

1 **Quantitative RNA spatial profiling using single-molecule RNA FISH on plant
2 tissue cryosections**

3 Xue Zhang¹, Alejandro Fonseca¹, Konstantin Kutashov¹, Adrien Sicard¹, Susan Duncan²,
4 Stefanie Rosa¹

5 ¹Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala,
6 Sweden.

7 ²Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park,
8 Norwich NR4 7UH, UK.

9 Corresponding author: stefanie.rosa@slu.se.

10

11

12 **ABSTRACT**

13 Single-molecule fluorescence *in situ* hybridization (smFISH) has emerged as a powerful tool
14 to study gene expression dynamics with unparalleled precision and spatial resolution in a
15 variety of biological systems. Recent advancements have expanded its application to
16 encompass plant studies, yet a demand persists for a simple and robust smFISH method
17 adapted to plant tissue sections. Here, we present an optimized smFISH protocol (cryo-
18 smFISH) for visualizing and quantifying single mRNA molecules in plant tissue cryosections.
19 This method exhibits remarkable sensitivity, capable of detecting low-expression transcripts,
20 including long non-coding RNAs. Integrating a deep learning-based algorithm in our image
21 analysis pipeline, our method enables us to assign RNA abundance precisely in nuclear and
22 cytoplasmic compartments. Compatibility with Immunofluorescence also allows RNA and
23 endogenous proteins to be visualized and quantified simultaneously. Finally, this study
24 presents for the first time the use of smFISH for single-cell RNA sequencing (scRNA-seq)
25 validation in plants. By extending the smFISH method to plant cryosections, an even broader
26 community of plant scientists will be able to exploit the multiple potentials of quantitative
27 transcript analysis at cellular and subcellular resolutions.

28 **Keywords:** smFISH; scRNA-seq; smFISH-IF; tissue cryosections; quantitative gene expression

29

30 **INTRODUCTION**

31 Gaining insights into the spatiotemporal changes in gene expression requires precise
32 quantification and acquisition of high-resolution spatial distribution data for RNAs within cells
33 and tissues. RNA *in situ* hybridization (ISH) stands as a classical technique, enabling scientists

34 to map RNA within intact cells or tissues with spatial precision. This is achieved through the
35 use of probes containing nucleic acid sequences that complement a specific target RNA
36 sequence (Pardue & Gall, 1969; Cox *et al.*, 1984). ISH probes can be tagged with a variety of
37 detectable molecules, such as radioisotopes (Harrison *et al.*, 1973), biotin (Hutchison *et al.*,
38 1982; Brigati *et al.*, 1983), digoxigenin (Heiles *et al.*, 1988; Panoskaltsis-Mortari & Bucy, 1995)
39 and fluorescent dyes (Bauman *et al.*, 1980; Singer & Ward, 1982). However, the traditional
40 ISH techniques suffer from limited spatial resolution and are primarily qualitative in nature.

41

42 Single-molecule fluorescence *in situ* hybridization (smFISH) is a more recently developed
43 variation of FISH that provides single-molecule resolution (Femino *et al.*, 1998; Raj *et al.*,
44 2008). It uses a set of 25-48 short DNA oligonucleotides (18-22 mers) to bind specific
45 sequences in the target RNA, enabling the visualization and quantification of individual RNA
46 molecules within intact cells and tissues at high spatial resolution. While smFISH has been
47 successfully used in a variety of model organisms, including bacteria (Skinner *et al.*, 2013), *C.*
48 *elegans* (Raj *et al.*, 2008), and mammalian cells (Lyubimova *et al.*, 2013), its application within
49 diverse plant tissues has been constrained by technical complexities arising from inherent
50 autofluorescence and light-scattering components in cell walls and vacuole-rich tissue
51 structures. The adaptation of smFISH to the plant model species *Arabidopsis thaliana* in 2016
52 marked a pivotal development, enabling the imaging of individual RNA molecules within fixed
53 and squashed root meristem cells (Duncan *et al.*, 2016, 2017). Since then, more smFISH and
54 other newly developed ISH methods have gradually emerged for studying gene expression in
55 plants (Yang *et al.*, 2020; Solanki *et al.*, 2020; Nobori *et al.*, 2023; Huang *et al.*, 2023). We have
56 also recently optimized smFISH for whole-mount intact plant tissues (Zhao *et al.*, 2023).
57 Despite the success of whole-mount smFISH in several tissues, this method is not ideal for
58 very thick specimens and physical sectioning may be required when dealing with plant tissues.
59 The smFISH application to plant tissue sections has been reported in paraffin-embedded
60 samples (Huang *et al.*, 2020) but this workflow remains lengthy. Moreover, the complex
61 embedding and prolonged processes introduced an increased risk for RNA degradation. As
62 such, demand still exists for an expedited and streamlined smFISH method for tissue sections
63 in plants.

64

65 In this study, we present an optimized smFISH protocol for the visualization and quantification
66 of single RNA molecules in plant tissue cryosections. This method can enable quantitative
67 analysis of weakly expressed transcripts, such as long non-coding RNAs, and provide precise
68 information regarding transcript distribution across diverse cell types. Moreover, by
69 incorporating DAPI staining and a deep learning-based cell-segmentation pipeline, we
70 achieved segmentation of sub-cellular compartments, allowing us to distinguish and quantify
71 nuclear and cytoplasmic transcripts. Additionally, we demonstrate the compatibility of
72 smFISH with immunofluorescence (IF) in tissue sections, enabling simultaneous visualization
73 and quantification of RNAs and endogenous proteins within individual cells. Significantly, this
74 study demonstrates for the first time the application of smFISH for scRNA-seq validation in
75 plants, investigating spatial gene expression patterns in relation to cell identity. In summary,
76 our study illustrates how smFISH can be used for scRNAseq validation and for the
77 simultaneous detection of endogenous RNAs and proteins.

78

79 **Results**

80

81 **Single-molecule RNA detection and quantification on *Arabidopsis* and barley tissue** 82 **cryosections**

83

84 Plant tissue imaging poses specific challenges because of its inherent high autofluorescence.
85 Although clearing techniques have greatly improved our ability to observe plant tissues in
86 whole-mount settings (Zhao *et al.*, 2023), it remains difficult to fully exploit these techniques
87 in some plant species due to tissue thickness and high autofluorescence. In this context, the
88 use of tissue sectioning emerges as a valuable alternative method. In contrast to optical
89 sectioning, physical sectioning provides the advantage of imaging thicker specimens without
90 sacrificing the signal-to-noise ratio. The first step in the development of our smFISH protocol
91 on cryosections (hereafter referred to as cryo-smFISH) involved obtaining high-quality
92 sections that preserve both the morphological integrity of plant tissues and RNA molecules.
93 To accomplish this, we adapted previously published protocols (Anjam *et al.*, 2016; Stapel *et*
94 *al.*, 2018) for use in *Arabidopsis thaliana* (*Arabidopsis*) root cryosections (**Figure 1A**). This
95 included a cryoprotection step conducted before cryosectioning to protect tissue morphology
96 and a re-fixation step to ensure RNA preservation. These adjustments, combined with the use
97 of 10 μ m sections, enabled us to obtain well-preserved samples consisting of a single layer of

98 cells. While *Arabidopsis* roots are not thick specimens, they are extremely fragile, posing
99 significant challenges to tissue structure preservation. Therefore, optimizing a cryosection
100 protocol tailored to *Arabidopsis* roots serves as a valuable initial step in the development of
101 a robust method that can be applied to other types of tissues. To optimize and validate our
102 cryo-smFISH protocol in *Arabidopsis* root cryosections, we focused on detecting transcripts
103 from the housekeeping gene *Protein Phosphatase 2A (PP2A)* as previously reported (Duncan
104 *et al.*, 2016, 2017, 2023; Zhao *et al.*, 2023). The resulting cryo-smFISH images from both
105 longitudinal and cross cryosections revealed distinct bright punctate dots representing *PP2A*
106 mRNA molecules, visible through both epifluorescence and confocal microscopy (**Figure S1**),
107 with the confocal images offering the advantage of showing clearer cell outlines. *PP2A* mRNA
108 molecules displayed a ubiquitous distribution across various root cell types in the root
109 meristem region, consistent with earlier research findings (Duncan *et al.*, 2016; Zhao *et al.*,
110 2023). To enable precise allocation of transcripts to individual cells, we stained cryosections
111 with the cell wall dye Renaissance 2200 (SR2200) (Musielak *et al.*, 2016; Zhao *et al.*, 2023).
112 Combined with our integrated image analysis pipeline (Zhao *et al.*, 2023), this enabled the
113 precise and quantitative allocation of *PP2A* mRNA molecules to individual cells (**Figure 1B, C**;
114 **Figure S3A,C**). Treatment with RNase confirmed that the observed signals corresponded to
115 true mRNA molecules (**Figure S2**). We then assessed the applicability of our cryo-smFISH
116 protocol in *Arabidopsis* leaves. Despite the challenges associated with autofluorescence in
117 plant tissues, our protocol successfully detected *PP2A* RNA signals in young *Arabidopsis* leaves
118 (**Figure S3B, D**). To further demonstrate the versatility of our approach, we extended our
119 investigation to the monocot *Hordeum vulgare* (barley) by detecting the housekeeping gene
120 *HvGAPDH* in cryosections of roots and leaves. Transcripts of this gene were clearly detected
121 and quantifiable in both tissues (**Figure 1B, D; Figure S4A, B**). As before, treatment with RNase
122 confirmed the specificity of our RNA signals (**Figure S4C**). These results demonstrate that
123 cryo-smFISH can successfully be used to detect and quantify specific RNA molecules with high
124 resolution in cryosections obtained from both model and crop plant tissues.

