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RT-Sort: an action potential propagation-based algorithm for
real time spike detection and sorting with millisecond
latencies
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Abstract

With the use of high density multi electrode recording devices, electrophysiological signals
resulting from action potentials of individual neurons can now be reliably detected on multiple
adjacent recording electrodes both in vivo and in vitro. Spike sorting assigns these signals to
putative neural sources. However, until now, spike sorting can only be performed after completion
of the recording, preventing true real time usage of spike sorting algorithms. Utilizing the unique
propagation patterns of action potentials along axons detected as high fidelity sequential
activations on adjacent electrodes, together with a convolutional neural network based spike
detection algorithm, we introduce RT-Sort (Real Time Sorting), a spike sorting algorithm that
enables the sorted detection of action potentials within 7.5ms+1.5ms (meantSTD) after the
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waveform trough while the recording remains ongoing. RT-Sort’s true real-time spike sorting
capabilities enable closed loop experiments with latencies comparable to synaptic delay times.
We show RT-Sort’s performance on both Multi-Electrode Arrays as well as Neuropixels probes to
exemplify RT-Sort’s functionality on different types of recording hardware and electrode
configurations.

Introduction

Over the past decade, significant improvements in extracellular neural recording techniques have
resulted in the development of dense multi electrode recording devices for both in vivo (Jun et al.
2017, Ye et al. 2023) and in vitro (Ballini et al. 2014) recordings. These advances have
significantly enhanced our understanding of neural circuits and their activity. With interelectrode
pitches smaller than 20um, these devices allow for the recording of the activity of a single neuron
by multiple adjacent electrodes. Still, in contrast to intracellular single cell recordings, individual
extracellular electrodes regularly detect the activity of multiple adjacent neurons. To address this
problem, spike sorting algorithms have been developed for the assignment of detected spikes to
specific units that represent putative neurons (Hilgen et al. 2017, Pachitariu et al. 2018, Jun et al.
2017b, Yger et al. 2018, Garcia & Pouzat 2015, Diggelmann et al. 2018).

However, current conventional spike sorting algorithms are far from ideal (Buccino et al. 2022,
Steinmetz et al. 2018). The sorting algorithms are usually based on spike waveform template
matching. This means that the detected spikes are clustered into groups with similar waveform
shapes, which then determines the units to which these spikes are assigned. This method does
not account for time variant biological events or experimentally induced phenomena that alter the
shape of the waveform. For example, extensive preceding activity of a bursty neuron can
significantly change the shape of the waveform (Erickson et al. 1996, Bean 2007, Stratton 2012).
This is especially problematic when studying neural activity that occurs in occasional barrages
like hippocampal sharp wave ripples or population bursts of in vitro cultures. Furthermore,
pharmacological treatments affecting the ion channel dynamics and/or differences in temperature
can lead to large differences in the detected waveform shape as well (Erickson et al. 1996, Bean
2007). As a result, spikes from a single neuron can often be assigned to multiple differently
detected units or even completely missed. This causes the most commonly used spike sorting
algorithms to be in stark disagreement with each other (Buccino et al. 2020). Notably, this cited
study from Buccino et al. showed that when six different, regularly used, spike sorting algorithms
(Hilgen et al. 2017, Pachitariu et al. 2018, Jun et al. 2017b, Yger et al. 2018, Garcia & Pouzat
2015, Diggelmann et al. 2018) were applied to the same Neuropixels recording (Siegle et al.
2021), out of the total 1356 uniquely detected units, all sorting algorithms were in agreement with
the detected spike times for only 33 units while 1093 units were detected by only one of any of
the sorting algorithms.

Furthermore, when two neurons closely located to the same electrode fire an action potential at
the same time, it will lead to an overlap of the waveforms in the recorded signal. This overlapping
signal will not match any of the templates and will therefore often be missed by the sorter (Garcia
et al. 2022). Finally, template matching based algorithms require all spikes in the recording to be
pooled together before performing the clustering. As a result, spike sorting can only be performed
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after a recording is finished, leaving it impossible to know to which neuron a detected spike
belongs while an experiment is ongoing.

This issue will impact anyone interested in performing closed loop experiments in which a neural
system receives external inputs based on preceding activity recorded from the same neurons.
Such closed loop experiments have been performed in multiple forms, ranging from controlling
the bursting activity of in vitro cultures (Wagenaar et al. 2005) to embedding a neural culture in a
virtual environment (DeMarse et al. 2001, Kagan et al. 2022) or letting a neural culture control a
robot in the real world while providing information about the robot’s environment (Bakkum et al.
2007). Similar issues are faced when reading out signals of brain machine interfaces in real time
(Patil et al. 2008). A more in depth review of various types of closed loop experiments and the
difficulties with real time spike sorting can be found in (Arsiero et al. 2007) and (Franke et al.
2012) respectively.

As a result, various groups have attempted to develop algorithms that can sort detected action
potentials within tens of milliseconds after their occurrence, in the range of signal transmission
delay times of single synapses (Koch et al. 1996). However, so far no algorithm has yielded good
results. For example, Franke et al. suggested a method akin to template matching, using linear
filters and Independent Component Analysis (ICA) for the real time detection and sorting of action
potentials (Franke et al. 2010). However, in subsequent work co-authored by Franke, it was noted
that: “The analysis of extracellular neuronal signals, recorded at high spatiotemporal resolution,
reveals that the recorded data cannot be modeled as a purely linear mixture. As a consequence,
ICA fails to separate completely the neuronal signals and cannot be used as a stand-alone
method for spike sorting in HD-MEA recordings.”, concluding that post processing techniques
have to be used to overcome the most severe limitations of ICA (Jackel et al. 2012). This makes
the ICA based method useful as a preprocessing step to spike sorting but defeats its purpose as
a real time spike sorter.

More recently, machine learning based solutions have been proposed. For example, Li et al.
utilized a convolution neural network (CNN) trained with manually labeled spikes to sort spikes
detected on a single electrode (Li et al. 2020). They claimed that their method could classify
spikes in one millisecond; however, the work did not include results of the actual latency between
the occurrence of the spike and their classification which creates uncertainty about the actual
sorting latencies in real time. More importantly, this method entailed training a model for each
individual electrode, requiring manually labeling spikes for each electrode before being able to
run a real time experiment. In addition, Li et al. reported on lower performances when only several
hundred manually labeled spikes were included for the training and also noted that a spike
waveform may be recorded by multiple electrodes at the same time, which still requires a solution
for distinguishing spikes that are simultaneously recorded by different electrodes. Therefore, it
can be concluded that although highlighting the potential of CNN'’s for real time spike sorting, the
algorithm developed by Li et al. cannot readily be applied to experiments using conventional
recording devices containing hundreds of closely located electrodes (Jun et al. 2017, Ballini et al.
2014).
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Also utilizing CNNs, Racz et al. took advantage of the fact that single spikes can be detected on
multiple electrodes (Racz et al. 2020). They trained their model using data from a silicon probe,
resulting in a data matrix representing the signal of 32x4 equally distanced electrodes, to better
distinguish waveforms from closely located but distinct neurons. They applied Kilosort, an offline,
template matching based spike sorting algorithm (Pachitariu et al. 2016) to a pre-recording made
by the probe to obtain a “ground truth” for training their model. As a result, a new model would
have to be trained every time a new probe was inserted. Furthermore, by optimizing the models
to an electrode configuration of 32x4 electrodes, this algorithm doesn’t transfer well to other
related recording devices with variable electrode configurations (Jun et al. 2017, Ballini et al.
2014). Most importantly, the authors noted that the model was directly trained on the outputs of
Kilosort and so any mistakes resulting from the previously listed shortcomings of template
matching based sorting algorithms are necessarily inherited by this algorithm.

We set out to develop RT-Sort (Real Time Sorting), a spike detection and sorting algorithm that
overcomes the issues related to overlapping spikes, changes in waveform shapes and the inability
to perform spike sorting in real time. Instead of relying on waveform shape similarity, we based
our sorting method on a more biologically plausible phenomenon. Namely, the fact that an action
potential propagates along a neural axon and thus gets detected with very high fidelity by a
sequence of electrodes, in the same order, with sub millisecond but nonzero time delays (Tovar
et al. 2018). Interestingly, all real time spike sorting methods described above still apply some
form of template matching, where the shape of the spike waveform recorded on one or multiple
electrodes directly determines the unit cluster to which the spike is assigned. For the first time,
we used action potential propagation detection instead of spike waveform template matching to
identify individual neurons in our recordings. This idea has already been acknowledged and
utilized in the classification of neuron types based on high density recordings (Jia et al. 2019) but
has not yet explicitly been applied to enhance spike sorting routines.

In this work, we present RT-Sort, an algorithm that can sort spikes in real time based on their
action potential propagation trajectory. In doing so, we show that RT-Sort performs at the level of
a broad series of conventionally used template matching based spike sorting algorithms (Hilgen
et al. 2017, Pachitariu et al. 2018, Jun et al. 2017b, Yger et al. 2018, Garcia & Pouzat 2015,
Diggelmann et al. 2018), while reporting latencies for detection and sorting of 7.5ms+1.5ms
(meanzSTD) from the trough of the waveform on replayed recordings. Furthermore, RT-Sort can
be applied to any system with sufficiently high electrode density (£50um pitch) as exemplified by
our implementations on some of the most commonly used recording devices for both in vivo (Jun
et al. 2017) and in vitro (Ballini et al. 2014) experiments.

