

1 Identify compound-protein interaction with knowledge 2 graph embedding of perturbation transcriptomics

3 Shengkun Ni^{1, 2, #}, Xiangtai Kong^{1, 2, #}, Yingying Zhang^{1, 3, 4, #}, Zhengyang Chen^{1, 2, #}, Zhaokun
4 Wang^{1, 2}, Zunyun Fu¹, Ruifeng Huo^{1, 5}, Xiaochu Tong^{1, 2}, Ning Qu^{1, 2}, Xiaolong Wu^{1, 6}, Kun
5 Wang^{1, 3, 4}, Wei Zhang^{1, 2}, Runze Zhang^{1, 2}, Zimei Zhang^{1, 3, 4}, Jiangshan Shi^{1, 2}, Yitian Wang^{1, 2},
6 Ruirui Yang^{1, 2}, Xutong Li^{1, 2, *}, Sulin Zhang^{1, 2, *}, Mingyue Zheng^{1, 2, 5, 7, *}

7 ¹Drug Discovery and Design Canter, State Key Laboratory of Drug Research, Shanghai Institute of
8 Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China

9 ²University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China

10 ³School of Life Sciences, Division of Life Sciences and Medicine, University of Science and
11 Technology of China, Hefei 230026, China

12 ⁴The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and
13 Medicine, University of Science and Technology of China, Hefei, 230001, China

14 ⁵Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China

15 ⁶School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China

16 ⁷School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study,
17 University of Chinese Academy of Sciences, Hangzhou 310024, China

18

19 #Shengkun Ni, Xiangtai Kong, Yingying Zhang and Zhengyang Chen contributed equally to this
20 study.

21 *Correspondence should be addressed to:

22 Mingyue Zheng: myzheng@simm.ac.cn

23 Sulin Zhang: slzhang@simm.ac.cn

24 Xutong Li: lixutong@simm.ac.cn

25

26 **Abstract**

27 The emergence of perturbation transcriptomics provides a new perspective and opportunity for drug
28 discovery, but existing analysis methods suffer from inadequate performance and limited
29 applicability. In this work, we present PertKGE, a method designed to improve compound-protein
30 interaction with knowledge graph embedding of perturbation transcriptomics. PertKGE
31 incorporates diverse regulatory elements and accounts for multi-level regulatory events within
32 biological systems, leading to significant improvements compared to existing baselines in two
33 critical "cold-start" settings: inferring binding targets for new compounds and conducting virtual
34 ligand screening for new targets. We further demonstrate the pivotal role of incorporating multi-
35 level regulatory events in alleviating dataset bias. Notably, it enables the identification of
36 ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-
37 tumor immunotherapy effect of tankyrase inhibitor K-756, and the discovery of five novel hits
38 targeting the emerging cancer therapeutic target, aldehyde dehydrogenase 1B1, with a remarkable
39 hit rate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery by
40 elucidating mechanisms of action and identifying novel therapeutic compounds.

41

42 **Introduction**

43 Identifying compound-protein interaction (CPI) is fundamental for developing therapeutic
44 compounds and understanding their target-level mechanisms of action (MOA)¹. Over the past few

45 decades, numerous in silico methods have been proposed and widely used in drug discovery
46 pipelines due to their cost-effectiveness and high-throughput capabilities, offering valuable insights
47 and guidance for both in vitro and in vivo experiments^{2,3}.

48 In the past decades, a significant amount of biological data has been accumulated. This has led
49 to computational methods evolving from primarily relying on cheminformatics and structural
50 biology to incorporating multiple perspectives. For instance, systematic profiling of small-molecule
51 perturbation effects, including cell images⁴, transcriptomics^{5,6}, proteomics⁷ and metabolomics⁸,
52 offers new opportunities to identify CPI^{9,10}. Among these omics data, perturbation transcriptomics,
53 which captures a 'snapshot' of differential mRNA abundance after perturbation, has received the
54 most extensive attention due to its high-throughput nature and ability to acquire large-scale
55 data^{5,6,11,12}. However, inherent noise in biological data¹³, cellular homeostasis¹⁴, and dynamic
56 changes in mRNA expression¹⁵, make CPI not directly reflected in the most differentially expressed
57 genes (DEGs)¹⁶. This makes predicting CPI based on perturbation transcriptomics a challenging
58 task.

59 Several methods can be used to address this problem, including comparative analysis and
60 causal reasoning¹⁷. Comparative analysis involves finding the appropriate similarity between the
61 query profile and well-annotated reference profiles, then assigning the MOA of the most similar
62 reference profile to the query. A notable example is the Connectivity Map (CMap), which uses a
63 connectivity score based on gene set enrichment analysis (GSEA) to measure the similarity⁵.
64 Recently, some studies have introduced machine learning (ML)-based similarity to improve
65 performance¹⁸⁻²⁰. We also developed a deep-learning based method, SSGCN, to discover the hidden
66 correlations between compound perturbation profiles and gene knockdown profiles²¹. However,

67 these methods may not be directly applicable when analyzing CPI related to newly studied targets
68 lacking relevant reference profiles.

69 Causal reasoning employs a systematic biological perspective, utilizing a prior knowledge
70 network (PKN) to construct causal link and locate upstream nodes that can most accurately explain
71 the observed downstream mRNA expression changes¹⁷. For example, DEMAND combines the gene
72 regulatory network (GRN) and protein–protein interaction (PPI) to infer targets, assuming that
73 compounds influence the expression of downstream genes¹⁶. ProTINA employs a dynamic model
74 of cell-type-specific protein-gene transcriptional regulation to identify targets with high scores of
75 network dysregulation²². A recent approach, FL-DTD, builds tissue-specific biological networks by
76 integrating five preliminary networks and infers targets through a feedback loop assumption²³.
77 While these strategies have yielded effective tools for predicting CPI across any protein in the PKN,
78 they face two main challenges. First, these methods tend to overlook key regulatory events, resulting
79 in the omission of crucial regulatory patterns in the PKN. Second, these methods rely on known
80 biology-inspired assumptions, which may not capture complex or as-yet-ununderstood expression
81 patterns.

82 In recent years, knowledge graphs have become a promising method for integrating and
83 analyzing multi-omics data²⁴. Several curated biomedical knowledge graphs (BKGs), like
84 Hetionet²⁵, BioKG²⁶, PharmKG²⁷, and PrimeKG²⁸, have been created for downstream analysis.
85 However, directly analyzing high-dimensional transcriptomic data based on these BKGs is not
86 appropriate. On the one hand, these BKGs contain a significant amount of redundant knowledge
87 less related to chemical perturbation, such as diseases, side effects, anatomies, etc. On the other
88 hand, the interactions between genes in these BKGs are too coarse-grained to finely represent the

89 cellular response to chemical perturbation.

90 Here, we introduce PertKGE to improve CPI prediction based on perturbation transcriptomics

91 by constructing biologically meaningful knowledge graph. Unlike other BKGs, this knowledge

92 graph breaks down genes into DNAs, messenger RNAs (mRNAs), long non-coding RNAs

93 (lncRNAs), microRNAs (miRNAs), transcription factors (TFs), RNA-binding proteins (RBPs) and

94 other proteins. This enables PertKGE to consider various fine-grained interactions between genes

95 to simulate post-transcriptional and post-translational regulatory events in biological system, which

96 intuitively aligns more closely with real world cellular responses to chemical perturbations. Then,

97 PertKGE uses the knowledge graph embedding (KGE) algorithm, DistMult²⁹, to create knowledge-

98 rich dense vectors and make CPI prediction based on the feature vectors. Compared to other

99 baselines, PertKGE exhibited better performance in two cold-start settings while having a broader

100 scope of application. We then conducted a comparison of our knowledge graph with other BKGs

101 and performed an ablation study. The results showed that our knowledge graph enhanced the

102 connections between genes and alleviated the impact of dataset bias on ML models. The ability of

103 PertKGE in practical applications was also validated through biochemical experiments in this study.

104 By combining PertKGE and experimental verifications, we successfully identified ectonucleotide

105 pyrophosphatase/phosphodiesterase-1 (ENPP1) as the target influencing the immune phenotype for

106 a tankyrase (TNKS) inhibitor K-756, and discovered five novel scaffold hits of aldehyde

107 dehydrogenase 1B1 (ALDH1B1). These results demonstrate that PertKGE can be a valuable tool

108 for predicting CPI from perturbation transcriptomics.

109

110 **Results**

111 **Overview of PertKGE**

112 The workflow of PertKGE can be divided into three parts: (1) construction of biologically
113 meaningful knowledge graph; (2) train stage for obtaining the knowledge-rich embedding; (3)
114 inference stage to give recommendation list.

115 **Construction of biologically meaningful knowledge graph**

116 Drawing from causal reasoning¹⁷, we view a compound's binding to one or more cellular
117 targets as the cause, and the observed DEGs as the effect. This cause and effect are connected by a
118 process involving various cellular regulatory events, which can be either linear or complex. Based
119 on this concept, we construct a new knowledge graph with biological meaning by collecting ordered
120 triples in the format of (head, relation, tail) from three components (Fig. 1A).

121 Effect component: This component leverages level 5 compound-induced transcriptomic data
122 (known as signatures) from the Library of Integrated Network-Based Cellular Signatures (LINCS)
123 Phase I⁶. Our previous work indicates that perturbations on PC-3 cells exhibit the best performance
124 in CPI prediction²¹. Therefore, we only considered signatures from PC-3 cells. For each compound,
125 moderated z-score (MODZ) was used to integrate multiple signatures obtained under different
126 experimental conditions and generate a consensus gene signature (CGS)⁶. Consequently, we
127 gathered 10,892 CGSs and processed the 200 most upregulated and downregulated genes from each,
128 yielding a total of 4,372,117 triples like (Compound, Upregulated, mRNA) and (Compound,
129 Downregulated, mRNA).

130 Cause component: This component comprises triples like (Compound, Has_Binding_To,
131 Target) for 10,892 compounds, collected from multiple CPI databases^{6,30-32}. Among these, only
132 2,845 compounds have a total of 15,317 CPI annotations, implying that 74% compounds lack CPI

133 annotations.

134 Process component: This component leverages prior biological knowledge by incorporating
135 essential regulatory events from various databases³³⁻³⁶ (see Method for more details). This
136 component essentially captures the PKN encompassing 2,449,645 regulatory events rooted in the
137 central dogma and multi-level regulatory elements, such as miRNAs, lncRNAs, RBPs, TFs and
138 other proteins.

139 Finally, the three components were merged through entity alignment to form complete
140 knowledge graph under the semantics of chemical perturbation. This knowledge graph can be
141 represented as a directed heterogeneous graph, with nodes representing entities and edges
142 representing relationships. Fig. 1B presents the graph schema of the knowledge graph and Table 1,
143 2 provide details about entities and relations (refer to Fig. S1 for more network analysis).

