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Abstract 27 

  28 

Multi-spectral imaging (MSI) collection by unoccupied aerial vehicles (UAV) is an 29 

important tool to measure growth of forage crops. Information from estimated growth curves can 30 

be used to infer harvest biomass and to gain insights in the relationship of growth dynamics and 31 
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harvest biomass stability across cuttings and years. In this study, we used MSI to evaluate 32 

Alfalfa (Medicago sativa L. subsp. sativa) to understand the longitudinal relationship between 33 

vegetative indices (VIs) and forage/biomass, as well as evaluation of irrigation treatments and 34 

genotype by environment interactions (GEI) of different alfalfa cultivars. Alfalfa is a widely 35 

cultivated perennial forage crop grown for high yield, nutritious forage quality for feed rations, 36 

tolerance to abiotic stress, and nitrogen fixation properties in crop rotations. The direct 37 

relationship between biomass and VIs such as Normalized difference vegetation index (NDVI), 38 

green normalized difference vegetation index (GNDVI), red edge normalized difference 39 

vegetation index (NDRE), and Near infrared (NIR) provide a non-destructive and high 40 

throughput approach to measure biomass accumulation over subsequent alfalfa harvests. In this 41 

study, we aimed to estimate the genetic parameters of alfalfa VIs and utilize longitudinal 42 

modeling of VIs over growing seasons to identify potential relationships between stability in 43 

growth parameters and cultivar stability for alfalfa biomass yield across cuttings and years. We 44 

found VIs of GNDVI, NDRE, NDVI, NIR and simple ratios to be moderately heritable with 45 

median values for the field trial in Ithaca, NY to be 0.64, 0.56, 0.45, 0.45 and 0.40 respectively, 46 

Normal Irrigation (NI) trial in Leyendecker, NM to be  0.3967, 0.3813, 0.3751, 0.3239 and 47 

0.3019 respectively, and Summer Irrigation Termination (SIT)  trial in Leyendecker, NM to be 48 

of 0.11225, 0.1389, 0.1375, 0.2539 and 0.1343, respectively. Genetic correlations between 49 

NDVI and harvest biomass ranged from 0.52 - .99 in 2020 and 0.08 - .99 in 2021 in the NY trial. 50 

Genetic correlations for NI trial in NM for NDVI ranged from 0.72 - .98 in 2021 and SIT ranged 51 

from 0.34- 1.0 in 2021. Genotype by genotype by interaction (GGE) biplots were used to 52 

differentiate between stable and unstable cultivars for locations NY and NM, and Random 53 

regression modeling approaches were used to estimate growth parameters for each cutting. 54 

Results showed high correspondence between stability in growth parameters and stability, or 55 

persistency, in harvest biomass across cuttings and years. In NM, the SIT trial showed more 56 

variation in growth curves due to stress conditions. The temporal growth curves derived from 57 

NDVI, NIR and Simple ratio were found to be the best phenotypic indices on studying the 58 

stability of growth parameters across different harvests. The strong correlation between VIs and 59 

biomass present opportunities for more efficient screening of cultivars, and the correlation 60 

between estimated growth parameters and harvest biomass suggest longitudinal modeling of VIs 61 

can provide insights into temporal factors influencing cultivar stability. 62 

63 
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Introduction 64 

Alfalfa (Medicago sativa L. subsp. sativa) is one of the most widely cultivated perennial 65 

forage crops in the world with many desirable attributes such as high-yield capacity, good forage 66 

quality, tolerance to abiotic stresses, and ability to fix nitrogen and nutrient cycling 67 

(Annicchiarico et al. 2015; Hill et al. 1988). In the U.S. alfalfa is the fourth most widely grown 68 

crop with an estimated annual value of 11.7 billion dollars (USDA/ARS 2020). Alfalfa is 69 

allogamous and autotetraploid (2n = 4x = 32) and its cultivars are synthetic populations 70 

consisting of heterozygous plants (Annicchiarico and Pecetti 2021). The genetic gain in alfalfa 71 

has approached stagnation in the past few decades due to several factors including the perennial 72 

nature of the crop (long breeding cycles), multiple harvests per year, inability to make gain in 73 

harvest index due to harvesting of the entire crop, the high cost of phenotyping, tetrasomic 74 

inheritance, high genotype by environment interaction (G×E), and high levels of non-additive 75 

variance (Annicchiarico et al. 2015; Acharya et al. 2020). The narrow-sense heritability (h
2
) of 76 

biomass yield of alfalfa is as low as 0.20 – 0.30 (Annicchiarico 2015; Acharya et al. 2020; Riday 77 

and Brummer 2005) demanding extensive replications for phenotypic evaluation which further 78 

limits the size of breeding materials to be evaluated, ultimately leading to low selection 79 

efficiency. However, the ability to screen more materials will lead to higher effective selection 80 

intensities leading to improved response to selection.  81 

In recent years, the advancement in high-throughput phenotyping systems, including 82 

multi-spectral imaging (MSI) platforms, have enabled the collection of high dimensional 83 

phenotypic data from large experiments and breeding trials. MSI provides an effective and non-84 

destructive approach to evaluate the crop growth parameters throughout the crop growing 85 

season. A number of reflectance vegetation indices can be derived from spectral reflectance 86 

which have been efficiently used for large scale phenotyping and dynamic estimation of biomass 87 

greenness, nitrogen content, pigment composition, photosynthesis status and water content 88 

(Claudio et al. 2006; Mistele and Schmidhalter 2008; Schlemmer et al. 2005). MSI consists of a 89 

set of images acquired at narrow wavelength bands including both visible and near infrared 90 

(NIR) regions of the electromagnetic spectrum (Blasco et al. 2007; Chen et al. 2002). The 91 

Normalized Difference Vegetation Index (NDVI), estimated by considering the difference NIR 92 

and red wavelengths, is widely used to quantify biomass production. The green Normalized 93 
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Difference Vegetation Index (GNDVI) is estimated by measuring the difference between NIR 94 

and green wavelengths and is used to measure photosynthetic activity. Other vegetation indices 95 

such as Normalized Difference Red-Edge (NDRE), Optimized Soil Adjusted Vegetation Index 96 

(OSAVI), Simplified Canopy Chlorophyll Content Index (SCCCI), and Visible Atmospherically 97 

Resistant Index (VARIgreen), have been used to predict grain yield but their use has been limited 98 

on quantification of crop biomass. Santana et al. (2021) evaluated the relationship between 99 

vegetation indices (VI)s obtained from multispectral imagery and leaf N content and yield-100 

related traits in maize cultivars grown in different N levels, and found a positive relationship 101 

between NDVI, NDRE and grain yield under adequate N levels. Da Silva et al. (2020) evaluated 102 

the relationship between different VIs and soybean grain yield and verified a direct positive 103 

effect of NDVI and SAVI on grain yield of soybean. However, there are limited studies 104 

conducted on the relationship between different VIs and biomass yield of alfalfa crops, so further 105 

studies assessing the relationship between VIs and crop forage/biomass yield are needed. 106 

Identifying the cause-and-effect relationship between spectral and biomass yield provides an 107 

efficient phenotyping process in breeding programs. Genotypes with better spectral variables can 108 

be selected to achieve an efficient selection for biomass yield.  109 

The use of MSI data could also be leveraged for monitoring crop growth over the 110 

growing season. Extensions of crop growth models have been proposed to incorporate functional 111 

relationships between the environmental variables and the phenotypic traits influencing yield and 112 

agronomic performance of elite breeding lines (Chapman et al. 2002; Chapman et al. 2003; 113 