125
126 **Mapping the cell-type distribution of transcripts in *Arabidopsis* roots using cryo-smFISH**
127 scRNA-seq has emerged as a powerful genomic approach for the detection and quantitative
128 analysis of messenger RNA molecules at single-cell resolution. The pioneering collection of
129 single-cell RNA sequencing (scRNA-seq) reports, applying high-throughput droplet-based

130 technologies, has revolutionized our understanding of plant biology by revealing the
131 transcriptional states of many different cell types (Denyer *et al.*, 2019; Zhang *et al.*, 2019;
132 Wendrich *et al.*, 2020; Shaw *et al.*, 2021; Shahan *et al.*, 2022; Otero *et al.*, 2022). However,
133 gene expression quantification results from scRNA-seq are not absolute but derived from
134 computational algorithms. Hence, complementary methods are needed to validate its results.
135 Furthermore, scRNA-seq outcomes lack spatial information as the tissue is disintegrated into
136 individual cells before analysis (Shaw *et al.*, 2021; Bawa *et al.*, 2022). Complementary
137 techniques, such as generating transgenic reporter lines and traditional ISH methodologies,
138 are often utilized for scRNA-seq validation. Yet, these methods lack quantitative precision, fail
139 to capture RNAs with particularly low expression, cannot visualize active transcription event
140 or stress granules, and are unsuitable for determining kinetic transcriptional parameters.
141 These limitations highlight the need for complementary techniques to validate scRNA-seq
142 findings with cellular spatial information. Here, we demonstrate mapping the spatial
143 distribution of transcripts in plant tissues using cryo-smFISH as a method suitable for scRNA-
144 seq validation. As a proof-of-principle, we chose to study the nitrate transporter, *NRT1.9*
145 (*AT1G18880*), which has been implicated in facilitating nitrate loading into the vascular
146 subtype phloem cells in *Arabidopsis* roots (Wang & Tsay, 2011). To investigate cell-type
147 specific expression of this gene, we re-analyzed scRNA-seq data from 10-day-old *Arabidopsis*
148 root tips as previously described (Wendrich *et al.*, 2020). Following clustering and cell type
149 annotation step, we subset the dataset to specifically investigate cell types recognizable in
150 tissue cryosections: epidermis, cortex, endodermis, pericycle, phloem, procambium, and
151 xylem (**Figure 2A**). Analysis of differential gene expression (DGE) within these cell types
152 indicated that *NRT1.9* is expressed preferentially the phloem, pericycle and procambium
153 (**Figure 2A, B**). To confirm these results, we designed smFISH probes targeting exonic and
154 intronic regions of *NRT1.9* RNA and performed cryo-smFISH on *Arabidopsis* root cross-
155 sections (**Figure 2C-D**). The cryo smFISH results closely aligned with scRNA-seq expression
156 pattern for *NRT1.9* (**Figure 2B, E, F**). A discrepancy was, however, noted in the procambium,
157 where scRNA-seq indicated higher levels of expression. However, the trends in other cell
158 types were very similar, and phloem cells consistently exhibited higher levels of expression in
159 both scRNA-seq and cryo-smFISH (**Figure 2F**). Detailed inspection of the images revealed RNA
160 foci of higher intensity (**Figure 2C**, indicated by orange arrows). Through DAPI staining, we
161 confirmed that these brighter foci were predominantly present in the nucleus (**Figure S5**),

162 potentially indicating active sites of transcription. Importantly, treatment with RNase A once
163 again confirmed the specificity of our RNA signals (Figure **S6A-B**). Overall, these results
164 highlight an important application of cryo-smFISH as a valuable method for precisely
165 quantifying the transcription of genes of interest in a highly spatially resolved manner.
166 Importantly, we demonstrated how cryo-smFISH can be used to validate and complement
167 scRNA-seq findings at both qualitative and quantitative levels.

168

169 **Detection of long non-coding RNA distribution with subcellular resolution**

170
171 Long noncoding RNAs (lncRNAs) are a class of RNA molecules with lengths over 200
172 nucleotides that have garnered increasing interest due to their potential regulatory roles in
173 various biological processes (Lucero *et al.*, 2020; Jha *et al.*, 2020; Statello *et al.*, 2021). In
174 contrast to coding RNAs, lncRNAs are recognized for their pronounced tissue specificity and,
175 often, relatively lower abundance (Djebali *et al.*, 2012; Wang *et al.*, 2014; Cabili *et al.*, 2015;
176 Rosa *et al.*, 2016; Zhao *et al.*, 2018). Despite predicted contributions to multiple various
177 aspects of gene regulation, with subcellular localization being key to its function (Statello *et*
178 *al.*, 2021), the study of lncRNAs, especially at the single-cell level, remains limited (He *et al.*,
179 2023). Here, we tested whether our cryo-smFISH method could be used to detect an
180 uncharacterized lowly expressed lncRNA. *asSOFL1*, is the antisense lncRNA to *SOFL1* (Kim *et*
181 *al.*, 2022). We reanalysed bulk RNA-seq data from *Arabidopsis* wild type root tip (Choe *et al.*,
182 2017). Among other genes, *asSOFL1* RNA was found to be weakly expressed but detectable
183 within the root tip (**Figure S8B**). We next designed smFISH probes targeting *asSOFL1*
184 transcripts and performed cryo-smFISH on *Arabidopsis* cross-sections. The results revealed
185 the presence of bright dots, corresponding to *asSOFL1* transcripts (**Figure 3A**). Counting
186 transcripts per cell revealed that, indeed, this lncRNA is weakly expressed with only a few
187 transcripts detected per cell (**Figure 3B**). Despite its low expression, *asSOFL1* transcripts were
188 found ubiquitously across various cell types within the root (**Figure 3C**). We then employed
189 RNase A treatment, which confirmed that the bright spots observed corresponded to true
190 RNA signals (**Figure S6C**). We additionally compared expression analysis of *asSOFL1* across
191 root cell types obtained from scRNA-seq, bulk RNA-seq and cryo-smFISH data (**Figure S8**). This
192 comparative analysis revealed that results obtained by cryo-smFISH are consistent with the
193 other two methods, with similar trends also observed for *NRT1.9* and *PP2A*.

194
195 Subcellular localization patterns of lncRNAs can provide insight into their function (Cabili *et*
196 *al.*, 2015). To elucidate the subcellular localization of *asSOFL1* transcripts, we applied DAPI
197 staining to our cryo-smFISH protocol. A visual inspection of images revealed that *asSOFL1*
198 transcripts are mostly found in the nucleus (**Figure 3D, E**). In order to obtain a quantitative
199 description in both nucleus and cytoplasm subcellular compartments, we modified the cell
200 segmentation step in our image analysis pipeline. This was achieved by implementing
201 Cellpose (Stringer *et al.*, 2021), a deep learning-based algorithm for cellular segmentation
202 (**Figure 3F**). Using two models trained specifically for segmenting cells and nuclei in
203 *Arabidopsis* and barley tissue cryosections, we created cell masks and nuclei masks required
204 as input files for subsequent transcript quantification in FISH-quant pipeline. With this
205 adapted image analysis pipeline, we were able to automatically assign transcripts to either
206 nucleus or cytoplasm compartments. Our cryo-smFISH results showed that almost 100% of
207 *asSOFL1* transcripts are localized in the nucleus (**Figure 3G, Figure S7**). In contrast, over 70%
208 of *PP2A* transcripts were found in the cytoplasm where translation occurs as expected for a
209 coding gene (**Figure 3H**). Together, these results illustrate that our cryo-smFISH protocol can
210 be used to detect lowly expressed transcripts, such as lncRNAs, and provide important data
211 on their quantitative expression at the cellular and subcellular levels.

212
213 **Simultaneous RNA and Protein Detection by sequential smFISH-IF protocol**
214 Exploring the subcellular localization of proteins in conjunction with gene expression
215 quantification and mRNA localization can shed light on the complex interplay between
216 transcriptional and post-translational gene regulation. To assess the compatibility of our cryo-
217 smFISH technique with immunofluorescence (IF), we used *Arabidopsis* root cryosections and
218 adapted a sequential smFISH-IF protocol as previously described (Rosa *et al.*, 2016). Using
219 probes against the *PP2A* mRNA, we first performed cryo-smFISH, followed by the IF protocol
220 using an antibody against the histone marker H4Ac. The results revealed that the antibody
221 staining worked well after cryo-smFISH protocol with uniform signals across all cells and good
222 tissue preservation, allowing an easy overlay of cryo-smFISH and IF images (**Figure 4A**). This
223 dual approach allowed us to not only visualize the presence of *PP2A* mRNA and H4Ac in the
224 same cells but also quantify their levels per cell (**Figure 4B, C**) and assess their abundance
225 within the same cells and across different cell types (**Figure 4D**). Importantly, this sequential

226 cryo-smFISH/IF protocol can be extended to crop species such as barley (**Figure 4B**). The
227 development of this protocol will be of important application for colocalization studies
228 especially for species for which transgenesis has not been achieved.