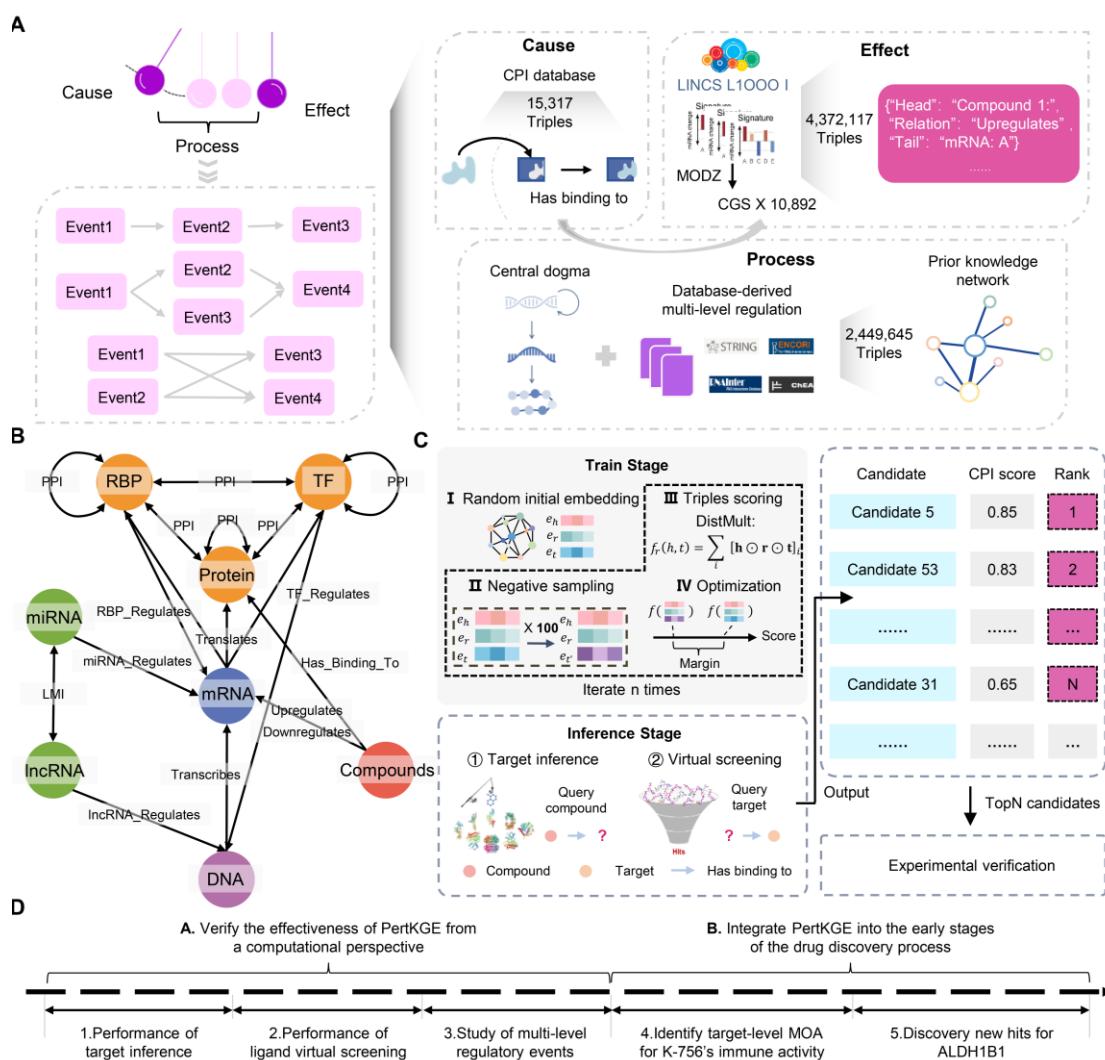
144 **Train and inference**

145 As illustrated in Fig. 1C, the training of PertKGE involves several steps. (1) Random initial
146 embedding: entities and relations in the knowledge graph are represented in low-dimension space
147 by embedding using Glorot initialization³⁷. (2) Negative sampling: for each existing triple, 100
148 corrupted triples are randomly generated using the Bernoulli negative sample strategy³⁸. (3) Triples
149 scoring: The DistMult is used as a scoring function to assess the validity of existing triples and
150 corrupted triples. (4) Optimization: the margin loss is computed to maximize the scores of existing
151 triples, minimize the scores of corrupted triples, and update embeddings. This process iterates for n
152 times until the embeddings of entities and relationships optimally represent the semantics of
153 chemical perturbation.

154 During the inference stage, users can query PertKGE with a compound or target of interest,

155 depending on their objective, such as target inference or ligand VS. Following the query, PertKGE
 156 calculates the CPI scores using the trained KGE and generates a recommendation list based on these
 157 scores. The top N candidates within the recommendation list are typically chosen for further
 158 experimental validation.

159 In the subsequent sections, we aim to evaluate the effectiveness of PertKGE and its integration
 160 into the drug discovery stage (Fig. 1D).



161

162 **Fig. 1 | Overview of PertKGE.** A, The construction pipeline of biologically meaningful knowledge
 163 graph. B, The graph schema of knowledge graph. The (Compound, Has_Binding_To, TF) and
 164 (Compound, Has_Binding_To, RBP) have been omitted due to their limited quantities. C, A

165 schematic diagram illustrating the training and inference of PertKGE. D, Two stages demonstrating
166 the effectiveness of PertKGE.

167 **Table 1 | Entities in the chemical perturbation knowledge graph**

Type of entities	Count	Type of relations
Protein	19,523	3
RBP	77	4
TF	197	4
mRNA	19,815	6
miRNA	1,732	2
lncRNA	4,681	2
DNA	22,547	3
Compound	10,892	3

168 *Type of relations means the number of specific relation type connected by this type of entities.

169

170 **Table 2 | Relations in the chemical perturbation knowledge graph**

Type of relations	Count	Head type (count)	Tail type (count)
Upregulates	2,178,400	Compound:10,892	mRNA:10,166
Downregulates	2,178,400	Compound:10,892	mRNA:10,166
miRNA_Regulates	970,099	miRNA:618	mRNA:12,544
PPI	497,282	Protein:16,299	Protein:16,299
		RBPs:77	RBPs:77
		TFs:194	TFs:194

RBP_Regulates	429,247	RBP:77	mRNA:16,438
TF_Regulates	384,450	TF:197	DNA:21,469
LMI	127,416	lncRNA:4602	lncRNA:4602
		miRNA:1610	miRNA:1610
Transcribes	19,797	DNA:19,797	mRNA:19,797
Translates	19,797	mRNA:19,797	Protein:19,523
		RBP:77	
		TF:197	
Has_Binding_To	15,317	Compound:2,845	Protein:1,800
		RBP:3	
		TF:43	
lncRNA_Regulates	1,557	lncRNA:126	DNA:1414

171 *Head type (count) and Tail type (count) means the number of specific node type connected by this
172 relation.

173

174 **PertKGE enables accurate and robust target inference in a compound cold-start setting**

175 This work investigates the effectiveness of PertKGE for target inference in compound cold-
176 start settings, where compounds lack known CPI annotations rather than those without any
177 information³⁹. Similarly, "target cold-start" refers to targets without CPI annotations in this context.

178 As shown in Fig. 2A, we focus on two compound cold-start scenarios: (1) In current knowledge
179 graph, 74% of compounds have DEGs from LINCS Phase I but lack CPI annotations. In this case,
180 direct queries within the knowledge graph suffice. (2) In most cases, query compounds are not

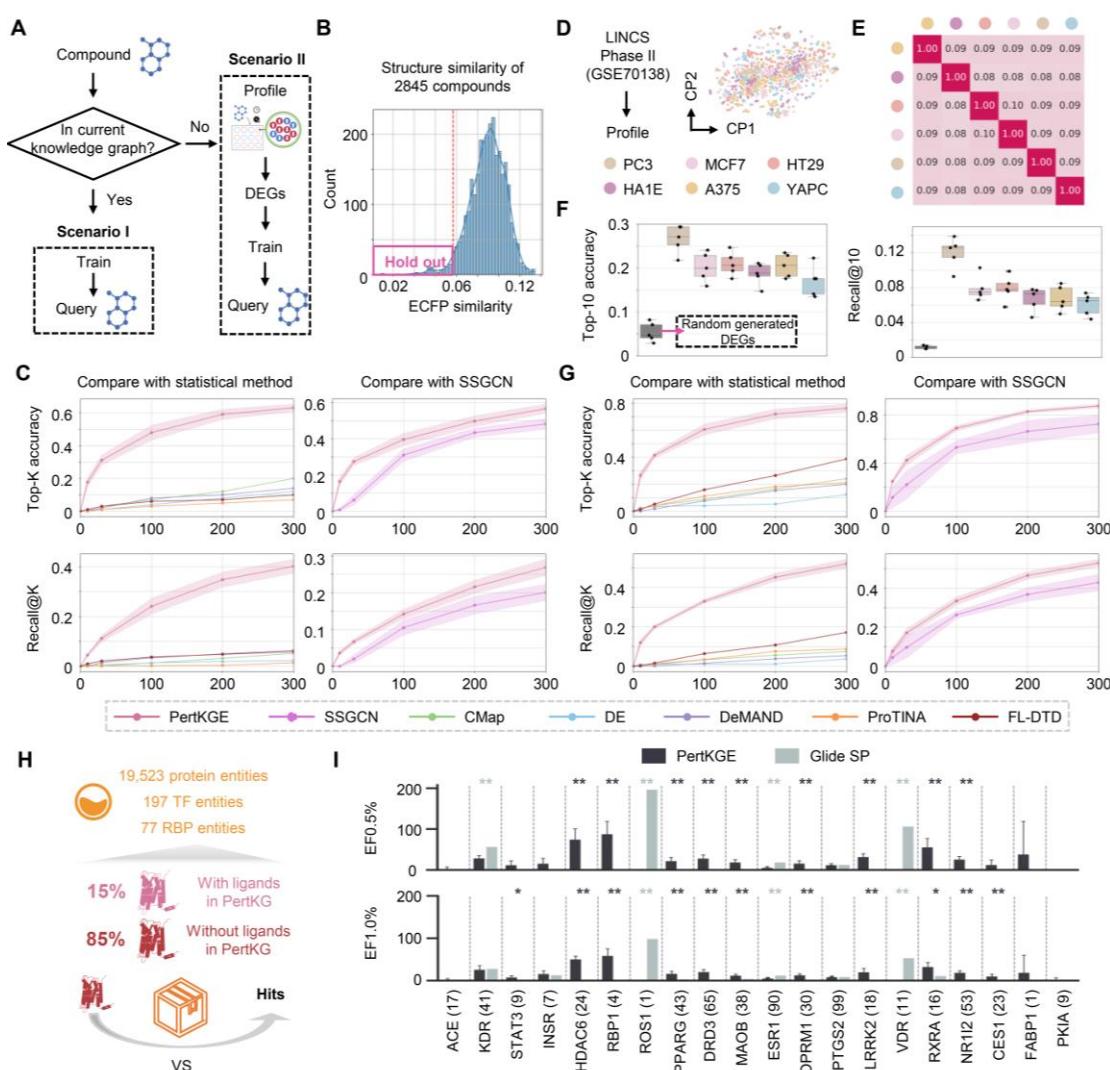
181 included in the knowledge graph. This should be addressed by adding the compound-induced DEGs
182 to the knowledge graph before querying.

183 In the both scenarios, we follow previous work²¹ using Top-K accuracy to evaluate the
184 proportion of tested compounds for which any true target can be correctly predicted among the top
185 K candidates. In addition, considering polypharmacology (A drug acts on multiple targets), we also
186 use Recall@K, a metric commonly used in recommendation systems, to measure the recall among
187 the top K candidates.

188 For the first scenario, a hold-out strategy was used to create a test set by masking CPI
189 annotations for 100 compounds with the most significant structural differences (Fig. 2B). The
190 remaining knowledge graph was trained using five-fold cross-validation and tested on the hold-out
191 set. We first compare PertKGE to statistical methods reliant on specific prior assumptions, such as
192 CMap, DeMAND, ProTINA, FL-DTD, and differential expression analysis (DE). As shown in Fig.
193 2C, PertKGE significantly outperformed these methods in both Top-K accuracy and Recall@K
194 metrics. We also compared PertKGE with SSGCN, another deep learning-based methods. It is
195 noteworthy that SSGCN requires gene knockout signatures for target inference, limiting its
196 applicability to 3832 targets. For a fair comparison, only CPI annotations involving these targets
197 were used for PertKGE's training. The results showed that PertKGE also significantly outperformed
198 SSGCN in two metrics.

