

1 **Chromosomal-level genome assembly and single-nucleotide polymorphism sites of**
2 **black-faced spoonbill *Platalea minor***

3 Hong Kong Biodiversity Genomics Consortium

4

5 Project Coordinator and Co-Principal Investigators: Jerome H.L. Hui¹, Ting Fung Chan²,
6 Leo L. Chan³, Siu Gin Cheung⁴, Chi Chiu Cheang^{5,6}, James K.H. Fang⁷, Juan Diego Gaitan-
7 Espitia⁸, Stanley C.K. Lau⁹, Yik Hei Sung^{10,11}, Chris K.C. Wong¹², Kevin Y.L. Yip^{13,14},
8 Yingying Wei¹⁵

9 DNA & RNA extraction, library preparation and sequencing: Wai Lok So¹

10 Genome assembly and gene model prediction: Wenyen Nong¹

11 Population data validation: Sean T.S. Law¹

12 Samples collector and logistics: Paul Crow¹⁶, Aiko Leong¹⁶, Liz Rose-Jeffreys¹⁶, Ho Yin Yip¹

13

14 1. School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory
15 of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese
16 University of Hong Kong, Hong Kong SAR, China

17 2. School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese
18 University of Hong Kong, Hong Kong SAR, China

19 3. State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City
20 University of Hong Kong, Hong Kong SAR, China

21 4. State Key Laboratory of Marine Pollution and Department of Chemistry, City University
22 of Hong Kong, Hong Kong SAR, China

23 5. Department of Science and Environmental Studies, The Education University of Hong
24 Kong, Hong Kong SAR, China

25 6. EcoEdu PEI, Charlottetown, PE, C1A 4B7, Canada

26 7. Department of Food Science and Nutrition, Research Institute for Future Food, and State
27 Key Laboratory of Marine Pollution, The Hong Kong Polytechnic University, Hong Kong
28 SAR, China

29 8. The Swire Institute of Marine Science and School of Biological Sciences, The University
30 of Hong Kong, Hong Kong SAR, China

31 9. Department of Ocean Science, The Hong Kong University of Science and Technology,
32 Hong Kong SAR, China

33 10. Science Unit, Lingnan University, Hong Kong SAR, China

34 11. School of Allied Health Sciences, University of Suffolk, Ipswich, IP4 1QJ, UK

35 12. Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong
36 Baptist University, Hong Kong SAR, China

37 13. Department of Computer Science and Engineering, The Chinese University of Hong
38 Kong, Hong Kong SAR, China

39 14. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.

40 15. Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China

41 16. Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong
42 Kong SAR, China

43

44 Correspondence on behalf of the consortium: jeromehui@cuhk.edu.hk

45

46 **Abstract**

47 *Platalea minor*, the black-faced spoonbill (Threskiornithidae) is a wading bird that is
48 confined to coastal areas in East Asia. Due to habitat destruction, it has been classified by The
49 International Union for Conservation of Nature (IUCN) as globally endangered species.
50 Nevertheless, the lack of its genomic resources hinders our understanding of their biology,
51 diversity, as well as carrying out conservation measures based on genetic information or
52 markers. Here, we report the first chromosomal-level genome assembly of *P. minor* using a
53 combination of PacBio SMRT and Omni-C scaffolding technologies. The assembled genome
54 (1.24 Gb) contains 95.33% of the sequences anchored to 31 pseudomolecules. The genome
55 assembly also has high sequence continuity with scaffold length N50 = 53 Mb. A total of
56 18,780 protein-coding genes were predicted, and high BUSCO score completeness (93.7% of
57 BUSCO metazoa_odb10 genes) was also revealed. A total of 6,155,417 bi-allelic SNPs were
58 also revealed from 13 *P. minor* individuals, accounting for ~5% of the genome. The resource
59 generated in this study offers the new opportunity for studying the black-faced spoonbill, as
60 well as carrying out conservation measures of this ecologically important spoonbill species.