229

230 **Discussion**

231 In this study, we introduce an optimized smFISH protocol designed specifically for plant tissue
232 cryosections. Our cryo-smFISH method provides an effective approach to obtain the precise
233 quantitative detection of RNA spatial distribution with single-cell and single-molecule
234 resolution in plant tissue sections. This approach is relatively easier and faster compared to
235 other sectioning methods such as the ones involving paraffin embedding. While
236 cryosectioning poses greater challenges for tissue preservation compared to paraffin
237 sections, it excels in maintaining the stability of biomolecules, including protein epitopes and
238 nucleotides (Hira *et al.*, 2019). Compared to our recently established smFISH for whole mount
239 tissue, the choice of method will depend on the type of material and the final objective of the
240 study. While whole-mount smFISH performs well in preserving the tissue structure it may
241 yield inferior signal-to-noise ratios for thicker specimens. Furthermore, if the goal is to
242 combine RNA with protein detection through immunofluorescence, cryosectioning offers a
243 distinct advantage, as antibody penetration is notably more efficient in tissue cryosections.
244 The use of thin sections also allows for the use of widefield microscopes, which can be
245 invaluable when confocal microscopes are not readily available. Moreover, the use of
246 widefield systems for cryo-smFISH samples can significantly expedite image acquisition
247 compared to confocal imaging, while still allowing for excellent segmentation results.

248

249 The complexity of vascular tissue structure and development have historically made high-
250 resolution gene expression profiling challenging. Detailed gene expression profiling has
251 predominantly been explored through scRNA-seq (Wendrich *et al.*, 2020; Chen *et al.*, 2021;
252 Otero *et al.*, 2022; Kułak *et al.*, 2023). Here, we employed cryo-smFISH to physically map and
253 quantify the vascular tissue-specific gene *NRT1.9* within individual cells in a transgene-free
254 manner. Our analysis, combining scRNA-seq with cryo-smFISH, highlights the significant
255 application of smFISH as a powerful method for validating scRNA-seq data while
256 complementing it with cellular or subcellular spatial information. This further reinforces the

257 importance of expanding the use of smFISH for several plant tissues and preparations,
258 particularly as the demand for scRNA-seq validation methods continues to rise.

259
260 Lastly, cryo-smFISH exhibits sensitivity in detecting lowly expressed genes, such as long
261 noncoding RNAs, thereby expanding our capabilities to study RNA function at both cellular
262 and subcellular levels. However, it's worth noting some limitations. While some tissues, like
263 barley roots, yield good cryosections relatively easily, others, such as leaves or *Arabidopsis*
264 roots, may present challenges in maintaining tissue integrity and require careful optimization
265 and practice. Additionally, like most smFISH methods, our protocol has limitations in
266 detecting RNAs with lengths shorter than 600 nucleotides and co-detecting multiple RNA
267 species (see **Table S1** for additional strengths and limitations of cryo-smFISH).

268
269 In summary, our cryo-smFISH method represents a valuable tool for conducting precise
270 quantitative studies of single-molecule RNA within plant tissue sections in a highly spatial
271 resolved manner. This innovative approach enables plant biology researchers to explore the
272 complexity of transcriptional and translational products at both cellular and subcellular levels,
273 thereby greatly expanding the scope of research possibilities in this field.

274
275 **Acknowledgements**
276 We thank A. Menkis for initial cryostat technical support and Alexandre Berr for giving
277 scientific feedback, and members of the Sicard and Rosa groups for discussion and comments
278 on the article. This work was supported by Knut and Alice Wallenberg Foundation (KAW 2019-
279 0062) and Carl Tryggers Stiftelse (CTS 18- 325).

280
281 **Declaration of interests**
282 The authors declare no competing or financial interests.

283
284 **Contributions**
285 X.Z., A.S. and S.R. designed the research. X.Z. performed cryo-smFISH experiments; K.K.
286 performed IF experiments; X.Z. analyzed scRNA-seq and bulk RNA-seq; A.F. and X.Z.
287 performed image analysis; X.Z. and A.F. prepared figures; S.D. contributed to method

288 optimization steps; X.Z. and S.R. wrote the manuscript. All authors commented and approved
289 the final manuscript.

290

291 **Data availability**

292 These supplementary files, and all data underlying the graphs and heatmaps presented can
293 be accessed at https://github.com/xuezhang911/zhang_et_al_smFISH_cryosections.

294

295 **Code availability**

296 All custom code (R/Python scripts) can be accessed at
297 https://github.com/xuezhang911/zhang_et_al_smFISH_cryosections.

298

299

300 **Methods**

301 Plant materials and growth condition

302 *Arabidopsis* (*Arabidopsis thaliana*) Col-0 and Barley (*Hordeum vulgare*) were used in this
303 study. Barley (*Hordeum vulgare*) seeds were a gift from Silvana Moreno (Department of Plant
304 Biology, SLU – Uppsala, Sweden). Seeds were submerged with 1ml 70% ethanol in 2ml
305 Eppendorf tubes and placed on the rotating wheel for 5-10mins, followed by three times wash
306 with 95% ethanol. Then, ethanol was removed, and seeds were placed in the clean hood to
307 dry.

308 After 2-3 days of stratification seeds were sown on Murashige and Skoog (MS) agar plates,
309 the plates were transferred to a growth chamber with the following conditions: photoperiod
310 of 16 hours day and 8 hours night and a temperature cycle of 22°C during the day and 20°C
311 during the night. *Arabidopsis* root tips were collected 7 days after germination. Barley roots
312 were collected 4 days after germination.

313

314 smFISH probe design

315 Probes targeting the genes of interest were designed using online website from Biosearch
316 Technologies: <https://www.biosearchtech.com/stellaris-designer>. The sequences of the
317 probe were then subjected to quality control process using automated local blast R-script,
318 available in github at:
319 https://github.com/xuezhang911/zhang_et_al_smFISH_cryosections/tree/main/smFISHpro

320 bes. The smFISH probes used in this study and respective fluorophores are shown in Table S2.

321 The probes were diluted in TE buffer at a final stock concentration of 25 μ M.

322

323

324 Cryo-smFISH

325 *I. Sample preparation:*

326 Tissues were dissected using a razor blade and fixed with 4% (m/v) paraformaldehyde (PFA)
327 solution in nuclease-free 1xPBS buffer (pH8.0, Sigma-Aldrich, Cat.# AM9624). Following
328 fixation, the tissues were subjected to a cryoprotection process with 34% sucrose in 1xPBS,
329 followed by an overnight incubation with mild shaking in a mixture of equal parts 34% sucrose
330 in 1xPBS and optimal cutting temperature compound (OCT; Leica Biosystems
331 Cat.#14020108926) liquid at 4°C. Subsequently, the samples were exposed to pre-chilled OCT
332 liquid for 30 minutes to an hour with mild shaking before preparing tissue blocks. Then, using
333 tweezers, the tissues (either roots or leaves) were gently placed into 3D-printed Cryomolds
334 (1cm x 1cm x 1cm), filled with pre-chilled OCT. These OCT-embedded tissue blocks were
335 frozen, either by contact with dry ice or indirect contact with liquid nitrogen. Cryosection
336 blocks were then wrapped in foil and stored at -80°C until cryosectioning. 10 μ m (Arabidopsis
337 and barley roots) or 5 μ m (barley leaves) of cryosections cut by cryostat (Leica CM1850) were
338 attached to selected polysine adhesion slides (Polysine™ adhesion microscope slides Cat.#
339 48382-117) followed by air-dry for up to 20 mins and post-fixation for 10mins with 4% PFA at
340 RT. Subsequently, after rinsing 3 times with 1xPBS, the slides with sections were subjected to
341 permeabilization using methanol, ethanol, and clearsee solution: Xylitol powder10% (w/v;
342 Sigma-Aldrich, Cat.# X3375), Sodium deoxycholate 15% (w/v; Sigma-Aldrich, Cat.# D6750) and
343 Urea 25% (w/v; Sigma-Aldrich, Cat.# U5378) dissolved in RNase-Free Distilled Water (Qiagen,
344 Cat.#10-977-015 . The slides were then stored at 4°C overnight, ready for subsequent smFISH
345 procedure.

346 *II. Hybridization:*

347 The procedure is conducted as described previously with slight modifications (Duncan et al.,
348 2016; Zhao et al., 2023). Briefly, slides prepared with cryosectioned samples were first rinsed
349 2-3 times with wash buffer (10% (v/v) nuclease-free; 20x SSC (Thermo Scientific, Cat.
350 #AM9763); 10% (v/v) deionized formamide (Merck, Cat.#S4117); 0.1% (v/v) Triton X-100
351 (Sigma-Aldrich, Cat.#T8787). 100 μ l of hybridization solution (10%(w/v) dextran sulfate;

352 10%(v/v) deionized formamide) with probes at a final concentration of 250 nM was added to
353 each slide. Plastic coverslips were laid over the samples to prevent buffer evaporation and
354 the probes were left to hybridize in a humid chamber at 37 °C overnight in the dark.

355 *III. Post-hybridization and mounting:*

356 Plastic coverslips were gently removed and hybridization solution containing unbound probes
357 was rinsed out with 2-time wash using wash buffer. Subsequently, slides were immersed in
358 coplin jars containing wash buffer for up to 1 hour at 37 °C. DAPI (1:10000) or SR2200 dye
359 (1:50000; Renaissance Chemicals Ltd., see Recipes Musielak et al. 2015;) in wash buffer was
360 applied for 10-15 mins and 5-10 mins respectively. After 5-10 mins of washing with 2xSSC
361 buffer, samples were mounted in freshly prepared GLOX mounting medium (0.4 % glucose;
362 10nM Tris-HCl, pH 8.0 (Invitrogen, Cat.#AM9856) and 2× SCC; 1/100(v/v) glucose oxidase
363 (Sigma,Cat.# G2133-10KU) and 2/100 (v/v) mildly vortexed catalase catalase enzyme from
364 bovine liver(Sigma, Cat.# C3155-50MG)) and sealed with nail polish.

