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26  Abstract

27  The emergence of perturbation transcriptomics provides a new perspective and opportunity for drug

28  discovery, but existing analysis methods suffer from inadequate performance and limited

29  applicability. In this work, we present PertKGE, a method designed to improve compound-protein

30 interaction with knowledge graph embedding of perturbation transcriptomics. PertKGE

31  incorporates diverse regulatory elements and accounts for multi-level regulatory events within

32 biological systems, leading to significant improvements compared to existing baselines in two

33 critical "cold-start" settings: inferring binding targets for new compounds and conducting virtual

34 ligand screening for new targets. We further demonstrate the pivotal role of incorporating multi-

35  level regulatory events in alleviating dataset bias. Notably, it enables the identification of

36  ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-

37  tumor immunotherapy effect of tankyrase inhibitor K-756, and the discovery of five novel hits

38  targeting the emerging cancer therapeutic target, aldehyde dehydrogenase 1B1, with a remarkable

39  hitrate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery by

40  elucidating mechanisms of action and identifying novel therapeutic compounds.

41

42  Introduction

43 Identifying compound-protein interaction (CPI) is fundamental for developing therapeutic

44  compounds and understanding their target-level mechanisms of action (MOA)!. Over the past few
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45  decades, numerous in silico methods have been proposed and widely used in drug discovery
46  pipelines due to their cost-effectiveness and high-throughput capabilities, offering valuable insights
47  and guidance for both in vitro and in vivo experiments?3.

48 In the past decades, a significant amount of biological data has been accumulated. This has led
49  to computational methods evolving from primarily relying on cheminformatics and structural
50  biology to incorporating multiple perspectives. For instance, systematic profiling of small-molecule
51  perturbation effects, including cell images®, transcriptomics>®, proteomics’ and metabolomicsg,
52  offers new opportunities to identify CPI*%°, Among these omics data, perturbation transcriptomics,
53  which captures a 'snapshot' of differential mRNA abundance after perturbation, has received the
54  most extensive attention due to its high-throughput nature and ability to acquire large-scale
55  data>®'112, However, inherent noise in biological data'3, cellular homeostasis!*, and dynamic
56  changes in mRNA expression?®, make CPI not directly reflected in the most differentially expressed
57  genes (DEGs)'®. This makes predicting CPI based on perturbation transcriptomics a challenging
58  task.

59 Several methods can be used to address this problem, including comparative analysis and
60  causal reasoning!’. Comparative analysis involves finding the appropriate similarity between the
61  query profile and well-annotated reference profiles, then assigning the MOA of the most similar
62  reference profile to the query. A notable example is the Connectivity Map (CMap), which uses a
63  connectivity score based on gene set enrichment analysis (GSEA) to measure the similarity.
64  Recently, some studies have introduced machine learning (ML)-based similarity to improve
65  performance®20. We also developed a deep-learning based method, SSGCN, to discover the hidden

66  correlations between compound perturbation profiles and gene knockdown profiles?!. However,
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67  these methods may not be directly applicable when analyzing CPI related to newly studied targets

68  lacking relevant reference profiles.

69 Causal reasoning employs a systematic biological perspective, utilizing a prior knowledge

70  network (PKN) to construct causal link and locate upstream nodes that can most accurately explain

71  the observed downstream mRNA expression changes!’. For example, DEMAND combines the gene

72 regulatory network (GRN) and protein—protein interaction (PPI) to infer targets, assuming that

73 compounds influence the expression of downstream genes’®. ProTINA employs a dynamic model

74  of cell-type-specific protein-gene transcriptional regulation to identify targets with high scores of

75  network dysregulation??. A recent approach, FL-DTD, builds tissue-specific biological networks by

76  integrating five preliminary networks and infers targets through a feedback loop assumption?.

77  While these strategies have yielded effective tools for predicting CPI across any protein in the PKN,

78  they face two main challenges. First, these methods tend to overlook key regulatory events, resulting

79  in the omission of crucial regulatory patterns in the PKN. Second, these methods rely on known

80  biology-inspired assumptions, which may not capture complex or as-yet-ununderstood expression

81 patterns.

82 In recent years, knowledge graphs have become a promising method for integrating and

83  analyzing multi-omics data?®. Several curated biomedical knowledge graphs (BKGs), like

84  HetioNet?, BioKG?®, PharmKG?’, and PrimeKG?8, have been created for downstream analysis.

85  However, directly analyzing high-dimensional transcriptomic data based on these BKGs is not

86  appropriate. On the one hand, these BKGs contain a significant amount of redundant knowledge

87 less related to chemical perturbation, such as diseases, side effects, anatomies, etc. On the other

88  hand, the interactions between genes in these BKGs are too coarse-grained to finely represent the
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89  cellular response to chemical perturbation.

90 Here, we introduce PertK GE to improve CPI prediction based on perturbation transcriptomics

91 by constructing biologically meaningful knowledge graph. Unlike other BKGs, this knowledge

92  graph breaks down genes into DNAs, messenger RNAs (mRNAs), long non-coding RNAs

93 (IncRNAs), microRNAs (miRNAs), transcription factors (TFs), RNA-binding proteins (RBPs) and

94  other proteins. This enables PertKGE to consider various fine-grained interactions between genes

95  to simulate post-transcriptional and post-translational regulatory events in biological system, which

96 intuitively aligns more closely with real world cellular responses to chemical perturbations. Then,

97  PertKGE uses the knowledge graph embedding (KGE) algorithm, DistMult?®, to create knowledge-

98  rich dense vectors and make CPI prediction based on the feature vectors. Compared to other

99  baselines, PertK GE exhibited better performance in two cold-start settings while having a broader

100  scope of application. We then conducted a comparison of our knowledge graph with other BKGs

101  and performed an ablation study. The results showed that our knowledge graph enhanced the

102  connections between genes and alleviated the impact of dataset bias on ML models. The ability of

103  PertKGE in practical applications was also validated through biochemical experiments in this study.

104 By combining PertKGE and experimental verifications, we successfully identified ectonucleotide

105  pyrophosphatase/phosphodiesterase-1 (ENPP1) as the target influencing the immune phenotype for

106  a tankyrase (TNKS) inhibitor K-756, and discovered five novel scaffold hits of aldehyde

107  dehydrogenase 1B1 (ALDH1BI1). These results demonstrate that PertKGE can be a valuable tool

108  for predicting CPI from perturbation transcriptomics.

109

110 Results
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111 Overview of PertKGE

112 The workflow of PertKGE can be divided into three parts: (1) construction of biologically
113 meaningful knowledge graph; (2) train stage for obtaining the knowledge-rich embedding; (3)
114  inference stage to give recommendation list.

115 Construction of biologically meaningful knowledge graph

116 Drawing from causal reasoning!’, we view a compound’s binding to one or more cellular
117  targets as the cause, and the observed DEGs as the effect. This cause and effect are connected by a
118  process involving various cellular regulatory events, which can be either linear or complex. Based
119  on this concept, we construct a new knowledge graph with biological meaning by collecting ordered
120  triples in the format of (head, relation, tail) from three components (Fig. 1A).

121 Effect component: This component leverages level 5 compound-induced transcriptomic data
122 (known as signatures) from the Library of Integrated Network-Based Cellular Signatures (LINCS)
123 Phase I°. Our previous work indicates that perturbations on PC-3 cells exhibit the best performance
124  in CPI prediction?!. Therefore, we only considered signatures from PC-3 cells. For each compound,
125  moderated z-score (MODZ) was used to integrate multiple signatures obtained under different
126  experimental conditions and generate a consensus gene signature (CGS)°. Consequently, we
127  gathered 10,892 CGSs and processed the 200 most upregulated and downregulated genes from each,
128  yielding a total of 4,372,117 triples like (Compound, Upregulated, mRNA) and (Compound,
129  Downregulated, mRNA).