Messina et al. 2015; Hammer et al. 2002; Chenu et al. 2009), and recent advancements in MSI 114 

have increased the scalability of collecting non-destructive phenotypes on a large number of 115 

experimental plots throughout the crop growth cycle. Collection of phenotypic data from 116 

multiple time points allows the monitoring of crop growth and development and hence, can 117 

increase the understanding of dynamic interactions of crop and environment.  118 

The study of genotype by environment (G×E) interaction is one of the most important 119 

areas in plant breeding whereby breeders try to understand the stability and plasticity of the 120 

genotypes across different environments. In a perennial crop like alfalfa, the concept of 121 

persistence, or consistent performance across seasons in the same location, is a key trait for elite 122 

cultivar performance. While it may be viewed as a distinct concept from GxE, many of the same 123 
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factors driving GxE are likely to play a role in persistence. For the purposes of this study we will 124 

use the terms stability, and instability, to encompass the concepts of GxE and persistence in 125 

harvest biomass yield. The traditional approach to study GxE and persistence relies on terminal 126 

traits such as harvest biomass yield, which lack the temporal resolution to study the driving 127 

factors leading to inconsistent performance across cuttings and growing seasons. In such 128 

scenarios, images taken throughout the production years of a stand can enable the longitudinal 129 

evaluation of a large number of breeding materials, providing insights into growth characteristics 130 

leading to the stability or instability of cultivar performance under differing conditions. 131 

Important growth parameters could be evaluated by studying the changes in (co)variance 132 

between adjacent time points and end-of-season traits. Quantitative genetic models can be built 133 

to accurately predict forage yields from MSI, especially given that the harvested product is 134 

imaged directly. However, the challenge lies on fitting parsimonious models that can accurately 135 

model the changes in covariance parameters across the growing season. 136 

The phenotypic indices from high-throughput phenotyping (HTP) platforms are measured 137 

at multiple time points throughout the crop growing season and hence, are considered as 138 

longitudinal data. Repeatability models, multi-trait models, and random regression (RR) models 139 

are used to fit such longitudinal data. Repeatability models assume constant variance and 140 

correlation between measurements dates, which may not be true for longitudinal data collected at 141 

different time points throughout the crop growth cycle (Meyer and Hill 1997). In the case of 142 

multi-trait models, phenotypic traits measured at different time points are considered as distinct 143 

response variables for each cultivar. The number of parameters required to be estimated is 144 

directly related to number of time points. Hence, a strong correlation between consecutive 145 

measurements, large (co)variance matrix structure between measurements at different time 146 

points, and computational requirements restrict the application of a multi-trait model (MT) 147 

model (Speidel 2011; Anche et al. 2020). However, the RR model requires fewer parameters 148 

than MT models, can capture the change of a trait throughout the growth season, and does not 149 

require the assumption of constant variances and correlations between measurement time points 150 

(Meyer, 2020). RR models enable fitting of genetic and environmental effects over time 151 

(Schaeffer 2004), and hence results in higher accuracy of breeding values (BVs) compared to 152 

other statistical models. RR model also provide additional insights on temporal variation of 153 
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biological and physiological processes underlying the trait of interest (Strucken et al. 2015) and 154 

these models have been widely used in different area of research including G×E (Calus and 155 

Veerkamp 2003; Oliveira et al. 2018). RR models commonly uses splines or Legendre 156 

polynomials to model the (co)variance of measurements at or between each time points. The 157 

objectives of this study were to (1) identify predictive image features for modeling growth and 158 

development curves for alfalfa.; (2) determine the heritability and genetic variation for image 159 

features collected throughout the growing season and (3) estimate the relationship between 160 

observed stability for development/growth parameters and stability for alfalfa biomass yield. 161 

Materials and Methods 162 

Experimental materials and biomass phenotyping 163 

In this study, we analyzed the data from two experimental locations, (1) Cornell 164 

University Agricultural Research Experiment Station in Ithaca, NY, and (2) the Leyendecker 165 

Plant Science Research Center of New Mexico State University (NMSU) located near Las 166 

Cruces, New Mexico. A total of 36 cultivars were evaluated in the NY trial, representing both 167 

publicly released cultivars and breeding populations including ‘Guardsman II’(Viands et al., 168 

2005), ‘Regen’ (Viands et al., 2007), ‘Algonquin’ (Baenziger, 1975),’Oneida VR’ (Viands et al., 169 

1990), ‘Oneida Ultra’ (Viands et al., 2004),  and ‘Ezra’ (Viands et al., 2012). Entries were 170 

planted on June 12, 2019, in a replicated trial with five replications in a randomized complete 171 

block design (RCBD). Plots were 6 rows of alfalfa that were 1 m by 4 m and the space between 172 

adjacent plots was 0.3 m. Forage yield was measured using a plot flail harvester, and dry matter 173 

yield for each plot was calculated from fresh forage weight and dry matter content samples. 174 

Forage yield (FY) was collected on June 5, July 9, and August 26 of 2020 and June 16, July 26, 175 

and September 13 of 2021. 176 

A total of 24 cultivars and breeding populations with one covariate cultivar were planted 177 

in the NMSU trial on September 27, 2019. The experiment was conducted under two irrigation 178 

treatment conditions including normal irrigation (NI) and summer irrigation termination (SIT). 179 

The NI treatment received flood irrigations approximately every 14 days from March through 180 

late October.  The SIT treatment only received flood irrigations from March through June and 181 

again from late September through October. Both treatment fields were planted as RCBDs with 182 

each having four replications. All experimental plots were located adjacent to a covariate plot of 183 
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the cultivar, ‘NuMex Bill Melton’ (Ray et al., 2012).  Each plot was comprised of three rows of 184 

alfalfa, 3.35 m in length, with 30 cm spacing between rows within a plot, and 60 cm spacings 185 

between neighboring plots and alfalfa borders. Forage biomass was harvested in 2020 with six 186 

and three harvests occurring in the NI and SIT treatments, respectively. In 2021, forage biomass 187 

was harvested seven times in the NI treatment and six times in the SIT treatment fields. All 188 

forage biomass was harvested using a Carter flail harvester to collect fresh plot weights. 189 

Subsamples of fresh chop forage were collected, weighed, and dried down to establish dry matter 190 

weights.      191 

Aerial phenotyping  192 

NY trial 193 

Aerial phenotyping for the NY trial commenced on April 6, 2020 in Ithaca, NY. A total 194 

of 56 flights were conducted throughout the crop growth season. A total of 7, 6, and 7 flights 195 

were flown before the first harvest (2020cut1), second harvest (2020cut2) and third harvest in 196 

2020 (2020cut3) and a total of 22, 8, and 6 flights were flown before the first harvest (2021cut1), 197 

second harvest (2021cut1) and third harvest of 2021 (2021cut1). Four ground control points 198 

positioned at the four corners of the trial were measured with a Trimble RTK-GPS, which was 199 

used to geo-locate plots. A DJI Matrice 600 Pro unmanned aerial vehicle (UAV) equipped with a 200 

Micasense Rededge-MX multi-spectral camera was used for all flights. A flight plan was 201 

designed to obtain an 80% overlap in images collected at a flight speed of 2 m/s and an altitude 202 

of 20 m. Flights were conducted within 2 hours of solar noon on clear days when possible.  203 

NMSU trial 204 

Due to UAV equipment unavailability in 2020 and early 2021, aerial phenotyping 205 

commenced on June 3, 2021, during the third harvest cycle’s regrowth initiation for both the NI 206 

and SIT trials. A total of five harvests data from NI including NIcut3, NIcut4, NIcut5, NIcut6, 207 

NIcut7 and a total of four harvests from SIT trials including SITcut3, SITcut4, SITcut5, SITcut7 208 

from 2021 were used for crop growth modelling and stability analysis. Ground control points 209 

were included near the four corners of each treatment field.  The control points were placed on 210 

permanent stand mounts prior to each imagery flight.  Upon installation, each stand was geo-211 

located using an RTK-GPS. Multispectral imagery was captured using a DJI Matrice 600 Pro 212 

UAV and a MicaSense RedEdge-MX camera.  All imagery was captured with 75% side overlap 213 

and 80% front overlap from a 20m altitude at 2.0 m/s.  Imagery for both irrigation treatment 214 
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fields was captured within the same flight cycle.  Flights were conducted in mornings (10:00am 215 

– 12:00pm), within 3 hours of solar noon, while temperatures were cool enough to not affect 216 

UAV performance.  Imagery capture occurred once per week, averaging five flights per harvest 217 

cycle, with the last flight occurring no more than two days prior to each biomass harvest.  In 218 

total, 25 imaging flights were conducted over the NMSU alfalfa studies in 2021.   219 

