

1 Remote sensing for estimating genetic parameters of biomass accumulation and modeling 2 stability of growth curves in alfalfa.

3 **Authors:** Ranjita Thapa, Karl H. Kunze, Julie Hansen, Christopher Pierce, Virginia Moore, Ian
4 Ray, Liam Wickes-Do, Nicolas Morales, Felipe Sabadin, Nicholas Santantonio, Michael A Gore,
5 Kelly Robbins

6

7 **Affiliations:** Ranjita Thapa, Karl H. Kunze, Julie Hansen, Virginia Moore, Liam Wickes-Do,
8 Nicolas Morales, Michael A Gore, Kelly Robbins, Plant Breeding and Genetics Section, School
9 of Integrate Plant Science, Cornell University, Ithaca, NY 14853, USA; Christopher Pierce, Ian
10 Ray, Plant and Environmental Sciences, New Mexico State University; Felipe Sabadin, Nicholas
11 Santantonio, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and
12 State University, Blacksburg, Virginia

13 **Corresponding Author Address:** Kelly Robbins krr75@cornell.edu , 240 Emerson Hall, Ithaca
14 NY 14853

15 Abbreviations:

16 ATC: average tester co-ordination; RCBD: randomized complete block design; BLUE: best
17 linear unbiased estimators; FY: Forage yield; GDD: growing degree days; GGE: genotype main
18 effects and genotype by environment; GNDVI: green normalized difference vegetation index;
19 GxE: genotype by environment; HTP: high-throughput phenotyping; MSI: multispectral
20 imaging; NDRE: normalized difference red edge index; NDVI: normalized difference vegetation
21 index; OSAVI: optimized soil adjusted vegetation index; NIR: near infrared; NMSU: New
22 Mexico State University; RR: random regression; RRLP: random regression Legendre
23 polynomial; SCCCI: simplified canopy chlorophyll content index; ST-GBLUP: single trait
24 genomic linear unbiased prediction; VARI: visible atmospherically resistant index; VI:
25 vegetative index; CVI: cumulative vegetative index;
26 UAV: unmanned aerial vehicle

27 **Abstract**

28 Multi-spectral imaging (MSI) collection by unoccupied aerial vehicles (UAV) is an
29 important tool to measure growth of forage crops. Information from estimated growth curves can
30 be used to infer harvest biomass and to gain insights in the relationship of growth dynamics and
31

32 harvest biomass stability across cuttings and years. In this study, we used MSI to evaluate
33 Alfalfa (*Medicago sativa* L. subsp. *sativa*) to understand the longitudinal relationship between
34 vegetative indices (VIs) and forage/biomass, as well as evaluation of irrigation treatments and
35 genotype by environment interactions (GEI) of different alfalfa cultivars. Alfalfa is a widely
36 cultivated perennial forage crop grown for high yield, nutritious forage quality for feed rations,
37 tolerance to abiotic stress, and nitrogen fixation properties in crop rotations. The direct
38 relationship between biomass and VIs such as Normalized difference vegetation index (NDVI),
39 green normalized difference vegetation index (GNDVI), red edge normalized difference
40 vegetation index (NDRE), and Near infrared (NIR) provide a non-destructive and high
41 throughput approach to measure biomass accumulation over subsequent alfalfa harvests. In this
42 study, we aimed to estimate the genetic parameters of alfalfa VIs and utilize longitudinal
43 modeling of VIs over growing seasons to identify potential relationships between stability in
44 growth parameters and cultivar stability for alfalfa biomass yield across cuttings and years. We
45 found VIs of GNDVI, NDRE, NDVI, NIR and simple ratios to be moderately heritable with
46 median values for the field trial in Ithaca, NY to be 0.64, 0.56, 0.45, 0.45 and 0.40 respectively,
47 Normal Irrigation (NI) trial in Leyendecker, NM to be 0.3967, 0.3813, 0.3751, 0.3239 and
48 0.3019 respectively, and Summer Irrigation Termination (SIT) trial in Leyendecker, NM to be
49 of 0.11225, 0.1389, 0.1375, 0.2539 and 0.1343, respectively. Genetic correlations between
50 NDVI and harvest biomass ranged from 0.52 - .99 in 2020 and 0.08 - .99 in 2021 in the NY trial.
51 Genetic correlations for NI trial in NM for NDVI ranged from 0.72 - .98 in 2021 and SIT ranged
52 from 0.34- 1.0 in 2021. Genotype by genotype by interaction (GGE) biplots were used to
53 differentiate between stable and unstable cultivars for locations NY and NM, and Random
54 regression modeling approaches were used to estimate growth parameters for each cutting.
55 Results showed high correspondence between stability in growth parameters and stability, or
56 persistency, in harvest biomass across cuttings and years. In NM, the SIT trial showed more
57 variation in growth curves due to stress conditions. The temporal growth curves derived from
58 NDVI, NIR and Simple ratio were found to be the best phenotypic indices on studying the
59 stability of growth parameters across different harvests. The strong correlation between VIs and
60 biomass present opportunities for more efficient screening of cultivars, and the correlation
61 between estimated growth parameters and harvest biomass suggest longitudinal modeling of VIs
62 can provide insights into temporal factors influencing cultivar stability.

63

64 **Introduction**

65 Alfalfa (*Medicago sativa* L. subsp. *sativa*) is one of the most widely cultivated perennial
66 forage crops in the world with many desirable attributes such as high-yield capacity, good forage
67 quality, tolerance to abiotic stresses, and ability to fix nitrogen and nutrient cycling
68 (Annicchiarico et al. 2015; Hill et al. 1988). In the U.S. alfalfa is the fourth most widely grown
69 crop with an estimated annual value of 11.7 billion dollars (USDA/ARS 2020). Alfalfa is
70 allogamous and autotetraploid ($2n = 4x = 32$) and its cultivars are synthetic populations
71 consisting of heterozygous plants (Annicchiarico and Pecetti 2021). The genetic gain in alfalfa
72 has approached stagnation in the past few decades due to several factors including the perennial
73 nature of the crop (long breeding cycles), multiple harvests per year, inability to make gain in
74 harvest index due to harvesting of the entire crop, the high cost of phenotyping, tetrasomic
75 inheritance, high genotype by environment interaction (G×E), and high levels of non-additive
76 variance (Annicchiarico et al. 2015; Acharya et al. 2020). The narrow-sense heritability (h^2) of
77 biomass yield of alfalfa is as low as 0.20 – 0.30 (Annicchiarico 2015; Acharya et al. 2020; Riday
78 and Brummer 2005) demanding extensive replications for phenotypic evaluation which further
79 limits the size of breeding materials to be evaluated, ultimately leading to low selection
80 efficiency. However, the ability to screen more materials will lead to higher effective selection
81 intensities leading to improved response to selection.

82 In recent years, the advancement in high-throughput phenotyping systems, including
83 multi-spectral imaging (MSI) platforms, have enabled the collection of high dimensional
84 phenotypic data from large experiments and breeding trials. MSI provides an effective and non-
85 destructive approach to evaluate the crop growth parameters throughout the crop growing
86 season. A number of reflectance vegetation indices can be derived from spectral reflectance
87 which have been efficiently used for large scale phenotyping and dynamic estimation of biomass
88 greenness, nitrogen content, pigment composition, photosynthesis status and water content
89 (Claudio et al. 2006; Mistele and Schmidhalter 2008; Schlemmer et al. 2005). MSI consists of a
90 set of images acquired at narrow wavelength bands including both visible and near infrared
91 (NIR) regions of the electromagnetic spectrum (Blasco et al. 2007; Chen et al. 2002). The
92 Normalized Difference Vegetation Index (NDVI), estimated by considering the difference NIR
93 and red wavelengths, is widely used to quantify biomass production. The green Normalized

94 Difference Vegetation Index (GNDVI) is estimated by measuring the difference between NIR
95 and green wavelengths and is used to measure photosynthetic activity. Other vegetation indices
96 such as Normalized Difference Red-Edge (NDRE), Optimized Soil Adjusted Vegetation Index
97 (OSAVI), Simplified Canopy Chlorophyll Content Index (SCCCI), and Visible Atmospherically
98 Resistant Index (VARI_{green}), have been used to predict grain yield but their use has been limited
99 on quantification of crop biomass. Santana et al. (2021) evaluated the relationship between
100 vegetation indices (VI)s obtained from multispectral imagery and leaf N content and yield-
101 related traits in maize cultivars grown in different N levels, and found a positive relationship
102 between NDVI, NDRE and grain yield under adequate N levels. Da Silva et al. (2020) evaluated
103 the relationship between different VIs and soybean grain yield and verified a direct positive
104 effect of NDVI and SAVI on grain yield of soybean. However, there are limited studies
105 conducted on the relationship between different VIs and biomass yield of alfalfa crops, so further
106 studies assessing the relationship between VIs and crop forage/biomass yield are needed.
107 Identifying the cause-and-effect relationship between spectral and biomass yield provides an
108 efficient phenotyping process in breeding programs. Genotypes with better spectral variables can
109 be selected to achieve an efficient selection for biomass yield.

110 The use of MSI data could also be leveraged for monitoring crop growth over the
111 growing season. Extensions of crop growth models have been proposed to incorporate functional
112 relationships between the environmental variables and the phenotypic traits influencing yield and
113 agronomic performance of elite breeding lines (Chapman et al. 2002; Chapman et al. 2003;
114 Messina et al. 2015; Hammer et al. 2002; Chenu et al. 2009), and recent advancements in MSI
115 have increased the scalability of collecting non-destructive phenotypes on a large number of
116 experimental plots throughout the crop growth cycle. Collection of phenotypic data from
117 multiple time points allows the monitoring of crop growth and development and hence, can
118 increase the understanding of dynamic interactions of crop and environment.

119 The study of genotype by environment (G×E) interaction is one of the most important
120 areas in plant breeding whereby breeders try to understand the stability and plasticity of the
121 genotypes across different environments. In a perennial crop like alfalfa, the concept of
122 persistence, or consistent performance across seasons in the same location, is a key trait for elite
123 cultivar performance. While it may be viewed as a distinct concept from GxE, many of the same

124 factors driving GxE are likely to play a role in persistence. For the purposes of this study we will
125 use the terms stability, and instability, to encompass the concepts of GxE and persistence in
126 harvest biomass yield. The traditional approach to study GxE and persistence relies on terminal
127 traits such as harvest biomass yield, which lack the temporal resolution to study the driving
128 factors leading to inconsistent performance across cuttings and growing seasons. In such
129 scenarios, images taken throughout the production years of a stand can enable the longitudinal
130 evaluation of a large number of breeding materials, providing insights into growth characteristics
131 leading to the stability or instability of cultivar performance under differing conditions.
132 Important growth parameters could be evaluated by studying the changes in (co)variance
133 between adjacent time points and end-of-season traits. Quantitative genetic models can be built
134 to accurately predict forage yields from MSI, especially given that the harvested product is
135 imaged directly. However, the challenge lies on fitting parsimonious models that can accurately
136 model the changes in covariance parameters across the growing season.

137 The phenotypic indices from high-throughput phenotyping (HTP) platforms are measured
138 at multiple time points throughout the crop growing season and hence, are considered as
139 longitudinal data. Repeatability models, multi-trait models, and random regression (RR) models
140 are used to fit such longitudinal data. Repeatability models assume constant variance and
141 correlation between measurements dates, which may not be true for longitudinal data collected at
142 different time points throughout the crop growth cycle (Meyer and Hill 1997). In the case of
143 multi-trait models, phenotypic traits measured at different time points are considered as distinct
144 response variables for each cultivar. The number of parameters required to be estimated is
145 directly related to number of time points. Hence, a strong correlation between consecutive
146 measurements, large (co)variance matrix structure between measurements at different time
147 points, and computational requirements restrict the application of a multi-trait model (MT)
148 model (Speidel 2011; Anche et al. 2020). However, the RR model requires fewer parameters
149 than MT models, can capture the change of a trait throughout the growth season, and does not
150 require the assumption of constant variances and correlations between measurement time points
151 (Meyer, 2020). RR models enable fitting of genetic and environmental effects over time
152 (Schaeffer 2004), and hence results in higher accuracy of breeding values (BVs) compared to
153 other statistical models. RR model also provide additional insights on temporal variation of

154 biological and physiological processes underlying the trait of interest (Strucken et al. 2015) and
155 these models have been widely used in different area of research including G×E (Calus and
156 Veerkamp 2003; Oliveira et al. 2018). RR models commonly uses splines or Legendre
157 polynomials to model the (co)variance of measurements at or between each time points. The
158 objectives of this study were to (1) identify predictive image features for modeling growth and
159 development curves for alfalfa.; (2) determine the heritability and genetic variation for image
160 features collected throughout the growing season and (3) estimate the relationship between
161 observed stability for development/growth parameters and stability for alfalfa biomass yield.

162 **Materials and Methods**

163 **Experimental materials and biomass phenotyping**

164 In this study, we analyzed the data from two experimental locations, (1) Cornell
165 University Agricultural Research Experiment Station in Ithaca, NY, and (2) the Leyendecker
166 Plant Science Research Center of New Mexico State University (NMSU) located near Las
167 Cruces, New Mexico. A total of 36 cultivars were evaluated in the NY trial, representing both
168 publicly released cultivars and breeding populations including ‘Guardsman II’(Viands et al.,
169 2005), ‘Regen’ (Viands et al., 2007), ‘Algonquin’ (Baenziger, 1975),’Oneida VR’ (Viands et al.,
170 1990), ‘Oneida Ultra’ (Viands et al., 2004), and ‘Ezra’ (Viands et al., 2012). Entries were
171 planted on June 12, 2019, in a replicated trial with five replications in a randomized complete
172 block design (RCBD). Plots were 6 rows of alfalfa that were 1 m by 4 m and the space between
173 adjacent plots was 0.3 m. Forage yield was measured using a plot flail harvester, and dry matter
174 yield for each plot was calculated from fresh forage weight and dry matter content samples.
175 Forage yield (FY) was collected on June 5, July 9, and August 26 of 2020 and June 16, July 26,
176 and September 13 of 2021.

177 A total of 24 cultivars and breeding populations with one covariate cultivar were planted
178 in the NMSU trial on September 27, 2019. The experiment was conducted under two irrigation
179 treatment conditions including normal irrigation (NI) and summer irrigation termination (SIT).
180 The NI treatment received flood irrigations approximately every 14 days from March through
181 late October. The SIT treatment only received flood irrigations from March through June and
182 again from late September through October. Both treatment fields were planted as RCBDs with
183 each having four replications. All experimental plots were located adjacent to a covariate plot of

184 the cultivar, 'NuMex Bill Melton' (Ray et al., 2012). Each plot was comprised of three rows of
185 alfalfa, 3.35 m in length, with 30 cm spacing between rows within a plot, and 60 cm spacings
186 between neighboring plots and alfalfa borders. Forage biomass was harvested in 2020 with six
187 and three harvests occurring in the NI and SIT treatments, respectively. In 2021, forage biomass
188 was harvested seven times in the NI treatment and six times in the SIT treatment fields. All
189 forage biomass was harvested using a Carter flail harvester to collect fresh plot weights.
190 Subsamples of fresh chop forage were collected, weighed, and dried down to establish dry matter
191 weights.

192 **Aerial phenotyping**

193 **NY trial**

194 Aerial phenotyping for the NY trial commenced on April 6, 2020 in Ithaca, NY. A total
195 of 56 flights were conducted throughout the crop growth season. A total of 7, 6, and 7 flights
196 were flown before the first harvest (2020cut1), second harvest (2020cut2) and third harvest in
197 2020 (2020cut3) and a total of 22, 8, and 6 flights were flown before the first harvest (2021cut1),
198 second harvest (2021cut1) and third harvest of 2021 (2021cut1). Four ground control points
199 positioned at the four corners of the trial were measured with a Trimble RTK-GPS, which was
200 used to geo-locate plots. A DJI Matrice 600 Pro unmanned aerial vehicle (UAV) equipped with a
201 Micasense Rededge-MX multi-spectral camera was used for all flights. A flight plan was
202 designed to obtain an 80% overlap in images collected at a flight speed of 2 m/s and an altitude
203 of 20 m. Flights were conducted within 2 hours of solar noon on clear days when possible.

204 **NMSU trial**

205 Due to UAV equipment unavailability in 2020 and early 2021, aerial phenotyping
206 commenced on June 3, 2021, during the third harvest cycle's regrowth initiation for both the NI
207 and SIT trials. A total of five harvests data from NI including NIcut3, NIcut4, NIcut5, NIcut6,
208 NIcut7 and a total of four harvests from SIT trials including SITcut3, SITcut4, SITcut5, SITcut7
209 from 2021 were used for crop growth modelling and stability analysis. Ground control points
210 were included near the four corners of each treatment field. The control points were placed on
211 permanent stand mounts prior to each imagery flight. Upon installation, each stand was geo-
212 located using an RTK-GPS. Multispectral imagery was captured using a DJI Matrice 600 Pro
213 UAV and a MicaSense RedEdge-MX camera. All imagery was captured with 75% side overlap
214 and 80% front overlap from a 20m altitude at 2.0 m/s. Imagery for both irrigation treatment

215 fields was captured within the same flight cycle. Flights were conducted in mornings (10:00am
216 – 12:00pm), within 3 hours of solar noon, while temperatures were cool enough to not affect
217 UAV performance. Imagery capture occurred once per week, averaging five flights per harvest
218 cycle, with the last flight occurring no more than two days prior to each biomass harvest. In
219 total, 25 imaging flights were conducted over the NMSU alfalfa studies in 2021.

220 ***Image processing and index calculations***

221 Orthomosaics were constructed using Pix4D mapping software (<https://www.pix4d.com>),
222 and were subsequently uploaded into Imagebreed (www.imagebreed.org), a plot image database
223 (Morales et al. 2020), for image processing and storage and calculation of vegetative indices (VI)
224 at the plot level. Using these summary statistics, multiple VIs were calculated for each plot.
225 Normalized difference vegetation indices (NDVI) were calculated from mean pixel values of
226 near infrared (NIR) and Red bands of plot level images as:

227
$$NDVI = \frac{(R_{NIR} - R_R)}{(R_{NIR} + R_R)} \quad (1)$$

228 where R_{NIR} is the near infrared reflectance and R_R is the red reflectance. Green normalized
229 difference vegetation indices (GNDVI) and Normalized difference red edge indices (NDRE)
230 were calculated using green and red edge reflectance instead of the red reflectance in Eq. 1,
231 respectively.

232 A simple Ratio was calculated as:

233
$$Ratio = \frac{R_{NIR}}{R_R} \quad (2)$$

234 Additionally, the cumulative value of the above mentioned phenotypic indices at a specific time
235 point, t , was calculated using the rollmean function of zoo package in *R* statistical software
236 that takes phenotypic indices values and growing degree day(s) (GDD)(s) at each time point. The
237 equation is represented as:

238
$$AUC_t = NDVI_1 + \sum_{i=1}^t (\Delta D_i \times rollmean(NDVI_i, 2)) \quad (3)$$

239

240 where AUC_t represents the calculated AUC value at time point t , ΔD_i represents the time interval
241 between consecutive time points ($\Delta D_i = 0$ for time point 1), $rollmean(NDVI_i, 2)$ represents the
242 rolling mean of NDVI values at time point t , and $NDVI_i$ represents the NDVI value at time point
243 t .

244 GDDs were calculated as:

245
246
247
$$GDD = \frac{T_{max} + T_{min}}{2} - T_{base} \quad (4)$$

248
249
250

251 where T_{max} is the maximum temperature, T_{min} is the minimum temperature, and $T_{base} = 4$ °C as the
252 base temperature. The GDDs calculated for each time point were used as time covariates in the
253 RR models. For the first cuttings, GDDs were calculated starting on date of planting and up to
254 and including the date of harvest. For subsequent harvests, GDDs were calculated starting from
255 the day after the preceding harvest. The GDDs calculated for each time point were used as time
256 covariates in the RR models.

257

258 **Models**

259 A single-trait best linear unbiased prediction (ST-BLUP) model was fit to estimate the
260 genetic and residual variances. The ST-BLUP is defined as:

261
$$\mathbf{y} = \mathbf{1}\mu + \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{g} + \mathbf{e} \quad (5)$$

262 where \mathbf{y} is the vector of raw phenotype variables (phenotypic indices derived from MSI in this
263 study), $\mathbf{1}$ is the vector with elements of 1; μ is the overall mean; \mathbf{b} is the vector of fixed effect of
264 replicate; \mathbf{X} is the design matrix that associates the fixed effect of replicates with response
265 variables; \mathbf{Z} is the design matrix with \mathbf{g} as a vector of random genetic effects $\mathbf{g} \sim N(\mathbf{0}, \mathbf{I}\sigma_g^2)$; \mathbf{e} is
266 the vector of random residuals modeled as $\mathbf{e} \sim N(\mathbf{0}, \mathbf{I}\sigma_e^2)$ with an identically and independently
267 normal distribution of residuals and \mathbf{I} is the identity matrix.

268

269 The ratio of estimated genetic variance to the sum of the genetic variance and residual
270 variance was calculated to represent the broad sense heritability of biomass yield, and phenotypic
271 indices derived from MSI.

272 A bi-variate multi-trait model was fit to estimate the genetic and residual correlations
273 between biomass yield and mean values of VIs at each time point.