130 Cause component: This component comprises triples like (Compound, Has Binding To,
131  Target) for 10,892 compounds, collected from multiple CPI databases®3*-32, Among these, only

132 2,845 compounds have a total of 15,317 CPI annotations, implying that 74% compounds lack CPI
6
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133  annotations.

134 Process component: This component leverages prior biological knowledge by incorporating
135  essential regulatory events from various databases’’-3¢ (see Method for more details). This
136  component essentially captures the PKN encompassing 2,449,645 regulatory events rooted in the
137 central dogma and multi-level regulatory elements, such as miRNAs, IncRNAs, RBPs, TFs and
138  other proteins.

139 Finally, the three components were merged through entity alignment to form complete
140  knowledge graph under the semantics of chemical perturbation. This knowledge graph can be
141  represented as a directed heterogeneous graph, with nodes representing entities and edges
142 representing relationships. Fig. 1B presents the graph schema of the knowledge graph and Table 1,
143 2 provide details about entities and relations (refer to Fig. S1 for more network analysis).

144  Train and inference

145 As illustrated in Fig. 1C, the training of PertKGE involves several steps. (1) Random initial
146  embedding: entities and relations in the knowledge graph are represented in low-dimension space
147 by embedding using Glorot initialization®’. (2) Negative sampling: for each existing triple, 100
148  corrupted triples are randomly generated using the Bernoulli negative sample strategy?®. (3) Triples
149  scoring: The DistMult is used as a scoring function to assess the validity of existing triples and
150  corrupted triples. (4) Optimization: the margin loss is computed to maximize the scores of existing
151  triples, minimize the scores of corrupted triples, and update embeddings. This process iterates for n
152  times until the embeddings of entities and relationships optimally represent the semantics of
153  chemical perturbation.

154 During the inference stage, users can query PertKGE with a compound or target of interest,
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155  depending on their objective, such as target inference or ligand VS. Following the query, PertK GE

156  calculates the CPI scores using the trained KGE and generates a recommendation list based on these

157  scores. The top N candidates within the recommendation list are typically chosen for further

158  experimental validation.

159 In the subsequent sections, we aim to evaluate the effectiveness of PertKGE and its integration

160 into the drug discovery stage (Fig. 1D).
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162  Fig. 1| Overview of PertKGE. A, The construction pipeline of biologically meaningful knowledge

163  graph. B, The graph schema of knowledge graph. The (Compound, Has Binding To, TF) and

164  (Compound, Has Binding To, RBP) have been omitted due to their limited quantities. C, A
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165  schematic diagram illustrating the training and inference of PertKGE. D, Two stages demonstrating

166 the effectiveness of PertKGE.

167 Table 1 | Entities in the chemical perturbation knowledge graph

Type of entities ~ Count Type of relations

Protein 19,523 3
RBP 77 4
TF 197 4
mRNA 19,815 6
miRNA 1,732 2
IncRNA 4,681 2
DNA 22,547 3
Compound 10,892 3

168  *Type of relations means the number of specific relation type connected by this type of entities.

169

170 Table 2 | Relations in the chemical perturbation knowledge graph

Type of relations Count Head type (count) Tail type (count)

Upregulates 2,178,400 Compound:10,892 mRNA:10,166

Downregulates 2,178,400 Compound:10,892 MRNA:10,166

miRNA_Regulates 970,099 miRNA:618 mRNA:12,544
PPI 497,282 Protein:16,299 Protein:16,299
RBP:77 RBP:77
TF:194 TF:194
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171

172

173

174

175

176

177

178

179

180

RBP_Regulates 429,247

TF_Regulates 384,450

LMI 127,416
Transcribes 19,797
Translates 19,797

Has_Binding_To 15,317

InNcRNA_Regulates 1,557

RBP:77

TF:197

IncRNA:4602

miRNA:1610

DNA:19,797

MRNA:19,797

Compound:2,845

IncRNA:126

MRNA:16,438

DNA:21,469

INcRNA:4602

miRNA:1610

MRNA:19,797

Protein:19,523

RBP:77

TF:197

Protein:1,800

RBP:3

TF:43

DNA:1414

*Head type (count) and Tail type (count) means the number of specific node type connected by this

relation.

PertKGE enables accurate and robust target inference in a compound cold-start setting

This work investigates the effectiveness of PertKGE for target inference in compound cold-

start settings, where compounds lack known CPI annotations rather than those without any

information3®. Similarly, "target cold-start" refers to targets without CPI annotations in this context.

As shown in Fig. 2A, we focus on two compound cold-start scenarios: (1) In current knowledge

graph, 74% of compounds have DEGs from LINCS Phase I but lack CPI annotations. In this case,

direct queries within the knowledge graph suffice. (2) In most cases, query compounds are not

10
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181  included in the knowledge graph. This should be addressed by adding the compound-induced DEGs

182  to the knowledge graph before querying.

183 In the both scenarios, we follow previous work?! using Top-K accuracy to evaluate the

184  proportion of tested compounds for which any true target can be correctly predicted among the top

185 K candidates. In addition, considering polypharmacology (A drug acts on multiple targets), we also

186  use Recall@K, a metric commonly used in recommendation systems, to measure the recall among

187  the top K candidates.

188 For the first scenario, a hold-out strategy was used to create a test set by masking CPI

189  annotations for 100 compounds with the most significant structural differences (Fig. 2B). The

190  remaining knowledge graph was trained using five-fold cross-validation and tested on the hold-out

191  set. We first compare PertKGE to statistical methods reliant on specific prior assumptions, such as

192 CMap, DeMAND, ProTINA, FL-DTD, and differential expression analysis (DE). As shown in Fig.

193  2C, PertKGE significantly outperformed these methods in both Top-K accuracy and Recall@K

194  metrics. We also compared PertKGE with SSGCN, another deep learning-based methods. It is

195  noteworthy that SSGCN requires gene knockout signatures for target inference, limiting its

196  applicability to 3832 targets. For a fair comparison, only CPI annotations involving these targets

197  were used for PertK GE's training. The results showed that PertKGE also significantly outperformed

198 SSGCN in two metrics.

199 For the second scenario, signatures from LINCS Phase II were used to provide additional

200  compound-induced DEGs. The impact of cell line on target inference was investigated. As depicted

201  in Fig. 2D, CGSs for 170 new compounds across 6 cell lines using the same methodology as in

202 LINCS Phase I, and the top 200 upregulated and downregulated DEGs were extracted. The DEGs

11
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203  from different cell lines exhibited minimal similarity, with an average of 32 intersecting genes

204  among the upregulated and 34 among downregulated DEGs (Fig. 2E, Fig. S2). Subsequently, we

205  assessed the DEGs from six cell lines. As expected, PC-3 cells, whose transcriptional data is the

206  basis for the knowledge graph, yielded the highest performance, with a Top-10 accuracy of 0.266 +

207  0.029 and a recall@10 of 0.120 ==0.016. Notably, PertK GE exhibited predictive capabilities across

208  other cell lines despite their dissimilarities (Fig. 2F), and this consistency increased with K (Fig.

209  S3). At K=100, almost all cell lines achieved similar performance to that of PC-3. This suggests that

210  PertKGE may have learned expression patterns that are independent of cell context. To compare,

211 we generated the same number of DEGs for each compound randomly. When these DEGs were

212 used, the model's performance dropped significantly. However, it still retained some predictive

213 power, potentially due to biases in the datasets (Fig. S3). Based on the results above, we selected

214  the DEGs from PC-3 for comparison with statistical and deep learning methods. Consistent with

215  previous findings, PertKGE also significantly outperformed them (Fig. 2G).