Image processing and index calculations 220 

Orthomosacis were constructed using Pix4D mapping software (https://www.pix4d.com), 221 

and were subsequently uploaded into Imagebreed (www.imagebreed.org), a plot image database 222 

(Morales et al. 2020), for image processing and storage and calculation of vegetative indices (VI) 223 

at the plot level. Using these summary statistics, multiple VIs were calculated for each plot. 224 

Normalized difference vegetation indices (NDVI) were calculated from mean pixel values of 225 

near infrared (NIR) and Red bands of plot level images as:  226 

𝑁𝐷𝑉𝐼 =  
(𝑅𝑁𝐼𝑅−𝑅𝑅)

(𝑅𝑁𝐼𝑅+𝑅𝑅)
 (1) 227 

where RNIR is the near infrared reflectance and RR is the red reflectance. Green normalized 228 

difference vegetation indices (GNDVI) and Normalized difference red edge indices (NDRE) 229 

were calculated using green and red edge reflectance instead of the red reflectance in Eq. 1, 230 

respectively.  231 

A simple Ratio was calculated as: 232 

𝑅𝑎𝑡𝑖𝑜 =  
𝑅𝑁𝐼𝑅

𝑅𝑅
 (2) 233 

Additionally, the cumulative value of the above mentioned phenotypic indices at a specific time 234 

point, t, was calculated using using the rollmean function of zoo package in R statistical software 235 

that takes phenotypic indices values and growing degree day(s) (GDD)(s) at each time point. The 236 

equation is represented as: 237 

  𝐴𝑈𝐶𝑡 = 𝑁𝐷𝑉𝐼1 + ∑ (𝐷𝑖  x 𝑟𝑜𝑙𝑙𝑚𝑒𝑎𝑛(𝑁𝐷𝑉𝐼𝑖 , 2))𝑡
𝑖=1  (3) 238 

 239 
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where 𝐴𝑈𝐶𝑡 represents the calculated AUC value at time point t, 𝐷𝑖 represents the time interval 240 

between consecutive time points (𝐷𝑖 = 0 for time point 1) , 𝑟𝑜𝑙𝑙𝑚𝑒𝑎𝑛(𝑁𝐷𝑉𝐼𝑖 , 2) represents the 241 

rolling mean of NDVI values at time point t, and 𝑁𝐷𝑉𝐼𝑖 represents the NDVI value at time point 242 

t. 243 

GDDs were calculated as: 244 

 245 
 246 

 𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥+ 𝑇𝑚𝑖𝑛   

2
−  𝑇𝑏𝑎𝑠𝑒 (4) 247 

 248 
 249 

 250 
where 𝑇𝑚𝑎𝑥 is the maximum temperature, 𝑇𝑚𝑖𝑛   is the minimum temperature, and 𝑇𝑏𝑎𝑠𝑒= 4 °C as the 251 

base temperature. The GDDs calculated for each time point were used as time covariates in the 252 

RR models. For the first cuttings, GDDs were calculated starting on date of planting and up to 253 

and including the date of harvest. For subsequent harvests, GDDs were calculated starting from 254 

the day after the preceding harvest. The GDDs calculated for each time point were used as time 255 

covariates in the RR models. 256 

 257 

Models 258 

A single-trait best linear unbiased prediction (ST-BLUP) model was fit to estimate the 259 

genetic and residual variances. The ST-BLUP is defined as: 260 

𝒚 = 𝟏𝜇 + 𝐗𝒃 + 𝐙𝒈 + 𝒆 (5) 261 

where 𝒚 is the vector of raw phenotype variables (phenotypic indices derived from MSI in this 262 

study), 𝟏 is the vector with elements of 1; 𝜇 is the overall mean; 𝒃 is the vector of fixed effect of 263 

replicate; 𝐗 is the design matrix that associates the fixed effect of replicates with response 264 

variables; 𝐙 is the design matrix with 𝒈 as a vector of random genetic effects 𝒈 ~ 𝑁(𝟎, 𝐈𝜎 )𝑔
2 ; 𝒆 is 265 

the vector of random residuals modeled as 𝒆 ~ 𝑁(𝟎, 𝐈𝜎 )𝑒
2  with an identically and independently 266 

normal distribution of residuals and 𝐈 is the identity matrix.  267 

 268 
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The ratio of estimated genetic variance to the sum of the genetic variance and residual 269 

variance was calculated to represent the broad sense heritability of biomass yield, and phenotypic 270 

indices derived from MSI. 271 

A bi-variate multi-trait model was fit to estimate the genetic and residual correlations 272 

between biomass yield and mean values of VIs at each time point. 273 

[
𝒚𝟏

𝒚𝟐
] = [

1 𝜇1

1 𝜇2
] + [

𝐗𝟏 𝟎
𝟎 𝐗𝟐

] [
𝒃𝟏

𝒃𝟐
] + [

𝐙𝟏 𝟎
𝟎 𝐙𝟐

] [
𝒈𝟏

𝒈𝟐
] + [

𝒆𝟏

𝒆𝟐
] (6) 274 

where 𝒚𝟏 and 𝒚𝟐 are the vector of response variables of traits 1 and 2; 𝜇1 and 𝜇2 are the overall 275 

means;  𝒈𝟏 and 𝒈𝟐 are the vectors of random genetic effects; 𝒃𝟏 and 𝒃𝟐 are the vectors of 276 

replication effects; 𝐗𝟏 and 𝐗𝟐 are the incidence matrices linking 𝒃𝟏 to 𝒚𝟏 and 𝒃𝟐 to 𝒚𝟐;  𝐙𝟏 and 277 

𝐙𝟐 are the incidence matrices linking 𝒈𝟏 to 𝒚𝟏 and 𝒈𝟐 to 𝒚𝟐; 𝒆𝟏 and 𝒆𝟐 are vectors of random 278 

residual effects for trait 1 and 2, respectively. It was also assumed that [𝒈𝟏 𝒈𝟐]~𝑁(𝟎, 𝚺 𝐈), 279 

where  𝚺 = [
𝜎𝑔1

2 𝜎𝑔12

𝜎𝑔21
𝜎𝑔2

2 ] is the unstructured genetic variance and covariance matrix of the traits 280 

and [𝒆𝟏 𝒆𝟐]~𝑁 (𝟎, [
𝜎𝑒1

2 𝜎𝑒12

𝜎𝑒21
𝜎𝑒2

2 ]   𝐈). 281 

 282 

Random regression  283 

Random regression models using third order of Legendre polynomials (RRLP) were used to fit a 284 

model for mean VI values and cumulative values of VI (cVI) from all time points. The biomass 285 

yield data was used as the final time point observations in the model. The variance of biomass 286 

yield was scaled to match the variance of preceding observation of VIs ensuring that yield data 287 

has similar variability pattern as VIs. The RR models were used to continuously model the 288 

(co)variance of VI and cVI measurements at different time points as a function of time.  289 

The general random regression model for a single trait can be formulated as (Schaeffer 2004):  290 

 291 

VI𝑡𝑗 =  𝛽𝑟(𝑡)+ ∑ 𝜙(𝑡)𝑗𝑘𝑢𝑗𝑘
𝐾2
𝑘  + ∑ 𝜙(𝑡)𝑗𝑘𝑝𝑗𝑘

𝐾3
𝑘   + 𝛜𝑡𝑗  (7) 292 

where, VI𝑡𝑗 is the plot level value of the  j
th

 accession for VI at time point t; 𝜙(𝑡)𝑗𝑘 is a time 293 

covariate coefficient defined by a basis function evaluated at time point t; 𝛽𝑟(𝑡) is the fixed effect 294 
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or replicate r nested in time point t;  𝑢𝑗𝑘 is a k
th

 random regression coefficient associated with the 295 

genetic effects of the j
th

 accession;  𝐾1 is the number of random regression parameters for fixed 296 

effect time trajectories; 𝐾2 and 𝐾3 are the number of random regression parameters for random 297 

effects; 𝑝𝑗𝑘 is a k
th

 permanent environmental random regression coefficient for the 298 

accession j; 𝛜𝑡𝑗 is the vector of residuals. The random effects at any time point were calculated as 299 

a function of the estimated RR coefficients and standardized measure of GDDs calculated from 300 

equation 3 on a per harvest basis during the growing season. 301 

GGE biplot analysis 302 

The genotype main effect plus genotype by environment (GGE) biplot analysis was performed 303 

using the statistical R package called “metan” (Olivoto and Lúcio 2020). Mean biomass yield 304 

and its stability for all genotypes were visualized using GGE biplot. The GGE biplots were 305 

constructed by plotting the first principal component (PC1) against the second principal 306 

component (PC2) of the genotypes and environment calculated from a genotype-focused singular 307 

value decomposition. The following GGE biplot model was used (Yan and Kang 2002): 308 

