odor-evoked Ca**
signals in 50 randomly selected pDp neurons under control conditions (Ctrl) and during PIN
(average of 2 trials). Bars show light exposure and odor stimulation. Left: 212C; right: dlx. (C)
Inferred firing rates averaged over all neurons, trials and odors under control conditions and
during PIN (orange). Bars show light exposure and odor stimulation; shaded area depicts the
3-s time window used for most analyses. Top: 212C; bottom: dlx. (D) Gain index (mean
activity during vPIN normalized by Ctrl). Each circle represents one fov-odor combination.
Gain indices were significantly different from unity (bootstrap test, one-sided; 212C: p < 1075,
n=96; dlx: p< 1075, n = 152) and between 212C and dlx lines (Wilcoxon rank-sum test: p <
107%). (E) Rank-ordered odor tuning curves, averaged over all neurons under control conditions
and during PIN (orange) in 212C (left) and dIx (right) lines. Shadings show s.d. (F) Lifetime
sparseness of odor responses under control conditions (left) and during PIN (orange; Wilcoxon
signed rank test, two-sided; 212C: n= 1190, p < 107'%; dlx: n = 1788, p < 107'°) in 212C (left)
and dlx (right) lines. (G) Distribution of changes in lifetime sparseness (PIN — Ctrl). (H)
Amplitudes of individual odor responses under control conditions and during PIN. Each data
point represents one neuron-odor pair (212C: n= 10,710, N = 12 fovs; dlx: n = 16,092, N =19
fovs). Black line shows linear fit (total least squares). (I) Slopes of linear fits (total least
squares) to amplitude data as shown in (H) for each fov (Difference from unity: bootstrap test,
one-sided; 212C: p <1073, N = 12; dIx: p < 1075, N = 19. Difference between lines: Wilcoxon
rank-sum test: p = 0.004). (J) y-intercepts of the same linear fits (total least squares; Difference
from zero: bootstrap test, one-sided; 212C: p < 107>, N = 12; dIx: p = 0.89, N = 19. Difference
between lines: Wilcoxon rank-sum test: p = 0.007). (K) Variance explained by linear fits. Each
datapoint represents one fov (Wilcoxon rank-sum test: p = 0.006).

Figure 4 | Computational model of pDp. (A) Schematic of pDpsim. (B) Spike raster of
randomly selected subsets of 100 mitral cells (input from the OB), 100 E neurons, 50 FFI
neurons and 50 FBI neurons. Two different odors (bars) were applied by changing the firing
rates of specific subsets of mitral cells for 2 s each. (C) EPSCs (black) and IPSCs (red)
averaged across all odors and E neurons. Blue trace shows contribution to EPSCs from mitral
cells (afferents). (D) Illustration of EI assembly in a struct network. (E) Lifetime sparseness of
E neurons in rand networks, and E, FFI and FBI neurons in struct networks (n = 4000, n =
8000, n = 1000 and n = 1000 from left to right). E neurons were more sharply tuned than FFI
(Wilcoxon rank-sum test: p < 0.0001) and FBI neurons (p < 0.0001). (F) Spike raster of 100 E
neurons in a struct network corresponding to the rand network in (B): Left: control condition
(Ctrl; intact inhibition); center: vPINFrr; right: vPINEgi. (G) Mean firing rate averaged over all
odors and E neurons under ctrl conditions and during vPINrr and vPINgg1. Bars depict odor
presentation (blue) and VvPIN (yellow). (H) PIN-induced change in lifetime sparseness
(VPIN — Ctrl; One-sample Wilcoxon signed rank test for difference from zero: p < 0.0001 for
all). (I) Odor-evoked firing rates of individual neurons during vPINFrr as a function of their
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control firing rates in rand (left) and struct (right) networks (n = 20 odors, 200 neurons, 10
networks) (J) Same as (I) for vPINFg:.

Figure 5 | Runaway correlations during imbalanced feedback inhibition in networks with
EI assemblies. (A) Pearson correlations between odor-evoked activity patterns across E
neurons (output correlation) as a function of the correlation between the corresponding afferent
activity patterns (input correlation) in rand and struct networks. (B) Example of correlations
between activity patterns evoked by 12 odors under control conditions (lower triangles) and
during vPINgr and vPINgg: (upper triangles) in one struct network. (C) Changes in pattern
correlations » (n = 190 odor pairs) induced by vPINrr and vPINEgi in rand and struct networks
(n=10 and 20 networks, respectively). vPINrpr has a stronger effect on pattern correlations
than VPINrr; (Wilcoxon matched-pairs signed rank test; rand and struct: p < 0.0001). Shaded
area depicts Ar>0.25, which was used as an operational criterion to identify runaway
correlations. (D) Pattern correlations during vPINgrr and vPINgg; as a function of correlations
under control conditions (Ctrl) in rand and struct networks. Datapoints above the gray line
(Ar > 0.25) fulfill the operational criterion for runaway correlations. (E) Distribution of runway
correlations in struct networks. Datapoints show runaway correlations (Ar > 0.25); histogram
shows their relative frequency. Contour plots show overall distributions of correlations (same
data as in (D); logarithmic contour levels). No runaway correlations occurred during vPINgr.
