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ABSTRACT 
 
Structured connectivity in the brain organizes information by constraining neuronal dynamics. 
Theoretical models predict that memories are represented by balanced assemblies of excitatory 
and inhibitory neurons, but the existence and functions of such EI assemblies are difficult to 
explore. We addressed these issues in telencephalic area Dp of adult zebrafish, the homolog of 
piriform cortex, using computational modeling, population activity measurements, and 
optogenetic perturbations. Modeling revealed that precise balance of EI assemblies is important 
to prevent not only excessive firing rates (“runaway activity”) but also the stochastic 
occurrence of high pattern correlations (“runaway correlations”). Consistent with model-
derived predictions, runaway correlations emerged in Dp when synaptic balance was perturbed 
by optogenetic manipulations of fast-spiking feedback interneurons. Moreover, runaway 
correlations were driven by sparse subsets of strongly active neurons, rather than by a general 
broadening of tuning curves. These results reveal novel computational functions of EI 
assemblies in an autoassociative olfactory memory network and support the hypothesis that EI 
assemblies organize information on continuous representational manifolds rather than discrete 
attractor landscapes. 
 
 
INTRODUCTION 
 
Cognition relies on systematic internal representations of knowledge that are thought to be 
formed by the activity-dependent modification of synaptic connectivity 1,2. Representational 
learning is a main function of autoassociative memory networks, which store relevant 
information by modifying recurrent synaptic connectivity between specific neuronal 
assemblies 1,3. In classical models of autoassociative memory, assemblies consist of excitatory 
(E) neurons while the connectivity of inhibitory (I) neurons remains random 4. Such assemblies 
can define stable attractor states and, thus, support the classification of inputs by pattern 
separation and completion 5,6. However, enhanced feedback excitation within assemblies is 
prone to destabilize networks and generate pathologically high “runaway activity”. Moreover, 
putative autoassociative brain areas such as hippocampal area CA3 or piriform cortex exhibit 
activity patterns that are atypical of classical attractor networks such as irregular firing, 
transient responses to inputs, and high trial-to-trial variability 7–11 

Biologically realistic firing patterns are generated by networks operating in a regime of 
inhibition-stabilized synaptic balance (“inhibition-stabilized networks” [ISNs]) 12–14. In such 
networks, individual neurons receive large E and I synaptic inputs that define a membrane 
potential near spike threshold and generate fluctuation-driven, irregular spike trains. Because 
small variations in the E/I current ratio cause large firing rate changes, network stability 
requires co-tuning of E and I synaptic inputs in individual neurons across external stimuli and 
time, which is referred to as “precise synaptic balance” 15,16. E/I co-tuning requires specific 
higher-order connectivity that can emerge from activity-dependent synaptic plasticity in 
computational models 17–19. Experimentally, E/I co-tuning has been observed in multiple brain 
areas including sensory cortices 20–25 but the underlying network organization remains unclear. 
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In autoassociative networks, E/I co-tuning may be established by assemblies including 
both E and I neurons. In such “EI assemblies”, feedback inhibition tracks the activity of E 
neurons and, thus, curbs runaway excitation without non-specific network-wide suppression of 
activity 12,15,18,26. In ISNs, assemblies do not necessarily establish discrete attractor states but 
ISNs with structured connectivity may exhibit diverse dynamics including chaotic firing 
patterns and transient responses 27–30. Nonetheless, ISNs with EI assemblies can represent 
learned inputs and support pattern classification by confining activity to manifolds in activity 
space 18. Generally, recurrent networks with precise synaptic balance can be trained to 
efficiently perform different computations, conveying a high amount of information per action 
potential 15,26,31. However, computational functions of EI assemblies in ISNs are not fully 
understood and anatomical evidence is still circumstantial because direct structural analyses of 
complex network motifs are difficult 32. 
 We addressed these questions in the posterior compartment of telencephalic area Dp 
(pDp) of adult zebrafish, the homologue of piriform cortex 33,34, which is assumed to function 
as an autoassociative memory network 35,36. Dp/piriform cortex are the main targets of the 
olfactory bulb (OB) and respond to odors with distributed activity that is modified by repeated 
odor stimulation and learning 37–41. Odor-evoked E currents are dominated by recurrent inputs 
and balanced by inhibition 20,42–44. In pDp, voltage clamp recordings directly demonstrated that 
pDp enters a state of precise synaptic balance during the initial phase of an odor response 20. 

To explore mechanisms underlying precise synaptic balance in pDp we targeted 
interneurons contributing to different microcircuits. In piriform cortex, superficial interneurons 
receive input primarily from the OB and mediate feed-forward inhibition (FFI) whereas deep 
interneurons receive input from pyramidal neurons and mediate feedback inhibition (FBI)44–47. 
In zebrafish, pDp contains scattered GABAergic interneurons 37,48 that have not been 
characterized in detail. It may be expected that precise synaptic balance depends primarily on 
interneurons mediating FBI, which tracks population activity, but the identity of these 
interneurons remains to be determined. 

We identified two types of fast-spiking interneurons in pDp that mediated FFI and FBI, 
respectively, and explored their functions by activity measurements, optogenetic manipulations 
and network simulations. Using a computational model constrained by data we discovered that 
the structured connectivity of assemblies can generate high correlations between subsets of 
input patterns when excitation is not precisely balanced by FBI. These “runaway correlations” 
can impair pattern classification, occur independently of runaway activity, and depend on 
stochastic relationships between inputs and assemblies. Consistent with these computational 
results, optogenetic reduction of inhibition, particularly FBI, generated runaway correlations 
in pDp by mechanisms consistent with model predictions. These results indicate that precise 
synaptic balance is important not only to stabilize global activity but also to prevent runaway 
correlations in recurrent networks with structured connectivity. Moreover, experimental 
evidence for EI assemblies supports the hypothesis that pDp generates joint representations of 
odor space and an individual’s experience by confining dynamics to continuous manifolds in 
activity space 18. 
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RESULTS 
 
Genetic targeting of interneuron subtypes 

To explore functions of inhibition in a recurrent memory network we genetically 
targeted two populations of interneurons in pDp using transgenic zebrafish lines (Fig. 1A). One 
line (Tg[SAGFF(LF)212C:Gal4]; abbreviated 212C) was generated in an enhancer/gene trap 
screen and expressed Gal4 from an insertion near the ppfia3 locus 49–51. The other lines 
(abbreviated dlx) expressed the Tet trans-activator (itTA) or green fluorescent protein (GFP) 
under the control of dlx4/6 promoter/enhancer elements 52,53. Previous results showed that dlx 
elements drive expression in subsets of GABAergic interneurons in the OB of adult 
zebrafish54,55. In the telencephalon, 212C and dlx lines exhibited expression in sparse, largely 
non-overlapping subsets of neurons (Fig. 1B; on average, 6% of 212C+ neurons were also dlx+, 
and 7% of dlx+ neurons were also 212C+; N = 7 fish). Both lines did not show obvious 
expression in projection neurons and targeted substantially fewer neurons than the gad1b 
promoter in pDp (Tg[gad1b:GFP], Tg[gad1b:Gal4,UAS:eNpHR3.0YFP]; Frank et al., 2019). 

To functionally characterize 212C+ and dlx+ neurons in pDp we crossed drivers to 
responder lines expressing channelrhodopsin-2-YFP (Chr2YFP) and performed whole-cell 
voltage clamp recordings in an ex vivo preparation of the intact brain and nose (Fig. 1C) 55. 
Electrophysiological recordings were performed in the center of pDp and at the boundary 
between pDp and the nucleus taeniae (NT) 20. In these regions, 212C-GFP+ and dlx:GFP+ fibers 
are abundant but 212C-GFP+ and dlx:GFP+ somata are sparse. The vast majority of GFP− 
somata in this region are most likely principal neurons because they do not express the 
GABAergic marker gad1b-GFP 37. We measured E and I postsynaptic currents (EPSCs and 
IPSCs) in Chr2YFP- neurons held at the reversal potentials of GABAergic and glutamatergic 
synaptic currents (−60 mV and 0 mV, respectively). Activation of Chr2YFP by trains of full-
field blue light pulses (0.5 ms duration; 10 pulses at 20 Hz) evoked prominent IPSCs but no 
obvious EPSCs in all recorded neurons (Fig. 1C-E). Averaged IPSCs showed a weak 
depression in 212C-Chr2YFP and a weak summation in dlx-Chr2YFP fish (Fig. S1). These 
results show that 212C- and dlx-neurons are inhibitory, presumably GABAergic, interneurons. 

When action potentials were evoked in current clamp by depolarizing step currents 
(500 ms) of increasing amplitude, 212C-GFP+ and dlx:GFP+ neurons both had lower threshold 
currents (rheobase) than GFP− neurons (212C-GFP+: 34 ± 4 pA, n = 40; dlx:GFP +: 32 ± 4 pA, 
n = 27; GFP−: 122 ± 14 pA, n = 37; Kruskal–Wallis test, n = 104, H = 34.77, p < 10–8) and 
steeper input-output functions (Fig. 1F, G). Unlike GFP− neurons, both types of GFP+ neurons 
generated sustained high-frequency trains of action potentials in response to current steps. 
Moreover, GFP+ neurons of both lines had lower action potential thresholds, smaller action 
potential amplitudes, and shorter action potential durations than GFP− neurons (Fig. S1), 
consistent with previous observations in GABAergic interneurons in Dp 56. None of the 
electrophysiological analyses revealed significant differences between 212C-GFP+ and 
dlx:GFP+ neurons, except for a more pronounced after-hyperpolarization following action 
potentials in dlx:GFP+ neurons (p < 0.01; Fig. S1). These results indicate that 212C and dlx 
target distinct types of fast-spiking interneurons in pDp. 
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Afferent input from mitral cells in the OB may target pDp neurons directly via 
monosynaptic connections or indirectly via polysynaptic connectivity, which can be 
distinguished by measurements of synaptic latencies 57. We therefore electrically stimulated 
the medial olfactory tract (mOT) and recorded EPSCs in pDp neurons by targeted voltage 
clamp recordings 57. All neurons showed prominent EPSCs of variable latencies, indicating 
that synaptic inputs were mono- and polysynaptic. However, short latencies (< 3.8 ms) 
occurred only in 212C-GFP+ and GFP− neurons but not in dlx:GFP+ (Fig. 1I). When analyzing 
the shortest 33% of latencies in each dataset, latency distributions were indistinguishable 
among 212C-GFP+, 212C-GFP−, and dlx:GFP− neurons but shifted significantly towards 
longer latencies in dlx:GFP+ neurons (p = 0.0002.; Fig. 1J). These observations indicate that 
dlx:GFP+ neurons do not receive monosynaptic input from mitral cells. Hence, 212C-GFP+ 
interneurons can provide FFI to other Dp neurons, possibly in combination with FBI, whereas 
dlx:GFP+ interneurons mediate only FBI. 212C-GFP+ and dlx:GFP+ interneurons are therefore 
biophysically similar but integrated differently into the synaptic circuitry of Dp.  
 
Odor-evoked activity of inhibitory interneurons in Dp 

We next examined odor responses of 212C and dlx interneurons in Dp. Previous studies 
indicate that at least some interneurons in piriform cortex and pDp respond selectively to 
odors20,58 but tuning properties of interneurons have not been characterized systematically. We 
measured odor responses of pDp neurons in 212C-GFP or dlx:GFP fish by 2-photon Ca2+ 
imaging after bolus-loading of the red-fluorescent Ca2+ indicator rhod-2 41,59 and inferred action 
potential firing from the measured fluorescence signals using CASCADE, a pretrained and 
calibrated artificial network 60. This procedure allowed us to directly compare suprathreshold 
odor responses between 212C-GFP+ or dlx:GFP+ interneurons and simultaneously recorded 
GFP− neurons (Figs. 2A-C). The stimulus panel comprised twelve structurally diverse 
odorants including amino acids, bile acids, and nucleotides. Odor stimulation (duration: ~3 s) 
evoked robust responses in GFP− neurons and both types of interneurons. The inferred firing 
rates started to decline before the end of odor stimulation, consistent with previous 
observations56,60 

To characterize tuning, we averaged responses of individual neurons over the first 3 s 
after response onset and sorted them by firing rate to obtain rank-ordered tuning curves. On 
average, 212C-GFP+ and dlx:GFP+ neurons were more broadly tuned than GFP- neurons (Fig. 
2D). Consistent with this observation, odor responses of 212C-GFP+ and dlx:GFP+ neurons 
exhibited significantly lower lifetime sparseness than GFP− neurons (212C: p < 0.001; dlx: p 
< 0.001; Fig. 2E) and correlations between odor-evoked activity patterns across 212C-GFP+ or 
dlx:GFP+ neurons were significantly higher than correlations across GFP− neurons (Fig. S2). 
However, differences in odor selectivity were modest, and both types of interneurons showed 
differential responses to odors. Hence, 212C and dlx interneurons exhibited specific responses 
to different odors although tuning was slightly broader than in principal neurons.  
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Effects of inhibitory interneurons on odor-evoked activity in Dp 
To examine how interneurons shape odor representations we measured odor responses 

in transgenic fish expressing the proton pump Archeorhodopsin (212C-ArchTGFP) 49,61 or the 
chloride pump Halorhodopsin (dlx-NpHR3.0YFP) 62,63; Fig. 3). Odor-evoked Ca2+ signals 
were detected by 2-photon imaging after bolus-loading of Oregon Green 488 BAPTA-1-AM 
(OGB-1) 37. In 50% of the trials, 212C or dlx interneurons were hyperpolarized by targeted 
illumination of pDp with orange light (594 nm) through an optical fiber for 6.2 s, starting 
approximately 500 ms prior to odor onset (Fig. 3A). In both 212C and dlx fish, photoinhibition 
of interneurons (PIN) increased odor-evoked population activity, consistent with disinhibition 
(Figs. 3B, C). To quantify changes in firing rate by a measure reflecting feedback gain we 
normalized the mean firing rate of pDp neurons during PIN (Fig. 3C) to the firing rate under 
control conditions. This ”gain index” was calculated for each odor based on the pooled activity 
of all neurons recorded simultaneously within a given field of view (fov; Fig. 3D; Methods). 
Consistent with disinhibition, the median gain index was >1 in 212C and dlx lines (p < 10−5) 
with a skewed distribution, and larger for PIN of dlx interneurons (212C vs. dlx: p < 10−4). We 
further observed that PIN of 212C or dlx interneurons (PIN212C or PINdlx, respectively) reduced 
the steepness of rank-ordered tuning curves (Fig. 3E), indicating broader tuning. Consistent 
with these observations, PIN212C and PINdlx decreased lifetime sparseness (Figs. 3F; 212C: p < 
10-16; dlx: p < 10-16; Fig. 3G; 212C vs. dlx: p = 0.09) and population sparseness (Fig. S3) of 
odor-evoked activity. 

