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 25 

Abstract 26 

The emergence of perturbation transcriptomics provides a new perspective and opportunity for drug 27 

discovery, but existing analysis methods suffer from inadequate performance and limited 28 

applicability. In this work, we present PertKGE, a method designed to improve compound-protein 29 

interaction with knowledge graph embedding of perturbation transcriptomics. PertKGE 30 

incorporates diverse regulatory elements and accounts for multi-level regulatory events within 31 

biological systems, leading to significant improvements compared to existing baselines in two 32 

critical "cold-start" settings: inferring binding targets for new compounds and conducting virtual 33 

ligand screening for new targets. We further demonstrate the pivotal role of incorporating multi-34 

level regulatory events in alleviating dataset bias. Notably, it enables the identification of 35 

ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-36 

tumor immunotherapy effect of tankyrase inhibitor K-756, and the discovery of five novel hits 37 

targeting the emerging cancer therapeutic target, aldehyde dehydrogenase 1B1, with a remarkable 38 

hit rate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery by 39 

elucidating mechanisms of action and identifying novel therapeutic compounds. 40 

 41 

Introduction 42 

Identifying compound-protein interaction (CPI) is fundamental for developing therapeutic 43 

compounds and understanding their target-level mechanisms of action (MOA)1. Over the past few 44 
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decades, numerous in silico methods have been proposed and widely used in drug discovery 45 

pipelines due to their cost-effectiveness and high-throughput capabilities, offering valuable insights 46 

and guidance for both in vitro and in vivo experiments2,3.  47 

In the past decades, a significant amount of biological data has been accumulated. This has led 48 

to computational methods evolving from primarily relying on cheminformatics and structural 49 

biology to incorporating multiple perspectives. For instance, systematic profiling of small-molecule 50 

perturbation effects, including cell images4, transcriptomics5,6, proteomics7 and metabolomics8, 51 

offers new opportunities to identify CPI9,10. Among these omics data, perturbation transcriptomics, 52 

which captures a 'snapshot' of differential mRNA abundance after perturbation, has received the 53 

most extensive attention due to its high-throughput nature and ability to acquire large-scale 54 

data5,6,11,12. However, inherent noise in biological data13, cellular homeostasis14, and dynamic 55 

changes in mRNA expression15, make CPI not directly reflected in the most differentially expressed 56 

genes (DEGs)16. This makes predicting CPI based on perturbation transcriptomics a challenging 57 

task. 58 

Several methods can be used to address this problem, including comparative analysis and 59 

causal reasoning17. Comparative analysis involves finding the appropriate similarity between the 60 

query profile and well-annotated reference profiles, then assigning the MOA of the most similar 61 

reference profile to the query. A notable example is the Connectivity Map (CMap), which uses a 62 

connectivity score based on gene set enrichment analysis (GSEA) to measure the similarity5. 63 

Recently, some studies have introduced machine learning (ML)-based similarity to improve 64 

performance18-20. We also developed a deep-learning based method, SSGCN, to discover the hidden 65 

correlations between compound perturbation profiles and gene knockdown profiles21. However, 66 
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these methods may not be directly applicable when analyzing CPI related to newly studied targets 67 

lacking relevant reference profiles. 68 

Causal reasoning employs a systematic biological perspective, utilizing a prior knowledge 69 

network (PKN) to construct causal link and locate upstream nodes that can most accurately explain 70 

the observed downstream mRNA expression changes17. For example, DEMAND combines the gene 71 

regulatory network (GRN) and protein–protein interaction (PPI) to infer targets, assuming that 72 

compounds influence the expression of downstream genes16. ProTINA employs a dynamic model 73 

of cell-type-specific protein-gene transcriptional regulation to identify targets with high scores of 74 

network dysregulation22. A recent approach, FL-DTD, builds tissue-specific biological networks by 75 

integrating five preliminary networks and infers targets through a feedback loop assumption23. 76 

While these strategies have yielded effective tools for predicting CPI across any protein in the PKN, 77 

they face two main challenges. First, these methods tend to overlook key regulatory events, resulting 78 

in the omission of crucial regulatory patterns in the PKN. Second, these methods rely on known 79 

biology-inspired assumptions, which may not capture complex or as-yet-ununderstood expression 80 

patterns. 81 

In recent years, knowledge graphs have become a promising method for integrating and 82 

analyzing multi-omics data24. Several curated biomedical knowledge graphs (BKGs), like 83 

HetioNet25, BioKG26, PharmKG27, and PrimeKG28, have been created for downstream analysis. 84 

However, directly analyzing high-dimensional transcriptomic data based on these BKGs is not 85 

appropriate. On the one hand, these BKGs contain a significant amount of redundant knowledge 86 

less related to chemical perturbation, such as diseases, side effects, anatomies, etc. On the other 87 

hand, the interactions between genes in these BKGs are too coarse-grained to finely represent the 88 
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cellular response to chemical perturbation.  89 

Here, we introduce PertKGE to improve CPI prediction based on perturbation transcriptomics 90 

by constructing biologically meaningful knowledge graph. Unlike other BKGs, this knowledge 91 

graph breaks down genes into DNAs, messenger RNAs (mRNAs), long non-coding RNAs 92 

(lncRNAs), microRNAs (miRNAs), transcription factors (TFs), RNA-binding proteins (RBPs) and 93 

other proteins. This enables PertKGE to consider various fine-grained interactions between genes 94 

to simulate post-transcriptional and post-translational regulatory events in biological system, which 95 

intuitively aligns more closely with real world cellular responses to chemical perturbations. Then, 96 

PertKGE uses the knowledge graph embedding (KGE) algorithm, DistMult29, to create knowledge-97 

rich dense vectors and make CPI prediction based on the feature vectors. Compared to other 98 

baselines, PertKGE exhibited better performance in two cold-start settings while having a broader 99 

scope of application. We then conducted a comparison of our knowledge graph with other BKGs 100 

and performed an ablation study. The results showed that our knowledge graph enhanced the 101 

connections between genes and alleviated the impact of dataset bias on ML models. The ability of 102 

PertKGE in practical applications was also validated through biochemical experiments in this study. 103 

By combining PertKGE and experimental verifications, we successfully identified ectonucleotide 104 

pyrophosphatase/phosphodiesterase-1 (ENPP1) as the target influencing the immune phenotype for 105 

a tankyrase (TNKS) inhibitor K-756, and discovered five novel scaffold hits of aldehyde 106 

dehydrogenase 1B1 (ALDH1B1). These results demonstrate that PertKGE can be a valuable tool 107 

for predicting CPI from perturbation transcriptomics. 108 

 109 

Results 110 
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Overview of PertKGE 111 

The workflow of PertKGE can be divided into three parts: (1) construction of biologically 112 

meaningful knowledge graph; (2) train stage for obtaining the knowledge-rich embedding; (3) 113 

inference stage to give recommendation list. 114 

Construction of biologically meaningful knowledge graph 115 

Drawing from causal reasoning17, we view a compound’s binding to one or more cellular 116 

targets as the cause, and the observed DEGs as the effect. This cause and effect are connected by a 117 

process involving various cellular regulatory events, which can be either linear or complex. Based 118 

on this concept, we construct a new knowledge graph with biological meaning by collecting ordered 119 

triples in the format of (head, relation, tail) from three components (Fig. 1A).  120 

Effect component: This component leverages level 5 compound-induced transcriptomic data 121 

(known as signatures) from the Library of Integrated Network-Based Cellular Signatures (LINCS) 122 

Phase I6. Our previous work indicates that perturbations on PC-3 cells exhibit the best performance 123 

in CPI prediction21. Therefore, we only considered signatures from PC-3 cells. For each compound, 124 

moderated z-score (MODZ) was used to integrate multiple signatures obtained under different 125 

experimental conditions and generate a consensus gene signature (CGS)6. Consequently, we 126 

gathered 10,892 CGSs and processed the 200 most upregulated and downregulated genes from each, 127 

yielding a total of 4,372,117 triples like (Compound, Upregulated, mRNA) and (Compound, 128 

Downregulated, mRNA).  129 

Cause component: This component comprises triples like (Compound, Has_Binding_To, 130 

Target) for 10,892 compounds, collected from multiple CPI databases6,30-32. Among these, only 131 