(F) Left: Odor pair-network combinations were selected for occurrence of runaway correlations
(Ar>0.25 during vPINgB1) in struct networks. For each combination, the corresponding
correlations between input patterns, output patterns across E neurons under control conditions
(Ctrl) and during vPIN were compared (lines connect datapoints corresponding to the same
odor pair-network combinations). Right: correlations for the same odor pair-network
combinations in corresponding rand networks. High (runaway) correlations were unique to
struct networks during vPINrp1. (G) Contribution of individual neurons to high pattern
correlations during vPINgg1. Each datapoint shows the firing rates evoked by two odors in one
neuron under control conditions (Ctrl; left) or during vPINgpr (right) and the neuron’s
contribution to the corresponding pairwise pattern correlation during vPINEsr (color-code).
Inset: same as Ctrl but datapoints color-coded by the neuron’s contribution under control
conditions. Right: firing rate during vPINgg1. N = 87 odor pairs from 10 networks, 80 randomly
selected neurons for each odor pair (Methods). Sparse sets of neurons that responded strongly
to both odors made large contributions to pattern correlations and were observed during
vPINrgr but not under control conditions. (H). Contribution of E neurons to all pattern
correlations, averaged over neurons that are part of an assembly and neurons outside assemblies
(non-A.). (I). Example of activity patterns evoked by two dissimilar odors across E neurons
from two assemblies and outside assemblies (left panels: 30 randomly selected neurons per
group; right panels: mean activity of each group). Left: input. Assembly 1 received stronger
mean input from both odors than assembly 2 and neurons outside assemblies. Right: activity
under control conditions (Ctrl) and during vPINgg:. Note increased pattern correlation » due to
nonlinear amplification of activity in assembly 1 during vPINEgI.
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Figure 6. Non-linear amplification in assemblies. (A) Mean firing rate of assembly E neurons
or the corresponding pseudo-assembly neurons as a function of the mean afferent input to
(pseudo-) assemblies (summed firing rates of all connected mitral cells). Data from one rand
and the corresponding struct network with 20 assemblies (mean response to 20 odors). Lines
show exponential fits; vertical dotted line shows threshold for “activation” in (D) (240 Hz). (B)
Gain index (mean activity of assembly during vPIN normalized by Ctrl) as a function of input
strength in assemblies (same rand and struct networks as in (A)). Each datapoint corresponds
to one assembly-odor pair in the struct network (rand not shown for clarity). Lines are linear
fits (rand: FFI: r=-0.34, p < 0.0001: FBL: r=-0.25, p<0.0001; struct: FFL: r=-0.18,
p =0.0003; FBI: r=0.11, p=0.023). (C) Gain index as a function of the mean Dp firing rate
during vPIN. Each datapoint corresponds to the gain index in response to one odor averaged
over 20 struct networks (rand not shown for clarity). Lines are linear fits (rand: FFL: r = —0.23,
p = 0.33; FBI: r = 0.46, p = 0.04; struct: FFL: r=-0.22, p = 0.35; FBL: r=0.72, p = 0.0003).
(D) Cumulative frequency of shared assembly activation in odor pair-network combinations
that exhibited runaway correlations during vPINrg1 (Ar > 0.25; dashed line) or not (solid line;
struct networks only). An assembly was defined as “activated” by an odor when the total
afferent input to the assembly exceeded 240 Hz (strong input, vertical line in (A)).

Figure 7 | Functional signatures of EI assemblies in pDp: non-linear amplification. (A)
Schematic: electrical stimulation of medial olfactory tracts (mOT; 20 pulses at 10 Hz; different
amplitudes) during simultaneous 2-photon Ca?" imaging and PIN. (B) Raw fluorescence of
Ca®' indicator (OGB-1) and evoked Ca?" signals (three stimulus amplitudes) under control
conditions and during PIN2ioc (212C-ArchTGFP; representative example; single trials).
Bottom row: inferred firing rates averaged over all neurons (n = 903 from N = 12 fovs) and
trials (n = 2) for the corresponding stimulus amplitudes under control conditions and during
PIN212c (orange). Bars indicate mOT stimulation (2 s) and 594 nm illumination for PIN (6.8 s).
Scale bar: 50 pm. (C) Same as (B), but for PINgix (dIx-eNpHR3.0YFP; n = 2358 neurons from
N = 18 fovs). (D) Inferred firing rates, averaged over all stimulus amplitudes (n = 6), neurons,
and trials under control conditions and during PIN2i2c (orange). (E) Same a (D), but for PINgix.