199 For the second scenario, signatures from LINCS Phase II were used to provide additional
200 compound-induced DEGs. The impact of cell line on target inference was investigated. As depicted
201 in Fig. 2D, CGSs for 170 new compounds across 6 cell lines using the same methodology as in
202 LINCS Phase I, and the top 200 upregulated and downregulated DEGs were extracted. The DEGs

203 from different cell lines exhibited minimal similarity, with an average of 32 intersecting genes
204 among the upregulated and 34 among downregulated DEGs (Fig. 2E, Fig. S2). Subsequently, we
205 assessed the DEGs from six cell lines. As expected, PC-3 cells, whose transcriptional data is the
206 basis for the knowledge graph, yielded the highest performance, with a Top-10 accuracy of $0.266 \pm$
207 0.029 and a recall@10 of 0.120 ± 0.016 . Notably, PertKGE exhibited predictive capabilities across
208 other cell lines despite their dissimilarities (Fig. 2F), and this consistency increased with K (Fig.
209 S3). At K=100, almost all cell lines achieved similar performance to that of PC-3. This suggests that
210 PertKGE may have learned expression patterns that are independent of cell context. To compare,
211 we generated the same number of DEGs for each compound randomly. When these DEGs were
212 used, the model's performance dropped significantly. However, it still retained some predictive
213 power, potentially due to biases in the datasets (Fig. S3). Based on the results above, we selected
214 the DEGs from PC-3 for comparison with statistical and deep learning methods. Consistent with
215 previous findings, PertKGE also significantly outperformed them (Fig. 2G).



216

217 **Fig. 2 | Evaluating CPI prediction performance.** A, Illustrations of two compound cold-start
 218 scenarios. B, Selection of 100 compounds with the most significant structural differences among all
 219 compounds with known targets, by calculating the mean extended-connectivity fingerprints (ECFP)
 220 similarity with other molecules. C, Targets inference performance evaluation with PertKGE,
 221 SSGCN and other baseline methods in scenario I. The solid line represents the average value of the
 222 results from five-fold cross-validation, and the shaded area indicates the range of standard deviation.
 223 D, Dimensionality reduction visualization of 170 compounds' CGS from 6 cell lines in LINCS
 224 Phase II. E, Comparison of the 170 compounds' most upregulated DEGs in different cells by
 225 calculating their Tanimoto coefficients. F, Comparison of the target inference performance for 170

226 compounds' DEGs in 6 cell lines and randomly generated DEGs. G, Targets inference performance
227 evaluation with PertKGE, SSGCN and other baseline methods in scenario II. H, Illustration of target
228 cold-start scenario. I, Evaluation of ligand virtual screening performance with PertKGE and Glide-
229 SP. The x-axis represents 20 targets for prediction, with the number of ligands collected for each.
230 The statistical significance level was set as *P < 0.05, **P < 0.01.

231

232 **PertKGE demonstrates promising VS capabilities in the target cold-start setting**

233 VS for targets without any ligands is a significant but challenging scenario in drug discovery.
234 This means ligand-based drug design (LBDD), such as ligand structural similarity-based search,
235 quantitative structure-activity relationship (QSAR), and pharmacophore modelling, cannot be
236 directly applied. As shown in Fig. 2H, 85% of targets, including RBP, TF and Protein entities, in the
237 knowledge graph do not have any known ligands. Hence, it is very valuable to evaluate the ability
238 of PertKGE to screen hits from 10,892 compounds in the knowledge graph for these targets.

239 Most transcriptomic-based CPI prediction methods are primarily used for target inference.
240 While FL-DTD and SSGCN have reported applications in VS, the former lacks relevant
241 implementation on its provided website, and the latter is unsuitable for target cold-start settings (Fig.
242 S4). Here, we compared PertKGE with the most prevalent structure-based drug design (SBDD)
243 method, molecular docking. Glide-SP⁴⁰, known for its powerful VS capabilities, is selected as a
244 baseline. We also used a hold-out strategy, masking the CPI annotations of 20 targets with 3D-
245 structure in Protein Data Bank (PDB)⁴¹. Then, we trained PertKGE using five-fold cross-validation
246 strategy and tested on the hold-out set. Note that we selected targets with available 3D structures
247 for ease of comparison with Glide-SP. However, PertKGE can perform VS for targets without 3D

248 structures.

249 As shown in Fig. 2I, we evaluated the VS capabilities of PertKGE and Glide-SP with 20 targets
250 and 10,892 compounds. Consistent with SBDD work⁴², we use the enrichment factor (EF) as a
251 performance metric. In terms of EF0.5%, PertKGE significantly outperforms Glide-SP in 9 targets,
252 while Glide-SP performs better in 4 target. There is no significant difference between PertKGE and
253 Glide-SP in the remaining 7 targets. Regarding the EF1.0%, PertKGE demonstrated higher virtual
254 screening capabilities, outperforming Glide-SP in 11 targets, while Glide-SP performs better in 3
255 targets. There is no significant difference between PertKGE and Glide-SP in the remaining 6 targets.
256 For the Reactive Oxygen Species (ROS), Glide-SP showed high enrichment capabilities. However,
257 this is because, out of 10,892 molecules, only one was a ligand of ROS, and Glide ranked it fourth.
258 In summary, PertKGE demonstrated better performance than Glide-SP in most targets when VS
259 against these 10,892 compounds.

260

261 **Multi-level regulatory events are essential to alleviate dataset bias**

262 In the previous experiments, we observed a counter-intuitive result that PertKGE still exhibited
263 some predictive capability even when using randomly generated DEGs. Actually, this is a common
264 limitation of ML models, where they tend to assign high scores to entities that are over-represented
265 in the training set, leading to biased predictions⁴³. This limitation deviates from our goal of finding
266 a reliable mapping from compound-induced DGEs to CPI. In this work, we introduce multi-level
267 regulatory events to strengthen the connections between genes, alleviating this limitation. To
268 illustrate, we designed a test where the model was only allowed to use compound-induced DEGs
269 for prediction (Method).

270 Initially, we attempted a comparison with other commonly used BKGs^{25,26,28}. However, such a
271 direct comparison is not accurate because many understudied compounds can only be incorporated
272 as isolated nodes in other BKGs, leading to substandard performance. Instead, we pruned other
273 BKGs to replace the process component of our knowledge graph, while keeping the cause and effect
274 components unchanged (Fig. 3A). For convenience, we still refer to them by their original names.
275 Fig. 3B shows the process component derived from different BKGs. It is clear that our knowledge
276 graph represents genes in various forms such as DNAs, mRNAs, TFs, RBP and so on. In contrast,
277 in other BKG, genes are typically represented in only one form, like proteins in BioKG and
278 PrimeKG, or genes in HetioNet. Furthermore, while they have triples of the same order of magnitude,
279 our knowledge graph captures regulatory events between different forms of genes. However, BioKG,
280 HetioNet, and PrimeKG primarily describe relationships between genes and coarse-grained nodes
281 such as biological processes and pathways, as well as nodes less related to chemical perturbation
282 such as diseases and anatomies.

283 We trained three alternatives using the same approach as PertKGE. As shown in Fig. 3C,
284 PertKGE outperformed the three alternatives across all metrics. This implies that process component
285 based on regulatory events between different forms of genes strengthen the connection between
286 cause-and-effect components by sharing the same context of chemical perturbation. Although other
287 BKGs may also include entities related to chemical perturbation, such as pathways and biological
288 processes, their descriptions are typically coarse-grained (manifested as a pathway or biological
289 process connecting to multiple gene in the graph). This makes it difficult for the model to learn finer
290 regulatory patterns. Interestingly, when we use PrimeKG, despite having the most training triples,
291 it performs nearly as poorly as random guessing. This might because PrimeKG contains over 3

292 million triples describing relationships between proteins and anatomies, which are largely irrelevant
293 to perturbation. This redundancy knowledge may even impede the model's ability to learn other
294 useful knowledge, resulting in poor performance.

295 We further explored which regulatory events most significantly contribute to the performance
296 of PertKGE through an ablation study (Fig. 3C). It can be found that decoupling genes into DNAs,
297 mRNAs, TFs, RBPs, and other proteins, in accordance with their roles in the central dogma,
298 significantly improves the model's performance. This improvement may be due to the restoration of
299 the biological system's hierarchical structure, enabling the model to differentiate the semantics of
300 various regulatory events. However, this consideration is often overlooked in other BKGs.
301 Furthermore, in line with previous studies^{16,22}, both PPI and TF-mediated regulatory events indeed
302 enhance gene connections. Removing these regulatory events results in a significant performance
303 decrease. In this study, we modeled the impact of other regulatory elements (RBP, miRNA, lncRNA)
304 on gene expression for the first time. The results indicated that integrating regulatory events based
305 on miRNA and lncRNA enriched the model's understanding of the biological regulatory network,
306 thereby further enhancing the model's predictive capabilities. However, the addition of regulatory
307 events based on RBP only led to a slight improvement. This could be since RBPs exert a more
308 refined regulatory role in biological networks^{44,45}. In the knowledge graph, each RBP is associated
309 with an average of 5000 downstream genes, but only one type of relation is used to describe this
310 regulation.

311

312 **Fig. 3 | Study of multi-level regulatory events. A, Compare with other BKGs and ablation studies**

313 in unbiased test. Left, construction of BKG-derived knowledge graphs. BKGs were Pruned by

314 removing drug entities and drug related triples. Right, illustrations of three kinds of ablation studies:

315 without central dogma, without metanode and without metaedge. B, The pie charts illustrate the

316 relations in different process components. Since different BKGs use different descriptions, we

317 uniformly represent relations in the form of head:tail. If there are multiple different head:tail

318 relationships within the same BKG, we assign them numerical identifiers like head₁:tail₁. C,

319 Performance of CPI prediction using different process components. Red dashed line means the

320 performance of random guess.