Because our method relies on the sequential detection of a rapidly decaying propagating action
potential on multiple electrodes, our spike detection sensitivity is an important limiting factor as to
whether we can sort a spike. Relying on conventional RMS based threshold crossings does not
provide the desired signal to noise ratio. Therefore, similar to Racz et al., we utilize the power of
CNNs for the detection of spikes. However, thanks to our methods of artificial data amplification,
inspired by the work from Parks et al. (Parks et al. 2018), our model doesn’t require training on
individual recording or electrode configurations. Furthermore, it allows us to generate very large
training samples, which enables the development of a more powerful and generalizable model.
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As a result, a single model trained for a specific model type — recording device combination can
be applied to any future experiment on that model with the specific recording device. We have
trained readily available models for in vitro human brain organoid neurons recorded with Maxwell
Biosystems HD-MEAs and in vivo mouse neurons recorded with Neuropixels. We will also release
a straightforward library to the community that allows for training other models and to applying
RT-Sort under various experimental conditions.

Results
Real time spike detection on injected spikes

A CNN with 4 layers (Fig. 1A) was trained to detect spikes in recording device specific noise.
Separate models were trained for Maxwell MEA recordings performed on human brain organoids
and Neuropixels 1.0 recordings performed on mice (Sup. Fig. 1 for Neuropixels). The training was
performed using averaged waveform shapes of electrodes selected along the whole recorded
axon, the trajectory along which the action potential propagates (Fig. 1B). These averaged
waveform shapes were then pasted into recording device specific noise fragments which enabled
artificial amplification of the training dataset (Fig. 1C) and the generation of training cases of
overlapping waveform shapes with ground truth (Fig. 1D). The small differences between the
training loss and testing loss indicated that our models are not overfitting nor underfitting the data
(Fig. 1E). See the corresponding sections in Methods for a more detailed description of the model
training and evaluation.

When testing the trained models on the artificially generated data from the held-out organoid
recordings, using the detection threshold yielding an optimal F1 score, we obtained a recall score
of 89.1%+5.59% and a precision score of 91.5%+3.23% (meantSTD, Fig. 1FG). Similarly, the
mouse Neuropixels recordings yielded a recall score of 84.7%+5.81% and a precision score of
86.4%+7.90% (meanxSTD, Sup. Fig. 1FG). In both cases, the obtained recall was significantly
larger than applying a 5SRMS threshold to the injected spikes (organoids: SRMS recall mean+STD
= 63.6%%7.36%, two-sided paired t-test P=1.25*107, n=6, Fig. 1F; mouse: 5RMS recall
mean+STD = 65.1%+3.37%, two-sided paired t-test P=5.19*10-°, n=6, Sup. Fig. 1F). Meanwhile,
the precision was not significantly different between the CNN detection model and the SRMS
threshold (organoids: 5RMS precision meantSTD = 95.0%+3.36%, two-sided paired t-test
P=0.13, n=6, Fig. 1F; mouse: meantSTD = 79.7%4.60% (smaller than RT-Sort CNN model),
two-sided paired t-test P=0.15, n=6, Sup. Fig. 1G). The significantly higher recall scores were due
to the fact that the model could detect spikes with amplitudes below 5SRMS, with the 5th percentile
of the amplitude distribution over all detected waveforms at 4.08RMS for the MEA model and
3.67RMS for the Neuropixels model. Meanwhile, the models hardly missed spikes with amplitudes
above 5RMS (Fig. 1H, Sup. Fig. 1H).

Adjusting the detection threshold for the organoid model from its optimal value allowed for
enhanced precision scores at the cost of a slightly lower recall score. This enabled the use of both
a stringent detection score at the optimal F1 score, obtained with a detection threshold of 27.5%,
as well as a loose detection threshold at 10% (Fig. 11, 17.5% and 7.5% for the Neuropixels model,
Sup. Fig. 11). Even though we considered a detection to be a true positive if it was detected within
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400us of the actual waveform trough, the average absolute deviation from the correct trough time
was only 13us and 14ps for the organoid and mouse recordings respectively (Fig. 1J, Sup. Fig.
1J), reflecting the high temporal sensitivity of the model detections. When probing the model to
update an injected piece of noise signal until it reaches an optimal detection threshold value, a

classical waveform shape emerges (Sup. Fig. 2) which further highlights that the model indeed is
sensitive to waveform shapes in noisy signals.
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Figure 1: Action potential detection with high temporal accuracy using a convolutional
neural network (CNN). A) Architecture of the CNN used for spike detection in 20kHz MEA
recordings. The input layer consists of 200 nodes, corresponding to a 10ms window. The output
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layer consists of 120 nodes corresponding to 2-8ms in the input window. Each output node
provides a score between 0 and 100 indicating the likelihood that the corresponding input frame
contains a waveform trough. The 4 convolutional layers have a kernel size of 21 frames and a
stride of 1 frame so that each output node makes a prediction based on the signal in 2ms before
until 2ms after the corresponding frame in the input. B) Example of averaged waveform footprint
detected by Kilosort2. The purple traces were selected for training/validating the CNN. Note the
variety in the selected waveform shapes from this single unit. This ensures that the detection
model can detect the propagating action potential along different parts of the neuron. C) Example
of training/validating sample creation and model prediction. i: A 10ms sample of recording specific
noise is taken. ii: A waveform shape is selected from the training or validating pool. iii: The
waveform is pasted into the recording device specific noise with ground truth certainty about the
trough location (marked with yellow dotted line). iv.: CNN detection model predictions for the
frames in 2-8ms of the input window show a narrow detection peak at the waveform trough. All
figures share the same x-axis. D) Same as C but with multiple overlapping waveforms in the same
sample. E) Training (purple) and validating (cyan) loss as a function of training epoch. Error bars
indicate the STD over the different cross-validation folds. The small differences between the
training loss and validating loss indicate that the models is not overfitting nor underfitting the data.
F) Recall when validating the detection model on samples generated from the held-out recording
and when applying a 5SRMS threshold to the same samples. The markers indicate the results for
each of the 6 held-out datasets and the bar reflects the mean over all held-out datasets.
Mean£STD for CNN = 89.1%+5.59% and for 5RMS = 63.6%+17.36%. The detection model has a
significantly higher recall (P = 1.25*107, two-sided paired t-test, n=6). G) Precision when
validating the detection model on samples generated from the held-out recording and when
applying a 5RMS threshold to the same samples. The markers indicate the results for each of the
6 held-out datasets and the bar reflects the mean over all held-out datasets. Mean+STD for CNN
= 91.5%+3.23% and for 5SRMS = 95.0%+3.36%. The difference in precision is not significant (P =
0.13, two-sided paired t-test, n=6). H) Amplitude distribution of detected (purple) and missed
(cyan) spikes by the detection model shows a good detection performance for spikes below
S5RMS. Amplitudes are expressed as RMS relative to the surrounding 50ms of signal. I) F1 score,
precision and recall of the detection model as a function of the detection threshold. The loose and
stringent detection thresholds are marked with L and S respectively. J) The absolute deviation
between the model detections and the ground truth trough times shows a high temporal accuracy
with on average a deviation of 13us (0.26 frames). Inset contains the same distribution on a log
scale.

Real time spike detection on replayed recordings

We subsequently tested our model on actual spikes detected by Kilosort2 in the held-out
recordings. When only considering the largest waveform amplitude electrodes, we observed
precision and recall scores of 26.0%+29.4% and 83.1%%23.4% for the MEA model applied to
organoid recordings and 7.47%+12.7% and 77.6%+25.8% for the Neuropixels model applied to
intact mouse brain recordings (mean+STD, Sup. Fig. 3AB). When interpreting these precision
scores, it has to be considered that we are comparing the spike detection model against sorted
Kilosort2 detections. A sorted detection only gets detected on a single electrode while our spike
detection model can detect a spike on multiple electrodes. As such, detections from nearby units
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might wrongfully be considered false positive spikes leading to low precision scores. In addition,
Kilosort2 is no ground truth and might miss spikes or falsely detect spikes due to various possible
reasons like overlapping waveforms, noise, low amplitude or waveform shape changes. This all
will negatively impact the obtained performance scores.

When we considered the 4" largest waveform amplitude electrodes per unit, the precision and
recall were 10.6%+20.6% and 25.3%+24.5% for the MEA model applied to organoid recordings
and 5.61%+10.8% and 53.1%+33.0% for the Neuropixels model applied to intact mouse brain
recordings (meantSTD, Sup. Fig. 3AB). The reduced recall reflects the fact that some of the
detected units will not be detectable on 4 individual recording electrodes, even though this is a
requirement for spikes to be sorted by RT-Sort. However, the bimodality of the distribution of recall
scores per unit indicates that there is a subset of units that can reliably get detected (Sup. Fig.
3CD) on at least 4 individual electrodes which makes them strong candidates for detection by RT-
Sort.

Real time spike sorting on ground truth datasets

Subsequently, we utilized the CNN outputs to perform spike sorting in real time using two different
ground truth datasets. A detailed explanation of the spike sorting algorithm can be found in
Methods: Propagation sequence detection and following sections. In summary, within a short pre-
recording made right before the experiment, recurring sequential detections on multiple
electrodes with short but non-zero temporal interelectrode intervals were detected, reflecting the
propagation of an action potential. We refer to these detections as propagation signals. Detections
were based on high fidelity interelectrode intervals and compared to the highest amplitude
electrode in the sequence. Sequences that were highly similar in their propagation sequence were
merged into single propagation signals. This then yields the final selection of propagation signal
sequences that were detected. In the subsequent experiment, sequential detections were
compared to the pre-detected propagation signal sequences and if there was sufficient overlap,
the sequential detection was counted as a spike for the propagation signal sequence.

The first ground truth dataset consisted of recordings that were made of rat primary neurons
plated on Maxwell HD-MEAs while one of the neurons was simultaneously recorded by patch
clamp (Methods: Patch-MEA ground truth recording). Applying RT-Sort to this recording yielded
the detection of 49 different units, including the neuron that was recorded using patch clamp (Fig.
2A-C).