(F) Gain index as a function of inferred firing rate during PIN (212C: r = —0.56, N = 24 fov-
stimulus pairs, p = 0.004; dlx: r = 0.83, N = 33 fov-stimulus pairs, p < 107%). (G) Schematic:
Ca?" imaging of odor responses during PIN. (H) Gain index during odor responses as a function
of time. The difference in gain index (A GI) was calculated between the two time points
corresponding to the peak of response (“1.0”; open red circle) and the decay to 50% (“0.5”;
closed red circle) for each fov-odor pair. Arrowhead indicates onset of odor response. Time is
color-coded; marker size is proportional to the inferred firing rate during PIN (x axis). (I)
Change in gain index during odor responses, calculated as in (G), in different fovs (Wilcoxon
rank-sum test: p = 0.009; 212C line: N = 12; dIx line: N = 19).
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Figure 8 | Functional signatures of EI assemblies in pDp: population activity patterns and
runaway correlations. (A) Average Pearson correlation (7) between odor-evoked activity
patterns under control conditions (Ctrl, below diagonal) and during PIN (above diagonal; 212C:
N =12 fovs; dlx: N = 19 fovs). (B) Mean PIN-induced changes in pattern correlations (Ar =
rPIN — Fcul; bootstrap test, one-sided; 212C: p=0.21, N = 12; dIx: p =0.0005, N = 19; 212C vs
dIx, Wilcoxon rank-sum test: p = 0.33). (C) Relationship between changes in correlations
evoked by the same odors (n = 28 odor pairs) during PIN212c and PINqix. (D) Relation between
the mean pattern correlation (n = 28 odor pairs) in 212C and dlx lines under control conditions.
(E) Pattern correlations during PIN212c and PINgix as a function of correlations under control
conditions. Datapoints above the gray line (Ar>0.25) fulfill the operational criterion for
runaway correlations. (F) Distribution of runway correlations. Datapoints show runaway
correlations (Ar > 0.25); histogram shows their relative frequency. Contour plots show overall
distributions of correlations (same data as in (E); logarithmic contour levels). Frequency of
runaway correlations was significantly higher during PINax (p =107, X°-test). (G)
Contribution of individual neurons to high pattern correlations. Each datapoint shows the firing
rates evoked by two odors in one neuron under control conditions (Ctrl; left) and during PIN212¢
(right). The neuron’s contribution to the corresponding pairwise pattern correlation during
PIN212c is color-coded. (H) Same as (G) for PINaix. Note sparse sets of neurons that responded
strongly to both odors and made large contributions to pattern correlations during PINqix but
not under control conditions.
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SUPPLEMENTAL INFORMATION

Figure S1 | Further characterization of two populations of inhibitory interneurons in Dp.
(A) Mean action potential waveforms (+ s.d.) recorded from 212C-GFP*, dIx:GFP*, and GFP~
neurons (n: number of neurons). (B) Comparison of action potential width; action potential
width was measured as the time between the two zero crossings of the second derivative of the
membrane voltage, before and after the action potential peak, respectively (Kruskal-Wallis test,
n =102, p < 107?). Nonparametric comparisons with GFP~ (n =37): 212C-GFP*,p<107% n=
39; dIx:GFP*, p < 1077, n = 26). (C) Action potential amplitude (Kruskal-Wallis test, n = 102,
p < 1071). Nonparametric comparisons with GFP~ (n = 37): 212C-GFP*, Q = 7.56, p < 10713,
n =39; dIx:GFP*, Q =6.11, p < 107, n = 26). (D) Action potential threshold (Kruskal-Wallis
test, n =103, p < 10~?). Nonparametric comparisons with GFP~ (n = 37): 212C-GFP*, p< 1077,
n = 39; dIx:GFP*, p < 107, n = 27). (E) Action potential afterhyperpolarization (AHP)
amplitude (Wilcoxon rank-sum test: p = 0.009; 212C-GFP", n = 42; dIx:GFP*, n = 27). (F)
Left: Mean (£ s.e.m.) IPSCs and EPSCs in GFP™ neurons in response to trains (10 pulses at 20
Hz) of 0.5 ms full-field blue light stimulation (blue bars) in 212C-Chr2YFP (top) and dlx-
Chr2YFP fish (bottom; same data as in Fig. 1D but showing complete trains). Right: Average
(*+ s.e.m.) charge transfer over the first 50 ms (first “pulse”) as a function of holding potential
(n: number of neurons). (G) Top: IPSCs number 1, 9 and 10 evoked by trains of blue light
pulses in GFP™ neurons (same as Fig. 1E). Bottom: charge transfer evoked by the last two
pulses, normalized to the first pulse (Wilcoxon rank-sum test: p = 0.0009; 212C-GFP*, n= 10;
dIx:GFP*, n = 14). In dIx-Chr2YFP fish, charge transfer increased because IPSCs broadened.