61

62 **Introduction**

63 The black-faced spoonbill *P. minor* (Threskiornithidae) (Figure 1A) is confined to
64 coastal areas in East Asia including Hong Kong, Macau, Taiwan, Vietnam, North Korea,
65 South Korea, and Japan. The natural habitats of the *P. minor* have been disturbed by human
66 activities and industrialization, leading to the decline in bird's population over the last century
67 (Takano & Henmi 2012; Guo-An et al 2005)[1,2]. With an estimation of more than 6,000
68 individuals in the world, the International Union for Conservation of Nature (IUCN) has
69 categorised with globally endangered species. Interestingly, a quarter of the population of *P.*
70 *minor* in the world can be found in Hong Kong, and it is protected under the Wild Animals
71 Protection Ordinance Cap 200 locally. Genetic methods have been performed and attempted
72 to better retain this species with high conservation value (Lee et al 2017; Li et al 2022)[3,4].
73 Nevertheless, as of to date, a reference genome for this species remained missing.

74

75

76

77 **Methods**

78 *Sample collection*

79 Tissue samples of 14 *P. minor* individuals were collected at Tai Po, Hong Kong
80 between February 2015 and February 2020 and subsequently stored in 95% ethanol.

81

82 *Isolation of high molecular weight genomic DNA*

83 High molecular weight (HMW) genomic DNA was from a single individual, labelled
84 as “BFS13”. The tissue sample was first ground into powder with liquid nitrogen and
85 subsequently proceeded with the Qiagen MagAttract HMW kit (Qiagen Cat. No. 67563),
86 following the manufacturer’s protocol. The final DNA sample was eluted with 120 µl of
87 elution buffer (PacBio Ref. No. 101-633-500) and was subjected to quality check using the
88 NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer, Qubit® Fluorometer, and
89 overnight pulse-field gel electrophoresis.

90

91 *DNA shearing, PacBio library preparation and sequencing*

92 Approximately 4.4 µg of HMW DNA was processed with DNA shearing through 6
93 passes of centrifugation in a g-tube (Covaris Part No. 520079) at 2,000 x g for 2 min. The
94 sheared DNA was transferred to a 2 ml DNA LoBind® Tube (Eppendorf Cat. No. 022431048)
95 and temporary stored at 4 °C. Overnight pulse-field gel electrophoresis was conducted to
96 assess the fragment size distribution of the sheared DNA. Subsequently, a SMRT bell library
97 was constructed using the SMRTbell® prep kit 3.0 (PacBio Ref. No. 102-141-700), following
98 the manufacturer’s instructions. Briefly, the sheared DNA was processed with DNA repair,
99 followed by polishing and tailing with A-overhang at both ends of each DNA strand. T-
100 overhang SMRTbell adapters were then ligated to the polished ends to form SMRTbell
101 templates, which were purified with SMRTbell® cleanup beads (PacBio Ref. No. 102158-
102 300). The quantity and fragment size of the SMRTbell library were inspected with Qubit®
103 Fluorometer and overnight pulse-field gel electrophoresis, respectively. A nuclease treatment
104 was conducted to remove any non-SMRTbell structures and a subsequent size-selection step
105 with 35% AMPure PB beads was carried out to remove the short fragments. The final
106 preparation of the library was performed using the Sequel® II binding kit 3.2 (PacBio Ref. No.

107 102-194-100). In brief, Sequel II primer 3.2 and Sequel II DNA polymerase 2.2 were added
108 to anneal and bind to the SMRTbell templates, respectively. An internal control provided by
109 the kit was also added. Finally, the library was loaded on the PacBio Sequel IIe System at an
110 on-plate concentration of 90 pM with the diffusion loading mode. The sequencing was run in
111 30-hour moves, with a period of 120 min pre-extension. In total, one SMRT cell was used to
112 output HiFi reads and the details of sequencing data are listed in Table 1.