𝑌𝑖𝑗  −  𝑌𝑗  = 𝑙1𝑥𝑖1ℎ𝑗1  + 𝑙2𝑥𝑖2ℎ𝑗2  + 𝑒𝑖𝑗  (8) 309 

where 𝑌𝑖𝑗  is the mean biomass yield of genotype i in environment j; 𝑌𝑗 is the mean yield across 310 

all genotypes in environment j; 𝑙1 and 𝑙2 are the singular values for PC1 and PC2, respectively; 311 

𝑥𝑖1 and 𝑥𝑖2 are the PC1 and PC2 scores, respectively, for genotype i; ℎ𝑗1 and ℎ𝑗2 are the PC1 and 312 

PC2 scores, respectively, for environment j; and eij is the residual of the model associated with 313 

genotype i in environment j.  314 

Correlation between variance in biomass yield across environments and variance in VIs 315 

across environments 316 

In order to have both the yield data and VIs in the same scale, z-score normalization was done by 317 

subtracting the mean (μ) from the distribution and by dividing with the standard deviation of the 318 

distribution (σ). The z-score normalization was done for each environment. Each environment 319 

was defined as a specific planting location and growth period. The correlation between the 320 
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variance in yield and the variance in VIs of each genotype across locations was calculated using 321 

Pearson’s correlation method for both NY and NM trials. 322 

Results 323 

 324 

Heritability of phenotypic indices and biomass yield 325 

For the Helfer trial, the minimum heritability of GNDVI, NDVI, NDRE, NIR and Ratio 326 

was 0, whereas the maximum heritability of GNDVI, NDVI, NDRE, NIR and Ratio was 0.92, 327 

0.84, 0.92, 0.88 and 0.85, respectively (Fig. 1). The maximum heritability value of GNDVI and 328 

NDRE was highest among all indices followed by NIR. The median value of heritability was 329 

highest for GNDVI, followed by NDRE, NDVI, NIR and Ratio, 0.64, 0.56, 0.45, 0.45 and 0.40, 330 

respectively (Fig. 1). For 2020, the heritability of biomass yield was highest for the first harvest 331 

(0.56) followed by the third harvest (0.32) and second harvest (0.31). For 2021, the heritability 332 

was highest for the third harvest (0.62) followed by the second harvest (0.57) and the first 333 

harvest (0.31). 334 

 335 

For the NMSU trial in 2021, the minimum and median heritability values of the 336 

phenotypic indices under NI were higher than those under SIT whereas the maximum heritability 337 

of the phenotypic indices were higher under SIT. Under the NI, GNDVI, NDVI, NDRE, NIR and 338 

Ratio had minimum heritability values of 0.1827, 0.1076, 0.1867, 0 and 0.1112, respectively. 339 

Maximum heritability values for NMSU, GNDVI, NDVI, NDRE, NIR and Ratio were 0.7122, 340 

0.7015, 0.6987, 0.662 and 0.6972, respectively; and median heritability values were 0.3967, 341 

0.3813, 0.3751, 0.3239 and 0.3019, respectively (Fig. 2(a)).  342 

 343 

Under SIT, GNDVI, NDVI, NDRE, NIR and Ratio had minimum heritability values of 344 

0.0357, 0.027, 0.0209, 0.028 and 0.0189 respectively. Maximum heritability values for GNDVI, 345 

NDVI, NDRE, NIR and Ratio were 0.7824, 0.7764, 0.7377, 0.6905 and 0.7047 respectively; and 346 

median heritability values were 0.11225, 0.1389, 0.1375, 0.2539 and 0.1343 respectively (Fig. 347 

2(b)). Under NI, the heritability of biomass yield was highest for seventh (0.40) followed by 348 

third (0.31) and fourth (0.29). Under SIT, the heritability of biomass yield was highest for sixth 349 

(0.79) followed by the third (0.196) harvest (Fig. 2(b)).  350 

 351 
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Phenotypic correlation of phenotypic indices and biomass yield 352 

For the Ithaca, NY trial, the last imaging of the crop growing season was taken 9, 3 and 4 353 

days before the first, second and third harvest of 2020, respectively, and 6, 3, and 3 days before 354 

first, second and third harvest of 2021, respectively. For both years the genetic correlation of all 355 

phenotypic indices with biomass yield was strongest for the second harvest followed by the third 356 

harvest and first harvest (Fig. 3(a), Fig. 3(b)).  357 

Among all phenotypic indices in 2020, the phenotypic correlation with biomass yield was 358 

strongest for NIR (0.57) followed by Ratio (0.56) and NDVI (0.56) for the first harvest; Ratio 359 

(0.81) followed by NDVI (0.78) and GNDVI (0.76) for the second harvest; and GNDVI (0.68) 360 

followed by NIR (0.65) and NDRE (0.64) for the third harvest (Fig. 3(a)). In 2021, the 361 

phenotypic correlation with biomass yield was strongest for Ratio (0.19), followed by GNDVI 362 

(0.18) and NDVI (0.15) for the first harvest; the phenotypic correlation with biomass yield was 363 

strongest for GNDVI (0.78) followed by NDRE (0.74) and NDVI (0.64) for the second harvest; 364 

the phenotypic correlation with biomass yield was highest strongest for NDRE (0.73) followed 365 

by GNDVI (0.61) and NDVI (0.58) for the third harvest (Fig. 3(b)). 366 

 367 

Genetic correlation between biomass yield and phenotypic indices at different 368 

imaging time points 369 

 370 

NY trial 371 

For the first harvest of 2020, biomass yield demonstrated the highest genetic correlations 372 

with NDVI (range: 0.90 – 0.99) and NIR (range: 0.93 – 0.99) whereas biomass yield had lowest 373 

correlation with Ratio (range: 0.69 - 0.96) (Fig. 4). For the second and third harvests of 2020, 374 

Ratio showed the highest genetic correlations with ranges of 0.94 - 0.99 and 0.69 - 0.99, 375 

respectively, while NDRE had the lowest genetic correlations ranging from 0.18 to 0.94 and 0.70 376 

to 0.98, respectively (Fig. 4). 377 

 378 

 For the first harvest of 2021, the genetic correlation of Ratio and NIR with the biomass 379 

yield was strongest ranging from 0.68 – 0.99 and 0.1 – 0.99 respectively.  The genetic correlation 380 

of NIR with biomass yield was lower than other phenotypic indices in early crop growth stage 381 

for the same harvest (Fig. 4). This pattern was only seen for one harvest out of six harvests. For 382 

the second and third harvest of 2021, the genetic correlation of NIR was strongest for second 383 
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harvest and third harvest ranging from 0.84 – 0.99 and 0.91 to 1 respectively whereas genetic 384 

correlation of NDVI and GNDVI had lowest genetic correlations for second and third harvest. 385 

The genetic correlation of second and third harvest of NDVI ranged from 0.08 to 0.94 and 0.72 386 

to 0.99 respectively for second and third harvest and the genetic correlation of second and third 387 

harvest of GNDVI ranged from 0.53 – 0.98 and 0.23 to 0.97 respectively (Fig. 4). 388 

 389 

NMSU trial 390 

 391 

Under NI, the genetic correlation of NDVI and Ratio at all imaging time points were 392 

highest for all harvests except for June 25 to Jul 22 regrowth cycle of 2021 (Fig. 5). The genetic 393 

correlation of NDVI ranged from 0.8 to 0.97 for May 28 to June 24 regrowth cycle , 0.72 to 0.97 394 

for June 25 to Jul 22 regrowth cycle, 0.78 to 0.96 for July 23 to August 27 regrowth cycle , 0.77 395 

to 0.97 for August 28 to September 29 regrowth cycle, 0.88 to 0.98 for September 30 to 396 