We next examined whether inhibitory effects were primarily subtractive or divisive. 
Subtractive inhibition decreases all responses by a constant amount, which sharpens tuning and 
sparsifies population activity. This form of inhibition has been observed in piriform cortex 
upon silencing of somatostatin-expressing interneurons 58. Divisive inhibition, in contrast, 
changes the response gain and therefore scales activity patterns without reorganizing their 
structure. This form of inhibition occurs in dorsal pDp upon non-specific photoinhibition of 
multiple interneuron types 37 and in piriform cortex upon photoinhibition of parvalbumin-
expressing interneurons 58. Fitting linear functions to odor responses of individual neurons 
during control conditions and PIN (Fig. 3H) yielded slopes >1 for both types of interneurons 
(212C: m = 1.36 ± 0.09, N = 12 fovs; dlx: m = 2.95 ± 0.75, N = 19 fovs; both p < 10−5; Fig. 
3I). The y-intercept was slightly different from zero for PIN212C but not for PINdlx (212C: b = 
0.06 ± 0.01, p < 10−5; dlx: b = 0.00 ± 0.02; p = 0.89; Fig. 3J). These observations indicate that 
dlx and 212C interneurons mediate primarily divisive inhibition. However, linear fits 
accounted only for a fraction of the variance in the data (212C: 74 ± 4%; dlx: 51 ± 5 %; 212C 
vs. dlx: p = 0.006; 212C, N = 12 fovs; dlx, N = 19 fovs; Fig. 3K). Hence, linear models of 
uniform divisive and subtractive inhibition cannot fully account for the observed modulation 
of responses, particularly by PINdlx (Fig. 3H, K), implying that inhibition also has non-uniform 
effects on odor responses. 
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A spiking network model of Dp with feed-forward and feed-back inhibition 

To analyze functions of FFI and FBI more systematically we modified a spiking network 
model of pDp with a single interneuron population 18 by introducing two populations of I 
neurons. The network consisted of 4000 recurrently connected E neurons and a total of 1000 I 
neurons (Fig. 4A), corresponding approximately to the number of neurons in the central region 
of pDp. E neurons received E input from 1500 afferents (“mitral cells”), consistent with the 
number of mitral cells in the OB. 500 I neurons received direct E input from mitral cells and 
mediated FFI while the other 500 I neurons received E input from the E neuron population and 
mediated FBI (Fig. 4A). Both types of interneurons also made I connections within the same 
population but potential connections between FFI and FBI neurons or additional feed-back 
connectivity of FFI neurons were not included for simplicity.  

Afferent inputs were simulated as Poisson processes with a spontaneous mean rate of 6 Hz. 
Odor stimuli were modeled as firing rate increases and decreases of 225 and 75 mitral cells, 
respectively (Fig. 4B), mimicking experimental observations in adult zebrafish 64,65. Neurons 
were modeled as conductance-based integrate and fire units with sparse connectivity 
(connection probabilities ≤10% between all cell types and ≤5% between E neurons). Neuronal 
parameters were defined based on experimental data when available (membrane time 
constants; excitatory and inhibitory reversal potentials, spiking thresholds). The remaining 
neuronal parameters were adjusted to approximate the observed input-output function of E and 
I neurons in pDp (reset potential, refractory period, firing rate adaptation of E neurons, 
Methods). Connection strengths were then fitted to reproduce experimental observations 
including a mean odor-evoked firing rate of ~1 Hz (Fig. 4B) 20,56,59. Importantly, the network 
entered a state of synaptic balance during odor stimulation with dominance of recurrent 
synaptic inputs over afferent inputs (Fig. 4C; Fig. S4). Very similar activity was generated 
previously by a simulation of pDp with a single interneuron population 18. 

To examine the storage of information in synaptic connectivity we simulated two sets of 
networks: (1) randomly connected networks (rand) and (2) structured networks (struct) 
containing EI assemblies with enhanced connectivity. Assemblies were introduced into rand 
networks by increasing connection probabilities among the 60 – 100 E neurons that received 
most connections from afferents representing a given (“learned”) odor. In addition, the 
connection probability onto the subset of E neurons was increased from the 10 – 25 FBI 
neurons that received most connections from these E neurons (Fig. 4D, see Methods for 
details). To maintain the number of input connections per neuron, enhanced connectivity within 
EI assemblies was compensated for by randomly eliminating connections outside assemblies 
(Methods). Including FBI neurons in EI assemblies stabilized the network against runaway 
activity. This could not be achieved by similar modifications of FFI-to-E neuron connectivity 
because FFI cannot track the activity of E neurons within the assembly 12,18.  

We simulated multiple sets of rand and struct networks starting from different 
initializations. In each rand network, we created EI assemblies representing 20 virtual odors 
(“learned odors”), resulting in a corresponding struct network with 20 memories. Hence, 
structural odor memories were introduced into the connectivity matrix by enhancing 
connectivity among small assemblies of E and FBI neurons without modifying FFI. The 
formation of an assembly involved the modification of only ~0.15% of the synapses in the 
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corresponding rand network. Hence, after creating 20 EI assemblies, ~3% of synapses were 
changed, assembly E neurons still received ~90% of their inputs from neurons outside the 
assembly, >65% of E neurons remained not affiliated with any assembly, and the majority of 
connections (~97%) was shared between struct and the corresponding rand networks (Fig. 
S4B).  

We then simulated responses of these networks to 20 virtual odors that were different from 
learned odors, resembling the situation of an experimenter who presents odor stimuli to an 
animal that has previously formed an unknown set of odor memories (Fig. S4A). As observed 
previously in networks with a single I neuron population 18, the mean firing rate, the lifetime 
sparseness, and other response properties were similar between rand and struct networks 
(Fig. 4E and Fig. S4C, D, F). However, correlated E and I connectivity within assemblies 
enhanced co-tuning of E and I synaptic currents in individual neurons of struct networks (Fig. 
S4G), consistent with experimental observations in pDp 20.  

We next simulated PIN by reducing FFI or FBI, which enhanced activity of E neurons 
(Fig. 4F, G). Complete elimination of FBI resulted in runaway excitation, which can occur in 
Dp when inhibition is blocked globally (Fig. S4H; 59). To mimic experimental observations, 
we therefore silenced randomly selected subsets of FFI or FBI neurons and adjusted the 
silenced fraction to approximate PIN-induced increases in population activity (Fig. 3C; 
Methods). Consistent with experimental observations (Fig. 3H), this “virtual PIN” (vPIN) 
revealed primarily divisive inhibition by FFI and FBI neurons. The magnitude of divisive FFI 
(slope of the linear fit: 1.2) was similar in rand and struct networks while divisive FBI was 
more pronounced in struct networks (slope: 1.3 in rand networks and 1.5 in struct networks, 
Fig. 4I-J). As observed in PIN experiments in pDp, linear fits could not fully explain the 
variance of responses, particularly during vPINFBI in struct networks, implying that inhibition 
also had non-uniform effects on odor responses (Fig. 4I-J). Furthermore, vPINFFI and vPINFBI 
slightly but significantly decreased the lifetime and population sparseness of E neuron 
responses (Fig. 4H and Fig. S4I, J). Simulated networks, particularly those with EI assemblies, 
therefore reproduced characteristic features of odor-evoked activity in pDp. 
 
Synaptic balance within EI assemblies prevents runaway correlations  

We next examined the transformation of pattern correlations, which quantify the similarity 
between odor representations. In rand networks, correlations between activity patterns across 
E neurons (“output correlations”) were approximately linearly related to correlations between 
afferent activity patterns (“input correlations”), consistent with theoretical predictions for 
random networks 66,67. In struct networks, output correlations were slightly higher but the linear 
relationship was largely preserved (Fig. 5A). Hence, EI assemblies had only minor effects on 
global pattern correlations and did not drive pattern separation or completion, as observed in a 
closely related network simulation with a single interneuron population 18.  

vPINFFI had minor effects on output correlations in both rand and struct networks (Δr = 
rPIN - rCtrl = 0.02) while vPINFBI modestly increased output correlations (Fig. 5B, C). Although 
the mean effect of vPINFBI was similar in rand (Δr = 0.06) and struct networks (Δr = 0.08), 
distributions of Δr differed substantially. In struct but not rand networks, vPINFBI strongly 
increased a subset of output correlations (Fig. 5D, E). While Δr never exceeded 0.2 in rand 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.09.588702doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588702
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 
 

networks (n = 1900 odor pair/network combinations), Δr was >0.2 in ~10 % of the cases and 
>0.25 in ~2.5% of cases in struct networks. Hence, vPINFBI resulted in high correlations 
between a subset of odor representations. Such “runaway correlations”, which occurred in the 
absence of excessively high “runaway activity”, can impair the storage of independent 
memories. 

To understand how runaway correlations are generated we first focused on pattern 
correlations that underwent a large increase upon vPINFBI (Δr > 0.25). In this subset of 
input/network combinations, the mean pattern correlation during vPINFBI was r = 0.41 ± 0.11; 
mean ± SD; Fig. 5F). Under control conditions, the corresponding pattern correlations were 
substantially lower (r = 0.09 ± 0.08), similar to the corresponding input correlations (r = 
0.08 ± 0.09), and similar to pattern correlations that were not strongly increased by vPINFBI 
(Δr ≤ 0.25, r = 0.06 ± 0.08, Fig. 5F). Hence, runaway correlations could not be predicted from 
input correlations or from output correlations when FBI was intact. Runaway correlations are 
therefore a consequence of structured connectivity when excitation is not precisely balanced 
by FBI.  

We further observed that the main contributions to high pattern correlations in struct 
networks during vPINFBI came from small subsets of E neurons that responded strongly to both 
odors in a pair, rather than from weakly responsive, non-selective subpopulations (Fig. 5G). 
These E neurons with high contributions to pattern correlations were dominated by assembly 
neurons (Fig. 5H). Moreover, when odor-evoked input to an assembly was high, activity within 
the assembly was amplified more than in other assemblies or outside assemblies (Fig. 5I). We 
therefore reasoned that vPINFBI causes runaway correlations when two odors provide strong 
input to overlapping sets of assemblies because the reduction of FBI results in a nonlinear 
amplification of activity within these assemblies (Fig. S5). 

This hypothesis relies on two basic assumptions: First, inputs should be more strongly 
amplified within assemblies than outside assemblies because excitatory feedback connectivity 
is denser within assemblies. Second, the amplification of activity (gain) should increase with 
the total input to an assembly because the number of neurons that become suprathreshold – and 
thus contribute to amplification – increases with input strength. Pattern correlations may 
therefore be enhanced when stimuli activate common sets of assemblies because the 
amplification of overlapping pattern components will then exceed the mean amplification. 
Because assemblies are small, the overlap between activity across all neurons is not a strong 
predictor of the overlap between the activation of assemblies. Nonlinear amplification within 
assemblies may thus generate high output correlations even when the global input correlation 
is low. Hence, runaway correlations may occur stochastically depending on the structure of 
input patterns and network connectivity when excitation within assemblies is not precisely 
balanced by FBI (Fig. S5).  

To examine whether this hypothesis can account for runaway correlations we first analyzed 
firing rates of E neurons within assemblies of struct networks as a function of input strength 
(total firing rate of afferent inputs to the assembly). For comparison, we analyzed firing rates 
across the same neurons in the corresponding rand networks (“pseudo-assemblies”). Firing 
rates were higher in assemblies than in the corresponding pseudo-assemblies, particularly when 
input strength was high (Fig. 6A). Moreover, vPINFBI predominantly enhanced strong inputs 
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in assemblies but not in pseudo-assemblies (Fig. 6A). These results support the assumptions 
that the amplification of inputs is higher within assemblies than outside, and that amplification 
increases nonlinearly as a function of input strength when precise E-I balance is perturbed.  

We further characterized effects of inhibition by quantifying the gain index (ratio of mean 
firing rates during vPIN and control conditions). In assemblies of struct networks, the gain 
index for FFI decreased slightly with input strength whereas the gain index increased for FBI 
(Fig. 6B). In the corresponding pseudo-assemblies, in contrast, the gain index of FBI decreased 
with input strength, as observed for FFI. Similar observations were made also when activity 
was averaged across all E neurons, rather than within assemblies (Fig. 6C). These results 
confirm that the feedback gain increases with input strength when recurrent excitation is not 
counterbalanced by specific feedback inhibition.  