113

114 *Omni-C library preparation and sequencing*

115 An Omni-C library was constructed using the Dovetail® Omni-C® Library
116 Preparation Kit (Dovetail Cat. No. 21005), following the manufacturer's protocol. 80 mg of
117 tissue was ground into powder with liquid nitrogen and was then transferred to 1 mL 1X PBS,
118 followed by crosslinking with formaldehyde and digestion with endonuclease DNase I. An
119 aliquot of 2.5 μ L lysate was used for assessing lysate quantification and fragment size
120 distribution using Qubit® Fluorometer and TapeStation D5000 HS Screen Tape, respectively.
121 Then, end polishing, bridge ligation and proximity ligation were carried out in the crosslinked
122 DNA fragments. Subsequently, crosslink reversal was performed, followed by DNA
123 purification and size selection with SPRIselect™ Beads (Beckman Coulter Product No.
124 B23317). The library preparation was continued with end repair and adapter ligation using
125 the Dovetail™ Library Module for Illumina (Dovetail Cat. No. 21004), followed by DNA
126 purification with SPRIselect™ Beads. The DNA fragments were then captured with
127 Streptavidin Beads and Universal and Index PCR Primers from the Dovetail™ Primer Set for
128 Illumina (Dovetail Cat. No. 25005) were added to amplify the DNA library. A final size
129 selection was carried out using SPRIselect™ Beads to retain DNA fragments ranging
130 between 350 bp and 1000 bp. The quantity and fragment size distribution of the library was
131 inspected by the Qubit® Fluorometer and the TapeStation D5000 HS ScreenTape,
132 respectively. The final library was sequenced on an Illumina HiSeq-PE150 platform at
133 Novogene. The details of sequencing data are listed Table 1.

134

135 *Genome assembly and gene model prediction*

136 De novo genome assembly was performed using Hifiasm (Cheng et al 2021)[5].
137 Haplotypic duplications were identified and removed using purge_dups based on the depth of

138 HiFi reads (Guan et al 2020)[6]. Proximity ligation data from the Omni-C library was used to
139 scaffold genome assembly by YaHS (Zhou et al, 2022)[7]. Transposable elements (TEs) were
140 annotated using the automated Earl Grey TE annotation pipeline (version 1.2) as previously
141 described (Baril et al., 2022)[8]. Genome annotation was performed using Braker (v3.0.8)
142 (Hoff et al., 2019)[9] with default parameters. Briefly, the genome was soft-masked using
143 redmask (v0.0.2) (Girgis et al. 2015)[10]. 2,468,534 aves reference protein sequences were
144 downloaded from NCBI as protein hints. A blood RNA-Seq data (SRR6650848) (Cho et al
145 2019)[11] was also downloaded from NCBI and aligned to the soft-masked genome using
146 hisat2 [12]to generate the bam file. The protein and bam files were used as input to Braker for
147 genome annotation.

148

149 *Platalea minor* resequencing and single nucleotide polymorphism analysis

150 Genomic DNA from 13 *P. minor* individuals were isolated using the PureLink™
151 Genomic DNA Mini Kit (Invitrogen Cat no. K182002), following the manufacturer's
152 instructions. The quality of DNA samples were assessed with the NanoDrop™ One/OneC
153 Microvolume UV-Vis Spectrophotometer and 1% gel electrophoresis and were sent to
154 Novogene for sequencing on an Illumina HiSeq-PE150 platform at approximately 6X
155 coverage. Afterwards, the sequenced raw reads were trimmed by Trimmomatic (v0.39)
156 (Bolger et al., 2014)[13] and cleaned with Kraken 2 (Wood et al., 2019)[14]. The cleaned
157 reads were aligned to large scaffolds (>500 kb, n = 234) that account for 97.1% of the *P.*
158 *minor* reference genome with BWA-MEM (Li, 2013)[15] using parameters “-t 30 -M -R”.
159 Variant calls were performed using “HaplotypeCaller” and “GenotypeGVCFs” commands
160 from the Genome Analysis Toolkit (GATK, v4.1.2.0) (DePristo et al., 2011)[16]. Hard
161 filtering were employed to filter out single nucleotide polymorphisms (SNPs) with the
162 following criteria: quality by depth (QD) < 2.0, Fisher strand bias (FS) > 60.0, mapping
163 quality (MQ) < 40.0, mapping quality rank sum test (MQRankSum) < -12.5, and read
164 position rank sum test (ReadPosRankSum) < -8.0. The remaining SNPs were further filtered
165 for bi-allelic (“--min-alleles 2 --max-alleles 2) and the heterozygosity and inbreeding
166 coefficient were estimated using VCFtools (v0.1.16) (Danecek et al., 2011)[17].