November 12 regrowth cycle and the genetic correlation of Ratio ranged from 0.69 to 0.95 for 397 

May 28 to June 24 regrowth cycle, 0.69 to 0.97 for June 25 to Jul 22 regrowth cycle, 0.69 to 0.94 398 

for July 23 to August 27 regrowth cycle, 0.69 to 0.96 for August 28 to September 399 

29 regrowth cycle, and 0.69 to 0.97 for September 30 to November 12 regrowth cycle (Fig. 5). 400 

 401 

Under SIT, NDVI and Ratio had highest genetic correlation with biomass yield compared 402 

to other phenotypic indices. Genetic correlations ranged from 0.84 to 0.97 for May 28 to June 403 

25 regrowth cycle, 0.91 to 0.97 for June 26 to Jul 22 regrowth cycle, 0.99 to 1 for July 23 to 404 

August 26 regrowth cycle and 0.69 to 0.99 for August 27 to November 11 regrowth cycle for 405 

NDVI and genetic correlation ranged from 0.69 to 0.95 for May 28 to June 25 regrowth cycle, 406 

0.69 to 0.91 for June 26 to Jul 22 regrowth cycle, 0.69 to 1 for July 23 to August 407 

26 regrowth cycle and 0.69 to 0.99 for August 27 to November 11 regrowth cycle for Ratio (Fig. 408 

6). 409 

 410 

Genetic correlation among phenotypic indices at different imaging time points 411 

Ithaca, NY trial 412 

The genetic correlation of phenotypic indices at different time points were evaluated 413 

running multi-trait models Supplemental Figure 1 (a) to (e)). The genetic correlation among NIR 414 

and Ratio at different time points were strongest compared to other indices (Supplemental Figure 415 
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1 (d), Supplemental Figure 1 (e)). The genetic correlation of Ratio at different time points were 416 

greater than 0.71 for all harvests of 2020 and 2021 except for the first harvest of 2021, where 417 

genetic correlations between the first time point and the last 14 time points ranged from 0.49 to 418 

0.67. The genetic correlations among NIR at different time points were greater than 0.65 for all 419 

harvests of 2020 and 2021 except for third harvest of 2020 and first harvest of 2021, where the 420 

genetic correlations ranged from -0.17 to 0.04 between first and last five imaging time points and 421 

0.04 to 0.05 between first and last 14 imaging time points. The genetic correlations of NDVI, 422 

GNDVI, and NDRE at different time points were in the range of 0.52 – 1, 0.2 -1, and 0.18 – 0.1, 423 

respectively, for all three harvests of 2020 and the third harvest of 2021. Genetic correlations 424 

were lower for first and second harvest of 2021 across all harvests (Supplemental Figure 1 (a) to 425 

(e)).  The genetic correlation of cumulative value of all the indices from second time point to 426 

other time points were 1 whereas the genetic correlation of cumulative value of all the indices of 427 

first time point with other time points were in the range of 0.9 – 0.99 (Supplemental Figure 2 (a) 428 

to (e)). 429 

 430 

NMSU trial 431 

 432 

Under NI, among all phenotypic indices, the genetic correlation of NDVI and Ratio at 433 

different time points were strongest (Supplemental Figure 3 (c), Supplemental Figure 3 (e)). The 434 

genetic correlation of Ratio at different time points ranged from 0.69-0.98, 0.69-0.97, 0.69-0.98, 435 

0.69-0.99, 0.69-0.98 for the May 28 to June 24 regrowth cycle, June 25 to Jul 22 regrowth cycle, 436 

July 23 to August 27 regrowth cycle, August 28 to September 29 regrowth cycle and September 437 

30 to November 12 regrowth cycle, respectively (Supplemental Figure 3 (e)). Similarly, the 438 

genetic correlation of NDVI at different time points ranged from 0.72 - 0.99, 0.74 – 0.97, 0.76 – 439 

0.98, 0.76 – 0.99 and 0.81 – 0.99 for the May 28 to June 24 regrowth cycle, June 25 to Jul 440 

22 regrowth cycle, July 23 to August 27 regrowth cycle, August 28 to September 441 

29 regrowth cycle and September 30 to November 12 regrowth cycle, respectively 442 

(Supplemental Figure 3 (c)). The genetic correlations of NIR, GNDVI, and NDRE at different 443 

time points were lowest compared to other indices (Supplemental Figure 3 (d), Supplemental 444 

Figure 3 (a), Supplemental Figure 3 (b)). The genetic correlation of the cumulative value of all 445 

the phenotypic indices of first time points with other time points were 0.99 and 1.0 for all other 446 

time points (Supplemental Figure 4 (a) to (e)). 447 
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 448 

Similarly, under SIT, the genetic correlation of Ratio and NDVI at different time points 449 

were strongest (Supplemental Figure 5 (a) to (e)). The genetic correlation of Ratio at different 450 

time points ranged from 0.69 – 0.98, 0.69 – 0.98, 0.69 – 1 and 0.69 – 0.99 for the May 28 to June 451 

25 regrowth cycle, June 26 to Jul 22 regrowth cycle, July 23 to August 26 regrowth cycle and 452 

August 27 to November 11 regrowth cycle, respectively (Supplemental Figure 5 (e)). Similarly, 453 

the genetic correlation of NDVI ranged from 0.54 – 0.97, 0.56 – 0.97, 0.79 – 1, 0.34 – 0.98 for 454 

the May 28 to June 25 regrowth cycle, June 26 to Jul 22 regrowth cycle, July 23 to August 455 

26 regrowth cycle and August 27 to November 11 regrowth cycle, respectively (Supplemental 456 

Figure 5 (a)). Among the other indices at different time points, the genetic correlation among 457 

GNDVI ranged from 0.59 – 0.97, 0.49 – 0.96, 0.58 – 1, 0.06 – 0.98 for the third, fourth, fifth and 458 

seventh harvest, respectively (Supplemental Figure 5 (a)), NDRE ranged from 0.71 – 0.98, 0.56 459 

– 0.97, 0.48 – 1, -0.09 – 0.97 for the May 28 to June 25 regrowth cycle, June 26 to Jul 460 

22 regrowth cycle, July 23 to August 26 regrowth cycle and August 27 to November 461 

11 regrowth cycle harvest, respectively (Supplemental Figure 5 (b)), and NIR ranged from 0.2 – 462 

0.95, 0.65 – 0.98, 0.12 – 1, and -0.05 – 0.98 respectively for May 28 to June 25 regrowth cycle, 463 

June 26 to Jul 22 regrowth cycle, July 23 to August 26 regrowth cycle and August 27 to 464 

November 11 regrowth cycle, respectively (Supplemental Figure 5 (d)). The genetic correlation 465 

of the cumulative value of all the phenotypic indices of first time points and other time points 466 

were 0.99 whereas for other time points were 1 (Supplemental Figure 6 (a) to (e)). 467 

 468 

Growth curve analysis using genetic merit calculated from Random Regression Model 469 

The temporal growth curves of all alfalfa genotypes were constructed using breeding 470 

values calculated using RRLP and different phenotypic indices as longitudinal phenotypic traits 471 

(Supplemental Figures 7, 8, 9). The high-resolution temporal growth curves of different alfalfa 472 

genotypes showed clear differences between high yielding and low yielding genotypes. Both raw 473 

values of phenotypic indices and their respective cumulative values were used to run RR model. 474 

Compared to the raw value, cumulative value of phenotypic indices gave better model fit and 475 

higher resolution of temporal growth curves (Supplemental Figure 7(f) to 7(j), Supplemental 476 