274
$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} 1 & \mu_1 \\ 1 & \mu_2 \end{bmatrix} + \begin{bmatrix} \mathbf{X}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_2 \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_2 \end{bmatrix} \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{bmatrix} \quad (6)$$

275 where \mathbf{y}_1 and \mathbf{y}_2 are the vector of response variables of traits 1 and 2; μ_1 and μ_2 are the overall
276 means; \mathbf{g}_1 and \mathbf{g}_2 are the vectors of random genetic effects; \mathbf{b}_1 and \mathbf{b}_2 are the vectors of
277 replication effects; \mathbf{X}_1 and \mathbf{X}_2 are the incidence matrices linking \mathbf{b}_1 to \mathbf{y}_1 and \mathbf{b}_2 to \mathbf{y}_2 ; \mathbf{Z}_1 and
278 \mathbf{Z}_2 are the incidence matrices linking \mathbf{g}_1 to \mathbf{y}_1 and \mathbf{g}_2 to \mathbf{y}_2 ; \mathbf{e}_1 and \mathbf{e}_2 are vectors of random
279 residual effects for trait 1 and 2, respectively. It was also assumed that $[\mathbf{g}_1 \quad \mathbf{g}_2] \sim N(\mathbf{0}, \Sigma \otimes \mathbf{I})$,

280 where $\Sigma = \begin{bmatrix} \sigma_{g_1}^2 & \sigma_{g_{12}} \\ \sigma_{g_{21}} & \sigma_{g_2}^2 \end{bmatrix}$ is the unstructured genetic variance and covariance matrix of the traits
281 and $[\mathbf{e}_1 \quad \mathbf{e}_2] \sim N\left(\mathbf{0}, \begin{bmatrix} \sigma_{e_1}^2 & \sigma_{e_{12}} \\ \sigma_{e_{21}} & \sigma_{e_2}^2 \end{bmatrix} \otimes \mathbf{I}\right)$.

282

283 **Random regression**

284 Random regression models using third order of Legendre polynomials (RRLP) were used to fit a
285 model for mean VI values and cumulative values of VI (cVI) from all time points. The biomass
286 yield data was used as the final time point observations in the model. The variance of biomass
287 yield was scaled to match the variance of preceding observation of VIs ensuring that yield data
288 has similar variability pattern as VIs. The RR models were used to continuously model the
289 (co)variance of VI and cVI measurements at different time points as a function of time.

290 The general random regression model for a single trait can be formulated as (Schaeffer 2004):

291

292
$$VI_{tj} = \beta_{r(t)} + \sum_k^K \phi(t)_{jk} u_{jk} + \sum_k^K \phi(t)_{jk} p_{jk} + \epsilon_{tj} \quad (7)$$

293 where, VI_{tj} is the plot level value of the j^{th} accession for VI at time point t ; $\phi(t)_{jk}$ is a time
294 covariate coefficient defined by a basis function evaluated at time point t ; $\beta_{r(t)}$ is the fixed effect

295 or replicate r nested in time point t ; u_{jk} is a k^{th} random regression coefficient associated with the
296 genetic effects of the j^{th} accession; $K1$ is the number of random regression parameters for fixed
297 effect time trajectories; $K2$ and $K3$ are the number of random regression parameters for random
298 effects; p_{jk} is a k^{th} permanent environmental random regression coefficient for the
299 accession j ; ϵ_{tj} is the vector of residuals. The random effects at any time point were calculated as
300 a function of the estimated RR coefficients and standardized measure of GDDs calculated from
301 equation 3 on a per harvest basis during the growing season.

302 **GGE biplot analysis**

303 The genotype main effect plus genotype by environment (GGE) biplot analysis was performed
304 using the statistical R package called “metan” (Olivoto and Lúcio 2020). Mean biomass yield
305 and its stability for all genotypes were visualized using GGE biplot. The GGE biplots were
306 constructed by plotting the first principal component (PC1) against the second principal
307 component (PC2) of the genotypes and environment calculated from a genotype-focused singular
308 value decomposition. The following GGE biplot model was used (Yan and Kang 2002):

309
$$Y_{ij} - Y_j = l_1 x_{i1} h_{j1} + l_2 x_{i2} h_{j2} + e_{ij} \quad (8)$$

310 where Y_{ij} is the mean biomass yield of genotype i in environment j ; Y_j is the mean yield across
311 all genotypes in environment j ; l_1 and l_2 are the singular values for PC1 and PC2, respectively;
312 x_{i1} and x_{i2} are the PC1 and PC2 scores, respectively, for genotype i ; h_{j1} and h_{j2} are the PC1 and
313 PC2 scores, respectively, for environment j ; and e_{ij} is the residual of the model associated with
314 genotype i in environment j .

315 **Correlation between variance in biomass yield across environments and variance in VIs
316 across environments**

317 In order to have both the yield data and VIs in the same scale, z-score normalization was done by
318 subtracting the mean (μ) from the distribution and by dividing with the standard deviation of the
319 distribution (σ). The z-score normalization was done for each environment. Each environment
320 was defined as a specific planting location and growth period. The correlation between the

321 variance in yield and the variance in VIs of each genotype across locations was calculated using
322 Pearson's correlation method for both NY and NM trials.

323 **Results**

324

325 **Heritability of phenotypic indices and biomass yield**

326 For the Helfer trial, the minimum heritability of GNDVI, NDVI, NDRE, NIR and Ratio
327 was 0, whereas the maximum heritability of GNDVI, NDVI, NDRE, NIR and Ratio was 0.92,
328 0.84, 0.92, 0.88 and 0.85, respectively (Fig. 1). The maximum heritability value of GNDVI and
329 NDRE was highest among all indices followed by NIR. The median value of heritability was
330 highest for GNDVI, followed by NDRE, NDVI, NIR and Ratio, 0.64, 0.56, 0.45, 0.45 and 0.40,
331 respectively (Fig. 1). For 2020, the heritability of biomass yield was highest for the first harvest
332 (0.56) followed by the third harvest (0.32) and second harvest (0.31). For 2021, the heritability
333 was highest for the third harvest (0.62) followed by the second harvest (0.57) and the first
334 harvest (0.31).

335

336 For the NMSU trial in 2021, the minimum and median heritability values of the
337 phenotypic indices under NI were higher than those under SIT whereas the maximum heritability
338 of the phenotypic indices were higher under SIT. Under the NI, GNDVI, NDVI, NDRE, NIR and
339 Ratio had minimum heritability values of 0.1827, 0.1076, 0.1867, 0 and 0.1112, respectively.
340 Maximum heritability values for NMSU, GNDVI, NDVI, NDRE, NIR and Ratio were 0.7122,
341 0.7015, 0.6987, 0.662 and 0.6972, respectively; and median heritability values were 0.3967,
342 0.3813, 0.3751, 0.3239 and 0.3019, respectively (Fig. 2(a)).

343

344 Under SIT, GNDVI, NDVI, NDRE, NIR and Ratio had minimum heritability values of
345 0.0357, 0.027, 0.0209, 0.028 and 0.0189 respectively. Maximum heritability values for GNDVI,
346 NDVI, NDRE, NIR and Ratio were 0.7824, 0.7764, 0.7377, 0.6905 and 0.7047 respectively; and
347 median heritability values were 0.11225, 0.1389, 0.1375, 0.2539 and 0.1343 respectively (Fig.
348 2(b)). Under NI, the heritability of biomass yield was highest for seventh (0.40) followed by
349 third (0.31) and fourth (0.29). Under SIT, the heritability of biomass yield was highest for sixth
350 (0.79) followed by the third (0.196) harvest (Fig. 2(b)).

351

352 **Phenotypic correlation of phenotypic indices and biomass yield**

353 For the Ithaca, NY trial, the last imaging of the crop growing season was taken 9, 3 and 4
354 days before the first, second and third harvest of 2020, respectively, and 6, 3, and 3 days before
355 first, second and third harvest of 2021, respectively. For both years the genetic correlation of all
356 phenotypic indices with biomass yield was strongest for the second harvest followed by the third
357 harvest and first harvest (Fig. 3(a), Fig. 3(b)).

358 Among all phenotypic indices in 2020, the phenotypic correlation with biomass yield was
359 strongest for NIR (0.57) followed by Ratio (0.56) and NDVI (0.56) for the first harvest; Ratio
360 (0.81) followed by NDVI (0.78) and GNDVI (0.76) for the second harvest; and GNDVI (0.68)
361 followed by NIR (0.65) and NDRE (0.64) for the third harvest (Fig. 3(a)). In 2021, the
362 phenotypic correlation with biomass yield was strongest for Ratio (0.19), followed by GNDVI
363 (0.18) and NDVI (0.15) for the first harvest; the phenotypic correlation with biomass yield was
364 strongest for GNDVI (0.78) followed by NDRE (0.74) and NDVI (0.64) for the second harvest;
365 the phenotypic correlation with biomass yield was highest strongest for NDRE (0.73) followed
366 by GNDVI (0.61) and NDVI (0.58) for the third harvest (Fig. 3(b)).

367
368 **Genetic correlation between biomass yield and phenotypic indices at different**
369 **imaging time points**

370
371 ***NY trial***

372 For the first harvest of 2020, biomass yield demonstrated the highest genetic correlations
373 with NDVI (range: 0.90 – 0.99) and NIR (range: 0.93 – 0.99) whereas biomass yield had lowest
374 correlation with Ratio (range: 0.69 - 0.96) (Fig. 4). For the second and third harvests of 2020,
375 Ratio showed the highest genetic correlations with ranges of 0.94 - 0.99 and 0.69 - 0.99,
376 respectively, while NDRE had the lowest genetic correlations ranging from 0.18 to 0.94 and 0.70
377 to 0.98, respectively (Fig. 4).

378

379 For the first harvest of 2021, the genetic correlation of Ratio and NIR with the biomass
380 yield was strongest ranging from 0.68 – 0.99 and 0.1 – 0.99 respectively. The genetic correlation
381 of NIR with biomass yield was lower than other phenotypic indices in early crop growth stage
382 for the same harvest (Fig. 4). This pattern was only seen for one harvest out of six harvests. For
383 the second and third harvest of 2021, the genetic correlation of NIR was strongest for second

384 harvest and third harvest ranging from 0.84 – 0.99 and 0.91 to 1 respectively whereas genetic
385 correlation of NDVI and GNDVI had lowest genetic correlations for second and third harvest.
386 The genetic correlation of second and third harvest of NDVI ranged from 0.08 to 0.94 and 0.72
387 to 0.99 respectively for second and third harvest and the genetic correlation of second and third
388 harvest of GNDVI ranged from 0.53 – 0.98 and 0.23 to 0.97 respectively (Fig. 4).

389

390 *NMSU trial*

391

392 Under NI, the genetic correlation of NDVI and Ratio at all imaging time points were
393 highest for all harvests except for June 25 to Jul 22 regrowth cycle of 2021 (Fig. 5). The genetic
394 correlation of NDVI ranged from 0.8 to 0.97 for May 28 to June 24 regrowth cycle , 0.72 to 0.97
395 for June 25 to Jul 22 regrowth cycle, 0.78 to 0.96 for July 23 to August 27 regrowth cycle , 0.77
396 to 0.97 for August 28 to September 29 regrowth cycle, 0.88 to 0.98 for September 30 to
397 November 12 regrowth cycle and the genetic correlation of Ratio ranged from 0.69 to 0.95 for
398 May 28 to June 24 regrowth cycle, 0.69 to 0.97 for June 25 to Jul 22 regrowth cycle, 0.69 to 0.94
399 for July 23 to August 27 regrowth cycle, 0.69 to 0.96 for August 28 to September
400 29 regrowth cycle, and 0.69 to 0.97 for September 30 to November 12 regrowth cycle (Fig. 5).

401

402 Under SIT, NDVI and Ratio had highest genetic correlation with biomass yield compared
403 to other phenotypic indices. Genetic correlations ranged from 0.84 to 0.97 for May 28 to June
404 25 regrowth cycle, 0.91 to 0.97 for June 26 to Jul 22 regrowth cycle, 0.99 to 1 for July 23 to
405 August 26 regrowth cycle and 0.69 to 0.99 for August 27 to November 11 regrowth cycle for
406 NDVI and genetic correlation ranged from 0.69 to 0.95 for May 28 to June 25 regrowth cycle,
407 0.69 to 0.91 for June 26 to Jul 22 regrowth cycle, 0.69 to 1 for July 23 to August
408 26 regrowth cycle and 0.69 to 0.99 for August 27 to November 11 regrowth cycle for Ratio (Fig.
409 6).

410

411 **Genetic correlation among phenotypic indices at different imaging time points**

412 *Ithaca, NY trial*

413

414 The genetic correlation of phenotypic indices at different time points were evaluated
415 running multi-trait models Supplemental Figure 1 (a) to (e)). The genetic correlation among NIR
and Ratio at different time points were strongest compared to other indices (Supplemental Figure

416 1 (d), Supplemental Figure 1 (e)). The genetic correlation of Ratio at different time points were
417 greater than 0.71 for all harvests of 2020 and 2021 except for the first harvest of 2021, where
418 genetic correlations between the first time point and the last 14 time points ranged from 0.49 to
419 0.67. The genetic correlations among NIR at different time points were greater than 0.65 for all
420 harvests of 2020 and 2021 except for third harvest of 2020 and first harvest of 2021, where the
421 genetic correlations ranged from -0.17 to 0.04 between first and last five imaging time points and
422 0.04 to 0.05 between first and last 14 imaging time points. The genetic correlations of NDVI,
423 GNDVI, and NDRE at different time points were in the range of 0.52 – 1, 0.2 -1, and 0.18 – 0.1,
424 respectively, for all three harvests of 2020 and the third harvest of 2021. Genetic correlations
425 were lower for first and second harvest of 2021 across all harvests (Supplemental Figure 1 (a) to
426 (e)). The genetic correlation of cumulative value of all the indices from second time point to
427 other time points were 1 whereas the genetic correlation of cumulative value of all the indices of
428 first time point with other time points were in the range of 0.9 – 0.99 (Supplemental Figure 2 (a)
429 to (e)).

430

431 **NMSU trial**

432

433 Under NI, among all phenotypic indices, the genetic correlation of NDVI and Ratio at
434 different time points were strongest (Supplemental Figure 3 (c), Supplemental Figure 3 (e)). The
435 genetic correlation of Ratio at different time points ranged from 0.69-0.98, 0.69-0.97, 0.69-0.98,
436 0.69-0.99, 0.69-0.98 for the May 28 to June 24 regrowth cycle, June 25 to Jul 22 regrowth cycle,
437 July 23 to August 27 regrowth cycle, August 28 to September 29 regrowth cycle and September
438 30 to November 12 regrowth cycle, respectively (Supplemental Figure 3 (e)). Similarly, the
439 genetic correlation of NDVI at different time points ranged from 0.72 - 0.99, 0.74 – 0.97, 0.76 –
440 0.98, 0.76 – 0.99 and 0.81 – 0.99 for the May 28 to June 24 regrowth cycle, June 25 to Jul
441 22 regrowth cycle, July 23 to August 27 regrowth cycle, August 28 to September
442 29 regrowth cycle and September 30 to November 12 regrowth cycle, respectively
443 (Supplemental Figure 3 (c)). The genetic correlations of NIR, GNDVI, and NDRE at different
444 time points were lowest compared to other indices (Supplemental Figure 3 (d), Supplemental
445 Figure 3 (a), Supplemental Figure 3 (b)). The genetic correlation of the cumulative value of all
446 the phenotypic indices of first time points with other time points were 0.99 and 1.0 for all other
447 time points (Supplemental Figure 4 (a) to (e)).

448

449 Similarly, under SIT, the genetic correlation of Ratio and NDVI at different time points
450 were strongest (Supplemental Figure 5 (a) to (e)). The genetic correlation of Ratio at different
451 time points ranged from 0.69 – 0.98, 0.69 – 0.98, 0.69 – 1 and 0.69 – 0.99 for the May 28 to June
452 25 regrowth cycle, June 26 to Jul 22 regrowth cycle, July 23 to August 26 regrowth cycle and
453 August 27 to November 11 regrowth cycle, respectively (Supplemental Figure 5 (e)). Similarly,
454 the genetic correlation of NDVI ranged from 0.54 – 0.97, 0.56 – 0.97, 0.79 – 1, 0.34 – 0.98 for
455 the May 28 to June 25 regrowth cycle, June 26 to Jul 22 regrowth cycle, July 23 to August
456 26 regrowth cycle and August 27 to November 11 regrowth cycle, respectively (Supplemental
457 Figure 5 (a)). Among the other indices at different time points, the genetic correlation among
458 GNDVI ranged from 0.59 – 0.97, 0.49 – 0.96, 0.58 – 1, 0.06 – 0.98 for the third, fourth, fifth and
459 seventh harvest, respectively (Supplemental Figure 5 (a)), NDRE ranged from 0.71 – 0.98, 0.56
460 – 0.97, 0.48 – 1, -0.09 – 0.97 for the May 28 to June 25 regrowth cycle, June 26 to Jul
461 22 regrowth cycle, July 23 to August 26 regrowth cycle and August 27 to November
462 11 regrowth cycle harvest, respectively (Supplemental Figure 5 (b)), and NIR ranged from 0.2 –
463 0.95, 0.65 – 0.98, 0.12 – 1, and -0.05 – 0.98 respectively for May 28 to June 25 regrowth cycle,
464 June 26 to Jul 22 regrowth cycle, July 23 to August 26 regrowth cycle and August 27 to
465 November 11 regrowth cycle, respectively (Supplemental Figure 5 (d)). The genetic correlation
466 of the cumulative value of all the phenotypic indices of first time points and other time points
467 were 0.99 whereas for other time points were 1 (Supplemental Figure 6 (a) to (e)).

468

469 **Growth curve analysis using genetic merit calculated from Random Regression Model**

470 The temporal growth curves of all alfalfa genotypes were constructed using breeding
471 values calculated using RRLP and different phenotypic indices as longitudinal phenotypic traits
472 (Supplemental Figures 7, 8, 9). The high-resolution temporal growth curves of different alfalfa
473 genotypes showed clear differences between high yielding and low yielding genotypes. Both raw
474 values of phenotypic indices and their respective cumulative values were used to run RR model.
475 Compared to the raw value, cumulative value of phenotypic indices gave better model fit and
476 higher resolution of temporal growth curves (Supplemental Figure 7(f) to 7(j), Supplemental
477 Figure 9(f) to 9(j)). Using the raw value of phenotypic indices as the phenotypic trait, a larger
478 spread in breeding values of the genotypes were observed in the early stages of growth,

479 indicating greater genetic variance captured by the proximal sensing phenotypes in early growth
480 stages.

481

482 **GGE biplot analysis**

483 The GGE Biplots in Figs. 7 and 8, provide a “mean versus stability” graph of cultivar
484 performance in NY and NMSU trials, respectively (Yan et al. 2007). The green single arrowed
485 line, referred to as the “average environment axis”, provides an indication of the mean
486 performance of cultivars, with the arrow pointing to a greater value according to their mean
487 performance across all environments. The green line that is perpendicular to the average
488 environment axis, provides an indication of stability in cultivar performance across
489 environments. As such, cultivars with projections closer to the average environment axis
490 exhibited more stable performance for harvested biomass across cuttings and years. An ideal
491 cultivar would have a high mean performance, further along in the average environment axis in
492 the direction indicated by the arrow, and would show stable performance with a projection near
493 the average environment axis. For the cultivars tested in NY (Fig. 7), the cultivars g1, g2, g10,
494 g29, and g32 were relatively stable and high yielding, and g8 was relatively stable and low
495 yielding. Cultivars g3, g13, g18, g22, g31 were relatively unstable and low yielding, and g4, g15,
496 g20, g23 were relatively unstable and high yielding. A similar analysis was applied to the NMSU
497 trial data (Fig. 8), identifying G13, G14 and G15 as stable and low yielding cultivars, and G25,
498 G7 and G9 as relatively stable and high yielding cultivars. Results indicate that G24, G23 and
499 G21 were relatively unstable and high yielding, and G2, G8, G15, G17 were relatively unstable
500 and low yielding.

501

502 **Stability and plasticity analysis using a growth curve modeling approach.**

503 Among the most unstable and stable genotypes identified from GGE biplot analysis, five
504 stable and five unstable cultivars were selected (Fig.7, Fig.8). To determine whether stability in
505 biomass yield across cuttings was reflected in the plasticity of the plant growth, the growth
506 curves of these most stable and unstable cultivars across different environments were plotted
507 (Fig.9 - Fig.25). Results showed high variance in the growth curves of unstable cultivars across
508 all cuttings when compared to the stable cultivars in the Ithaca, NY trial (Fig.9 - Fig.13). Similar,
509 although less pronounced, results were observed for NMSU trial (Fig.14 - Fig.17). Among all
510 phenotypic indices, the growth curves estimated using NDVI and Ratio at Ithaca, NY were found

511 to give clear separation in the stability and plasticity (Fig.10, Fig.13). Both the stable and
512 unstable cultivars were found to be more stable in NI than SIT of NMSU (Fig.18 – Fig. 25), with
513 differing growth patterns between the two irrigation treatments.

514

515 Using GNDVI, NDVI and Ratio as the phenotypic trait, the variance of stable cultivars
516 g1, g2, g6, g8, and g14 across all environments were less than the variance of unstable cultivars
517 g3, g13, g21, g22, g35 (Fig. 9, 10, 13) in Ithaca, NY trial. There was more separation during
518 early growth among the cultivars than at later timepoints. Similar results were observed for
519 NMSU trial. The temporal growth curves derived from NDVI, NIR and Ratio were found to be
520 the best discriminating the variance of genetic merit for stable and unstable cultivars across
521 different harvests (Fig. 15, Fig. 16, Fig. 17).

522

523 **Stability and plasticity analysis across different irrigation conditions**

524 The growth trajectories of stable and unstable cultivars were compared separately across
525 all cuttings of NI and SIT conditions (Fig. 18 to Fig. 25). The variance in growth curves of both
526 stable cultivars derived from GNDVI, NDVI and Ratio were found to be higher in summer
527 irrigation termination condition than in normal irrigation condition (Fig. 18, Fig. 20, Fig. 24).
528 Similar results were observed for unstable cultivars (Fig. 19, Fig. 21, Fig. 25).

529

530 **Correlation of variance in yield and variance in genetic merit of phenotypic indices across 531 different environments**

532 The variance in yield of all genotypes across different harvests was calculated for both
533 NY and NMSU trials. Similarly, the variance in genetic merit of all genotypes for VIs at
534 different time points across cuttings was calculated to determine if there was a relationship
535 between variation in growth curves and variation in harvest biomass. The estimated correlation
536 between the variance in yield and variance in genetic merit estimated from VIs at different time
537 points showed a significant correlation in NY, with values ranging from 0.61 to 0.67, 0.63 to
538 0.66, 0.60 to 0.71, 0.66 to 0.68, and 0.37 to 0.43 for NDVI, GNDVI, NDRE, NIR and Ratio
539 respectively (Table 1). For trials in NM, the correlation between the variance in harvest biomass
540 and the variance in genetic merit

541 estimated from growth curves of all genotypes at different time points across different harvests
542 showed correlations that ranged from 0.19 to 0.35, 0.27 to 0.44, 0.16 to 0.36, 0.68 to 0.79 and
543 0.91 to 0.93 for GNDVI, NDVI, NDRE, NIR and Ratio, respectively (Table 2).