167

168 **Results and discussion**

169 ***Genome assembly of P. minor***

170 A total of 25.35 Gb of HiFi bases were generated with an average HiFi read length of
171 9,365 bp with 20X data coverage (Table 1). After scaffolding with 77.79 Gb Omni-C
172 sequencing data, the assembled genome size was resulted in 1.24 Gb, with 468 scaffolds and
173 a scaffold N50 of 53 Mb in 8 scaffolds (Table 1 and 2; Figure 1B and 1C). The genome size
174 is comparable to the other bird species in the family Threskiornithidae, which have genome
175 sizes around 1.0-1.3 Gb, according to the data available in the NCBI Genbank, such as
176 *Theristicus caerulescens* (1.20 Gb, GCA_020745775.1), *Nipponia nippon* (1.31 Gb,
177 GCA_035839065.1) and *Mesembrinibis cayennensis* (1.19 Gb, GCA_013399675.1). The
178 genome completeness was estimated by BUSCO with a value of 93.7 % (metazoa_odb10)
179 (Table 2; Figure 1B). The GC content was 42.98%. A total of 14,673 gene models were
180 generated with 18,780 predicted protein-coding genes, having a mean coding sequence length
181 of 516 amino acids, and complete protein BUSCO value was 88.4% (Table 2).

182

183 ***Repeat content***

184 A total repeat content of 11.94% was found in the genome, which contained a lower
185 level of repeat elements, similar to other avian genomes (Zhang et al 2014)[18], with 2.49%
186 unclassified elements. Of the remaining repeats, LINE is the most abundant (5.10%),
187 followed by LTR (1.62%), whereas DNA, SINE, Penelope and rolling circle are only present
188 in low proportions (DNA: 0.63%, SINE: 0.09%, Penelope: 0.06%, rolling circle: 0.02%). A
189 complete catalogue of the repeat content of the genome can be found in Table 4 and Figure
190 1D.

191

192 ***Single nucleotide polymorphism sites (SNPs)***

193 A total of 6,155,417 bi-allelic SNPs were called from 13 *P. minor* individuals,
194 accounting for ~0.5% of the genome. The mean observed heterozygosity was 0.145%, which
195 is comparable to 0.109% from a previous study of 11 black-faced spoonbill samples (Li et al
196 2022)[4] (Table 5). Signals of inbreeding was observed among the samples, with inbreeding
197 coefficient (F_{IS}) ranging from 0.331 to 0.720 (Table 5).

198

199 **Conclusion and reuse potential**

200 This study presents the first chromosomal-level genome assembly and single-
201 nucleotide polymorphism sites of black-faced spoonbill *Platalea minor*, which is a useful and
202 precious resource for further population genomic studies of spoonbills in light of
203 understanding species numbers and conservation.

204

205 **Data validation and quality control**

206 During DNA extraction and PacBio library preparation, the samples were subjected to
207 quality control with NanoDropTM One/OneC Microvolume UV-Vis Spectrophotometer, Qubit[®]
208 Fluorometer, and overnight pulse-field gel electrophoresis. The Omni-C library was inspected
209 by Qubit[®] Fluorometer and TapeStation D5000 HS ScreenTape.