Figure 9(f) to 9(j)).  Using the raw value of phenotypic indices as the phenotypic trait, a larger 477 

spread in breeding values of the genotypes were observed in the early stages of growth, 478 
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indicating greater genetic variance captured by the proximal sensing phenotypes in early growth 479 

stages. 480 

 481 

GGE biplot analysis 482 

The GGE Biplots in Figs. 7 and 8, provide a “mean versus stability” graph of cultivar 483 

performance in NY and NMSU trials, respectively (Yan et al. 2007). The green single arrowed 484 

line, referred to as the “average environment axis”, provides an indication of the mean 485 

performance of cultivars, with the arrow pointing to a greater value according to their mean 486 

performance across all environments. The green line that is perpendicular to the average 487 

environment axis, provides an indication of stability in cultivar performance across 488 

environments. As such, cultivars with projections closer to the average environment axis 489 

exhibited more stable performance for harvested biomass across cuttings and years. An ideal 490 

cultivar would have a high mean performance, further along in the average environment axis in 491 

the direction indicated by the arrow, and would show stable performance with a projection near 492 

the average environment axis.  For the cultivars tested in NY (Fig. 7), the cultivars g1, g2, g10, 493 

g29, and g32 were relatively stable and high yielding, and g8 was relatively stable and low 494 

yielding. Cultivars g3, g13, g18, g22, g31 were relatively unstable and low yielding, and g4, g15, 495 

g20, g23 were relatively unstable and high yielding. A similar analysis was applied to the NMSU 496 

trial data (Fig. 8), identifying G13, G14 and G15 as stable and low yielding cultivars, and G25, 497 

G7 and G9 as relatively stable and high yielding cultivars. Results indicate that G24, G23 and 498 

G21 were relatively unstable and high yielding, and G2, G8, G15, G17 were relatively unstable 499 

and low yielding. 500 

 501 

Stability and plasticity analysis using a growth curve modeling approach. 502 

Among the most unstable and stable genotypes identified from GGE biplot analysis, five 503 

stable and five unstable cultivars were selected (Fig.7, Fig.8). To determine whether stability in 504 

biomass yield across cuttings was reflected in the plasticity of the plant growth, the growth 505 

curves of these most stable and unstable cultivars across different environments were plotted 506 

(Fig.9 - Fig.25). Results showed high variance in the growth curves of unstable cultivars across 507 

all cuttings when compared to the stable cultivars in the Ithaca, NY trial (Fig.9 - Fig.13). Similar, 508 

although less pronounced, results were observed for NMSU trial (Fig.14 - Fig.17). Among all 509 

phenotypic indices, the growth curves estimated using NDVI and Ratio at Ithaca, NY were found 510 
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to give clear separation in the stability and plasticity (Fig.10, Fig.13). Both the stable and 511 

unstable cultivars were found to be more stable in NI than SIT of NMSU (Fig.18 – Fig. 25), with 512 

differing growth patterns between the two irrigation treatments.  513 

 514 

Using GNDVI, NDVI and Ratio as the phenotypic trait, the variance of stable cultivars 515 

g1, g2, g6, g8, and g14 across all environments were less than the variance of unstable cultivars 516 

g3, g13, g21, g22, g35 (Fig. 9, 10, 13) in Ithaca, NY trial. There was more separation during 517 

early growth among the cultivars than at later timepoints. Similar results were observed for 518 

NMSU trial. The temporal growth curves derived from NDVI, NIR and Ratio were found to be 519 

the best discriminating the variance of genetic merit for stable and unstable cultivars across 520 

different harvests (Fig. 15, Fig. 16, Fig. 17).  521 

 522 

Stability and plasticity analysis across different irrigation conditions 523 

The growth trajectories of stable and unstable cultivars were compared separately across 524 

all cuttings of NI and SIT conditions (Fig. 18 to Fig. 25). The variance in growth curves of both 525 

stable cultivars derived from GNDVI, NDVI and Ratio were found to be higher in summer 526 

irrigation termination condition than in normal irrigation condition (Fig. 18, Fig. 20, Fig. 24). 527 

Similar results were observed for unstable cultivars (Fig. 19, Fig. 21, Fig. 25). 528 

 529 

Correlation of variance in yield and variance in genetic merit of phenotypic indices across 530 

different environments 531 

The variance in yield of all genotypes across different harvests was calculated for both 532 

NY and NMSU trials. Similarly, the variance in genetic merit of all genotypes for VIs at 533 

different time points across cuttings was calculated to determine if there was a relationship 534 

between variation in growth curves and variation in harvest biomass. The estimated correlation 535 

between the variance in yield and variance in genetic merit estimated from VIs at different time 536 

points showed a significant correlation in NY, with values ranging from 0.61 to 0.67, 0.63 to 537 

0.66, 0.60 to 0.71, 0.66 to 0.68, and 0.37 to 0.43 for NDVI, GNDVI, NDRE, NIR and Ratio 538 

respectively (Table 1). For trials in NM, the correlation between the variance in harvest biomass 539 

and the variance in genetic merit  540 
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estimated from growth curves of all genotypes at different time points across different harvests 541 

showed correlations that ranged from 0.19 to 0.35, 0.27 to 0.44, 0.16 to 0.36, 0.68 to 0.79 and 542 

0.91 to 0.93 for GNDVI, NDVI, NDRE, NIR and Ratio, respectively (Table 2). 543 

 544 

Discussion 545 

 546 

One of the objectives of this study was to evaluate the heritability of VIs derived from 547 

MSIs and their genetic correlation with the terminal trait biomass yield. Results of this study 548 

showed that the VIs have a moderate heritability (Fig 3, Fig 4) comparable to the heritability of 549 

harvest biomass. Lower heritability was attributed to poor days of imaging such as the days with 550 

cloudy and windy weather. Babar et al. (2007) reported moderate to high heritability of spectral 551 

reflectance indices (SRIs) and higher heritability than for grain yield in wheat. Petsoulas et al. 552 

(2022) reported moderate to high level of broad sense heritability where the heritability of NDRE 553 

ranged from 0.292 to 0.879 and heritability of NDVI ranged from 0.446 to 0.928 in sesame. In 554 

the same study, heritability of VIs were reported to be increased with growth stages and started 555 

to reduce entering the ripening stage of sesame whereas Anche et al. (2020) reported lower 556 

heritability of VIs in early reproductive stage and higher heritability estimates at mid-557 

reproductive stage and late reproductive stage of maize. Another study from (Galán et al. 2020), 558 

showed moderate to high heritability estimates (H2 > 0.50) of 23 VIs in winter rye hybrids 559 

estimated from hyperspectral reflectance data. Sun et al. (2017) reported that the heritability of 560 

NDVI and NDRE ranged from moderate to high across different locations of wheat trial. Sharma 561 

et al. (2022) reported consistently higher heritability of VARI and NDVI across growth phases 562 

and locations where NDVI and VARI had higher heritability than dry biomass yield. In our 563 

study, among all five VIs, GNDVI had highest value of maximum and median heritability. 564 

GNDVI measures reflection in near infra-red region and green region of the electromagnetic 565 

spectrum (Gitelson et al. 1996). GNDVI provides information about chlorophyll A concentration 566 

in plants. The higher heritability of GNDVI might be due to the high biomass of the crop. 567 

Sandhu et al. (2021) reported GNDVI as the best predictor of grain protein content of wheat. 568 

Previous studies (Hassan et al. 2019; Yang et al. 2020) also reported GNDVI and NDRE as the 569 

best predictor of grain yield and nutrient uptake efficiencies across the growth stages.  570 

 571 
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Multi-trait models were fit to evaluate the correlation between VIs at different time points 572 

and harvest biomass yield. The genetic correlations of all five VIs and the biomass yield was 573 

found to be strong and statistically significant for all harvests and years. Among five VIs, NIR, 574 

NDVI and Ratio had the strongest genetic correlations with biomass. Natarajan et al. (2019) 575 

reported a strong correlation between NDVI and sugarcane stalk population and sugarcane yield 576 

suggesting that canopy reflectance measurements at an early stage could be used as a screening 577 

tool to estimate yield potential. Another study by Prabhakara et al. (2015) used NDVI for 578 

prediction of biomass percentage of ground cover in winter forage crops. Other studies have also 579 

reported significant association between NDVI and both biomass and GY in irrigated or high-580 

rainfall conditions (Reynolds et al. 1999; Aparicio et al. 2000; Freeman et al. 2003; Gutiérrez-581 

Rodríguez et al. 2004; Babar et al. 2006a; Prasad et al. 2007b; Erdle et al. 2013; Christopher et 582 

al. 2014) drought stress (Gutiérrez-Rodríguez et al. 2004; Babar et al. 2006b; Reynolds et al.) 583 

and heat stress environments (Reynolds et al. ; Gutierrez et al. 2010; Hazratkulova et al. 2012; 584 