544

545 Discussion

546

547 One of the objectives of this study was to evaluate the heritability of VIs derived from
548 MSIs and their genetic correlation with the terminal trait biomass yield. Results of this study
549 showed that the VIs have a moderate heritability (Fig 3, Fig 4) comparable to the heritability of
550 harvest biomass. Lower heritability was attributed to poor days of imaging such as the days with
551 cloudy and windy weather. Babar et al. (2007) reported moderate to high heritability of spectral
552 reflectance indices (SRIs) and higher heritability than for grain yield in wheat. Petsoulas et al.
553 (2022) reported moderate to high level of broad sense heritability where the heritability of NDRE
554 ranged from 0.292 to 0.879 and heritability of NDVI ranged from 0.446 to 0.928 in sesame. In
555 the same study, heritability of VIs were reported to be increased with growth stages and started
556 to reduce entering the ripening stage of sesame whereas Anche et al. (2020) reported lower
557 heritability of VIs in early reproductive stage and higher heritability estimates at mid-
558 reproductive stage and late reproductive stage of maize. Another study from (Galán et al. 2020),
559 showed moderate to high heritability estimates ($H^2 > 0.50$) of 23 VIs in winter rye hybrids
560 estimated from hyperspectral reflectance data. Sun et al. (2017) reported that the heritability of
561 NDVI and NDRE ranged from moderate to high across different locations of wheat trial. Sharma
562 et al. (2022) reported consistently higher heritability of VARI and NDVI across growth phases
563 and locations where NDVI and VARI had higher heritability than dry biomass yield. In our
564 study, among all five VIs, GNDVI had highest value of maximum and median heritability.
565 GNDVI measures reflection in near infra-red region and green region of the electromagnetic
566 spectrum (Gitelson et al. 1996). GNDVI provides information about chlorophyll A concentration
567 in plants. The higher heritability of GNDVI might be due to the high biomass of the crop.
568 Sandhu et al. (2021) reported GNDVI as the best predictor of grain protein content of wheat.
569 Previous studies (Hassan et al. 2019; Yang et al. 2020) also reported GNDVI and NDRE as the
570 best predictor of grain yield and nutrient uptake efficiencies across the growth stages.

571

572 Multi-trait models were fit to evaluate the correlation between VIs at different time points
573 and harvest biomass yield. The genetic correlations of all five VIs and the biomass yield was
574 found to be strong and statistically significant for all harvests and years. Among five VIs, NIR,
575 NDVI and Ratio had the strongest genetic correlations with biomass. Natarajan et al. (2019)
576 reported a strong correlation between NDVI and sugarcane stalk population and sugarcane yield
577 suggesting that canopy reflectance measurements at an early stage could be used as a screening
578 tool to estimate yield potential. Another study by Prabhakara et al. (2015) used NDVI for
579 prediction of biomass percentage of ground cover in winter forage crops. Other studies have also
580 reported significant association between NDVI and both biomass and GY in irrigated or high-
581 rainfall conditions (Reynolds et al. 1999; Aparicio et al. 2000; Freeman et al. 2003; Gutiérrez-
582 Rodríguez et al. 2004; Babar et al. 2006a; Prasad et al. 2007b; Erdle et al. 2013; Christopher et
583 al. 2014) drought stress (Gutiérrez-Rodríguez et al. 2004; Babar et al. 2006b; Reynolds et al.)
584 and heat stress environments (Reynolds et al. ; Gutierrez et al. 2010; Hazratkulova et al. 2012;
585 Lopes and Reynolds 2012). NDVI was also reported to predict grain yield in soybean (Ma et al.
586 2001), winter wheat (Raun et al. 2001), and durum wheat (Aparicio et al. 2000). The VIs NDVI,
587 GNDVI, SAVI, G-R were reported to be accurate for estimating biomass at an early stage
588 (Prabhakara et al. 2015) and they were saturated at later stages (Mutanga and Skidmore 2004;
589 Thenkabail et al. 2000). Chen et al. (2009) reported TVI (Triangular Vegetative Index) as useful
590 index for predicting canopy biomass at later stage. NDVI and SR are based on the red (visible)
591 and NIR wavelengths and give higher values at early growth stages, but their values decrease
592 with the advancement in growth cycle because plants are losing photosynthetically active plant
593 parts. Serrano et al. (2000) reported that simple ratio (SR) can reliably predict winter wheat grain
594 yield under nitrogen stresses. Among the three spectral indices, simple ratio (SR), normalized
595 difference vegetation index (NDVI), and photochemical reflectance index (PRI), SR was
596 identified as the best index for assessment of crop growth and yield in durum wheat (Aparicio et
597 al., 2000). Another study by Gutierrez et al. (2004) found the strongest correlation of SR and
598 NIR with cotton lint yield showing 60% and 58% of variations in cotton lint yield respectively.
599 In the same study, SR and NIR had higher coefficients of determination in cotton biomass and
600 leaf area index (LAI) compared to NDVI as these indices were not saturated at late growth stage
601 whereas (Aparicio et al. 2000; Aparicio et al. 2002) reported that NDVI and SR were not able to
602 predict variations in biomass successfully when estimated at later growth stages of durum wheat.

603 Hence, the use of multiple indices is recommended to get better predictions of biomass yield as
604 different types of VIs are sensitive to different stages of crop growth and amount of biomass.
605 The high heritability and strong genetic correlation between VIs and biomass yield of alfalfa in
606 our study suggest that VIs can be used as a selection tool and help plant breeders to reliably
607 evaluate cultivars in a fast and nondestructive (Lobos et al. 2019; El-Hendawy et al. 2019;
608 Prasad et al. 2007a; Babar et al. 2007; Gutierrez et al. 2010).

609

610 RR models with third order Legendre polynomials provided the best fit and were used to
611 model the growth curve trajectories using VIs as phenotypes. Estimate RR coefficients were used
612 to obtain breeding values (BVs) for all time points between the first day of imaging and harvest.
613 Sun et al (2017) used RR model with cubic splines in wheat (*Triticum aestivum*) to obtain best
614 linear unbiased predictions of secondary traits derived from high-throughput hyperspectral and
615 thermal imaging. RR model with a linear spline was also reported as a potential alternative
616 approach to mixed model to fit the VIs from multiple time points (Anche et al. 2020), but
617 Legendre polynomials were found to provide a better fit to maize data in subsequent analyses
618 (Anche et al. 2023). When cumulative indices were used as phenotypes, the correlation was
619 found to increase through time (Fig 3-6). This could be because cumulative indices accounts for
620 earlier season VI data, and therefore becomes more informative than raw data on predicting
621 biomass yield of the growing season. Similar results were reported in maize (Anche et al. 2023),
622 concluding that cumulative VIs were better phenotype to model the covariance structures as they
623 provided more stable and consistent results compared to using raw VIs as a phenotype.

624

625 In our study, we observed a decreasing trend in the variance components over time for
626 each harvest. Higher genetic variation was observed in the breeding values of VIs in early
627 growth stages compared to later stages as cultivars reached full canopy cover. In alfalfa stands,
628 allowing the crop to reach maximum vegetation saturation before flowering is the ideal balance
629 to develop maximum biomass while also maintaining nutritional quality. A declining ability of
630 spectral indices to discriminate different genotypes was reported in other crops as the canopy
631 closes and its spectral reflectance saturated (Marti et al. 2007). In this study, all VIs showed
632 strong correlations with biomass yield across all time points, and the growth trajectories could

633 separate high yielding and low yielding genotypes rapidly and efficiently starting in the early
634 stage of growth season.

635

636 The moderate heritability and moderate to strong genetic correlations with harvest
637 biomass observed in NY and NM trials, indicate that VIs collected via UAV can be used to
638 model temporal genetic variation associated with harvest biomass yield. RR models provided a
639 parsimonious approach to estimate temporal covariance functions and assess cultivar persistence
640 and stability, which can be affected by biotic and abiotic effects of the environment. The RR
641 model depicted dynamic aspects of phenotypes, which can enable better analysis cultivar
642 plasticity, adaptability, stability and yield performance (Alves et al. 2020) across a range of
643 dynamic environmental conditions through growth periods. As such, information on growth
644 curves can provide additional information for selecting lines that are best adapted to the target
645 environments.

646

647 The growth trajectories of stable genotypes and unstable genotypes in NI and SIT
648 termination of NMSU trial showed more instability in growth curves in SIT than NI (Figs 18 to
649 25). This is likely due to higher genetic variance among different cultivars in stressed
650 environment compared to normal condition and indicates that growth parameters may provide
651 additional information on stress tolerance. The observed correspondence in plasticity of growth
652 curves and stability in biomass harvest demonstrate the potential to model GxE temporally
653 throughout the growth period as a function of dynamic environmental variables. Esten et al.
654 (2018) reported stronger correlation of NDVI and GY ($r = 0.25 - 0.54$) and NDVI and biomass (r
655 = 0.17 – 0.46) in lowest yielding sites-years. In the same study, NDVI was reported to have
656 greater ability to detect biomass differences between lines in low-yielding environments, where
657 canopy closure was not present. Similar results were previously presented where stronger
658 correlations of NDVI and grain yield was observed under abiotic stress compared with high-
659 yielding environments (Gutiérrez-Rodríguez et al. 2004; Gutierrez et al. 2010; Lopes and
660 Reynolds 2012).

661

662 **Conclusion**

663 The use of multi-spectral imaging for alfalfa over the growing seasons in NY and NMSU
664 demonstrated that VIs are heritable and that genetic correlations were significant for most time
665 points and years. The measurement of cumulative NDVI showed that correlations of NDVI to
666 biomass increased over time closer to harvest/cutting date. Strong correlations of NDVI to
667 biomass harvest increase the possibility of using MSI to reduce the amount of biomass harvest
668 phenotyping needed, potentially reducing phenotyping costs. The use of random regressions and
669 Legendre polynomials demonstrated that longitudinal modeling of VIs can capture genetic
670 variation, and stability in growth curves across cuttings was associated with stability in harvest
671 biomass over harvests, years, locations and irrigation treatments. These results indicate that
672 random regressions of VIs captures throughout a growth period can provide a greater dynamic
673 understanding of aspects of phenotypic plasticity, stability and yield performance for crop
674 improvement.

675 **Data availability**

676 R Code and data are available in the github:
677 https://github.com/rthapa1/FFAR_RandomRegressionModel_growthcurve_modelling_stabilityanalysis_alfalfa
678

679 **Authors contributions**

680 Ranjita Thapa: Processed MSI data; Developed statistical model; Conducted statistical analysis;
681 Investigation; Methodology; Software; Validation; Visualization; Writing – original draft, review
682 & editing. Karl H. Kunze: Review & editing. Julie Hansen: Review & editing. Christopher
683 Pierce: Data collection; Review & editing. Virginia Moore: Review & editing. Ian Ray: Funding
684 acquisition; Validation; Visualization; review & editing. Liam Wickes-Do: Data
685 collection. Nicolas Morales: Data collection. Felipe Sabadin: Review & editing. Nicholas
686 Santantonio: Conceptualization; Funding acquisition; Writing – review & editing. Michael A
687 Gore: Funding acquisition; Writing – review & editing. Kelly Robbins: Conceptualization;
688 Funding acquisition; Methodology; Project administration; Resources; Supervision; Validation;
689 Visualization; review & editing
690

691 **Acknowledgments**

692 We would like to thank Jesse Chavez, Ryan Crawford and Jamie Crawford for their assistance
693 with harvesting and data collection of the NY alfalfa trials.

694 **Funding**

695 This study was funded by Foundation for Food & Agriculture Research (CA20-SS-0000000103);
696 National Alfalfa and Forage Alliance (90423); National Institute of Food and Agriculture, US
697 Department of Agriculture, Hatch grant (3110006036).

698

699 **Conflicts of Interest**

700

701 The authors declare no conflict of interest.

702

703

704

References

705 Acharya, J.P., Y. Lopez, B.T. Gouveia, I. de Bem Oliveira, M.F. Resende Jr *et al.*, 2020
706 Breeding alfalfa (*Medicago sativa* L.) adapted to subtropical agroecosystems. *Agronomy*
707 10 (5):742.

708 Alves, R.S., M.D.V. de Resende, C.F. Azevedo, F.F.e. Silva, J.R.d.A.S.d.C. Rocha *et al.*, 2020
709 Optimization of Eucalyptus breeding through random regression models allowing for
710 reaction norms in response to environmental gradients. *Tree Genetics & Genomes* 16:1-8.

711 Anche, M.T., N.S. Kaczmar, N. Morales, J.W. Clohessy, D.C. Ilut *et al.*, 2020 Temporal
712 covariance structure of multi-spectral phenotypes and their predictive ability for end-of-
713 season traits in maize. *Theoretical and Applied Genetics* 133:2853-2868.

714 Anche, M.T., N. Morales, N.S. Kaczmar, N. Santantonio, M.A. Gore *et al.*, 2023 Scalable
715 growth models for time-series multispectral images. *The Plant Phenome Journal* 6
716 (1):e20064.

717 Annicchiarico, P., 2015 Alfalfa forage yield and leaf/stem ratio: narrow-sense heritability,
718 genetic correlation, and parent selection procedures. *Euphytica* 205:409-420.

719 Annicchiarico, P., B. Barrett, E.C. Brummer, B. Julier, and A.H. Marshall, 2015 Achievements
720 and challenges in improving temperate perennial forage legumes. *Critical Reviews in*
721 *Plant Sciences* 34 (1-3):327-380.

722 Annicchiarico, P., and L. Pecetti, 2021 Comparison among nine alfalfa breeding schemes based
723 on actual biomass yield gains. *Crop Science* 61 (4):2355-2371.

724 Aparicio, N., D. Villegas, J. Araus, J. Casadesus, and C. Royo, 2002 Relationship between
725 growth traits and spectral vegetation indices in durum wheat. *Crop Science* 42 (5):1547-
726 1555.

727 Aparicio, N., D. Villegas, J. Casadesus, J.L. Araus, and C. Royo, 2000 Spectral vegetation
728 indices as nondestructive tools for determining durum wheat yield. *Agronomy Journal* 92
729 (1):83-91.

730 Babar, M., M. Reynolds, M. Van Ginkel, A. Klatt, W. Raun *et al.*, 2006a Spectral reflectance to
731 estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy
732 temperature in wheat. *Crop Science* 46 (3):1046-1057.

733 Babar, M., M. Van Ginkel, A. Klatt, B. Prasad, and M. Reynolds, 2006b The potential of using
734 spectral reflectance indices to estimate yield in wheat grown under reduced irrigation.
735 *Euphytica* 150:155-172.

736 Babar, M., M. Van Ginkel, M. Reynolds, B. Prasad, and A. Klatt, 2007 Heritability, correlated
737 response, and indirect selection involving spectral reflectance indices and grain yield in
738 wheat. *Australian Journal of Agricultural Research* 58 (5):432-442.

739 Blasco, J., N. Aleixos, J. Gómez, and E. Moltó, 2007 Citrus sorting by identification of the most
740 common defects using multispectral computer vision. *Journal of Food Engineering* 83
741 (3):384-393.

742 Calus, M.á., and R. Veerkamp, 2003 Estimation of environmental sensitivity of genetic merit for
743 milk production traits using a random regression model. *Journal of dairy science* 86
744 (11):3756-3764.

745 Chapman, S., M. Cooper, D. Podlich, and G. Hammer, 2003 Evaluating plant breeding strategies
746 by simulating gene action and dryland environment effects. *Agronomy Journal* 95 (1):99-
747 113.

748 Chapman, S.C., M. Cooper, and G.L. Hammer, 2002 Using crop simulation to generate genotype
749 by environment interaction effects for sorghum in water-limited environments. *Australian*
750 *Journal of Agricultural Research* 53 (4):379-389.

751 Chen, J., S. Gu, M. Shen, Y. Tang, and B. Matsushita, 2009 Estimating aboveground biomass of
752 grassland having a high canopy cover: an exploratory analysis of in situ hyperspectral
753 data. *International journal of remote sensing* 30 (24):6497-6517.

754 Chen, Y.-R., K. Chao, and M.S. Kim, 2002 Machine vision technology for agricultural
755 applications. *Computers and Electronics in Agriculture* 36 (2-3):173-191.

756 Chenu, K., S.C. Chapman, F.o. Tardieu, G. McLean, C. Welcker *et al.*, 2009 Simulating the
757 yield impacts of organ-level quantitative trait loci associated with drought response in
758 maize: a “gene-to-phenotype” modeling approach. *Genetics* 183 (4):1507-1523.

759 Christopher, J.T., M. Veyradier, A.K. Borrell, G. Harvey, S. Fletcher *et al.*, 2014 Phenotyping
760 novel stay-green traits to capture genetic variation in senescence dynamics. *Functional*
761 *plant biology* 41 (11):1035-1048.

762 Claudio, H.C., Y. Cheng, D.A. Fuentes, J.A. Gamon, H. Luo *et al.*, 2006 Monitoring drought
763 effects on vegetation water content and fluxes in chaparral with the 970 nm water band
764 index. *Remote sensing of Environment* 103 (3):304-311.

765 da Silva, E.E., F.H.R. Baio, L.P.R. Teodoro, C.A. da Silva Junior, R.S. Borges *et al.*, 2020 UAV-
766 multispectral and vegetation indices in soybean grain yield prediction based on in situ
767 observation. *Remote Sensing Applications: Society and Environment* 18:100318.

768 El-Hendawy, S.E., M. Alotaibi, N. Al-Suhaibani, K. Al-Gaadi, W. Hassan *et al.*, 2019
769 Comparative performance of spectral reflectance indices and multivariate modeling for
770 assessing agronomic parameters in advanced spring wheat lines under two contrasting
771 irrigation regimes. *Frontiers in plant science* 10:1537.

772 Erdle, K., B. Mistele, and U. Schmidhalter, 2013 Spectral high-throughput assessments of
773 phenotypic differences in biomass and nitrogen partitioning during grain filling of wheat
774 under high yielding Western European conditions. *Field Crops Research* 141:16-26.

775 Freeman, K., W. Raun, G. Johnson, R. Mullen, M. Stone *et al.*, 2003 Late-season prediction of
776 wheat grain yield and grain protein. *Communications in Soil Science and Plant Analysis*
777 34 (13-14):1837-1852.

778 Galán, R.J., A.-M. Bernal-Vasquez, C. Jebsen, H.-P. Piepho, P. Thorwarth *et al.*, 2020
779 Hyperspectral reflectance data and agronomic traits can predict biomass yield in winter
780 rye hybrids. *BioEnergy research* 13:168-182.

781 Gitelson, A.A., Y.J. Kaufman, and M.N. Merzlyak, 1996 Use of a green channel in remote
782 sensing of global vegetation from EOS-MODIS. *Remote sensing of Environment* 58
783 (3):289-298.

784 Gutierrez, M., M.P. Reynolds, W.R. Raun, M.L. Stone, and A.R. Klatt, 2010 Spectral water
785 indices for assessing yield in elite bread wheat genotypes under well-irrigated, water-
786 stressed, and high-temperature conditions. *Crop Science* 50 (1):197-214.

787 Gutiérrez-Rodríguez, M., M.P. Reynolds, J.A. Escalante-Estrada, and M.T. Rodríguez-González,
788 2004 Association between canopy reflectance indices and yield and physiological traits in
789 bread wheat under drought and well-irrigated conditions. *Australian Journal of*
790 *Agricultural Research* 55 (11):1139-1147.

791 Hammer, G., M. Kropff, T. Sinclair, and J. Porter, 2002 Future contributions of crop
792 modelling—from heuristics and supporting decision making to understanding genetic
793 regulation and aiding crop improvement. *European Journal of Agronomy* 18 (1-2):15-31.

794 Hassan, M.A., M. Yang, A. Rasheed, G. Yang, M. Reynolds *et al.*, 2019 A rapid monitoring of
795 NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral
796 UAV platform. *Plant Science* 282:95-103.

797 Hazratkulova, S., R.C. Sharma, S. Alikulov, S. Islomov, T. Yuldashev *et al.*, 2012 Analysis of
798 genotypic variation for normalized difference vegetation index and its relationship with
799 grain yield in winter wheat under terminal heat stress. *Plant Breeding* 131 (6):716-721.

800 Hill, R., J. Shenk, and R. Barnes, 1988 Breeding for yield and quality. p. 809–825. AA Hanson
801 et al.(ed) Alfalfa and alfalfa improvement. Agron. Monogr. 29. ASA, CSSA, and SSSA,
802 Madison, WI. *Breeding for yield and quality*. p. 809–825. In AA Hanson *et al.(ed)* *Alfalfa*
803 and *alfalfa improvement*. Agron. Monogr. 29. ASA, CSSA, and SSSA, Madison, WI.:-.

804 Lobos, G.A., A. Escobar-Opazo, F. Estrada, S. Romero-Bravo, M. Garriga *et al.*, 2019 Spectral
805 reflectance modeling by wavelength selection: Studying the scope for blueberry
806 physiological breeding under contrasting water supply and heat conditions. *Remote
807 Sensing* 11 (3):329.

808 Lopes, M.S., and M.P. Reynolds, 2012 Stay-green in spring wheat can be determined by spectral
809 reflectance measurements (normalized difference vegetation index) independently from
810 phenology. *Journal of experimental botany* 63 (10):3789-3798.

811 Ma, B., L.M. Dwyer, C. Costa, E.R. Cober, and M.J. Morrison, 2001 Early prediction of soybean
812 yield from canopy reflectance measurements. *Agronomy Journal* 93 (6):1227-1234.

813 Marti, J., J. Bort, G. Slafer, and J. Araus, 2007 Can wheat yield be assessed by early
814 measurements of normalized difference vegetation index? *Annals of applied biology* 150
815 (2):253-257.

816 Messina, C.D., T.R. Sinclair, G.L. Hammer, D. Curan, J. Thompson *et al.*, 2015 Limited-
817 transpiration trait may increase maize drought tolerance in the US Corn Belt. *Agronomy
818 Journal* 107 (6):1978-1986.