365

366 smFISH followed by immuno-fluorescence (IF)

367 We conducted cryo-smFISH and IF sequentially, cryo-smFISH protocol for RNA detection was
368 performed first according to the earlier description, followed by immunofluorescence
369 protocol after cryo-smFISH image acquisition. After imaging, the coverslips were gently
370 removed and samples were then rinsed three times with 1xPBS solution. Samples were then
371 incubated with the enzyme mix (2% Driselase, 1% Cellulase, 2% Macerozyme in 1x PBS) for 15
372 min in a humid chamber at 37 °C. After washing three times with 1xPBS, samples were
373 incubated with 5% BSA blocking buffer in a humid chamber for 30 min at 37 °C. Subsequently,
374 the samples were incubated with the H4ac antibody (Bio-Rad, AHP418) diluted 100 times in
375 5% BSA in a humid chamber overnight at 4 °C. The samples were then washed with PBST (0.1%
376 Tween in 1xPBS) buffer by incubating in Coplin jars at 37 °C for 30 min. Then samples were
377 incubated with secondary antibody (Agrisera, AS09633) diluted 200 times in 5% BSA in a
378 humid chamber at 37 °C for 2 hours. The excess antibody was removed, and samples were
379 washed with PBST in coplin jars at 37 °C in the dark for 30 min. Samples were then rinsed with
380 1xPBS and mounted in a drop of Vectashield (Bionordika, Cat.# VEH-1000) medium.

381

382 Image acquisition

383 A Zeiss LSM800 inverted confocal microscope (Zen Black Software) was used for imaging
384 through a 63X water-immersion objective (1.20 NA). We acquired z-stacks with 0.2 μ m
385 spacing. The following channel settings were used: DAPI/SR2200: 353nm excitation, 420–
386 470 nm emission; Quasar570: 548 nm excitation, 570–640 nm emission; Quasar670: 650 nm
387 excitation, 665–715 nm emission; H4ac: 488 nm excitation, 500–550 nm emission.
388 For widefield microscopy, we acquired varying from 10 to 40 z-stack images with a cooled
389 quad-port CCD (charge-coupled device) ZEISS Axiocam 503 mono camera through a 63X
390 water-immersion objective (1.20 NA). The following channel settings were used: Quasar570,
391 533-558nm excitation, 561nm emission; Quasar670: 625-655nm excitation, 673nm emission;
392 DAPI/SR2200: 335-383nm excitation, 465nm emission.

393

394 Image analysis

395 To quantify the number of transcripts and protein levels per cell in an unbiased manner, we
396 adapted the automated computational workflow utilized by Zhao *et al.*, 2023. Our workflow
397 mixes functions of four freely available software programs: Fiji (Schindelin *et al.*, 2012),
398 Cellpose (Stringer *et al.*, 2021), FISH-quant (Mueller *et al.*, 2013; Imbert *et al.*, 2022),
399 CellProfiler (Carpenter *et al.*, 2006; Stirling *et al.*, 2021) and python script. To conduct the
400 analyses, we worked with separated TIF images for each channel: SR2200, DAPI, smFISH, or
401 IF. Shifts and misalignments between channels and images acquired for the same section
402 were corrected using the BigWarp tool in Fiji (Bogovic *et al.*, 2016). The maximum z-projection
403 or single plane confocal or wide field images were used for analysis.

404

405 Cell and nuclear segmentation

406 Image segmentation was performed using Cellpose-trained algorithms (Stringer *et al.*, 2021).
407 For cell segmentation, using SR220 channel images as input, the 'cyto' algorithm was selected
408 as pre-trained model for annotating individual cells within the tissue. To achieve accurate cell
409 segmentations, a semi-supervised training for SR2200 channel images was implemented.
410 Following annotation step, manual corrections and consecutive training cycles were applied
411 until cell borders were precisely outlined. New models specifically segmenting cells of
412 Arabidopsis or Barley tissue sections were generated, which were utilized to generate cell
413 masks for subsequent transcription quantification step.

414 For the nucleocytoplasmic level analyses, we first trained a new segmentation model from
415 the pre-loaded ‘nuclei’ algorithm or from cell segmentation model developed earlier from
416 SR2200 images, using semi-supervised training as outlined above. As result, we established
417 two models specifically segmenting cells with well-defined cell borders and nucleus within
418 Arabidopsis or Barley tissue sections. These two models were thereafter utilized to create cell
419 and nuclei masks for subsequent transcription quantification step.

420

421 Image filtering and dot quantification

422 We employed MATLAB version of FISH-quant v3 for quantifying RNA dots in cryo-smFISH
423 images (Mueller *et al.*, 2013; Imbert *et al.*, 2022). The software and its accompanying manual
424 can be accessed on Bitbucket, provided by Florian Mueller:
425 https://bitbucket.org/muellerflorian/fish_quant/src/master/.

426 The “Cell segmentation” tool was first utilized to generate text files containing FISH-quant
427 recognized nuclei or cell outline coordinates from the Cellpose-generated masks. After the
428 outline text file for a given image was imported, the loaded cryo-smFISH image was filtered
429 by applying a Dual-Gaussian filter. For wide field cryo-smFISH image in figure S7, before being
430 imported to FISH-quant, it was preprocessed with deconvolution lab2. The filtered image was
431 then smoothed with a Gaussian Kernel. The Gaussian Kernel ratio required adjustment for
432 each gene and in various tissue contexts.

433 Subsequently, we conducted pre-detection of dot in one selected filtered image. It was
434 performed in the filtered image by defining threshold intensity and quality scores that fit
435 precise fluorescent foci detection. Following this, detected foci were fitted using Gaussian
436 fluorescence fitting based on the point-spread function (PSF). The settings were next
437 implemented to run the analysis in batch mode.

438 False positives were removed by thresholding the Sigma-XY, amplitude, and pixel-intensity
439 parameters, following the developer’s advice. Results were exported as tabulated files,
440 indicating the number of transcripts per cell and per nuclei for every cell identifier.

441

442 Image visualization

443 Cell or nuclei visualization: Cell and nuclei masks were created using Cellpose and imported
444 into CellProfiler to generate cell or nuclei outlines that trace the contours of individual cells
445 and their nuclei. These cell outline images were then imported into Adobe Illustrator. The

446 high-resolution images with fine preservation of detailed tissue structures were finalized
447 through image vectorization and a manual adjustment of the membrane thickness for phloem
448 sieve element cells from *Arabidopsis* and Barley root.

449 Cryo-smFISH dot visualization: an image displaying cryo-smFISH dots was generated either
450 from the filtered image during transcript quantification step or from manually plotted dots
451 based on the coordinates provided by the final quantification output. Then this image was
452 overlaid with original cryo-smFISH RNA channel to enhance the visualization.

453

454 Protein quantification

455 The immunofluorescence images were analyzed using Cellprofiler (Carpenter *et al.*, 2006;
456 Stirling *et al.*, 2021). Cellpose-generated masks were imported and used to identify each
457 nucleus or cell as an independent object. From the IF images, we computed both the total
458 intensity and the mean intensity for each object, allowing us to determine protein levels
459 either on a per-nucleus or per-cell basis. Results were exported as tabulated files.

460

461 RNA or protein assignment to individual cells within cell type

462 To assign gene transcript numbers to specific cell types, we first obtained RNA mask and
463 cell/nuclei mask. For RNA mask, we visualized RNA molecules by displaying their XY
464 coordinates on a blank image. These coordinates representing the center of dots were
465 obtained during transcription detection step. For cell/nuclei mask, we used Cellpose
466 generated masks. Subsequently, we imported both RNA mask and cell/nuclei mask into
467 CellProfiler, and the number of RNA molecules per individual cells was counted and displayed
468 on cell/nuclei masks. Similarly, after we measure the protein intensity with CellProfiler, the
469 intensity within individual cells was counted and displayed on cell masks. Consequently,
470 images with well-defined tissue structures, cell/nuclei borders and RNA masks as graphical
471 representations of the single-cell results were produced.

472

473 scRNA-seq analysis

474 Normalized counts file in h5 format was downloaded from the Gene Expression Omnibus
475 (GSE141730_aggregated_filtered_gene_bc_matrices.h5). Feature selection, dimension
476 reduction, and clustering were performed as the original article described (Wendrich *et al.*,
477 2020). Cell types were manually annotated using marker genes provided by the article. Then

478 for data analysis in this article, we subset the whole Seurat dataset to only focus on the cell
479 types including Epidermis, Cortex, Endodermis, Pericycle, Phloem, Procambium and Xylem
480 cells.

481

482 **Bulk RNA-seq analysis**

483 The fastq file for WT was downloaded from the NCBI study GSE96945. After rRNA removal by
484 SortMeRNA, adaptors were trimmed by Trimmomatic. The gene raw counts matrix was
485 obtained with pseudo-align software Kallisto. RNA-seq reads were normalized by transcript
486 per million.

487

488

489 **REFERENCES**

490 **Anjam MS, Ludwig Y, Hochholdinger F, Miyaura C, Inada M, Siddique S, Grundler FMW.**
491 **2016.** An improved procedure for isolation of high-quality RNA from nematode-infected
492 Arabidopsis roots through laser capture microdissection. *Plant Methods* **12:** 25.

493 **Bauman JGJ, Wiegant J, Borst P, van Duijn P. 1980.** A new method for fluorescence
494 microscopical localization of specific DNA sequences by *in situ* hybridization of fluorochrome-
495 labelled RNA. *Experimental Cell Research* **128:** 485–490.

496 **Bawa G, Liu Z, Yu X, Qin A, Sun X. 2022.** Single-Cell RNA Sequencing for Plant Research:
497 Insights and Possible Benefits. *International Journal of Molecular Sciences* **23:** 4497.

498 **Bogovic JA, Hanslovsky P, Wong A, Saalfeld S. 2016.** Robust registration of calcium images
499 by learned contrast synthesis. In: 2016 IEEE 13th International Symposium on Biomedical
500 Imaging (ISBI). Prague, Czech Republic: IEEE, 1123–1126.