210 Regarding the genome assembly, the Hifiasm output was blast to the NT database and
211 the resultant output was used as the input for BlobTools (v1.1.1) (Laetsch & Blaxter
212 2017)[19]. Scaffolds that were identified as possible contamination were removed from the
213 assembly manually (Figure 2). A statistical kmer-based approach was applied to estimate the
214 heterozygosity of the assembled genome heterozygosity. The repeat content and the
215 corresponding sizes were analysed with k-mer 21 using Jellyfish (Marçais & Kingsford
216 2011)[20] and GenomeScope (Ranallo-Benavidez et al 2020)[21] (Figure 3; Table 6).
217 Benchmarking Universal Single-Copy Orthologs (BUSCO, v5.5.0) (Manni et al., 2021)[22]
218 was used to assess the completeness of the genome assembly and gene annotation with
219 metazoan dataset (metazoa_odb10). HiC contact maps were generated using Juicer tools
220 (version 1.22.01) (Durand et al. 2016)[23], following the Omni-C manual [24].

221 Omni-C reads and PacBio HiFi reads were used to measure assembly completeness
222 and consensus quality (QV) using Merqury (v1.3) (Rhie et al., 2020)[25] with kmer 20,
223 resulting in 95.0738% kmer completeness for the Omni-C data and 59.746 QV scores for the
224 HiFi reads, corresponding to 99.999% accuracy.

225

226 **Data availability**

227 The raw reads generated in this study, including Omni-C (SAMN40731791) and PacBio HiFi
228 (SAMN35152374) data, have been deposited in the NCBI database under the BioProject

229 accession number PRJNA973839. The genome, genomic and repeat annotation files have
230 been deposited and are publicly available in figshare
231 (<https://figshare.com/s/89f741cde0c1039ce057>).

232

233 **Funding**

234 This work was funded and supported by the Hong Kong Research Grant Council
235 Collaborative Research Fund (C4015-20EF), CUHK Strategic Seed Funding for
236 Collaborative Research Scheme (3133356) and CUHK Group Research Scheme (3110154).

237

238 **Author's contributions**

239 JHLH, TFC, LLC, SGC, CCC, JKHF, JDG, SCKL, YHS, CKCW, KYLY and YW conceived
240 and supervised the study; WLS carried out DNA extraction, library preparation and
241 sequencing; WN performed genome assembly and gene model prediction; STSL carried out
242 the SNPs calling and Fst calculations; PC, AL, LRJ and HYY collected and maintained the
243 samples. All authors approved the final version of the manuscript.

244

245 **Competing interest**

246 The authors declare that they do not have competing interests.

247

248 **References**

- 249 1. Takano S, Henmi Y. The Influence of constructing a Shinkansen bridge on Black-faced
250 Spoonbills *Platalea minor* wintering in Kyushu, Japan. *Ornithological Science*. The
251 Ornithological Society of Japan; 11:21–82012;
- 252 2. Guo-An W, Fu-Min L, Zuo-Hua Y, Chang-Qing D, Wen-Ning D. Nesting and disturbance
253 of the Black-faced Spoonbill in Liaoning Province, China. *Waterbirds*. BioOne; 28:420–5
254 2005;
- 255 3. Lee M-Y, Kwon I-K, Lee K, Choi SK, Jeon HS, Lee J-Y, et al.. Genetic diversity and
256 population structure of the Black-faced Spoonbill (*Platalea minor*) among its breeding sites in
257 South Korea: Implication for conservation. *Biochemical systematics and ecology*. Elsevier;
258 71:106–13 2017;

259 4. Li S-H, Liu Y, Yeh C-F, Fu Y, Yeung CK, Lee C-C, et al.. Not out of the woods yet:
260 Signatures of the prolonged negative genetic consequences of a population bottleneck in a
261 rapidly re-expanding wader, the black-faced spoonbill *Platalea minor*. *Molecular Ecology*.
262 Wiley Online Library; 31:529–45 2022;

263 5. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly
264 using phased assembly graphs with hifiasm. *NaTuRe MeTHods* /. 2021; doi: 10.1038/s41592-
265 020-01056-5.