819 Meyer, K., and W.G. Hill, 1997 Estimation of genetic and phenotypic covariance functions for
820 longitudinal or ‘repeated’records by restricted maximum likelihood. *Livestock
821 Production Science* 47 (3):185-200.

822 Mistele, B., and U. Schmidhalter, 2008 Spectral measurements of the total aerial N and biomass
823 dry weight in maize using a quadrilateral-view optic. *Field Crops Research* 106 (1):94-
824 103.

825 Morales, N., N.S. Kaczmar, N. Santantonio, M.A. Gore, L.A. Mueller *et al.*, 2020 ImageBreed:
826 open-access plant breeding web–database for image-based phenotyping. *The Plant
827 Phenome Journal* 3 (1):e20004.

828 Mutanga, O., and A.K. Skidmore, 2004 Narrow band vegetation indices overcome the saturation
829 problem in biomass estimation. *International journal of remote sensing* 25 (19):3999-
830 4014.

831 Natarajan, S., J. Basnayake, X. Wei, and P. Lakshmanan, 2019 High-throughput phenotyping of
832 indirect traits for early-stage selection in sugarcane breeding. *Remote Sensing* 11
833 (24):2952.

834 Oliveira, D., D. Lourenco, S. Tsuruta, I. Misztal, D. Santos *et al.*, 2018 Reaction norm for
835 yearling weight in beef cattle using single-step genomic evaluation. *Journal of animal
836 science* 96 (1):27-34.

837 Olivoto, T., and A.D.C. Lúcio, 2020 metan: An R package for multi-environment trial analysis.
838 *Methods in Ecology and Evolution* 11 (6):783-789.

839 Petsoulas, C., E. Evangelou, A. Tsitouras, V. Aschonitis, A. Kargiotidou *et al.*, 2022 Spectral
840 Reflectance Indices as a High Throughput Selection Tool in a Sesame Breeding Scheme.
841 *Remote Sensing* 14 (11):2629.

842 Prabhakara, K., W.D. Hively, and G.W. McCarty, 2015 Evaluating the relationship between
843 biomass, percent groundcover and remote sensing indices across six winter cover crop
844 fields in Maryland, United States. *International journal of applied earth observation and*
845 *geoinformation* 39:88-102.

846 Prasad, B., B.F. Carver, M.L. Stone, M. Babar, W.R. Raun *et al.*, 2007a Genetic analysis of
847 indirect selection for winter wheat grain yield using spectral reflectance indices. *Crop*
848 *Science* 47 (4):1416-1425.

849 Prasad, B., B.F. Carver, M.L. Stone, M. Babar, W.R. Raun *et al.*, 2007b Potential use of spectral
850 reflectance indices as a selection tool for grain yield in winter wheat under great plains
851 conditions. *Crop Science* 47 (4):1426-1440.

852 Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, E.V. Lukina *et al.*, 2001 In-season prediction
853 of potential grain yield in winter wheat using canopy reflectance. *Agronomy Journal* 93
854 (1):131-138.

855 Ray, I. M., Pierce, C. A., & Currier, C. G. (2012). Registration of 'NuMex Bill Melton' Alfalfa
856 for Variable-Soil-Moisture Environments. *Journal of Plant Registrations*, 6(2), 137–140.
857 <https://doi.org/10.3198/jpr2011.10.0561crc>

858 Reynolds, M., P. CS, and S. ASI, M. Vargas, and AG Condon, 2007. Evaluating potential
859 genetic grains in wheat associated with stress-adaptive trait expression in elite genetic
860 resources under drought and heat stress. *Crop Science* 47:172-189.

861 Reynolds, M., S. Rajaram, and K. Sayre, 1999 Physiological and genetic changes of irrigated
862 wheat in the post-green revolution period and approaches for meeting projected global
863 demand. *Crop Science* 39 (6):1611-1621.

864 Riday, H., and E.C. Brummer, 2005 Heterosis in a broad range of alfalfa germplasm. *Crop*
865 *Science* 45 (1):8-17.

866 Sandhu, K.S., P.D. Mihalyov, M.J. Lewien, M.O. Pumphrey, and A.H. Carter, 2021 Combining
867 genomic and phenomic information for predicting grain protein content and grain yield in
868 spring wheat. *Frontiers in plant science* 12:613300.

869 Santana, D.C., M.F. Cotrim, M.S. Flores, F.H.R. Baio, L.S. Shiratsuchi *et al.*, 2021 UAV-based
870 multispectral sensor to measure variations in corn as a function of nitrogen topdressing.
871 *Remote Sensing Applications: Society and Environment* 23:100534.

872 Schaeffer, L.R., 2004 Application of random regression models in animal breeding. *Livestock*
873 *Production Science* 86 (1-3):35-45.

874 Schlemmer, M.R., D.D. Francis, J. Shanahan, and J.S. Schepers, 2005 Remotely measuring
875 chlorophyll content in corn leaves with differing nitrogen levels and relative water
876 content. *Agronomy Journal* 97 (1):106-112.

877 Serrano, L., I. Filella, and J. Penuelas, 2000 Remote sensing of biomass and yield of winter
878 wheat under different nitrogen supplies. *Crop Science* 40 (3):723-731.

879 Speidel, S.E., 2011 Random regression models for the prediction of days to finish in beef cattle.
880 Colorado State University.

881 Strucken, E.M., Y.C. Laurenson, and G.A. Brockmann, 2015 Go with the flow—biology and
882 genetics of the lactation cycle. *Frontiers in Genetics* 6:118.

883 Sun, J., J.E. Rutkoski, J.A. Poland, J. Crossa, J.L. Jannink *et al.*, 2017 Multitrait, random
884 regression, or simple repeatability model in high-throughput phenotyping data improve

885 genomic prediction for wheat grain yield. *The plant genome* 10
886 (2):plantgenome2016.2011.0111.

887 Thenkabail, P.S., R.B. Smith, and E. De Pauw, 2000 Hyperspectral vegetation indices and their
888 relationships with agricultural crop characteristics. *Remote sensing of Environment* 71
889 (2):158-182.

890 VanRaden, P.M., 2008 Efficient methods to compute genomic predictions. *Journal of dairy*
891 *science* 91 (11):4414-4423.

892 Yan, W., and M.S. Kang, 2002 *GGE biplot analysis: A graphical tool for breeders, geneticists,*
893 *and agronomists*: CRC press.

894 Yan, W., M. S. Kang, B. Ma, S. Woods, and P. L. Cornelius, 2007 GGE biplot vs. AMMI
895 analysis of genotype-by-environment data. *Crop science* 47(2), 643-653.

896 Yang, M., M.A. Hassan, K. Xu, C. Zheng, A. Rasheed *et al.*, 2020 Assessment of water and
897 nitrogen use efficiencies through UAV-based multispectral phenotyping in winter wheat.
898 *Frontiers in plant science* 11:927.

899

900 Fig 1. Heritability of Phenotypic indices in the Ithaca, NY trial.

901

902 Fig 2. Heritability of Phenotypic indices in (a) Normal Irrigation (NMSU trial), (b) Summer
903 termination (NMSU trial)

904

905 Fig 3. Phenotypic correlation of different phenotypic indices with biomass yield (a) Harvest year
906 2020 and (b) Harvest year 2021

907

908 Fig 4. Genetic correlation of different phenotypic indices with harvest biomass yield for Ithaca,
909 NY trial (“Helper” field). X-axis represents Growing degree days (GDD) and Y-axis represents
910 genetic correlation.

911

912 Fig 5. Genetic correlation of different phenotypic indices with final harvest biomass yield under
913 normal irrigation condition of NMSU trial. X-axis represents Growing degree days (GDD) and
914 Y-axis represents genetic correlation.

915

916 Fig 6. Genetic correlation of different phenotypic indices with final harvest biomass yield under
917 summer irrigation termination condition of NMSU trial. X-axis represents Growing degree days
918 (GDD) and Y-axis represents genetic correlation.

919 Fig. 7. The “mean vs. stability” view of the genotype main effects plus genotype environment
920 interaction (GGE) biplot based on genotype environment yield data of 36 alfalfa genotypes
921 evaluated in six environments (First, Second and Third Harvest of 2020, and First, Second and
922 Third Harvest of 2021) of Helper field in Ithaca, NY.

923 Fig. 8. The “mean vs. stability” view of the genotype main effects plus genotype environment
924 interaction (GGE) biplot based on genotype environment yield data of 24 alfalfa genotypes and
925 one covariate (G4) evaluated in nine environments - NICut3, NICut4, NICut5, NICut6, and NICut7
926 of normal irrigation and SITcut3, SITcut4, SITcut5 and SITcut7 of summer irrigation
927 termination of NMSU.

928 Fig. 9. Growth curves derived from GNDVI of five stable and five unstable alfalfa cultivars
929 across five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis
930 indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using
931 Random Regression model with third order of Legendre polynomials.
932

933 Fig. 10. Growth curves derived from NDVI of five stable and five unstable alfalfa cultivars
934 across five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis
935 indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using
936 Random Regression model with third order of Legendre polynomials.
937

938 Fig. 11. Growth curves derived from NDRE of five stable and five unstable alfalfa cultivars
939 across five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis
940 indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using
941 Random Regression model with third order of Legendre polynomials.
942

943 Fig. 12. Growth curves derived from NIR of five stable and five unstable alfalfa cultivars across
944 five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis indicates
945 Growing degree days (GDD) and Y-axis indicates breeding values estimated using Random
946 Regression model with third order of Legendre polynomials.
947

948 Fig. 13. Growth curves derived from Ratio of five stable and five unstable alfalfa cultivars across
949 five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis indicates
950 Growing degree days (GDD) and Y-axis indicates breeding values estimated using Random
951 Regression model with third order of Legendre polynomials.
952

953 Fig. 14. Growth curves derived from GNDVI of five stable and five unstable alfalfa cultivars
954 across nine different harvest seasons of the NMSU trial. X-axis indicates Growing degree days
955 (GDD) and Y-axis indicates breeding values estimated using Random Regression model with
956 third order of Legendre polynomials.
957

958 Fig. 15. Growth curves derived from NDVI of five stable and five unstable alfalfa cultivars
959 across nine different harvest seasons of the NMSU trial. X-axis indicates Growing degree days
960 (GDD) and Y-axis indicates breeding values estimated using Random Regression model with
961 third order of Legendre polynomials.
962

963 Fig. 16. Growth curves derived from NIR of five stable and five unstable alfalfa cultivars across
964 nine different harvest seasons of the NMSU trial. X-axis indicates Growing degree days (GDD)
965 and Y-axis indicates breeding values estimated using Random Regression model with third order
966 of Legendre polynomials.
967

968 Fig. 17. Growth curves derived from Ratio during the growing season of five stable and five
969 unstable alfalfa cultivars across nine different harvest seasons of the NMSU trial. X-axis
970 indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using
971 Random Regression model with third order of Legendre polynomials.
972

973 Fig. 18. Growth curves derived from GNDVI of five stable alfalfa cultivars across five different
974 harvest seasons of normal irrigation and four different harvest seasons of early termination.
975 The left-hand side figures and right-hand side figures represents growth curves of stable cultivars
976 in normal irrigation condition (NI) and summer irrigation termination condition (SIT)
977 respectively.
978

979 Fig. 19. Growth curves derived from GNDVI of five unstable alfalfa cultivars across five
980 different harvest seasons of normal irrigation and four different harvest seasons of early
981 termination. The left-hand side figures and right-hand side figures represents growth curves of
982 stable cultivars in normal irrigation condition (NI) and summer irrigation termination condition
983 (SIT) respectively.
984

985 Fig. 20. Growth curves derived from NDVI of five stable alfalfa cultivars across five different
986 harvest seasons of normal irrigation and four different harvest seasons of early termination. The
987 left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
988 normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.
989 Fig. 21. Growth curves derived from NDVI of five unstable alfalfa cultivars across five different
990 harvest seasons of normal irrigation and four different harvest seasons of early termination. The
991 left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
992 normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.
993

994 Fig. 22. Growth curves derived from NIR of five stable alfalfa cultivars across five different
995 harvest seasons of normal irrigation and four different harvest seasons of early termination. The
996 left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
997 normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.
998

999 Fig. 23. Growth curves derived from NIR of five unstable alfalfa cultivars across five different
1000 harvest seasons of normal irrigation and four different harvest seasons of early termination. The
1001 left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
1002 normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.
1003

1004 Fig. 24. Growth curves derived from Ratio of five stable alfalfa cultivars across five different
1005 harvest seasons of normal irrigation and four different harvest seasons of early termination. The
1006 left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
1007 normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.
1008

1009 Fig. 25. Growth curves derived from Ratio of five unstable alfalfa cultivars across five different
1010 harvest seasons of normal irrigation and four different harvest seasons of early termination. The
1011 left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
1012 normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.
1013

Table 1. Correlation of variance of yield and variance of genetic merit estimated from random regression legendre polynomial (RRLP) model with VIs (GNDVI, NDVI, NDRE, NIR, and Ratio) of all cultivars across different environments of the Ithaca, NY trial at different time points of growing season.

Growing Degree Days (GDD)	GNDVI	NDVI	NDRE	NIR	Ratio
178.55	0.65*	0.67*	0.6*	0.68*	0.43*
218.55	0.64*	0.67*	0.61*	0.68*	0.43*
258.55	0.64*	0.67*	0.62*	0.68*	0.42*
298.55	0.63*	0.67*	0.64*	0.67*	0.42*
338.55	0.64*	0.65*	0.63*	0.66*	0.37
358.55	0.64*	0.65*	0.66*	0.66*	0.42*
378.55	0.65*	0.65*	0.67*	0.66*	0.42*
418.55	0.66*	0.63*	0.69*	0.65*	0.42*
438.55	0.66*	0.62*	0.69*	0.65*	0.42*
478.55	0.65*	0.61*	0.71*	0.66*	0.42*

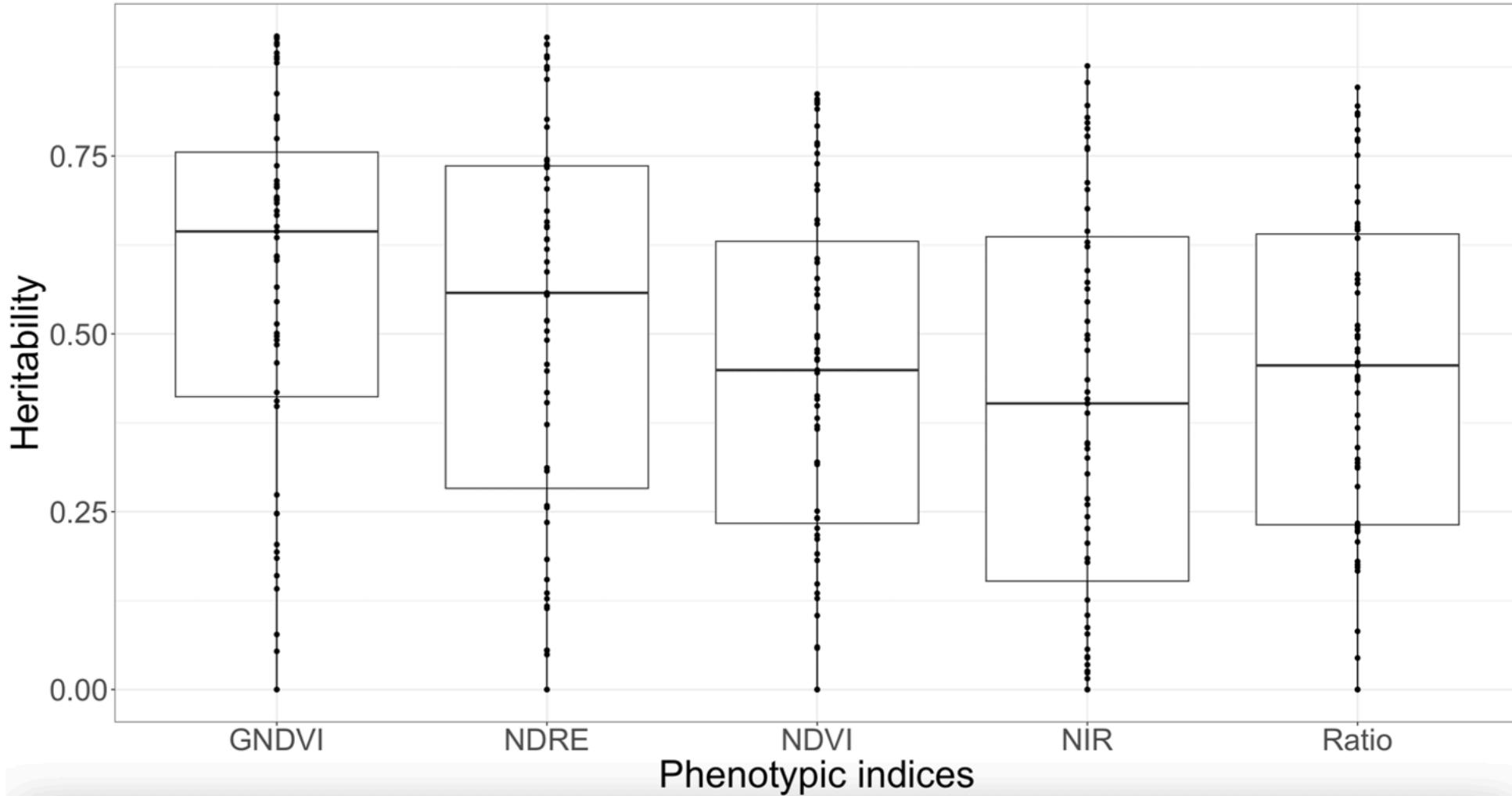
* indicates P-value < 0.05

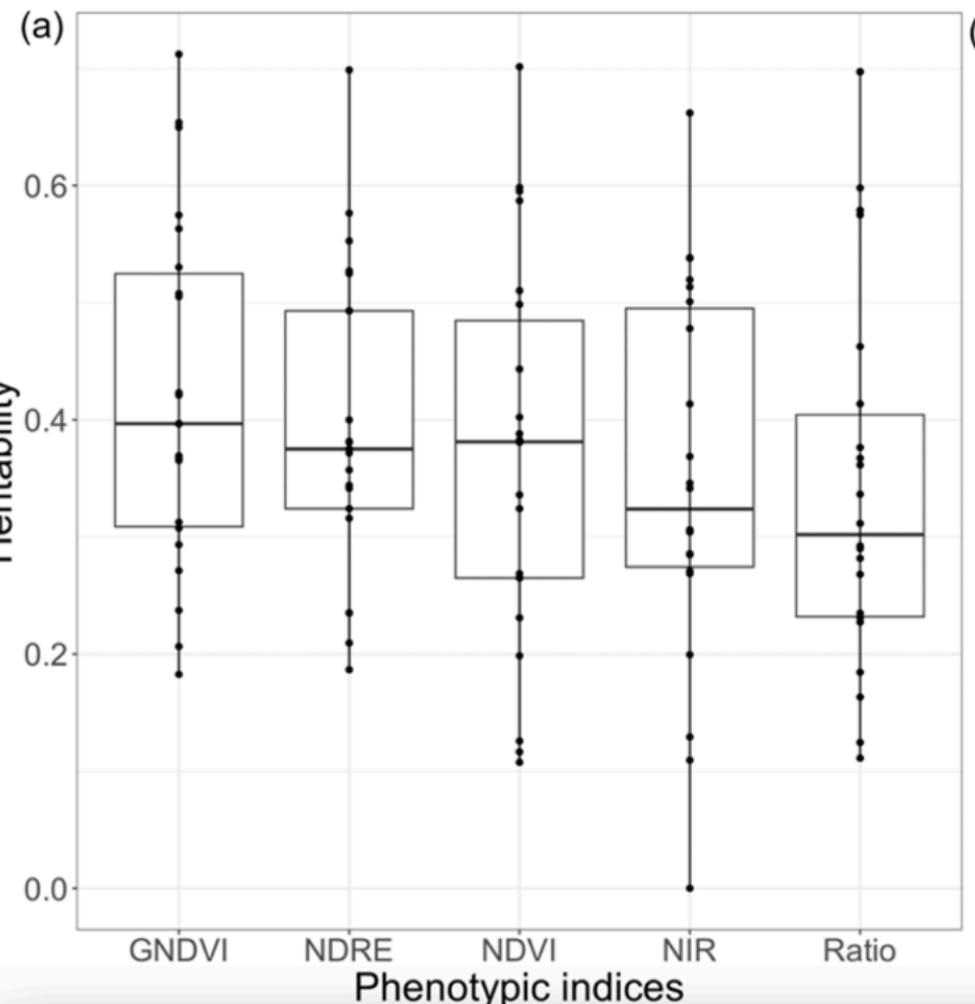
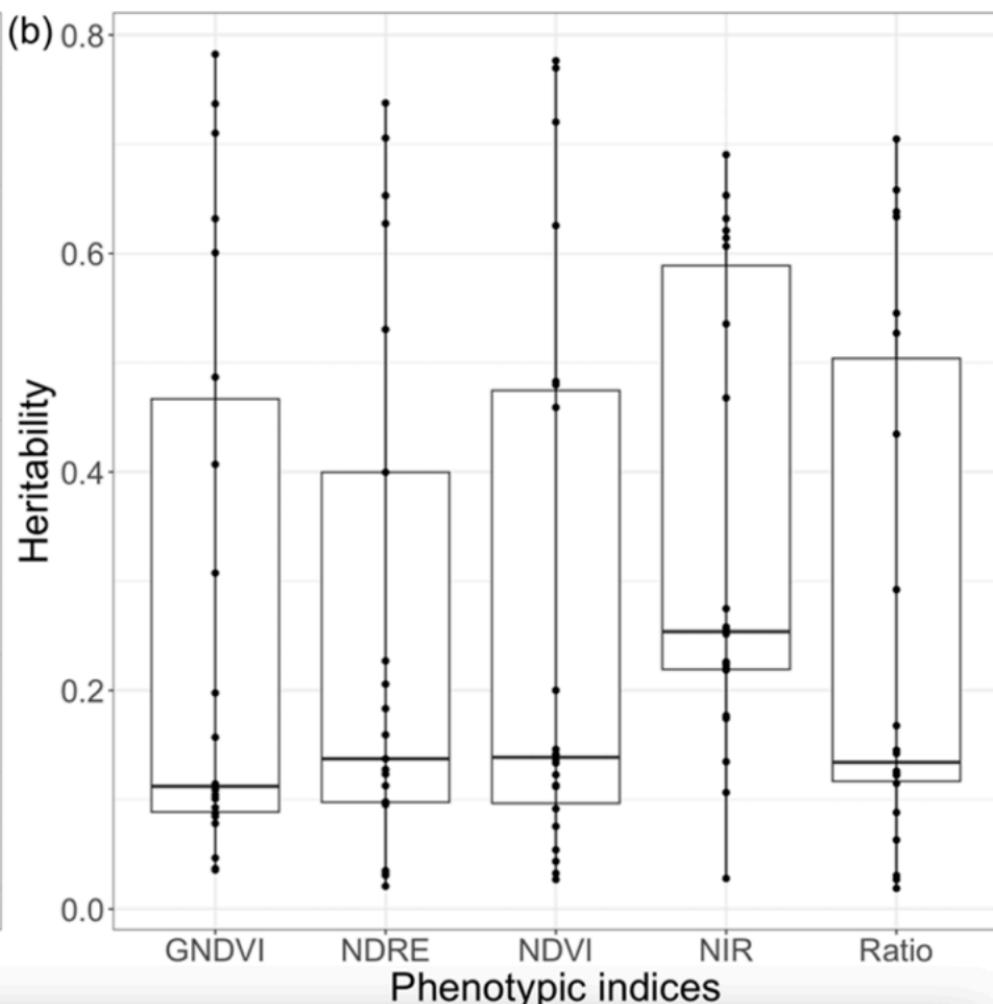
Table 2. Correlation of variance of yield and variance of genetic merit estimated from random regression legendre polynomial (RRLP) model with VIs (GNDVI, NDVI, NDRE, NIR, and Ratio) of all cultivars across different environments of the NMSU trial at different time points of growing season