2,845 compounds have a total of 15,317 CPI annotations, implying that 74% compounds lack CPI 132 
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annotations.  133 

Process component: This component leverages prior biological knowledge by incorporating 134 

essential regulatory events from various databases33-36 (see Method for more details). This 135 

component essentially captures the PKN encompassing 2,449,645 regulatory events rooted in the 136 

central dogma and multi-level regulatory elements, such as miRNAs, lncRNAs, RBPs, TFs and 137 

other proteins.  138 

Finally, the three components were merged through entity alignment to form complete 139 

knowledge graph under the semantics of chemical perturbation. This knowledge graph can be 140 

represented as a directed heterogeneous graph, with nodes representing entities and edges 141 

representing relationships. Fig. 1B presents the graph schema of the knowledge graph and Table 1, 142 

2 provide details about entities and relations (refer to Fig. S1 for more network analysis). 143 

Train and inference 144 

As illustrated in Fig. 1C, the training of PertKGE involves several steps. (1) Random initial 145 

embedding: entities and relations in the knowledge graph are represented in low-dimension space 146 

by embedding using Glorot initialization37. (2) Negative sampling: for each existing triple, 100 147 

corrupted triples are randomly generated using the Bernoulli negative sample strategy38. (3) Triples 148 

scoring: The DistMult is used as a scoring function to assess the validity of existing triples and 149 

corrupted triples. (4) Optimization: the margin loss is computed to maximize the scores of existing 150 

triples, minimize the scores of corrupted triples, and update embeddings. This process iterates for n 151 

times until the embeddings of entities and relationships optimally represent the semantics of 152 

chemical perturbation.  153 

During the inference stage, users can query PertKGE with a compound or target of interest, 154 
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depending on their objective, such as target inference or ligand VS. Following the query, PertKGE 155 

calculates the CPI scores using the trained KGE and generates a recommendation list based on these 156 

scores. The top N candidates within the recommendation list are typically chosen for further 157 

experimental validation. 158 

In the subsequent sections, we aim to evaluate the effectiveness of PertKGE and its integration 159 

into the drug discovery stage (Fig. 1D). 160 

 161 

Fig. 1 | Overview of PertKGE. A, The construction pipeline of biologically meaningful knowledge 162 

graph. B, The graph schema of knowledge graph. The (Compound, Has_Binding_To, TF) and 163 

(Compound, Has_Binding_To, RBP) have been omitted due to their limited quantities. C, A 164 
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schematic diagram illustrating the training and inference of PertKGE. D, Two stages demonstrating 165 

the effectiveness of PertKGE. 166 

Table 1 | Entities in the chemical perturbation knowledge graph 167 

Type of entities Count Type of relations 

Protein 19,523 3 

RBP 77 4 

TF 197 4 

mRNA 19,815 6 

miRNA 1,732 2 

lncRNA 4,681 2 

DNA 22,547 3 

Compound 10,892 3 

*Type of relations means the number of specific relation type connected by this type of entities. 168 

 169 

Table 2 | Relations in the chemical perturbation knowledge graph 170 

Type of relations Count Head type (count) Tail type (count) 

Upregulates 2,178,400 Compound:10,892 mRNA:10,166 

Downregulates 2,178,400 Compound:10,892 mRNA:10,166 

miRNA_Regulates 970,099 miRNA:618 mRNA:12,544 

PPI 497,282 Protein:16,299 

RBP:77 

TF:194 

Protein:16,299 

RBP:77 

TF:194 
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RBP_Regulates 429,247 RBP:77 mRNA:16,438 

TF_Regulates 384,450 TF:197 DNA:21,469 

LMI 127,416 lncRNA:4602 

miRNA:1610 

lncRNA:4602 

miRNA:1610 

Transcribes 19,797 DNA:19,797 mRNA:19,797 

Translates 19,797 mRNA:19,797 Protein:19,523 

RBP:77 

TF:197 

Has_Binding_To 15,317 Compound:2,845 Protein:1,800 

RBP:3 

TF:43 

lncRNA_Regulates 1,557 lncRNA:126 DNA:1414 

*Head type (count) and Tail type (count) means the number of specific node type connected by this 171 

relation. 172 

 173 

PertKGE enables accurate and robust target inference in a compound cold-start setting 174 

This work investigates the effectiveness of PertKGE for target inference in compound cold-175 

start settings, where compounds lack known CPI annotations rather than those without any 176 

information39. Similarly, "target cold-start" refers to targets without CPI annotations in this context. 177 

As shown in Fig. 2A, we focus on two compound cold-start scenarios: (1) In current knowledge 178 

graph, 74% of compounds have DEGs from LINCS Phase I but lack CPI annotations. In this case, 179 

direct queries within the knowledge graph suffice. (2) In most cases, query compounds are not 180 
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included in the knowledge graph. This should be addressed by adding the compound-induced DEGs 181 

to the knowledge graph before querying.  182 

In the both scenarios, we follow previous work21 using Top-K accuracy to evaluate the 183 

proportion of tested compounds for which any true target can be correctly predicted among the top 184 

K candidates. In addition, considering polypharmacology (A drug acts on multiple targets), we also 185 

use Recall@K, a metric commonly used in recommendation systems, to measure the recall among 186 

the top K candidates. 187 

For the first scenario, a hold-out strategy was used to create a test set by masking CPI 188 

annotations for 100 compounds with the most significant structural differences (Fig. 2B). The 189 

remaining knowledge graph was trained using five-fold cross-validation and tested on the hold-out 190 

set. We first compare PertKGE to statistical methods reliant on specific prior assumptions, such as 191 

CMap, DeMAND, ProTINA, FL-DTD, and differential expression analysis (DE). As shown in Fig. 192 

2C, PertKGE significantly outperformed these methods in both Top-K accuracy and Recall@K 193 

metrics. We also compared PertKGE with SSGCN, another deep learning-based methods. It is 194 

noteworthy that SSGCN requires gene knockout signatures for target inference, limiting its 195 

applicability to 3832 targets. For a fair comparison, only CPI annotations involving these targets 196 

were used for PertKGE's training. The results showed that PertKGE also significantly outperformed 197 

SSGCN in two metrics.  198 

For the second scenario, signatures from LINCS Phase II were used to provide additional 199 

compound-induced DEGs. The impact of cell line on target inference was investigated. As depicted 200 

in Fig. 2D, CGSs for 170 new compounds across 6 cell lines using the same methodology as in 201 

LINCS Phase I, and the top 200 upregulated and downregulated DEGs were extracted. The DEGs 202 
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from different cell lines exhibited minimal similarity, with an average of 32 intersecting genes 203 

among the upregulated and 34 among downregulated DEGs (Fig. 2E, Fig. S2). Subsequently, we 204 

assessed the DEGs from six cell lines. As expected, PC-3 cells, whose transcriptional data is the 205 

basis for the knowledge graph, yielded the highest performance, with a Top-10 accuracy of 0.266±206 

0.029 and a recall@10 of 0.120±0.016. Notably, PertKGE exhibited predictive capabilities across 207 

other cell lines despite their dissimilarities (Fig. 2F), and this consistency increased with K (Fig. 208 

S3). At K=100, almost all cell lines achieved similar performance to that of PC-3. This suggests that 209 

PertKGE may have learned expression patterns that are independent of cell context. To compare, 210 

we generated the same number of DEGs for each compound randomly. When these DEGs were 211 

used, the model's performance dropped significantly. However, it still retained some predictive 212 

power, potentially due to biases in the datasets (Fig. S3). Based on the results above, we selected 213 

the DEGs from PC-3 for comparison with statistical and deep learning methods. Consistent with 214 

previous findings, PertKGE also significantly outperformed them (Fig. 2G). 215 
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 216 

Fig. 2 | Evaluating CPI prediction performance. A, Illustrations of two compound cold-start 217 

scenarios. B, Selection of 100 compounds with the most significant structural differences among all 218 

compounds with known targets, by calculating the mean extended-connectivity fingerprints (ECFP) 219 

similarity with other molecules. C, Targets inference performance evaluation with PertKGE, 220 

SSGCN and other baseline methods in scenario I. The solid line represents the average value of the 221 

results from five-fold cross-validation, and the shaded area indicates the range of standard deviation. 222 