We next examined whether runaway correlations were associated with the strong activation 
of overlapping sets of assemblies. An assembly was defined as “strongly activated” when its 
mean afferent input exceeded a given threshold (Fig.6A). We found that vPINFBI often 
produced large increases in correlations (Δr > 0.25) when odors shared strongly activated 
assemblies but rarely otherwise (Fig. 6D), supporting the conclusion that runaway correlations 
depend primarily on the overlap between activated assemblies. 
 
Functional signatures of EI assemblies in pDp  

To examine whether pDp exhibits signatures of EI assemblies we experimentally tested 
model-derived predictions. We first tested the general hypothesis that FBI counteracts 
nonlinear recurrent amplification. If so, the gain index during PINFBI should increase with 
stimulus strength. To test this prediction, we electrically stimulated the mOT (2 s; 10 Hz) in 
bulbectomized brain explants (Fig. 7A; Methods), measured responses of pDp neurons by 2-
photon Ca2+ imaging, and transformed Ca2+ signals into firing rate estimates using 
CASCADE60. This approach allowed us to measure responses to stimuli of different amplitude 
under control conditions and during PIN in interleaved trials. As observed during odor 
stimulation (Fig. 3B, C), PIN212C and PINdlx increased evoked activity (Fig. 7B-E). For 
PIN212C, the gain index remained within a narrow range, indicating that responses were scaled 
by a similar factor, independent of stimulus intensity. The gain index for PINdlx, in contrast, 
was larger and increased with stimulus strength (Fig. 7F), as observed in simulations (Fig. 6C). 
Furthermore, at high stimulus intensities, activity outlasted electrical stimulation (Figs. 7B-E), 
consistent with unbalanced recurrent excitation. This sustained activity was strongly enhanced 
by PINdlx (Fig 7C, D), resulting in large gain indices at high stimulation intensities (Fig 7F), 
but was nearly unaffected by PIN212C (Fig. 7B, D). These observations support the hypothesis 
that FBI mediated by dlx neurons counteracts nonlinear amplification. 

We next examined signatures of non-linear FBI in responses to odors (Fig. 7G). During an 
odor response, pDp neurons receive synaptic inputs mostly from other E neurons in pDp and 
potentially other telencephalic areas 20. As activity within pDp varies over time (Figs. 2, 3), the 
gain index for FBI should co-vary with this activity if amplification and FBI vary with input 
strength. To address this prediction, we focused on the time window between the response peak 
and its decay to 50%, which typically occurred within approximately 2 s (Fig. 7H; the initial 
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response transient was not analyzed because activity changed rapidly 56,59). While the gain 
index for PIN212C remained almost constant during this time, the gain index for PINdlx decreased 
together with the firing rate (Fig. 7H). Consequently, the change in gain index was significantly 
larger for PINdlx than for PIN212C (Fig. 7I; p < 0.01). These observations further support the 
conclusion that 212C neurons scale activity by a constant factor whereas dlx neurons balance 
nonlinear, activity-dependent amplification. 

To directly examine whether unbalanced activity generates runaway correlations, we 
compared correlations between activity patterns evoked by eight different odors under control 
conditions and during PIN (Fig. 8A). The mean pattern correlation was not affected by PIN212C 
(∆r: 0.04 ± 0.04, mean ± s.e.m., p = 0.21, bootstrap test; Fig. 8B) but significantly increased 
by PINdlx (∆r: 0.12 ± 0.04, mean ± s.e.m., p < 0.001, bootstrap test; Fig. 8B). Large increases 
in correlations occurred between subsets of activity patterns upon PINdlx but rarely upon 
PIN212C (Fig. 8E, F). As a consequence, effects of PIN212C and PINdlx were uncorrelated (Fig. 
8C), despite a high similarity between correlation matrices under control conditions (Fig. 8D). 
As observed in simulations during vPINFBI, high pattern correlations were driven by small 
subsets of neurons that responded with high firing rates to both odors during PINdlx but not 
under control conditions (Fig. 8H). During PIN212C, in contrast, high contributions of 
individual neurons to pattern correlations were rare and not associated with high firing rates 
(Fig. 8G). We therefore conclude that perturbations of FBI can generate runaway correlations 
in pDp due to changes in the activity of small subsets of neurons, consistent with assembly-
driven runaway correlations observed in the computational model.  
 
 
DISCUSSION 
 

EI assemblies can establish precise synaptic balance in ISNs, which is thought to 
stabilize recurrent memory networks against runaway activity 12,16,18. However, direct evidence 
for EI assemblies in biological networks and a comprehensive understanding of their 
computational functions is lacking. Using computational modeling we found that precise E/I 
balance is important not only for network stability but also to prevent runaway correlations 
between subsets of inputs. These runaway correlations are high pattern correlations driven by 
sparse subsets of neurons whose firing rates are modest under control conditions but strongly 
increased when E/I balance is perturbed. To explore functions of EI assemblies in pDp we 
photoinhibited different types of fast-spiking interneurons and found signatures of EI 
assemblies primarily during manipulations of FBI, consistent with model-derived predictions. 
These results show that connectivity motifs generating precise synaptic balance are critical for 
efficient memory storage in recurrent circuits, and that balanced EI assemblies are likely to 
mediate memory-related computations in pDp. 
 
Functional characterization of interneurons in pDp 

We characterized two distinct populations of fast-spiking I interneurons with similar 
biophysical properties, dlx and 212C, that mediate FBI and FFI (possibly in combination with 
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FBI), respectively. IPSCs generated by 212C and dlx neurons exhibited depression and 
summation, respectively, similar to short-term synaptic plasticity of FFI and FBI interneurons 
in piriform cortex 45,46. During prolonged odor responses, the relative weight of inhibition may 
therefore shift from FFI to FBI. However, 212C and dlx neurons presumably represent only a 
subset of all interneurons in pDp. 

Optogenetic hyperpolarization of 212C and dlx neurons caused disinhibition without 
triggering runaway excitation, which allowed us to dissect computational functions of defined 
interneurons in an ISN. Both interneuron types mediated primarily divisive inhibition, as 
observed for fast-spiking parvalbumin neurons in piriform cortex 58. Divisive inhibition is well-
suited to scale and globally stabilize population activity in recurrent networks 68. In rodents, 
FBI has also been proposed to contribute to concentration-invariant odor identity coding by 
curtailing long-latency afferent input during a sniff cycle 69–71. It remains to be determined 
whether FBI has similar functions in zebrafish given that the kinetics of odor responses is 
slower and not modulated by sniffing. 

While linear models of inhibition could account for most effects of PIN212C, PINdlx had 
additional neuron- and stimulus-specific effects on odor responses. Consistent with this 
finding, correlations between odor-evoked activity patterns were modified substantially by 
PINdlx but not by PIN212C, even though both manipulations increased mean firing by similar 
amounts. Dlx neurons therefore have non-uniform effects on population activity that 
suppressed runaway correlations, indicating that they contribute to the specificity of odor 
representations in pDp. 
 
Signatures of structured connectivity in inhibition-stabilized networks 

Important functions of inhibition include the stabilization of recurrent networks against 
runaway excitation, the modulation of tuning curves, and temporal patterning of activity 72. 
Our results indicate that a further function of inhibition in memory networks is the suppression 
of runaway correlations, which can emerge from structured connectivity during learning. 

This insight was obtained using an ISN model constrained by data from pDp 18,20,56,59. 
When recurrent excitation was not precisely balanced by FBI, assemblies strongly increased 
subsets of pattern correlations without generating runaway activity, implying that runaway 
correlations were not caused by global E/I imbalance. Rather, high correlations were driven by 
sparse and strong responses of E neurons within specific assemblies (Fig. S5). Hence, runaway 
correlations could not be predicted from global pattern correlations but were a direct 
consequence of structured connectivity, which is established during learning. In our 
computational model, the nonlinearity in the amplification of activity within assemblies 
depended entirely on the threshold-nonlinearity of neuronal input-output functions (action 
potential generation). In piriform cortex and other brain areas, E neurons contain additional 
nonlinearities 73,74 that are likely to further enhance nonlinear amplification within assemblies. 

While experience-dependent changes in correlations due to the formation of structured 
connectivity could, in principle, have different functions 75, high correlations generally impair 
autoassociative memory by limiting discriminability and storage capacity. The suppression of 
runaway correlations may thus be important, and possibly critical, for the function of recurrent 
memory networks. It may therefore be expected that runaway correlations are rarely observed 
in biological memory networks without perturbations of E/I balance. Nonetheless, runaway 
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correlations may occur naturally under certain conditions of imprecise E/I balance, for example 
during learning, in response to neuromodulatory inputs, or when the computational function of 
a network is supported by high correlations. 

Coordinated E-I connectivity underlying precise synaptic balance may be established 
by different motifs including EI assemblies, which can be generated by biologically plausible 
learning rules 19,76. However, experimental evidence for EI assemblies remains indirect. In 
primary visual cortex, for example, interactions between E and I neurons depend on orientation 
tuning 77–80 but the statistical knowledge obtained by sparse sampling of neurons is insufficient 
to resolve higher-order connectivity motifs in large networks 81,82. We therefore examined 
diagnostic features of EI assemblies in population activity by manipulations of inhibitory 
interneurons. Runaway correlations were observed primarily during PINdlx, consistent with a 
suppression of runaway correlations by FBI under control conditions. PINdlx-induced runaway 
correlations were driven by strong responses of sparse neuronal subsets rather than by a general 
broadening of response selectivity, consistent with the mechanism underlying runaway 
correlations in simulations. While PIN212C also increased a subset of correlations, possibly due 
to a feedback component of 212C neurons, effects were smaller and not driven by sparse and 
strong responses. These results support the hypothesis that precise synaptic balance in pDp 20 
is established, at least in part, by EI assemblies. 

In the OB, principal neurons (mitral cells) receive E input predominantly from sensory 
afferents while recurrent E connections are very rare 83,84. As revealed by a combination of 
activity measurements and dense circuit reconstructions (“dynamical connectomics”), mitral 
cells receiving co-tuned sensory input preferentially inhibit each other via reciprocal 
connectivity with common interneurons, thereby attenuating correlated activity 83. This 
mechanism of pattern decorrelation in the olfactory bulb is similar to the suppression of 
runaway correlations in EI assemblies although correlated activity of mitral cells is generated 
by common input rather than recurrent excitation. Pattern decorrelation by specific FBI of 
correlated activity may thus be a common computational motif in different types of networks. 
 
Computational functions of EI assemblies in pDp 

Piriform cortex and pDp are thought to generate experience-dependent representations 
of olfactory objects, environments or tasks by autoassociative mechanisms 35,36,85. Unlike 
classical attractor models, piriform cortex and Dp generate transient, variable and irregular 
firing patterns 41,56,60,86–88. These observations were reproduced by a recent ISN model of pDp18. 
This model indicates that EI assemblies project odor representations of learned inputs into 
activity subspaces by locally confining activity onto manifolds, resulting in continuous 
representations that nonetheless enhanced classification of learned inputs by assembly neurons. 
Hence, EI assemblies may cause geometric modifications of coding space that support 
continuous computations such as navigation or measurements of relevant distances, possibly 
in the context of cognitive maps. 

ISN models generating continuous representational manifolds assume that experience 
drives the formation of EI assemblies. Our results provide experimental support for these 
models by providing indirect evidence for EI assemblies in pDp. Representational manifolds 
combine a sensory map of olfactory stimulus space – transmitted from the olfactory bulb – with 
an individual’s experience, suggesting that pDp generates representations of odor space with 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.09.588702doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588702
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 
 

individualized geometries. This hypothesis predicts that learning geometrically modifies 
(“distorts”) a pre-existing and continuous map of odor space, rather than establishing discrete 
representations of specific odors. Consistent with this hypothesis, repeated odor stimulation 
gradually modified odor-evoked activity patterns, and representations of novel and learned 
odors were not categorically different in pDp 37,41. Gradual rather than categorical 
modifications of odor representations were also observed in piriform cortex as a consequence 
of passive odor presentation or active learning 39,85,89. Continuous representational manifolds 
may support fast classification and interpretation of inputs, complementary to integrative 
functions of continuous attractor networks. Future studies may take advantage of the small size 
of pDp to directly analyze the underlying network structure by combining activity 
measurements with dense reconstructions of neuronal wiring diagrams 32. 
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METHODS 
  
Animals and transgenic lines 
Experiments were performed using adult (>3 months) zebrafish (Danio rerio) of both sexes. 
Fish were raised and kept under standard laboratory conditions (26 – 28 °C; 13/11 or 14/10  
light/dark cycle). All animals are sacrificed prior to the removal of organs in accordance with 
the Veterinary Department of the Canton Basel-Stadt (Switzerland) or the European 
Commission Recommendations for the euthanasia of experimental animals (Part 1 and Part 2).  
Experiments involved the following transgenic lines:  
 

Short name  Systematic name References 

212C-mCherry  Tg(SAGFF(LF)212C:Gal4, UAS:mCherry) 49, this study 

212C-GFP Tg(SAGFF(LF)212C:Gal4, UAS:GFP) 49,51  

dlx:GFP Tg(nccr.i56i-i56ii-dlx6a:GFP) 52 

vglut2a:DsRed TgBAC(slc17a6b:LOXP-DsRed-LOXP-GFP) 90 

212C-Chr2YFP Tg(SAGFF(LF)212C:Gal4, 5xUAS:wtChR2-
EYFP) 

49, this study 

212C-ArchTGFP Tg(SAGFF(LF)212C:Gal4, 
5xUAS:Htp.ArchT-GFP,myl7:EGFP)fmi13 

49 

dlx-Chr2YFP Tg(dlx5a-dlx6a:ITETA;PTET:Cr.Cop4-
YFP)fmi9 

53 

dlx-eNpHR3.0YFP Tg(5xUAS:ITETA,PTET:eNpHR3-
YFP,myl7:EGFP)fmi14 

63 

 
The UAS:Chr2YFP expression construct was generated using the Tol2Kit 91, which involved 
a multisite recombination reaction (Invitrogen Multisite Gateway manual v.D, 2007) between 
p5E–UAS (5×UAS and E1b minimal promoter; Distel et al., 2009), pME–wtChr2YFP; 92) and 
p3E–polyA as entry vectors, and pDestTol2CG2 as destination vector 91. Stable transgenic 
founder lines (UAS:Chr2YFP, UAS:mCherry) were generated using standard procedures 93 
 
Experimental preparation 
Electrophysiological measurements, Ca2+ imaging, and imaging of fluorescent reporter 
expression were performed in an ex-vivo preparation of the entire zebrafish brain and nose 55. 
Briefly, adult zebrafish were either cold-anesthetized or, for some experiments to characterize 
expression patterns, anesthetized by immersion in MS-222 and decapitated. The forebrain was 
exposed ventrally after removing the eyes, jaws and palate. The preparation was placed in a 
custom-made flow-chamber, continuously superfused with teleost artificial cerebrospinal fluid 
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(ACSF) and slowly warmed up to room temperature. ACSF contained (in mM): 124 NaCl, 2 
KCl, 1.25 KH2PO4, 1.6 MgSO4, 22 D-(+)-Glucose, 2 CaCl2, 24 NaHCO3, pH 7.2. Chemicals 
were obtained from Sigma-Aldrich. In some experiments (see below) both olfactory bulbs were 
surgically removed (“bilateral bulbectomy”) while the rest of the telencephalon remained 
intact.  
 