266 6. Guan D, Guan D, McCarthy SA, Wood J, Howe K, Wang Y, et al.. Identifying and
267 removing haplotypic duplication in primary genome assemblies. *Bioinformatics*. Oxford
268 Academic; 2020; doi: 10.1093/BIOINFORMATICS/BTAA025.

269 7. Zhou C, McCarthy SA, Durbin R. YaHS: yet another Hi-C scaffolding tool. *Bioinformatics*.
270 2023; doi: 10.1093/bioinformatics/btac808.

271 8. Baril T, Imrie RM, Hayward A. Earl Grey: a fully automated user-friendly transposable
272 element annotation and analysis pipeline. In Review; 2022 Jul.

273 9. Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-genome annotation with
274 BRAKER. *Gene prediction: methods and protocols*. Springer; :65–95 2019;

275 10. Girgis HZ. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the
276 genomic scale. *BMC Bioinformatics*. 2015; doi: 10.1186/s12859-015-0654-5.

277 11. Cho YS, Jun JH, Kim JA, Kim H-M, Chung O, Kang S-G, et al.. Raptor genomes reveal
278 evolutionary signatures of predatory and nocturnal lifestyles. *Genome biology*. Springer;
279 20:1–11 2019;

280 12. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and
281 genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol*. Nature Publishing Group;
282 2019; doi: 10.1038/s41587-019-0201-4.

283 13. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
284 data. *Bioinformatics*. 2014; doi: 10.1093/bioinformatics/btu170.

285 14. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. *Genome
286 Biology*. 2019; doi: 10.1186/s13059-019-1891-0.

287 15. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
288 arXiv;

289 16. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al.. A
290 framework for variation discovery and genotyping using next-generation DNA sequencing
291 data. *Nature genetics*. Nature Publishing Group; 43:491–8 2011;

292 17. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al.. The variant
293 call format and VCFtools. *Bioinformatics*. Oxford University Press; 27:2156–82011;

294 18. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, et al.. Comparative genomics reveals
295 insights into avian genome evolution and adaptation. *Science*. American Association for the
296 Advancement of Science; 346:1311–20 2014;

297 19. Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies.
298 *F1000Research*. F1000 Research Limited; 6:1287 2017;

299 20. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of
300 occurrences of k-mers. *Bioinformatics*. 2011; doi: 10.1093/bioinformatics/btr011.

301 21. Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and Smudgeplot for
302 reference-free profiling of polyploid genomes. *Nat Commun*. 2020; doi: 10.1038/s41467-020-
303 14998-3.

304 22. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: Novel
305 and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for
306 Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. *Molecular Biology and Evolution*.
307 2021; doi: 10.1093/molbev/msab199.

308 23. Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, et al.. Juicer
309 provides a one-click system for analyzing loop-resolution Hi-C experiments. *Cell systems*.
310 Elsevier; 3:95–8 2016;

311 24. : Omni-C manual. https://omni-c.readthedocs.io/en/latest/contact_map.html

312 25. Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality,
313 completeness, and phasing assessment for genome assemblies. *Genome biology*. Springer;
314 21:1–27 2020;