321 **Secondary pharmacology study of K-756 by PertKGE**

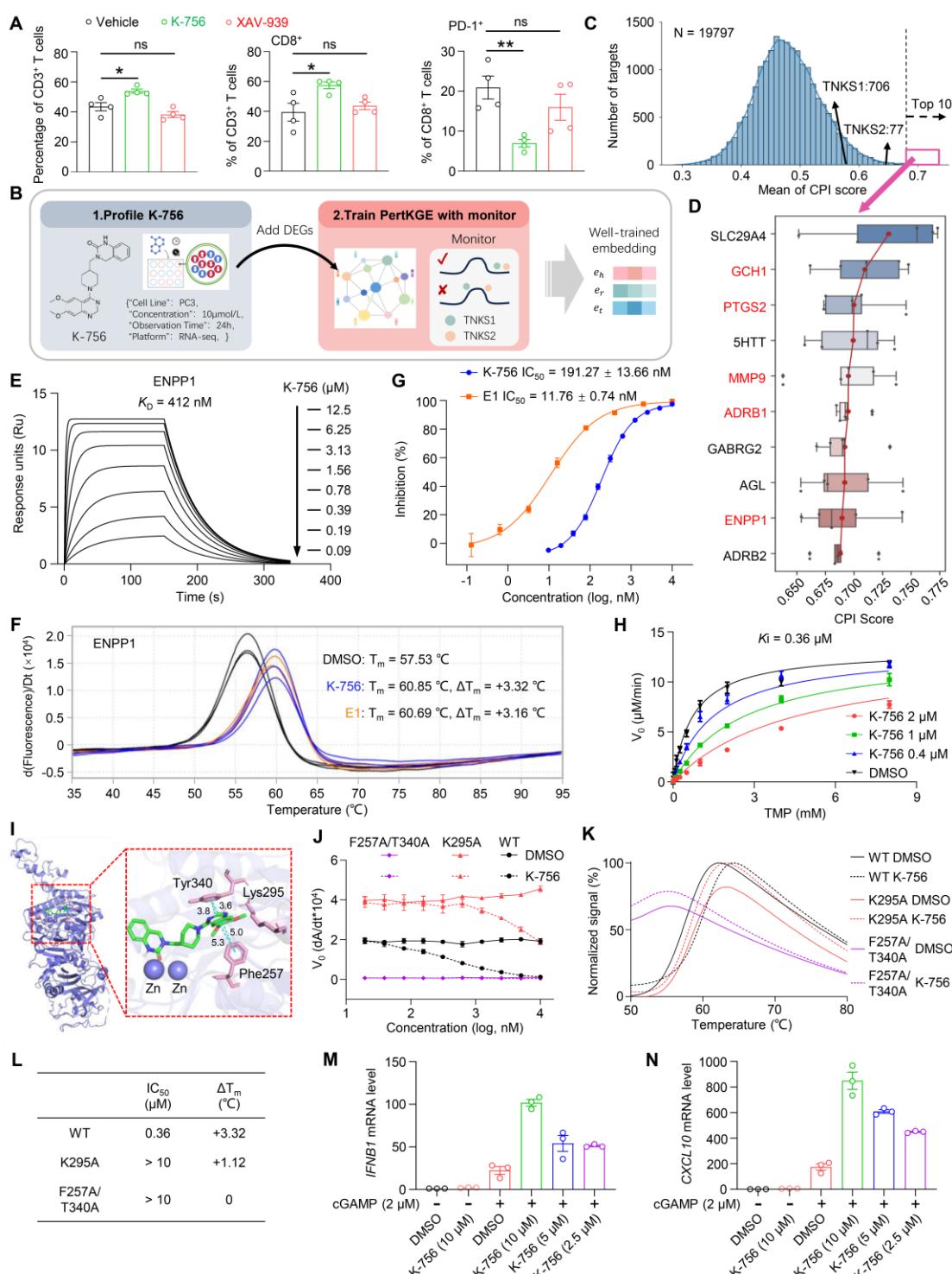
322 K-756, a Wnt/β-catenin pathway inhibitor targeting tankyrase (TNKS), is currently in
323 preclinical testing. It selectively inhibits the ADP-ribosylation activity of TNKS1 and TNKS2 with
324 IC₅₀ values of 31 nM and 36 nM, respectively⁴⁶. XAV-939, another preclinical TNKS inhibitor,
325 inhibits TNKS1 and TNKS2 with IC₅₀ values of 11 nM and 4 nM, respectively⁵². In our studies,
326 we accidentally discovered that K-756 exerts unique anti-tumor immune activity in the 4T1
327 orthotopic breast cancer mouse model, in contrast to XAV-939. This was demonstrated by K-756
328 significantly increasing the infiltration of CD3+ T cells in tumors, the frequency of CD8+ cytotoxic
329 T cells within CD3+ T cells, and reducing the expression of CD8+ T cell exhaustion marker PD-1
330 (Fig. 4A, Fig. S5A-C). However, XAV-939 administration did not result in a noticeable change in
331 the infiltration of CD3+, CD8+, and PD-1+CD8+ T cells in tumors (Fig. 4A, Fig. S5A-C). Notably,
332 we also observed that K-756 exhibited an obvious stronger potency to inhibit tumor growth than
333 XAV-939 (Fig. S5D). These results have encouraged us to explore the secondary pharmacology of
334 K-756, to elucidate its mode of action not related to TNKS and explain why it exerts the unique
335 anti-tumor immunotherapy effects.

336 As K-756 is not present in the knowledge graph, its target inference falls into the second
337 scenario discussed earlier. As illustrated in Fig. 4B, we first measured the transcriptional profile of
338 K-756-treated PC-3 cells (the differential gene analysis results is provided in Fig. S6) and converted
339 DEGs into triplets before adding them to knowledge graph. We then trained PertKGE to test if it
340 could predict the known targets of K-756. As Fig. 4C shows, PertKGE ranked TNKS1 at 706th and
341 TNKS2 at 77th among 19797 candidates, which indicates that the trained embeddings capture the
342 relationships between the DEGs and targets of K-756. Then we focus on the top 10 predicted targets
343 of K-756 (Fig. 4D), which represent the targets that PertKGE identified as the most likely to bind

344 with K-756. GTP cyclohydrolase 1 (GCH1)⁴⁷, prostaglandin-endoperoxide synthase 2 (PTGS2)⁴⁸,
345 matrix metalloproteinase 9 (MMP9)⁴⁹, adrenergic receptor beta 1 (ADRB1)⁵⁰, and ENPP1⁵¹, which
346 have been reported to be associated with anti-tumor immunotherapy, were selected for the
347 subsequent analyses. We evaluated the binding affinity of these proteins with K-756, excluding
348 ADRB1 as it is not readily available. Notably, ENPP1 demonstrated a nanomolar binding affinity
349 towards K-756, evidenced by a KD constant of 412 nM, measured using a surface plasmon
350 resonance (SPR) assay (Fig. 4E). However, no binding interaction was observed between K-756
351 and the other three proteins (Fig. S5E-G). ENPP1 knockout or pharmacological inhibition prevents
352 the hydrolysis of tumor-derived cGAMP, leading to the accumulation of cGAMP and the reduction
353 of adenosine in the tumor microenvironment. This activates the STING signaling pathway and
354 relieves adenosine-mediated immune suppression, ultimately exerting anti-tumor immune
355 effects^{51,52}. Based on these findings, we purified recombinant ENPP1 protein and further
356 investigated K-756 as a potential inhibitor of ENPP1. K-756 significantly increased the thermal
357 stability of the ENPP1 protein (Fig. 4F), indicating a direct binding interaction with ENPP1. The
358 half-maximal inhibitory concentration (IC50) of K-756 against the enzymatic activity of ENPP1
359 was 191.27 nM (Fig. 4G). For comparison, ENPP1-IN-1 (E1, WO2019046778), used as a positive
360 control, exhibited an IC50 value of 11.76 nM in inhibiting ENPP1 enzyme activity. Classic steady-
361 state enzyme kinetic experiments showed that as the concentration of substrate TMP increased,
362 Vmax remained constant while Km increased (Fig. 4H), suggesting that K-756 competes with the
363 substrate for binding to ENPP1. Docking-based molecular simulations showed that K-756 inserts
364 into the substrate-binding pocket. The pyrimidine ring of K-756 forms π - π stacking interactions with
365 Phe257 and Tyr340, and hydrogen bonds with Lys295, firmly anchoring K-756 in the pocket (Fig.

366 4I). Furthermore, 100 ns molecular dynamics simulations revealed a stable conformation between
367 K-756 and ENPP1, with sustained interactions observed between K-756 and Phe257, Lys295,
368 Thr340, and Tyr371 (Fig. S5H and S5I). To confirm this binding mechanism, we generated two
369 ENPP1 protein mutants, K295A and F257A/T340A. These mutations significantly reduced or
370 completely abolished the binding and the enzymatic inhibitory effect of K-756 on ENPP1 (Fig. 4J-
371 L). Collectively, these results strongly suggest that K-756 binds to the substrate-binding pocket of
372 ENPP1. Furthermore, as expected, K-756 significantly enhanced the transcription of downstream
373 cytokines in the STING pathway, including IFNB1, CXCL10, and IL6, when induced by cGAMP
374 in THP-1-derived macrophages (Fig. 4M and 4N, Fig. S5J).

375 To determine whether the inhibition of ENPP1 by K-756 is a common characteristic of TNKS
376 inhibitors or a unique feature of the K-756 molecule, we simultaneously tested the inhibitory activity
377 of K-756 and three other TNKS inhibitors: VAX-939, NVP-TNKS656, and RK-287107, on ENPP1
378 enzyme activity. As shown in Fig. S5K, only K-756 exhibited inhibitory activity against ENPP1.
379 The unique pharmacological activity of K-756 indicates that dual-target inhibitors of TNKS and
380 ENPP1 may have promising synergistic anti-tumor activity. In summary, the success of repurposing
381 TNKS inhibitor K-756 to ENPP1 inhibitor demonstrated that the practical and promising targets
382 inference ability of PertKGE.



383

384 **Fig. 4 | Secondary pharmacology study of K-756 by PertKGE.** A, Impact of K-756 and XAV-

385 939 on the infiltration of CD3+, CD8+, and PD-1+CD8+ T cells in tumors was assessed by flow

386 cytometry (n=4). BALB/c mice were orthotopically inoculated with 4T1 breast cancer cells and

387 administered 30 mg/kg K-756 or XAV-939 daily via intraperitoneal injection. B, Pipeline of target

388 inference for K-756. C, The distribution of predicted scores for all 19797 targets. D, Top 10
389 predicted targets for K756 are presented in a box plot, illustrating the results of five-fold cross-
390 validation. Rankings are based on the mean predictions from cross-validation. Targets highlighted
391 in red are associated with tumor immunity. E, Binding affinity measurement of K-756 to ENPP1
392 protein using SPR assay. Graphs depicting equilibrium response units versus K-756 concentrations
393 were plotted. F, Impact of K-756 and E1 on the thermal stability of ENPP1 protein, as determined
394 by protein thermal shift (PTS) assay. G, Dose-dependent inhibition of K-756 and E1 against ENPP1.
395 The substrate for the ENPP1 enzymatic reaction is thymidine 5'-monophosphate p-nitrophenyl ester
396 (TMP). H, The steady-state enzyme kinetics analysis of ENPP1 was conducted in the presence of
397 various concentrations of K-756. I, Docking results for K-756 using a reported ENPP1 X-ray crystal
398 structure (PDB entry 6WEU) as the template. The figures were generated using PyMOL
399 (<http://www.pymol.org/>). J-L, The impact of K-756 on enzymatic activity and thermostability of
400 mutant ENPP1 protein. M-N, IFNB1 and CXCL10 mRNA levels in THP-1-derived macrophages
401 were measured following treatment with 2 μ M cGAMP alone, or 2 μ M cGAMP combined with
402 various concentrations of K-756 for 12 h. Error bars indicate the mean \pm SEM of three biologically
403 independent experiments (G, H, J, M, N). A two-tailed unpaired t-test was used to analyze
404 significant differences between groups (*, $P < 0.05$; **, $P < 0.01$; ns, no statistical difference, $P >$
405 0.05).

406

407

408 **PertKGE identified five new scaffold hits for ALDH1B1**

409 Aldehyde dehydrogenases (ALDHs) are highly expressed in multiple cancer types,

410 contributing to cancer progression, therapy resistance, and immune evasion⁵³. ALDH1B1, a
411 mitochondrial ALDH isoform, promotes colorectal and pancreatic cancer⁵⁴. Selective
412 pharmacological inhibition of ALDH1B1 has been shown to hinder the growth of colon cancer
413 spheroids and patient-derived organoids^{54,55}. Moreover, the viability of Aldh1b1-knockout mice
414 suggests that blocking ALDH1B1 has tolerable effects on normal physiology^{54,56}. These results
415 indicate that ALDH1B1 is a promising cancer drug target. To our knowledge, imidazoliums and
416 guanidines⁵⁴ are the only effective ALDH1B1 inhibitors. However, they lack drug-like properties
417 and are primarily used as molecular probes to study ALDH1B1 functions. Therefore, there is an
418 urgent need to discover novel scaffold ALDH1B1 inhibitors for cancer treatment.

419 Here, PertKGE was utilized as a virtual screening tool to identify novel ALDH1B1 inhibitors.
420 As Fig. 5A shows, screening was conducted on 7,403 small molecules in the knowledge graph after
421 filtering out those may be pan-assay interference compounds (PAINS) and with heavy molecular
422 weight, and the top 100 candidates predicted by PertKGE were purchased from commercial libraries
423 for further validation.