12
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216
217  Fig. 2 | Evaluating CPI prediction performance. A, Illustrations of two compound cold-start

218  scenarios. B, Selection of 100 compounds with the most significant structural differences among all
219  compounds with known targets, by calculating the mean extended-connectivity fingerprints (ECFP)
220  similarity with other molecules. C, Targets inference performance evaluation with PertKGE,
221 SSGCN and other baseline methods in scenario 1. The solid line represents the average value of the
222 results from five-fold cross-validation, and the shaded area indicates the range of standard deviation.
223 D, Dimensionality reduction visualization of 170 compounds’ CGS from 6 cell lines in LINCS
224  Phase II. E, Comparison of the 170 compounds’ most upregulated DEGs in different cells by
225  calculating their Tanimoto coefficients. F, Comparison of the target inference performance for 170

13
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226  compounds’ DEGs in 6 cell lines and randomly generated DEGs. G, Targets inference performance

227  evaluation with PertKGE, SSGCN and other baseline methods in scenario II. H, Illustration of target

228  cold-start scenario. I, Evaluation of ligand virtual screening performance with PertK GE and Glide-

229  SP. The x-axis represents 20 targets for prediction, with the number of ligands collected for each.

230  The statistical significance level was set as *P < 0.05, **P < 0.01.

231

232 PertKGE demonstrates promising VS capabilities in the target cold-start setting

233 VS for targets without any ligands is a significant but challenging scenario in drug discovery.

234  This means ligand-based drug design (LBDD), such as ligand structural similarity-based search,

235  quantitative structure-activity relationship (QSAR), and pharmacophore modelling, cannot be

236  directly applied. As shown in Fig. 2H, 85% of targets, including RBP, TF and Protein entities, in the

237  knowledge graph do not have any known ligands. Hence, it is very valuable to evaluate the ability

238  of PertKGE to screen hits from 10,892 compounds in the knowledge graph for these targets.

239 Most transcriptomic-based CPI prediction methods are primarily used for target inference.

240  While FL-DTD and SSGCN have reported applications in VS, the former lacks relevant

241  implementation on its provided website, and the latter is unsuitable for target cold-start settings (Fig.

242 S4). Here, we compared PertK GE with the most prevalent structure-based drug design (SBDD)

243 method, molecular docking. Glide-SP*°, known for its powerful VS capabilities, is selected as a

244  Dbaseline. We also used a hold-out strategy, masking the CPI annotations of 20 targets with 3D-

245  structure in Protein Data Bank (PDB)*'. Then, we trained PertKGE using five-fold cross-validation

246  strategy and tested on the hold-out set. Note that we selected targets with available 3D structures

247  for ease of comparison with Glide-SP. However, PertKGE can perform VS for targets without 3D
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248 structures.

249 As shown in Fig. 21, we evaluated the VS capabilities of PertK GE and Glide-SP with 20 targets
250  and 10,892 compounds. Consistent with SBDD work#?, we use the enrichment factor (EF) as a
251  performance metric. In terms of EF0.5%, PertKGE significantly outperforms Glide-SP in 9 targets,
252 while Glide-SP performs better in 4 target. There is no significant difference between PertK GE and
253  Glide-SP in the remaining 7 targets. Regarding the EF1.0%, PertK GE demonstrated higher virtual
254  screening capabilities, outperforming Glide-SP in 11 targets, while Glide-SP performs better in 3
255  targets. There is no significant difference between PertK GE and Glide-SP in the remaining 6 targets.
256  For the Reactive Oxygen Species (ROS), Glide-SP showed high enrichment capabilities. However,
257 this is because, out of 10,892 molecules, only one was a ligand of ROS, and Glide ranked it fourth.
258  In summary, PertKGE demonstrated better performance than Glide-SP in most targets when VS
259  against these 10,892 compounds.

260

261  Multi-level regulatory events are essential to alleviate dataset bias

262 In the previous experiments, we observed a counter-intuitive result that PertKGE still exhibited
263  some predictive capability even when using randomly generated DEGs. Actually, this is a common
264  limitation of ML models, where they tend to assign high scores to entities that are over-represented
265  in the training set, leading to biased predictions®}. This limitation deviates from our goal of finding
266  a reliable mapping from compound-induced DGEs to CPI. In this work, we introduce multi-level
267  regulatory events to strengthen the connections between genes, alleviating this limitation. To
268 illustrate, we designed a test where the model was only allowed to use compound-induced DEGs

269  for prediction (Method).

15


https://doi.org/10.1101/2024.04.08.588632
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.08.588632; this version posted April 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

270 Initially, we attempted a comparison with other commonly used BKGs?*%28, However, such a
271  direct comparison is not accurate because many understudied compounds can only be incorporated
272 as isolated nodes in other BKGs, leading to substandard performance. Instead, we pruned other
273  BKGs to replace the process component of our knowledge graph, while keeping the cause and effect
274  components unchanged (Fig. 3A). For convenience, we still refer to them by their original names.
275  Fig. 3B shows the process component derived from different BKGs. It is clear that our knowledge
276  graph represents genes in various forms such as DNAs, mRNAs, TFs, RBP and so on. In contrast,
277  in other BKG, genes are typically represented in only one form, like proteins in BioKG and
278  PrimeKG, or genes in HetioNet. Furthermore, while they have triples of the same order of magnitude,
279  our knowledge graph captures regulatory events between different forms of genes. However, BioKG,
280  HetioNet, and PrimeKG primarily describe relationships between genes and coarse-grained nodes
281  such as biological processes and pathways, as well as nodes less related to chemical perturbation
282 such as diseases and anatomies.

283 We trained three alternatives using the same approach as PertKGE. As shown in Fig. 3C,
284  PertKGE outperformed the three alternatives across all metrics. This implies that process component
285  based on regulatory events between different forms of genes strengthen the connection between
286  cause-and-effect components by sharing the same context of chemical perturbation. Although other
287  BKGs may also include entities related to chemical perturbation, such as pathways and biological
288  processes, their descriptions are typically coarse-grained (manifested as a pathway or biological
289  process connecting to multiple gene in the graph). This makes it difficult for the model to learn finer
290  regulatory patterns. Interestingly, when we use PrimeK G, despite having the most training triples,
291 it performs nearly as poorly as random guessing. This might because PrimeKG contains over 3
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292  million triples describing relationships between proteins and anatomies, which are largely irrelevant
293  to perturbation. This redundancy knowledge may even impede the model's ability to learn other
294  useful knowledge, resulting in poor performance.

295 We further explored which regulatory events most significantly contribute to the performance
296  of PertKGE through an ablation study (Fig. 3C). It can be found that decoupling genes into DNAs,
297 mRNAs, TFs, RBPs, and other proteins, in accordance with their roles in the central dogma,
298  significantly improves the model's performance. This improvement may be due to the restoration of
299  the biological system’s hierarchical structure, enabling the model to differentiate the semantics of
300 various regulatory events. However, this consideration is often overlooked in other BKGs.
301  Furthermore, in line with previous studies'®??, both PPI and TF-mediated regulatory events indeed
302  enhance gene connections. Removing these regulatory events results in a significant performance
303  decrease. In this study, we modeled the impact of other regulatory elements (RBP, miRNA, IncRNA)
304  on gene expression for the first time. The results indicated that integrating regulatory events based
305 on miRNA and IncRNA enriched the model's understanding of the biological regulatory network,
306 thereby further enhancing the model's predictive capabilities. However, the addition of regulatory
307  events based on RBP only led to a slight improvement. This could be since RBPs exert a more
308 refined regulatory role in biological networks**3. In the knowledge graph, each RBP is associated
309  with an average of 5000 downstream genes, but only one type of relation is used to describe this

310  regulation.
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Fig. 3 | Study of multi-level regulatory events. A, Compare with other BKGs and ablation studies

in unbiased test. Left, construction of BKG-derived knowledge graphs. BKGs were Pruned by

removing drug entities and drug related triples. Right, illustrations of three kinds of ablation studies:

without central dogma, without metanode and without metaedge. B, The pie charts illustrate the

relations in different process components. Since different BKGs use different descriptions, we

uniformly represent relations in the form of head:tail. If there are multiple different head:tail

relationships within the same BKG, we assign them numerical identifiers like head:tail 1. C,

Performance of CPI prediction using different process components. Red dashed line means the

performance of random guess.