Electrophysiology, optogenetics and olfactory tract stimulation 
Voltage clamp and current clamp recordings were performed using patch pipettes that were 
pulled from 1-mm borosilicate glass capillaries (Hilgenberg) with a resistance of 5–8 MΩ, a 
Multiclamp 700B amplifier (Molecular Devices) and Ephus software 94. Pipettes were filled 
with an intracellular solution that contained (in mM): 129 K-gluconate, 10 HEPES (free acid), 
0.1 EGTA, 4 Na2-ATP, 10 Na2-phosphocreatine, 0.3 Na-GTP, 5 L-glutathione and 13.1 KOH 
(pH 7.2, 305 mOsm; all Merck / Sigma). Neurons were targeted by a combination of contrast-
enhanced transmitted-light optics and multiphoton fluorescence using the shadow-patching 
technique with 50 - 100 µM Alexa Fluor 594 or Alexa Fluor 488 (Thermo Fisher Scientific) in 
the internal solution. Prior to recordings, we usually removed the dura mater over pDp. Before 
making a seal, neurons were approached with low pressure (approximately 20 mbar). 
Measurements were not corrected for the liquid junction potential and signals were digitized at 
10 kHz after low-pass filtering. All recordings were performed in pDp 20. In current clamp 
recordings (Fig. 1F, G; Fig. S1B-F), we evoked action potentials by current injection at 
different amplitudes in 212C-GFP (N = 12 fish) or dlx:GFP fish (N = 7). For the analysis of 
firing rates as a function of input current, five trials were averaged per cell and amplitude (Fig. 
1F, G). Detailed analyses of action potentials (Fig. S1B-F) were restricted to the first action 
potential at rheobase. 

Optical stimulation of Chr2YFP (Fig. 1C, D; Fig. S1F, G) was performed as 
described55 using a digital micromirror device (DMD) that was optically coupled into a 
multiphoton microscope and illuminated with a blue laser (457 nm, 500 mW unattenuated laser 
output). “Full-field” optical stimulation (600 x 600 pixels) covered the majority of pDp in its 
anterior-posterior and medio-lateral extent, and possibly small parts of adjacent areas. Ten light 
pulses of 0.5 ms duration were delivered at 20 Hz. Inhibitory (IPSCs) and excitatory 
postsynaptic currents (EPSCs) were recorded from Chr2-negative, vglut2a-positive 
(excitatory) neurons in pDp using whole-cell patch-clamp recordings at holding potentials of 
0 mV or –60 mV, respectively (averages over five trials). 

To measure EPSC latencies (Fig. 1H-J) we electrically stimulated the medial olfactory 
tract (mOT) as described 57 with minor modifications of previous procedures. We stimulated 
the mOT unilaterally about 100 µm posterior from the border of the OB using glass pipettes 
with a tip diameter of ~10 – 20 µm. Pipettes were filled with 1 M NaCl. Stimulus amplitude 
(usually ~−30 V) was adjusted to evoke responses of intermediate amplitude and EPSCs were 
recorded at –70 mV. Ten stimuli (0.5 ms) were applied at 20 Hz, resulting in ten post-stimulus 
segments for EPSC analysis. At least five trials were recorded in each neuron, resulting in at 
least 50 segments per neuron. Latencies of the first EPSC in individual segments were analyzed 
in a semi-automatic fashion using custom scripts written in IgorPro (Wavemetrics). The 
procedure first used a published event detection algorithm 95 followed by visual inspection and, 
if necessary, manual correction of the EPSC onset. Importantly, all latency analyses were 
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performed blind with regard to the recorded cell type. To avoid spurious effects of 
spontaneously occurring EPSCs we averaged latency values for each segment across trials, and 
report the minimum of these segment averages for each neuron. 
 
Loading of the Ca2+ indicator, odor application, and tract stimulation 

Rhod2-AM (Fig. 2 and Fig. S2) or Oregon Green 488 BAPTA-1-AM (OGB-1; other 
figures; all ThermoFisher Scientific) were bolus-loaded as described 55 with minor 
modifications. 50 μg of AM dye was dissolved in 30 μL of DMSO/Pluronic F-127 (80/20; 
ThermoFisher Scientific) and stored in 4 μL aliquots at −20°C. Prior to each experiment, an 
aliquot was diluted 1:5 in ACSF and loaded into a glass pipette with a tip diameter of 
approximately 5 μm. Pressure injections were targeted to the lateral telencephalon, posterior to 
the prominent furrow and blood vessel and within or slightly dorsal to Dp. One or a few 
injections were made up to 100 µm dorsal to the subsequent imaging field of view (fov). 
Progress of dye uptake was monitored by snapshots of multiphoton images and pressure was 
adjusted to minimize swelling of the tissue. 

Odor application started >1 h after dye injection. Food extract was prepared as 
described 96. Other odors (Sigma Aldrich) were prepared as 1000x stock solutions in deionized 
water (Fluka), vortexed, sonicated, and stored at −20°C. Fresh aliquots were diluted in ACSF 
to the final concentration before each experiment. For characterization of odor responses in 
interneurons (Fig. 2; Fig. S2), we used the following odor set (concentrations in µM): 10 
Amino acid mix (equal parts of: ), 10 L-Arginine (Arg), 10 eL-Lysine (Lys), 10 L-
Phenylalanine (Phe), 10 L-Tryptophan (Trp), 10 L-Methionine (Met), 10 L-Histidine (His), 1 
bile acid mix (Bmx; equal parts of: Taurodeoxycholic acid (TDCA), Taurocholic acid (TCA), 
Glycocholic acid (GCA)), 1 TDCA, 1 GCA, 10 nucleotide mix (Nmx; equal parts: Adenosine 
5’-triphosphate (ATP) and Inosine 5’-monophosphate), 10 ATP. In each fov, each odor was 
applied twice in two separate sequences such that all odors were presented once before the 
second sequence started. The order of odors was newly randomized for each sequence and fov. 

For characterization of odor responses upon PIN (Figs. 3, 7, 8; Fig. S3), we used the 
following odor set (concentrations in µM): 10 Phe (F), 10 Trp (W), 10 Met (M), 10 Lys (K), 
20 Phe + Met mix (F+M; equal parts), 20 Trp + Lys mix (W+K: equal parts), 1 bile acid mix 
(Bmx; equal parts of: TDCA, TCA, GCA), and 1:1000 dilution of food odor (Fex). In each fov, 
each odor was applied four times in four separate sequences. For each odor, two control and 
two PIN trials were interleaved in these four sequences. Two sequences were always paired 
such that a given odor was presented under 594 nm illumination (PIN) in the first sequence and 
under control conditions (Ctrl) in the second sequence or vice versa. The order of odors and 
photostimulation conditions was newly pseudo-randomized for the first sequence of each pair 
in each fov. Inter-stimulus intervals were between 2 and 3 min. 

Odors were applied to the nasal epithelium for ∼3 s through a constant stream of ACSF 
using a computer-controlled, pneumatically actuated HPLC injection valve (Rheodyne, 
Rohnert Park, CA, USA) as described 55. One to four fovs were recorded in each fish (N = 12 
fovs from five 212C-ArchTGFP fish; N = 19 fovs from eight dlx-eNpHR3.0YFP fish). 
Electrical stimulation of the mOT in conjunction with Ca2+ imaging (Fig. 7) was performed as 
described above, except that we applied ten stimuli (0.5 ms) at 5 Hz starting 0.2 s after the 
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onset of 594 nm illumination in PIN trials. In each fov, a total of six stimulation amplitudes (5 
V, 10 V, 20 V, 30 V, 50 V, and 75 V) were applied four times each. Ctrl and PIN trials were 
pseudo-randomized and paired as described above for odor stimulation. All these electrical 
stimulation experiments were performed following a bilateral bulbectomy. One to maximally 
six fovs were recorded in each fish (N = 12 fovs from five 212C-ArchTGFP fish; N = 18 fovs 
from six dlx-eNpHR3.0YFP fish). 
 
Image acquisition and optical stimulation (PIN) 

In most experiments, multiphoton Ca2+ imaging in pDp was performed using a custom-
built multiphoton microscope with a Galvo-Galvo scan head 55, a 20x water-immersion 
objective (NA 1.0, Zeiss), GaAsP photomultiplier tubes (PMT; Hamamatsu), and 
Scanimage/Ephus software 94,97. In each trial, images with 256 lines (256 pixels/line for rhod-
2 imaging, and 512 pixels / line for OGB-1 imaging) were acquired at 128 ms per frame. After 
each trial, the field of view was readjusted to compensate for potential drifts using an automated 
routine that acquired a small z stack of ± 3 μm (step size, 0.5 μm). For rhod-2 imaging, 
fluorescence was excited at 860 nm. Red (rhod-2) and green (GFP) emitted light were detected 
simultaneously through bandpass filters (645/75 nm and 515/30 nm, respectively). For OGB-
1 imaging, fluorescence was excited at 928 nm and emission was detected through a bandpass 
filter (535/50 nm) by a gated GaAsP PMT (Hamamatsu) that was further protected by a narrow 
blocking filter centered on 594 nm. The intensity of the 2-photon excitation light was adjusted 
in each fov to minimize photobleaching. 

Optogenetic stimulation (PIN) during Ca2+ imaging was performed as described (Frank 
et al., 2019). Briefly, orange laser light (594 nm) was directed at pDp through an optical fiber 
(200 μm diameter; ThorLabs) positioned approximately 100 – 200 μm from the brain surface. 
Brief pulses of light (450 μs) were coupled into the fiber using a digital micromirror device 
(DMD; Texas Instruments; 55) and synchronized to every second line of image acquisition. 
Simultaneously, the PMT gate was switched off. After data acquisition, blanked lines were 
removed from images. The same processing step was applied to trials without 
photostimulation, resulting in final images with 128 lines and a fill fraction of approximately 
40% under all conditions. The intensity of orange light at the tip of the fiber, averaged over the 
duty cycle, was 6 – 8 mW. 

Most odor responses were measured in the core section of Dp between ~100 µm and 
260 µm from the ventral-most aspect (Figs. 3, 7, 8; Fig. S3). This section is densely innervated 
by processes of interneurons but contains few interneuron somata. To characterize odor 
responses in interneurons (Fig. 2; Fig. S2), images were acquired ~50 – 85 µm or 50 – 120 µm 
from the most ventral aspect of Dp in 212C-GFP and dlx:GFP, respectively. At these depth, 
interneuron somata are more abundant than in the core section of Dp albeit still sparse 
compared to other neuron (unpublished observations). Subtle differences between odor 
responses measured in 212C-GFP and dlx:GFP fish (Fig. 2; Fig. S2) may be due to slight 
differences in imaging depth. 

For co-expression analysis of 212C-mCherry and dlx:GFP, some images were acquired 
using a Resonant-Galvo scan head, excitation at 800 nm, and detection through bandpass 
emission filters (GFP: 515/30 nm; mCherry: 641/75 nm). Images were collected throughout 
the full dorso-ventral extent of pDp (~300 µm). 
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Analysis of Ca2+ signals  
Images were registered across trials and regions of interest (ROIs) were drawn manually over 
all visible somata in each image fov using custom software (https://github.com/i-
namekawa/Pymagor). For each ROI, we calculated the relative change in fluorescence ΔF/F. 
The baseline fluorescence F was averaged over a 1 s time prior to stimulus onset. ΔF/F traces 
were transformed into firing rate estimates by a deep learning-based spike inference algorithm 
(“Cascade”. 60) using the model  “OGB_zf_pDp_7.5Hz_smoothing200ms_causalkernel” 
(available at https://github.com/HelmchenLabSoftware/Cascade) for both rhod-2 and OGB-1 
data sets.  