Figure S2 | Population analysis of odor-evoked responses in populations of putative
principal cells and interneurons in pDp. (A) Pearson correlation between odor-evoked
activity patterns in simultaneously recorded putative principal cells (GFP™ neurons, below
diagonal) and interneurons (GFP" neurons, above diagonal) in 212C-GFP fish (n = 1515 GFP~
and n = 50 GFP" neurons from N = 5 fovs; two trials per odor). (B) Same for dIx:GFP fish (n
= 1750 GFP™ and n = 65 GFP" neurons from N = 12 fovs). (C) Distribution of Pearson
correlations between all pairwise activity patterns in. Two trials with each odor were averaged
(Wilcoxon signed rank test; 212C-GFP fish: n = 66 odor pairs, p < 107'%; dIx:GFP fish: n = 66
odor pairs, p < 1071©),

Figure S3 | Effects of PIN on population sparseness of odor responses in pDp. Population
sparseness of responses evoked by different classes of odors (amino acids: four individual
amino acids and two binary mixtures; bile acids: one 3-component mixtures; one food extract;
see Methods for details) under control conditions (Ctrl) and during vPINzi2c (left) and vPINgix
(right). Datapoints represent individual fovs (Wilcoxon signed rank tests: 212C: N = 12 fovs,
p =0.0005 for all three cases: dIx: N = 19 fovs; amino acids: p < 107#; bile acid mix: p=0.0002;
food extract: p < 107%).

Figure S4 | Computational model of pDp: additional results. (A) Pearson correlation
between afferent patterns presented to pDpsim (n=20) and learned afferent patterns used to

29


https://doi.org/10.1101/2024.04.09.588702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.09.588702; this version posted April 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

create El assemblies (n = 20). (B) Example connectivity of a rand network and a corresponding
struct network. A white dot indicates the presence of a connection between neurons. Half of
the network is depicted, including 10 out of 20 assemblies (A), which consists of 80 E and 10
FBI neurons each. (C) Mean firing rates of E, FFI and FBI neurons in rand and struct networks
during presentation of an odor. (D) Firing rates averaged during spontaneous (sponta) activity
or during odor presentation, over neurons belonging to an assembly (A) and the remaining ones
(non-A). (E) Correlations between activity patterns evoked by 12 odors in E (lower triangles)
and FFI or FBI (upper triangles). Example of 1 network. (F) Left: averaged odor-evoked
afferent conductance. Middle: odor-evoked synaptic conductance. Right: percentage of E input
coming from recurrent connections during odor presentation. The experimental range measured
in ex-vivo Dp is delineated by the dotted lines. (G) Co-tuning, quantified by the correlation
between time-averaged E and I conductances in each neuron in response to various odors
(average across neurons, n = 10 and 20 rand and struct networks, respectively; Wilcoxon
matched-pairs signed rank test: p = 0.002). (H) Gain index as a function of the fraction of
inactivated neurons. (I) Population sparseness of responses evoked by different odors. (J)
Changes in population sparseness induced by vPIN (VPIN-Ctrl, one sample Wilcoxon signed
rank test: FFI, rand: p = 0.002; FBI, rand: p < 0.002; FFI, struct: p < 0.0001; FBI, struct: p <
0.0001).

Figure S5 | Mechanism generating runaway correlations: schematic illustration. Grids
represent 32 x 32 E neurons; shaded square depicts an EI assembly; arrows represent feedback
excitation (E) and multisynaptic feedback inhibition (I). Left: odors 1 and 2 are uncorrelated
and activate a small subset of neurons within the assembly. Reducing inhibition enhances
activity within the assembly slightly more than outside the assembly but the resulting increase
in pattern correlation remains small. Right: odors 3 and 4 are also globally uncorrelated but
activate a larger subset of neurons within the assembly. Because feedback gain increases with
assembly activation (non-linear amplification), a reduction in inhibition strongly enhances
activity within the assembly. As a consequence, the global pattern correlation becomes high
even though activity outside the assembly is uncorrelated. This “runaway correlation” does not
occur when excitation and inhibition are precisely balanced because nonlinear amplification
within assemblies is canceled. In poorly balanced networks, runaway correlations therefore
emerge in response to subsets of inputs (odors) depending on the precise relation between input
patterns (odors) and pre-existing memories (assemblies). Note that this is a schematic
illustration with fewer neurons and assemblies than the biologically constrained simulation.
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Figure 1 | Fast-spiking inhibitory interneurons in pDp. (A) Schematic: lateral view of the
adult zebrafish brain and two coronal cross sections through the telencephalon (Tel),
highlighting the location of pDp. Scale bars represent approximations. OB: olfactory bulb;
TeO: optic tectum. Dm, Dc, DI: medial, central, lateral portions of the dorsal telencephalon,
respectively. (B) Expression of fluorescent markers in 212C (purple) and dIx neurons (green)
in pDp (Tg[SAGFF212C:Gal4,UAS:mCherry,dlx4/6:GFP] fish; maximum intensity
projection). Sale bar: 50 um. (C) Schematic: optogenetic stimulation of interneurons and
whole-cell patch-clamp recording of evoked IPSCs and EPSCs in putative principal neurons.