D, Dimensionality reduction visualization of 170 compounds’ CGS from 6 cell lines in LINCS 223 

Phase II. E, Comparison of the 170 compounds’ most upregulated DEGs in different cells by 224 

calculating their Tanimoto coefficients. F, Comparison of the target inference performance for 170 225 
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compounds’ DEGs in 6 cell lines and randomly generated DEGs. G, Targets inference performance 226 

evaluation with PertKGE, SSGCN and other baseline methods in scenario II. H, Illustration of target 227 

cold-start scenario. I, Evaluation of ligand virtual screening performance with PertKGE and Glide-228 

SP. The x-axis represents 20 targets for prediction, with the number of ligands collected for each. 229 

The statistical significance level was set as *P < 0.05, **P < 0.01. 230 

 231 

PertKGE demonstrates promising VS capabilities in the target cold-start setting 232 

VS for targets without any ligands is a significant but challenging scenario in drug discovery. 233 

This means ligand-based drug design (LBDD), such as ligand structural similarity-based search, 234 

quantitative structure-activity relationship (QSAR), and pharmacophore modelling, cannot be 235 

directly applied. As shown in Fig. 2H, 85% of targets, including RBP, TF and Protein entities, in the 236 

knowledge graph do not have any known ligands. Hence, it is very valuable to evaluate the ability 237 

of PertKGE to screen hits from 10,892 compounds in the knowledge graph for these targets. 238 

Most transcriptomic-based CPI prediction methods are primarily used for target inference. 239 

While FL-DTD and SSGCN have reported applications in VS, the former lacks relevant 240 

implementation on its provided website, and the latter is unsuitable for target cold-start settings (Fig. 241 

S4). Here, we compared PertKGE with the most prevalent structure-based drug design (SBDD) 242 

method, molecular docking. Glide-SP40, known for its powerful VS capabilities, is selected as a 243 

baseline. We also used a hold-out strategy, masking the CPI annotations of 20 targets with 3D-244 

structure in Protein Data Bank (PDB)41. Then, we trained PertKGE using five-fold cross-validation 245 

strategy and tested on the hold-out set. Note that we selected targets with available 3D structures 246 

for ease of comparison with Glide-SP. However, PertKGE can perform VS for targets without 3D 247 
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structures. 248 

As shown in Fig. 2I, we evaluated the VS capabilities of PertKGE and Glide-SP with 20 targets 249 

and 10,892 compounds. Consistent with SBDD work42, we use the enrichment factor (EF) as a 250 

performance metric. In terms of EF0.5%, PertKGE significantly outperforms Glide-SP in 9 targets, 251 

while Glide-SP performs better in 4 target. There is no significant difference between PertKGE and 252 

Glide-SP in the remaining 7 targets. Regarding the EF1.0%, PertKGE demonstrated higher virtual 253 

screening capabilities, outperforming Glide-SP in 11 targets, while Glide-SP performs better in 3 254 

targets. There is no significant difference between PertKGE and Glide-SP in the remaining 6 targets. 255 

For the Reactive Oxygen Species (ROS), Glide-SP showed high enrichment capabilities. However, 256 

this is because, out of 10,892 molecules, only one was a ligand of ROS, and Glide ranked it fourth. 257 

In summary, PertKGE demonstrated better performance than Glide-SP in most targets when VS 258 

against these 10,892 compounds.  259 

 260 

Multi-level regulatory events are essential to alleviate dataset bias 261 

In the previous experiments, we observed a counter-intuitive result that PertKGE still exhibited 262 

some predictive capability even when using randomly generated DEGs. Actually, this is a common 263 

limitation of ML models, where they tend to assign high scores to entities that are over-represented 264 

in the training set, leading to biased predictions43. This limitation deviates from our goal of finding 265 

a reliable mapping from compound-induced DGEs to CPI. In this work, we introduce multi-level 266 

regulatory events to strengthen the connections between genes, alleviating this limitation. To 267 

illustrate, we designed a test where the model was only allowed to use compound-induced DEGs 268 

for prediction (Method).  269 
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Initially, we attempted a comparison with other commonly used BKGs25,26,28. However, such a 270 

direct comparison is not accurate because many understudied compounds can only be incorporated 271 

as isolated nodes in other BKGs, leading to substandard performance. Instead, we pruned other 272 

BKGs to replace the process component of our knowledge graph, while keeping the cause and effect 273 

components unchanged (Fig. 3A). For convenience, we still refer to them by their original names. 274 

Fig. 3B shows the process component derived from different BKGs. It is clear that our knowledge 275 

graph represents genes in various forms such as DNAs, mRNAs, TFs, RBP and so on. In contrast, 276 

in other BKG, genes are typically represented in only one form, like proteins in BioKG and 277 

PrimeKG, or genes in HetioNet. Furthermore, while they have triples of the same order of magnitude, 278 

our knowledge graph captures regulatory events between different forms of genes. However, BioKG, 279 

HetioNet, and PrimeKG primarily describe relationships between genes and coarse-grained nodes 280 

such as biological processes and pathways, as well as nodes less related to chemical perturbation 281 

such as diseases and anatomies.  282 

We trained three alternatives using the same approach as PertKGE. As shown in Fig. 3C, 283 

PertKGE outperformed the three alternatives across all metrics. This implies that process component 284 

based on regulatory events between different forms of genes strengthen the connection between 285 

cause-and-effect components by sharing the same context of chemical perturbation. Although other 286 

BKGs may also include entities related to chemical perturbation, such as pathways and biological 287 

processes, their descriptions are typically coarse-grained (manifested as a pathway or biological 288 

process connecting to multiple gene in the graph). This makes it difficult for the model to learn finer 289 

regulatory patterns. Interestingly, when we use PrimeKG, despite having the most training triples, 290 

it performs nearly as poorly as random guessing. This might because PrimeKG contains over 3 291 
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million triples describing relationships between proteins and anatomies, which are largely irrelevant 292 

to perturbation. This redundancy knowledge may even impede the model's ability to learn other 293 

useful knowledge, resulting in poor performance. 294 

We further explored which regulatory events most significantly contribute to the performance 295 

of PertKGE through an ablation study (Fig. 3C). It can be found that decoupling genes into DNAs, 296 

mRNAs, TFs, RBPs, and other proteins, in accordance with their roles in the central dogma, 297 

significantly improves the model's performance. This improvement may be due to the restoration of 298 

the biological system’s hierarchical structure, enabling the model to differentiate the semantics of 299 

various regulatory events. However, this consideration is often overlooked in other BKGs. 300 

Furthermore, in line with previous studies16,22, both PPI and TF-mediated regulatory events indeed 301 

enhance gene connections. Removing these regulatory events results in a significant performance 302 

decrease. In this study, we modeled the impact of other regulatory elements (RBP, miRNA, lncRNA) 303 

on gene expression for the first time. The results indicated that integrating regulatory events based 304 

on miRNA and lncRNA enriched the model's understanding of the biological regulatory network, 305 

thereby further enhancing the model's predictive capabilities. However, the addition of regulatory 306 

events based on RBP only led to a slight improvement. This could be since RBPs exert a more 307 

refined regulatory role in biological networks44,45. In the knowledge graph, each RBP is associated 308 

with an average of 5000 downstream genes, but only one type of relation is used to describe this 309 

regulation.  310 
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 311 

Fig. 3 | Study of multi-level regulatory events. A, Compare with other BKGs and ablation studies 312 

in unbiased test. Left, construction of BKG-derived knowledge graphs. BKGs were Pruned by 313 

removing drug entities and drug related triples. Right, illustrations of three kinds of ablation studies: 314 

without central dogma, without metanode and without metaedge. B, The pie charts illustrate the 315 

relations in different process components. Since different BKGs use different descriptions, we 316 

uniformly represent relations in the form of head:tail. If there are multiple different head:tail 317 

relationships within the same BKG, we assign them numerical identifiers like head:tail_1. C, 318 

Performance of CPI prediction using different process components. Red dashed line means the 319 

performance of random guess. 320 

Secondary pharmacology study of K-756 by PertKGE 321 
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K-756, a Wnt/β-catenin pathway inhibitor targeting tankyrase (TNKS), is currently in 322 

preclinical testing. It selectively inhibits the ADP-ribosylation activity of TNKS1 and TNKS2 with 323 