501 **Brigati DJ, Myerson D, Leary JJ, Spalholz B, Travis SZ, Fong CKY, Hsiung GD, Ward DC. 1983.**
502 Detection of viral genomes in cultured cells and paraffin-embedded tissue sections using
503 biotin-labeled hybridization probes. *Virology* **126:** 32–50.

504 **Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL,**
505 **Raj A. 2015.** Localization and abundance analysis of human lncRNAs at single-cell and single-
506 molecule resolution. *Genome Biology* **16:** 20.

507 **Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang I, Friman O, Guertin DA, Chang J,**
508 **Lindquist RA, Moffat J, et al. 2006.** CellProfiler: image analysis software for identifying and
509 quantifying cell phenotypes. *Genome Biology* **7:** R100.

510 **Chen H, Yin X, Guo L, Yao J, Ding Y, Xu X, Liu L, Zhu Q-H, Chu Q, Fan L. 2021.** PlantscRNADB:
511 A database for plant single-cell RNA analysis. *Molecular Plant* **14:** 855–857.

512 **Choe J, Kim B, Yoon EK, Jang S, Kim G, Dhar S, Lee SA, Lim J. 2017.** Characterization of the
513 GRAS transcription factor SCARECROW-LIKE 28's role in *Arabidopsis* root growth. *Journal of*
514 *Plant Biology* **60**: 462–471.

515 **Cox KH, DeLeon DV, Angerer LM, Angerer RC. 1984.** Detection of mRNAs in sea urchin
516 embryos by *in situ* hybridization using asymmetric RNA probes. *Developmental Biology* **101**:
517 485–502.

518 **Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. 2019.** Spatiotemporal
519 Developmental Trajectories in the *Arabidopsis* Root Revealed Using High-Throughput Single-
520 Cell RNA Sequencing. *Developmental Cell* **48**: 840–852.e5.

521 **Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin**
522 **W, Schlesinger F, et al. 2012.** Landscape of transcription in human cells. *Nature* **489**: 101–
523 108.

524 **Duncan S, Johansson HE, Ding Y. 2023.** Reference genes for quantitative *Arabidopsis* single
525 molecule RNA fluorescence *in situ* hybridization (P Manavella, Ed.). *Journal of Experimental*
526 *Botany* **74**: 2405–2415.

527 **Duncan S, Olsson TSG, Hartley M, Dean C, Rosa S. 2016.** A method for detecting single mRNA
528 molecules in *Arabidopsis thaliana*. *Plant Methods* **12**: 13.

529 **Duncan S, Olsson T, Hartley M, Dean C, Rosa S. 2017.** Single Molecule RNA FISH in *Arabidopsis*
530 Root Cells. *BIO-PROTOCOL* **7**.

531 **Fernino AM, Fay FS, Fogarty K, Singer RH. 1998.** Visualization of Single RNA Transcripts in Situ.
532 *Science* **280**: 585–590.

533 **Harrison PR, Conkie D, Paul J, Jones K. 1973.** Localisation of cellular globin messenger RNA
534 by *in situ* hybridisation to complementary DNA. *FEBS Letters* **32**: 109–112.

535 **He Z, Lan Y, Zhou X, Yu B, Zhu T, Yang F, Fu L-Y, Chao H, Wang J, Feng R-X, et al. 2023.** Single-
536 cell transcriptome analysis dissects lncRNA-associated gene networks in *Arabidopsis*. *Plant*
537 *Communications*: 100717.

538 **Heiles HB, Genersch E, Kessler C, Neumann R, Eggers HJ. 1988.** *In situ* hybridization with
539 digoxigenin-labeled DNA of human papillomaviruses (HPV 16/18) in HeLa and SiHa cells.
540 *BioTechniques* **6**: 978–981.

541 **Hira VVV, De Jong AL, Ferro K, Khurshed M, Molenaar RJ, Van Noorden CJF. 2019.** Comparison of different methodologies and cryostat versus paraffin sections for chromogenic
542 immunohistochemistry. *Acta Histochemica* **121**: 125–134.

544 **Huang K, Batish M, Teng C, Harkess A, Meyers BC, Caplan JL. 2020.** Quantitative Fluorescence
545 In Situ Hybridization Detection of Plant mRNAs with Single-Molecule Resolution. In: Heinlein
546 M, ed. *Methods in Molecular Biology. RNA Tagging*. New York, NY: Springer US, 23–33.

547 **Huang T, Guillotin B, Rahni R, Birnbaum KD, Wagner D. 2023.** A rapid and sensitive, multiplex,
548 whole mount RNA fluorescence in situ hybridization and immunohistochemistry protocol.
549 *Plant Methods* **19**: 131.

550 **Hutchison N, Langer-Safer P, Ward D, Hamkalo B. 1982.** In situ hybridization at the electron
551 microscope level: hybrid detection by autoradiography and colloidal gold. *Journal of Cell
552 Biology* **95**: 609–618.

553 **Imbert A, Ouyang W, Safieddine A, Coleno E, Zimmer C, Bertrand E, Walter T, Mueller F.**
554 **2022.** FISH-quant v2: a scalable and modular tool for smFISH image analysis. *RNA* **28**: 786–
555 795.

556 **Jha UC, Nayyar H, Jha R, Khurshid M, Zhou M, Mantri N, Siddique KHM. 2020.** Long non-
557 coding RNAs: emerging players regulating plant abiotic stress response and adaptation. *BMC
558 Plant Biology* **20**: 466.

559 **Kim JY, Lee J, Kang MH, Trang TTM, Lee J, Lee H, Jeong H, Lim PO. 2022.** Dynamic landscape
560 of long noncoding RNAs during leaf aging in *Arabidopsis*. *Frontiers in Plant Science* **13**:
561 1068163.

562 **Kułak K, Wojciechowska N, Samelak-Czajka A, Jackowiak P, Bagniewska-Zadworna A. 2023.**
563 How to explore what is hidden? A review of techniques for vascular tissue expression profile
564 analysis. *Plant Methods* **19**: 129.

565 **Lucero L, Ferrero L, Fonouni-Farde C, Ariel F. 2020.** Functional classification of plant long
566 noncoding RNAs: a transcript is known by the company it keeps. *New Phytologist*: nph.16903.

567 **Lyubimova A, Itzkovitz S, Junker JP, Fan ZP, Wu X, van Oudenaarden A. 2013.** Single-
568 molecule mRNA detection and counting in mammalian tissue. *Nature Protocols* **8**: 1743–1758.

569 **Mueller F, Senecal A, Tantale K, Marie-Nelly H, Ly N, Collin O, Basyuk E, Bertrand E, Darzacq
570 X, Zimmer C. 2013.** FISH-quant: automatic counting of transcripts in 3D FISH images. *Nature
571 Methods* **10**: 277–278.

572 **Musielak T, Bürgel P, Kolb M, Bayer M. 2016.** Use of SCRI Renaissance 2200 (SR2200) as a
573 Versatile Dye for Imaging of Developing Embryos, Whole Ovules, Pollen Tubes and Roots. *BIO-
574 PROTOCOL* **6**.

575 **Nobori T, Oliva M, Lister R, Ecker JR. 2023.** Multiplexed single-cell 3D spatial gene expression
576 analysis in plant tissue using PHYTOMap. *Nature Plants* **9**: 1026–1033.

577 **Otero S, Gildea I, Roszak P, Lu Y, Di Vittori V, Bourdon M, Kalmbach L, Blob B, Heo J, Peruzzo
578 F, et al. 2022.** A root phloem pole cell atlas reveals common transcriptional states in
579 protophloem-adjacent cells. *Nature Plants* **8**: 954–970.

580 **Panoskaltsis-Mortari A, Bucy RP. 1995.** In situ hybridization with digoxigenin-labeled RNA
581 probes: facts and artifacts. *BioTechniques* **18**: 300–307.

582 **Pardue ML, Gall JG. 1969.** MOLECULAR HYBRIDIZATION OF RADIOACTIVE DNA TO THE DNA
583 OF CYTOLOGICAL PREPARATIONS. *Proceedings of the National Academy of Sciences* **64**: 600–
584 604.

585 **Raj A, Van Den Bogaard P, Rifkin SA, Van Oudenaarden A, Tyagi S. 2008.** Imaging individual
586 mRNA molecules using multiple singly labeled probes. *Nature Methods* **5**: 877–879.

587 **Rosa S, Duncan S, Dean C. 2016.** Mutually exclusive sense–antisense transcription at FLC
588 facilitates environmentally induced gene repression. *Nature Communications* **7**: 13031.

589 **Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden
590 C, Saalfeld S, Schmid B, et al. 2012.** Fiji: an open-source platform for biological-image analysis.
591 *Nature Methods* **9**: 676–682.

592 **Shahan R, Hsu C-W, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, Afanassiev A, Vlot
593 AHC, Schiebinger G, et al. 2022.** A single-cell *Arabidopsis* root atlas reveals developmental
594 trajectories in wild-type and cell identity mutants. *Developmental Cell* **57**: 543–560.e9.

595 **Shaw R, Tian X, Xu J. 2021.** Single-Cell Transcriptome Analysis in Plants: Advances and
596 Challenges. *Molecular Plant* **14**: 115–126.

597 **Singer RH, Ward DC. 1982.** Actin gene expression visualized in chicken muscle tissue culture
598 by using *in situ* hybridization with a biotinylated nucleotide analog. *Proceedings of the National
599 Academy of Sciences* **79**: 7331–7335.

600 **Skinner SO, Sepúlveda LA, Xu H, Golding I. 2013.** Measuring mRNA copy number in individual
601 *Escherichia coli* cells using single-molecule fluorescent *in situ* hybridization. *Nature Protocols*
602 **8**: 1100–1113.