Secondary pharmacology study of K-756 by PertKGE
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322 K-756, a Wnt/pB-catenin pathway inhibitor targeting tankyrase (TNKS), is currently in

323 preclinical testing. It selectively inhibits the ADP-ribosylation activity of TNKS1 and TNKS2 with

324 1IC50 values of 31 nM and 36 nM, respectively*®. XAV-939, another preclinical TNKS inhibitor,

325  inhibits TNKS1 and TNKS2 with IC50 values of 11 nM and 4 nM, respectively52. In our studies,

326  we accidentally discovered that K-756 exerts unique anti-tumor immune activity in the 4TI

327  orthotopic breast cancer mouse model, in contrast to XAV-939. This was demonstrated by K-756

328  significantly increasing the infiltration of CD3+ T cells in tumors, the frequency of CD8+ cytotoxic

329 T cells within CD3+ T cells, and reducing the expression of CD8+ T cell exhaustion marker PD-1

330  (Fig. 4A, Fig. S5A-C). However, XAV-939 administration did not result in a noticeable change in

331 theinfiltration of CD3+, CD8+, and PD-1+CD&+ T cells in tumors (Fig. 4A, Fig. S5A-C). Notably,

332  we also observed that K-756 exhibited an obvious stronger potency to inhibit tumor growth than

333 XAV-939 (Fig. S5D). These results have encouraged us to explore the secondary pharmacology of

334  K-756, to elucidate its mode of action not related to TNKS and explain why it exerts the unique

335  anti-tumor immunotherapy effects.

336 As K-756 is not present in the knowledge graph, its target inference falls into the second

337  scenario discussed earlier. As illustrated in Fig. 4B, we first measured the transcriptional profile of

338  K-756-treated PC-3 cells (the differential gene analysis results is provided in Fig. S6) and converted

339  DEGs into triplets before adding them to knowledge graph. We then trained PertKGE to test if it

340  could predict the known targets of K-756. As Fig. 4C shows, PertK GE ranked TNKS1 at 706th and

341  TNKS2 at 77th among 19797 candidates, which indicates that the trained embeddings capture the

342  relationships between the DEGs and targets of K-756. Then we focus on the top 10 predicted targets

343  of K-756 (Fig. 4D), which represent the targets that PertKGE identified as the most likely to bind
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344  with K-756. GTP cyclohydrolase 1 (GCH1)*, prostaglandin-endoperoxide synthase 2 (PTGS2)*,

345  matrix metalloproteinase 9 (MMP9)*, adrenergic receptor beta 1 (ADRB1)>°, and ENPP152, which

346  have been reported to be associated with anti-tumor immunotherapy, were selected for the

347  subsequent analyses. We evaluated the binding affinity of these proteins with K-756, excluding

348  ADRBI as it is not readily available. Notably, ENPP1 demonstrated a nanomolar binding affinity

349  towards K-756, evidenced by a KD constant of 412 nM, measured using a surface plasmon

350 resonance (SPR) assay (Fig. 4E). However, no binding interaction was observed between K-756

351  and the other three proteins (Fig. SSE-G). ENPP1 knockout or pharmacological inhibition prevents

352 the hydrolysis of tumor-derived cGAMP, leading to the accumulation of cGAMP and the reduction

353  of adenosine in the tumor microenvironment. This activates the STING signaling pathway and

354  relieves adenosine-mediated immune suppression, ultimately exerting anti-tumor immune

355  effects°>®2. Based on these findings, we purified recombinant ENPPI1 protein and further

356  investigated K-756 as a potential inhibitor of ENPP1. K-756 significantly increased the thermal

357  stability of the ENPP1 protein (Fig. 4F), indicating a direct binding interaction with ENPP1. The

358  half-maximal inhibitory concentration (IC50) of K-756 against the enzymatic activity of ENPP1

359  was 191.27 nM (Fig. 4G). For comparison, ENPP1-IN-1 (E1, W0O2019046778), used as a positive

360  control, exhibited an IC50 value of 11.76 nM in inhibiting ENPP1 enzyme activity. Classic steady-

361  state enzyme kinetic experiments showed that as the concentration of substrate TMP increased,

362  Vmax remained constant while Km increased (Fig. 4H), suggesting that K-756 competes with the

363  substrate for binding to ENPP1. Docking-based molecular simulations showed that K-756 inserts

364 into the substrate-binding pocket. The pyrimidine ring of K-756 forms n-w stacking interactions with

365  Phe257 and Tyr340, and hydrogen bonds with Lys295, firmly anchoring K-756 in the pocket (Fig.
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366  4I). Furthermore, 100 ns molecular dynamics simulations revealed a stable conformation between

367 K-756 and ENPP1, with sustained interactions observed between K-756 and Phe257, Lys295,

368  Thr340, and Tyr371 (Fig. S5H and S5I). To confirm this binding mechanism, we generated two

369  ENPP1 protein mutants, K295A and F257A/T340A. These mutations significantly reduced or

370  completely abolished the binding and the enzymatic inhibitory effect of K-756 on ENPP1 (Fig. 4J-

371  L). Collectively, these results strongly suggest that K-756 binds to the substrate-binding pocket of

372 ENPPI. Furthermore, as expected, K-756 significantly enhanced the transcription of downstream

373  cytokines in the STING pathway, including IFNB1, CXCL10, and IL6, when induced by cGAMP

374  in THP-1-derived macrophages (Fig. 4M and 4N, Fig. S5J).

375 To determine whether the inhibition of ENPP1 by K-756 is a common characteristic of TNKS

376  inhibitors or a unique feature of the K-756 molecule, we simultaneously tested the inhibitory activity

377 of K-756 and three other TNKS inhibitors: VAX-939, NVP-TNKS656, and RK-287107, on ENPP1

378  enzyme activity. As shown in Fig. S5K, only K-756 exhibited inhibitory activity against ENPP1.

379  The unique pharmacological activity of K-756 indicates that dual-target inhibitors of TNKS and

380 ENPPI may have promising synergistic anti-tumor activity. In summary, the success of repurposing

381  TNKS inhibitor K-756 to ENPP1 inhibitor demonstrated that the practical and promising targets

382  inference ability of PertKGE.
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Fig. 4 | Secondary pharmacology study of K-756 by PertKGE. A, Impact of K-756 and XAV-

939 on the infiltration of CD3+, CD8+, and PD-1+CD8+ T cells in tumors was assessed by flow

cytometry (n=4). BALB/c mice were orthotopically inoculated with 4T1 breast cancer cells and

administered 30 mg/kg K-756 or XAV-939 daily via intraperitoneal injection. B, Pipeline of target
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388 inference for K-756. C, The distribution of predicted scores for all 19797 targets. D, Top 10

389  predicted targets for K756 are presented in a box plot, illustrating the results of five-fold cross-

390  validation. Rankings are based on the mean predictions from cross-validation. Targets highlighted

391  in red are associated with tumor immunity. E, Binding affinity measurement of K-756 to ENPP1

392  protein using SPR assay. Graphs depicting equilibrium response units versus K-756 concentrations

393  were plotted. F, Impact of K-756 and E1 on the thermal stability of ENPP1 protein, as determined

394 by protein thermal shift (PTS) assay. G, Dose-dependent inhibition of K-756 and E1 against ENPP1.