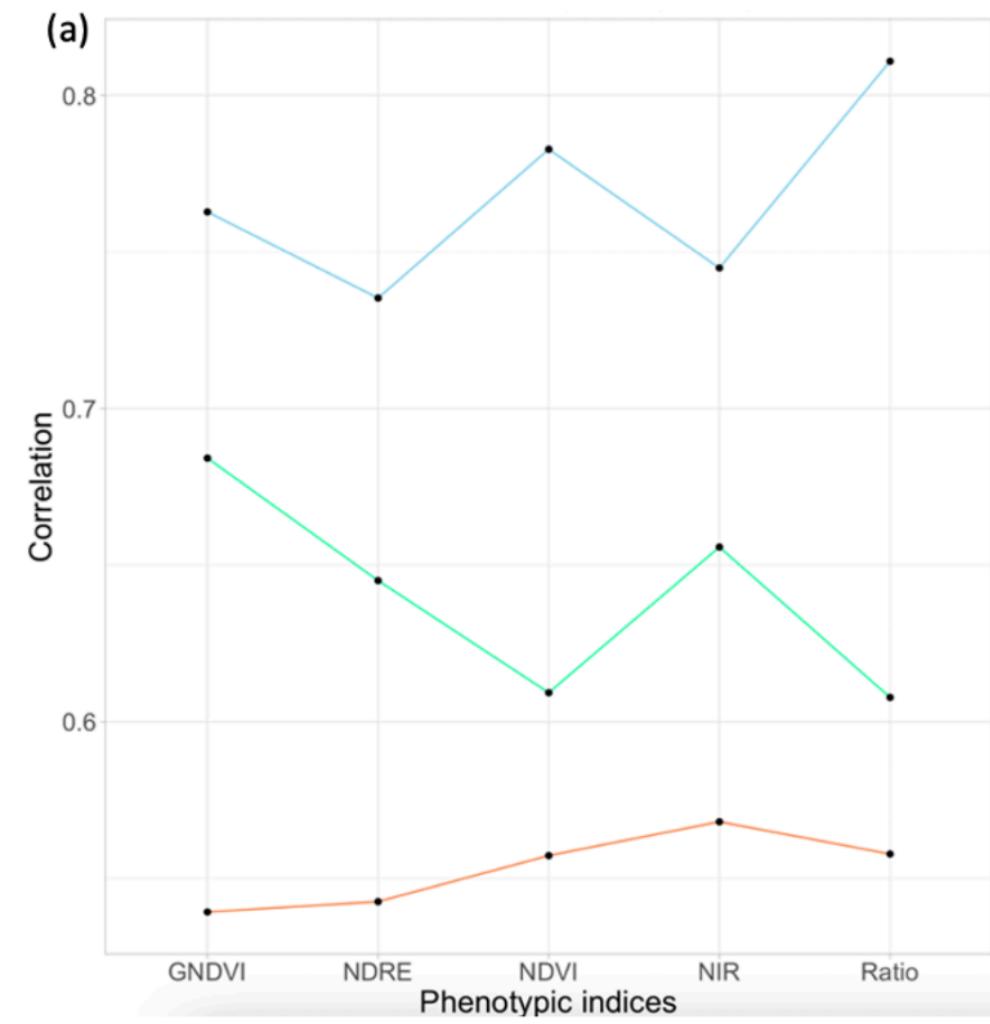
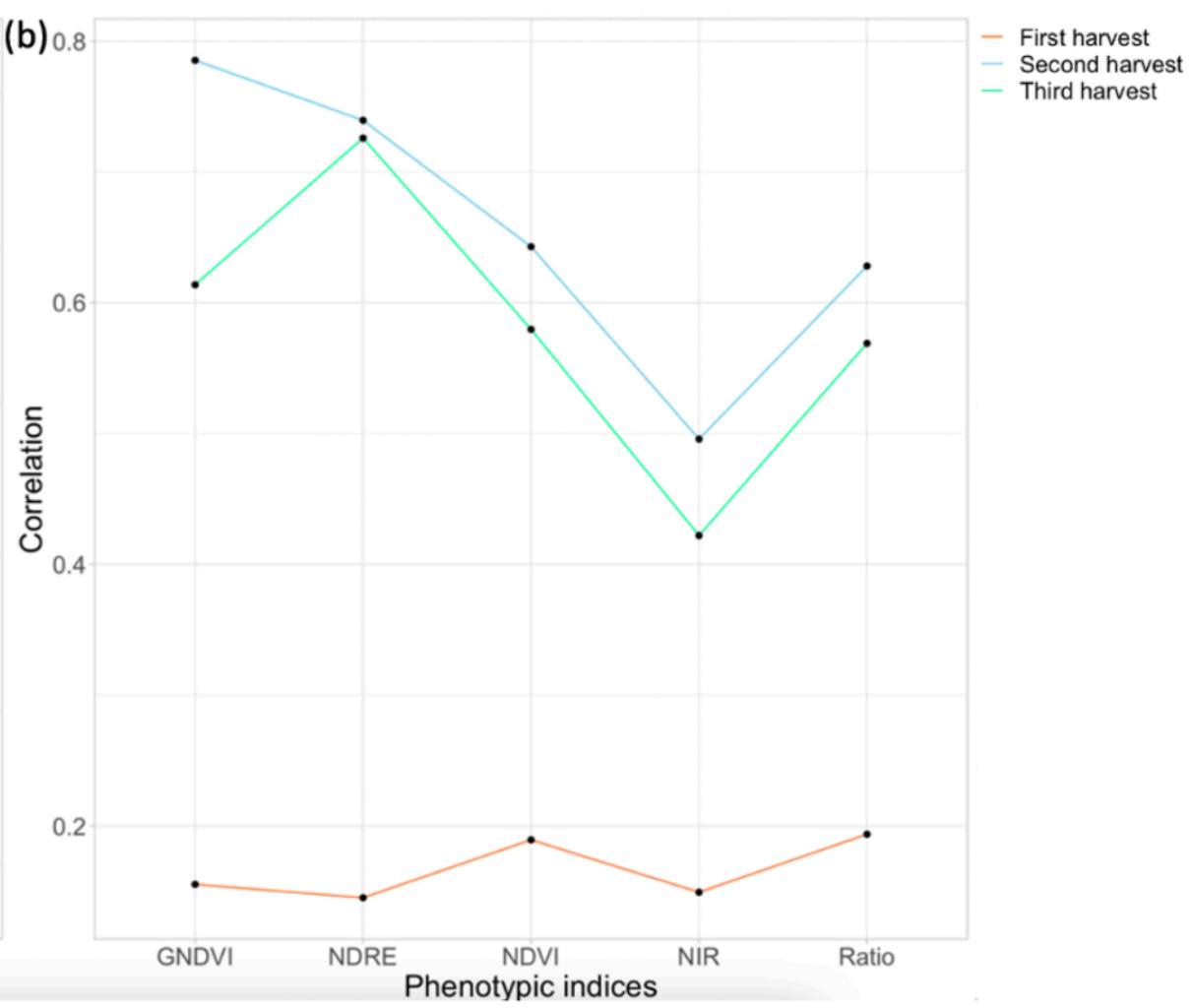
Growing Degree Days (GDD)	GNDVI	NDVI	NDRE	NIR	Ratio
342	0.19	0.27	0.16	0.68*	0.91*
402	0.2	0.28	0.18	0.69*	0.91*
462	0.22	0.3	0.2	0.7*	0.91*
522	0.24	0.33*	0.22	0.72*	0.92*
582	0.26	0.35*	0.25	0.73*	0.92*
642	0.29	0.38*	0.28	0.75*	0.92*
702	0.31*	0.4*	0.31	0.76*	0.92*
762	0.33*	0.42*	0.34*	0.77*	0.93*
822	0.35*	0.42*	0.35*	0.78*	0.93*
902	0.35*	0.44*	0.36*	0.79*	0.93*

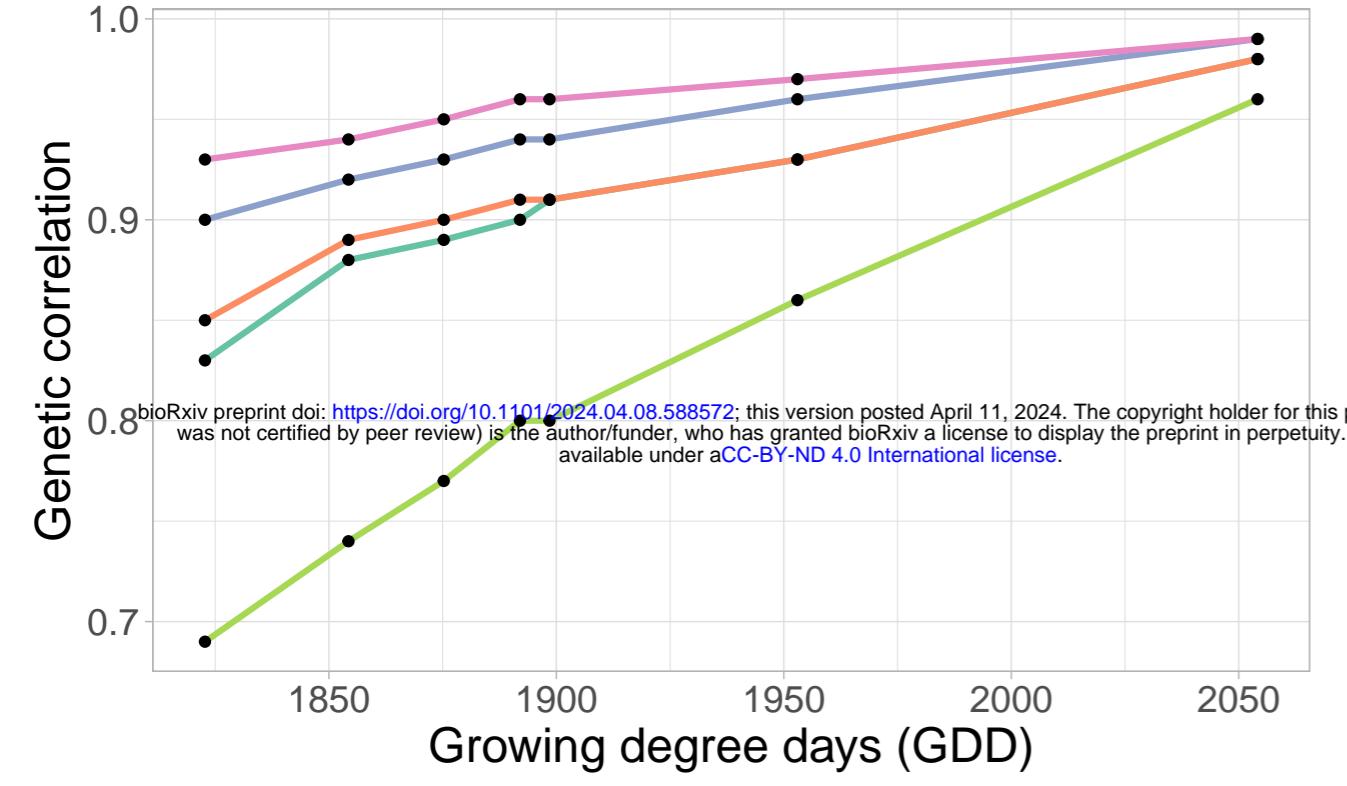
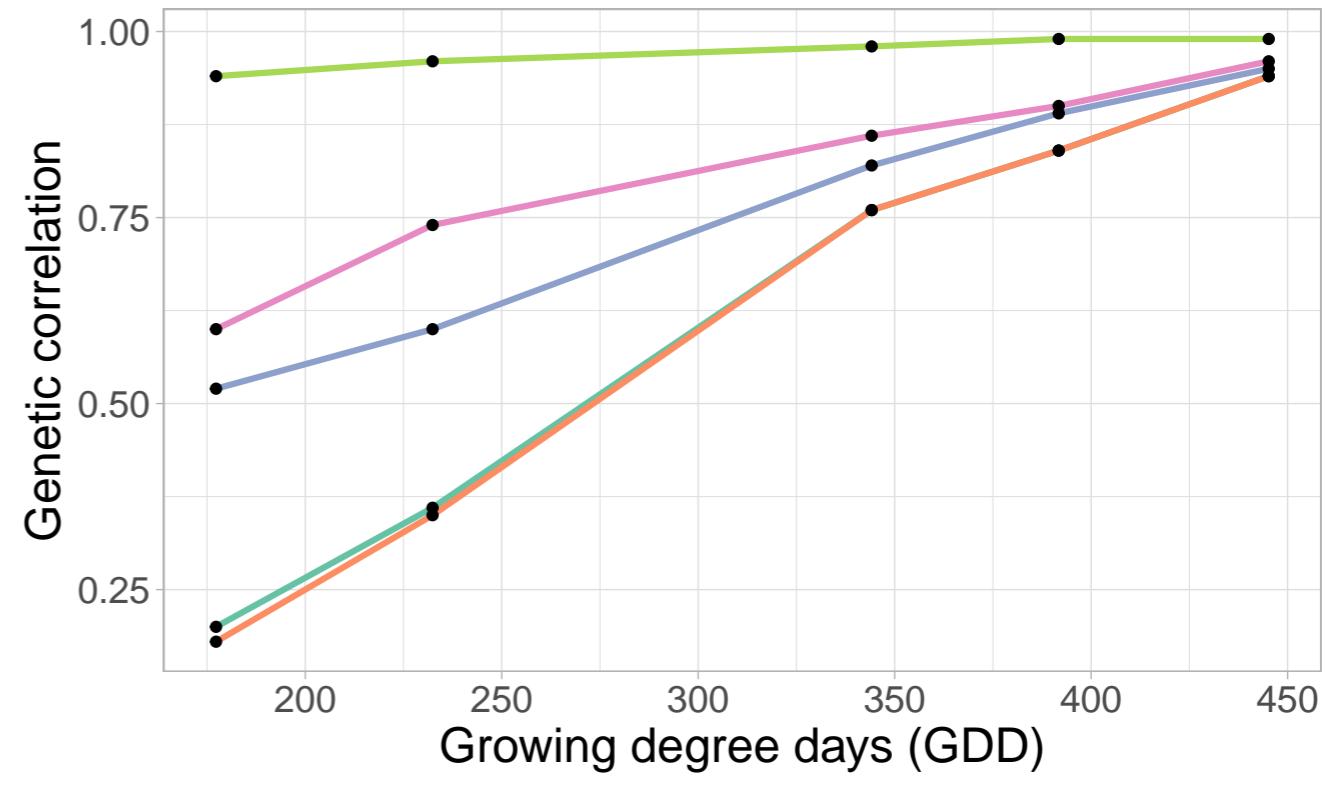
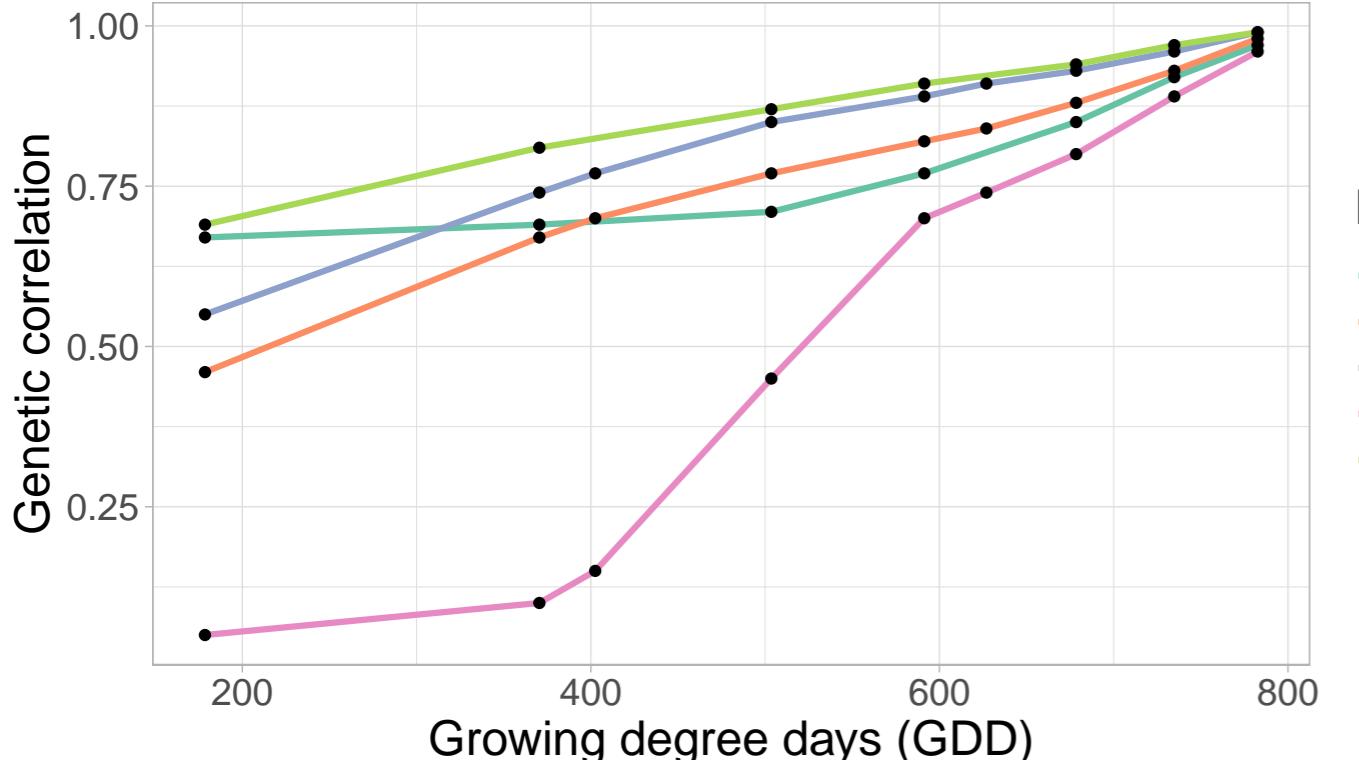
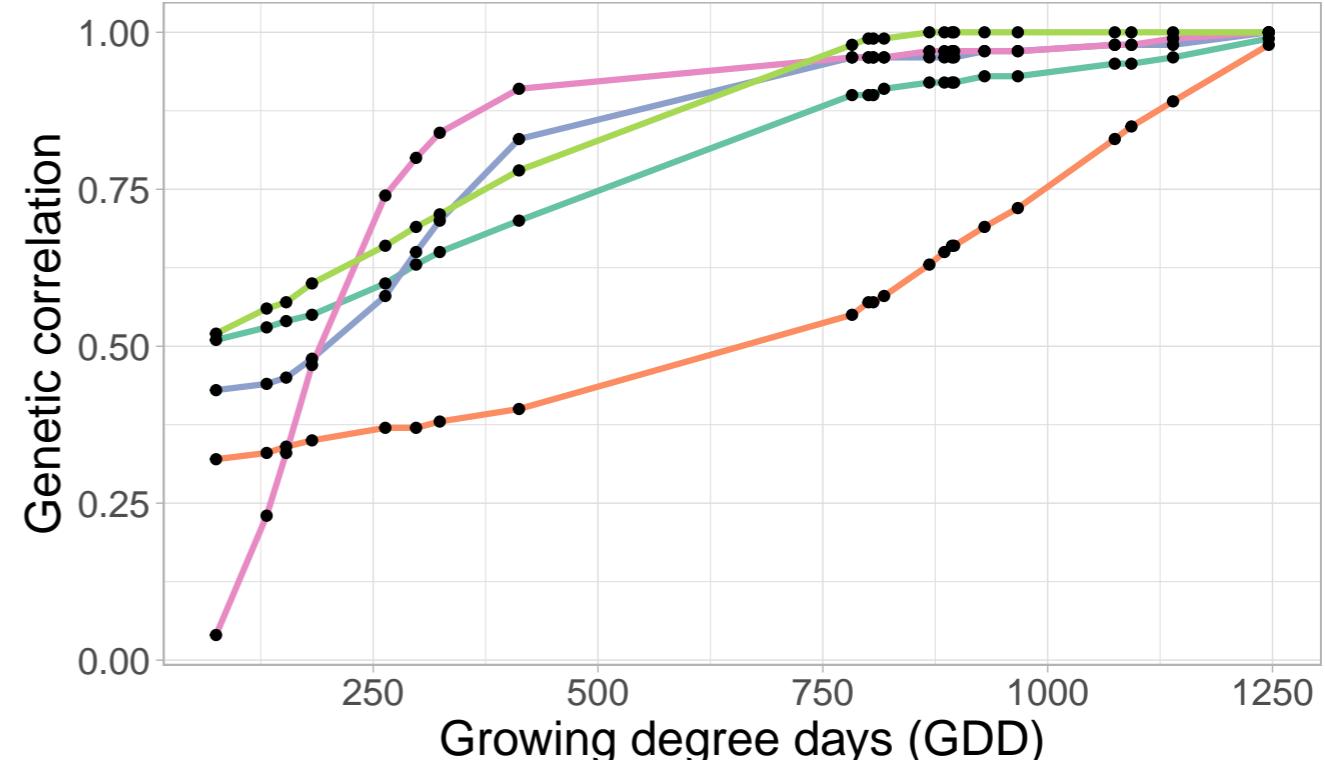
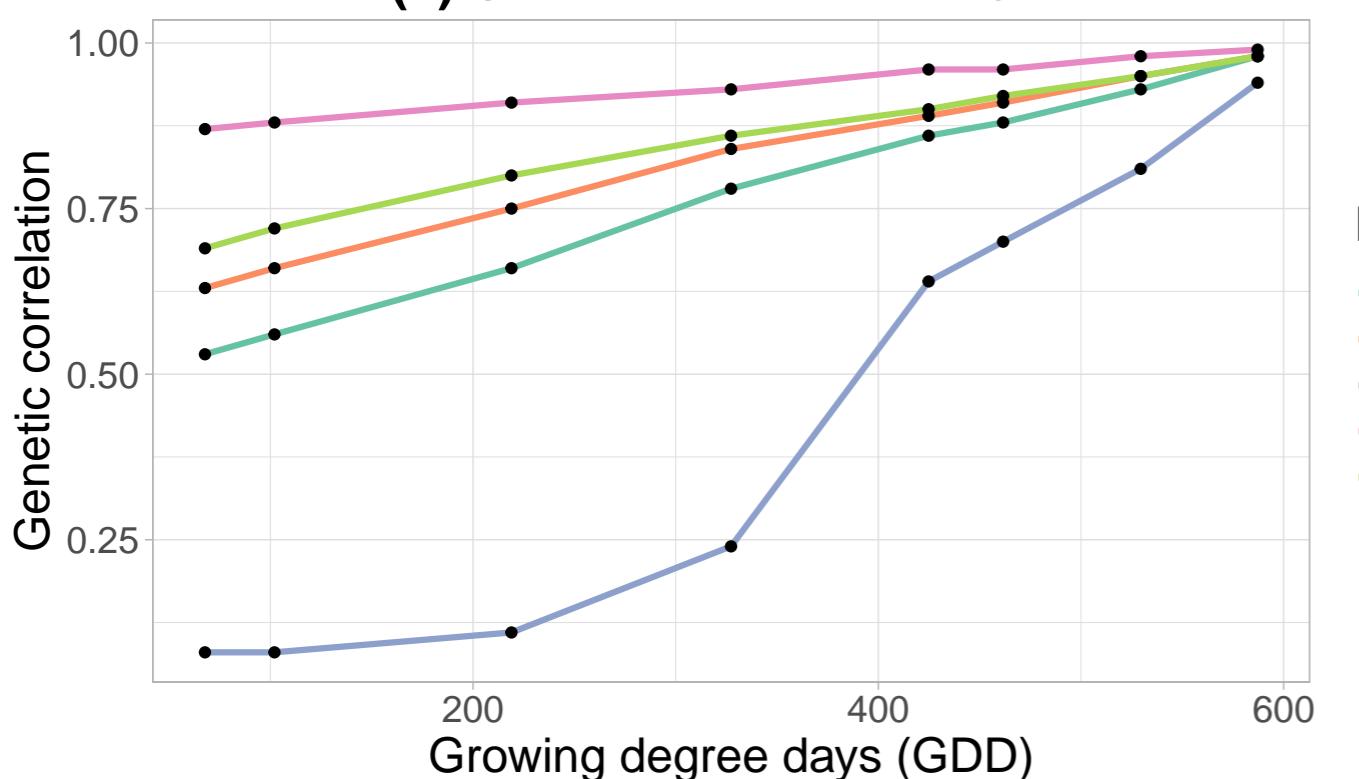
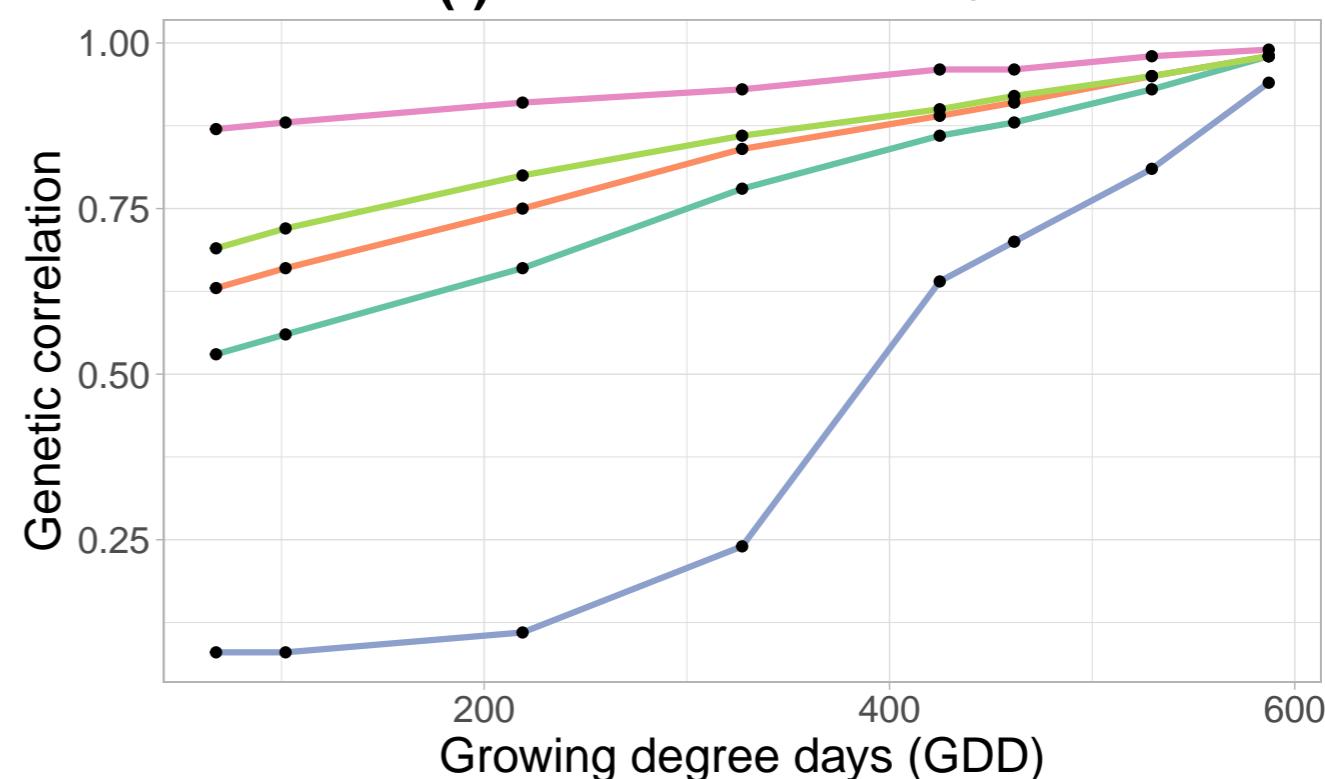
* indicates P-value < 0.05