603 **Solanki S, Ameen G, Zhao J, Flaten J, Borowicz P, Brueggeman RS. 2020.** Visualization of
604 spatial gene expression in plants by modified RNAscope fluorescent *in situ* hybridization. *Plant
605 Methods* **16**: 71.

606 **Stapel LC, Broaddus C, Vastenhouw NL. 2018.** Detection and Automated Analysis of Single
607 Transcripts at Subcellular Resolution in Zebrafish Embryos. In: Gaspar I, ed. *Methods in
608 Molecular Biology. RNA Detection*. New York, NY: Springer New York, 143–162.

609 **Statello L, Guo C-J, Chen L-L, Huarte M. 2021.** Gene regulation by long non-coding RNAs and
610 its biological functions. *Nature Reviews Molecular Cell Biology* **22**: 96–118.

611 **Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A. 2021.**
612 CellProfiler 4: improvements in speed, utility and usability. *BMC Bioinformatics* **22**: 433.

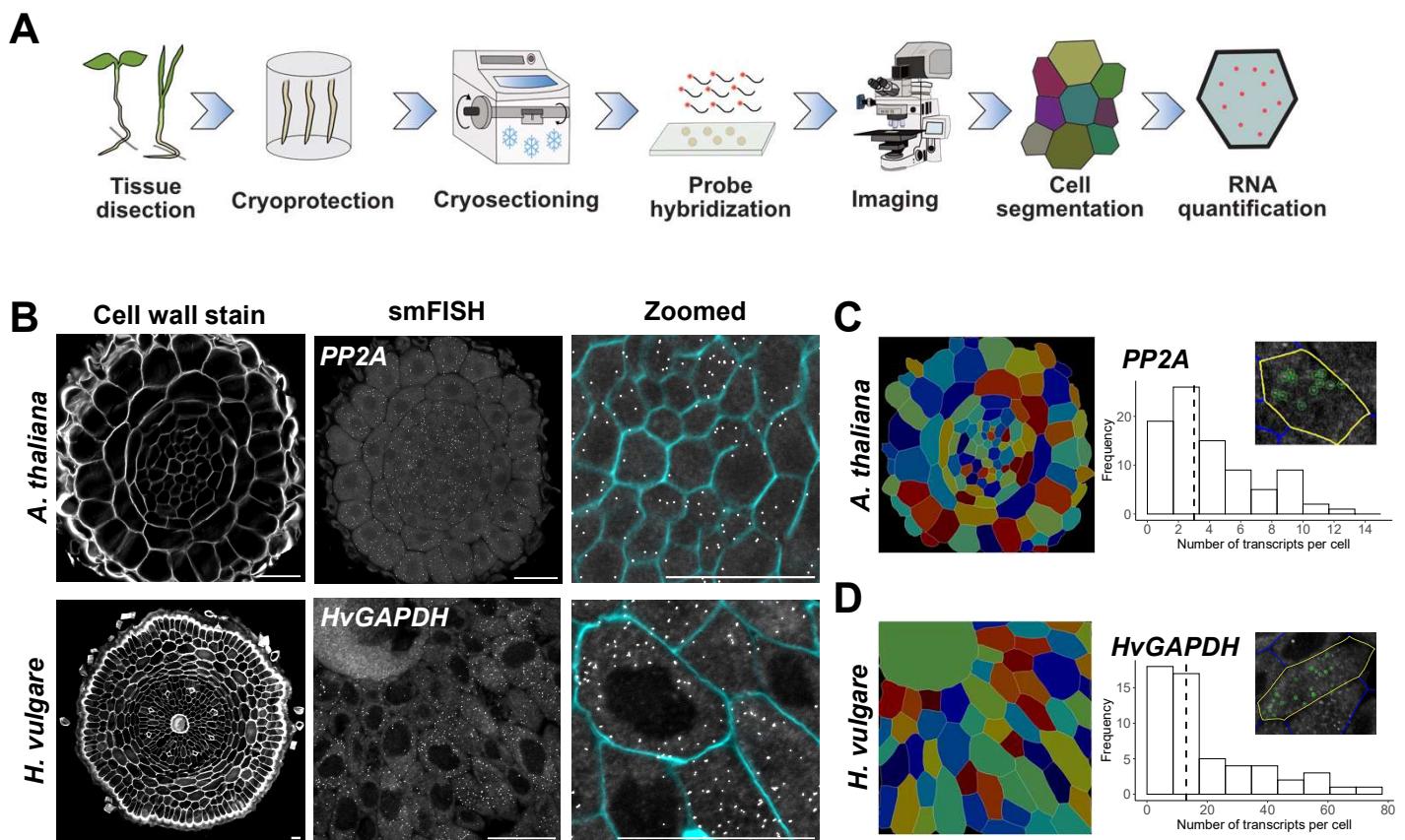
613 **Stringer C, Wang T, Michaelos M, Pachitariu M. 2021.** Cellpose: a generalist algorithm for
614 cellular segmentation. *Nature Methods* **18**: 100–106.

615 **Wang H, Chung PJ, Liu J, Jang I-C, Kean MJ, Xu J, Chua N-H. 2014.** Genome-wide identification
616 of long noncoding natural antisense transcripts and their responses to light in *Arabidopsis*.
617 *Genome Research* **24**: 444–453.

618 **Wang Y-Y, Tsay Y-F. 2011.** *Arabidopsis* Nitrate Transporter NRT1.9 Is Important in Phloem
619 Nitrate Transport. *The Plant Cell* **23**: 1945–1957.

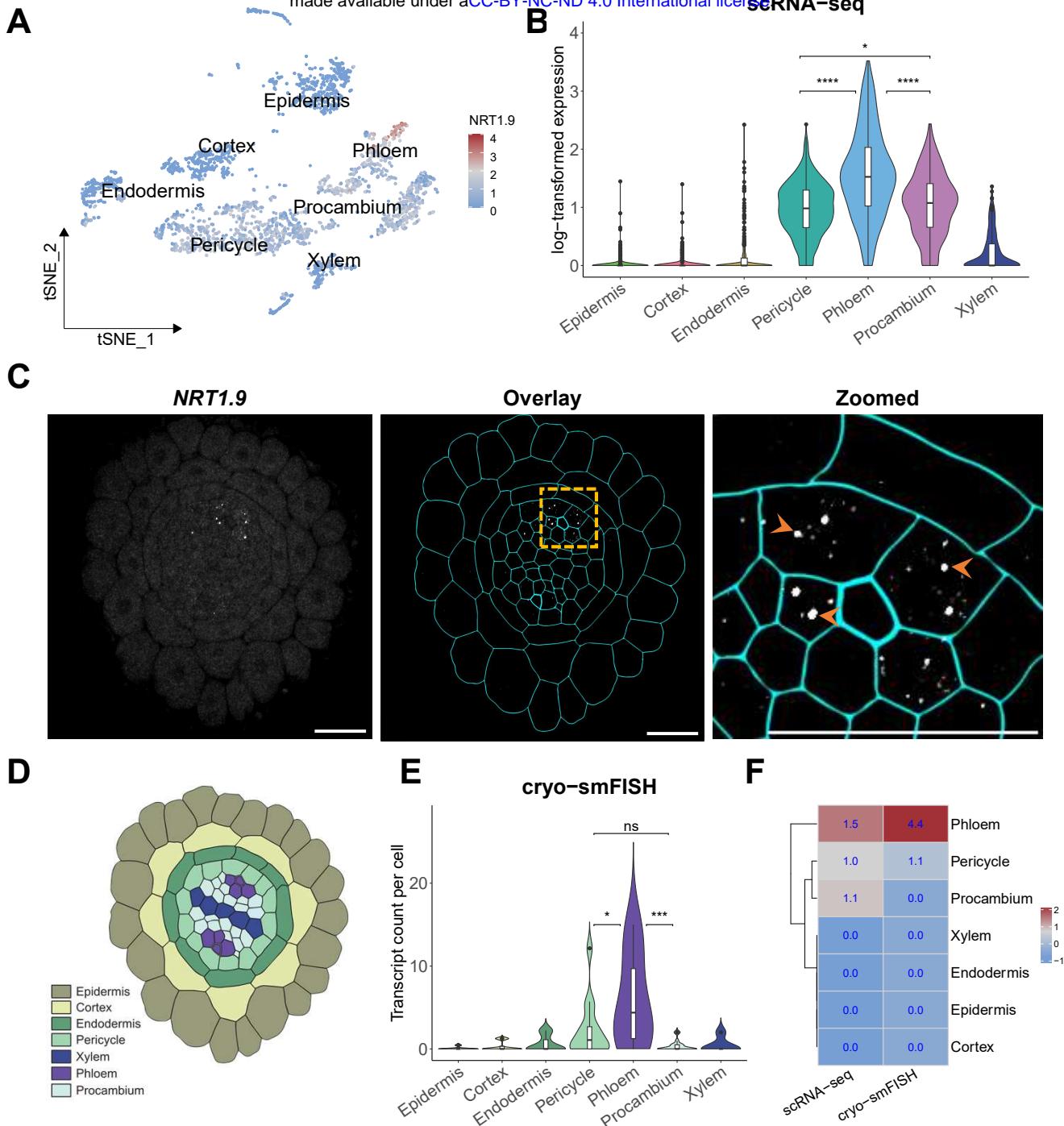
620 **Wendrich JR, Yang B, Vandamme N, Verstaen K, Smet W, Van De Velde C, Minne M,**
621 **Wybouw B, Mor E, Arents HE, et al. 2020.** Vascular transcription factors guide plant
622 epidermal responses to limiting phosphate conditions. *Science* **370**: eaay4970.