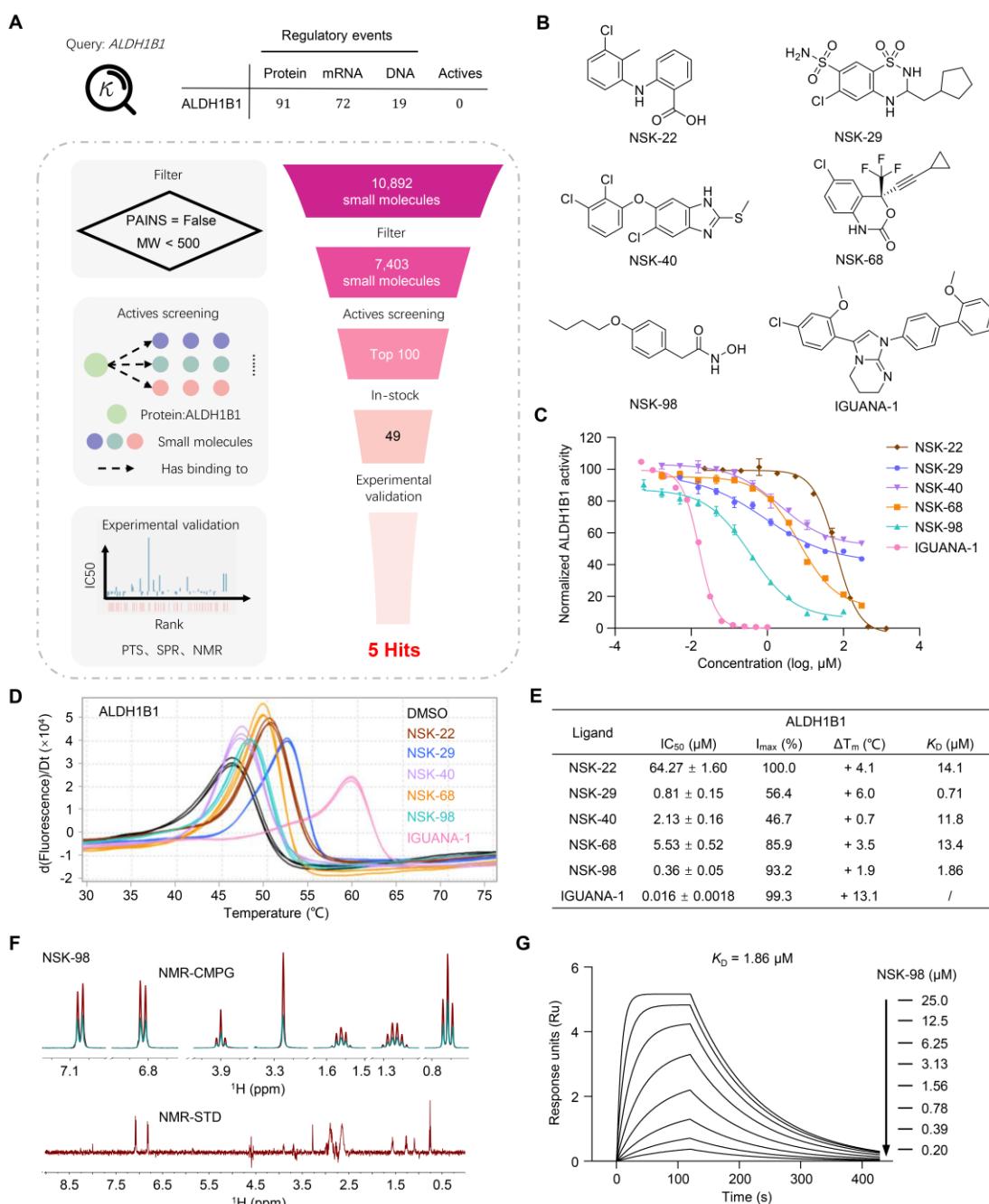
424 Initially, an enzyme kinetics assay was carried out to measure the inhibitory activity of the
425 predicted actives against ALDH1B1, with IGUANA-1⁵⁴ as a positive control due to its potent
426 inhibitory activity and commercial availability. Out of the 49 commercially available candidates,
427 NSK-22, NSK-29, NSK-40, NSK-68, and NSK-98, showed significant inhibitory activity on
428 ALDH1B1, at a hit rate of 10.2% (Fig. 5B, C, and E). Further, the impact of these five compounds
429 on the thermostability of recombinant ALDH1B1 protein was evaluated. All compounds
430 substantially improved the thermal stability of ALDH1B1 protein (Fig. 5D and E), suggesting these
431 compounds could directly bind to ALDH1B1. Additionally, the attenuation of NSK-22, NSK-29,

432 NSK-68, and NSK-98 signals after incubation with ALDH1B1 protein was observed in the Carr-
433 Purcell-Meiboom-Gill (CPMG) nuclear magnetic resonance (NMR) spectra. Positive saturation
434 transfer difference (STD) signals in the STD spectrum were also noted (Fig. 5F, Fig. S7A-C), further
435 indicating their direct binding to ALDH1B1. NSK-40 was not included in this NMR analysis due to
436 its poor solubility in the assay buffer, preventing signal collection. To determine the binding affinity
437 between these five hits and ALDH1B1, a SPR assay was conducted. The results showed that the
438 binding affinity of the five hits ranged from 0.71 to 14.1 μ M (Fig. 5E and 5G, Fig. S7D-G).
439 Collectively, these results strongly demonstrate that NSK-22, NSK-29, NSK-40, NSK-68 and NSK-
440 98 can directly bind to ALDH1B1 and inhibit its enzymatic activity. Compared to the current two
441 classes of ALDH1B1 inhibitors, these 5 hits possess novel scaffolds and have a clinical drug history
442 (Fig. S8), holding promise for further development.

443 We also examined whether these hits could be identified with conventional SBDD approach.
444 However, molecular docking ranked them at 1937th, 2145th, 1509th, 6488th, and 7322th,
445 respectively. (Fig. S7H). This showed that PertKGE could be an excellent virtual screening,
446 discovering actives overlooked by conventional methods.

447

448



449

450 **Fig. 5 | PertKGE identified five new scaffold hits for ALDH1B1.** A, The query for ALDH1B1 in
451 the current PertKGE reveals three existing forms of ALDH1B1, and there is no known active
452 molecule targeting protein-level ALDH1B1. The dashed box outlines the scheme of the active
453 screening protocol for ALDH1B1. B, Chemical structures of five hit compounds: NSK-22, NSK-
454 29, NSK-40, NSK-68, NSK-98, and reported ALDH1B1 inhibitor IGUANA-1. C, Dose-response
455 curves of NSK-22, NSK-29, NSK-40, NSK-68, NSK-98, and IGUANA-1, determined by

456 ALDH1B1 enzyme kinetics assay. Error bars represent the mean \pm SEM of three independent
457 experiments. D, Impact of NSK-22, NSK-29, NSK-40, NSK-68, NSK-98, and IGUANA-1 on the
458 thermal stability of ALDH1B1 protein, as determined by PTS assay. E, Summary of IC50 values of
459 the indicated compounds determined by enzyme kinetics assays, melting temperature differences
460 (ΔT_m) determined with PTS assay, and KD values measured via SPR assay. F, Nuclear magnetic
461 resonance (NMR) measurement of direct binding between NSK-98 and ALDH1B1 protein. CPMG
462 NMR spectra for NSK-98 (red), NSK-98 in the presence of 5 μ M ALDH1B1 protein (green). The
463 STD spectrum for NSK-98 was recorded in the presence of 5 μ M ALDH1B1 protein. G, Binding
464 affinity measurement of NSK-98 to ALDH1B1 protein using SPR assay. Graphs depicting
465 equilibrium response units versus NSK-98 concentrations were plotted.

466

467 **Discussion**

468 Exposure of cells to small molecules often triggers multi-level remodeling, which can be
469 observed through perturbation omics data. These data provide a dynamic and more realistic view of
470 the impact of compounds on cells, making it a promising information source for understanding CPI.
471 In this study, we developed a novel method, PertKGE, based on a biologically meaningful
472 knowledge graph to systematically mine perturbation transcriptomics. By integrating a range of
473 regulatory events mediated by factors such as TFs, RBPs, other proteins, miRNAs and lncRNAs,
474 and using KGE algorithm, PertKGE can better understand the context of chemical perturbation,
475 leading to accurate and robust CPI predictions. Our method has outperformed baseline methods in
476 two cold-start settings and has avoided pitfall associated with ML. These encouraging
477 computational results led us to incorporate PertKGE into the early stages of drug discovery. We

478 applied PertKGE in two real-word application scenarios: (1) How to explain K-756's unique anti-
479 tumor immune activity in phenotype-based screening. The experimental validation of the top ten
480 targets recommended by PertKGE strongly suggests that K-756 binds to the substrate-binding
481 pocket of ENPP1, indicating that the development of dual-target inhibitors of TNKS and ENPP1
482 may serve as a promising synergistic anti-tumor strategy. (2) How to find novel scaffold inhibitors
483 with drug-like properties for a less studied target, like ALDH1B1. Through the combined use of
484 PertKGE and experimental methods, we identified 5 hits with a 10.2% hit rate. These hits possess
485 novel scaffolds, indicating potential for further development. The success of PertKGE both in
486 computational experiments and practical applications demonstrates its potential as a promising tool
487 for helping pharmacologists in understanding the MOA of compounds and screening promising
488 inhibitors.

489 In drug discovery, the use of a knowledge graph to integrate and analysis multi-omics data is a
490 promising approach. Unlike previous methods that used compound-induced transcriptomic profiles
491 as the primary representation of nodes²⁷ or simply added up/down-regulation relations in existing
492 BKGs²⁵, our work underlines causal reasoning. We introduce a new knowledge graph that
493 decomposes chemical perturbations into three components: a cause component made up of CPI, a
494 process component consisting of multiple regulatory events, and an effect component comprising
495 observed DEGs. This approach customizes the entire knowledge graph for a specific context,
496 namely chemical perturbation, and has shown effectiveness in both computational analyses and
497 experimental validations. We believe that CPI prediction is a significant challenge, and we are far
498 from a complete solution. In the future, the knowledge graph we created could be further enhanced
499 by considering more and finer regulatory events. Additionally, the application scope can be

500 broadened by using PertKGE to analyze other types of large-scale omics data, such as perturbation
501 proteomics⁵⁷ and cell images^{58,59}.

502 **Methods**

503 **Constructing the chemical perturbation knowledge graph with data from multiple**
504 **database**

505 We downloaded relevant raw data from multiple domain databases, subsequently converting
506 them into a standard triple format denoted by (*head, relation, tail*). To establish connections between
507 triples originating from distinct database sources, we employed entity alignment. Finally, the
508 Networkx python package⁶⁰ was used to retain the largest connected subgraph through pruning.

509 **PubChem**⁶¹. Managed by the National Center for Biotechnology Information (NCBI), PubChem
510 serves as a comprehensive repository of chemical information. The diverse representation of each
511 chemical substance is standardized through the PubChem CID (Compound Identifier), offering a
512 consistent reference for a specific substance across different contexts and datasets. In our study, we
513 employed PubChem's online service to convert all compounds into their corresponding CIDs using
514 Simplified Molecular Input Line Entry System (SMILES).

515 **UniProt**⁶². UniProt is a comprehensive, freely accessible database providing detailed information
516 on protein sequences and functional annotation. Our acquisition of gene names for human proteins
517 was conducted through the official UniProt website. Subsequently, we established a correlation
518 between the acquired gene names and primary names. In chemical perturbation knowledge graph,
519 all proteins are uniquely identified and represented by their primary names.