395  The substrate for the ENPP1 enzymatic reaction is thymidine 5’-monophosphate p-nitrophenyl ester

396  (TMP). H, The steady-state enzyme kinetics analysis of ENPP1 was conducted in the presence of

397  various concentrations of K-756. I, Docking results for K-756 using a reported ENPP1 X-ray crystal

398  structure (PDB entry 6WEU) as the template. The figures were generated using PyMOL

399  (http://www.pymol.org/). J-L, The impact of K-756 on enzymatic activity and thermostability of

400  mutant ENPP1 protein. M-N, IFNB1 and CXCL10 mRNA levels in THP-1-derived macrophages

401  were measured following treatment with 2 uM ¢cGAMP alone, or 2 uM ¢cGAMP combined with

402  various concentrations of K-756 for 12 h. Error bars indicate the mean = SEM of three biologically

403 independent experiments (G, H, J, M, N). A two-tailed unpaired t-test was used to analyze

404 significant differences between groups (*, P < 0.05; **, P < 0.01; ns, no statistical difference, P >

405  0.05).

406

407

408 PertKGE identified five new scaffold hits for ALDH1B1

409 Aldehyde dehydrogenases (ALDHs) are highly expressed in multiple cancer types,
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410 contributing to cancer progression, therapy resistance, and immune evasion®®. ALDHI1BI, a

411  mitochondrial ALDH isoform, promotes colorectal and pancreatic cancer®®. Selective

412 pharmacological inhibition of ALDH1B1 has been shown to hinder the growth of colon cancer

413  spheroids and patient-derived organoids®*°>. Moreover, the viability of Aldhlbl-knockout mice

414  suggests that blocking ALDH1BI1 has tolerable effects on normal physiology>*°®. These results

415  indicate that ALDHI1BI is a promising cancer drug target. To our knowledge, imidazoliums and

416  guanidines®® are the only effective ALDHI1B1 inhibitors. However, they lack drug-like properties

417  and are primarily used as molecular probes to study ALDH1BI1 functions. Therefore, there is an

418  urgent need to discover novel scaffold ALDH1B1 inhibitors for cancer treatment.

419 Here, PertKGE was utilized as a virtual screening tool to identify novel ALDH1BI inhibitors.

420  As Fig. 5A shows, screening was conducted on 7,403 small molecules in the knowledge graph after

421  filtering out those may be pan-assay interference compounds (PAINS) and with heavy molecular

422  weight, and the top 100 candidates predicted by PertK GE were purchased from commercial libraries

423 for further validation.

424 Initially, an enzyme kinetics assay was carried out to measure the inhibitory activity of the

425  predicted actives against ALDHIBI, with IGUANA-1°* as a positive control due to its potent

426  inhibitory activity and commercial availability. Out of the 49 commercially available candidates,

427 NSK-22, NSK-29, NSK-40, NSK-68, and NSK-98, showed significant inhibitory activity on

428  ALDHIBI, at a hit rate of 10.2% (Fig. 5B, C, and E). Further, the impact of these five compounds

429  on the thermostability of recombinant ALDHIB1 protein was evaluated. All compounds

430  substantially improved the thermal stability of ALDHI1BI1 protein (Fig. 5D and E), suggesting these

431  compounds could directly bind to ALDH1BI1. Additionally, the attenuation of NSK-22, NSK-29,
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432 NSK-68, and NSK-98 signals after incubation with ALDH1B1 protein was observed in the Carr-

433  Purcell-Meiboom-Gill (CPMG) nuclear magnetic resonance (NMR) spectra. Positive saturation

434  transfer difference (STD) signals in the STD spectrum were also noted (Fig. SF, Fig. STA-C), further

435  indicating their direct binding to ALDH1B1. NSK-40 was not included in this NMR analysis due to

436 its poor solubility in the assay buffer, preventing signal collection. To determine the binding affinity

437  between these five hits and ALDHI1B1, a SPR assay was conducted. The results showed that the

438  binding affinity of the five hits ranged from 0.71 to 14.1 uM (Fig. SE and 5G, Fig. S7D-QG).

439  Collectively, these results strongly demonstrate that NSK-22, NSK-29, NSK-40, NSK-68 and NSK-

440 98 can directly bind to ALDHIB1 and inhibit its enzymatic activity. Compared to the current two

441  classes of ALDHI1BI inhibitors, these 5 hits possess novel scaffolds and have a clinical drug history

442  (Fig. S8), holding promise for further development.

443 We also examined whether these hits could be identified with conventional SBDD approach.

444 However, molecular docking ranked them at 1937th, 2145th, 1509th, 6488th, and 7322th,

445  respectively. (Fig. STH). This showed that PertKGE could be an excellent virtual screening,

446  discovering actives overlooked by conventional methods.

447

448
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450  Fig. 5| PertKGE identified five new scaffold hits for ALDH1B1. A, The query for ALDHIBI1 in

451  the current PertKGE reveals three existing forms of ALDH1BI1, and there is no known active

452  molecule targeting protein-level ALDHIBI1. The dashed box outlines the scheme of the active

453  screening protocol for ALDHI1B1. B, Chemical structures of five hit compounds: NSK-22, NSK-

454 29, NSK-40, NSK-68, NSK-98, and reported ALDH1B1 inhibitor IGUANA-1. C, Dose—response

455  curves of NSK-22, NSK-29, NSK-40, NSK-68, NSK-98, and IGUANA-1, determined by
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456  ALDHIBI enzyme kinetics assay. Error bars represent the mean + SEM of three independent

457 experiments. D, Impact of NSK-22, NSK-29, NSK-40, NSK-68, NSK-98, and IGUANA-1 on the

458  thermal stability of ALDHI1BI protein, as determined by PTS assay. E, Summary of IC50 values of

459  the indicated compounds determined by enzyme kinetics assays, melting temperature differences

460  (ATm) determined with PTS assay, and KD values measured via SPR assay. F, Nuclear magnetic

461  resonance (NMR) measurement of direct binding between NSK-98 and ALDH1BI1 protein. CPMG

462  NMR spectra for NSK-98 (red), NSK-98 in the presence of 5 uM ALDH1B1 protein (green). The

463  STD spectrum for NSK-98 was recorded in the presence of 5 uM ALDHI1B1 protein. G, Binding

464  affinity measurement of NSK-98 to ALDHI1BI protein using SPR assay. Graphs depicting

465  equilibrium response units versus NSK-98 concentrations were plotted.

466

467 Discussion

468 Exposure of cells to small molecules often triggers multi-level remodeling, which can be

469  observed through perturbation omics data. These data provide a dynamic and more realistic view of

470  the impact of compounds on cells, making it a promising information source for understanding CPI.

471  In this study, we developed a novel method, PertKGE, based on a biologically meaningful

472  knowledge graph to systematically mine perturbation transcriptomics. By integrating a range of

473  regulatory events mediated by factors such as TFs, RBPs, other proteins, miRNAs and IncRNAs,

474  and using KGE algorithm, PertKGE can better understand the context of chemical perturbation,

475  leading to accurate and robust CPI predictions. Our method has outperformed baseline methods in

476  two cold-start settings and has avoided pitfall associated with ML. These encouraging

477  computational results led us to incorporate PertKGE into the early stages of drug discovery. We
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478  applied PertKGE in two real-word application scenarios: (1) How to explain K-756’s unique anti-

479  tumor immune activity in phenotype-based screening. The experimental validation of the top ten

480  targets recommended by PertKGE strongly suggests that K-756 binds to the substrate-binding

481  pocket of ENPP1, indicating that the development of dual-target inhibitors of TNKS and ENPP1

482  may serve as a promising synergistic anti-tumor strategy. (2) How to find novel scaffold inhibitors

483  with drug-like properties for a less studied target, like ALDH1B1. Through the combined use of

484  PertKGE and experimental methods, we identified 5 hits with a 10.2% hit rate. These hits possess

485  novel scaffolds, indicating potential for further development. The success of PertKGE both in

486  computational experiments and practical applications demonstrates its potential as a promising tool

487  for helping pharmacologists in understanding the MOA of compounds and screening promising

488 inhibitors.