623 **Yang W, Schuster C, Prunet N, Dong Q, Landrein B, Wightman R, Meyerowitz EM. 2020.**
624 Visualization of Protein Coding, Long Noncoding, and Nuclear RNAs by Fluorescence in Situ
625 Hybridization in Sections of Shoot Apical Meristems and Developing Flowers. *Plant Physiology*
626 **182**: 147–158.


627 **Zhang T-Q, Xu Z-G, Shang G-D, Wang J-W. 2019.** A Single-Cell RNA Sequencing Profiles the
628 Developmental Landscape of *Arabidopsis* Root. *Molecular Plant* **12**: 648–660.

629 **Zhao L, Fonseca A, Meschichi A, Sicard A, Rosa S. 2023.** Whole-mount smFISH allows
630 combining RNA and protein quantification at cellular and subcellular resolution. *Nature Plants*
631 **9**: 1094–1102.

632 **Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y. 2018.** Global identification of *Arabidopsis* lncRNAs reveals
633 the regulation of MAF4 by a natural antisense RNA. *Nature Communications* **9**: 5056.


634

635

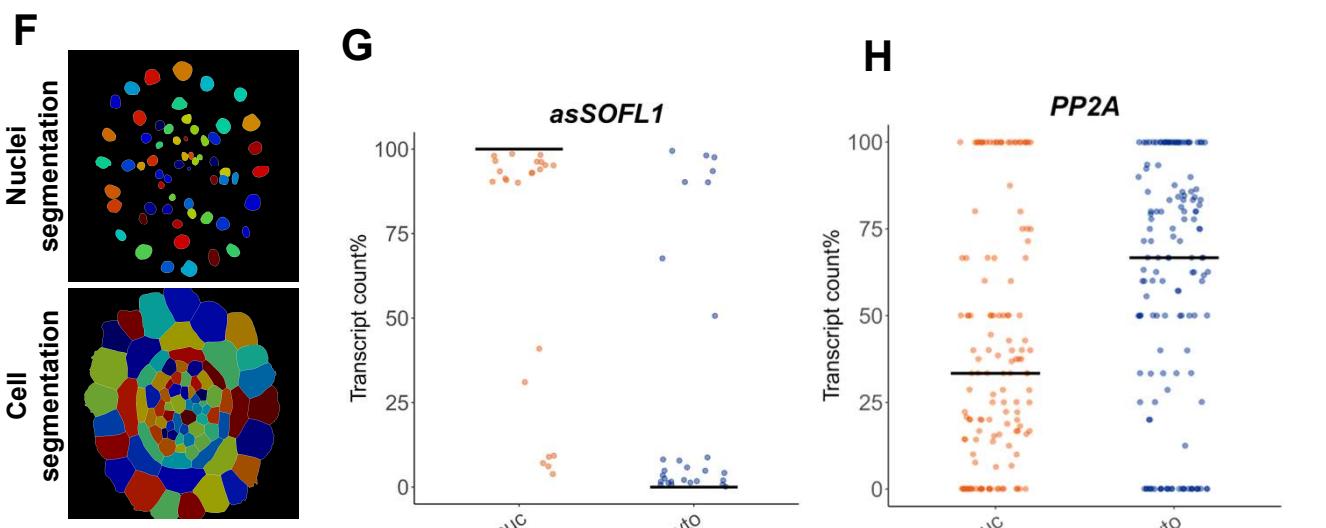
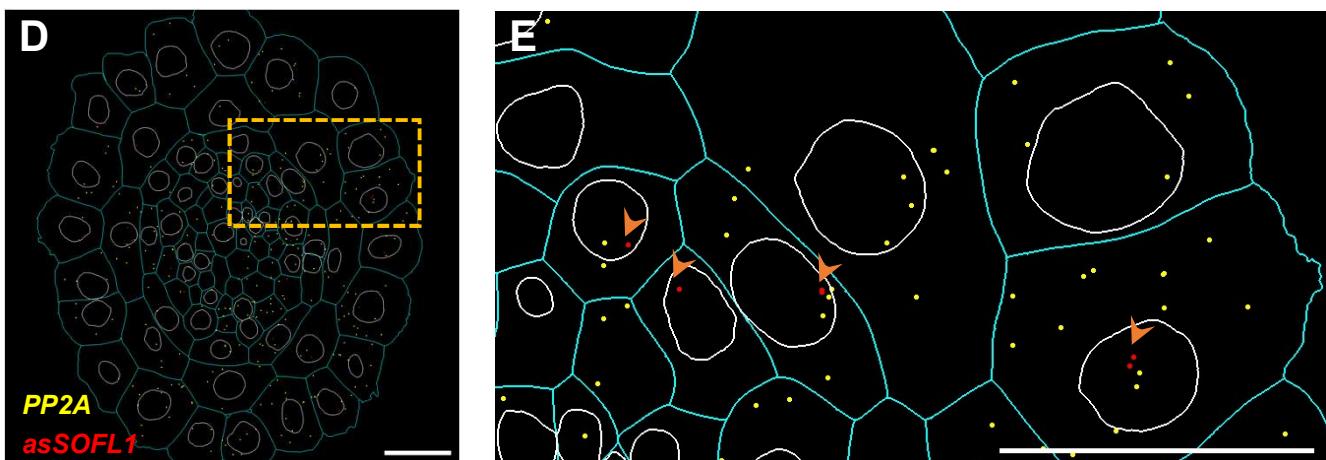
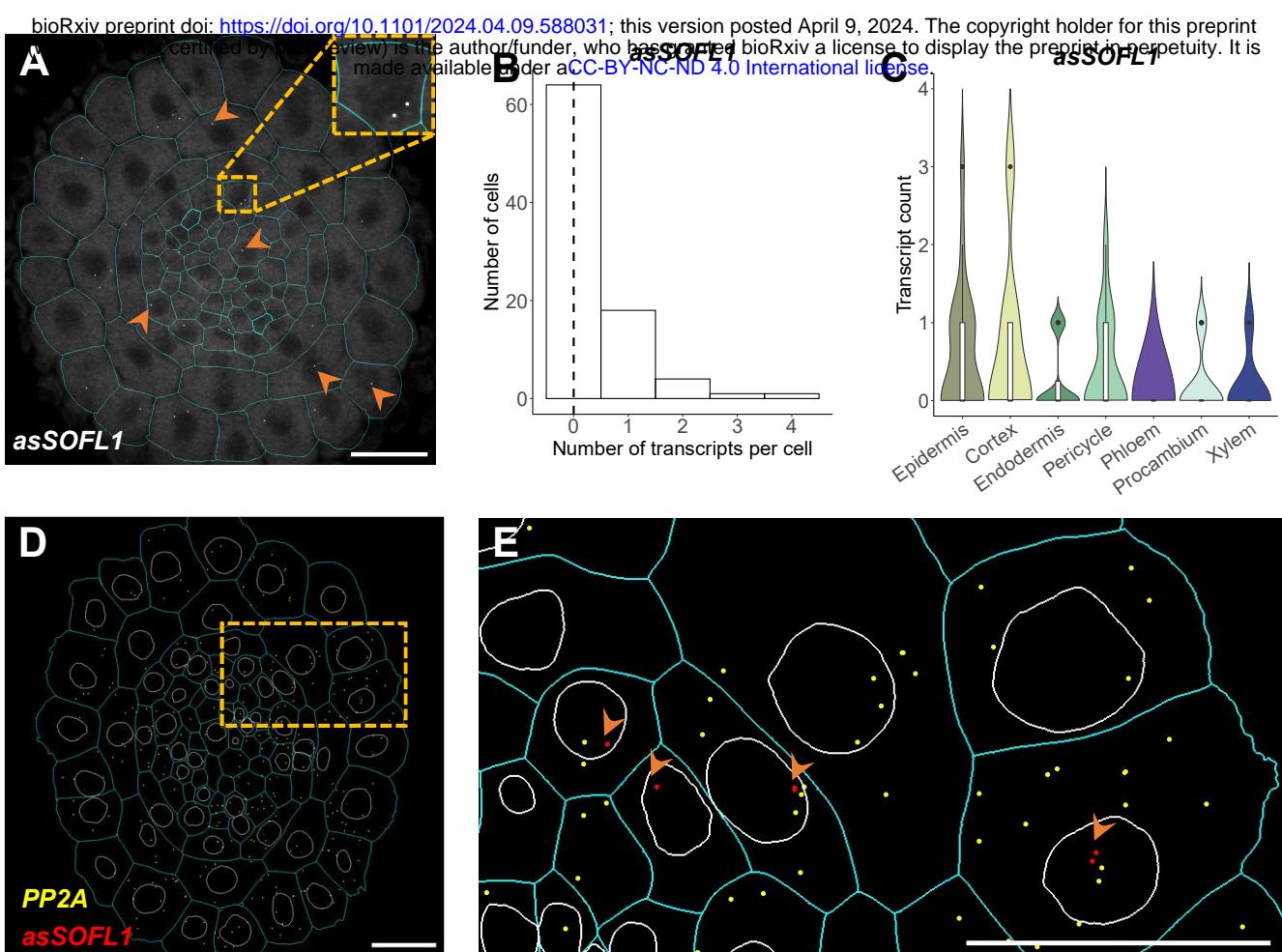




Figure 1. RNA detection and quantification on *Arabidopsis* and barley roots using cryo-smFISH.