To quantify responses of neurons to odors or electrical stimulation (neuron-odor or 
neuron-stimulus pairs), inferred firing rates were averaged over a temporal response window 
of 3 s in odor stimulation experiments, starting with the onset odor stimulation, unless stated 
otherwise. In electrical stimulation experiments, a longer response window of 11 s was chosen 
to include the prolonged activity in response to high stimulus amplitudes (Fig. 7). Neurons that 
showed no response to at least one odor or electrical stimulus were excluded from further 
analyses; we used a threshold of 0.128 for the summed number of estimated spikes as a - 
conservative - criterion. 
 
Network model 

Model. The simulation of pDp consists of 4000 E neurons, 500 FFI neurons and 500 
FBI neurons that were modeled as leaky integrate-and-fire units with conductance-based 
synapses. A spike emitted by neuron 𝑦	from population Y triggers an increase in the 
conductance 𝑔!" in the postsynaptic neuron 𝑥: 

𝜏#$%,!
'(!"
')

= −𝑔!" + 𝜏#$%,! ∑ 𝑤$ $"
𝛿,𝑡 − 𝑡#*+,-,$.  (equation 1) 

Conductance changes triggered by the OB and local populations P affect the membrane 
potential of neuron 𝑥 which evolves according to equation (2).  
𝐶.

'/"
')
= 𝑔0-#),.,𝐸0-#),. − 𝑉". + 𝑔12"(𝐸-"3 − 𝑉") + ∑ 𝑔4"(𝐸4 − 𝑉")4 − 𝑧" (equation 2) 

When the membrane potential reaches a threshold Vth, the neuron emits a spike and its 
membrane potential is reset and clamped to 𝐸0-#) during a refractory period 	
𝜏0-5. 
Excitatory neurons are endowed with adaptation with the following dynamics 98  

𝜏6
'7
')
= 𝑎(𝑉 − 𝐸) − 𝑧, with 𝑧 → 𝑧 + 𝑏 after each spike (equation 3). 

  
Neuronal parameters were similar to 18 (Table 1). The time constants of inhibitory and 
excitatory synapses (𝜏#$%,8 and 𝜏#$%,9) were 10 ms and 30 ms, respectively. 
To show that the results were consistent across a wide range of parameters, we simulated 10 
sparsely connected random networks with different connection probabilities pYX and synaptic 
strengths wYX as summarized in Table 2. Connections between neurons were drawn from a 
Bernoulli distribution with probability pYX. Synaptic strengths wYX were then fitted to 
reproduce observations in ex-vivo pDp, as described in 18. Simulations were performed using 
Matlab. Differential equations were solved using forward Euler and an integration time step of 
dt = 0.1 ms.  
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Neuronal parameters Symbol Value 

Excitatory neuron Inhibitory neuron 

Membrane time constant 𝜏. 85 ms 50 ms 

Resting conductance 𝑔0-#) 1.35 nS 0.9 nS 

Resting potential 𝐸0-#) -60 mV -60 mv  

EPSC reversal potential 𝐸-"3 0 mV 0 mV 

IPSC reversal potential 𝐸+%: -70 mV -70 mV 

Spike threshold Vth -38 mV -45 mV 

Reset potential 𝐸0-#) -60 mV -60 mV 

Refractory period 𝜏0-5 8 ms 8 ms 

Adaptation time constant 𝜏6 40 ms / 

Subthreshold adaptation 𝑎 1 nS / 

Spike-triggered adaptation 𝑏 5 pA / 

Table 1 Neuronal parameters. 

 
 
 

Connectivity Probability of connections pYX Synaptic strengths wAB (pS) 

OB ® E 0.02 84-85 

OB ® Iff 0.04-0.05 19-24 

E ® E 0.05 110 

E ® Ifb 0.05-0.06 64-82 

Ifb ® E 0.09-0.1 410-450 

Iff ® E 0.04-0.06 410-450 

Iff ® Iff 0.04-0.05 300-380 

Ifb ® Ifb 0.08-0.10 300-380 

Table 2 Values of the connectivity parameters used (for simplicity, wIff-Iff= wIfb-Ifb and wIff-E= 
wIfb-E)   
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 Afferent input. Each E and FFI neuron received external excitatory input from a pool 
of 1500 mitral cells. During baseline activity, mitral cells fired at 6 Hz. During odor 
presentation (2 s) firing rates of 75 mitral cells were decreased (“inhibited”): rates were drawn 
from a discrete uniform distribution between 0 to 5 Hz, and the onset latency was drawn from 
a discrete uniform distribution between 0 to 200 ms. At odor onset, firing rates of 150 mitral 
cells increased (“activated” cells). Their firing rates were drawn from a uniform distribution 
ranging from 8 to 32 Hz and the onset latency was drawn from a uniform distribution between 
0 to 200 ms. After odor onset, their firing rate decreased back to baseline with a time constant 
of 1, 2 or 4 s (equally distributed). Spike trains were then generated by Poisson processes.  
 Assemblies. Unless stated otherwise we created 20 assemblies (“odor memories”) in 
each network. For each learned odor, we selected the 60 to 100 E neurons (fixed number for 
each network) that received the highest number of connections from activated mitral cells. We 
then created additional connections between these assembly E neurons and eliminated existing 
connections between other neurons and assembly E neurons to maintain a constant number of 
E input connections per E neuron. The connection probability between assembly E neurons 
was therefore in average 5-fold higher than the probability among E neurons outside 
assemblies. We then selected the 10 – 25 FBI neurons (fixed number for each network) that 
received the highest number of connections from assembly E neurons and increased the 
probability of connection from these assembly I neurons to assembly E neurons by a factor 10 
in average, resulting in an EI assembly containing both E and I neurons. Similar to E 
connections, we eliminated existing connections between non-assembly I neurons and 
assembly E neurons to maintain a constant number of I input connections per E neuron. In total, 
5 sets of 2 rand and 4 struct networks which shared the same OBàE, OBàI, IàI and EàI 
connectivity were simulated (2 struct networks per rand network, as 2 different sets of 20 
learned odors were used to create assemblies).  

Odors presented to simulated networks were generated by random selection of mitral 
cells as described and did not match assemblies. This procedure mimicked an experimental 
setting in which an animal with an unknown history is presented random odor stimuli. 

Inhibiting the inhibitory neurons. To mimic PIN, we deleted the output connections 
of a random subset of inhibitory neurons 500 ms before odor onset until the end of the odor 
presentation. 34% of the FFI or 51% of the FBI were inhibited. The percentage of inhibited 
neurons was set to obtain an average modulation (firing rate during vPIN normalized by control 
firing rate) as close as the one observed experimentally by PIN212C and PINdlx in pDp.  
 Analysis. Unless stated otherwise, odor responses were time-averaged over the first 1.5 
seconds of odor presentations, averaged over 20 different odors, and then averaged over 
neurons.  
 
Data analyses (experiments and simulations) 

Lifetime and population sparseness. Lifetime and population sparseness were 
calculated using the metric 99:  

𝑆𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 =
1	 −	?∑ 𝑟%𝑁 A

;
	?∑ 𝑟%

;

𝑁AB

1 −	 1𝑁
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This normalized metric describes the ‘peakiness’ of a distribution and ranges between 
0 (all responses equal) and 1 (only one non-zero response). Lifetime sparseness: distribution of 
response amplitudes across odors in single neurons. Population sparseness: distribution of 
response amplitudes to a single odor across neurons. (Vinje and Gallant, 2000) 
 Gain index. The gain index was defined as the ratio between the mean firing rates of E 
neurons during vPIN or PIN and under control conditions. This index is not a direct measure 
of total inhibition because inhibition was only partially eliminated during vPIN/PIN. 
Nonetheless, it provides an experimentally accessible measure of the “inhibitory gain” that 
counteracts recurrent amplification in the balanced state. Normalization by the mean firing rate 
under control conditions avoids problems with division by firing rates which can be close to 
zero. 

Linear regression. Linear fits (Figs. 3, 4, 7, 8) were performed using a total least 
squares procedure, which minimizes the orthogonal distance of the regression line from the 
data points. Thus, this method does not distinguish between dependent and independent 
variables and accounts for the equality of measurement errors in the two variables.  

Contribution to r. The contribution of individual neurons to the correlation between 
activity patterns is determined by the corresponding element in the Pearson correlation, which 
is the sum over the individual contributions of all neurons. For each simulated network, the 
odor pairs for which pattern correlations increased strongly upon vPINFBI (Dr = rPIN - rCtrl > 
0.25) were selected and for each pair of odor-response pattern, 2% of neurons (80) were 
randomly selected. In Fig 8, all odor pairs are shown.    

 
Statistics 
 Unless stated otherwise, sample means are reported ± their standard error (± s.e.m.). N 
indicates the number of fovs, and, unless stated otherwise, n indicates number of neurons. No 
statistical methods were used to predetermine sample sizes, but our sample sizes are similar to 
those in prior reports and are typical for the field. To test whether the linear correlation between 
two variables was statistically significant, we performed a t test of the null hypothesis that the 
observed correlation coefficient r comes from a population with r = 0. To test whether the 
regression slope of linear fits was significantly larger than 1 (Fig. 3), we used bootstrapping to 
estimate the sampling distribution of the regression slope (sampling with replacement, repeated 
10’000 times). All statistical tests were two-sided unless stated otherwise, and p < 0.05 was 
considered statistically significant. Significance levels are indicated as follows: p ≥ 0.05: ns; 
p < 0.05: *; p < 0.01: **; p < 0.001: ***.  

 

DATA AND CODE AVAILABILITY. 

Matlab code to simulate pDpsim is available at https://github.com/clairemb90/pDp-model. 
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FIGURE LEGENDS 
 
Figure 1 | Fast-spiking inhibitory interneurons in pDp. (A) Schematic: lateral view of the 
adult zebrafish brain and two coronal cross sections through the telencephalon (Tel), 
highlighting the location of pDp. Scale bars represent approximations. OB: olfactory bulb; 
TeO: optic tectum. Dm, Dc, Dl: medial, central, lateral portions of the dorsal telencephalon, 
respectively. (B) Expression of fluorescent markers in 212C (purple) and dlx neurons (green) 
in pDp (Tg[SAGFF212C:Gal4,UAS:mCherry,dlx4/6:GFP] fish; maximum intensity 
projection). Sale bar: 50 µm. (C) Schematic: optogenetic stimulation of interneurons and 
whole-cell patch-clamp recording of evoked IPSCs and EPSCs in putative principal neurons. 
(D) Mean IPSCs (holding potential: 0 mV; ± s.e.m.) and EPSCs (−60 mV) in putative principal 
neurons in response to 0.5 ms full-field stimulation (457 nm; blue bars) in 212C-Chr2YFP fish 
(top; n = 4) and dlx-Chr2YFP fish (bottom; n = 2; 10 pulses at 20 Hz; pulses 3 - 9 are not 
shown). Note absence of optically evoked EPSCs. (E) IPSCs (gray: individual neurons; black: 
average) evoked by trains of blue light pulses (0.5 ms) in putative principal neurons in 212C-
Chr2 (n = 11) and dlx-Chr2 fish (n = 16). Only one neuron (red trace) showed no IPSCs. (F) 
Representative firing patterns evoked by current injections (two amplitudes) in interneurons 
and a putative principal neuron (GFP−) in pDp. (G) Mean firing rates in the three neuronal 
populations as a function of injected current. (H) Schematic: stimulation of the medial olfactory 
tract (mOT) and whole-cell recording in pDp. (I) Distribution of EPSC latencies in the two 
interneuron populations (GFP+) and the corresponding putative principal neurons (GFP−). 
EPSC latencies of dlx:GFP+ neurons, but not 212C-GFP+ neurons, were higher than in putative 
principal neurons (Wilcoxon rank-sum test: dlx:GFP+: p = 0.0003, n = 27 vs  dlx:GFP−, n = 21; 
212C-GFP+: p = 0.63, n = 34 vs  212C-GFP−, n = 53). (J) Distribution of 33% shortest EPSC 
latencies in each neuronal population (subset of data in (H)). Short-latency EPSCs were lacking 
in dlx:GFP+ neurons (Wilcoxon rank-sum test: p = 0.0002;  dlx:GFP+, n = 9;  dlx:GFP−, n = 7), 
but not 212C-GFP+ neurons (p = 0.65;  212C-GFP+, n = 12;  212C-GFP−, n = 18).  
 