315

316 **Table and figure legends**

317 **Table 1.** Summary of sequencing data

318 **Table 2.** Genome statistics

319 **Table 3.** Scaffold information with length larger than 1Mb

320 **Table 4.** Summary of repetitive elements analysis

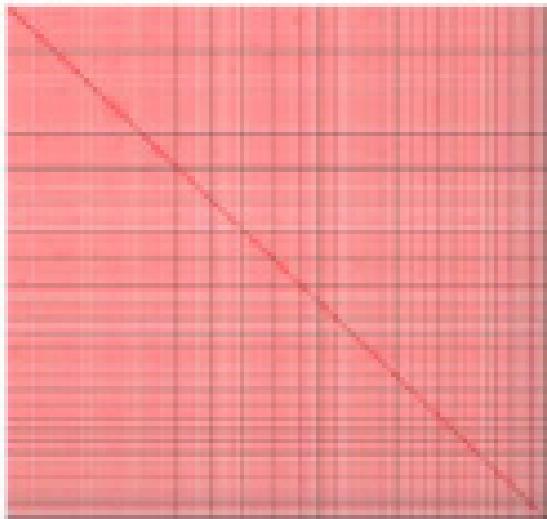
321 **Table 5.** Number of SNPs and statistics of heterozygosity and inbreeding coefficient of 13
322 *Platalea minor* individuals

323 **Table 6.** Summary of the GenomeScope statistics (k=21)

324

325 **Figure 1.** A) Picture of *Platalea minor*; B) Statistics of the genome assembly generated in
326 this study; C) Hi-C contact map of the assembly visualised using Juicebox (v1.11.08); D)
327 Repetitive elements distribution.

328 **Figure 2.** Genome assembly QC and contaminant/cobiont detection. The upper pannel shows
329 the BlobPlot of the assembly, with each circle representing a scaffold with its size scaled
330 according to its scaffold length while the colour of the circle indicates the taxonomic
331 assignment from BLAST similarity search results. The lower pannel reveals the ReadCovPlot
332 of the assembly illustrating the proportion of unmapped and mapped sequences in the
333 BLAST similarity search results on the left. The latter of which is further dissected according
334 to the rank of phylum on the right.


A)

B)

	Meaningless
Total length (mm)	1,239.704 ± 14
Number	400
Proportion	0.02%
Scallop (10.0%)	813.382 (40)
Oyster (34.5%)	103.448 (5.0)
Crab (55.5%)	52.702
Protein content (protein weight)	18.700
Protein coding genes	718
Protein (Protein ID)	11,831 (99.99%)

C)

D)

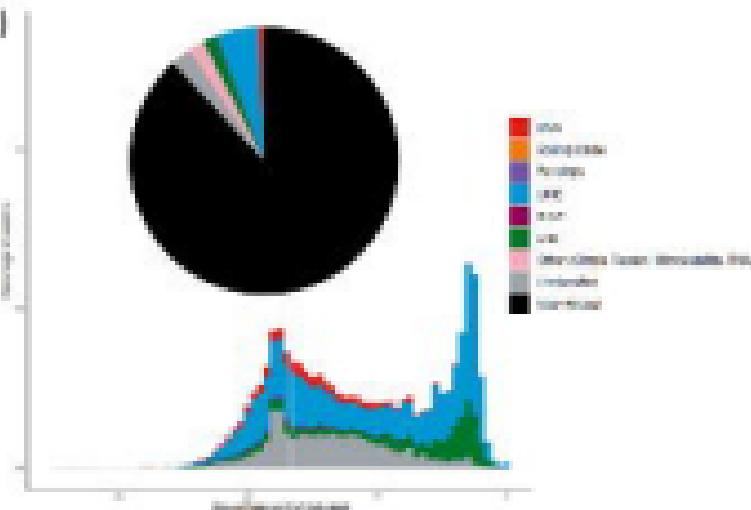


Figure 1.