(D) Mean IPSCs (holding potential: 0 mV; £ s.e.m.) and EPSCs (—60 mV) in putative principal
neurons in response to 0.5 ms full-field stimulation (457 nm; blue bars) in 212C-Chr2YFP fish
(top; n = 4) and dIx-Chr2YFP fish (bottom; n = 2; 10 pulses at 20 Hz; pulses 3 - 9 are not
shown). Note absence of optically evoked EPSCs. (E) IPSCs (gray: individual neurons; black:
average) evoked by trains of blue light pulses (0.5 ms) in putative principal neurons in 212C-
Chr2 (n=11) and dIx-Chr2 fish (n = 16). Only one neuron (red trace) showed no IPSCs. (F)
Representative firing patterns evoked by current injections (two amplitudes) in interneurons
and a putative principal neuron (GFP") in pDp. (G) Mean firing rates in the three neuronal
populations as a function of injected current. (H) Schematic: stimulation of the medial olfactory
tract (mOT) and whole-cell recording in pDp. (I) Distribution of EPSC latencies in the two
interneuron populations (GFP") and the corresponding putative principal neurons (GFP").
EPSC latencies of dIx:GFP" neurons, but not 212C-GFP" neurons, were higher than in putative
principal neurons (Wilcoxon rank-sum test: dIx:GFP": p=0.0003, n =27 vs dIx:GFP",n=21;
212C-GFP": p=10.63, n = 34 vs 212C-GFP", n = 53). (J) Distribution of 33% shortest EPSC
latencies in each neuronal population (subset of data in (H)). Short-latency EPSCs were lacking
in dIx:GFP" neurons (Wilcoxon rank-sum test: p = 0.0002; dIx:GFP",n=9; dIx:GFP",n=7),
but not 212C-GFP" neurons (p = 0.65; 212C-GFP*, n=12; 212C-GFP", n= 18).
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Figure 2 | Odor-evoked responses in populations of putative principal cells and interneurons. (A)
Responses of 50 randomly selected putative principal cells (GFP) in pDp to two amino acid odors (107 M;
average of two trials), measured by 2-photon Ca®* imaging after bolus-loading of rhod-2. (B) Odor responses
of 50 randomly selected dIx interneurons from the same regions as the GFP~ neurons in (A). (C) Firing rates
inferred from Ca*" signals (see Methods) in interneurons (GFP*) and putative principal neurons (GFP"),
averaged over all trials (n = 2), odors (n = 12) and neurons (212C-GFP: n = 1515 GFP— and n = 50 GFP*
from N =5 fovs; dIx:GFP: n= 1750 GFP~ and n = 65 GFP" from N = 12 fovs). Black bar indicates approxi-
mate duration of odor stimulation. (D) Mean tuning curves of interneurons (GFP*) and putative principal
cells (GFP") from the same fovs, constructed by rank ordering of odor responses in each neuron. Shading
shows s.d. (E) Lifetime sparseness of odor responses in interneurons (212C-GFP* and dlx:GFP") and puta-
tive principal neurons (GFP~; 212C: Wilcoxon rank-sum test: p < 107, 212C-GFP*, n=50; 212C-GFP~, n
= 1515; dIx: p < 1075, dIx:GFP*, n = 65; dlx:GFP~, n = 1750). Lower lifetime sparseness in interneurons
indicates broader tuning.
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Figure 3 | Modulation of odor responses by interneurons in pDp. (A) Schematic:
photoinhibition (PIN) of 212C or dlx interneurons during odor stimulation and 2-photon Ca*"
imaging in 212C-ArchTGFP or dIx-NpHR3YFP fish, respectively. (B) Odor-evoked Ca*"
signals in 50 randomly selected pDp neurons under control conditions (Ctrl) and during PIN
(average of 2 trials). Bars show light exposure and odor stimulation. Left: 212C; right: dlx. (C)
Inferred firing rates averaged over all neurons, trials and odors under control conditions and
during PIN (orange). Bars show light exposure and odor stimulation; shaded area depicts the
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3-s time window used for most analyses. Top: 212C; bottom: dlx. (D) Gain index (mean
activity during vPIN normalized by Ctrl). Each circle represents one fov-odor combination.