Because our CNN model was trained to detect general waveform shapes in sample specific noise
which are then sorted based on their action potential propagation patterns, RT-Sort is well capable
of detecting all spikes from the same neuron despite changes in waveform shape (Fig. 2DE, Sup.
Fig. 4 for additional MEA example and Neuropixels example). Furthermore, since our CNN was
trained on multiple waveforms injected into the same detection window, we find that RT-Sort is
very suited to detect overlapping waveforms in both the injected (Fig. 1D) and actual recordings
(Fig. 2F, Sup. Fig. 5 for Neuropixels examples and additional MEA examples). Finally, with the
enhanced sensitivity of our spike detections, RT-Sort can detect units that are fully below SRMS
(Sup. Fig. 6). Doing the ground truth tests on n=4 neurons from 2 different MEAs using RT-Sort
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in offline mode, resulted in a precision of 97.5%+4.4% and a recall of 90.9%+5.57% (meantSTD,
Fig. 2G). For the array with a pre-recording, RT-Sort was also applied in online mode on the n=2
neurons on this array, yielding a precision of 98.2%+1.78% and a recall of 97.8%%1.60%
(meantSTD, Fig. 2H).
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Figure 2: RT-Sort spike sorting performance on ground truth datasets. A) Averaged
waveform footprint from a neuron recorded using a high-density multi-electrode array (MEA).
Each trace represents the signal from a single electrode averaged over all action potential
detections of the recorded neuron. 5 times the signal to noise ratio of the signal measured on
each electrode is indicated with dotted red lines. The root electrode detected by RT-Sort and used
for the spike triggered averaging is marked with the red star. The trace on each electrode ranges
from 2ms before until 2ms after the waveform trough on the root electrode. All detected loose
electrodes by RT-Sort are marked in bold. For each electrode, the color of the trace represents
the average detection latency relative to the root electrode. B) The average spike detection model
scores over all detected action potentials for the same neuron and electrodes as A. The loose
and stringent detection threshold on each electrode is indicated with dotted red lines. All detected
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loose electrodes by RT-Sort are marked in bold. To better reflect the high temporal precision of
the detection model, the time range for each trace is magnified 4 times relative to the traces in A,
resulting in the detection score trace ranging from 0.5ms before until 0.5ms after the waveform
trough on the root electrode (marked with red star). C) From top to bottom: Raw unfiltered MEA
trace of the root electrode marked in A and B for part of the recording (black). This signal is used
as input for the detection model. Detection model scores for the same period (yellow). RT-Sort
spike sorted detections (yellow dots). Spike detections in simultaneously made patch recording
of the same neuron (blue dots). Patch trace recorded in cell-attach mode (blue line) with spike
detection threshold marked in red. Note that the detection model sometimes detects spikes from
an adjacent neuron (see panel F) although RT-Sort correctly assigns these detections to a
different neuron. Right: zoomed in signals for a single spike marked with D. D) Same as A and B
but for a single spike from the same neuron, detected by RT-Sort in online mode. The spike is
marked with D in panel C. The colors for each trace correspond to the same latencies as A. E)
Another example of a single spike footprint from the same neuron, marked with E in panel C. Note
the difference in the waveform shape compared to D on the electrode above the root electrode.
F) Single spike footprint from the same neuron that overlaps with a spike from a different neuron
(root electrode marked with red arrow). Despite the waveform overlap, the spike is still correctly
detected as marked in panel C. G) Precision and recall for spikes detected by RT-Sort from 4
different neurons on 2 different MEAs with simultaneous patch-clamp ground truth recording.
Precision = 97.5%%4.4%, Recall = 90.9%+5.57% (meantSTD). The example neuron in A is
marked with the circle. H) Precision and recall for spikes detected by RT-Sort from 2 different
neurons on an MEA with simultaneous patch-clamp ground truth recording. The detections were
made using sequences detected in a pre-recording, similar to how RT-Sort would be applied in
real time. Precision = 98.2%+1.78%, Recall = 97.8%%1.60% (meantSTD). I) For each unit
detected in the simulated ground truth recording using sequence metrics generated based on the
ground truth spike locations, the precision over all detected spikes compared to the most similar
ground truth neuron. MeantSTD = 98.8%%12.4%. J) For each unit detected in the simulated
ground truth recording, the precision over all detected spikes compared to the most similar ground
truth neuron. MeanxSTD = 97.3%%13.4%. K) For each unit detected in the simulated ground truth
recording, the overlap score for the most similar ground truth neuron. MeanxSTD = 0.651+0.242.

We further tested RT-Sort on a different ground truth dataset consisting of a simulated mouse in
vivo Neuropixels dataset used in (Buccino et al. 2020). This simulated dataset consisted of 250
biophysically detailed neurons that each exhibit independent Poisson firing of spikes with added
Gaussian noise. To first test the ability of RT-Sort to assign spikes to the correct sequences,
sequence metrics were initially obtained using the ground truth spike times from the modeled
recording. Subsequently assigning spikes to these sequences yielded 142 units that were
detected on the minimally required 4 electrodes to measure the propagating action potential. Over
these 142 units, a precision of 98.8%%12.4% (mean+STD) was obtained, reflecting a low false
positive detection rate on spike detection (Fig. 21). Subsequently, RT-Sort was run in offline mode
on the first 5 minutes of the simulated dataset to detect propagation sequences, yielding 120
detectable action potential propagation sequences. Over these 120 units, a precision of
97.3%+13.4% (mean+STD) was obtained, again reflecting a low false positive rate (Fig. 2J), in
accordance with the patch-MEA results.
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These results indicate that RT-Sort is capable of detecting a subset of units with low false positive
rates while being unable to detect other units. This is likely due to the relatively stringent detection
constraints that are imposed on RT-Sort, in order to reliably detect propagating action potentials.
Unlike the patch-MEA recordings, RT-Sort did miss some of the true positive spikes in the
simulated dataset (Sup. Fig. 7AB). This resulted in an overlap score per unit of 0.65+0.24
(meanzSTD, Fig. 2K). The missed true positive spikes could partially be due to the fact that the
spike detection model was trained on real waveforms while the biophysically detailed neurons did
not always yield realistically looking waveforms (Sup. Fig. 7C). RT-Sort is more sensitive to not
detecting unrealistically looking waveform shapes than template matching algorithms, which
makes it less likely for RT-Sort to detect false positive spikes.

Detection latencies

For RT-Sort to be used in real time experiments, it is important to minimize the latency between
the occurrence of the action potential and its detection. In our case, the latency between the
waveform trough and its sorted detection can be ascribed to three different factors: biological
constraints, detection speed and sorting speed (Fig. 3A). The biological constraints consist of the
duration of the remainder of the spike waveform and propagation to occur after the waveform
trough. For the spike detection, using a single NVIDIA-RTX-A5000 GPU allowed us to perform a
forward pass through the Maxwell MEA spike detection model for 1020 electrodes simultaneously
(total number of available recording electrodes for Maxwell Biosystems HD-MEAs) in 1.12ms and
a forward pass through the Neuropixels spike detection model for 384 electrodes simultaneously
(total number of available recording electrodes on a Neuropixels probe) in 0.92ms. Adding
additional electrodes from there only led to a linear increase in the required computation times
(Fig. 3B). A first order linear regression model fitted to the forward pass duration yielded: duration
(ms) = 0.155 + 0.001 * #elec (R?=0.997, P=4.14*10""°) for the MEA model and duration (ms) =
0.155 + 0.002 * #elec (R?=0.999, P=4.09*10"'%) for the Neuropixels model. The steeper slope for
the Neuropixels model is due to the higher sampling rate of 30kHz compared to 20kHz.

Based on these results, we conclude that our model is very well suited for detecting action
potentials within milliseconds of their occurrence, at a higher sensitivity than thresholding the
signal and all while being robust against overlapping waveforms as well as changing waveform
shapes.

Subsequently processing the model detections into sorted spikes only required an additional 0.5-
4ms with a distribution median of 0.55ms (Fig. 3C) for the patch-MEA recordings from Fig. 2H
and a distribution median of 1.55ms (Fig. 3D) for the simulated Neuropixels recording from Fig.
2|-K. Altogether, this yielded a total latency from waveform trough to sorted detection of
7.24mst1.49ms (Fig. 3E) for the patch-MEA recordings and 7.57ms+1.57ms (Fig. 3F) for the
simulated Neuropixels recording (meantSTD) when applying RT-Sort in online mode. These
results clearly illustrate the detection and sorting speed enabled by RT-Sort. Running RT-Sort in
online mode requires detecting sequences in offline mode first in a pre-recording. Detecting
sequences in offline mode took 1.93+0.30 minutes (mean+STD) per minute of recording for the
patch-MEA recordings and 2.58 minutes per minute of recording for the simulated Neuropixels
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recording (Fig. 3G). Therefore, RT-Sort can be used in online mode with sequences recorded
only a few minutes in advance.
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Figure 3: Real time spike sorting with latencies in the range of synaptic transmission. A)
Schematic representation of the durations of the different steps to go from action potential trough
to sorted spike. The duration is split up into 3 categories: Biological constraints refer to biologically
intrinsic waiting times since the action potential trough occurs at the soma in order to measure all
the data required for the detection. This consists of measuring the action potential until the end of
the waveform (bottom left) plus an additional 0.5ms for the action potential to propagate. Detection
speed refers to the duration for the spike detection model to detect spikes on all the electrodes
used in the recording. Sorting speed refers to the duration to take the spike detection probability
outputs and use those to assign spikes to the correct units. B) Computation time to perform a
forward pass through the spike detection model as a function of the number of electrodes in the
recording. A first order linear regression model fitted to the forward pass duration yielded: duration
= 0.155 + 0.001 * #elec (R2=0.997, P=4.14*10"°) for the MEA model in purple and duration =
0.155 + 0.002 * #elec (R2=0.999, P=4.09*10""°) for the Neuropixels model in cyan. C) Distribution
of spike sorting duration on the detection model outputs for the two patch-MEA with real time
sorting from Figure 2H. D) Distribution of spike sorting duration on the detection model outputs
for the real time detections on the simulated Neuropixels recording from Figure 2I-K. E)
Distribution of spike detection and sorting durations for the real time sorting on the two patch-
MEA recordings from Figure 2H. Time reflects duration from waveform trough until sorted
detection (mean+STD over all detected spikes: 7.24ms+1.49ms). F) Distribution of spike detection
and sorting durations for the real time sorting on the simulated ground truth dataset from figure
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2I-K. Time reflects duration from waveform trough until sorted detection (meantSTD over all
detected spikes: 7.57ms+1.57ms). G) Durations for detecting propagation sequences and sorting
all spikes in the different offline patch-MEA recordings from Figure 2G (purple, markers same as
Figure 2G) and in the pre-recording for the simulated Neuropixels recording made before running
RT-Sort in online mode for Figure 2I-K (cyan). Time is expressed as number of minutes per minute
of recording time.