Heritability of Phenotypic indices (Helper trial)

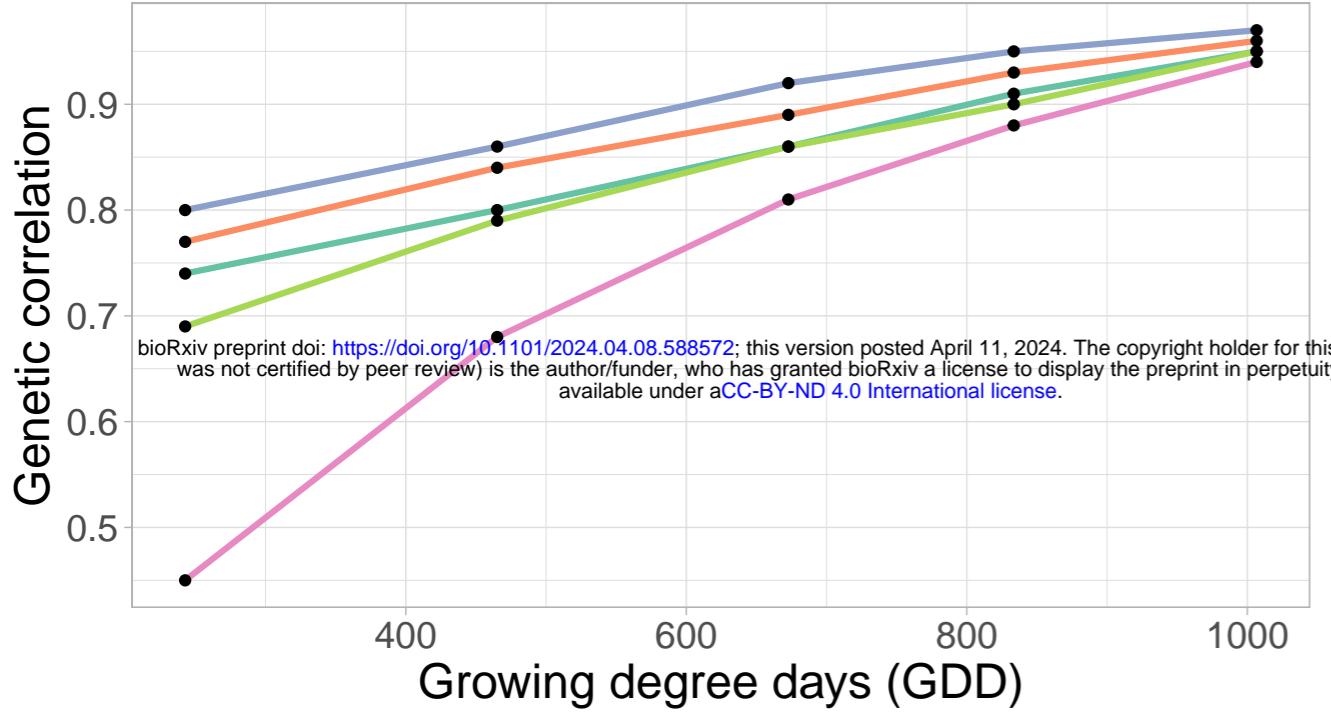




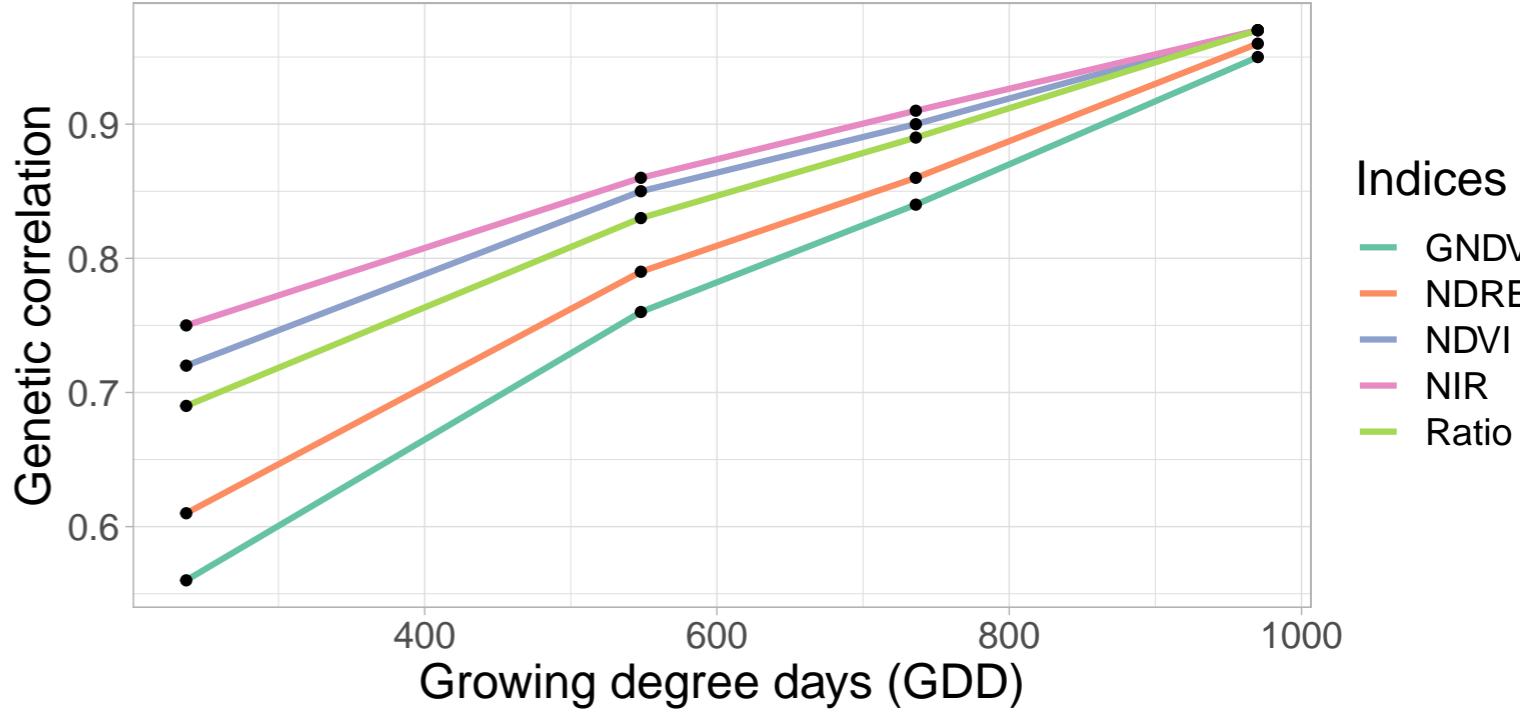


(a) First Harvest of 2020**(b) Second Harvest of 2020****(c) Third Harvest of 2020****(d) First Harvest of 2021****(e) Second Harvest of 2021****(f) Third Harvest of 2021**

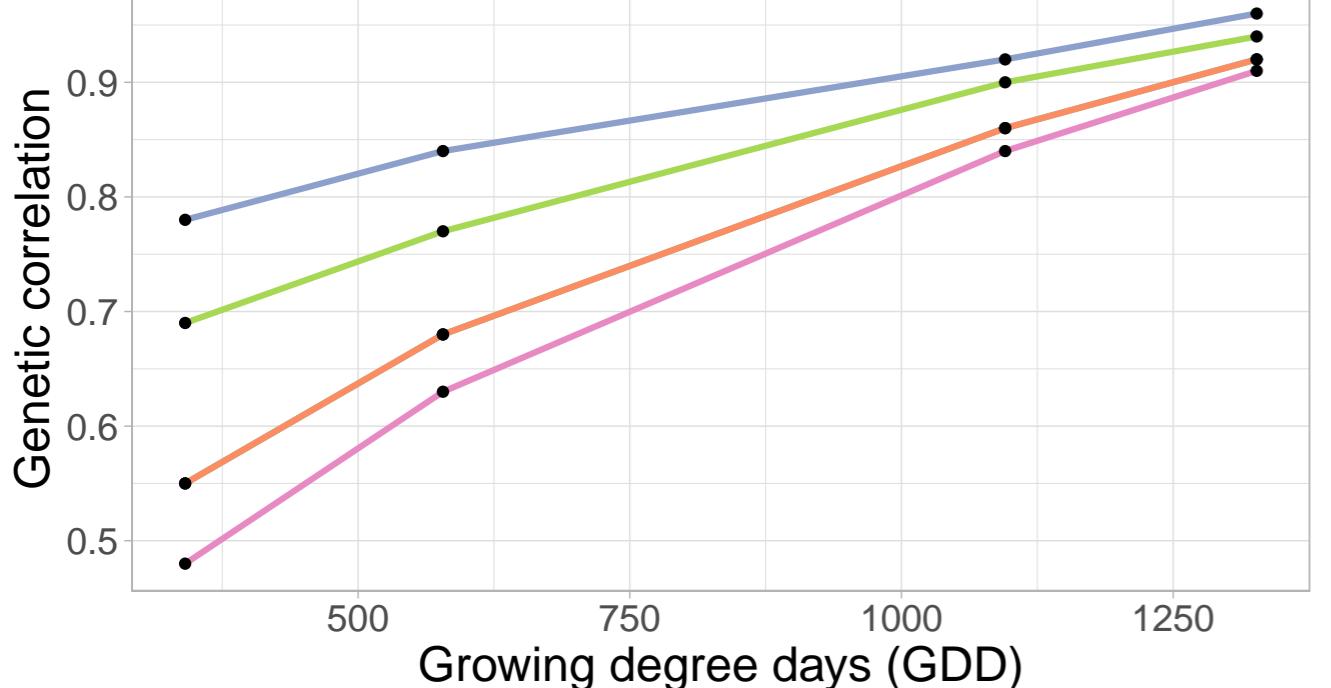
(a) May 28 to June 24 regrowth cycle of 2021 under normal irrigation



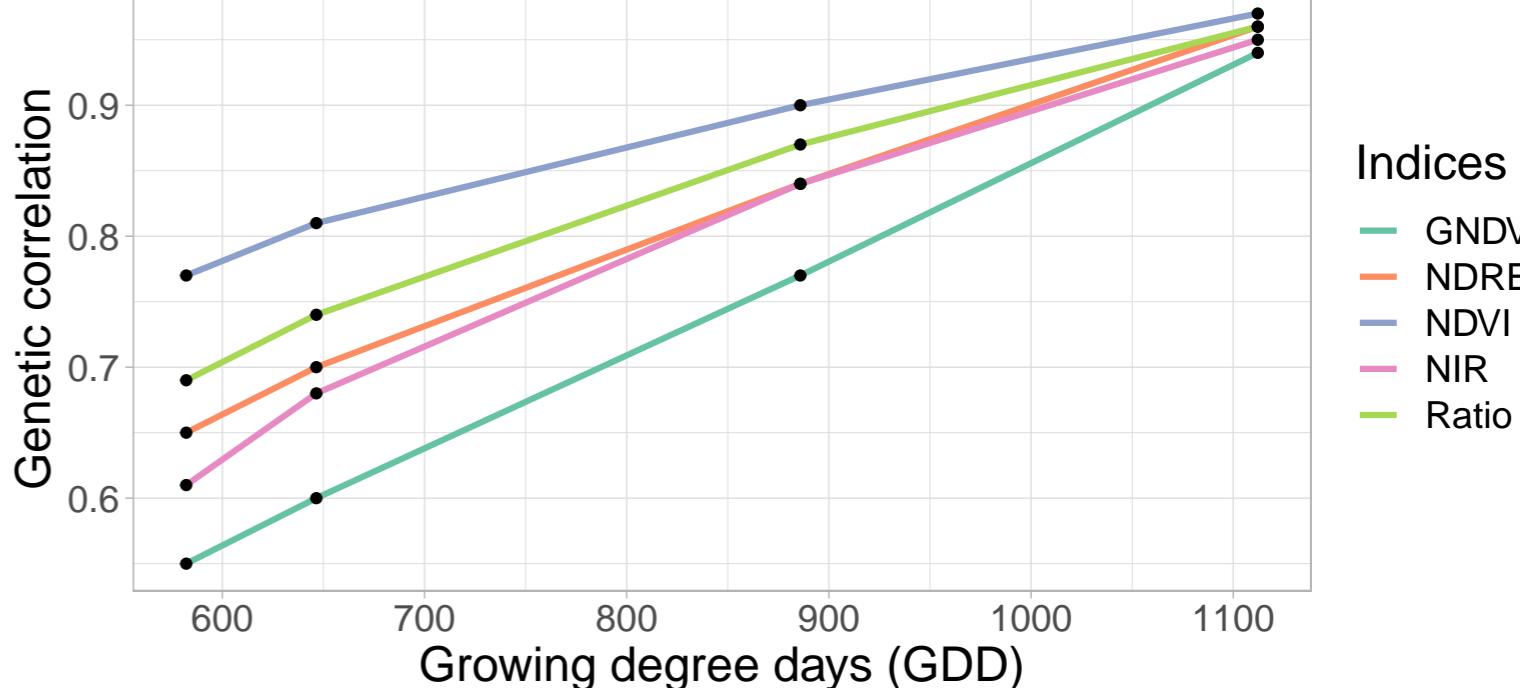
(b) June 25 to Jul 22 regrowth cycle of 2021 under normal irrigation