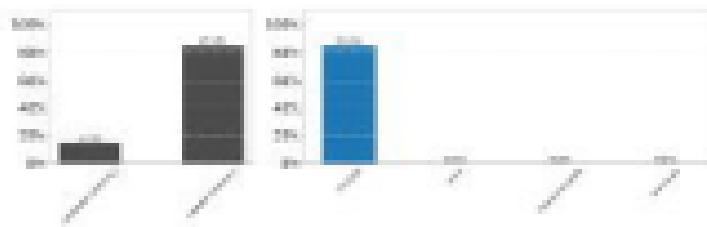
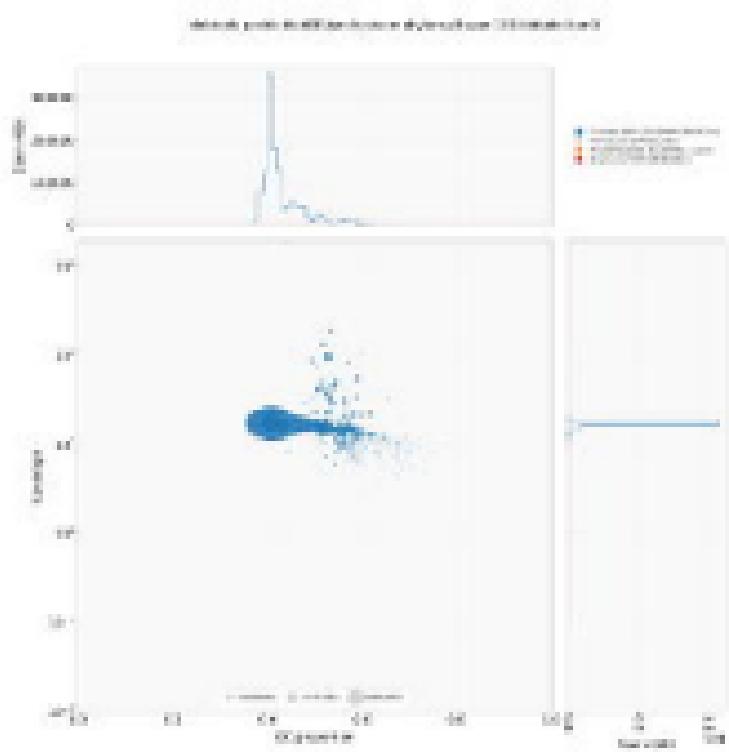



Figure 2

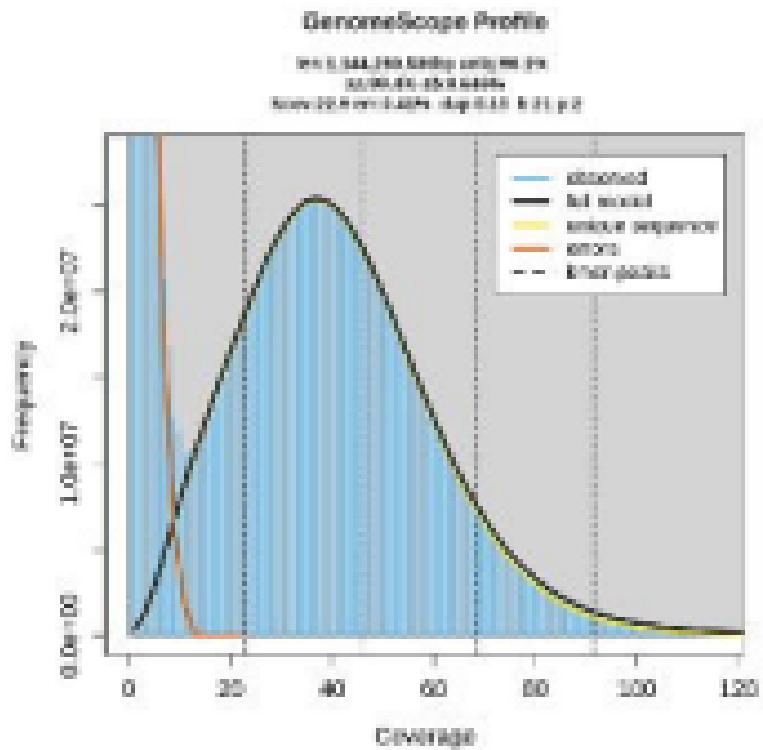


Figure 3