IC50 values of 31 nM and 36 nM, respectively46. XAV-939, another preclinical TNKS inhibitor, 324 

inhibits TNKS1 and TNKS2 with IC50 values of 11 nM and 4 nM, respectively52. In our studies, 325 

we accidentally discovered that K-756 exerts unique anti-tumor immune activity in the 4T1 326 

orthotopic breast cancer mouse model, in contrast to XAV-939. This was demonstrated by K-756 327 

significantly increasing the infiltration of CD3+ T cells in tumors, the frequency of CD8+ cytotoxic 328 

T cells within CD3+ T cells, and reducing the expression of CD8+ T cell exhaustion marker PD-1 329 

(Fig. 4A, Fig. S5A-C). However, XAV-939 administration did not result in a noticeable change in 330 

the infiltration of CD3+, CD8+, and PD-1+CD8+ T cells in tumors (Fig. 4A, Fig.  S5A-C). Notably, 331 

we also observed that K-756 exhibited an obvious stronger potency to inhibit tumor growth than 332 

XAV-939 (Fig. S5D). These results have encouraged us to explore the secondary pharmacology of 333 

K-756, to elucidate its mode of action not related to TNKS and explain why it exerts the unique 334 

anti-tumor immunotherapy effects.  335 

As K-756 is not present in the knowledge graph, its target inference falls into the second 336 

scenario discussed earlier. As illustrated in Fig. 4B, we first measured the transcriptional profile of 337 

K-756-treated PC-3 cells (the differential gene analysis results is provided in Fig. S6) and converted 338 

DEGs into triplets before adding them to knowledge graph. We then trained PertKGE to test if it 339 

could predict the known targets of K-756. As Fig. 4C shows, PertKGE ranked TNKS1 at 706th and 340 

TNKS2 at 77th among 19797 candidates, which indicates that the trained embeddings capture the 341 

relationships between the DEGs and targets of K-756. Then we focus on the top 10 predicted targets 342 

of K-756 (Fig. 4D), which represent the targets that PertKGE identified as the most likely to bind 343 
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with K-756. GTP cyclohydrolase 1 (GCH1)47, prostaglandin-endoperoxide synthase 2 (PTGS2)48, 344 

matrix metalloproteinase 9 (MMP9)49, adrenergic receptor beta 1 (ADRB1)50, and ENPP151, which 345 

have been reported to be associated with anti-tumor immunotherapy, were selected for the 346 

subsequent analyses. We evaluated the binding affinity of these proteins with K-756, excluding 347 

ADRB1 as it is not readily available. Notably, ENPP1 demonstrated a nanomolar binding affinity 348 

towards K-756, evidenced by a KD constant of 412 nM, measured using a surface plasmon 349 

resonance (SPR) assay (Fig. 4E). However, no binding interaction was observed between K-756 350 

and the other three proteins (Fig. S5E-G). ENPP1 knockout or pharmacological inhibition prevents 351 

the hydrolysis of tumor-derived cGAMP, leading to the accumulation of cGAMP and the reduction 352 

of adenosine in the tumor microenvironment. This activates the STING signaling pathway and 353 

relieves adenosine-mediated immune suppression, ultimately exerting anti-tumor immune 354 

effects51,52. Based on these findings, we purified recombinant ENPP1 protein and further 355 

investigated K-756 as a potential inhibitor of ENPP1. K-756 significantly increased the thermal 356 

stability of the ENPP1 protein (Fig. 4F), indicating a direct binding interaction with ENPP1. The 357 

half-maximal inhibitory concentration (IC50) of K-756 against the enzymatic activity of ENPP1 358 

was 191.27 nM (Fig. 4G). For comparison, ENPP1-IN-1 (E1, WO2019046778), used as a positive 359 

control, exhibited an IC50 value of 11.76 nM in inhibiting ENPP1 enzyme activity. Classic steady-360 

state enzyme kinetic experiments showed that as the concentration of substrate TMP increased, 361 

Vmax remained constant while Km increased (Fig. 4H), suggesting that K-756 competes with the 362 

substrate for binding to ENPP1. Docking-based molecular simulations showed that K-756 inserts 363 

into the substrate-binding pocket. The pyrimidine ring of K-756 forms π-π stacking interactions with 364 

Phe257 and Tyr340, and hydrogen bonds with Lys295, firmly anchoring K-756 in the pocket (Fig. 365 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.08.588632doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.08.588632
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

4I). Furthermore, 100 ns molecular dynamics simulations revealed a stable conformation between 366 

K-756 and ENPP1, with sustained interactions observed between K-756 and Phe257, Lys295, 367 

Thr340, and Tyr371 (Fig. S5H and S5I). To confirm this binding mechanism, we generated two 368 

ENPP1 protein mutants, K295A and F257A/T340A. These mutations significantly reduced or 369 

completely abolished the binding and the enzymatic inhibitory effect of K-756 on ENPP1 (Fig. 4J-370 

L). Collectively, these results strongly suggest that K-756 binds to the substrate-binding pocket of 371 

ENPP1. Furthermore, as expected, K-756 significantly enhanced the transcription of downstream 372 

cytokines in the STING pathway, including IFNB1, CXCL10, and IL6, when induced by cGAMP 373 

in THP-1-derived macrophages (Fig. 4M and 4N, Fig. S5J).  374 

To determine whether the inhibition of ENPP1 by K-756 is a common characteristic of TNKS 375 

inhibitors or a unique feature of the K-756 molecule, we simultaneously tested the inhibitory activity 376 

of K-756 and three other TNKS inhibitors: VAX-939, NVP-TNKS656, and RK-287107, on ENPP1 377 

enzyme activity. As shown in Fig. S5K, only K-756 exhibited inhibitory activity against ENPP1. 378 

The unique pharmacological activity of K-756 indicates that dual-target inhibitors of TNKS and 379 

ENPP1 may have promising synergistic anti-tumor activity. In summary, the success of repurposing 380 

TNKS inhibitor K-756 to ENPP1 inhibitor demonstrated that the practical and promising targets 381 

inference ability of PertKGE. 382 
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 383 

Fig. 4 | Secondary pharmacology study of K-756 by PertKGE. A, Impact of K-756 and XAV-384 

939 on the infiltration of CD3+, CD8+, and PD-1+CD8+ T cells in tumors was assessed by flow 385 

cytometry (n=4). BALB/c mice were orthotopically inoculated with 4T1 breast cancer cells and 386 

administered 30 mg/kg K-756 or XAV-939 daily via intraperitoneal injection. B, Pipeline of target 387 
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inference for K-756. C, The distribution of predicted scores for all 19797 targets. D, Top 10 388 

predicted targets for K756 are presented in a box plot, illustrating the results of five-fold cross-389 

validation. Rankings are based on the mean predictions from cross-validation. Targets highlighted 390 

in red are associated with tumor immunity. E, Binding affinity measurement of K-756 to ENPP1 391 

protein using SPR assay. Graphs depicting equilibrium response units versus K-756 concentrations 392 

were plotted. F, Impact of K-756 and E1 on the thermal stability of ENPP1 protein, as determined 393 

by protein thermal shift (PTS) assay. G, Dose-dependent inhibition of K-756 and E1 against ENPP1. 394 

The substrate for the ENPP1 enzymatic reaction is thymidine 5′-monophosphate p-nitrophenyl ester 395 

(TMP). H, The steady-state enzyme kinetics analysis of ENPP1 was conducted in the presence of 396 

various concentrations of K-756. I, Docking results for K-756 using a reported ENPP1 X-ray crystal 397 

structure (PDB entry 6WEU) as the template. The figures were generated using PyMOL 398 

(http://www.pymol.org/). J-L, The impact of K-756 on enzymatic activity and thermostability of 399 

mutant ENPP1 protein. M-N, IFNB1 and CXCL10 mRNA levels in THP-1-derived macrophages 400 

were measured following treatment with 2 μM cGAMP alone, or 2 μM cGAMP combined with 401 

various concentrations of K-756 for 12 h. Error bars indicate the mean ± SEM of three biologically 402 

independent experiments (G, H, J, M, N). A two-tailed unpaired t-test was used to analyze 403 

significant differences between groups (*, P < 0.05; **, P < 0.01; ns, no statistical difference, P > 404 