RT-Sort compared to other sorters

We next compared RT-Sort to 6 different conventionally used sorting algorithms (SpyKING
Circus, HDSort, HerdingSpikes2, IronClust, Kilosort2, IronClust and Tridesclous (Hilgen et al.
2017, Pachitariu et al. 2018, Jun et al. 2017b, Yger et al. 2018, Garcia & Pouzat 2015, Diggelmann
et al. 2018)) that were all applied to the same mouse Neuropixels recording (Siegle et al. 2021).
RT-Sort detected a total of 168 units in the Neuropixel recording, which is fewer than any of the
other sorters, in agreement with the results observed in the simulated dataset (Sup. Fig. 8A). The
units consisted of detected propagations of 40um to 150um in length (Sup. Fig. 8B) and up to
500pus in duration (Sup. Fig. 8C).

We sought to quantify the quality of the detected units by comparing them to the other sorters. A
previous comparison between the six other sorters on this dataset showed only a very limited
overlap in the detected units between the different sorters (Buccino et al. 2020) (see Methods:
Overlap score for how the overlap was assessed). We hypothesize that the low overlap between
units could be due to false positive spike detections of different sorters which could make the
spike trains of different sorters so different that they are not recognized as coming from the same
unit. This would mean that good performance of a certain sorter could potentially be obscured by
bad performance of a different sorter (Fig. 4A). As a result, for comparing detections between
sorters, we quantified how similar the spikes that were detected by either RT-Sort or a comparison
sorter alone are compared to the spikes that both sorters agreed on.

Firstly, the distribution of the interelectrode intervals between each loose electrode in the
sequence and the root electrode was constructed for “matched” spikes, “RT-Sort only” spikes and
“Other sorter only” spikes (Fig. 4B). For every spike in each of these three groups, the
interelectrode interval difference between the spike and the distribution mean of the matched
spikes was used as a measure for how different the propagation detected on this loose electrode
was compared to the agreed upon spikes by RT-Sort and the other sorter, with absolute
differences clipped at a maximum of 7 frames (Fig. 4C). Next, an interelectrode interval difference
score per unit was defined as the average absolute difference over all spikes on all loose
electrodes. To account for variability intrinsic to the variable action potential propagation speed,
the average absolute difference over all matched spikes was subtracted from the average
absolute difference of both the “RT-Sort only” and the “Other sorter only” spikes to get the final
interelectrode interval difference score for both groups.

A paired one-sided t-test showed that the interelectrode interval difference score was significantly
larger for each of the other sorters compared to the RT-Sort only spikes, taken over all units with
an overlap score of 20.1 where both sorters detected at least 10 unique spikes (Fig. 4DE, SpyKing
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Circus: P=3.50*107, n=115 units; Kilosort2: P=1.49*10% n=119 units; Herdingspikes2:
P=9.76*10°, n=78 units; Tridesclous: P=5.87*10""°, n=104 units; HD-Sort: P=2.36*10""3, n=108
units; IronClust: P=2.43*10, n=106 units). Note that n is notably lower than the number of units
detected by these sorters which is due to the fact that RT-Sort has a lower recall on unit detection
due to more stringent detection thresholds (Sup. Fig. 8A).

We applied the same procedure on detected spike amplitude differences instead of interelectrode
interval differences. Also here, we noted a significantly larger difference score for the “Other sorter
only” spikes compared to the “RT-Sort only” spikes, except for HDSort (Fig. 4FG, SpyKing Circus:
P=1.15*108, Kilosort2: P=2.49*108, Herdingspikes2: P=5.83*10*, Tridesclous: P=5.55*10", HD-
Sort: P=0.0789, IronClust: P=8.24*10). However, HDSort had the largest increase in the
interelectrode interval difference score compared to RT-Sort of all other sorters.

Despite there not being a ground truth for these recordings, these results indicate that the RT-
Sort only detections were more similar to the matched detections than the detections that were
only made by the other sorter. This makes it more likely that the RT-Sort only detections reflect
false negatives of the other sorter while the other sorter only detections could reflect false
positives of that sorter. And so we conclude that RT-Sort is able to detect a lower number of units
but that the units that are detected are of relatively high quality. Most importantly, these results
were obtained by detecting spikes in online mode where it took 7.62ms+1.58ms (meantSTD)
between the trough of the waveform and its sorted detection (Fig. 4H).
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Figure 4: RT-Sort detects spikes with consistent propagations and amplitudes. A)
Waveform footprint of a unit detected by both RT-Sort and SpyKing Cricus. Left: averaged
footprint over all spikes detected by both RT-Sort and SpyKing Circus. Middle: averaged footprint
over all spikes only detected by RT-Sort. Right: averaged footprint over all spikes only detected
by SpyKing Cricus. 5 times the signal to noise ratio of the signal measured on each electrode is
indicated with dotted red lines. The root electrode detected by RT-Sort and used for the spike
triggered averaging is marked with the red star. All detected loose electrodes by RT-Sort are
marked in bold. For each electrode, the color of the trace represents the average detection latency
relative to the root electrode. B) The distribution of interelectrode intervals per spike relative to
the root electrode for the comparison electrodes marked in A. Each spike group in A (both, RT-
Sort only and SpyKing Circus only) is plotted as a separate distribution. The wider base of the
SpyKing Circus distribution indicates spike contamination from different units for the SpyKing
Circus only spikes, which is not detected by RT-Sort C) The distribution of interelectrode interval
differences compared to the mean of all spikes detected by both RT-Sort and SpyKing Circus for
the comparison electrodes in B. Differences are clipped at 7 frames. D) Interelectrode interval
difference scores for all matching RT-Sort and SpyKing Circus units. SpyKing Circus only spikes
are significantly more different from the matched spikes in their interelectrode intervals compared
to the RT-Sort only spikes (P = 3.50*107, one-sided paired t-test). E) -Log10(P) values for inter-
electrode interval differences comparing RT-Sort only spikes to other sorter only spikes relative
to matched spikes. All other sorters are significantly more different (P<0.05 , one-sided paired t-
test). Abbreviations: SC = SpyKing Circus, KS = Kilosort2, HS = Herdingspikes2, TDC =
Tridesclous, HDS = HD-Sort, IC = IronClust. F) Amplitude difference scores for all overlapping
RT-Sort and SpyKing Circus units. SpyKing Circus only spikes are significantly more different
from the matched spikes in their amplitudes compared to the RT-Sort only spikes (P = 1.15*107%,
one-sided paired t-test). G) -Log10(P) values for amplitude differences comparing RT-Sort only
spikes to other sorter only spikes relative to matched spikes. All other sorters are significantly
more different (P<0.05 , one-sided paired t-test) except HD-Sort (P=0.0789, one-sided paired t-
test). Abbreviations same as E. H) Distribution of spike detection and sorting durations for the real
time sorting on the Neuropixels dataset from figure 4. Time reflects duration from waveform trough
until sorted detection (meantSTD over all detected spikes: 7.62mst1.58ms).

Altogether, our results indicate that RT-Sort performs at least at a comparable level as the
currently available spike sorting algorithms, although with a lower unit recall. However, unlike all
of the other spike sorting algorithms, RT-Sort is able to achieve this performance in real time, with
sorting occurring within milliseconds after the spike occurred, while the experiment is still ongoing.
Thus it is the first algorithm that allows for closed loop feedback experiments with single neuron
resolution and mono-synaptic delay times.

Discussion

The technological advancements in hardware used for extracellular neural recordings have
yielded dense multi electrode recording devices for both in vivo (Jun et al. 2017, Ye et al. 2023)
and in vitro (Ballini et al. 2014) recordings with interelectrode pitches smaller than 20um. These
devices allow for the recording of the activity of a single neuron by multiple adjacent electrodes.
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With the high temporal resolution of these recording devices in the range of 20-30 thousand
frames per second, consistent time delays can be observed among electrodes that detect the
action potential of a single neuron resulting from the time it takes for this action potential to
propagate along the axon (Tovar et al. 2018). This action potential propagation detection has
been used to enhance the classification of neuron types based on high density recordings (Jia et
al. 2019). In this work, we presented RT-Sort (Real Time Sorting) that for the first time utilizes
action potential propagation detection instead of spike waveform template matching as a spike
sorting methodology to identify individual neurons in high-density extracellular field recordings.

Spike sorting based on action potential propagation detection overcomes the issues related to
changes in waveform shapes and overlapping spikes (Fig. 2, Sup. Fig. 4, 5). Simultaneously,
action potential propagation based spike sorting reduces the rate of false positive spike detections
(Fig. 2&4). Importantly, all of this can be achieved while being able to detect and sort spikes within
less than 10ms after their trough time (Fig. 3), as opposed to having to wait until completing a
recording before the spike sorting procedure can even be initiated. This puts the sorting latencies
of RT-Sort in the range of signal transmission delay times of single synapses (Koch et al. 1996).

To obtain an optimal sorting performance, it is important to detect the propagating action potential
on as many electrodes as possible, with high temporal precision. Therefore, we developed a
convolutional neural network (CNN) that detects waveform shapes in noisy traces on single
electrodes (Fig 1A-D, Sup. Fig. 1A-D), with a significantly higher recall than SRMS based spike
detection (Fig 1G, Sup. Fig. 1G). When training our model, we ensured that it is sensitive to the
wide variety of waveform shapes that can occur while the action potential propagates along
various parts of a neuron. As a result, even the in vivo recordings from Neuropixels probes yielded
propagating action potentials over 150um, taking up to 500us for their propagation (Sup. Fig.
8BC).