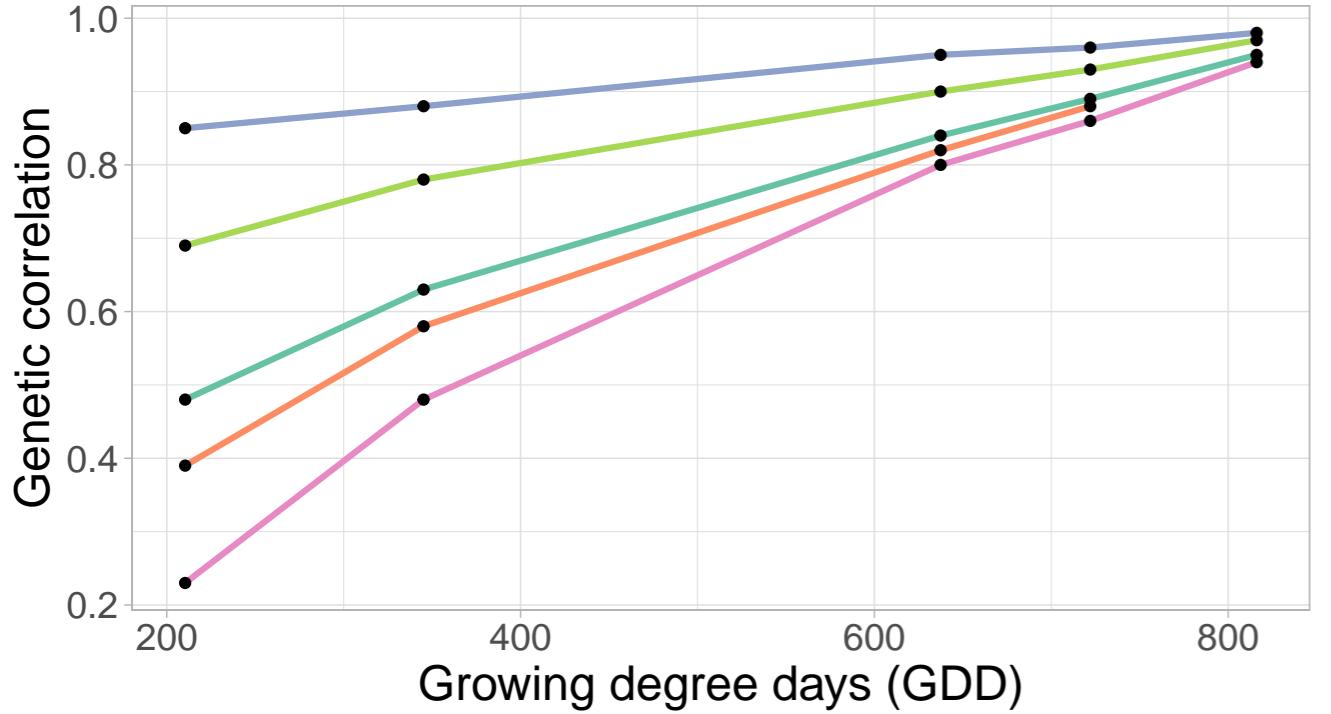
(c) July 23 to August 27 regrowth cycle of 2021 under normal irrigation



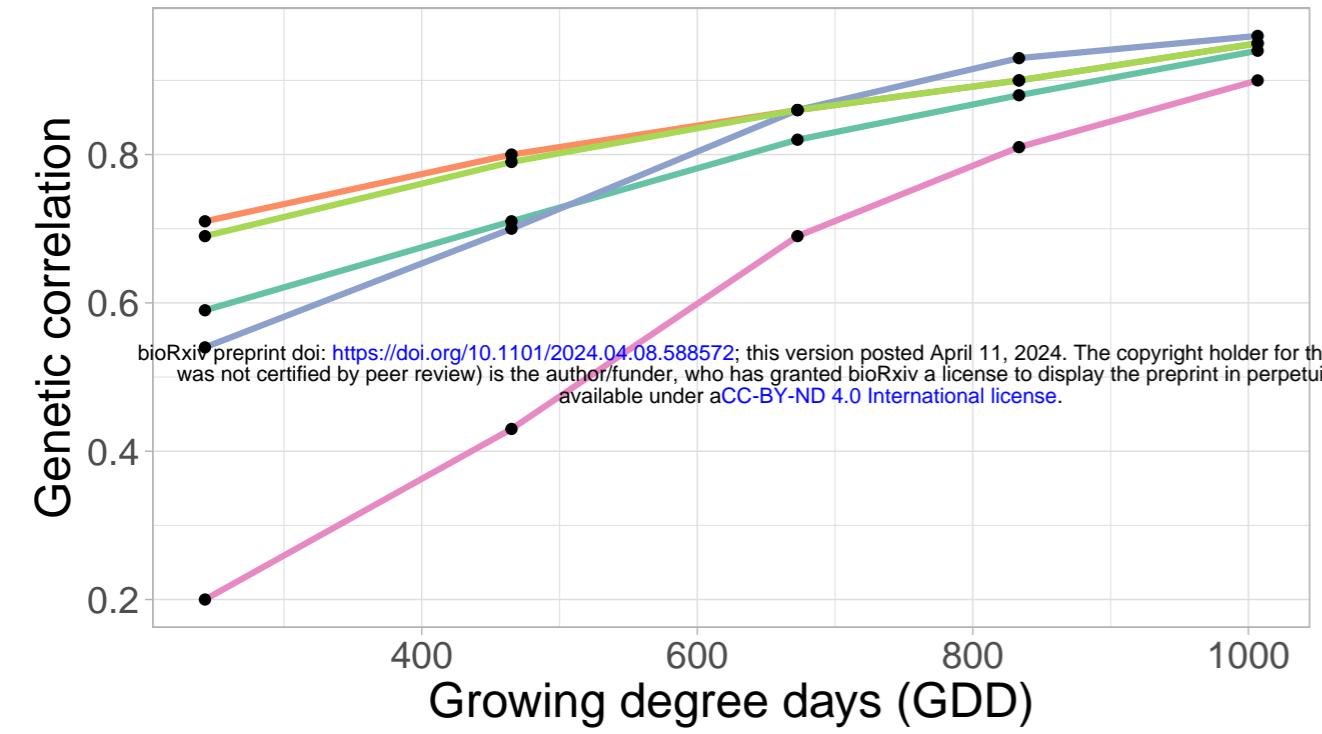
(d) August 28 to September 29 regrowth cycle of 2021 under normal irrigation



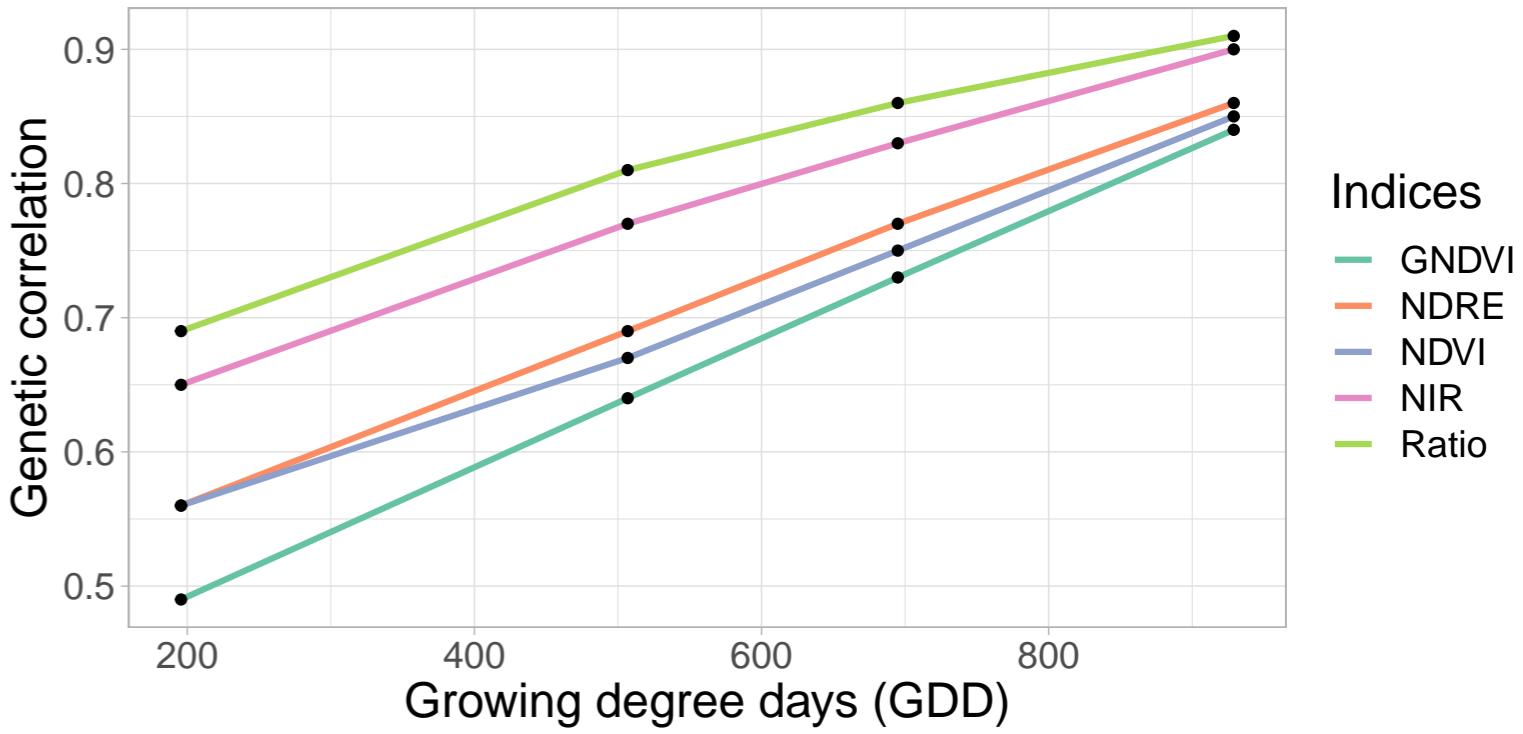
(e) September 30 to November 12 regrowth cycle of 2021 under normal irrigation



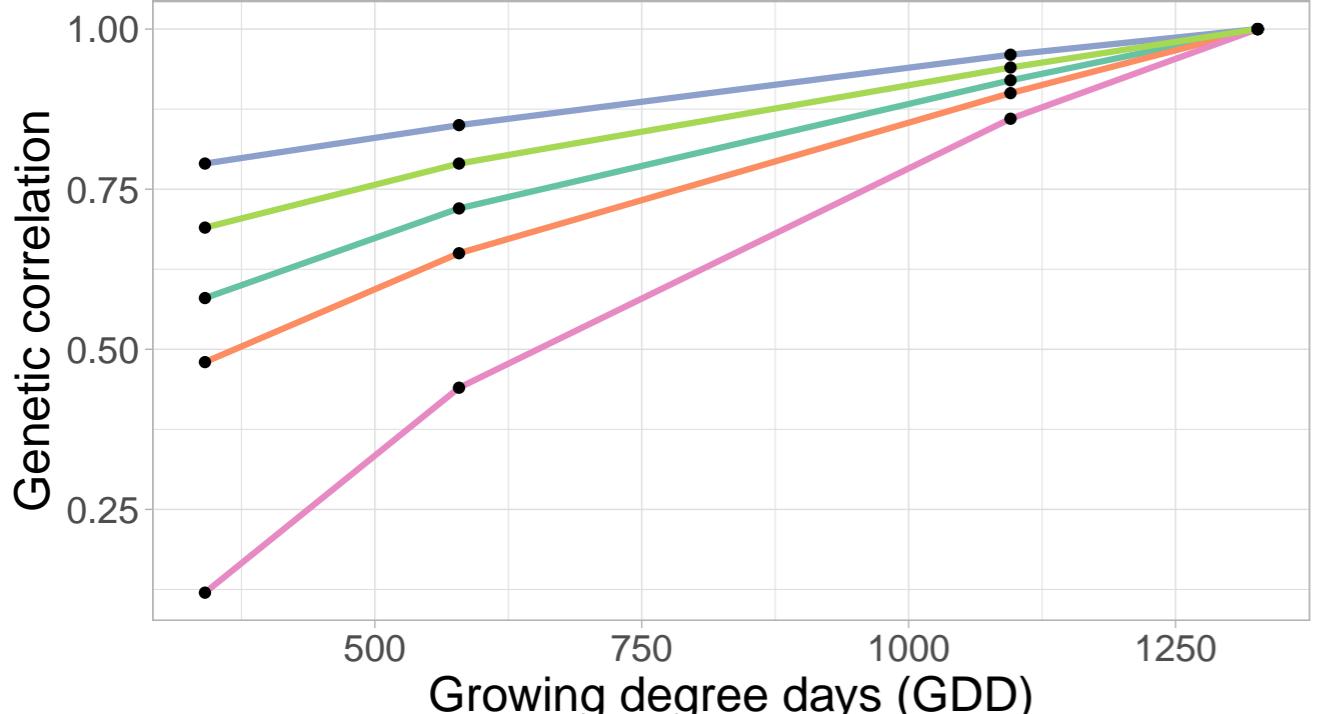
(a) May 28 to June 25 regrowth cycle of 2021 under summer irrigation termination



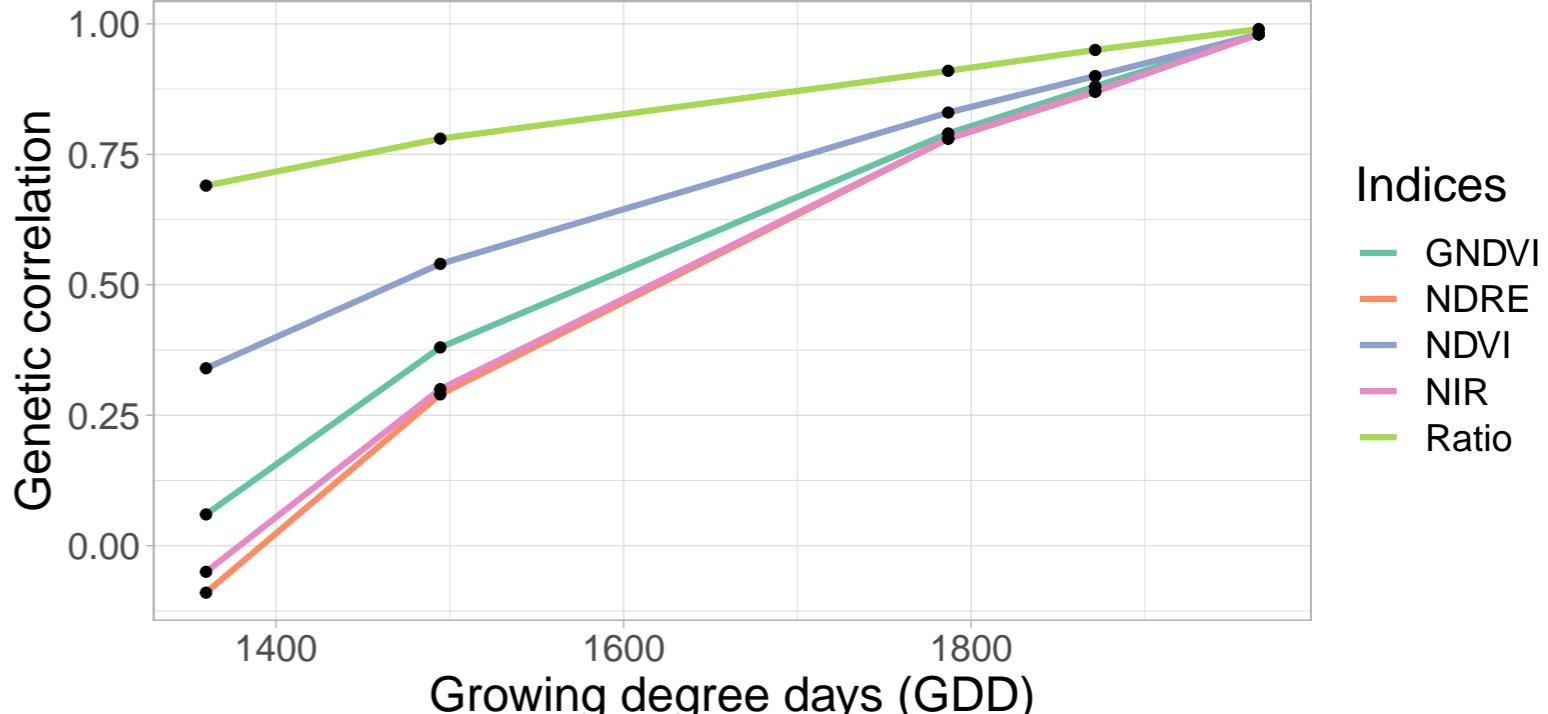
(b) June 26 to Jul 22 regrowth cycle of 2021 under summer irrigation termination



(c) July 23 to August 26 regrowth cycle of 2021 under summer irrigation termination



(d) August 27 to November 11 regrowth cycle of 2021 under summer irrigation termination

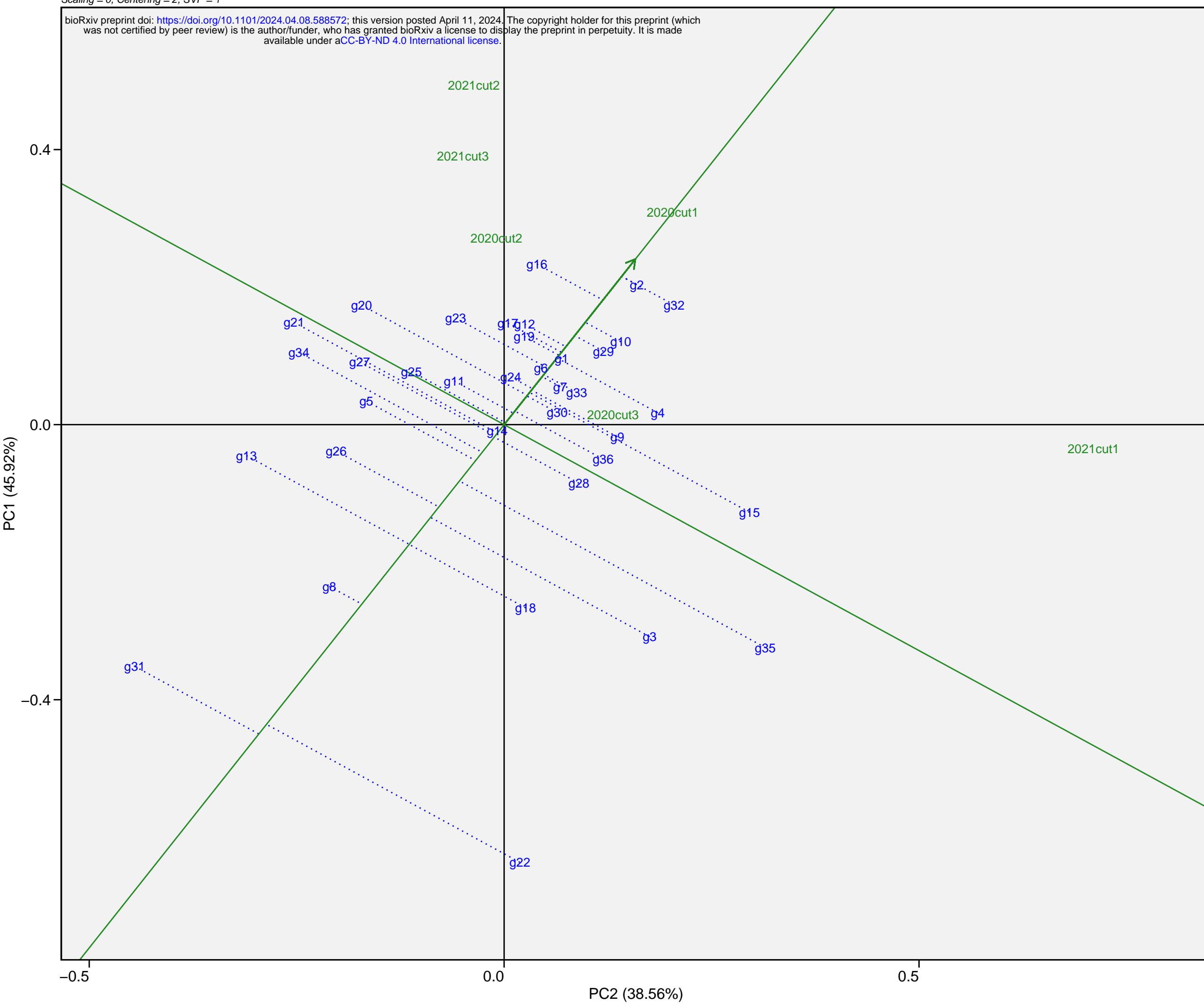


Mean vs. Stability

Scaling = 0, Centering = 2, SVP = 1

bioRxiv preprint doi: <https://doi.org/10.1101/2024.04.08.588572>; this version posted April 11, 2024.
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

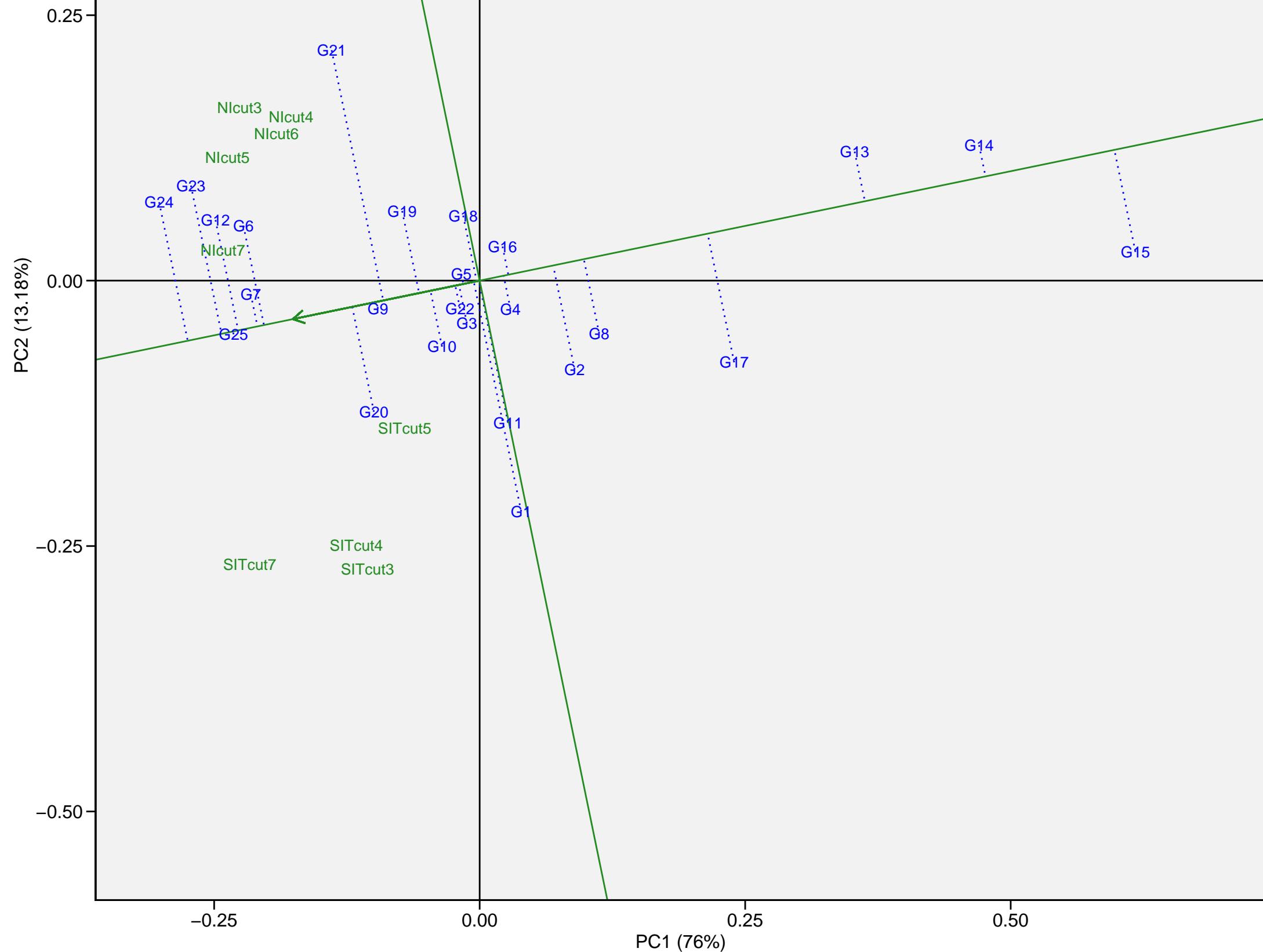
The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.