0.05). 405 

 406 

 407 

PertKGE identified five new scaffold hits for ALDH1B1 408 

Aldehyde dehydrogenases (ALDHs) are highly expressed in multiple cancer types, 409 
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contributing to cancer progression, therapy resistance, and immune evasion53. ALDH1B1, a 410 

mitochondrial ALDH isoform, promotes colorectal and pancreatic cancer54. Selective 411 

pharmacological inhibition of ALDH1B1 has been shown to hinder the growth of colon cancer 412 

spheroids and patient-derived organoids54,55. Moreover, the viability of Aldh1b1-knockout mice 413 

suggests that blocking ALDH1B1 has tolerable effects on normal physiology54,56. These results 414 

indicate that ALDH1B1 is a promising cancer drug target. To our knowledge, imidazoliums and 415 

guanidines54 are the only effective ALDH1B1 inhibitors. However, they lack drug-like properties 416 

and are primarily used as molecular probes to study ALDH1B1 functions. Therefore, there is an 417 

urgent need to discover novel scaffold ALDH1B1 inhibitors for cancer treatment. 418 

Here, PertKGE was utilized as a virtual screening tool to identify novel ALDH1B1 inhibitors. 419 

As Fig. 5A shows, screening was conducted on 7,403 small molecules in the knowledge graph after 420 

filtering out those may be pan-assay interference compounds (PAINS) and with heavy molecular 421 

weight, and the top 100 candidates predicted by PertKGE were purchased from commercial libraries 422 

for further validation.  423 

Initially, an enzyme kinetics assay was carried out to measure the inhibitory activity of the 424 

predicted actives against ALDH1B1, with IGUANA-154 as a positive control due to its potent 425 

inhibitory activity and commercial availability. Out of the 49 commercially available candidates, 426 

NSK-22, NSK-29, NSK-40, NSK-68, and NSK-98, showed significant inhibitory activity on 427 

ALDH1B1, at a hit rate of 10.2% (Fig. 5B, C, and E). Further, the impact of these five compounds 428 

on the thermostability of recombinant ALDH1B1 protein was evaluated. All compounds 429 

substantially improved the thermal stability of ALDH1B1 protein (Fig. 5D and E), suggesting these 430 

compounds could directly bind to ALDH1B1. Additionally, the attenuation of NSK-22, NSK-29, 431 
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NSK-68, and NSK-98 signals after incubation with ALDH1B1 protein was observed in the Carr-432 

Purcell-Meiboom-Gill (CPMG) nuclear magnetic resonance (NMR) spectra. Positive saturation 433 

transfer difference (STD) signals in the STD spectrum were also noted (Fig. 5F, Fig. S7A-C), further 434 

indicating their direct binding to ALDH1B1. NSK-40 was not included in this NMR analysis due to 435 

its poor solubility in the assay buffer, preventing signal collection. To determine the binding affinity 436 

between these five hits and ALDH1B1, a SPR assay was conducted. The results showed that the 437 

binding affinity of the five hits ranged from 0.71 to 14.1 μM (Fig. 5E and 5G, Fig. S7D-G). 438 

Collectively, these results strongly demonstrate that NSK-22, NSK-29, NSK-40, NSK-68 and NSK-439 

98 can directly bind to ALDH1B1 and inhibit its enzymatic activity. Compared to the current two 440 

classes of ALDH1B1 inhibitors, these 5 hits possess novel scaffolds and have a clinical drug history 441 

(Fig. S8), holding promise for further development. 442 

We also examined whether these hits could be identified with conventional SBDD approach. 443 

However, molecular docking ranked them at 1937th, 2145th, 1509th, 6488th, and 7322th, 444 

respectively. (Fig. S7H). This showed that PertKGE could be an excellent virtual screening, 445 

discovering actives overlooked by conventional methods. 446 

 447 

 448 
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 449 

Fig. 5 | PertKGE identified five new scaffold hits for ALDH1B1. A, The query for ALDH1B1 in 450 

the current PertKGE reveals three existing forms of ALDH1B1, and there is no known active 451 

molecule targeting protein-level ALDH1B1. The dashed box outlines the scheme of the active 452 

screening protocol for ALDH1B1. B, Chemical structures of five hit compounds: NSK-22, NSK-453 

29, NSK-40, NSK-68, NSK-98, and reported ALDH1B1 inhibitor IGUANA-1. C, Dose–response 454 

curves of NSK-22, NSK-29, NSK-40, NSK-68, NSK-98, and IGUANA-1, determined by 455 
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ALDH1B1 enzyme kinetics assay. Error bars represent the mean ± SEM of three independent 456 

experiments. D, Impact of NSK-22, NSK-29, NSK-40, NSK-68, NSK-98, and IGUANA-1 on the 457 

thermal stability of ALDH1B1 protein, as determined by PTS assay. E, Summary of IC50 values of 458 

the indicated compounds determined by enzyme kinetics assays, melting temperature differences 459 

(ΔTm) determined with PTS assay, and KD values measured via SPR assay. F, Nuclear magnetic 460 

resonance (NMR) measurement of direct binding between NSK-98 and ALDH1B1 protein. CPMG 461 

NMR spectra for NSK-98 (red), NSK-98 in the presence of 5 μM ALDH1B1 protein (green). The 462 

STD spectrum for NSK-98 was recorded in the presence of 5 μM ALDH1B1 protein. G, Binding 463 

affinity measurement of NSK-98 to ALDH1B1 protein using SPR assay. Graphs depicting 464 

equilibrium response units versus NSK-98 concentrations were plotted. 465 

 466 

Discussion 467 

Exposure of cells to small molecules often triggers multi-level remodeling, which can be 468 

observed through perturbation omics data. These data provide a dynamic and more realistic view of 469 

the impact of compounds on cells, making it a promising information source for understanding CPI. 470 

In this study, we developed a novel method, PertKGE, based on a biologically meaningful 471 

knowledge graph to systematically mine perturbation transcriptomics. By integrating a range of 472 

regulatory events mediated by factors such as TFs, RBPs, other proteins, miRNAs and lncRNAs, 473 

and using KGE algorithm, PertKGE can better understand the context of chemical perturbation, 474 

leading to accurate and robust CPI predictions. Our method has outperformed baseline methods in 475 

two cold-start settings and has avoided pitfall associated with ML. These encouraging 476 

computational results led us to incorporate PertKGE into the early stages of drug discovery. We 477 
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applied PertKGE in two real-word application scenarios: (1) How to explain K-756’s unique anti-478 

tumor immune activity in phenotype-based screening. The experimental validation of the top ten 479 

targets recommended by PertKGE strongly suggests that K-756 binds to the substrate-binding 480 

pocket of ENPP1, indicating that the development of dual-target inhibitors of TNKS and ENPP1 481 

may serve as a promising synergistic anti-tumor strategy. (2) How to find novel scaffold inhibitors 482 

with drug-like properties for a less studied target, like ALDH1B1. Through the combined use of 483 

PertKGE and experimental methods, we identified 5 hits with a 10.2% hit rate. These hits possess 484 

novel scaffolds, indicating potential for further development. The success of PertKGE both in 485 

computational experiments and practical applications demonstrates its potential as a promising tool 486 

for helping pharmacologists in understanding the MOA of compounds and screening promising 487 

inhibitors. 488 

In drug discovery, the use of a knowledge graph to integrate and analysis multi-omics data is a 489 

promising approach. Unlike previous methods that used compound-induced transcriptomic profiles 490 

as the primary representation of nodes27 or simply added up/down-regulation relations in existing 491 

BKGs25, our work underlines causal reasoning. We introduce a new knowledge graph that 492 

decomposes chemical perturbations into three components: a cause component made up of CPI, a 493 

process component consisting of multiple regulatory events, and an effect component comprising 494 

observed DEGs. This approach customizes the entire knowledge graph for a specific context, 495 

namely chemical perturbation, and has shown effectiveness in both computational analyses and 496 

experimental validations. We believe that CPI prediction is a significant challenge, and we are far 497 

from a complete solution. In the future, the knowledge graph we created could be further enhanced 498 

by considering more and finer regulatory events. Additionally, the application scope can be 499 
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broadened by using PertKGE to analyze other types of large-scale omics data, such as perturbation 500 

proteomics57 and cell images58,59. 501 

Methods 502 

Constructing the chemical perturbation knowledge graph with data from multiple 503 

database 504 

We downloaded relevant raw data from multiple domain databases, subsequently converting 505 

them into a standard triple format denoted by (head, relation, tail). To establish connections between 506 

triples originating from distinct database sources, we employed entity alignment. Finally, the 507 