489 In drug discovery, the use of a knowledge graph to integrate and analysis multi-omics data is a

490  promising approach. Unlike previous methods that used compound-induced transcriptomic profiles

491  as the primary representation of nodes?” or simply added up/down-regulation relations in existing

492  BKGs?®, our work underlines causal reasoning. We introduce a new knowledge graph that

493  decomposes chemical perturbations into three components: a cause component made up of CPI, a

494  process component consisting of multiple regulatory events, and an effect component comprising

495  observed DEGs. This approach customizes the entire knowledge graph for a specific context,

496  namely chemical perturbation, and has shown effectiveness in both computational analyses and

497  experimental validations. We believe that CPI prediction is a significant challenge, and we are far

498  from a complete solution. In the future, the knowledge graph we created could be further enhanced

499 by considering more and finer regulatory events. Additionally, the application scope can be
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500  broadened by using PertKGE to analyze other types of large-scale omics data, such as perturbation
501  proteomics® and cell images®®>°.

502 Methods

503  Constructing the chemical perturbation knowledge graph with data from multiple
504 database

505 We downloaded relevant raw data from multiple domain databases, subsequently converting
506  them into a standard triple format denoted by (head, relation, tail). To establish connections between
507  triples originating from distinct database sources, we employed entity alignment. Finally, the
508  Networkx python package®® was used to retain the largest connected subgraph through pruning.
509  PubChem®'. Managed by the National Center for Biotechnology Information (NCBI), PubChem
510  serves as a comprehensive repository of chemical information. The diverse representation of each
511  chemical substance is standardized through the PubChem CID (Compound Identifier), offering a
512  consistent reference for a specific substance across different contexts and datasets. In our study, we
513  employed PubChem's online service to convert all compounds into their corresponding CIDs using
514  Simplified Molecular Input Line Entry System (SMILES).

515  UniProt®2. UniProt is a comprehensive, freely accessible database providing detailed information
516  on protein sequences and functional annotation. Our acquisition of gene names for human proteins
517  was conducted through the official UniProt website. Subsequently, we established a correlation
518  between the acquired gene names and primary names. In chemical perturbation knowledge graph,
519  all proteins are uniquely identified and represented by their primary names.

520 STRING?™. STRING serves as a repository consolidating PPIs derived from both experimentally
521  confirmed discoveries and anticipated outcomes. The human PPI network utilized in our study was
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522  extracted from the STRING v11.5 database. We converted PPI interactions with a combined score
523  surpassing 700 into bidirectional relationships. Subsequently, we formatted these bidirectional
524  relationships into standard triples for further analysis.

525  ENCORI?. ENCORYI, previously known as StarBase, is a platform designed for exploring the RNA
526  related interaction networks from CLIP-Seq datasets. We downloaded the interactions mediated by
527  RBP and miRNA-regulated mRNA interactions through the web API and processed them into the
528  standard triple format. Here, hg38 is used as the reference genome, and the chosen interactions must
529  have at least five CLIP-Seq experimental records in the database to ensure accuracy. For miRNA,
530 the alignment was executed based on the gene symbol present in the database.

531 RAID?, RAID, a database centered on RNA interactions, is now at its 4.0 version, boasting over
532 41 million RNA-related interactions spanning 154 different species. Data retrieval from the official
533  website encompassed information on the regulatory effects of IncRNA on DNA, and interactions
534  between IncRNA and miRNA. Our focus was directed towards interactions specific to humans, and
535 we ensured the inclusion of interactions supported by substantial experimental evidence.
536  Subsequently, this data was organized into a standard triple format, aligning IncRNA and miRNA
537  using the gene symbols sourced from the database.

538 CHEA?. CHEA, which offers target genes of transcription factors derived from published ChIP-
539  chip, ChIP-seq, and other transcription factor binding site profiling studies, was accessed through
540  the Harmonizome 3.0. We extracted the CHEA dataset and transformed it into a standard triple
541  format, resulting in the acquisition of 384,450 DNA regulatory relationships mediated by 197
542  transcription factors.

543  LINCSS. LINCS, supported by the NIH, systematically captures and documents gene expression
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544  patterns across diverse cell lines when subjected to different perturbations under varied experimental
545  settings. The LINCS phase 1 L1000 dataset (GSE92742, spanning 2012 - 2015) and the LINCS
546  phase II L1000 dataset (GSE70138, from 2015 - 2017) were obtained from the Gene Expression
547  Omnibus (GEO) through the Broad Institute. Initially, we opted for the level 5 data, viewing it as a
548  refined depiction of the transcriptional outcomes of a given experiment condition. Focusing on the
549  PC3 cell line's perturbation data due to its extensive volume, we applied the moderated z-score
550 (MODZ)method to create consensus signatures, capturing essential gene expression changes across
551  different time points and concentrations. Utilizing weights from the original study®, we expanded
552 this to cover 10,174 confidently inferred genes. We curated a list of the top 200 genes, comprising
553  both upregulated and downregulated genes, based on corrected expression levels, forming the basis
554  of our triples.

555  Other datasets. In addition to the insights from the databases previously mentioned, we sourced
556  annotation details from LINCS®, DepMap*®, ChEMBL3!, and DrugBank’? to shape cause
557  component of chemical perturbation knowledge graph. Additionally, the central dogma served as
558  prior knowledge for linking DNA to mRNA, and mRNA to proteins.

559

560  Training protocol

561 The training of PertKG is to embed the entire chemical perturbation knowledge graph into a
562  vector space, thereby obtaining embeddings rich in chemical perturbation semantic for compounds
563  and targets. We denote head entity, tail entity and relation in chemical perturbation knowledge graph
564 as h,t € E (the set of entities) and r € R (the set of relations). Then PertKG computes validity
565  for each triple (4, 7, £) using DistMult as scoring function:
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566 fh =) hOrot, )

L

567 where h,r, t € R% represent d-dimensional vectors of head entity, relation and tail entity,
568  respectively. Note that for a given entity, its embedding vector is the same when the entity appears
569  asthe head or as the tail of a triple. ® denotes element-wise product, and the i index is along the
570  feature dimension of the vector resulting from the element-wise production of the different features.
571 Given training set S of existing triples, we minimize a margin-based ranking loss to capture

572  semantic of chemical perturbation knowledge graph:

- r= ) > -0 - £ELO. )
(RLLES (h' £t")ES ()00

574  where [x], denotes positive part of x, y > 0 is a margin hyperparameter, and

575 S('h_g_t) ={(n, ¢, )|k € E}u{(h ¢ t")|t' € E} 3)
576 The set of corrupted triples, constructed according to Equation (3), is composed of training
577  triples with either the head or tail replaced by a random entity. To reduce false corrupted triples,
578  Bernoulli distribution is used to decide to corrupt head or tail®s.

579 In this study, five-fold cross-validation strategy is employed in training, wherein the CPI
580  annotations in chemical perturbation knowledge graph have been further partitioned into five folds
581  based on compounds. Four folds are reserved for training PertKG, and the remaining one is used
582  for validation. The whole optimization is carried out by using Adam®. Early stopping is used to
583  terminate the training process if the performance of the model on the valid set shows no further
584  improvement. After training, we obtain five well-trained models, and report the mean and standard
585  deviation of the results in the test. The entire training script of PertKG is implement using the
586  TorchKGE®,

587 Additionally, SSGCN was re-implemented adhering to the methodologies outlined in the
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588  original paper. The resulting recommendation list was generated based on CPI score of 3832 targets.
589  DeMAND and ProTINA were implemented based on their respective R scripts. ProTINA yielded a
590  descending order of scores for 10,174 target proteins, while DeMAND provided an ascending order
591  of p-values. CMAP and FL-DTD were evaluated using their designated websites. Differential
592  Expression (DE) was executed by sorting the absolute values of gene expression in descending order.
593

594  Evaluation protocol

595 We evaluated the model's performance in target inference, ligand virtual screening, and
596  unbiased testing.

597 Target inference: In target inference, we evaluated the performance of identifying targets
598  within the recommendation lists provided by different models. We employed TOP-K accuracy and
599  Recall@K as the metrics.