520 **STRING**³³. STRING serves as a repository consolidating PPIs derived from both experimentally
521 confirmed discoveries and anticipated outcomes. The human PPI network utilized in our study was

522 extracted from the STRING v11.5 database. We converted PPI interactions with a combined score
523 surpassing 700 into bidirectional relationships. Subsequently, we formatted these bidirectional
524 relationships into standard triples for further analysis.

525 **ENCORI**²⁹. ENCORI, previously known as StarBase, is a platform designed for exploring the RNA
526 related interaction networks from CLIP-Seq datasets. We downloaded the interactions mediated by
527 RBP and miRNA-regulated mRNA interactions through the web API and processed them into the
528 standard triple format. Here, hg38 is used as the reference genome, and the chosen interactions must
529 have at least five CLIP-Seq experimental records in the database to ensure accuracy. For miRNA,
530 the alignment was executed based on the gene symbol present in the database.

531 **RAID**³⁶. RAID, a database centered on RNA interactions, is now at its 4.0 version, boasting over
532 41 million RNA-related interactions spanning 154 different species. Data retrieval from the official
533 website encompassed information on the regulatory effects of lncRNA on DNA, and interactions
534 between lncRNA and miRNA. Our focus was directed towards interactions specific to humans, and
535 we ensured the inclusion of interactions supported by substantial experimental evidence.
536 Subsequently, this data was organized into a standard triple format, aligning lncRNA and miRNA
537 using the gene symbols sourced from the database.

538 **CHEA**³⁴. CHEA, which offers target genes of transcription factors derived from published ChIP-
539 chip, ChIP-seq, and other transcription factor binding site profiling studies, was accessed through
540 the Harmonizome 3.0. We extracted the CHEA dataset and transformed it into a standard triple
541 format, resulting in the acquisition of 384,450 DNA regulatory relationships mediated by 197
542 transcription factors.

543 **LINCS**⁶. LINCS, supported by the NIH, systematically captures and documents gene expression

544 patterns across diverse cell lines when subjected to different perturbations under varied experimental
545 settings. The LINCS phase I L1000 dataset (GSE92742, spanning 2012 – 2015) and the LINCS
546 phase II L1000 dataset (GSE70138, from 2015 – 2017) were obtained from the Gene Expression
547 Omnibus (GEO) through the Broad Institute. Initially, we opted for the level 5 data, viewing it as a
548 refined depiction of the transcriptional outcomes of a given experiment condition. Focusing on the
549 PC3 cell line's perturbation data due to its extensive volume, we applied the moderated z-score
550 (MODZ) method to create consensus signatures, capturing essential gene expression changes across
551 different time points and concentrations. Utilizing weights from the original study⁶, we expanded
552 this to cover 10,174 confidently inferred genes. We curated a list of the top 200 genes, comprising
553 both upregulated and downregulated genes, based on corrected expression levels, forming the basis
554 of our triples.

555 **Other datasets.** In addition to the insights from the databases previously mentioned, we sourced
556 annotation details from LINCS⁶, DepMap³⁰, ChEMBL³¹, and DrugBank³² to shape cause
557 component of chemical perturbation knowledge graph. Additionally, the central dogma served as
558 prior knowledge for linking DNA to mRNA, and mRNA to proteins.

559

560 **Training protocol**

561 The training of PertKG is to embed the entire chemical perturbation knowledge graph into a
562 vector space, thereby obtaining embeddings rich in chemical perturbation semantic for compounds
563 and targets. We denote head entity, tail entity and relation in chemical perturbation knowledge graph
564 as $h, t \in E$ (the set of entities) and $r \in R$ (the set of relations). Then PertKG computes validity
565 for each triple (h, r, t) using DistMult as scoring function:

566
$$f_r(h, t) = \sum_i [\mathbf{h} \odot \mathbf{r} \odot \mathbf{t}]_i \quad (1)$$

567 where $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$ represent d-dimensional vectors of head entity, relation and tail entity,
568 respectively. Note that for a given entity, its embedding vector is the same when the entity appears
569 as the head or as the tail of a triple. \odot denotes element-wise product, and the i index is along the
570 feature dimension of the vector resulting from the element-wise production of the different features.

571 Given training set S of existing triples, we minimize a margin-based ranking loss to capture
572 semantic of chemical perturbation knowledge graph:

573
$$\mathcal{L} = \sum_{(h, \ell, t) \in S} \sum_{(h', \ell, t') \in S'_{(h, \ell, t)}} [\gamma + -(f_r(h, t) - f_r(h', t'))]_+ \quad (2)$$

574 where $[x]_+$ denotes positive part of x , $\gamma > 0$ is a margin hyperparameter, and

575
$$S'_{(h, \ell, t)} = \{(h', \ell, t') | h' \in E\} \cup \{(h, \ell, t') | t' \in E\} \quad (3)$$

576 The set of corrupted triples, constructed according to Equation (3), is composed of training
577 triples with either the head or tail replaced by a random entity. To reduce false corrupted triples,
578 Bernoulli distribution is used to decide to corrupt head or tail³⁸.

579 In this study, five-fold cross-validation strategy is employed in training, wherein the CPI
580 annotations in chemical perturbation knowledge graph have been further partitioned into five folds
581 based on compounds. Four folds are reserved for training PertKG, and the remaining one is used
582 for validation. The whole optimization is carried out by using Adam⁶³. Early stopping is used to
583 terminate the training process if the performance of the model on the valid set shows no further
584 improvement. After training, we obtain five well-trained models, and report the mean and standard
585 deviation of the results in the test. The entire training script of PertKG is implemented using the
586 TorchKGE⁶⁴.

587 Additionally, SSGCN was re-implemented adhering to the methodologies outlined in the

588 original paper. The resulting recommendation list was generated based on CPI score of 3832 targets.

589 DeMAND and ProTINA were implemented based on their respective R scripts. ProTINA yielded a

590 descending order of scores for 10,174 target proteins, while DeMAND provided an ascending order

591 of p-values. CMAP and FL-DTD were evaluated using their designated websites. Differential

592 Expression (DE) was executed by sorting the absolute values of gene expression in descending order.

593

594 **Evaluation protocol**

595 We evaluated the model's performance in target inference, ligand virtual screening, and

596 unbiased testing.

597 **Target inference:** In target inference, we evaluated the performance of identifying targets

598 within the recommendation lists provided by different models. We employed TOP-K accuracy and

599 Recall@K as the metrics.

600 In the TOP-K accuracy formula, N denotes the total number of compounds in test set, K is a

601 constant, and $f(i, K)$ represents the evaluation of the i^{th} compound. Specifically, if the compound has

602 at least one target ranked at or below K , the value of $f(i, K)$ is set to 1; otherwise, it is set to 0.

$$603 \quad TOP - K \text{ accuracy} = \frac{1}{N} \sum_{i=1}^N f(i, K) \quad (4)$$

604 In the Recall@K formula, T_i is the number of targets for the i^{th} compound, and $R_{i,k}$ represents

605 the number of targets ranked at or below K for the i^{th} compound.

$$606 \quad Recall@K = \frac{1}{N} \sum_{i=1}^N \frac{R_{i,k}}{T_i} \quad (5)$$

607 **Ligand virtual screening:** In target inference, we evaluated the performance of identifying

608 ligands within the recommendation lists provided by different models. Our evaluation utilized the

609 Enrichment Factor (EF) as the metric.

610 In the EF formula, $Hits_{total}$ is the number of ligands for the target, N_{total} is the number of all
611 compounds, $Hits_{sampled}$ is the number of compounds among the top N ranked compounds that are
612 active, and $N_{sampled}$ is the number of compounds ranked in the top N.

$$613 EF = \frac{\frac{Hits_{sampled}}{N_{sampled}}}{\frac{Hits_{total}}{N_{total}}} \quad (6)$$

614 **Unbiased test:** This test was used to evaluate whether the model learned the mapping from
615 DEGs to CPI. In this evaluation, we designated the CPI annotations of 100 compounds for testing
616 purposes. For each reserved CPI, we conducted random sampling to generate 1000 negative
617 compounds. Subsequently, for each positive CPI and its corresponding 1000 negative samples, we
618 assessed the model's ability to rank the positive compound higher than the negatives. This testing
619 methodology ensures that the model's performance is contingent on its capacity to learn the mapping
620 from DEGs to CPI. Hits@K was used as metrics in this test.

621 In the Hits@K formula, N_{CPIs} represents the number of compound-protein interaction pairs,
622 and $g(i, K)$ represents the evaluation of the i^{th} CPI pair. If its rank is at or below K , the value of
623 $g(i, K)$ is set to 1; otherwise, it is set to 0.

$$624 Hits@K = \frac{1}{N_{CPIs}} \sum_{i=1}^{N_{CPIs}} g(i, K) \quad (7)$$

625

626 Recombinant protein expression and purification

627 For plasmid construction, human ALDH1B1 (residues 20-517) was subcloned into the pET-
628 15b vector with an N-terminal 6×His tag. To obtain soluble ENPP1 proteins, extracellular region
629 (residues 110-926) of human ENPP1 was fused to the N-terminal secretion signal sequence
630 (residues 1-59) from mouse ENPP2 and cloned into the pcDNA3.1 vector with a Flag tag added to

631 the C-terminal. For expression of ALDH1B1 protein, His-tagged ALDH1B1 plasmid was
632 transformed into BL21(DE3)-Chaperone competent cells (WeiDibio, EM1002S). These cells were
633 subsequently grown in lysogeny broth (LB) medium containing 100 μ g/ml ampicillin, 35 μ g/ml
634 chloramphenicol and 1 \times chaperone inducer at 37°C. Once the optical density at 600 nm reached
635 0.6~0.8, the culture was transferred to 16°C, and 0.5 mM isopropyl β -d1-thiogalactopyranoside
636 (IPTG) was added to induce protein expression for 20~22 hours. The bacteria were then collected
637 by centrifugation (3,000 rpm, 30 minutes, 4°C). Cells were lysed in lysis buffer (Beyotime, P0013Q)
638 containing protease inhibitor cocktail (Beyotime, P1031) and nuclease (Beyotime, D7121-25KU),
639 and the suspension was mechanically rotated at room temperature for 25 minutes. The lysate was
640 centrifuged (16,000 rpm, 30 minutes, 4°C), and the soluble fraction was filtered by 0.22 μ m syringe
641 filters and purified on HisTrap columns (Cytiva) using elution buffer (20 mM HEPES, pH 7.4, 500
642 mM NaCl, 1 mM tris (2-Carboxyethyl) phosphine (TCEP), 500 mM imidazole, and 5% glycerol).
643 The eluted components were exchanged into storage buffer (20 mM HEPES, pH 7.4, 150 mM NaCl)
644 using desalting columns (Cytiva). The purified ALDH1B1 protein was stored in the storage buffer
645 at -80°C. ENPP1 recombinant protein was expressed in suspension Expi293F GnTi/-cells
646 (Thermofisher, A39240). After 5 days of transfection with the Flag-tagged ENPP1 plasmid, the
647 medium supernatant was collected by centrifuged (16,000 rpm, 1 hour, 4°C) and slowly loaded onto
648 a manually packed Anti-Flag affinity resin. The protein was eluted with an elution buffer consisting
649 of Flag peptides. The elution was further purified on a Superdex 200 increase 10/300 GL column
650 (Cytiva) equilibrated with a buffer containing 20 mM HEPES, pH 7.4, and 150 mM NaCl. The
651 purified ENPP1 proteins were identified using SDS-PAGE and stored at -80°C. For the two ENPP1
652 protein mutants, K295A and F257A/T340A, the expression and purification methods were identical

653 to those used for the Wild-type ENPP1 protein.