Networkx python package60 was used to retain the largest connected subgraph through pruning. 508 

PubChem61. Managed by the National Center for Biotechnology Information (NCBI), PubChem 509 

serves as a comprehensive repository of chemical information. The diverse representation of each 510 

chemical substance is standardized through the PubChem CID (Compound Identifier), offering a 511 

consistent reference for a specific substance across different contexts and datasets. In our study, we 512 

employed PubChem's online service to convert all compounds into their corresponding CIDs using 513 

Simplified Molecular Input Line Entry System (SMILES). 514 

UniProt62. UniProt is a comprehensive, freely accessible database providing detailed information 515 

on protein sequences and functional annotation. Our acquisition of gene names for human proteins 516 

was conducted through the official UniProt website. Subsequently, we established a correlation 517 

between the acquired gene names and primary names. In chemical perturbation knowledge graph, 518 

all proteins are uniquely identified and represented by their primary names. 519 

STRING33. STRING serves as a repository consolidating PPIs derived from both experimentally 520 

confirmed discoveries and anticipated outcomes. The human PPI network utilized in our study was 521 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.08.588632doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.08.588632
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

extracted from the STRING v11.5 database. We converted PPI interactions with a combined score 522 

surpassing 700 into bidirectional relationships. Subsequently, we formatted these bidirectional 523 

relationships into standard triples for further analysis. 524 

ENCORI29. ENCORI, previously known as StarBase, is a platform designed for exploring the RNA 525 

related interaction networks from CLIP-Seq datasets. We downloaded the interactions mediated by 526 

RBP and miRNA-regulated mRNA interactions through the web API and processed them into the 527 

standard triple format. Here, hg38 is used as the reference genome, and the chosen interactions must 528 

have at least five CLIP-Seq experimental records in the database to ensure accuracy. For miRNA, 529 

the alignment was executed based on the gene symbol present in the database. 530 

RAID36. RAID, a database centered on RNA interactions, is now at its 4.0 version, boasting over 531 

41 million RNA-related interactions spanning 154 different species. Data retrieval from the official 532 

website encompassed information on the regulatory effects of lncRNA on DNA, and interactions 533 

between lncRNA and miRNA. Our focus was directed towards interactions specific to humans, and 534 

we ensured the inclusion of interactions supported by substantial experimental evidence. 535 

Subsequently, this data was organized into a standard triple format, aligning lncRNA and miRNA 536 

using the gene symbols sourced from the database. 537 

CHEA34. CHEA, which offers target genes of transcription factors derived from published ChIP-538 

chip, ChIP-seq, and other transcription factor binding site profiling studies, was accessed through 539 

the Harmonizome 3.0. We extracted the CHEA dataset and transformed it into a standard triple 540 

format, resulting in the acquisition of 384,450 DNA regulatory relationships mediated by 197 541 

transcription factors. 542 

LINCS6. LINCS, supported by the NIH, systematically captures and documents gene expression 543 
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patterns across diverse cell lines when subjected to different perturbations under varied experimental 544 

settings. The LINCS phase I L1000 dataset (GSE92742, spanning 2012–2015) and the LINCS 545 

phase II L1000 dataset (GSE70138, from 2015–2017) were obtained from the Gene Expression 546 

Omnibus (GEO) through the Broad Institute. Initially, we opted for the level 5 data, viewing it as a 547 

refined depiction of the transcriptional outcomes of a given experiment condition. Focusing on the 548 

PC3 cell line's perturbation data due to its extensive volume, we applied the moderated z-score 549 

(MODZ) method to create consensus signatures, capturing essential gene expression changes across 550 

different time points and concentrations. Utilizing weights from the original study6, we expanded 551 

this to cover 10,174 confidently inferred genes. We curated a list of the top 200 genes, comprising 552 

both upregulated and downregulated genes, based on corrected expression levels, forming the basis 553 

of our triples. 554 

Other datasets. In addition to the insights from the databases previously mentioned, we sourced 555 

annotation details from LINCS6, DepMap30, ChEMBL31, and DrugBank32 to shape cause 556 

component of chemical perturbation knowledge graph. Additionally, the central dogma served as 557 

prior knowledge for linking DNA to mRNA, and mRNA to proteins. 558 

 559 

Training protocol 560 

The training of PertKG is to embed the entire chemical perturbation knowledge graph into a 561 

vector space, thereby obtaining embeddings rich in chemical perturbation semantic for compounds 562 

and targets. We denote head entity, tail entity and relation in chemical perturbation knowledge graph 563 

as ℎ, 𝑡 ∈ 𝐸 (the set of entities) and 𝑟 ∈ 𝑅 (the set of relations). Then PertKG computes validity 564 

for each triple (h, r, t) using DistMult as scoring function: 565 
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𝑓𝑟(ℎ, 𝑡) = ∑  

𝑖

[𝐡 ⊙ 𝐫 ⊙ 𝐭]𝑖 (1) 566 

where 𝐡, 𝐫, 𝐭 ∈ ℝ𝑑  represent d-dimensional vectors of head entity, relation and tail entity, 567 

respectively. Note that for a given entity, its embedding vector is the same when the entity appears 568 

as the head or as the tail of a triple. ⨀ denotes element-wise product, and the 𝑖 index is along the 569 

feature dimension of the vector resulting from the element-wise production of the different features. 570 

Given training set 𝑆 of existing triples, we minimize a margin-based ranking loss to capture 571 

semantic of chemical perturbation knowledge graph: 572 

ℒ = ∑  
(ℎ,ℓ,𝑡)∈𝑆

∑  

(ℎ′,ℓ,𝑡′)∈𝑆(ℎ,ℓ,𝑡)
′

[𝛾 + −(𝑓𝑟(ℎ, 𝑡) − 𝑓𝑟(ℎ′, 𝑡′))]+ (2)
 573 

where [𝑥]+ denotes positive part of 𝑥, 𝛾 > 0 is a margin hyperparameter, and  574 

𝑆(ℎ,ℓ,𝑡)
′ = {(ℎ′, ℓ, 𝑡)|ℎ′ ∈ 𝐸} ∪ {(ℎ, ℓ, 𝑡′)|𝑡′ ∈ 𝐸} (3) 575 

The set of corrupted triples, constructed according to Equation (3), is composed of training 576 

triples with either the head or tail replaced by a random entity. To reduce false corrupted triples,  577 

Bernoulli distribution is used to decide to corrupt head or tail38. 578 

In this study, five-fold cross-validation strategy is employed in training, wherein the CPI 579 

annotations in chemical perturbation knowledge graph have been further partitioned into five folds 580 

based on compounds. Four folds are reserved for training PertKG, and the remaining one is used 581 

for validation. The whole optimization is carried out by using Adam63. Early stopping is used to 582 

terminate the training process if the performance of the model on the valid set shows no further 583 

improvement. After training, we obtain five well-trained models, and report the mean and standard 584 

deviation of the results in the test. The entire training script of PertKG is implement using the 585 

TorchKGE64.  586 

Additionally, SSGCN was re-implemented adhering to the methodologies outlined in the 587 
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original paper. The resulting recommendation list was generated based on CPI score of 3832 targets. 588 

DeMAND and ProTINA were implemented based on their respective R scripts. ProTINA yielded a 589 

descending order of scores for 10,174 target proteins, while DeMAND provided an ascending order 590 

of p-values. CMAP and FL-DTD were evaluated using their designated websites. Differential 591 

Expression (DE) was executed by sorting the absolute values of gene expression in descending order.  592 

 593 

Evaluation protocol 594 

We evaluated the model's performance in target inference, ligand virtual screening, and 595 

unbiased testing. 596 

Target inference: In target inference, we evaluated the performance of identifying targets 597 

within the recommendation lists provided by different models. We employed TOP-K accuracy and 598 