Lopes and Reynolds 2012). NDVI was also reported to predict grain yield in soybean (Ma et al. 585 

2001), winter wheat (Raun et al. 2001), and durum wheat (Aparicio et al. 2000). The VIs NDVI, 586 

GNDVI, SAVI, G-R were reported to be accurate for estimating biomass at an early stage 587 

(Prabhakara et al. 2015) and they were saturated at later stages (Mutanga and Skidmore 2004; 588 

Thenkabail et al. 2000). Chen et al. (2009) reported TVI (Triangular Vegetative Index) as useful 589 

index for predicting canopy biomass at later stage. NDVI and SR are based on the red (visible) 590 

and NIR wavelengths and give higher values at early growth stages, but their values decrease 591 

with the advancement in growth cycle because plants are losing photosynthetically active plant 592 

parts. Serrano et al. (2000) reported that simple ratio (SR) can reliably predict winter wheat grain 593 

yield under nitrogen stresses. Among the three spectral indices, simple ratio (SR), normalized 594 

difference vegetation index (NDVI), and photochemical reflectance index (PRI),  SR was 595 

identified as the best index for assessment of crop growth and yield in durum wheat (Aparicio et 596 

al., 2000). Another study by Gutierrez et al. (2004) found the strongest correlation of SR and 597 

NIR with cotton lint yield showing 60% and 58% of variations in cotton lint yield respectively. 598 

In the same study, SR and NIR had higher coefficients of determination in cotton biomass and 599 

leaf area index (LAI) compared to NDVI as these indices were not saturated at late growth stage 600 

whereas (Aparicio et al. 2000; Aparicio et al. 2002) reported that NDVI and SR were not able to 601 

predict variations in biomass successfully when estimated at later growth stages of durum wheat. 602 
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Hence, the use of multiple indices is recommended to get better predictions of biomass yield as 603 

different types of VIs are sensitive to different stages of crop growth and amount of biomass. 604 

The high heritability and strong genetic correlation between VIs and biomass yield of alfalfa in 605 

our study suggest that VIs can be used as a selection tool and help plant breeders to reliably 606 

evaluate cultivars in a fast and nondestructive (Lobos et al. 2019; El-Hendawy et al. 2019; 607 

Prasad et al. 2007a; Babar et al. 2007; Gutierrez et al. 2010).  608 

 609 

RR models with third order Legendre polynomials provided the best fit and were used to 610 

model the growth curve trajectories using VIs as phenotypes. Estimate RR coefficients were used 611 

to obtain breeding values (BVs) for all time points between the first day of imaging and harvest. 612 

Sun et al (2017) used RR model with cubic splines in wheat (Triticum aestivum) to obtain best 613 

linear unbiased predictions of secondary traits derived from high-throughput hyperspectral and 614 

thermal imaging. RR model with a linear spline was also reported as a potential alternative 615 

approach to mixed model to fit the VIs from multiple time points (Anche et al. 2020), but 616 

Legendre polynomials were found to provide a better fit to maize data in subsequent analyses 617 

(Anche et al. 2023). When cumulative indices were used as phenotypes, the correlation was 618 

found to increase through time (Fig 3-6). This could be because cumulative indices accounts for 619 

earlier season VI data, and therefore becomes more informative than raw data on predicting 620 

biomass yield of the growing season. Similar results were reported in maize (Anche et al. 2023), 621 

concluding that cumulative VIs were better phenotype to model the covariance structures as they 622 

provided more stable and consistent results compared to using raw VIs as a phenotype. 623 

 624 

 In our study, we observed a decreasing trend in the variance components over time for 625 

each harvest. Higher genetic variation was observed in the breeding values of VIs in early 626 

growth stages compared to later stages as cultivars reached full canopy cover. In alfalfa stands, 627 

allowing the crop to reach maximum vegetation saturation before flowering is the ideal balance 628 

to develop maximum biomass while also maintaining nutritional quality. A declining ability of 629 

spectral indices to discriminate different genotypes was reported in other crops as the canopy 630 

closes and its spectral reflectance saturated (Marti et al. 2007). In this study, all VIs showed 631 

strong correlations with biomass yield across all time points, and the growth trajectories could 632 
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separate high yielding and low yielding genotypes rapidly and efficiently starting in the early 633 

stage of growth season.  634 

 635 

The moderate heritability and moderate to strong genetic correlations with harvest 636 

biomass observed in NY and NM trials, indicate that VIs collected via UAV can be used to 637 

model temporal genetic variation associated with harvest biomass yield. RR models provided a 638 

parsimonious approach to estimate temporal covariance functions and assess cultivar persistence 639 

and stability, which can be affected by biotic and abiotic effects of the environment. The RR 640 

model depicted dynamic aspects of phenotypes, which can enable better analysis cultivar 641 

plasticity, adaptability, stability and yield performance (Alves et al. 2020) across a range of 642 

dynamic environmental conditions through growth periods. As such, information on growth 643 

curves can provide additional information for selecting lines that are best adapted to the target 644 

environments. 645 

 646 

The growth trajectories of stable genotypes and unstable genotypes in NI and SIT 647 

termination of NMSU trial showed more instability in growth curves in SIT than NI (Figs 18 to 648 

25). This is likely due to higher genetic variance among different cultivars in stressed 649 

environment compared to normal condition and indicates that growth parameters may provide 650 

additional information on stress tolerance. The observed correspondence in plasticity of growth 651 

curves and stability in biomass harvest demonstrate the potential to model GxE temporally 652 

throughout the growth period as a function of dynamic environmental variables. Esten et al. 653 

(2018) reported stronger correlation of NDVI and GY (r = 0.25 – 0.54) and NDVI and biomass (r 654 

= 0.17 – 0.46) in lowest yielding sites-years. In the same study, NDVI was reported to have 655 

greater ability to detect biomass differences between lines in low-yielding environments, where 656 

canopy closure was not present. Similar results were previously presented where stronger 657 

correlations of NDVI and grain yield was observed under abiotic stress compared with high-658 

yielding environments (Gutiérrez-Rodríguez et al. 2004; Gutierrez et al. 2010; Lopes and 659 

Reynolds 2012).  660 

 661 
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Conclusion 662 

The use of multi-spectral imaging for alfalfa over the growing seasons in NY and NMSU 663 

demonstrated that VIs are heritable and that genetic correlations were significant for most time 664 

points and years. The measurement of cumulative NDVI showed that correlations of NDVI to 665 

biomass increased over time closer to harvest/cutting date. Strong correlations of NDVI to 666 

biomass harvest increase the possibility of using MSI to reduce the amount of biomass harvest 667 

phenotyping needed, potentially reducing phenotyping costs. The use of random regressions and 668 

Legendre polynomials demonstrated that longitudinal modeling of VIs can capture genetic 669 

variation, and stability in growth curves across cuttings was associated with stability in harvest 670 

biomass over harvests, years, locations and irrigation treatments. These results indicate that 671 

random regressions of VIs captures throughout a growth period can provide a greater dynamic 672 

understanding of aspects of phenotypic plasticity, stability and yield performance for crop 673 

improvement.  674 
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 899 

Fig 1. Heritability of Phenotypic indices in the Ithaca, NY trial. 900 

 901 

Fig 2. Heritability of Phenotypic indices in (a) Normal Irrigation (NMSU trial), (b) Summer 902 

termination (NMSU trial) 903 

 904 

Fig 3. Phenotypic correlation of different phenotypic indices with biomass yield (a) Harvest year 905 

2020 and (b) Harvest year 2021 906 

 907 

Fig 4. Genetic correlation of different phenotypic indices with harvest biomass yield for Ithaca, 908 

NY trial (“Helfer” field). X-axis represents Growing degree days (GDD) and Y-axis represents 909 

genetic correlation.  910 

 911 

Fig 5. Genetic correlation of different phenotypic indices with final harvest biomass yield under 912 

normal irrigation condition of NMSU trial. X-axis represents Growing degree days (GDD) and 913 