The single electrode CNN detections form the inputs for the subsequent spike sorting algorithm.
In offline mode, this algorithm takes the spike detections from a recording and finds recurring
sequential activations of adjacent electrodes in sub-millisecond time scales. Using the
interelectrode intervals of these observed sequential detections, newly occurring action potentials
in live ongoing recordings can directly be matched to the previously detected propagation
pathways, resulting in real time spike sorting, which is the basis for designating the algorithm RT-
Sort (Real Time Sorting). The only requirement for applying RT-Sort in online mode is to make a
short pe-recording of up to 5 minutes, using the same electrode configuration as will be used in
the actual experiment. Subsequently processing this recording in offline mode to detect the
sequences that can be used in online mode takes about 1.93+0.30 minutes (mean+STD) per
minute of recording (Fig. 3G).

In this work, we presented a version of RT-Sort optimized for organoid recordings from HD-MEAs
from Maxwell Biosystems (Fig. 1&2) (Ballini et al. 2014) and a separate version of RT-Sort
optimized for mouse recordings from Neuropixels 1.0 (Sup. Fig. 1, Fig. 4) (Jun et al. 2017).
However, these are just examples of commonly used recording devices for both in vitro and in
vivo applications. RT-Sort was developed to easily produce optimized versions for any dense
multi electrode recording device with interelectrode spacing of <50um. The main aspect of
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recording device and biological sample specific optimizations for RT-Sort resides in the single
electrode spike detection model. Here we trained a CNN to optimally detect waveforms from a
specific biological model type in recording device specific noise (See Methods for more details).
If another biological sample type and/or recording device were to be used, the currently presented
versions of RT-Sort might still yield good performance. For example, we successfully applied our
human organoid MEA model on rat primary cultures plated on these same MEAs (Fig. 3A-H), and
we got good results for a subset of units when we applied our mouse Neuropixels model on
biophysically simulated waveforms in random noise (Fig. 3I-J). However, for optimal results, we
recommend training a model that is specific to the biological sample type and recording device.
This can easily be done through a Python library that will soon be released publicly and only
requires a few previous recordings from the same biological sample type and recording device
combination.

RT-Sort has been tested on a simulated ground truth recording as well as simultaneous
intracellular and extracellular field ground truth recordings. Furthermore, its detection and sorting
performance has been compared on real in vivo recordings (Siegle et al. 2021) against a variety
of commonly used spike sorters (Hilgen et al. 2017, Pachitariu et al. 2018, Jun et al. 2017b, Yger
et al. 2018, Garcia & Pouzat 2015, Diggelmann et al. 2018). Our results indicate that RT-Sort has
a high precision, meaning that it detects very few false positive units and spikes (Fig. 2). In the
recording without ground truth, this is reflected in the fact that the spikes that RT-Sort detects but
that are not detected by the other sorter are more similar to the spikes that both sorters agree on
compared to the spikes that the other sorter detects but that RT-Sort doesn’t (Fig. 4A-G). This
makes it more likely that the RT-Sort only detections reflect false negatives of the other sorter
while the other sorter only detections could reflect false positives of the other sorter. These results
come with the price of a lower recall on unit detection, meaning that RT-Sort misses units that
other sorters might detect. Since our recall of single spike detections was significantly higher than
5RMS (Fig. 1G, Sup. Fig. 1G), we suspect that this reduced recall on unit detection is due to the
more stringent unit detection bounds imposed on RT-Sort, requiring the detection of a spike on at
least 4 different recording electrodes. These bounds are applied to force detections to resemble
propagating action potentials which leads to the improved precision.

Given that the main differentiator of RT-Sort is its short latency spike sorting in the millisecond
range, we anticipate that the lower unit recall does not form a significant issue for the experimenter
as long as the detected units are sorted with the high accuracy that we report. This would still
enable the experimenter to design a wide range of closed loop experiments with tens to hundreds
of units that can be recorded in real time (RT-Sort detected 168 units in the Neuropixels recording
in Fig. 4). Nonetheless, we anticipate that future iterations of action potential propagation-based
spike sorting algorithms will further improve on RT-Sort’s performance, both when it comes to
precision and recall as well as the sorting speed.

Areas where we see further space for improvement include the architecture and training
procedure of the single spike detection model. For example, we have observed slightly better
performance for deeper detection models (consisting of more layers) but this also notably
increased detection latencies. A better detection performance might also be obtained by including
a larger number of averaged waveform shapes used for generating semi-artificial training data to
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get an even more complete picture of all the different possible waveform shapes that might be
present in a recording. Furthermore, there will likely be room for further optimizations in the sorting
algorithm and chosen parameters for detecting propagation sequences, merging them and
assigning spikes. For example, to better handle electrode drift in long duration recordings. Finally,
through clever multithreading and enhanced computational processing power, we anticipate the
sorting latencies of future propagation-based spike sorting routines to approach latencies below
5ms.

In making improvements, one will have to carefully balance sorting accuracy with detection
latencies. With the continuous improvement of processing capabilities, we expect this balance to
increasingly favor sorting accuracy without having to give in on detection latencies. Note that all
the reported results were obtained using a single NVIDIA-RTX-A5000 card, which we anticipate
to soon become outdated and easy to outperform. In presenting RT-Sort, we hope to evoke a
paradigm shift in the field of spike sorting towards propagation based methods over template
matching methods.

Despite leaving space for improvements, we think that in its current form, RT-Sort will already
provide significant value to the researchers that conduct neural extracellular field recordings with
dense multi electrode recording devices, both in vivo and in vitro. RT-Sort enables, for the first
time, an easily implementable spike sorting routine with time latencies for sorted spike detection
that are comparable to single synaptic delay times. This important feature of RT-Sort opens up
interesting opportunities for closed loop experiments, where a neural system receives external
inputs based on preceding activity recorded from the same system. These types of experiments
have been performed in various forms but always utilize multi-unit activity as read-out of the neural
system (DeMarse et al. 2001, Wagenaar et al. 2005, Bakkum et al. 2007, Kagan et al. 2022). With
RT-Sort, closed loop experiments can now be conducted with real time single unit read out
accuracy, which enables studying neural circuit dynamics in response to external inputs with a
greatly enhanced granularity. Similarly, we anticipate that this single unit real time detection
granularity for large populations of recorded neurons can greatly enhance the performance of
brain machine interfaces utilized in real time.

In summary, RT-Sort exemplifies a novel approach to spike sorting based on action potential
propagation which comprises high-fidelity sequential detection of a propagating action potential
on multiple adjacent electrodes with sub millisecond but nonzero time delays. This approach lies
closer to the biology that underlies action potentials than template matching, the current norm in
spike sorting algorithms. As a result, RT-Sort is more robust against waveform shape changes
and overlapping waveforms than conventional methods, yielding a reduced false positive rate in
detected units and spikes. Importantly, RT-Sort is able to detect and sort spikes within less than
10ms after their occurrence, on the range of single synaptic delay times. This makes it an
interesting tool for closed loop experiments and brain machine interfaces as well as various other
implementations. We hope that the broader community will take interest in action potential
propagation-based spike sorting and apply this new paradigm to continuously iterate on better
performing real time spike detection algorithms.

Methods
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Real time spike detection

RT-Sort uses action potential propagation detection to identify individual neurons in recordings
with dense electrode configurations of <50um interelectrode pitch. This requires a sensitive
detection of the action potential on multiple electrodes followed by a sorting procedure that
assigns the action potentials to the right neurons. All of this needs to happen in millisecond
timescales to be able to use RT-Sort in real time. For this, we developed a spike detector that can
simultaneously detect spikes on over a thousand different electrodes within millisecond time
scales, while being more sensitive than 5RMS threshold crossings and able to detect overlapping
waveforms.

A convolutional neural network (CNN) was trained to detect neural waveform shapes in a noisy
signal. Due to variability in the type of noise produced by different recording devices, it is important
to train a specific model per recording device type. In this work, separate models are trained for
human brain organoids recorded with Maxwell Biosystems multi-electrode arrays (Ballini et al.
2014) and for intact mouse brains recorded with Neuropixels probes (Jun et al. 2017). The data
used for the training and validating process comes from (Sharf et al. 2022) and (Siegle et al. 2021)
respectively and can be found here https://datadryad.org/stash/dataset/doi:10.25349/D9031Z
and here
https://buzsakilab.nyumc.org/datasets/SiegleJ/Alleninstitute 744912849/session 766640955/.
All training and validating is done using an NVIDIA-RTX-A5000 GPU.

CNN architecture

The CNN for spike detection consists of 4 convolutional layers. The first three convolution layers
have 50 filters with a kernel size of the number of frames in 1 millisecond of raw data + 1 (21 for
MEAs with sampling rate of 20kHz, 31 for Neuropixels with sampling rate of 30kHz), stride of 1,
and ReLU nonlinearity. The last layer (the output layer) has 1 filter with the same kernel size and
stride as the previous layers and followed by a Sigmoid nonlinearity (Fig 1A, Sup. Fig. 1A for
Neuropixels model with slightly altered parameters to account for different sampling rate). The
CNN takes in a 10ms snippet of raw, unfiltered data. The output layer contains a node for each
frame in the 2-8ms period within the input data. The kernel size was chosen so that each node in
the output layer receives information from all frames in the input layer in the period of 2ms before
and after the frame that the node makes the prediction for.

With this architecture, the model is trained so that for the provided snippet of 10ms of data, it
returns a likelihood of a spike waveform trough to be present for each recording frame in the
period of 2-8ms within this window. The outer boundaries of the window are not considered since
the full shape of the waveform would not be present within the window, leading to a worse
detection performance. Each frame receives a score between 0 and 100 indicating the likelihood
of there being a waveform trough in this frame. Before each 10ms sample is fed into the CNN for
training or inference, it is converted from int16 format to float16 and standardized by subtracting
the median of the sample.