Recall@K as the metrics. 599 

In the TOP-K accuracy formula, N denotes the total number of compounds in test set, K is a 600 

constant, and f(i,K) represents the evaluation of the ith compound. Specifically, if the compound has 601 

at least one target ranked at or below K, the value of f(i,K) is set to 1; otherwise, it is set to 0. 602 

𝑇𝑂𝑃 − 𝐾 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑁
∑ 𝑓(𝑖, 𝐾)

𝑁

𝑖=1

(4) 603 

In the Recall@K formula, Ti is the number of targets for the ith compound, and Ri,k represents 604 

the number of targets ranked at or below K for the ith compound. 605 

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
1

𝑁
∑

𝑅𝑖,𝑘

𝑇𝑖

𝑁

𝑖=1

(5) 606 

 Ligand virtual screening: In target inference, we evaluated the performance of identifying 607 

ligands within the recommendation lists provided by different models. Our evaluation utilized the 608 

Enrichment Factor (EF) as the metric. 609 
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In the EF formula, Hitstotal is the number of ligands for the target, Ntotal is the number of all 610 

compounds, Hitssampled is the number of compounds among the top N ranked compounds that are 611 

active, and Nsampled is the number of compounds ranked in the top N. 612 

𝐸𝐹 =

𝐻𝑖𝑡𝑠𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝐻𝑖𝑡𝑠𝑡𝑜𝑡𝑎𝑙

𝑁𝑡𝑜𝑡𝑎𝑙

(6) 613 

 Unbiased test: This test was used to evaluate whether the model learned the mapping from 614 

DEGs to CPI. In this evaluation, we designated the CPI annotations of 100 compounds for testing 615 

purposes. For each reserved CPI, we conducted random sampling to generate 1000 negative 616 

compounds. Subsequently, for each positive CPI and its corresponding 1000 negative samples, we 617 

assessed the model's ability to rank the positive compound higher than the negatives. This testing 618 

methodology ensures that the model's performance is contingent on its capacity to learn the mapping 619 

from DEGs to CPI. Hits@K was used as metrics in this test. 620 

In the Hits@K formula, NCPIs represents the number of compound-protein interaction pairs, 621 

and g(i,K) represents the evaluation of the ith CPI pair. If its rank is at or below K, the value of 622 

g(i,K) is set to 1; otherwise, it is set to 0. 623 

𝐻𝑖𝑡𝑠@𝐾 =
1

𝑁𝐶𝑃𝐼𝑠
∑ 𝑔(𝑖, 𝐾)

𝑁𝐶𝑃𝐼𝑠

𝑖=1

(7) 624 

 625 

Recombinant protein expression and purification 626 

For plasmid construction, human ALDH1B1 (residues 20-517) was subcloned into the pET-627 

15b vector with an N-terminal 6×His tag. To obtain soluble ENPP1 proteins, extracellular region 628 

(residues 110-926) of human ENPP1 was fused to the N-terminal secretion signal sequence 629 

(residues 1-59) from mouse ENPP2 and cloned into the pcDNA3.1 vector with a Flag tag added to 630 
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the C-terminal. For expression of ALDH1B1 protein, His-tagged ALDH1B1 plasmid was 631 

transformed into BL21(DE3)-Chaperone competent cells (WeiDibio, EM1002S). These cells were 632 

subsequently grown in lysogeny broth (LB) medium containing 100 μg/ml ampicillin, 35 μg/ml 633 

chloramphenicol and 1 × chaperone inducer at 37°C. Once the optical density at 600 nm reached 634 

0.6~0.8, the culture was transferred to 16°C, and 0.5 mM isopropyl β-d1-thiogalactopyranoside 635 

(IPTG) was added to induce protein expression for 20~22 hours. The bacteria were then collected 636 

by centrifugation (3,000 rpm, 30 minutes, 4°C). Cells were lysed in lysis buffer (Beyotime, P0013Q) 637 

containing protease inhibitor cocktail (Beyotime, P1031) and nuclease (Beyotime, D7121-25KU), 638 

and the suspension was mechanically rotated at room temperature for 25 minutes. The lysate was 639 

centrifuged (16,000 rpm, 30 minutes, 4°C), and the soluble fraction was filtered by 0.22 μm syringe 640 

filters and purified on HisTrap columns (Cytiva) using elution buffer (20 mM HEPES, pH 7.4, 500 641 

mM NaCl, 1 mM tris (2-Carboxyethyl) phosphine (TCEP), 500 mM imidazole, and 5% glycerol). 642 

The eluted components were exchanged into storage buffer (20 mM HEPES, pH 7.4, 150 mM NaCl) 643 

using desalting columns (Cytiva). The purified ALDH1B1 protein was stored in the storage buffer 644 

at -80°C. ENPP1 recombinant protein was expressed in suspension Expi293F GnTi-/-cells 645 

(Thermofisher, A39240). After 5 days of transfection with the Flag-tagged ENPP1 plasmid, the 646 

medium supernatant was collected by centrifuged (16,000 rpm, 1 hour, 4°C) and slowly loaded onto 647 

a manually packed Anti-Flag affinity resin. The protein was eluted with an elution buffer consisting 648 

of Flag peptides. The elution was further purified on a Superdex 200 increase 10/300 GL column 649 

(Cytiva) equilibrated with a buffer containing 20 mM HEPES, pH 7.4, and 150 mM NaCl. The 650 

purified ENPP1 proteins were identified using SDS-PAGE and stored at -80°C. For the two ENPP1 651 

protein mutants, K295A and F257A/T340A, the expression and purification methods were identical 652 
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to those used for the Wild-type ENPP1 protein. 653 

 654 

Enzymatic activity assays 655 

For ALDH1B1, the enzymatic activity assay was conducted in a 384-well white Optiplate 656 

(PerkinElmer, 6007290) at room temperature under the following conditions: each well contained 657 

5% (v/v) DMSO, 100 nM His-tagged ALDH1B1 protein, 1 mM nicotinamide adenine dinucleotide 658 

(NAD+), and 1 mM acetaldehyde in the assay buffer (100 mM sodium phosphate, pH 8.0, 1 mM 659 

MgCl2, and 1 mM TCEP). For IC50 determination, His-tagged ALDH1B1 was pre-incubated with 660 

NAD+ and serially diluted compounds for 5 minutes. Acetaldehyde was then added to each well, 661 

and the resulting enzymatic activity was measured based on nicotinamide adenine dinucleotide 662 

hydrate (NADH) fluorescence. The fluorescence signal was measured using a TECAN Spark 663 

multifunctional microplate reader over the course of 15 minutes with an excitation wavelength of 664 

340 nm and emission wavelengths of 460 nm. For ENPP1, the enzymatic activity assay was 665 

conducted in a transparent 384-well plate (NEST, 761001), with a total volume of 50 μL. Each well 666 

containing a final concentration of 3 nM Flag-tagged ENPP1 protein, various concentrations of 667 

compounds, and 100 μM p-Nph-5’-TMP in the assay buffer (50 mM Tris HCl, pH 8.5, 130 mM 668 

NaCl, 1 mM CaCl2, and 5 mM MgCl2). For IC50 determination, Flag-tagged ENPP1 protein was 669 

incubated with serially diluted compounds for 10 minutes at room temperature. Subsequently, p-670 

Nph-5’-TMP was added and the absorbance change at 405 nm, indicating the release of p-671 

nitrophenolate, was measured using a TECAN Spark multifunctional microplate reader.  672 

 673 

Protein thermal shift assay 674 
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The protein thermal shift assay was conducted using the QuantStudio™ 5 (Applied Biosystems) 675 

to evaluate the compound-induced changes in protein thermal stability. For ALDH1B1, His-tagged 676 

ALDH1B1 protein (6 μM) was incubated with compounds (100 μM), NAD+ (100 μM), and 5 677 

×SYPRO Orange dye (Sigma, 67-68-5). For ENPP1, Flag-tagged ENPP1 protein (2 μM) was 678 

incubated with compounds (50 μM) and 5 × SYPRO Orange dye. The mixtures were then 679 

transferred into 384-well plates (Monad, Q50701S) with a final volume of 10 μL. The fluorescence 680 

signal was recorded as the temperature was gradually raised from 25°C to 95°C. The data were 681 

analyzed using the Protein Thermal Shift™ software v1.4 to determine the Tm value. 682 