 
Figure 2 | Odor-evoked responses in populations of putative principal cells and 
interneurons. (A) Responses of 50 randomly selected putative principal cells (GFP−) in pDp 
to two amino acid odors (10−5 M; average of two trials), measured by 2-photon Ca2+ imaging 
after bolus-loading of rhod-2. (B) Odor responses of 50 randomly selected dlx interneurons 
from the same regions as the GFP- neurons in (A). (C) Firing rates inferred from Ca2+ signals 
(see Methods) in interneurons (GFP+) and putative principal neurons (GFP−), averaged over all 
trials (n = 2), odors (n = 12) and neurons (212C-GFP: n = 1515 GFP− and n = 50 GFP+ from N 
= 5 fovs; dlx:GFP: n = 1750 GFP− and n = 65  GFP+ from N = 12 fovs). Black bar indicates 
approximate duration of odor stimulation. (D) Mean tuning curves of interneurons (GFP+) and 
putative principal cells (GFP−) from the same fovs, constructed by rank ordering of odor 
responses in each neuron. Shading shows s.d. (E) Lifetime sparseness of odor responses in 
interneurons (212C-GFP+ and dlx:GFP+) and putative principal neurons (GFP−; 212C: 
Wilcoxon rank-sum test: p < 10−6;  212C-GFP+, n = 50;  212C-GFP−, n = 1515; dlx: p < 10−6;  
dlx:GFP+, n = 65;  dlx:GFP−, n = 1750). Lower lifetime sparseness in interneurons indicates 
broader tuning. 
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Figure 3 | Modulation of odor responses by interneurons in pDp. (A) Schematic: 
photoinhibition (PIN) of 212C or dlx interneurons during odor stimulation and 2-photon Ca2+ 
imaging in 212C-ArchTGFP or dlx-NpHR3YFP fish, respectively.  (B) Odor-evoked Ca2+ 
signals in 50 randomly selected pDp neurons under control conditions (Ctrl) and during PIN 
(average of 2 trials). Bars show light exposure and odor stimulation. Left: 212C; right: dlx. (C) 
Inferred firing rates averaged over all neurons, trials and odors under control conditions and 
during PIN (orange). Bars show light exposure and odor stimulation; shaded area depicts the 
3-s time window used for most analyses. Top: 212C; bottom: dlx. (D) Gain index (mean 
activity during vPIN normalized by Ctrl). Each circle represents one fov-odor combination. 
Gain indices were significantly different from unity (bootstrap test, one-sided; 212C: p < 10−5, 
n = 96; dlx: p < 10−5, n = 152) and between 212C and dlx lines (Wilcoxon rank-sum test: p < 
10−4). (E) Rank-ordered odor tuning curves, averaged over all neurons under control conditions 
and during PIN (orange) in 212C (left) and dlx (right) lines. Shadings show s.d. (F) Lifetime 
sparseness of odor responses under control conditions (left) and during PIN (orange; Wilcoxon 
signed rank test, two-sided; 212C: n = 1190, p < 10−15; dlx: n = 1788, p < 10−15) in 212C (left) 
and dlx (right) lines. (G) Distribution of changes in lifetime sparseness (PIN – Ctrl). (H) 
Amplitudes of individual odor responses under control conditions and during PIN. Each data 
point represents one neuron-odor pair (212C: n = 10,710, N = 12 fovs; dlx: n = 16,092, N = 19 
fovs). Black line shows linear fit (total least squares). (I) Slopes of linear fits (total least 
squares) to amplitude data as shown in (H) for each fov (Difference from unity: bootstrap test, 
one-sided; 212C: p < 10−5, N = 12; dlx: p < 10−5, N = 19. Difference between lines: Wilcoxon 
rank-sum test: p = 0.004). (J) y-intercepts of the same linear fits (total least squares; Difference 
from zero: bootstrap test, one-sided; 212C: p < 10−5, N = 12; dlx: p = 0.89, N = 19. Difference 
between lines: Wilcoxon rank-sum test: p = 0.007). (K) Variance explained by linear fits. Each 
datapoint represents one fov (Wilcoxon rank-sum test: p = 0.006). 
 

 
Figure 4 | Computational model of pDp. (A) Schematic of pDpsim. (B) Spike raster of 
randomly selected subsets of 100 mitral cells (input from the OB), 100 E neurons, 50 FFI 
neurons and 50 FBI neurons. Two different odors (bars) were applied by changing the firing 
rates of specific subsets of mitral cells for 2 s each. (C) EPSCs (black) and IPSCs (red) 
averaged across all odors and E neurons. Blue trace shows contribution to EPSCs from mitral 
cells (afferents). (D) Illustration of EI assembly in a struct network. (E) Lifetime sparseness of 
E neurons in rand networks, and E, FFI and FBI neurons in struct networks (n = 4000, n = 
8000, n = 1000 and n = 1000 from left to right). E neurons were more sharply tuned than FFI 
(Wilcoxon rank-sum test: p < 0.0001) and FBI neurons (p < 0.0001). (F) Spike raster of 100 E 
neurons in a struct network corresponding to the rand network in (B): Left: control condition 
(Ctrl; intact inhibition); center: vPINFFI; right: vPINFBi. (G) Mean firing rate averaged over all 
odors and E neurons under ctrl conditions and during vPINFFI and vPINFBI. Bars depict odor 
presentation (blue) and vPIN (yellow). (H) PIN-induced change in lifetime sparseness 
(vPIN – Ctrl; One-sample Wilcoxon signed rank test for difference from zero: p < 0.0001 for 
all). (I) Odor-evoked firing rates of individual neurons during vPINFFI as a function of their 
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control firing rates in rand (left) and struct (right) networks (n = 20 odors, 200 neurons, 10 
networks) (J) Same as (I) for vPINFBI. 
 

 
Figure 5 | Runaway correlations during imbalanced feedback inhibition in networks with 
EI assemblies.  (A) Pearson correlations between odor-evoked activity patterns across E 
neurons (output correlation) as a function of the correlation between the corresponding afferent 
activity patterns (input correlation) in rand and struct networks. (B) Example of correlations 
between activity patterns evoked by 12 odors under control conditions (lower triangles) and 
during vPINFFI and vPINFBI (upper triangles) in one struct network. (C) Changes in pattern 
correlations r (n = 190 odor pairs) induced by vPINFFI and vPINFBI in rand and struct networks 
(n = 10 and 20 networks, respectively). vPINFBI has a stronger effect on pattern correlations 
than vPINFFI (Wilcoxon matched-pairs signed rank test; rand and struct: p < 0.0001). Shaded 
area depicts Dr > 0.25, which was used as an operational criterion to identify runaway 
correlations. (D) Pattern correlations during vPINFFI and vPINFBI as a function of correlations 
under control conditions (Ctrl) in rand and struct networks. Datapoints above the gray line 
(Dr > 0.25) fulfill the operational criterion for runaway correlations. (E) Distribution of runway 
correlations in struct networks. Datapoints show runaway correlations (Dr > 0.25); histogram 
shows their relative frequency. Contour plots show overall distributions of correlations (same 
data as in (D); logarithmic contour levels). No runaway correlations occurred during vPINFFI. 
(F) Left: Odor pair-network combinations were selected for occurrence of runaway correlations 
(Dr > 0.25 during vPINFBI) in struct networks. For each combination, the corresponding 
correlations between input patterns, output patterns across E neurons under control conditions 
(Ctrl) and during vPIN were compared (lines connect datapoints corresponding to the same 
odor pair-network combinations). Right: correlations for the same odor pair-network 
combinations in corresponding rand networks. High (runaway) correlations were unique to 
struct networks during vPINFBI. (G) Contribution of individual neurons to high pattern 
correlations during vPINFBI. Each datapoint shows the firing rates evoked by two odors in one 
neuron under control conditions (Ctrl; left) or during vPINFBI (right) and the neuron’s 
contribution to the corresponding pairwise pattern correlation during vPINFBI (color-code). 
Inset: same as Ctrl but datapoints color-coded by the neuron’s contribution under control 
conditions. Right: firing rate during vPINFBI. N = 87 odor pairs from 10 networks, 80 randomly 
selected neurons for each odor pair (Methods). Sparse sets of neurons that responded strongly 
to both odors made large contributions to pattern correlations and were observed during 
vPINFBI but not under control conditions. (H). Contribution of E neurons to all pattern 
correlations, averaged over neurons that are part of an assembly and neurons outside assemblies 
(non-A.). (I). Example of activity patterns evoked by two dissimilar odors across E neurons 
from two assemblies and outside assemblies (left panels: 30 randomly selected neurons per 
group; right panels: mean activity of each group). Left: input. Assembly 1 received stronger 
mean input from both odors than assembly 2 and neurons outside assemblies. Right: activity 
under control conditions (Ctrl) and during vPINFBI. Note increased pattern correlation r due to 
nonlinear amplification of activity in assembly 1 during vPINFBI. 
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Figure 6. Non-linear amplification in assemblies. (A) Mean firing rate of assembly E neurons 
or the corresponding pseudo-assembly neurons as a function of the mean afferent input to 
(pseudo-) assemblies (summed firing rates of all connected mitral cells). Data from one rand 
and the corresponding struct network with 20 assemblies (mean response to 20 odors). Lines 
show exponential fits; vertical dotted line shows threshold for “activation” in (D) (240 Hz). (B) 
Gain index (mean activity of assembly during vPIN normalized by Ctrl) as a function of input 
strength in assemblies (same rand and struct networks as in (A)). Each datapoint corresponds 
to one assembly-odor pair in the struct network (rand not shown for clarity). Lines are linear 
fits (rand: FFI: r = −0.34, p < 0.0001: FBI: r = −0.25, p<0.0001; struct: FFI: r = −0.18, 
p = 0.0003; FBI: r = 0.11, p=0.023). (C) Gain index as a function of the mean Dp firing rate 
during vPIN. Each datapoint corresponds to the gain index in response to one odor averaged 
over 20 struct networks (rand not shown for clarity). Lines are linear fits (rand: FFI: r = −0.23, 
p = 0.33; FBI: r = 0.46, p = 0.04; struct: FFI: r = −0.22, p = 0.35; FBI: r = 0.72, p = 0.0003). 
(D) Cumulative frequency of shared assembly activation in odor pair-network combinations 
that exhibited runaway correlations during vPINFBI (Dr > 0.25; dashed line) or not (solid line; 
struct networks only). An assembly was defined as “activated” by an odor when the total 
afferent input to the assembly exceeded 240 Hz (strong input, vertical line in (A)). 
 

Figure 7 | Functional signatures of EI assemblies in pDp: non-linear amplification. (A) 
Schematic: electrical stimulation of medial olfactory tracts (mOT; 20 pulses at 10 Hz; different 
amplitudes) during simultaneous 2-photon Ca2+ imaging and PIN. (B) Raw fluorescence of 
Ca2+ indicator (OGB-1) and evoked Ca2+ signals (three stimulus amplitudes) under control 
conditions and during PIN212C (212C-ArchTGFP; representative example; single trials). 
Bottom row: inferred firing rates averaged over all neurons (n = 903 from N = 12 fovs) and 
trials (n = 2) for the corresponding stimulus amplitudes under control conditions and during 
PIN212C (orange). Bars indicate mOT stimulation (2 s) and 594 nm illumination for PIN (6.8 s). 
Scale bar: 50 µm. (C) Same as (B), but for PINdlx (dlx-eNpHR3.0YFP; n = 2358 neurons from 
N = 18 fovs). (D) Inferred firing rates, averaged over all stimulus amplitudes (n = 6), neurons, 
and trials under control conditions and during PIN212C (orange). (E) Same a (D), but for PINdlx. 
(F) Gain index as a function of inferred firing rate during PIN (212C: r = −0.56, N = 24 fov-
stimulus pairs, p = 0.004; dlx: r = 0.83, N = 33 fov-stimulus pairs, p < 10−8). (G) Schematic: 
Ca2+ imaging of odor responses during PIN. (H) Gain index during odor responses as a function 
of time. The difference in gain index (D GI) was calculated between the two time points 
corresponding to the peak of response (“1.0”; open red circle) and the decay to 50% (“0.5”; 
closed red circle) for each fov-odor pair. Arrowhead indicates onset of odor response. Time is 
color-coded; marker size is proportional to the inferred firing rate during PIN (x axis). (I) 
Change in gain index during odor responses, calculated as in (G), in different fovs (Wilcoxon 
rank-sum test: p = 0.009; 212C line: N = 12; dlx line: N = 19).  
 
 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.09.588702doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.09.588702
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 
 

Figure 8 | Functional signatures of EI assemblies in pDp: population activity patterns and 
runaway correlations. (A) Average Pearson correlation (r) between odor-evoked activity 
patterns under control conditions (Ctrl, below diagonal) and during PIN (above diagonal; 212C: 
N = 12 fovs; dlx: N = 19 fovs). (B) Mean PIN-induced changes in pattern correlations (Δr = 
rPIN − rCtrl; bootstrap test, one-sided; 212C: p = 0.21, N = 12; dlx: p = 0.0005, N = 19; 212C vs 
dlx, Wilcoxon rank-sum test: p = 0.33). (C) Relationship between changes in correlations 
evoked by the same odors (n = 28 odor pairs) during PIN212C and PINdlx. (D) Relation between 
the mean pattern correlation (n = 28 odor pairs) in 212C and dlx lines under control conditions. 
(E) Pattern correlations during PIN212C and PINdlx as a function of correlations under control 
conditions. Datapoints above the gray line (Dr > 0.25) fulfill the operational criterion for 
runaway correlations. (F) Distribution of runway correlations. Datapoints show runaway 
correlations (Dr > 0.25); histogram shows their relative frequency. Contour plots show overall 
distributions of correlations (same data as in (E); logarithmic contour levels). Frequency of 
runaway correlations was significantly higher during PINdlx (p = 10−9; C2-test). (G) 
Contribution of individual neurons to high pattern correlations. Each datapoint shows the firing 
rates evoked by two odors in one neuron under control conditions (Ctrl; left) and during PIN212C 
(right). The neuron’s contribution to the corresponding pairwise pattern correlation during 
PIN212C is color-coded. (H) Same as (G) for PINdlx. Note sparse sets of neurons that responded 
strongly to both odors and made large contributions to pattern correlations during PINdlx but 
not under control conditions. 
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SUPPLEMENTAL INFORMATION 
 

Figure S1 | Further characterization of two populations of inhibitory interneurons in Dp. 
(A) Mean action potential waveforms (± s.d.) recorded from 212C-GFP+, dlx:GFP+, and GFP− 
neurons (n: number of neurons). (B) Comparison of action potential width; action potential 
width was measured as the time between the two zero crossings of the second derivative of the 
membrane voltage, before and after the action potential peak, respectively (Kruskal-Wallis test, 
n = 102, p < 10−9). Nonparametric comparisons with GFP− (n = 37): 212C-GFP+, p < 10−6, n = 
39; dlx:GFP+, p < 10−7, n = 26). (C) Action potential amplitude (Kruskal-Wallis test, n = 102, 
p < 10−15). Nonparametric comparisons with GFP− (n = 37): 212C-GFP+, Q = 7.56, p < 10−13, 
n = 39; dlx:GFP+, Q = 6.11, p < 10−8, n = 26). (D) Action potential threshold (Kruskal-Wallis 
test, n = 103, p < 10−9). Nonparametric comparisons with GFP− (n = 37): 212C-GFP+, p < 10−7, 
n = 39; dlx:GFP+, p < 10−5, n = 27). (E) Action potential afterhyperpolarization (AHP) 
amplitude (Wilcoxon rank-sum test:  p = 0.009; 212C-GFP+, n = 42; dlx:GFP+, n = 27). (F) 
Left: Mean (± s.e.m.) IPSCs and EPSCs in GFP− neurons in response to trains (10 pulses at 20 
Hz) of 0.5 ms full-field blue light stimulation (blue bars) in 212C-Chr2YFP (top) and dlx-
Chr2YFP fish (bottom; same data as in Fig. 1D but showing complete trains). Right: Average 
(± s.e.m.) charge transfer over the first 50 ms (first “pulse”) as a function of holding potential 
(n: number of neurons). (G) Top: IPSCs number 1, 9 and 10 evoked by trains of blue light 
pulses in GFP− neurons (same as Fig. 1E). Bottom: charge transfer evoked by the last two 
pulses, normalized to the first pulse (Wilcoxon rank-sum test: p = 0.0009; 212C-GFP+, n = 10; 
dlx:GFP+, n = 14). In dlx-Chr2YFP fish, charge transfer increased because IPSCs broadened. 
 