654

655 **Enzymatic activity assays**

656 For ALDH1B1, the enzymatic activity assay was conducted in a 384-well white Optiplate
657 (PerkinElmer, 6007290) at room temperature under the following conditions: each well contained
658 5% (v/v) DMSO, 100 nM His-tagged ALDH1B1 protein, 1 mM nicotinamide adenine dinucleotide
659 (NAD⁺), and 1 mM acetaldehyde in the assay buffer (100 mM sodium phosphate, pH 8.0, 1 mM
660 MgCl₂, and 1 mM TCEP). For IC₅₀ determination, His-tagged ALDH1B1 was pre-incubated with
661 NAD⁺ and serially diluted compounds for 5 minutes. Acetaldehyde was then added to each well,
662 and the resulting enzymatic activity was measured based on nicotinamide adenine dinucleotide
663 hydrate (NADH) fluorescence. The fluorescence signal was measured using a TECAN Spark
664 multifunctional microplate reader over the course of 15 minutes with an excitation wavelength of
665 340 nm and emission wavelengths of 460 nm. For ENPP1, the enzymatic activity assay was
666 conducted in a transparent 384-well plate (NEST, 761001), with a total volume of 50 µL. Each well
667 containing a final concentration of 3 nM Flag-tagged ENPP1 protein, various concentrations of
668 compounds, and 100 µM p-Nph-5'-TMP in the assay buffer (50 mM Tris HCl, pH 8.5, 130 mM
669 NaCl, 1 mM CaCl₂, and 5 mM MgCl₂). For IC₅₀ determination, Flag-tagged ENPP1 protein was
670 incubated with serially diluted compounds for 10 minutes at room temperature. Subsequently, p-
671 Nph-5'-TMP was added and the absorbance change at 405 nm, indicating the release of p-
672 nitrophenolate, was measured using a TECAN Spark multifunctional microplate reader.

673

674 **Protein thermal shift assay**

675 The protein thermal shift assay was conducted using the QuantStudio™ 5 (Applied Biosystems)
676 to evaluate the compound-induced changes in protein thermal stability. For ALDH1B1, His-tagged
677 ALDH1B1 protein (6 μ M) was incubated with compounds (100 μ M), NAD⁺ (100 μ M), and 5
678 \times SYPRO Orange dye (Sigma, 67-68-5). For ENPP1, Flag-tagged ENPP1 protein (2 μ M) was
679 incubated with compounds (50 μ M) and 5 \times SYPRO Orange dye. The mixtures were then
680 transferred into 384-well plates (Monad, Q50701S) with a final volume of 10 μ L. The fluorescence
681 signal was recorded as the temperature was gradually raised from 25°C to 95°C. The data were
682 analyzed using the Protein Thermal Shift™ software v1.4 to determine the T_m value.

683

684 **Nuclear magnetic resonance assay**

685 Nuclear magnetic resonance (NMR) assay was performed using a 600 MHz spectrometer
686 (AVANCE III, Bruker) to validate protein-compound interactions. In Carr-Purcell-Meiboom-Gill
687 (CPMG) and saturation transfer difference (STD) NMR experiments, compounds were dissolved to
688 a final concentration of 200 μ M in a solution of PBS prepared with D₂O, containing 5 μ M His-
689 tagged ALDH1B1 protein, 5% DMSO-*d*₆, and 100 μ M NAD⁺.

690

691 **Surface plasmon resonance assay**

692 The surface plasmon resonance (SPR) experiments were performed using a Biacore 1K or
693 Biacore 8K instrument (Cytiva) at 25°C. His-tagged ALDH1B1 protein, Flag-tagged ENPP1 protein,
694 GCH1 protein (Cusabio, CSB-EP009317HU), and MMP9 protein (Sino Biological, 10327-H08H)
695 were covalently immobilized onto a CM5 sensor chip (Cytiva) by a standard amine-coupling
696 procedure in 10 mM sodium acetate of different pH (pH 5.0 for ALDH1B1 and MMP9, pH 4.5 for

697 ENPP1 and GCH1). PTGS2 protein (Sino Biological, 12036-H08B) was chelated to the CM5 sensor
698 chip by His capture kit (28995056). The running buffer for ALDH1B1 protein contained 10 mM
699 HEPES, pH 7.4, 400 mM NaCl, 300 μ M NAD⁺. The running buffer for ENPP1 and GCH1 protein
700 contained 10 mM HEPES, pH 7.4, 150 mM NaCl. The running buffer for PTGS2 protein contained
701 10 mM HEPES, pH 7.4, 150 mM NaCl, 0.005% surfactant P20. Compounds were serially diluted
702 into the running buffer and injected onto the sensor chip at a flow rate of 30 μ L/minute for 120 or
703 150 seconds (contact phase), followed by 300 or 180 seconds of buffer flow (dissociation phase).
704 The equilibrium dissociation constant (K_D) value was derived using Biacore Insight Evaluation
705 software (Cytiva).

706

707 **Animal experiment**

708 All animal experiments were conducted with the approval and supervision of the Institutional
709 Animal Care and Use Committee (IACUC) at the Shanghai Institute of Materia Medica, Chinese
710 Academy of Sciences. For the pharmacodynamics experiment, female BALB/c mice (6-8 weeks
711 old) were inoculated with 1×10^6 4T1 breast cancer cells into the mammary fat pad. The tumor-
712 bearing mice were randomly divided into three groups when the tumor volume reached
713 approximately 100 mm³. Subsequently, the mice were intraperitoneally injected with 30 mg/kg of
714 K-756 (MedChemExpress, HY-U00422) or XAV-939 (MedChemExpress, HY-15147) in a solution
715 containing dimethyl sulfoxide (DMSO) and 20% SBE- β -CD (MedChemExpress, HY-17031) in
716 saline (10/90, v/v) daily for one week. Body weights and tumor volumes of the mice were measured
717 daily. Tumor volumes were calculated using the formula: $V = (\text{length} \times \text{width}^2)/2$. At the completion
718 of the study, the mice were euthanized, and the tumors were harvested for further study.

719

720 **Flow cytometry analysis**

721 To harvest a single cell suspension, the tumor tissues were shredded with a scissors and treated
722 with digestion solution for 1 hour at 37°C under shaking. The digestion solution was prepared by
723 adding 0.001% hyaluronidase, 0.1% collagenase, 0.002% DNase, 120 µM MgCl₂, and 120 µM
724 CaCl₂ to RPMI-1640 medium. The digested tumor tissues were filtered through a nylon membrane
725 to obtain a single-cell suspension and treated with ammonium chloride to remove red blood cells.
726 Subsequently, the cell samples were stained with Fixable Viability Stain 700 (BD Horizan, 564997)
727 and the following antibodies: anti-mouse CD16/32 antibody (Biolegend, 101320), CD3-FITC
728 (Invitrogen, 2103752), CD8-BV421 (Biolegend, 100738), PD-1-SB600 (Invitrogen, 2314455). The
729 stained cells were analyzed using the Agilent NovoCyte 3000 instrument. All data were analyzed
730 using the FlowJo software.

731

732 **Molecular docking**

733 The molecular docking calculations were based on crystallographic data for the protein
734 structures of ALDH1B1 (PDB:7RAD and 7MJC), and ENPP1 (PDB:6WEU), optimized by the
735 Protein Preparation Wizard at pH 7.0. Subsequently, prepared ligands were docked to the optimized
736 protein using Glide with Standard Precision (SP) mode. All other parameters for the above process
737 were set to default. All docking studies were performed using Maestro of Schrödinger Suites
738 (version 2020-4), and obtained poses were analyzed with PyMOL.

739

740 **Molecular dynamics analysis**

741 The molecular dynamics study was performed to examine the conformational changes in the
742 protein that occurred due to the ligand-binding site and to evaluate the effect of these changes over
743 the protein-ligand complex. To evaluate the stability and interaction of the ENPP1 with ligand,
744 simulation study was performed using Desmond Schrödinger Suites (version 2020-4) at 100 ns time
745 period. Water molecules were added to the docking complex of the ENPP1 with a simple point
746 charge (SPC) water model. Dynamic was performed with 100 ns, during the simulation the length
747 of bond involving hydrogen was constrained using NPT ensemble, without restraints, for a
748 simulation time of 1.2 picoseconds (ps) (temperature 300 K) was performed to relax the system.

749

750 **Cell culture**

751 4T1 and THP-1 cells were purchased from ATCC (American Type Culture Collection) and
752 cultured in RPMI-1640 medium (BasalMedia, L210KJ) supplemented with 10% fetal bovine serum
753 (FBS, Meilun, PWL001) and 1% penicillin-streptomycin (PS, Meilun, MA0110) at 37°C in a 5%
754 (v/v) CO₂ atmosphere. THP-1-derived macrophages were induced by 100 ng/ml Phorbol 12-
755 myristate 13-acetate (PMA, MedChemExpress, HY-18739) for 24 hours.

756

757 **RNA isolation, cDNA synthesis, and real-time quantitative PCR (RT-qPCR)**

758 THP-1-derived macrophages were pretreated with various concentrations of K-756 for 30
759 minutes, then treated with 2 μM 2',3'-cGAMP sodium (MedChemExpress, HY-100564A) for 12
760 hours. RNA-easy Isolation Reagent (Vazyme, R701-01) was used to extract total RNA from the
761 cells, according to the manufacturer's instructions. This total RNA was reverse transcribed into
762 cDNA using HiScript II Q RT SuperMix (Vazyme, R223-01). RT-qPCR was conducted using

763 ChamQ SYBR qPCR Master Mix (Vazyme, Q331-02) in the CFX96TM RealTime PCR Detection
764 System. All the primer sequences used in this work are shown below: human ACTB forward:
765 catgtacgttgcataccaggc, human ACTB reverse: ctccttaatgtcacgcacgt; human IFNB1 forward:
766 cagcatctgctggtaaga, human IFNB1 reverse: cattacctgaaggccaagg; human CXCL10 forward:
767 ccacgtgtgagatcattgt, human CXCL10 reverse: tgcatcgatggctccct; human IL6 forward:
768 ttccgtccagttgccttc, human IL6 reverse: tacatgtcccttcaggc.

769

770 **Statistical analysis**

771 Statistical analysis was performed using GraphPad Prism 9.0 software. Differences of
772 quantitative data between groups were calculated using a 2-tailed unpaired t-test. The statistical
773 significance level was set as *P < 0.05, **P < 0.01.

774

775 **Data availability**

776 The data included in our paper are all from public data sets.

777

778 **Code availability**

779 The code used to generate the results shown in this study will be available under an MIT
780 License in the repository <https://github.com/myzhengSIMM/PertKGE> upon publication.

781

782 **References**

- 783 1 Pushpakom, S. *et al.* Drug repurposing: progress, challenges and recommendations. *Nature reviews Drug discovery* **18**, 41-58 (2019).
- 784 2 Li, Y. *et al.* An overview of recent advances and challenges in predicting compound-protein
786 interaction (CPI). *Medical Review* **3**, 465-486 (2023).

787 3 You, Y. *et al.* Artificial intelligence in cancer target identification and drug discovery. *Signal
788 Transduction and Targeted Therapy* **7**, 156 (2022).

789 4 Seal, S., Yang, H., Vollmers, L. & Bender, A. Comparison of cellular morphological descriptors
790 and molecular fingerprints for the prediction of cytotoxicity-and proliferation-related assays.
791 *Chemical Research in Toxicology* **34**, 422-437 (2021).

792 5 Lamb, J. *et al.* The Connectivity Map: using gene-expression signatures to connect small
793 molecules, genes, and disease. *Science* **313**, 1929-1935 (2006).

794 6 Subramanian, A. *et al.* A next generation connectivity map: L1000 platform and the first
795 1,000,000 profiles. *Cell* **171**, 1437-1452. e1417 (2017).

796 7 Saei, A. A. *et al.* ProTargetMiner as a proteome signature library of anticancer molecules for
797 functional discovery. *Nature Communications* **10**, 5715 (2019).