Gain indices were significantly different from unity (bootstrap test, one-sided; 212C: p <107,
n=96; dlx: p < 107, n = 152) and between 212C and dIx lines (Wilcoxon rank-sum test: p <
10%). (E) Rank-ordered odor tuning curves, averaged over all neurons under control conditions
and during PIN (orange) in 212C (left) and dlx (right) lines. Shadings show s.d. (F) Lifetime
sparseness of odor responses under control conditions (left) and during PIN (orange; Wilcoxon
signed rank test, two-sided; 212C: n=1190, p < 107%; dlx: n = 1788, p < 107 °) in 212C (left)
and dlIx (right) lines. (G) Distribution of changes in lifetime sparseness (PIN — Ctrl). (H)
Amplitudes of individual odor responses under control conditions and during PIN. Each data
point represents one neuron-odor pair (212C: n= 10,710, N = 12 fovs; dlx: n=16,092, N =19
fovs). Black line shows linear fit (total least squares). (I) Slopes of linear fits (total least
squares) to amplitude data as shown in (H) for each fov (Difference from unity: bootstrap test,
one-sided; 212C: p <107, N =12; dIx: p < 107>, N = 19. Difference between lines: Wilcoxon
rank-sum test: p = 0.004). (J) y-intercepts of the same linear fits (total least squares; Difference
from zero: bootstrap test, one-sided; 212C: p < 107>, N = 12; dIx: p = 0.89, N = 19. Difference
between lines: Wilcoxon rank-sum test: p =0.007). (K) Variance explained by linear fits. Each
datapoint represents one fov (Wilcoxon rank-sum test: p = 0.006).
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Figure 4 | Computational model of pDp. (A) Schematic of pDp_ . (B) Spike raster of randomly selected
subsets of 100 mitral cells (input from the OB), 100 E neurons, 50 FFI neurons and 50 FBI neurons. Two
different odors (bars) were applied by changing the firing rates of specific subsets of mitral cells for 2 s
each. (C) EPSCs (black) and IPSCs (red) averaged across all odors and E neurons. Blue trace shows contri-
bution to EPSCs from mitral cells (afferents). (D) Illustration of EI assembly in a struct network. (E) Life-
time sparseness of E neurons in rand networks, and E, FFI and FBI neurons in struct networks (n = 4000,
n=8000, n=1000 and n = 1000 from left to right). E neurons were more sharply tuned than FFI (Wilcoxon
rank-sum test: p < 0.0001) and FBI neurons (p < 0.0001). (F) Spike raster of 100 E neurons in a struct
network corresponding to the rand network in (B): Left: control condition (Ctrl; intact inhibition); center:
VvPIN__; right: VPIN_ . (G) Mean firing rate averaged over all odors and E neurons under ctrl conditions
and during vPIN__ and vPIN_ . Bars depict odor presentation (blue) and vPIN (yellow). (H) PIN-induced
change in lifetime sparseness (VPIN — Ctrl; One-sample Wilcoxon signed rank test for difference from
zero: p < 0.0001 for all). (I) Odor-evoked firing rates of individual neurons during vPIN__ as a function of
their control firing rates in rand (left) and struct (right) networks (n = 20 odors, 200 neurons, 10 networks)
(J) Same as (I) for vPIN_ .
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Figure 6. Non-linear amplification in assemblies. (A) Mean firing rate of assembly E
neurons or the corresponding pseudo-assembly neurons as a function of the mean afferent
input to (pseudo-) assemblies (summed firing rates of all connected mitral cells). Data from
one rand and the corresponding struct network with 20 assemblies (mean response to 20
odors). Lines show exponential fits; vertical dotted line shows threshold for “activation” in
(D) (240 Hz). (B) Gain index (mean activity of assembly during vPIN normalized by Ctrl)
as a function of input strength in assemblies (same rand and struct networks as in (A)).
Each datapoint corresponds to one assembly-odor pair in the struct network (rand not
shown for clarity). Lines are linear fits (rand: FFI: r = —0.34, p < 0.0001: FBI: r = —0.25,
p<0.0001; struct: FFI: r=—0.18, p =0.0003; FBIL: r = 0.11, p=0.023). (C) Gain index (mean
activity during vPIN normalized by Ctrl) as a function of the mean Dp firing rate during
vPIN. Each datapoint corresponds to the gain index in response to one odor averaged over
20 struct networks (rand not shown for clarity). Lines are linear fits (rand: FFIL: r = —0.23,
p=0.33; FBL: r=0.46, p = 0.04; struct: FFL: r=—-0.22, p=0.35; FBL: r=0.72, p=0.0003).
(D) Cumulative frequency of shared assembly activation in odor pair-network combina-
tions that exhibited runaway correlations during vVPIN_,, (Ar > 0.25; dashed line) or not
(solid line; struct networks only). An assembly was defined as “activated” by an odor when
the total afferent input to the assembly exceeded 240 Hz (strong input, vertical line in (A)).
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Figure 7 | Functional signatures of EI assemblies in pDp: non-linear amplification. (A) Schematic:
electrical stimulation of medial olfactory tracts (mOT; 20 pulses at 10 Hz; different amplitudes) during
simultaneous 2-photon Ca*" imaging and PIN. (B) Raw fluorescence of Ca?" indicator (OGB-1) and
evoked Ca’* signals (three stimulus amplitudes) under control conditions and during PIN, .