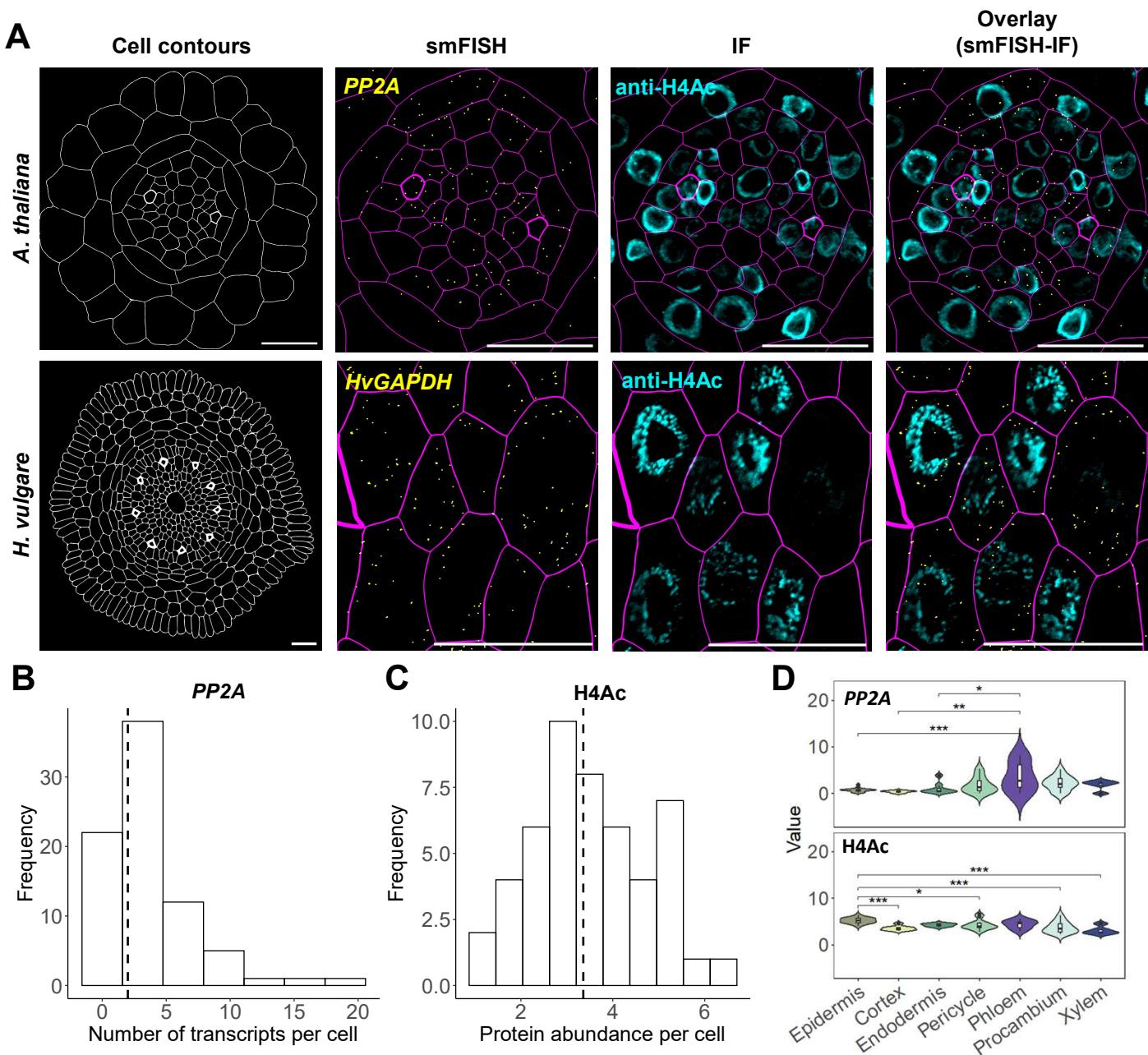

(A) Schematic illustration of cryo-smFISH detection and quantification workflow. (B) Single-plane confocal images of root cross-sections showing the detection of *PP2A* mRNA on *Arabidopsis* and *HvGAPDH* mRNA on barley. (left: cell contours visualized by cell wall staining with Renaissance 2200; middle: smFISH images with discrete white dots corresponding to individual RNA molecules; right: zoomed in image showing transcripts (white dots) and cell walls (cyan)). Scale bars, 20 μ m. (C-D) Segmented cell masks for *Arabidopsis* (C) and barley cryosections (D) generated by Cellpose (left panels). Histograms display the quantification of cryo-smFISH signals for *PP2A* (C) and *HvGAPDH* (D) for the images depicted in B using FISHquant. The dashed line shows the median of the distribution. The insert images show examples of RNA detection in individual cells.

Figure 2. Mapping the cellular distribution of *NRT1.9* transcripts in *Arabidopsis* roots through scRNA-seq and cryo-smFISH. (A) The expression pattern of *NRT1.9* detected by scRNA-seq was visualized in t-SNE (t-distributed stochastic neighbour embedding). (B) ScRNA-seq analysis of *NRT1.9* expression in different cell types. (C) Representative images of cryo-smFISH showing *NRT1.9* transcripts on *Arabidopsis* root cross-section. Left panel: single-plane confocal image of cryo-smFISH for *NRT1.9*; Middle panel: cell outlines obtained from segmentation using cell wall dye SR 2200 (cyan) and *NRT1.9* RNA smFISH signals (white). Right panel: zoomed-in image showing *NRT1.9* transcripts (white dots) and cell walls (cyan). The orange arrows indicate bright *NRT1.9* RNA foci. Scale bars, 20 μ m. (D) Schematic of cell types in a cross-section of an *Arabidopsis* root depicted in C. (E) The violin plot illustrates quantification transcripts per cell from cryo-smFISH image (n=86 cells) depicted in C. Four replicates from same development stage show similar results. (F) Heatmap illustrates that both scRNA-seq and cryo-smFISH methods have identified *NRT1.9* as being highly expressed in phloem cells. The values displayed on the heatmap represent the median value of transcripts within each cell type, which have been normalized based on the cell quantity. Plotting area is scaled by width in violin plots B&E. The violin plots boxes present the interquartile range (IQR 25-75%), indicating the median values as a horizontal line. Whiskers show the $\pm 1.58 \times \text{IQR}$ value. Statistical analyses were performed with one-way ANOVA followed by Tukey's honestly significant difference (HSD) tests. A p-value greater than 0.05 indicates no statistical significance (ns), while p-values less than 0.05, 0.001, and 0.0001 were denoted by *, and ***, respectively. In panel B and E, the comparison of p-values among pericycle, phloem, and procambium was displayed.

Figure 3. Cryo-smFISH enables the detection and quantification of long non-coding RNAs with subcellular resolution. (A) Representative cryo-smFISH image showing *asSOFL1* transcripts (white) on Arabidopsis root cross-section and cell outlines (cyan) obtained from segmentation using cell wall dye SR2200. Orange head arrows indicate *asSOFL1* RNA signals. (B) Histogram displays the distribution of *asSOFL1* transcript numbers in cells derived from image depicted in A. The dashed line indicates the median value of the transcript number detected within an individual cell. (C) Violin plot showing quantification of *asSOFL1* transcripts for different cell types, derived from image depicted in A. Experiments were repeated independently 5 times. Statistical analyses were performed with one-way ANOVA followed by Tukey's honestly significant difference (HSD) tests. A p-value greater than 0.05 indicates no statistical significance (ns), while p-values less than 0.05, 0.001, and 0.0001 were denoted by *, **, and ***, respectively. Only significant differences were labelled. Boxes inside violin plots show the interquartile range (IQR 25-75%), indicating the median values as a horizontal line. Whiskers show the $\pm 1.58 \times \text{IQR}$ value. (D) Detection of *asSOFL1* detection (red dots) and *PP2A* mRNA (yellow dots) using our image analysis pipeline. Cell and nucleus outlines obtained from segmentation using cell wall dye SR 2200 and DAPI respectively. (E) Zoomed-in image from the region highlighted in yellow in D. Orange head-arrows indicate *asSOFL1* RNA signals. (F) Cell and nuclei segmentation generated from DAPI channel image using Cellpose. (G, H) Quantification in percentage of transcripts in the nucleus (nuc) and cytoplasm (cyt) for *asSOFL1* (G, n=50 cells including nucleus for each group) and *PP2A* (H, n=201 cells for each group, 2 replicates are included) using jitter plots. The black horizontal line represent median value. Each dot indicates individual cell. Experiments were repeated independently 6 times. Scale bars, 20 μ m.

Figure 4. Sequential cryo-smFISH-IF protocol enables simultaneous detection and quantification of RNAs and endogenous proteins in single cells. (A) Images obtained using sequential cryo-smFISH-IF protocol on cross-sections of *Arabidopsis* and barley. (Cell wall outlines (white or magenta) obtained from segmentation using cell wall dye SR2200; Detected *PP2A* and *HvGAPDH* transcript (yellow); Detection of acetylated histone H4, H4Ac (cyan)). Scale bars, 20 μ m. (B, C) Histograms display the number of *PP2A* transcripts per cell (B) and the abundance of H4Ac endogenous protein levels per cell (C) in *Arabidopsis* root cross-sections. The dashed lines indicate median values. (D) Violin plot shows the distribution of *PP2A* mRNA and H4Ac protein levels within cell types from same *Arabidopsis* root cross-section. Values represent transcript number/protein intensity normalized by cell size. Boxes inside violin plots show the interquartile range (IQR 25-75%), indicating the median values as a horizontal line. Whiskers show the $\pm 1.58 \times$ IQR value. Statistical analyses were performed with one-way ANOVA followed by Tukey's honestly significant difference (HSD) tests. A p-value greater than 0.05 indicates no statistical significance (ns), while p-values less than 0.05, 0.001, and 0.0001 were denoted by *, **, and ***, respectively. Only significant differences were labelled. Experiments were repeated independently 4 times.