Figure S2 | Population analysis of odor-evoked responses in populations of putative 
principal cells and interneurons in pDp. (A) Pearson correlation between odor-evoked 
activity patterns in simultaneously recorded putative principal cells (GFP− neurons, below 
diagonal) and interneurons (GFP+ neurons, above diagonal) in 212C-GFP fish (n = 1515 GFP− 
and n = 50 GFP+ neurons from N = 5 fovs; two trials per odor). (B) Same for dlx:GFP fish (n 
= 1750 GFP− and n = 65 GFP+ neurons from N = 12 fovs). (C) Distribution of Pearson 
correlations between all pairwise activity patterns in. Two trials with each odor were averaged 
(Wilcoxon signed rank test; 212C-GFP fish: n = 66 odor pairs, p < 10−19; dlx:GFP fish: n = 66 
odor pairs, p < 10−16).  
 
 
Figure S3 | Effects of PIN on population sparseness of odor responses in pDp. Population 
sparseness of responses evoked by different classes of odors (amino acids: four individual 
amino acids and two binary mixtures; bile acids: one 3-component mixtures; one food extract; 
see Methods for details) under control conditions (Ctrl) and during vPIN212C (left) and vPINdlx 
(right). Datapoints represent individual fovs (Wilcoxon signed rank tests: 212C: N = 12 fovs, 
p = 0.0005 for all three cases: dlx: N = 19 fovs; amino acids: p < 10−4; bile acid mix: p = 0.0002; 
food extract: p < 10−4). 
 
Figure S4 | Computational model of pDp: additional results. (A) Pearson correlation 
between afferent patterns presented to pDpsim (n=20) and learned afferent patterns used to 
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create EI assemblies (n = 20). (B) Example connectivity of a rand network and a corresponding 
struct network. A white dot indicates the presence of a connection between neurons. Half of 
the network is depicted, including 10 out of 20 assemblies (A), which consists of 80 E and 10 
FBI neurons each. (C) Mean firing rates of E, FFI and FBI neurons in rand and struct networks 
during presentation of an odor. (D) Firing rates averaged during spontaneous (sponta) activity 
or during odor presentation, over neurons belonging to an assembly (A) and the remaining ones 
(non-A). (E) Correlations between activity patterns evoked by 12 odors in E (lower triangles) 
and FFI or FBI (upper triangles). Example of 1 network. (F) Left: averaged odor-evoked 
afferent conductance. Middle: odor-evoked synaptic conductance. Right: percentage of E input 
coming from recurrent connections during odor presentation. The experimental range measured 
in ex-vivo Dp is delineated by the dotted lines. (G) Co-tuning, quantified by the correlation 
between time-averaged E and I conductances in each neuron in response to various odors 
(average across neurons, n = 10 and 20 rand and struct networks, respectively; Wilcoxon 
matched-pairs signed rank test: p = 0.002). (H) Gain index as a function of the fraction of 
inactivated neurons. (I) Population sparseness of responses evoked by different odors. (J) 
Changes in population sparseness induced by vPIN (vPIN-Ctrl, one sample Wilcoxon signed 
rank test: FFI, rand: p = 0.002; FBI, rand: p < 0.002; FFI, struct: p < 0.0001; FBI, struct: p < 
0.0001). 
 
Figure S5 | Mechanism generating runaway correlations: schematic illustration. Grids 
represent 32 x 32 E neurons; shaded square depicts an EI assembly; arrows represent feedback 
excitation (E) and multisynaptic feedback inhibition (I). Left: odors 1 and 2 are uncorrelated 
and activate a small subset of neurons within the assembly. Reducing inhibition enhances 
activity within the assembly slightly more than outside the assembly but the resulting increase 
in pattern correlation remains small. Right: odors 3 and 4 are also globally uncorrelated but 
activate a larger subset of neurons within the assembly. Because feedback gain increases with 
assembly activation (non-linear amplification), a reduction in inhibition strongly enhances 
activity within the assembly. As a consequence, the global pattern correlation becomes high 
even though activity outside the assembly is uncorrelated. This “runaway correlation” does not 
occur when excitation and inhibition are precisely balanced because nonlinear amplification 
within assemblies is canceled. In poorly balanced networks, runaway correlations therefore 
emerge in response to subsets of inputs (odors) depending on the precise relation between input 
patterns (odors) and pre-existing memories (assemblies). Note that this is a schematic 
illustration with fewer neurons and assemblies than the biologically constrained simulation. 
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Figure 1 | Fast-spiking inhibitory interneurons in pDp. (A) Schematic: lateral view of the 
adult zebrafish brain and two coronal cross sections through the telencephalon (Tel), 
highlighting the location of pDp. Scale bars represent approximations. OB: olfactory bulb; 
TeO: optic tectum. Dm, Dc, Dl: medial, central, lateral portions of the dorsal telencephalon, 
respectively. (B) Expression of fluorescent markers in 212C (purple) and dlx neurons (green) 
in pDp (Tg[SAGFF212C:Gal4,UAS:mCherry,dlx4/6:GFP] fish; maximum intensity 
projection). Sale bar: 50 µm. (C) Schematic: optogenetic stimulation of interneurons and 
whole-cell patch-clamp recording of evoked IPSCs and EPSCs in putative principal neurons. 
(D) Mean IPSCs (holding potential: 0 mV; ± s.e.m.) and EPSCs (−60 mV) in putative principal 
neurons in response to 0.5 ms full-field stimulation (457 nm; blue bars) in 212C-Chr2YFP fish 
(top; n = 4) and dlx-Chr2YFP fish (bottom; n = 2; 10 pulses at 20 Hz; pulses 3 - 9 are not 
shown). Note absence of optically evoked EPSCs. (E) IPSCs (gray: individual neurons; black: 
average) evoked by trains of blue light pulses (0.5 ms) in putative principal neurons in 212C-
Chr2 (n = 11) and dlx-Chr2 fish (n = 16). Only one neuron (red trace) showed no IPSCs. (F) 
Representative firing patterns evoked by current injections (two amplitudes) in interneurons 
and a putative principal neuron (GFP−) in pDp. (G) Mean firing rates in the three neuronal 
populations as a function of injected current. (H) Schematic: stimulation of the medial olfactory 
tract (mOT) and whole-cell recording in pDp. (I) Distribution of EPSC latencies in the two 
interneuron populations (GFP+) and the corresponding putative principal neurons (GFP−). 
EPSC latencies of dlx:GFP+ neurons, but not 212C-GFP+ neurons, were higher than in putative 
principal neurons (Wilcoxon rank-sum test: dlx:GFP+: p = 0.0003, n = 27 vs  dlx:GFP−, n = 21; 
212C-GFP+: p = 0.63, n = 34 vs  212C-GFP−, n = 53). (J) Distribution of 33% shortest EPSC 
latencies in each neuronal population (subset of data in (H)). Short-latency EPSCs were lacking 
in dlx:GFP+ neurons (Wilcoxon rank-sum test: p = 0.0002;  dlx:GFP+, n = 9;  dlx:GFP−, n = 7), 
but not 212C-GFP+ neurons (p = 0.65;  212C-GFP+, n = 12;  212C-GFP−, n = 18).  
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Figure 2 | Odor-evoked responses in populations of putative principal cells and interneurons. (A) 
Responses of 50 randomly selected putative principal cells (GFP−) in pDp to two amino acid odors (10−5 M; 
average of two trials), measured by 2-photon Ca2+ imaging after bolus-loading of rhod-2. (B) Odor responses 
of 50 randomly selected dlx interneurons from the same regions as the GFP− neurons in (A). (C) Firing rates 
inferred from Ca2+ signals (see Methods) in interneurons (GFP+) and putative principal neurons (GFP−), 
averaged over all trials (n = 2), odors (n = 12) and neurons (212C-GFP: n = 1515 GFP− and n = 50 GFP+ 
from N = 5 fovs; dlx:GFP: n = 1750 GFP− and n = 65  GFP+ from N = 12 fovs). Black bar indicates approxi-
mate duration of odor stimulation. (D) Mean tuning curves of interneurons (GFP+) and putative principal 
cells (GFP−) from the same fovs, constructed by rank ordering of odor responses in each neuron. Shading 
shows s.d. (E) Lifetime sparseness of odor responses in interneurons (212C-GFP+ and dlx:GFP+) and puta-
tive principal neurons (GFP−; 212C: Wilcoxon rank-sum test: p < 10−6;  212C-GFP+, n = 50;  212C-GFP−, n 
= 1515; dlx: p < 10−6;  dlx:GFP+, n = 65;  dlx:GFP−, n = 1750). Lower lifetime sparseness in interneurons 
indicates broader tuning.
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Figure 3 | Modulation of odor responses by interneurons in pDp. (A) Schematic: 
photoinhibition (PIN) of 212C or dlx interneurons during odor stimulation and 2-photon Ca2+ 
imaging in 212C-ArchTGFP or dlx-NpHR3YFP fish, respectively.  (B) Odor-evoked Ca2+ 
signals in 50 randomly selected pDp neurons under control conditions (Ctrl) and during PIN 
(average of 2 trials). Bars show light exposure and odor stimulation. Left: 212C; right: dlx. (C) 
Inferred firing rates averaged over all neurons, trials and odors under control conditions and 
during PIN (orange). Bars show light exposure and odor stimulation; shaded area depicts the 
3-s time window used for most analyses. Top: 212C; bottom: dlx. (D) Gain index (mean 
activity during vPIN normalized by Ctrl). Each circle represents one fov-odor combination. 
Gain indices were significantly different from unity (bootstrap test, one-sided; 212C: p < 10−5, 
n = 96; dlx: p < 10−5, n = 152) and between 212C and dlx lines (Wilcoxon rank-sum test: p < 
10−4). (E) Rank-ordered odor tuning curves, averaged over all neurons under control conditions 
and during PIN (orange) in 212C (left) and dlx (right) lines. Shadings show s.d. (F) Lifetime 
sparseness of odor responses under control conditions (left) and during PIN (orange; Wilcoxon 
signed rank test, two-sided; 212C: n = 1190, p < 10−15; dlx: n = 1788, p < 10−15) in 212C (left) 
and dlx (right) lines. (G) Distribution of changes in lifetime sparseness (PIN – Ctrl). (H) 
Amplitudes of individual odor responses under control conditions and during PIN. Each data 
point represents one neuron-odor pair (212C: n = 10,710, N = 12 fovs; dlx: n = 16,092, N = 19 
fovs). Black line shows linear fit (total least squares). (I) Slopes of linear fits (total least 
squares) to amplitude data as shown in (H) for each fov (Difference from unity: bootstrap test, 
one-sided; 212C: p < 10−5, N = 12; dlx: p < 10−5, N = 19. Difference between lines: Wilcoxon 
rank-sum test: p = 0.004). (J) y-intercepts of the same linear fits (total least squares; Difference 
from zero: bootstrap test, one-sided; 212C: p < 10−5, N = 12; dlx: p = 0.89, N = 19. Difference 
between lines: Wilcoxon rank-sum test: p = 0.007). (K) Variance explained by linear fits. Each 
datapoint represents one fov (Wilcoxon rank-sum test: p = 0.006). 
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n = 8000, n = 1000 and n = 1000 from left to right). E neurons were more sharply tuned than FFI (Wilcoxon 
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between odor-evoked activity patterns across E 
neurons (output correlation) as a function of the 
correlation between the corresponding afferent 
activity patterns (input correlation) in rand and 
struct networks. (B) Example of correlations 
between activity patterns evoked by 12 odors 
under control conditions (lower triangles) and 
during vPINFFI and vPINFBI  (upper triangles) in 
one struct network. (C) Changes in pattern 
correlations r (n = 190 odor pairs) induced by 
vPINFFI and vPINFBI  in rand and struct networks 
(n = 10 and 20 networks, respectively). vPINFBI 
has a stronger effect on pattern correlations than 
vPINFFI (Wilcoxon matched-pairs signed rank 
test; rand and struct: p < 0.0001). Shaded area 
depicts Δr > 0.25, which was used as an opera-
tional criterion to identify runaway correlations. 
(D) Pattern correlations during vPINFFI and 
vPINFBI  as a function of correlations under 
control conditions (Ctrl) in rand and struct 
networks. Datapoints above the gray line (Δr > 
0.25) fulfill the operational criterion for runaway 
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runaway correlations (Δr > 0.25); histogram 
shows their relative frequency. Contour plots 
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data as in (D); logarithmic contour levels). No 
runaway correlations occurred during vPINFFI. 
(F) Left: Odor pair-network combinations were 
selected for occurrence of runaway correlations 
(Δr > 0.25 during vPINFBI ) in struct networks. For 
each combination, the corresponding correlations 
between input patterns, output patterns across E 
neurons under control conditions (Ctrl) and 
during vPIN were compared (lines connect data-
points corresponding to the same odor pair-net-
work combinations). Right: correlations for the 
same odor pair-network combinations in corre-
sponding rand networks. High (runaway) correla-
tions were unique to struct networks during 
vPINFBI. (G) Contribution of individual neurons 
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datapoint shows the firing rates evoked by two 