(212C-ArchTGFP; representative example; single trials). Bottom row: inferred firing rates averaged over
all neurons (n =903 from N = 12 fovs) and trials (n = 2) for the corresponding stimulus amplitudes under
control conditions and during PIN, , . (orange). Bars indicate mOT stimulation (2 s) and 594 nm illumi-
nation for PIN (6.8 s). Scale bar: 50 pm. (C) Same as (B), but for PIN, (dIx-eNpHR3.0YFP; n = 2358
neurons from N = 18 fovs). (D) Inferred firing rates, averaged over all stimulus amplitudes (n = 6),
neurons, and trials under control conditions and during PIN, , .(orange). (E) Same a (D), but for PIN
(F) Gain index as a function of inferred firing rate during PIN (212C: r = —0.56, N = 24 fov-stimulus
pairs, p = 0.004; dIx: r=0.83, N = 33 fov-stimulus pairs, p < 10—8). (G) Schematic: Ca**imaging of odor
responses during PIN. (H) Gain index during odor responses as a function of time. The difference in gain
index (AGI) was calculated between the two time points corresponding to the peak of response (“1.0”;
open red circle) and the decay to 50% (“0.5”; closed red circle) for each fov-odor pair. Arrowhead indi-
cates onset of odor response. Time is color-coded; marker size is proportional to the inferred firing rate
during PIN (x axis). (I) Change in gain index during odor responses, calculated as in (G), in different fovs
(Wilcoxon rank-sum test: p = 0.009; 212C line: N = 12; dIx line: N = 19).
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Figure 8 | Functional signatures of EI assemblies in pDp: population activity patterns and run-
away correlations. (A) Average Pearson correlation (r) between odor-evoked activity patterns
under control conditions (Ctrl, below diagonal) and during PIN (above diagonal; 212C: N =12 fovs;
dlx: N = 19 fovs). (B) Mean PIN-induced changes in pattern correlations (Ar = r, — r,; bootstrap
test, one-sided; 212C: p =0.21, N = 12; dIx: p = 0.0005, N = 19; 212C vs dlx, Wilcoxon rank-sum
test: p = 0.33). (C) Relationship between changes in correlations evoked by the same odors (n = 28
odor pairs) during PIN, , .and PIN . (D) Relation between the mean pattern correlation (n =28 odor
pairs) in 212C and dIx lines under control conditions. (E) Pattern correlations during PIN, , .and
PIN,, as a function of correlations under control conditions. Datapoints above the gray line (Ar >
0.25) fulfill the operational criterion for runaway correlations. (F) Distribution of runway correla-
tions. Datapoints show runaway correlations (Ar > 0.25); histogram shows their relative frequency.
Contour plots show overall distributions of correlations (same data as in (E); logarithmic contour
levels). Frequency of runaway correlations was significantly higher during PIN  _(p = 107; y*-test).
(G) Contribution of individual neurons to high pattern correlations. Each datapoint shows the firing
rates evoked by two odors in one neuron under control conditions (Ctrl; left) and during PIN,, .
(right). The neuron’s contribution to the corresponding pairwise pattern correlation during PIN,, . is
color-coded. (H) Same as (G) for PIN,, . Note sparse sets of neurons that responded strongly to both
odors and made large contributions to pattern correlations during PINdIx but not under control

conditions.
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Figure S1 | Further characterization of two populations of inhibitory interneurons in Dp.
(A) Mean action potential waveforms (+ s.d.) recorded from 212C-GFP*, dIx:GFP", and GFP~
neurons (n: number of neurons). (B) Comparison of action potential width; action potential
width was measured as the time between the two zero crossings of the second derivative of the
membrane voltage, before and after the action potential peak, respectively (Kruskal-Wallis test,
n =102, p < 10~). Nonparametric comparisons with GFP~ (n = 37): 212C-GFP*, p<10® n=
39; dIx:GFP*, p <1077, n = 26). (C) Action potential amplitude (Kruskal-Wallis test, n = 102,
p < 107'°). Nonparametric comparisons with GFP~ (n = 37): 212C-GFP*, Q = 7.56, p < 10713,
n = 39; dIx:GFP*, Q = 6.11, p < 10°%, n = 26). (D) Action potential threshold (Kruskal-Wallis
test,n =103, p < 10~%). Nonparametric comparisons with GFP™ (n=37): 212C-GFP",p< 1077,
n = 39; dIx:GFP", p < 107, n = 27). (E) Action potential afterhyperpolarization (AHP)
amplitude (Wilcoxon rank-sum test: p = 0.009; 212C-GFP", n = 42; dIx:GFP", n = 27). (F)
Left: Mean (£ s.e.m.) IPSCs and EPSCs in GFP™ neurons in response to trains (10 pulses at 20
Hz) of 0.5 ms full-field blue light stimulation (blue bars) in 212C-Chr2YFP (top) and dlx-
Chr2YFP fish (bottom; same data as in Fig. 1D but showing complete trains). Right: Average
(+ s.e.m.) charge transfer over the first 50 ms (first “pulse”) as a function of holding potential
(n: number of neurons). (G) Top: IPSCs number 1, 9 and 10 evoked by trains of blue light
pulses in GFP™ neurons (same as Fig. 1E). Bottom: charge transfer evoked by the last two
pulses, normalized to the first pulse (Wilcoxon rank-sum test: p = 0.0009; 212C-GFP*, n = 10;
dIx:GFP", n = 14). In dIx-Chr2YFP fish, charge transfer increased because IPSCs broadened.