798 8 Hollywood, K., Brison, D. R. & Goodacre, R. Metabolomics: current technologies and future
799 trends. *Proteomics* **6**, 4716-4723 (2006).

800 9 Trapotsi, M.-A., Hosseini-Gerami, L. & Bender, A. Computational analyses of mechanism of
801 action (MoA): data, methods and integration. *RSC Chemical Biology* **3**, 170-200 (2022).

802 10 Ortmayr, K., de la Cruz Moreno, R. & Zampieri, M. Expanding the search for small-molecule
803 antibacterials by multidimensional profiling. *Nature Chemical Biology* **18**, 584-595 (2022).

804 11 Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and
805 hybridization array data repository. *Nucleic acids research* **30**, 207-210 (2002).

806 12 Parkinson, H. *et al.* ArrayExpress—a public database of microarray experiments and gene
807 expression profiles. *Nucleic acids research* **35**, D747-D750 (2007).

808 13 Raser, J. M. & O'shea, E. K. Noise in gene expression: origins, consequences, and control.
809 *Science* **309**, 2010-2013 (2005).

810 14 Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic
811 homeostasis. *Nature Reviews Molecular Cell Biology* **19**, 731-745 (2018).

812 15 Kalaitzis, A. A. & Lawrence, N. D. A simple approach to ranking differentially expressed gene
813 expression time courses through Gaussian process regression. *BMC Bioinformatics* **12**, 1-13
814 (2011).

815 16 Woo, J. H. *et al.* Elucidating compound mechanism of action by network perturbation analysis.
816 *Cell* **162**, 441-451 (2015).

817 17 Hosseini-Gerami, L. *et al.* Benchmarking causal reasoning algorithms for gene expression-
818 based compound mechanism of action analysis. *BMC bioinformatics* **24**, 1-28 (2023).

819 18 Jiang, L., Qu, S., Yu, Z., Wang, J. & Liu, X. MOASL: Predicting drug mechanism of actions through
820 similarity learning with transcriptomic signature. *Computers in Biology and Medicine* **169**,
821 107853 (2024).

822 19 Wei, Z. *et al.* DrSim: similarity learning for transcriptional phenotypic drug discovery. *Genomics,
823 Proteomics & Bioinformatics* **20**, 1028-1036 (2022).

824 20 Xiao, J., Blatti, C. & Sinha, S. SigMat: a classification scheme for gene signature matching.
825 *Bioinformatics* **34**, i547-i554 (2018).

826 21 Zhong, F. *et al.* Drug target inference by mining transcriptional data using a novel graph
827 convolutional network framework. *Protein & Cell* **13**, 281-301 (2022).

828 22 Noh, H., Shoemaker, J. E. & Gunawan, R. Network perturbation analysis of gene transcriptional
829 profiles reveals protein targets and mechanism of action of drugs and influenza A viral infection.
830 *Nucleic Acids Research* **46**, e34-e34 (2018).

831 23 Lu, D. *et al.* FL-DTD: an integrated pipeline to predict the drug interacting targets by feedback
832 loop-based network analysis. *Briefings in Bioinformatics* **23**, bbac263 (2022).

833 24 Bonner, S. *et al.* A review of biomedical datasets relating to drug discovery: a knowledge graph
834 perspective. *Briefings in Bioinformatics* **23**, bbac404 (2022).

835 25 Himmelstein, D. S. *et al.* Systematic integration of biomedical knowledge prioritizes drugs for
836 repurposing. *Elife* **6**, e26726 (2017).

837 26 Walsh, B., Mohamed, S. K. & Nováček, V. Biokg: A knowledge graph for relational learning on
838 biological data. *Proceedings of the 29th ACM International Conference on Information &*
839 *Knowledge Management*, 3173-3180 (2020).

840 27 Zheng, S. *et al.* PharmKG: a dedicated knowledge graph benchmark for biomedical data mining.
841 *Briefings in Bioinformatics* **22**, bbaa344 (2021).

842 28 Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine.
843 *Scientific Data* **10**, 67 (2023).

844 29 Yang, B., Yih, W.-t., He, X., Gao, J. & Deng, L. Embedding entities and relations for learning and
845 inference in knowledge bases. *arXiv preprint arXiv:1412.6575* (2014).

846 30 Tsherniak, A. *et al.* Defining a cancer dependency map. *Cell* **170**, 564-576. e516 (2017).

847 31 Mendez, D. *et al.* ChEMBL: towards direct deposition of bioassay data. *Nucleic Acids Research*
848 **47**, D930-D940 (2019).

849 32 Knox, C. *et al.* DrugBank 6.0: the DrugBank Knowledgebase for 2024. *Nucleic Acids Research*,
850 gkad976 (2023).

851 33 Szklarczyk, D. *et al.* The STRING database in 2023: protein–protein association networks and
852 functional enrichment analyses for any sequenced genome of interest. *Nucleic acids research*
853 **51**, D638-D646 (2023).

854 34 Lachmann, A. *et al.* ChEA: transcription factor regulation inferred from integrating genome-
855 wide ChIP-X experiments. *Bioinformatics* **26**, 2438-2444 (2010).

856 35 Li, J.-H., Liu, S., Zhou, H., Qu, L.-H. & Yang, J.-H. starBase v2. 0: decoding miRNA-ceRNA, miRNA-
857 ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. *Nucleic Acids*
858 *Research* **42**, D92-D97 (2014).

859 36 Yi, Y. *et al.* RAID v2. 0: an updated resource of RNA-associated interactions across organisms.
860 *Nucleic Acids Research* **45**, D115-D118 (2017).

861 37 Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural
862 networks. *Proceedings of the thirteenth international conference on artificial intelligence and*
863 *statistics*, 249-256 (2010).

864 38 Wang, Z., Zhang, J., Feng, J. & Chen, Z. Knowledge graph embedding by translating on
865 hyperplanes. *Proceedings of the AAAI conference on artificial intelligence* **28** (2014).

866 39 Ye, Q. *et al.* A unified drug–target interaction prediction framework based on knowledge graph
867 and recommendation system. *Nature Communications* **12**, 6775 (2021).

868 40 Friesner, R. A. *et al.* Glide: a new approach for rapid, accurate docking and scoring. 1. Method
869 and assessment of docking accuracy. *Journal of Medicinal Chemistry* **47**, 1739-1749 (2004).

870 41 Burley, S. K. *et al.* Protein Data Bank (PDB): the single global macromolecular structure archive.
871 *Protein Crystallography: Methods and Protocols*, 627-641 (2017).

872 42 Bender, A. & Glen, R. C. A discussion of measures of enrichment in virtual screening: comparing
873 the information content of descriptors with increasing levels of sophistication. *Journal of*
874 *chemical information and modeling* **45**, 1369-1375 (2005).

875 43 Chatterjee, A. *et al.* Improving the generalizability of protein-ligand binding predictions with
876 AI-Bind. *Nature Communications* **14**, 1989 (2023).

877 44 Guenther, U.-P. *et al.* Hidden specificity in an apparently nonspecific RNA-binding protein.
878 *Nature* **502**, 385-388 (2013).

879 45 Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins.
880 *Nature Reviews Molecular Cell Biology* **19**, 327-341 (2018).

881 46 Okada-Iwasaki, R. *et al.* The Discovery and Characterization of K-756, a Novel Wnt/beta-Catenin
882 Pathway Inhibitor Targeting Tankyrase. *Mol Cancer Ther* **15**, 1525-1534, doi:10.1158/1535-
883 7163.MCT-15-0938 (2016).

884 47 Wei, J. L. *et al.* GCH1 induces immunosuppression through metabolic reprogramming and IDO1
885 upregulation in triple-negative breast cancer. *J Immunother Cancer* **9**, doi:10.1136/jitc-2021-
886 002383 (2021).

887 48 Markosyan, N. *et al.* Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating
888 PTGS2 (COX-2). *J Clin Invest* **129**, 3594-3609, doi:10.1172/JCI127755 (2019).

889 49 Ye, Y. *et al.* Small-molecule MMP2/MMP9 inhibitor SB-3CT modulates tumor immune
890 surveillance by regulating PD-L1. *Genome Med* **12**, 83, doi:10.1186/s13073-020-00780-z
891 (2020).

892 50 Globig, A. M. *et al.* The beta(1)-adrenergic receptor links sympathetic nerves to T cell
893 exhaustion. *Nature* **622**, 383-392, doi:10.1038/s41586-023-06568-6 (2023).

894 51 Carozza, J. A. *et al.* Extracellular cGAMP is a cancer cell-produced immunotransmitter involved
895 in radiation-induced anti-cancer immunity. *Nat Cancer* **1**, 184-196, doi:10.1038/s43018-020-
896 0028-4 (2020).

897 52 Li, J. *et al.* Metastasis and Immune Evasion from Extracellular cGAMP Hydrolysis. *Cancer Discov*
898 **11**, 1212-1227, doi:10.1158/2159-8290.CD-20-0387 (2021).

899 53 Dinavahi, S. S., Bazewicz, C. G., Gowda, R. & Robertson, G. P. Aldehyde Dehydrogenase
900 Inhibitors for Cancer Therapeutics. *Trends Pharmacol Sci* **40**, 774-789,
901 doi:10.1016/j.tips.2019.08.002 (2019).

902 54 Feng, Z. *et al.* Targeting colorectal cancer with small-molecule inhibitors of ALDH1B1. *Nat Chem
903 Biol* **18**, 1065-1075, doi:10.1038/s41589-022-01048-w (2022).

904 55 Crunkhorn, S. Targeting ALDH1B1 in colorectal cancer. *Nat Rev Drug Discov* **21**, 636,
905 doi:10.1038/d41573-022-00130-1 (2022).

906 56 Singh, S. *et al.* ALDH1B1 links alcohol consumption and diabetes. *Biochem Biophys Res
907 Commun* **463**, 768-773, doi:10.1016/j.bbrc.2015.06.011 (2015).

908 57 Mitchell, D. C. *et al.* A proteome-wide atlas of drug mechanism of action. *Nature Biotechnology*
909 **41**, 845-857 (2023).

910 58 Bray, M.-A. *et al.* Cell Painting, a high-content image-based assay for morphological profiling
911 using multiplexed fluorescent dyes. *Nature Protocols* **11**, 1757-1774 (2016).

912 59 Cimini, B. A. *et al.* Optimizing the Cell Painting assay for image-based profiling. *Nature Protocols*,
913 1-44 (2023).

914 60 Hagberg, A., Swart, P. & S Chult, D. Exploring network structure, dynamics, and function using
915 NetworkX. (Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008).

916 61 Kim, S. *et al.* PubChem 2023 update. *Nucleic acids research* **51**, D1373-D1380 (2023).

917 62 Consortium, U. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Research* **47**,
918 D506-D515 (2019).

919 63 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. *arXiv preprint*
920 *arXiv:1412.6980* (2014).

921 64 Boschin, A. Torchkge: Knowledge graph embedding in python and pytorch. *arXiv preprint*
922 *arXiv:2009.02963* (2020).

923

924 **Author contributions**

925 S.N., X.K., Y.Z., Z.C., designed and performed the experiments, prepared the figures and wrote
926 the manuscript; S.N. designed the PertKG and conducted the computational work; X.K. helped S.N.
927 conduct some baseline models and computational analysis; Y.Z. contributed to the biological
928 experiments on K-756; Z.C. and Z.W. contributed to the biological experiments on ALDH1B1
929 inhibitors; R.H. participated in the analysis of computational results. Z.F., X.T., N.Q., K.W., W.Z.,
930 R.Z., Z.Z., J.S., Y.W., R.Y., X.L., S.Z. and M.Z. helped check and improve the manuscript. M.Z.,
931 S.Z. and X.L. conceived, initiated, designed and supervised this study.

932

933 **Competing interests**

934 The authors declare that they have no competing interests.

935