Spike detection semi-artificial data generation
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Note that it is difficult to obtain sufficient ground truth spike detections to effectively train a neural
network. The availability of high electrode density electrophysiology recordings with
corresponding ground truth is limited, and it is difficult to generate this data (Steinmetz et al. 2018).
Alternatively, ground truth training and validation datasets are generated through artificial data
amplification, inspired by the work from Parks et al. (Parks et al. 2018). First, a selection of
recordings from the recording device and sample type of interest are made. In our case, 6
recordings from different human brain organoid slices are selected where 5 recordings are used
to generate training data, and 1 recording is used to generate validation data in a 6-fold cross
validation manner as described next. A same selection is made for intact mouse brain recordings
made in vivo. Note that during validation, only data generated from a different replica of the
recording device is used (although from the same type), interfacing with a different biological
sample (organoid slice or mouse brain). In this way, the model is trained for recording device type
and sample type specificity while allowing for generalizability among different replicates of
recording devices of the same type and generalizability among different biological replicates.

The selected recordings are bandpass filtered between 300Hz and 6000Hz and subsequently
spike sorted using Kilosort2 and curated. In the initial curation round, all units with at least 30
detected spikes, less than 1% of spikes violating a <1.5ms inter spike interval and a signal to
noise ratio larger than 5 on the main electrode are selected. The spikes of these units are
considered to be all spikes in the recording. From the selected units, a smaller selection is made
for training our spike detection model by applying a second round of curation. Here all units with
at least 50 detected spikes are selected and the filtered signal on each electrode is averaged
around the maximum absolute waveform peak from the detections on the main electrode.

In order to detect a propagating action potential along the whole axon, it is important for the spike
detection algorithm to be able to detect spikes that are not just from the highest amplitude
electrode. Therefore, waveforms were selected from all electrodes where the detection trough of
the averaged waveforms cross -19uV (-36uV for the Neuropixels data). Alternatively, if the
electrode detected a waveform with a peak at least twice as large as the through, this electrode
was selected if the peak crossed 19uV (36uV for the Neuropixels data). Also, the standard
deviation in the peak amplitude divided by the absolute value of the amplitude had to be less than
or equal to 0.6. The averaged waveforms for these electrodes are stored for generating training
and testing samples (Fig. 1B, Sup. Fig. 1B for Neuropixels example). This yields 82.83+74.62
averaged waveforms from single electrodes per recording (1327.33+427.00 for the Neuropixels).
Note that the selection includes averaged waveforms of a broad variety of shapes from electrodes
that recorded a signal from any part of a neuron, which allows us to detect a propagating action
potential along different parts of the neuron.

From the same recordings as used to select the average waveforms, 10ms periods with no
detected spikes on any electrode are extracted to obtain recording device specific noise. To
ensure that there is no presence of waveforms in these 10ms periods, only periods where there
were no spike troughs detected in the 3ms before the start of the window until 3ms until after the
end of the window were used. Spikes after the initial curation round were used to find these no-
activity periods. Next, an averaged waveform is pasted into a noise snippet to create an artificial
spike event that can be used for training and validation (Fig. 1C, Sup. Fig. 1C for Neuropixels
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example). In this way, the average waveform shapes pasted into the recording and background
noise allowed us to generate near infinite training samples that we could use to train our CNN to
be able to detect waveform shapes of any part of a neuron in noise intrinsic to the sample
preparation and recording device. Furthermore, multiple waveforms can be pasted into the same
noise snippet to artificially create overlapping waveforms. When doing so, the number of pasted
waveforms was randomly determined for each generated sample, following the probability
distribution 50%, 30%, 12%, 6%, 2% for 0, 1, 2, 3, or 4 waveforms respectively. The distance
between waveform troughs was randomly determined within a range of 0.2ms to 6ms apart (Fig
1D, Sup. Fig. 1D for Neuropixels example). In cases where multiple waveforms are added to the
same noise snippet, no sample has multiple copies of the same waveform shape.

During the 6-fold cross-validation training, one of the 6 recordings is used as the validation dataset
while the remaining 5 are used as the training dataset. For the MEA model, one validation and
training epoch consisted of 2 and 20 samples per waveform in the dataset, respectively. For the
Neuropixels, only 1 sample per waveform was used since recordings yielded more different
waveform shapes for the training and validation datasets. In the training dataset, a waveform from
any of the 5 recordings could be pasted into a 10ms noise sample from any of the other 5
recordings.

CNN training

The generated training samples are used to train the aforementioned CNN. The batch size is 1.
Stochastic gradient descent with an initial learning rate of 0.000776 (0.0002 for the Neuropixels
model) and momentum factor of 0.85 is used. If the validation does not decrease by at least
0.0001 (0.01 for the Neuropixels model) after 5 epochs, the learning rate decreases by a factor
of 0.4. These optimal hyperparameters were obtained through 6-fold cross-validation with
Bayesian tuning using CometML. The model is trained until the validation loss does not decrease
by at least 0.01 after 10 epochs. After training is completed, the weights that give the best
validation loss are used. This yields 33.5£7.1 epochs (mean+STD) for the MEA model and
18.715.0 epochs for the Neuropixels model. The small differences between the training loss and
testing loss indicated that our models are not overfitting nor underfitting the data (Fig. 1E, Sup.
Fig. 1E for Neuropixels results).

Validating and detection threshold

Model detections within 0.4ms of the actual absolute waveform peaks from the samples pasted
into the snippet are considered to be true positives. For a range of thresholds for the detection
score, the precision and recall are computed as a function of the detection threshold. The optimal
detection threshold of each model trained on one of the 6 folds was chosen by optimizing the F1
score. Using this threshold, the performance of the model detections compared to 5RMS based
detection was assessed by computing the precision and recall.

The training and validation were performed using semi-artificially generated samples as described
above. The MEA model trained on the fold with the largest number of waveforms in the training
dataset and the Neuropixels model trained on the fold where the validation dataset consisted of
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the recording described in Results: RT-Sort compared to other sorters were then applied in our
real time spike sorting algorithm as described below. The results after sorting were further tested
against actual ground truth datasets as will be described in Methods: Real time spike sorting.

Since for the spike sorting algorithm, we require sequential detections on a specific set of
electrodes in a specific order, detecting false positives on single electrodes is less problematic
than detecting false negatives. A false positive detection on a single electrode will not yield an
actual detected spike since it will not meet the sorting thresholds. As a result, we will apply two
model detection thresholds: the stringent threshold (which is at the optimal F1 score) and the
loose threshold (below the optimal F1 score). Specifically, we will use a stringent threshold of
27.5% (17.5% for the Neuropixels model) and a loose threshold of 10% (7.5% for the Neuropixels
model). The loose threshold was chosen such that the recall on the validation dataset was about
15% larger than the precision, in order to prioritize a low false negative rate of single electrode
spike detection. These thresholds can be adjusted by the user based on their sample and their
experimental needs.

CNN inference

The trained model is applied to recordings with varying degrees of noise. To ensure that the
model’s inputs are on the same amplitude scales as it encountered during training, the mean
amplitude deviation of the 5 recordings in its training dataset (training amplitude deviation) is
calculated. The amplitude deviation of a recording is calculated as follows: for the first 50ms on
each electrode, the interquartile range of the recording traces is calculated. The median of these
ranges is the amplitude deviation.

To scale a recording to the model's expected amplitude range, the amplitude deviation of the
recording is calculated, and the recording’s traces are multiplied by the training amplitude
deviation divided by the recording’s training amplitude deviation.

Real time spike sorting core parameters

The sorting algorithm takes the raw recording traces and real time detection scores as inputs and
finds propagating action potentials based on recurring consecutive detection patterns on adjacent
electrodes. The algorithm can be used to process previously made recordings (offline mode), and
it can also be applied in real time (online mode). Using RT-Sort for real time sorting requires at
least a 40-second pre-recording (5 minutes is ideal for optimal sequence detection) with the same
electrode configuration as the actual experiment to be made before the experiment in order to
detect sequences. Afterwards, action potentials detected in real time are assigned to the
sequences detected in the pre-recording.

For the description of the real time spike sorting algorithm below, the stringent and loose detection
thresholds will be used as defined previously. Furthermore, two types of distance thresholds will
be used. The “inner” electrodes will be within 50um of the electrode of interest whereas the “outer”
electrodes will be within 100um of the electrode of interest. These distance metrics were chosen
for optimal performance with a checkerboard Neuropixels configuration as well as Maxwell MEA
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electrode configurations that use every other electrode resulting from a sparse 7x activity scan,
yielding a 35um pitch (Sup. Fig. 9). Action potential propagations are first detected based on the
pre-recording and then used for real time spike detection and sorting in online mode in the actual
experiment.

Propagation sequence detection

The first phase of the sorting algorithm consists of propagation sequence detection. For each
recorded electrode, which will be referred to as the root electrode of the sequence (Fig 2A, marked
with red star), all stringent model detections are obtained. Only the stringent model detections
that have their largest standardized amplitude (defined below) on the root electrode and no higher
standardized amplitude detections within 0.5ms on any of its outer electrodes are considered.

All amplitudes are detected in the raw, unfiltered data. To account for LFP impacting the
amplitude, amplitudes are standardized according to the calculation below. In the remainder of
the text, any reference to amplitudes pertains to amplitudes standardized in this manner:

The voltage at the model’s predicted spike location (“absolute amplitude") on the
electrode is extracted. For the preceding 50ms (“‘window”), the following values are
found:

A = median(window)
B = median(|window - A|) / 0.6745

The standardized amplitude is then equal to (absolute amplitude - A) / max(0.5, B).
Where B is an estimate of the standard deviation of the background noise (Donoho &
Johnstone 1994, Quiroga et al. 2004).