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Figure S2 | Population analysis of odor-evoked responses in populations of putative principal cells and
interneurons in pDp. (A) Pearson correlation between odor-evoked activity patterns in simultaneously
recorded putative principal cells (GFP~ neurons, below diagonal) and interneurons (GFP* neurons, above diag-
onal) in 212C-GFP fish (n = 1515 GFP~ and n = 50 GFP* neurons from N = 5 fovs; two trials per odor). (B)
Same for dIx:GFP fish (n = 1750 GFP~ and n = 65 GFP* neurons from N = 12 fovs). (C) Distribution of Pear-
son correlations between all pairwise activity patterns in. Two trials with each odor were averaged (Wilcoxon
signed rank test; 212C-GFP fish: n = 66 odor pairs, p < 107'%; dIx:GFP fish: n = 66 odor pairs, p < 107'°).
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Figure S3 | Effects of PIN on population sparseness of odor responses
in pDp. Population sparseness of responses evoked by different classes of
odors (amino acids: four individual amino acids and two binary mixtures;
bile acids: one 3-component mixtures; one food extract; see Methods for
details) under control conditions (Ctrl) and during vPIN, .. (left) and
VPIN, (right). Datapoints represent individual fovs (Wilcoxon signed rank
tests: 212C: N = 12 fovs, p = 0.0005 for all three cases: dlx: N = 19 fovs;
amino acids: p < 107; bile acid mix: p = 0.0002; food extract: p < 107*).
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Figure S4 | Computational model of pDp: additional results. (A) Pearson correlation between affer-
ent patterns presented to pDpsim (n=20) and learned afferent patterns used to create EI assemblies (n =
20). (B) Example connectivity of a rand network and a corresponding struct network. A white dot indi-
cates the presence of a connection between neurons. Half of the network is depicted, including 10 out
of 20 assemblies (A), which consists of 80 E and 10 FBI neurons each. (C) Mean firing rates of E, FFI
and FBI neurons in rand and struct networks during presentation of an odor. (D) Firing rates averaged
during spontaneous (sponta) activity or during odor presentation, over neurons belonging to an assem-
bly (A) and the remaining ones (non-A). (E) Correlations between activity patterns evoked by 12 odors
in E (lower triangles) and FFI or FBI (upper triangles). Example of 1 network. (F) Left: averaged
odor-evoked afferent conductance. Middle: odor-evoked synaptic conductance. Right: percentage of E
input coming from recurrent connections during odor presentation. The experimental range measured in
ex-vivo Dp is delineated by the dotted lines. (G) Co-tuning, quantified by the correlation between
time-averaged E and I conductances in each neuron in response to various odors (average across
neurons, n = 10 and 20 rand and struct networks, respectively; Wilcoxon matched-pairs signed rank test:
p=0.002). (H) Gain index as a function of the fraction of inactivated neurons. (I) Population sparseness
of responses evoked by different odors. (J) Changes in population sparseness induced by vPIN
(VPIN-Ctrl, one sample Wilcoxon signed rank test: FFI, rand: p = 0.002; FBI, rand: p < 0.002; FFI,
struct: p < 0.0001; FBI, struct: p <0.0001).
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Figure S5 | Mechanism generating runaway correlations: schematic illustration. Grids represent
32 x 32 E neurons; shaded square depicts an EI assembly; arrows represent feedback excitation (E) and
multisynaptic feedback inhibition (I). Left: odors 1 and 2 are uncorrelated and activate a small subset
of neurons within the assembly. Reducing inhibition enhances activity within the assembly slightly
more than outside the assembly but the resulting increase in pattern correlation remains small. Right:
odors 3 and 4 are also globally uncorrelated but activate a larger subset of neurons within the assembly.
Because feedback gain increases with assembly activation (non-linear amplification), a reduction in
inhibition strongly enhances activity within the assembly. As a consequence, the global pattern correla-
tion becomes high even though activity outside the assembly is uncorrelated. Such “runaway correla-
tion” does not occur when excitation and inhibition are precisely balanced because nonlinear amplifi-
cation within assemblies is canceled. In poorly balanced networks, runaway correlations therefore
emerge in response to subsets of inputs (odors) depending on the precise relation between input
patterns (odors) and pre-existing memories (assemblies). Note that this is a schematic illustration with
fewer neurons and assemblies than the biologically constrained simulation.
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