600 In the TOP-K accuracy formula, N denotes the total number of compounds in test set, K is a
601  constant, and f{i,K) represents the evaluation of the i’ compound. Specifically, if the compound has

602 at least one target ranked at or below K, the value of f{7,K) is set to 1; otherwise, it is set to 0.

N
1 .
603 TOP — K accuracy = ﬁ; fG,K) )
604 In the Recall@K formula, 7; is the number of targets for the i compound, and R; x represents

605  the number of targets ranked at or below K for the i compound.

N
1 Rig
606 Recall@K = NZ‘ Tl_ (%)
607 Ligand virtual screening: In target inference, we evaluated the performance of identifying

608  ligands within the recommendation lists provided by different models. Our evaluation utilized the

609  Enrichment Factor (EF) as the metric.
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610 In the EF formula, Hits:ow is the number of ligands for the target, Ny is the number of all

611  compounds, HitSsampieq is the number of compounds among the top N ranked compounds that are

612  active, and Nsampiea is the number of compounds ranked in the top N.

H itssampled
N
613 EF = s'ampled 6
H itStotal ( )
N total
614 Unbiased test: This test was used to evaluate whether the model learned the mapping from

615  DEGs to CPI. In this evaluation, we designated the CPI annotations of 100 compounds for testing
616  purposes. For each reserved CPI, we conducted random sampling to generate 1000 negative
617  compounds. Subsequently, for each positive CPI and its corresponding 1000 negative samples, we
618  assessed the model's ability to rank the positive compound higher than the negatives. This testing
619  methodology ensures that the model's performance is contingent on its capacity to learn the mapping
620  from DEGs to CPI. Hits@K was used as metrics in this test.

621 In the Hits@K formula, Ncpss represents the number of compound-protein interaction pairs,

th

622  and g(i,K) represents the evaluation of the /" CPI pair. If its rank is at or below K, the value of

623 g(i,K) is set to 1; otherwise, it is set to 0.

Ncpis

1
624 Hits@K = Z g(i, K) @)

N
CPIs =1

625

626  Recombinant protein expression and purification

627 For plasmid construction, human ALDH1B1 (residues 20-517) was subcloned into the pET-
628 15b vector with an N-terminal 6xHis tag. To obtain soluble ENPP1 proteins, extracellular region
629  (residues 110-926) of human ENPP1 was fused to the N-terminal secretion signal sequence
630  (residues 1-59) from mouse ENPP2 and cloned into the pcDNA3.1 vector with a Flag tag added to
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631  the C-terminal. For expression of ALDHI1BI1 protein, His-tagged ALDHIBI1 plasmid was

632  transformed into BL21(DE3)-Chaperone competent cells (WeiDibio, EM1002S). These cells were

633  subsequently grown in lysogeny broth (LB) medium containing 100 pg/ml ampicillin, 35 pg/ml

634  chloramphenicol and 1 x chaperone inducer at 37°C. Once the optical density at 600 nm reached

635  0.6~0.8, the culture was transferred to 16°C, and 0.5 mM isopropyl B-d1-thiogalactopyranoside

636  (IPTG) was added to induce protein expression for 20~22 hours. The bacteria were then collected

637 by centrifugation (3,000 rpm, 30 minutes, 4°C). Cells were lysed in lysis buffer (Beyotime, P0013Q)

638  containing protease inhibitor cocktail (Beyotime, P1031) and nuclease (Beyotime, D7121-25KU),

639  and the suspension was mechanically rotated at room temperature for 25 minutes. The lysate was

640  centrifuged (16,000 rpm, 30 minutes, 4°C), and the soluble fraction was filtered by 0.22 um syringe

641 filters and purified on HisTrap columns (Cytiva) using elution buffer (20 mM HEPES, pH 7.4, 500

642  mM NaCl, 1 mM tris (2-Carboxyethyl) phosphine (TCEP), 500 mM imidazole, and 5% glycerol).

643  The eluted components were exchanged into storage buffer (20 mM HEPES, pH 7.4, 150 mM NacCl)

644  using desalting columns (Cytiva). The purified ALDHI1BI protein was stored in the storage buffer

645 at -80°C. ENPP1 recombinant protein was expressed in suspension Expi293F GnTi-/-cells

646  (Thermofisher, A39240). After 5 days of transfection with the Flag-tagged ENPP1 plasmid, the

647  medium supernatant was collected by centrifuged (16,000 rpm, 1 hour, 4°C) and slowly loaded onto

648  amanually packed Anti-Flag affinity resin. The protein was eluted with an elution buffer consisting

649  of Flag peptides. The elution was further purified on a Superdex 200 increase 10/300 GL column

650  (Cytiva) equilibrated with a buffer containing 20 mM HEPES, pH 7.4, and 150 mM NacCl. The

651  purified ENPP1 proteins were identified using SDS-PAGE and stored at -80°C. For the two ENPP1

652  protein mutants, K295A and F257A/T340A, the expression and purification methods were identical
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653  to those used for the Wild-type ENPP1 protein.

654

655  Enzymatic activity assays

656 For ALDHI1BI, the enzymatic activity assay was conducted in a 384-well white Optiplate
657  (PerkinElmer, 6007290) at room temperature under the following conditions: each well contained
658 5% (v/v) DMSO, 100 nM His-tagged ALDH1B1 protein, 1 mM nicotinamide adenine dinucleotide
659 (NADY), and 1 mM acetaldehyde in the assay buffer (100 mM sodium phosphate, pH 8.0, 1 mM
660  MgCl,, and 1 mM TCEP). For ICso determination, His-tagged ALDH1B1 was pre-incubated with
661  NAD™ and serially diluted compounds for 5 minutes. Acetaldehyde was then added to each well,
662  and the resulting enzymatic activity was measured based on nicotinamide adenine dinucleotide
663  hydrate (NADH) fluorescence. The fluorescence signal was measured using a TECAN Spark
664  multifunctional microplate reader over the course of 15 minutes with an excitation wavelength of
665 340 nm and emission wavelengths of 460 nm. For ENPPI1, the enzymatic activity assay was
666  conducted in a transparent 384-well plate (NEST, 761001), with a total volume of 50 pL. Each well
667  containing a final concentration of 3 nM Flag-tagged ENPP1 protein, various concentrations of
668  compounds, and 100 uM p-Nph-5’-TMP in the assay buffer (50 mM Tris HCI, pH 8.5, 130 mM
669  NaCl, I mM CaCl,, and 5 mM MgCl,). For ICsy determination, Flag-tagged ENPP1 protein was
670  incubated with serially diluted compounds for 10 minutes at room temperature. Subsequently, p-
671  Nph-5’-TMP was added and the absorbance change at 405 nm, indicating the release of p-
672  nitrophenolate, was measured using a TECAN Spark multifunctional microplate reader.

673

674  Protein thermal shift assay
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675 The protein thermal shift assay was conducted using the QuantStudio™ 5 (Applied Biosystems)
676  to evaluate the compound-induced changes in protein thermal stability. For ALDH1B1, His-tagged
677  ALDHIBI protein (6 uM) was incubated with compounds (100 uM), NAD* (100 uM), and 5
678  xSYPRO Orange dye (Sigma, 67-68-5). For ENPP1, Flag-tagged ENPP1 protein (2 uM) was
679  incubated with compounds (50 uM) and 5 x SYPRO Orange dye. The mixtures were then
680 transferred into 384-well plates (Monad, Q50701S) with a final volume of 10 pL. The fluorescence
681  signal was recorded as the temperature was gradually raised from 25°C to 95°C. The data were
682  analyzed using the Protein Thermal Shift™ software v1.4 to determine the T, value.