The selected model detections on the root electrode that have a stringent detection on at least
one inner electrode within 0.1ms are selected. These will be referred to as the root detections. All
root electrodes with an average firing rate of at least 0.05Hz over the whole recording are selected
for further processing. For each root electrode, all root detections are compared to all stringent
detections on the inner electrodes of the root electrode in a pairwise manner. In this comparison,
the root detections might be split into multiple clusters as follows:

During the comparison to each inner electrode (“the splitting electrode”) the time intervals
between the root detections and the detections on the splitting electrode that occur within 0.5ms
of any of the root detections (“splitting codetections”) are obtained. 1-component, 2-component,
3-component, and 4-component Gaussian mixture models are fit to the codetection interval
distribution. The model with the lowest Bayesian information criterion is used to determine
whether there are a single or multiple interelectrode propagations present in the interval
distribution (Sup. Fig. 10A). To prevent overfitting the distribution, a Gaussian mixture model is
ignored if it has a negative Bayesian information criterion (BIC). To prevent underfitting the
distribution, a Gaussian mixture is ignored if the fitting of the model yields a FloatingPointError
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due to encountered underflow. If all Gaussian mixtures are ignored, the 1-component Gaussian
mixture model is used.

Finally, any cluster that has fewer detections than max(10, 10% of the root detections) are
discarded and their splitting codetections can be used to form other clusters (see below). If all
clusters do not meet this threshold, then the root detections remain together as a group and are
not split into clusters.

The root electrode’s inner electrodes are sorted in ascending order of distance. Let the it
electrode refer to the i" electrode in this sorted order. All root detections are first compared to the
i electrode. Every cluster that is formed is then compared to the i+1™ electrode, treating each
cluster the same as a set of root detections as described previously. This process repeats until
no more electrodes remain, resulting in a branching process of the root detections splitting into
clusters which then split into more clusters based on differences in interelectrode intervals. Each
root detection can only join one cluster. After the clusters starting on the splitting with the i
electrode have been fully formed, the remaining root detections not assigned to a cluster are then
compared to the i+1" electrode. This process repeats until there are no more root detections or
no more inner electrodes for direct comparison with the root electrode.

To accommodate long neurons that could extend farther than the root electrode’s inner
electrodes, the list of splitting electrodes for splitting a cluster can expand. If at least 50% of the
root detections form a single cluster, then the inner electrodes of the most recent splitting
electrodes are added to the list of splitting electrodes in ascending order of distance with the most
recent splitting electrode. To prevent a single cluster from traversing the entire array, a patience
counter is used. The patience counter starts at 0. If a cluster is not split (i.e. the root times stay
together) after all the splitting electrodes with the same distance are considered, then the patience
counter increases by 1. If it reaches 6, there are no more attempts to split the cluster, regardless
of the potentially remaining splitting electrodes. If the cluster is split, the patience counter resets
to 0. The clusters formed in the previous steps are each considered to be preliminary propagation
sequences.

It is possible for one preliminary propagation sequence to contain the spikes from multiple
neurons if the spikes have very similar intervals on multiple electrodes. To account for this, a
distribution is constructed of the amplitudes on the root electrode. If a Hartigan’s dip test indicates
that this amplitude distribution is not unimodal (P<0.1), the preliminary propagation sequence is
split into multiple sequences. To do this, 2-component, 3-component, and 4-component Gaussian
mixture models are fit to the amplitude distribution (using the GaussianMixture object from the
Python scikit-learn library). Only the model with the lowest BIC is used to split the amplitude
distribution (Sup. Fig. 10B). See Sup. Fig. 10C for the distribution of all P-values resulting from
applying the Hartigan’s dip test on the root electrode amplitude distributions. After splitting,
sequences with less than 10 spikes are discarded.

Extracting the detections, intervals, and amplitudes
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Next, the median of the detection scores for all detections in a preliminary propagation sequence
are computed for each electrode that is part of the preliminary propagation sequence or that falls
within 50um of any electrode in the preliminary propagation sequence. Based on the median
detection scores, each sequence will have three groups of electrodes:

1. Loose electrodes: electrodes that have a median detection above the loose threshold and
that are within 50um of any of the preliminary propagation sequence’s splitting electrodes
(including the root electrode)

2. Inner loose electrodes: loose electrodes that are within 50um of the root electrode

3. Footprint electrodes: loose electrodes and any electrode within 50um of a loose electrode

Any sequence that has fewer than 4 loose electrodes or fewer than 3 inner loose electrodes is
discarded to meet spike assignment thresholds (see Methods: Spike reassignment).

For all footprint electrodes, 0.5ms of the signal before and after the root electrode detection time
point is extracted for each of the action potential propagation sequence detections in the
preliminary propagation sequence (“propagation period”). The model's detection outputs are
obtained for this propagation period. Iterating over all detections in the preliminary propagation,
the maximum value in the detection output during the propagation period is obtained for each
footprint electrode. The time delay between this maximum detection and the maximum detection
time on the root electrode is considered to be the electrode’s interval for that detection. The
amplitude at the electrode’s maximum detection is considered to be the electrode’s amplitude for
that detection. The median detection score, mean interval, and mean amplitude across all
detections are found individually for each footprint electrode (Fig 2A, waveform colors reflect
latencies). If an electrode’s median detection score is less than 3%, it is set to 0. Finally, the
standard deviation in the root electrode’s amplitudes of all detections are extracted.

To remove sequences that are the result of noise spikes across all electrodes, any sequence that
has more than max(100, 10% of the sampled electrodes in the recording) electrodes with a
median detection score above the loose threshold is discarded.

Spike reassignment

The preliminary propagation sequences might only contain a low number of detections due to the
strict detection thresholds. Therefore, spikes are reassigned to the preliminary propagation
sequences using the same pre-recording that was used to detect the preliminary propagation
sequences, in order to make the extracted median detections, mean interelectrode intervals, and
mean amplitudes more robust and representative of the actual neuron that underlies the
preliminary propagation sequence.

A spike may be assigned to a preliminary propagation sequence if all the following conditions are
met:

1. A stringent detection must occur on the root electrode.
2. The amplitude of this detection on the root electrode must fall within 2.5 standard
deviations of the mean amplitude on the root electrode.
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3. Atleast 3 of the inner loose electrodes and max(4, 33% of the number of loose electrodes
for the sequence) of the loose electrodes need to detect a spike above the loose threshold
within the propagation period.

4. For all footprint electrodes, both the weighted interelectrode interval difference (relative to
the root electrode) and the weighted amplitude percent difference (relative to the
sequence’s mean amplitudes) cannot be greater than the interelectrode interval and
amplitude thresholds, respectively. For MEAs, the thresholds are 3.5 frames and 65%
respectively (Fig. 2D-F for 3 single spike detections). For Neuropixels, the thresholds are
2.5 frames and 45%, respectively (Sup. Fig. 4-6 for examples of single spike detections).

The “weight” of each footprint electrode is calculated as its median detection score divided by the
sum of all the footprint electrode’s median detection scores. Subsequently, for each footprint
electrode, the difference (or percent difference) between the sequence’s mean interelectrode
interval (or amplitude) and the spike’s interval (or amplitude) on that electrode is found.
Differences are clipped to be at most twice the interelectrode interval and amplitude thresholds.
Then, the weighted sum of the differences is calculated using each electrode’s weight.

When multiple sequences with the same root electrode detect a spike at the same time, the
spike’s difference score with each sequence is found. The difference score is calculated as the
sum of:

1. The interelectrode interval difference divided by the interval threshold

2. The amplitude difference divided by the amplitude threshold

3. -0.5times the number of the sequence’s loose electrodes that detect the spike divided by
the number of electrodes that have a loose threshold crossing

The spike is only assigned to the sequence with the lowest score. This process will be referred to
as “repeated detection removal”. After reassigning the spikes, new median detection scores,
mean interelectrode intervals and mean amplitudes are computed for each preliminary
propagation sequence. Preliminary propagation sequences that, after spike reassignment, have
less than 10 spikes or a firing rate less than 0.05Hz are discarded.

Merging

Detecting the preliminary propagation sequences in this manner allows for the possibility of
detecting the same axon multiple times. For example, the first electrode in the preliminary
propagation sequence that detects a signal after the root electrode might also be detected as a
separate root electrode for the same axon. Therefore, the next phase of the algorithm consists of
merging the detected preliminary propagation sequences into the final propagation sequences.
For the first merging round, only preliminary propagation sequences that share the same root
electrode are considered. For all footprint electrodes, the interelectrode intervals and amplitudes
compared to the root electrode, weighted by their average detection score, are compared. The
following conditions must be met for two sequences to be merged into one:

1. Atleast 3 electrodes must be in both sequence’s inner loose electrodes.
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2. The number of electrodes in both sequence’s loose electrodes must be greater than
max(4, 33% of the total number of electrodes that are loose electrodes for at least one of
the sequences).

3. The weighted interelectrode interval difference for both sequence’s footprint electrodes is
at most 3.5 frames for MEAs and 2.5 frames for Neuropixels. The same clipping as in
spike reassignment is used.

4. The weighted amplitude percent difference for both sequence’s footprint electrodes is at
most 65% for MEAs and 45% for Neuropixels. The same clipping as in spike reassignment
is used.

5. The absolute difference between the sequences’ mean amplitudes on the root electrode
is calculated, and the largest standard deviation in the amplitudes between the sequences
is found. The difference divided by this standard deviation must be at most 2.5. Due to
higher neuron density in the in vivo recordings, this condition is implemented for
Neuropixels only. The user can choose whether to use this requirement or not.

If the two sequences are merged into one, the median detections, mean interelectrode intervals,
and mean amplitudes are updated accordingly.