odors in one neuron under control conditions (Ctrl; left) or during vPINFBI (right) and the neuron’s contribution to the 
corresponding pairwise pattern correlation during vPINFBI (color-code). Inset: same as Ctrl but datapoints color-coded by 
the neuron’s contribution under control conditions. Right: firing rate during vPINFBI. N = 87 odor pairs from 10 networks, 
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Contribution of E neurons to all pattern correlations, averaged over neurons that are part of an assembly and neurons 
outside assemblies (non A.). (I) Example of activity patterns evoked by two dissimilar odors across E neurons from two 
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each group). Left: input. Assembly 1 received stronger mean input from both odors than assembly 2 and neurons outside 
assemblies. Right: activity under control conditions (Ctrl) and during vPINFBI. Note increased pattern correlation r due to 
nonlinear amplification of activity in assembly 1 during vPINFBI.
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Figure 6. Non-linear amplification in assemblies. (A) Mean firing rate of assembly E 
neurons or the corresponding pseudo-assembly neurons as a function of the mean afferent 
input to (pseudo-) assemblies (summed firing rates of all connected mitral cells). Data from 
one rand and the corresponding struct network with 20 assemblies (mean response to 20 
odors). Lines show exponential fits; vertical dotted line shows threshold for “activation” in 
(D) (240 Hz). (B) Gain index (mean activity of assembly during vPIN normalized by Ctrl) 
as a function of input strength in assemblies (same rand and struct networks as in (A)). 
Each datapoint corresponds to one assembly-odor pair in the struct network (rand not 
shown for clarity). Lines are linear fits (rand: FFI: r = −0.34, p < 0.0001: FBI: r = −0.25, 
p<0.0001; struct: FFI: r = −0.18, p = 0.0003; FBI: r = 0.11, p=0.023). (C) Gain index (mean 
activity during vPIN normalized by Ctrl) as a function of the mean Dp firing rate during 
vPIN. Each datapoint corresponds to the gain index in response to one odor averaged over 
20 struct networks (rand not shown for clarity). Lines are linear fits (rand: FFI: r = −0.23, 
p = 0.33; FBI: r = 0.46, p = 0.04; struct: FFI: r = −0.22, p = 0.35; FBI: r = 0.72, p = 0.0003). 
(D) Cumulative frequency of shared assembly activation in odor pair-network combina-
tions that exhibited runaway correlations during vPINFBI (Δr > 0.25; dashed line) or not 
(solid line; struct networks only). An assembly was defined as “activated” by an odor when 
the total afferent input to the assembly exceeded 240 Hz (strong input, vertical line in (A)).
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Figure 7 | Functional signatures of EI assemblies in pDp: non-linear amplification. (A) Schematic: 
electrical stimulation of medial olfactory tracts (mOT; 20 pulses at 10 Hz; different amplitudes) during 
simultaneous 2-photon Ca2+ imaging and PIN. (B) Raw fluorescence of Ca2+ indicator (OGB-1) and 
evoked Ca2+ signals (three stimulus amplitudes) under control conditions and during PIN212C 
(212C-ArchTGFP; representative example; single trials). Bottom row: inferred firing rates averaged over 
all neurons (n = 903 from N = 12 fovs) and trials (n = 2) for the corresponding stimulus amplitudes under 
control conditions and during PIN212C  (orange). Bars indicate mOT stimulation (2 s) and 594 nm illumi-
nation for PIN (6.8 s). Scale bar: 50 µm. (C) Same as (B), but for PINdlx (dlx-eNpHR3.0YFP; n = 2358 
neurons from N = 18 fovs). (D) Inferred firing rates, averaged over all stimulus amplitudes (n = 6), 
neurons, and trials under control conditions and during PIN212C (orange). (E) Same a (D), but for PINdlx. 
(F) Gain index as a function of inferred firing rate during PIN (212C: r = −0.56, N = 24 fov-stimulus 
pairs, p = 0.004; dlx: r = 0.83, N = 33 fov-stimulus pairs, p < 10−8). (G) Schematic: Ca2+ imaging of odor 
responses during PIN. (H) Gain index during odor responses as a function of time. The difference in gain 
index (∆GI) was calculated between the two time points corresponding to the peak of response (“1.0”; 
open red circle) and the decay to 50% (“0.5”; closed red circle) for each fov-odor pair. Arrowhead indi-
cates onset of odor response. Time is color-coded; marker size is proportional to the inferred firing rate 
during PIN (x axis). (I) Change in gain index during odor responses, calculated as in (G), in different fovs 
(Wilcoxon rank-sum test: p = 0.009; 212C line: N = 12; dlx line: N = 19). 
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dlx: N = 19 fovs). (B) Mean PIN-induced changes in pattern correlations (Δr = rPIN − rCtrl; bootstrap 
test, one-sided; 212C: p = 0.21, N = 12; dlx: p = 0.0005, N = 19; 212C vs dlx, Wilcoxon rank-sum 
test: p = 0.33). (C) Relationship between changes in correlations evoked by the same odors (n = 28 
odor pairs) during PIN212C and PINdlx. (D) Relation between the mean pattern correlation (n = 28 odor 
pairs) in 212C and dlx lines under control conditions. (E) Pattern correlations during PIN212C and 
PINdlx as a function of correlations under control conditions. Datapoints above the gray line (Δr > 
0.25) fulfill the operational criterion for runaway correlations. (F) Distribution of runway correla-
tions. Datapoints show runaway correlations (Δr > 0.25); histogram shows their relative frequency. 
Contour plots show overall distributions of correlations (same data as in (E); logarithmic contour 
levels). Frequency of runaway correlations was significantly higher during PINdlx (p = 10−9; χ2-test). 
(G) Contribution of individual neurons to high pattern correlations. Each datapoint shows the firing 
rates evoked by two odors in one neuron under control conditions (Ctrl; left) and during PIN212C 
(right). The neuron’s contribution to the corresponding pairwise pattern correlation during PIN212C is 
color-coded. (H) Same as (G) for PINdlx. Note sparse sets of neurons that responded strongly to both 
odors and made large contributions to pattern correlations during PINdlx but not under control 
conditions.
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Figure S1 | Further characterization of two populations of inhibitory interneurons in Dp. 
(A) Mean action potential waveforms (± s.d.) recorded from 212C-GFP+, dlx:GFP+, and GFP− 
neurons (n: number of neurons). (B) Comparison of action potential width; action potential 
width was measured as the time between the two zero crossings of the second derivative of the 
membrane voltage, before and after the action potential peak, respectively (Kruskal-Wallis test, 
n = 102, p < 10−9). Nonparametric comparisons with GFP− (n = 37): 212C-GFP+, p < 10−6, n = 
39; dlx:GFP+, p < 10−7, n = 26). (C) Action potential amplitude (Kruskal-Wallis test, n = 102, 
p < 10−15). Nonparametric comparisons with GFP− (n = 37): 212C-GFP+, Q = 7.56, p < 10−13, 
n = 39; dlx:GFP+, Q = 6.11, p < 10−8, n = 26). (D) Action potential threshold (Kruskal-Wallis 
test, n = 103, p < 10−9). Nonparametric comparisons with GFP− (n = 37): 212C-GFP+, p < 10−7, 
n = 39; dlx:GFP+, p < 10−5, n = 27). (E) Action potential afterhyperpolarization (AHP) 
amplitude (Wilcoxon rank-sum test:  p = 0.009; 212C-GFP+, n = 42; dlx:GFP+, n = 27). (F) 
Left: Mean (± s.e.m.) IPSCs and EPSCs in GFP− neurons in response to trains (10 pulses at 20 
Hz) of 0.5 ms full-field blue light stimulation (blue bars) in 212C-Chr2YFP (top) and dlx-
Chr2YFP fish (bottom; same data as in Fig. 1D but showing complete trains). Right: Average 
(± s.e.m.) charge transfer over the first 50 ms (first “pulse”) as a function of holding potential 
(n: number of neurons). (G) Top: IPSCs number 1, 9 and 10 evoked by trains of blue light 
pulses in GFP− neurons (same as Fig. 1E). Bottom: charge transfer evoked by the last two 
pulses, normalized to the first pulse (Wilcoxon rank-sum test: p = 0.0009; 212C-GFP+, n = 10; 
dlx:GFP+, n = 14). In dlx-Chr2YFP fish, charge transfer increased because IPSCs broadened. 
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Figure S2 | Population analysis of odor-evoked responses in populations of putative principal cells and 
interneurons in pDp. (A) Pearson correlation between odor-evoked activity patterns in simultaneously 
recorded putative principal cells (GFP− neurons, below diagonal) and interneurons (GFP+ neurons, above diag-
onal) in 212C-GFP fish (n = 1515 GFP− and n = 50 GFP+  neurons from N = 5 fovs; two trials per odor). (B) 
Same for dlx:GFP fish (n = 1750 GFP− and n = 65 GFP+  neurons from N = 12 fovs). (C) Distribution of Pear-
son correlations between all pairwise activity patterns in. Two trials with each odor were averaged (Wilcoxon 
signed rank test; 212C-GFP fish: n = 66 odor pairs, p < 10−19; dlx:GFP fish: n = 66 odor pairs, p < 10−16). 
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Figure S3 | Effects of PIN on population sparseness of odor responses 
in pDp. Population sparseness of responses evoked by different classes of 
odors (amino acids: four individual amino acids and two binary mixtures; 
bile acids: one 3-component mixtures; one food extract; see Methods for 
details) under control conditions (Ctrl) and during vPIN212C (left) and 
vPINdlx (right). Datapoints represent individual fovs (Wilcoxon signed rank 
tests: 212C: N = 12 fovs, p = 0.0005 for all three cases: dlx: N = 19 fovs; 
amino acids: p < 10−4; bile acid mix: p = 0.0002; food extract: p < 10−4).
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Figure S4 | Computational model of pDp: additional results. (A) Pearson correlation between affer-
ent patterns presented to pDpsim (n=20) and learned afferent patterns used to create EI assemblies (n = 
20). (B) Example connectivity of a rand network and a corresponding struct network. A white dot indi-
cates the presence of a connection between neurons. Half of the network is depicted, including 10 out 
of 20 assemblies (A), which consists of 80 E and 10 FBI neurons each. (C) Mean firing rates of E, FFI 
and FBI neurons in rand and struct networks during presentation of an odor. (D) Firing rates averaged 
during spontaneous (sponta) activity or during odor presentation, over neurons belonging to an assem-
bly (A) and the remaining ones (non-A). (E) Correlations between activity patterns evoked by 12 odors 
in E (lower triangles) and FFI or FBI (upper triangles). Example of 1 network. (F) Left: averaged 
odor-evoked afferent conductance. Middle: odor-evoked synaptic conductance. Right: percentage of E 
input coming from recurrent connections during odor presentation. The experimental range measured in 
ex-vivo Dp is delineated by the dotted lines. (G) Co-tuning, quantified by the correlation between 
time-averaged E and I conductances in each neuron in response to various odors (average across 
neurons, n = 10 and 20 rand and struct networks, respectively; Wilcoxon matched-pairs signed rank test:  
p = 0.002). (H) Gain index as a function of the fraction of inactivated neurons. (I) Population sparseness 
of responses evoked by different odors. (J) Changes in population sparseness induced by vPIN 
(vPIN-Ctrl, one sample Wilcoxon signed rank test: FFI, rand: p = 0.002; FBI, rand: p < 0.002; FFI, 
struct: p < 0.0001; FBI, struct: p < 0.0001).
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Figure S5 | Mechanism generating runaway correlations: schematic illustration. Grids represent 
32 x 32 E neurons; shaded square depicts an EI assembly; arrows represent feedback excitation (E) and 
multisynaptic feedback inhibition (I). Left: odors 1 and 2 are uncorrelated and activate a small subset 
of neurons within the assembly. Reducing inhibition enhances activity within the assembly slightly 
more than outside the assembly but the resulting increase in pattern correlation remains small. Right: 
odors 3 and 4 are also globally uncorrelated but activate a larger subset of neurons within the assembly. 
Because feedback gain increases with assembly activation (non-linear amplification), a reduction in 
inhibition strongly enhances activity within the assembly. As a consequence, the global pattern correla-
tion becomes high even though activity outside the assembly is uncorrelated. Such “runaway correla-
tion” does not occur when excitation and inhibition are precisely balanced because nonlinear amplifi-
cation within assemblies is canceled. In poorly balanced networks, runaway correlations therefore 
emerge in response to subsets of inputs (odors) depending on the precise relation between input 
patterns (odors) and pre-existing memories (assemblies). Note that this is a schematic illustration with 
fewer neurons and assemblies than the biologically constrained simulation.
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