 683 

Nuclear magnetic resonance assay 684 

Nuclear magnetic resonance (NMR) assay was performed using a 600 MHz spectrometer 685 

(AVANCE III, Bruker) to validate protein-compound interactions. In Carr-Purcell-Meiboom-Gill 686 

(CPMG) and saturation transfer difference (STD) NMR experiments, compounds were dissolved to 687 

a final concentration of 200 μM in a solution of PBS prepared with D2O, containing 5 μM His-688 

tagged ALDH1B1 protein, 5% DMSO‑d6, and 100 μM NAD+. 689 

 690 

Surface plasmon resonance assay 691 

The surface plasmon resonance (SPR) experiments were performed using a Biacore 1K or 692 

Biacore 8K instrument (Cytiva) at 25°C. His-tagged ALDH1B1 protein, Flag-tagged ENPP1 protein, 693 

GCH1 protein (Cusabio, CSB-EP009317HU), and MMP9 protein (Sino Biological, 10327-H08H) 694 

were covalently immobilized onto a CM5 sensor chip (Cytiva) by a standard amine-coupling 695 

procedure in 10 mM sodium acetate of different pH (pH 5.0 for ALDH1B1 and MMP9, pH 4.5 for 696 
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ENPP1 and GCH1). PTGS2 protein (Sino Biological, 12036-H08B) was chelated to the CM5 sensor 697 

chip by His capture kit (28995056). The running buffer for ALDH1B1 protein contained 10 mM 698 

HEPES, pH 7.4, 400 mM NaCl, 300 μM NAD+. The running buffer for ENPP1 and GCH1 protein 699 

contained 10 mM HEPES, pH 7.4, 150 mM NaCl. The running buffer for PTGS2 protein contained 700 

10 mM HEPES, pH 7.4, 150 mM NaCl, 0.005% surfactant P20. Compounds were serially diluted 701 

into the running buffer and injected onto the sensor chip at a flow rate of 30 μL/minute for 120 or 702 

150 seconds (contact phase), followed by 300 or 180 seconds of buffer flow (dissociation phase). 703 

The equilibrium dissociation constant (KD) value was derived using Biacore Insight Evaluation 704 

software (Cytiva).   705 

 706 

Animal experiment 707 

All animal experiments were conducted with the approval and supervision of the Institutional 708 

Animal Care and Use Committee (IACUC) at the Shanghai Institute of Materia Medica, Chinese 709 

Academy of Sciences. For the pharmacodynamics experiment, female BALB/c mice (6-8 weeks 710 

old) were inoculated with 1×106 4T1 breast cancer cells into the mammary fat pad. The tumor-711 

bearing mice were randomly divided into three groups when the tumor volume reached 712 

approximately 100 mm3. Subsequently, the mice were intraperitoneally injected with 30 mg/kg of 713 

K-756 (MedChemExpress, HY-U00422) or XAV-939 (MedChemExpress, HY-15147) in a solution 714 

containing dimethyl sulfoxide (DMSO) and 20% SBE-β-CD (MedChemExpress, HY-17031) in 715 

saline (10/90, v/v) daily for one week. Body weights and tumor volumes of the mice were measured 716 

daily. Tumor volumes were calculated using the formula: V= (length×width2)/2. At the completion 717 

of the study, the mice were euthanized, and the tumors were harvested for further study. 718 
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 719 

Flow cytometry analysis 720 

To harvest a single cell suspension, the tumor tissues were shredded with a scissors and treated 721 

with digestion solution for 1 hour at 37°C under shaking. The digestion solution was prepared by 722 

adding 0.001% hyaluronidase, 0.1% collagenase, 0.002% DNase, 120 μM MgCl2, and 120 μM 723 

CaCl2 to RPMI-1640 medium. The digested tumor tissues were filtered through a nylon membrane 724 

to obtain a single-cell suspension and treated with ammonium chloride to remove red blood cells. 725 

Subsequently, the cell samples were stained with Fixable Viability Stain 700 (BD Horizan, 564997) 726 

and the following antibodies: anti-mouse CD16/32 antibody (Biolegend, 101320), CD3-FITC 727 

(Invitrogen, 2103752), CD8-BV421 (Biolegend, 100738), PD-1-SB600 (Invitrogen, 2314455). The 728 

stained cells were analyzed using the Agilent NovoCyte 3000 instrument. All data were analyzed 729 

using the FlowJo software. 730 

 731 

Molecular docking 732 

The molecular docking calculations were based on crystallographic data for the protein 733 

structures of ALDH1B1 (PDB:7RAD and 7MJC), and ENPP1 (PDB:6WEU), optimized by the 734 

Protein Preparation Wizard at pH 7.0. Subsequently, prepared ligands were docked to the optimized 735 

protein using Glide with Standard Precision (SP) mode. All other parameters for the above process 736 

were set to default. All docking studies were performed using Maestro of Schrödinger Suites 737 

(version 2020-4), and obtained poses were analyzed with PyMOL. 738 

 739 

Molecular dynamics analysis 740 
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The molecular dynamics study was performed to examine the conformational changes in the 741 

protein that occurred due to the ligand-binding site and to evaluate the effect of these changes over 742 

the protein-ligand complex. To evaluate the stability and interaction of the ENPP1 with ligand, 743 

simulation study was performed using Desmond Schrödinger Suites (version 2020-4) at 100 ns time 744 

period. Water molecules were added to the docking complex of the ENPP1 with a simple point 745 

charge (SPC) water model. Dynamic was performed with 100 ns, during the simulation the length 746 

of bond involving hydrogen was constrained using NPT ensemble, without restrains, for a 747 

simulation time of 1.2 picoseconds (ps) (temperature 300 K) was performed to relax the system. 748 

 749 

Cell culture 750 

4T1 and THP-1 cells were purchased from ATCC (American Type Culture Collection) and 751 

cultured in RPMI-1640 medium (BasalMedia, L210KJ) supplemented with 10% fetal bovine serum 752 

(FBS, Meilun, PWL001) and 1% penicillin-streptomycin (PS, Meilun, MA0110) at 37°C in a 5% 753 

(v/v) CO2 atmosphere. THP-1-derived macrophages were induced by 100 ng/ml Phorbol 12-754 

myristate 13-acetate (PMA, MedChemExpress, HY-18739) for 24 hours. 755 

 756 

RNA isolation, cDNA synthesis, and real-time quantitative PCR (RT-qPCR) 757 

THP-1-derived macrophages were pretreated with various concentrations of K-756 for 30 758 

minutes, then treated with 2 μM 2',3'-cGAMP sodium (MedChemExpress, HY-100564A) for 12 759 

hours. RNA-easy Isolation Reagent (Vazyme, R701-01) was used to extract total RNA from the 760 

cells, according to the manufacturer’s instructions. This total RNA was reverse transcribed into 761 

cDNA using HiScript ⅡQ RT SuperMix (Vazyme, R223-01). RT-qPCR was conducted using 762 
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ChamQ SYBR qPCR Master Mix (Vazyme, Q331-02) in the CFX96TM RealTime PCR Detection 763 

System. All the primer sequences used in this work are shown below: human ACTB forward: 764 

catgtacgttgctatccaggc, human ACTB reverse: ctccttaatgtcacgcacgat; human IFNB1 forward: 765 

cagcatctgctggttgaaga, human IFNB1 reverse: cattacctgaaggccaagga; human CXCL10 forward: 766 

ccacgtgttgagatcattgct, human CXCL10 reverse: tgcatcgattttgctcccct; human IL6 forward: 767 

ttcggtccagttgccttctc, human IL6 reverse: tacatgtctcctttctcagggc. 768 

 769 

Statistical analysis 770 

Statistical analysis was performed using GraphPad Prism 9.0 software. Differences of 771 

quantitative data between groups were calculated using a 2-tailed unpaired t-test. The statistical 772 

significance level was set as *P < 0.05, **P < 0.01. 773 

 774 

Data availability 775 

The data included in our paper are all from public data sets. 776 

 777 

Code availability 778 

 The code used to generate the results shown in this study will be available under an MIT 779 

License in the repository https://github.com/myzhengSIMM/PertKGE upon publication. 780 
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