The weights and differences for the root electrode are not considered for the weighted
interelectrode interval difference since the intervals are relative to the root electrode, making the
interval always 0. The midpoint method is used for the amplitude percent difference. The merge
score is the sum of the interelectrode interval difference divided by the interval threshold and the
amplitude percent difference divided by the amplitude threshold. The pair of preliminary
propagation sequences with the lowest score is merged first until no more pairs can be merged
or there is only one sequence remaining.

To better asses sequences for merging in the subsequent merging round, the root electrode of
each sequence is replaced by an electrode with a mean amplitude of at least 80% of the current
root electrode’s mean amplitude, a median detection score above the stringent threshold, and a
interelectrode interval less than -2 frames. If multiple electrodes meet these criteria, the electrode
with the most negative interelectrode interval becomes the root electrode. If no electrodes meet
these criteria, the current root electrode remains as the root electrode. The interelectrode intervals
on other electrodes are updated accordingly.

In the subsequent merging round, root electrodes of a preliminary propagation sequence that are
inner electrodes of a root electrode from a different preliminary propagation sequence are
assessed for merging in the same way as described above. In this case, the root electrode with
the highest mean amplitude is used as a reference for the interelectrode interval difference, and
for Neuropixels, the root electrodes of both sequences must pass condition #5 described above.
This final round of merging yields the actual propagation sequences. For each of these
sequences, the electrode with the highest median detection score becomes the root electrode,
and the intervals on the other electrodes are updated accordingly.

To conclude the pre-experiment preparations, spikes are reassigned to sequences in the same
way as described in Methods: Spike reassignment but this time with applying repeated detection
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removal to all groups of root electrodes that detect a spike within 0.2ms and that are inner
electrodes to each other. In the case of using RT-Sort for offline spike sorting, these spike times
are the final results.

Real time spike sorting

In the case of using RT-Sort on online mode for real time spike sorting, the same process as spike
reassignment is used to spike sort in real time using the updated median detection scores, mean
interelectrode interval and mean amplitudes. Also here, repeated detection removal is applied to
all groups of root electrodes that detect a spike within 0.2ms and that are inner electrodes to each
other. Using the streamed data, a 10ms sample is processed every 5ms to account for the spikes
in the first and last 2.5ms parts of the sample that can’t be detected due to biological constraints
(Fig. 3A).

Patch-MEA ground truth recordings

To test the performance of RT-Sort, a ground truth dataset was generated by recording from a
primary rat culture plated on a Maxwell MEA while simultaneously, a patch clamp recording was
obtained from a single neuron. Spiking activity of the patched neuron was recorded in cell-
attached mode or whole-cell current clamp and was also detected by the MEA. The patch-MEA
dataset from (Bartram et al. 2023) was used, as well as an additional dataset, generated largely
according to the same protocol using only the whole-cell current-clamp mode and internal solution
for recording. The experimental protocols involving animal tissue harvesting were approved by
the veterinary office of the Canton Basel-Stadt according to Swiss federal laws on animal welfare
and were carried out in accordance with the approved guidelines. Cell culturing protocols are
identical to those described in (Bartram et al. 2023). Both datasets contained 2 individually
patched neurons. One of the two datasets contained an additional 5-minute pre-recording that
was made using the MEA only, which allowed for the detection of propagation sequences in order
for RT-Sort to be run in online mode on the patch-MEA recording. This pre-recording occurred
within 60 minutes before the simultaneous patch-MEA recordings.

The simultaneous patch-MEA recordings have durations ranging from 40 seconds to over 3
minutes. By replaying these recordings, a real time application of RT-Sort was mimicked.
Intracellular voltage peaks above 4x RMS of the patch recordings are considered to be spike
events. RT-Sort spike detections are compared to these patch spike events by computing an
overlap score for each of the 4 patched neurons.

Overlap score

Following (Buccino et al. 2020), when two spike trains (A and B) are compared to see if they
detect a signal from the same neuron, an overlap score is computed as follows:

Overlap = #matches / (#A + #B - #matches)

Here #matches are the total number of spikes from the two spike trains that are detected within
0.4ms of each other, #A are the total number of detected spikes in spike train A and #B are the
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total number of detected spikes in spike train B. In the case of the patch-MEA ground truth
recordings as described in Methods: Patch-MEA ground truth recordings, the patch spikes are
considered to be spike train A while the RT-Sort spikes are considered to be spike train B. In the
case of the sorter comparison on the Neuropixels recording as described in Methods: Sorter
comparison on in vivo Neuropixels recording, the overlap score is used for all pairwise
comparisons between sorters.

Simulated Neuropixels ground truth recording

Genuine ground truth recordings obtained by combining extracellular field recordings and patch
clamp recordings are hard to obtain in vitro, and even harder in vivo (Steinmetz et al. 2018). This
yields a low number of ground truth units while these units are often biased to be larger in size
and amplitude and higher in their firing rates. As a result, these units are relatively easy to sort
and might not form a representative sample of all neurons that are part of a large-scale recording.

As a result, we also tested RT-Sort on a simulated Neuropixels recording. This simulated ground
truth dataset consisted of 250 biophysically detailed neurons that each exhibit independent
Poisson firing of spikes with added Gaussian noise. See (Buccino et al. 2020) for a full description
of the generation of the dataset. RT-Sort was first tested on this simulated recording using
sequence metrics generated from the known ground-truth spikes times to focus the performance
assessment on spike assignment to propagation sequences in online mode. Next, RT-Sort was
used in offline mode on the first 5 minutes of the simulated recording to also detect the
propagation sequences which were then used to test RT-Sort again in online mode on the second
5 minutes of the simulated recording.

Sorter comparison on in vivo Neuropixels recording

In addition to a simulated Neuropixels recording, RT-Sort is tested on a genuine Neuropixels
recording without ground truth. The recording was part of a larger dataset made from a head-fixed
mouse by the Allen Institute for Brain Science (Siegle et al. 2021; Allen Institute for Brain Science,
2019; dataset ID: 766640955; probe ID: 77359232). We use the first 5 minutes of the recording
to detect sequences as described in Methods: Propagation sequence detection and following
sections. We then assign spikes to these detected sequences using the subsequent 5 minutes of
the recording as described in Methods: Real time spike sorting. Other recordings from the same
dataset are used to generate training data for our detection model as described in Methods: Spike
detection semi-artificial data generation.

Neuropixels have a sampling frequency of 30kHz and can record from up to 384 channels
simultaneously. This specific recording used a checkerboard configuration (Sup. Fig. 9) and
yielded 246 active recording channels (the remainder of the channels were either not inserted in
the brain tissue or had a firing rate below 0.1Hz). The probe records from part of the cortex (V1),
the hippocampus (CA1), the dentate gyrus and the thalamus (LP). During the experiment, the
mouse was presented with a variety of visual stimuli while freely running on a rotating disk (for
more details see Siegle et al. 2021).
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As shown in the work from Bucino et al. 2020, applying 6 different conventionally used spike
sorters (HDSort, HerdingSpikes2, IronClust, Kilosort2, IronClust, SpyKING Circus and
Tridesclous (Hilgen et al. 2017, Pachitariu et al. 2018, Jun et al. 2017b, Yger et al. 2018, Garcia
& Pouzat 2015, Diggelmann et al. 2018)) to this recording yielded wildly varying results with limited
overlap between the different sorters. However, without a ground truth, it is not possible to say
which results are correct. We hypothesize that the low overlap between units could be due to
false spike detections of different sorters which could make the spike trains of different sorters so
different that they are not recognized as coming from the same unit. This would mean that good
performance of a certain sorter could potentially be obscured by bad performance of a different
sorter.

For that reason, in comparing RT-Sort to each of the 6 other spike sorters, we focused on the
units detected by both RT-Sort and the other sorter (overlap score 20.1). For each of these units,
a fraction of the spikes was detected by both RT-Sort and the other sorter while both RT-Sort and
the other sorter also detected spikes that were not co-detected. For each unit that had at least 10
spikes in each of these 3 groups, the interelectrode intervals and amplitudes of the not co-
detected spikes from each sorter were compared to the mean of the interelectrode interval and
amplitude distributions over all co-detected spikes.

Specifically, for each of the loose electrodes except the root electrode, the interelectrode intervals
relative to the root electrode and the amplitudes were obtained over every spike in each of the
three groups. Next, the absolute difference in the interelectrode interval and the percent difference
in the amplitude were computed for each of the spikes, in comparison to the distribution mean
over all spikes that were detected by both sorters. The differences were then pooled over all loose
electrodes which yielded three absolute difference distributions for the interelectrode intervals and
three percent difference distributions for the amplitudes per unit. 1 distribution consisted of the
differences for the co-detected spikes, 1 distribution consisted of the differences for the RT-Sort
only spikes and 1 distribution consisted of the differences for the other sorter only spikes.

The mean of the RT-Sort only distribution and the mean of the other sorter only distribution were
taken as a measure for how different these spikes were relative to the co-detected spikes. The
mean of the distribution over all spikes that were detected by both sorters was taken as a measure
for the intrinsic variability within all co-detected spikes. The mean over all co-detected spikes was
then subtracted from both the mean over all RT-Sort only spikes and the mean over all other
sorter only spikes to get a difference score for the RT-Sort only spikes and a difference score for
the other sorter only spikes per unit. An individual score was computed for the interelectrode
interval absolute differences and for the amplitude percent differences. Due to the normalization
achieved by subtracting the mean of the differences of the co-detected spikes, a difference score
of 0 indicates that the spikes in the distribution of either RT-Sort only spikes or other sorter only
spikes were equally variable in their interelectrode intervals or amplitudes as the co-detected
spikes. Meanwhile, difference scores larger than 0 indicate that the spikes in the distribution of
either RT-Sort only spikes or other sorter only spikes were more variable in their interelectrode
intervals or amplitudes as the co-detected spikes.
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As a final comparison between RT-Sort and the other sorter, a paired t-test was performed to see
whether either RT-Sort only spikes or other sorter only spikes were more different from the co-
detected spikes, using the difference scores per unit. This t-test was computed separately for both
interelectrode interval differences and amplitude differences.
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