683

684  Nuclear magnetic resonance assay

685 Nuclear magnetic resonance (NMR) assay was performed using a 600 MHz spectrometer
686  (AVANCE III, Bruker) to validate protein-compound interactions. In Carr-Purcell-Meiboom-Gill
687  (CPMG) and saturation transfer difference (STD) NMR experiments, compounds were dissolved to
688  a final concentration of 200 uM in a solution of PBS prepared with D,0O, containing 5 pM His-
689  tagged ALDHIBI protein, 5% DMSO-ds, and 100 uM NAD"*,

690

691  Surface plasmon resonance assay

692 The surface plasmon resonance (SPR) experiments were performed using a Biacore 1K or
693  Biacore 8K instrument (Cytiva) at 25°C. His-tagged ALDH1BI1 protein, Flag-tagged ENPP1 protein,
694  GCHI protein (Cusabio, CSB-EP009317HU), and MMP9 protein (Sino Biological, 10327-HO8H)
695  were covalently immobilized onto a CM5 sensor chip (Cytiva) by a standard amine-coupling
696  procedure in 10 mM sodium acetate of different pH (pH 5.0 for ALDH1B1 and MMP9, pH 4.5 for
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697  ENPPI1 and GCH1). PTGS2 protein (Sino Biological, 12036-H08B) was chelated to the CMS5 sensor
698  chip by His capture kit (28995056). The running buffer for ALDH1B1 protein contained 10 mM
699 HEPES, pH 7.4, 400 mM NacCl, 300 uM NAD". The running buffer for ENPP1 and GCH1 protein
700  contained 10 mM HEPES, pH 7.4, 150 mM NacCl. The running buffer for PTGS2 protein contained
701 10 mM HEPES, pH 7.4, 150 mM NaCl, 0.005% surfactant P20. Compounds were serially diluted
702  into the running buffer and injected onto the sensor chip at a flow rate of 30 uL/minute for 120 or
703 150 seconds (contact phase), followed by 300 or 180 seconds of buffer flow (dissociation phase).
704  The equilibrium dissociation constant (Kp) value was derived using Biacore Insight Evaluation
705 software (Cytiva).

706

707  Animal experiment

708 All animal experiments were conducted with the approval and supervision of the Institutional
709  Animal Care and Use Committee (IACUC) at the Shanghai Institute of Materia Medica, Chinese
710  Academy of Sciences. For the pharmacodynamics experiment, female BALB/c mice (6-8 weeks
711  old) were inoculated with 1x10° 4T1 breast cancer cells into the mammary fat pad. The tumor-
712 bearing mice were randomly divided into three groups when the tumor volume reached
713  approximately 100 mm?>. Subsequently, the mice were intraperitoneally injected with 30 mg/kg of
714  K-756 (MedChemExpress, HY-U00422) or XAV-939 (MedChemExpress, HY-15147) in a solution
715  containing dimethyl sulfoxide (DMSO) and 20% SBE-B-CD (MedChemExpress, HY-17031) in
716  saline (10/90, v/v) daily for one week. Body weights and tumor volumes of the mice were measured
717  daily. Tumor volumes were calculated using the formula: V= (lengthxwidth?)/2. At the completion
718  of the study, the mice were euthanized, and the tumors were harvested for further study.
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719

720  Flow cytometry analysis

721 To harvest a single cell suspension, the tumor tissues were shredded with a scissors and treated
722 with digestion solution for 1 hour at 37°C under shaking. The digestion solution was prepared by
723  adding 0.001% hyaluronidase, 0.1% collagenase, 0.002% DNase, 120 uM MgCl,, and 120 pM
724  CaCl, to RPMI-1640 medium. The digested tumor tissues were filtered through a nylon membrane
725  to obtain a single-cell suspension and treated with ammonium chloride to remove red blood cells.
726  Subsequently, the cell samples were stained with Fixable Viability Stain 700 (BD Horizan, 564997)
727  and the following antibodies: anti-mouse CD16/32 antibody (Biolegend, 101320), CD3-FITC
728  (Invitrogen, 2103752), CD8-BV421 (Biolegend, 100738), PD-1-SB600 (Invitrogen, 2314455). The
729  stained cells were analyzed using the Agilent NovoCyte 3000 instrument. All data were analyzed
730  using the FlowJo software.

731

732 Molecular docking

733 The molecular docking calculations were based on crystallographic data for the protein
734  structures of ALDHIBI1 (PDB:7RAD and 7MJC), and ENPP1 (PDB:6WEU), optimized by the
735  Protein Preparation Wizard at pH 7.0. Subsequently, prepared ligands were docked to the optimized
736  protein using Glide with Standard Precision (SP) mode. All other parameters for the above process
737  were set to default. All docking studies were performed using Maestro of Schrodinger Suites
738  (version 2020-4), and obtained poses were analyzed with PyMOL.

739

740  Molecular dynamics analysis
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741 The molecular dynamics study was performed to examine the conformational changes in the
742  protein that occurred due to the ligand-binding site and to evaluate the effect of these changes over
743  the protein-ligand complex. To evaluate the stability and interaction of the ENPP1 with ligand,
744  simulation study was performed using Desmond Schrodinger Suites (version 2020-4) at 100 ns time
745  period. Water molecules were added to the docking complex of the ENPP1 with a simple point
746  charge (SPC) water model. Dynamic was performed with 100 ns, during the simulation the length
747  of bond involving hydrogen was constrained using NPT ensemble, without restrains, for a
748  simulation time of 1.2 picoseconds (ps) (temperature 300 K) was performed to relax the system.
749

750  Cell culture

751 4T1 and THP-1 cells were purchased from ATCC (American Type Culture Collection) and
752  cultured in RPMI-1640 medium (BasalMedia, L210KJ) supplemented with 10% fetal bovine serum
753  (FBS, Meilun, PWL001) and 1% penicillin-streptomycin (PS, Meilun, MA0110) at 37°C in a 5%
754  (v/v) CO; atmosphere. THP-1-derived macrophages were induced by 100 ng/ml Phorbol 12-
755 myristate 13-acetate (PMA, MedChemExpress, HY-18739) for 24 hours.

756

757  RNA isolation, cDNA synthesis, and real-time quantitative PCR (RT-qPCR)

758 THP-1-derived macrophages were pretreated with various concentrations of K-756 for 30
759  minutes, then treated with 2 pM 2',3'-cGAMP sodium (MedChemExpress, HY-100564A) for 12
760  hours. RNA-easy Isolation Reagent (Vazyme, R701-01) was used to extract total RNA from the
761  cells, according to the manufacturer’ s instructions. This total RNA was reverse transcribed into
762  cDNA using HiScript II Q RT SuperMix (Vazyme, R223-01). RT-qPCR was conducted using
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ChamQ SYBR qPCR Master Mix (Vazyme, Q331-02) in the CFX96TM RealTime PCR Detection
System. All the primer sequences used in this work are shown below: human ACTB forward:
catgtacgttgctatccagge, human ACTB reverse: ctccttaatgtcacgcacgat; human IFNB1 forward:
cagcatctgetggttgaaga, human IFNBI1 reverse: cattacctgaaggccaagga; human CXCL10 forward:
ccacgtgttgagatcattgct, human CXCL10 reverse: tgcatcgattttgctccect; human IL6  forward:

ttcggtccagttgecttete, human IL6 reverse: tacatgtctectttctcaggge.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 9.0 software. Differences of
quantitative data between groups were calculated using a 2-tailed unpaired t-test. The statistical

significance level was set as *P < 0.05, **P < 0.01.

Data availability

The data included in our paper are all from public data sets.

Code availability
The code used to generate the results shown in this study will be available under an MIT

License in the repository https://github.com/myzhengSIMM/PertK GE upon publication.
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