Y-axis represents genetic correlation.  914 

 915 

Fig 6. Genetic correlation of different phenotypic indices with final harvest biomass yield under 916 

summer irrigation termination condition of NMSU trial. X-axis represents Growing degree days 917 

(GDD) and Y-axis represents genetic correlation.  918 

Fig. 7. The “mean vs. stability” view of the genotype main effects plus genotype environment 919 

interaction (GGE) biplot based on genotype environment yield data of 36 alfalfa genotypes 920 

evaluated in six environments (First, Second and Third Harvest of 2020, and First, Second and 921 

Third Harvest of 2021) of Helfer field in Ithaca, NY. 922 

Fig. 8. The “mean vs. stability” view of the genotype main effects plus genotype environment 923 

interaction (GGE) biplot based on genotype environment yield data of 24 alfalfa genotypes and 924 

one covariate (G4) evaluated in nine environments - NIcut3, NIcut4, NIcut5, NIcut6, and NIcut7 925 

of normal irrigation and SITcut3, SITcut4, SITcut5 and SITcut7 of summer irrigation 926 

termination of NMSU. 927 
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Fig. 9. Growth curves derived from GNDVI of five stable and five unstable alfalfa cultivars 928 

across five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis 929 

indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using 930 

Random Regression model with third order of Legendre polynomials. 931 

 932 

Fig. 10. Growth curves derived from NDVI of five stable and five unstable alfalfa cultivars  933 

across five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis 934 

indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using 935 

Random Regression model with third order of Legendre polynomials. 936 

 937 

Fig. 11. Growth curves derived from NDRE of five stable and five unstable alfalfa cultivars  938 

across five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis 939 

indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using 940 

Random Regression model with third order of Legendre polynomials. 941 

 942 

Fig. 12. Growth curves derived from NIR of five stable and five unstable alfalfa cultivars across 943 

five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis indicates 944 

Growing degree days (GDD) and Y-axis indicates breeding values estimated using Random 945 

Regression model with third order of Legendre polynomials. 946 

 947 

Fig. 13. Growth curves derived from Ratio of five stable and five unstable alfalfa cultivars across 948 

five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis indicates 949 

Growing degree days (GDD) and Y-axis indicates breeding values estimated using Random 950 

Regression model with third order of Legendre polynomials. 951 

 952 

Fig. 14. Growth curves derived from GNDVI of five stable and five unstable alfalfa cultivars 953 

across nine different harvest seasons of the NMSU trial. X-axis indicates Growing degree days 954 

(GDD) and Y-axis indicates breeding values estimated using Random Regression model with 955 

third order of Legendre polynomials. 956 

 957 

Fig. 15. Growth curves derived from NDVI of five stable and five unstable alfalfa cultivars 958 

across nine different harvest seasons of the NMSU trial. X-axis indicates Growing degree days 959 

(GDD) and Y-axis indicates breeding values estimated using Random Regression model with 960 

third order of Legendre polynomials. 961 

 962 

Fig. 16. Growth curves derived from NIR of five stable and five unstable alfalfa cultivars across 963 

nine different harvest seasons of the NMSU trial. X-axis indicates Growing degree days (GDD) 964 

and Y-axis indicates breeding values estimated using Random Regression model with third order 965 

of Legendre polynomials. 966 

 967 

Fig. 17. Growth curves derived from Ratio during the growing season of five stable and five 968 

unstable alfalfa cultivars across nine different harvest seasons of the NMSU trial. X-axis 969 

indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using 970 

Random Regression model with third order of Legendre polynomials. 971 

 972 
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Fig. 18. Growth curves derived from GNDVI of five stable alfalfa cultivars across five different 973 

harvest seasons of normal irrigation and four different harvest seasons of early termination.  974 

The left-hand side figures and right-hand side figures represents growth curves of stable cultivars 975 

in normal irrigation condition (NI) and summer irrigation termination condition (SIT) 976 

respectively. 977 

 978 

Fig. 19. Growth curves derived from GNDVI of five unstable alfalfa cultivars across five 979 

different harvest seasons of normal irrigation and four different harvest seasons of early 980 

termination. The left-hand side figures and right-hand side figures represents growth curves of 981 

stable cultivars in normal irrigation condition (NI) and summer irrigation termination condition 982 

(SIT) respectively. 983 

 984 

Fig. 20. Growth curves derived from NDVI of five stable alfalfa cultivars across five different 985 

harvest seasons of normal irrigation and four different harvest seasons of early termination. The 986 

left-hand side figures and right-hand side figures represents growth curves of stable cultivars in 987 

normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively. 988 

Fig. 21. Growth curves derived from NDVI of five unstable alfalfa cultivars across five different 989 

harvest seasons of normal irrigation and four different harvest seasons of early termination. The 990 

left-hand side figures and right-hand side figures represents growth curves of stable cultivars in 991 

normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively. 992 

 993 

Fig. 22. Growth curves derived from NIR of five stable alfalfa cultivars across five different 994 

harvest seasons of normal irrigation and four different harvest seasons of early termination. The 995 

left-hand side figures and right-hand side figures represents growth curves of stable cultivars in 996 

normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively. 997 

 998 

Fig. 23. Growth curves derived from NIR of five unstable alfalfa cultivars across five different 999 

harvest seasons of normal irrigation and four different harvest seasons of early termination. The 1000 

left-hand side figures and right-hand side figures represents growth curves of stable cultivars in 1001 

normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively. 1002 

 1003 

Fig. 24. Growth curves derived from Ratio of five stable alfalfa cultivars across five different 1004 

harvest seasons of normal irrigation and four different harvest seasons of early termination. The 1005 

left-hand side figures and right-hand side figures represents growth curves of stable cultivars in 1006 

normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively. 1007 

 1008 

Fig. 25. Growth curves derived from Ratio of five unstable alfalfa cultivars across five different 1009 

harvest seasons of normal irrigation and four different harvest seasons of early termination. The 1010 

left-hand side figures and right-hand side figures represents growth curves of stable cultivars in 1011 

normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively. 1012 

 1013 
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Table 1. Correlation of variance of yield and variance of genetic merit estimated from random 

regression legendre polynomial (RRLP) model with VIs (GNDVI, NDVI, NDRE, NIR, and Ratio) of 

all cultivars across different environments of the Ithaca, NY trial at different time points of growing 

season. 

 

Growing Degree Days 

(GDD) GNDVI NDVI NDRE NIR Ratio 

178.55 0.65* 0.67* 0.6* 0.68* 0.43* 

218.55 0.64* 0.67* 0.61* 0.68* 0.43* 

258.55 0.64* 0.67* 0.62* 0.68* 0.42* 

298.55 0.63* 0.67* 0.64* 0.67* 0.42* 

338.55 0.64* 0.65* 0.63* 0.66* 0.37 

358.55 0.64* 0.65* 0.66* 0.66* 0.42* 

378.55 0.65* 0.65* 0.67* 0.66* 0.42* 

418.55 0.66* 0.63* 0.69* 0.65* 0.42* 

438.55 0.66* 0.62* 0.69* 0.65* 0.42* 

478.55 0.65* 0.61* 0.71* 0.66* 0.42* 

* indicates P-value < 0.05 
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Table 2. Correlation of variance of yield and variance of genetic merit estimated from random 

regression legendre polynomial (RRLP) model with VIs (GNDVI, NDVI, NDRE, NIR, and Ratio) of 

all cultivars across different environments of the NMSU trial at different time points of growing season 

 

Growing Degree Days 

(GDD) GNDVI NDVI NDRE NIR Ratio 

342 0.19 0.27 0.16 0.68* 0.91* 

402 0.2 0.28 0.18 0.69* 0.91* 

462 0.22 0.3 0.2 0.7* 0.91* 

522 0.24 0.33* 0.22 0.72* 0.92* 

582 0.26 0.35* 0.25 0.73* 0.92* 

642 0.29 0.38* 0.28 0.75* 0.92* 

702 0.31* 0.4* 0.31 0.76* 0.92* 

762 0.33* 0.42* 0.34* 0.77* 0.93* 

822 0.35* 0.42* 0.35* 0.78* 0.93* 

902 0.35* 0.44* 0.36* 0.79* 0.93* 

* indicates P-value < 0.05 
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