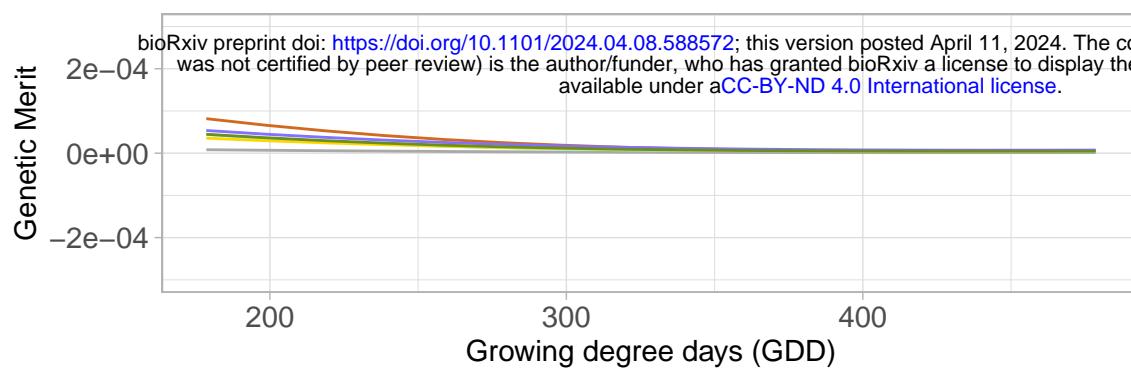
Mean vs. Stability

Scaling = 0, Centering = 2, SVP = 1

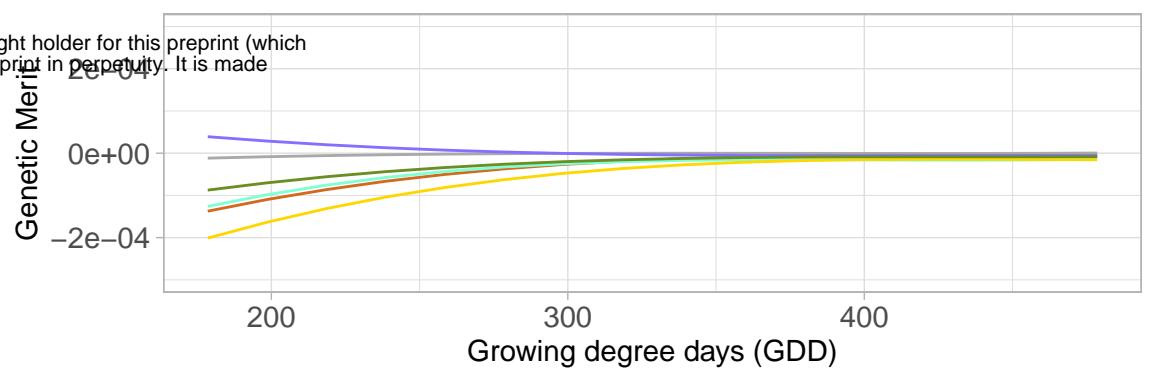
bioRxiv preprint doi: <https://doi.org/10.1101/2024.04.08.588572>; this version posted April 11, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.



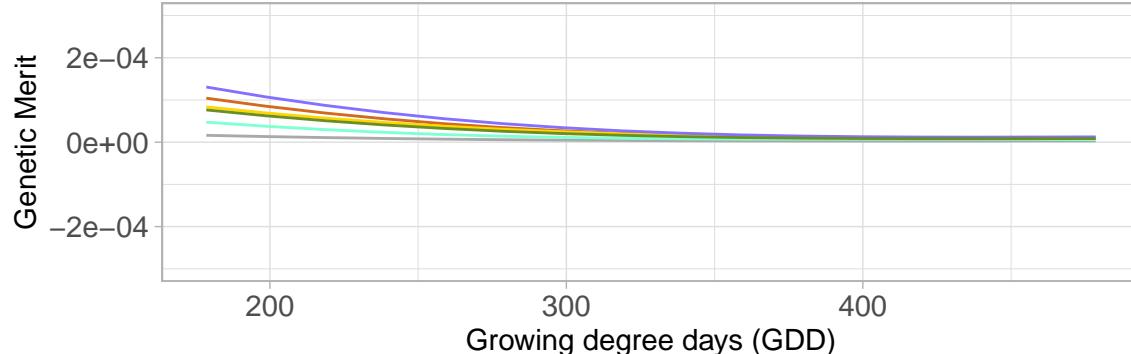
Stable line (g1)



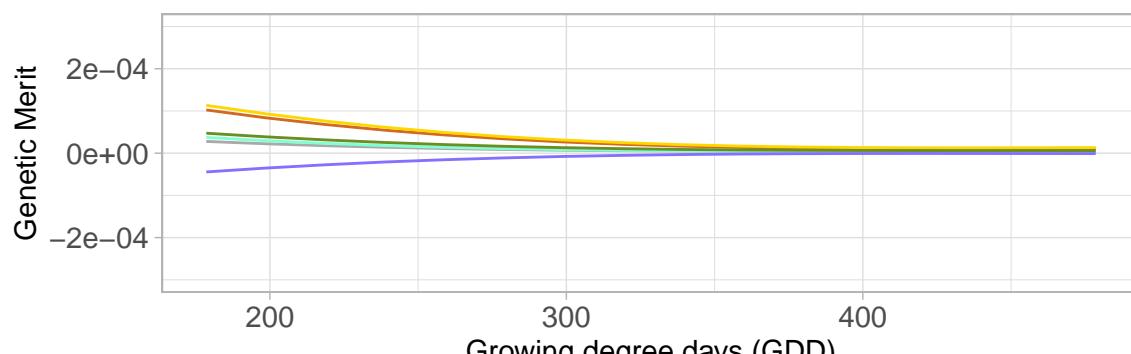
Unstable line (g3)



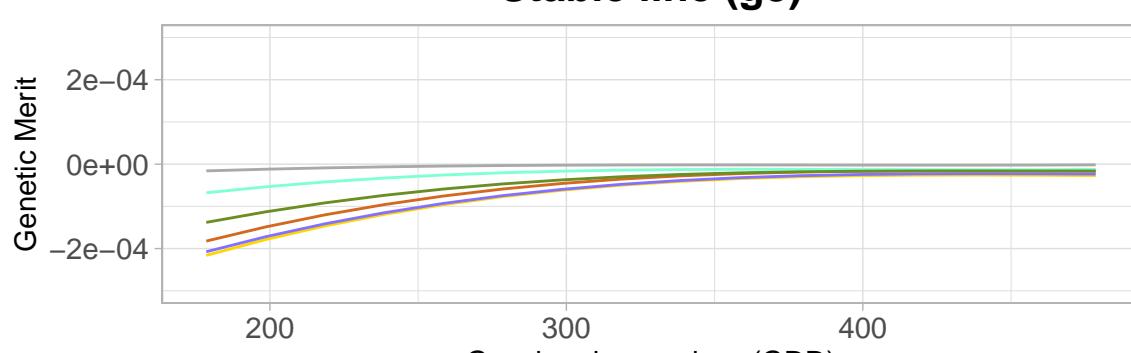
Stable line (g2)



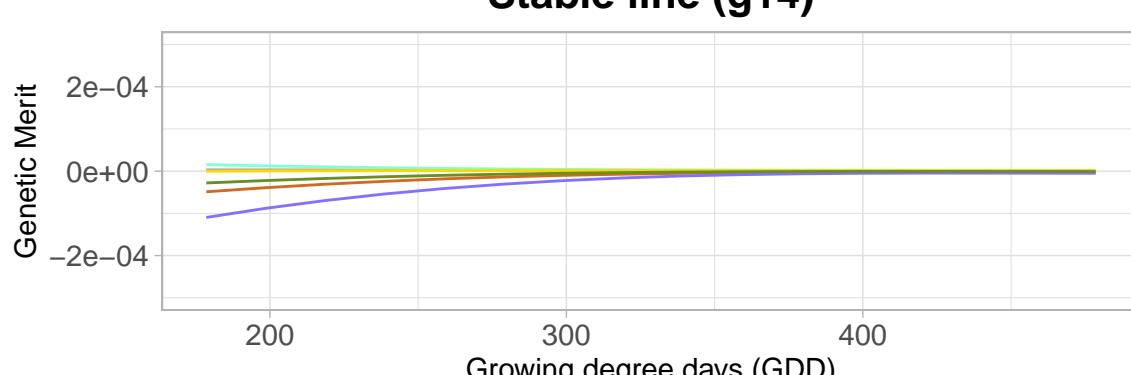
Stable line (g6)



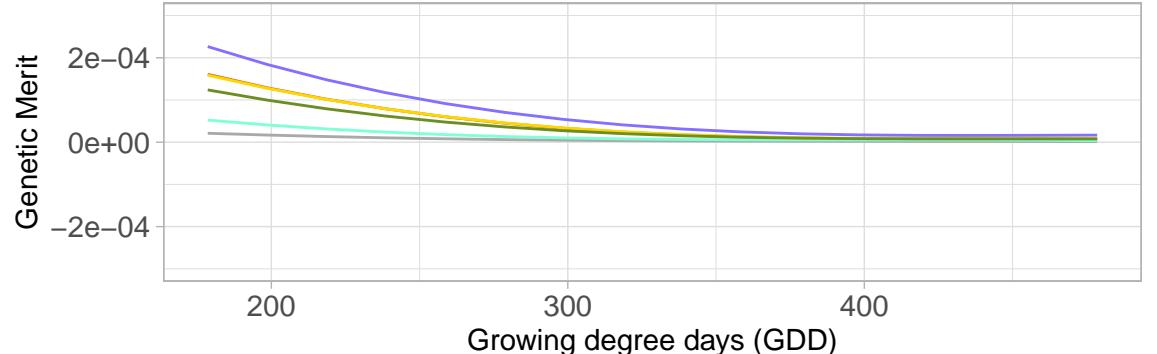
Stable line (g8)



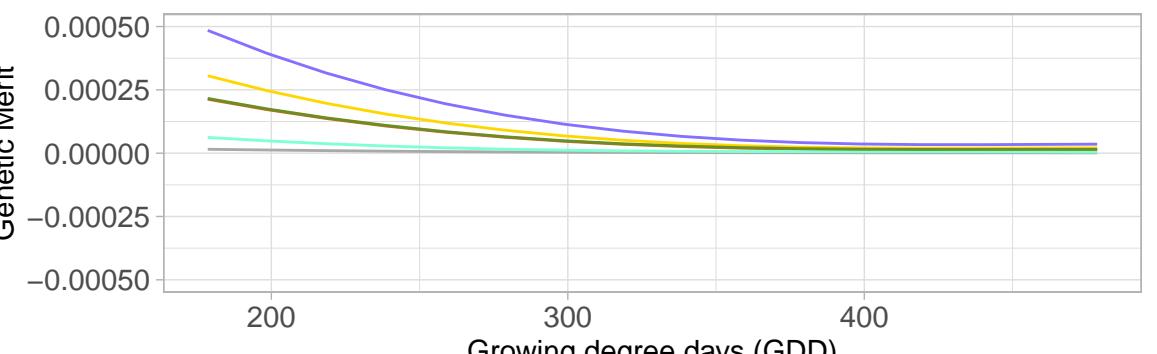
Stable line (g14)



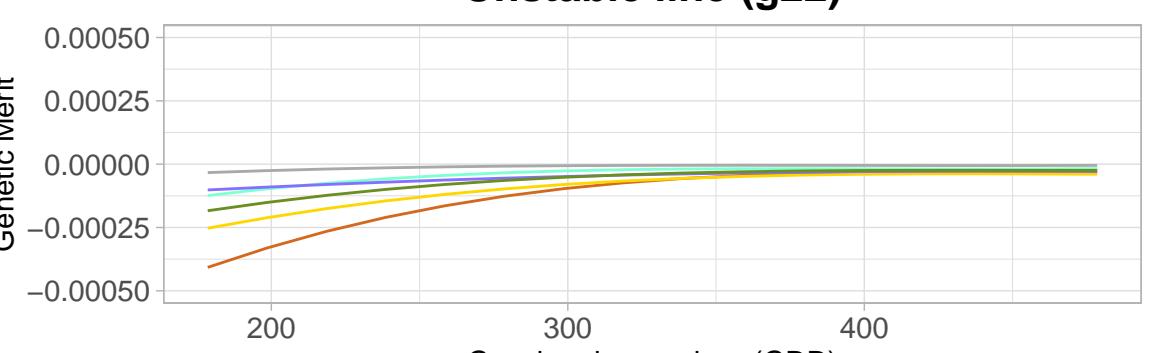
Unstable line (g13)



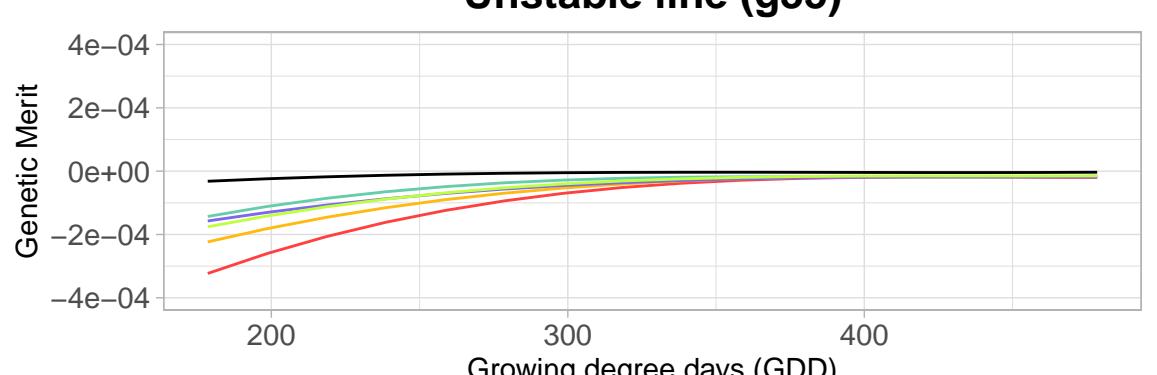
Unstable line (g21)



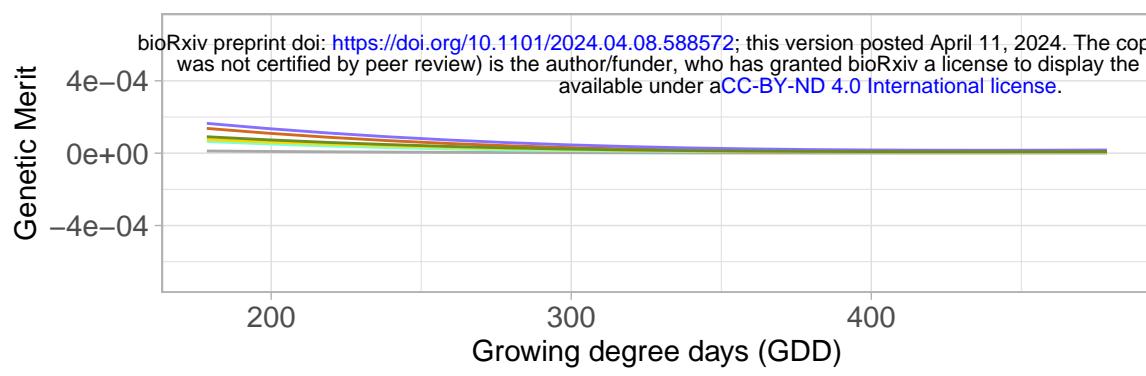
Unstable line (g22)



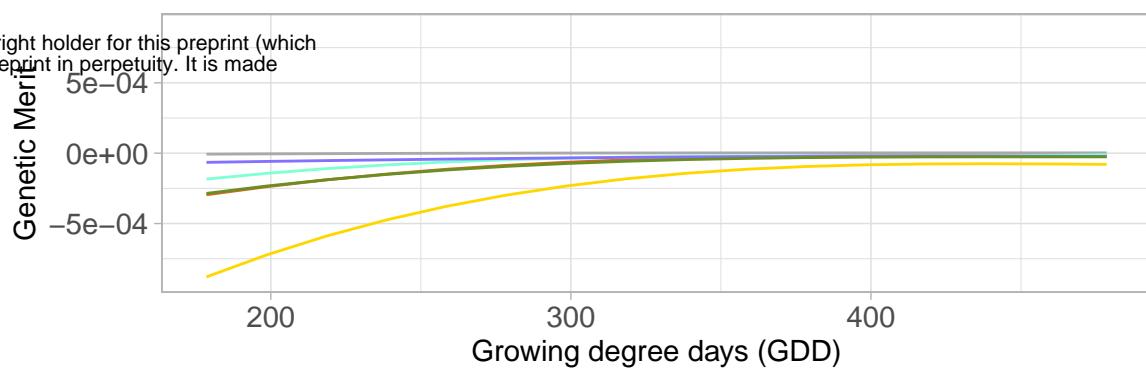
Unstable line (g35)



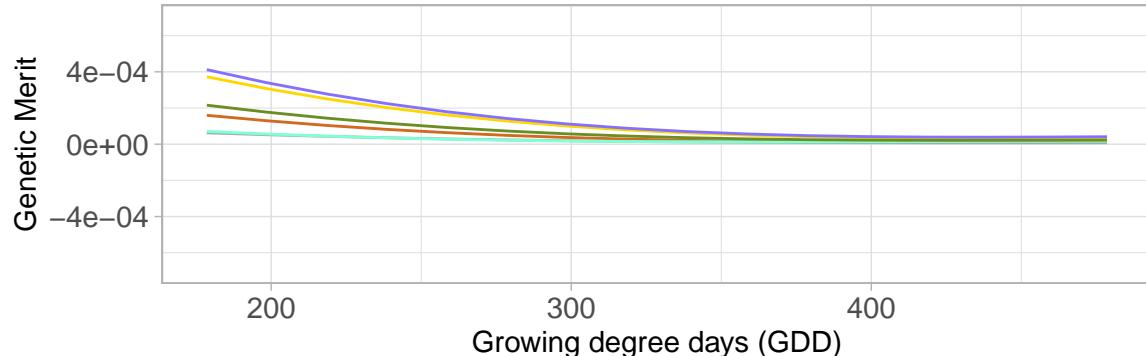
Stable line (g1)



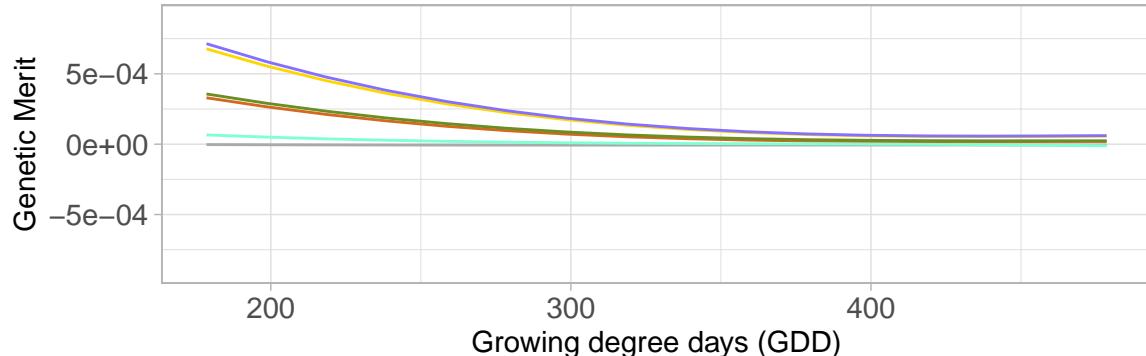
Unstable line (g3)



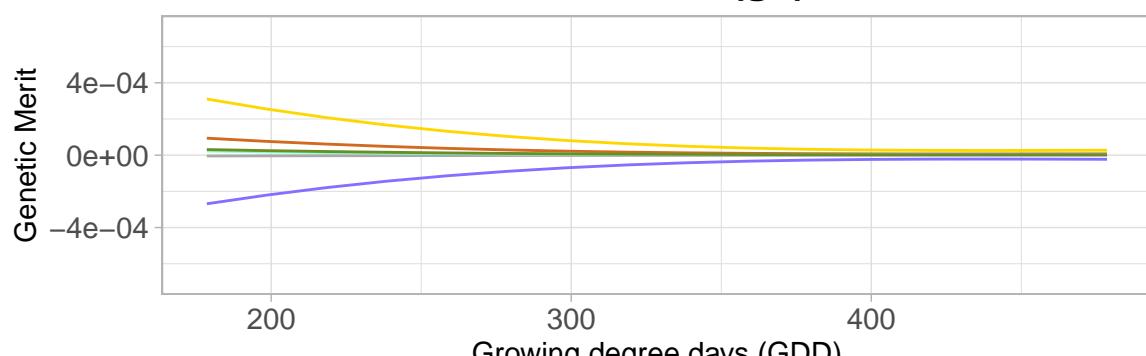
Stable line (g2)



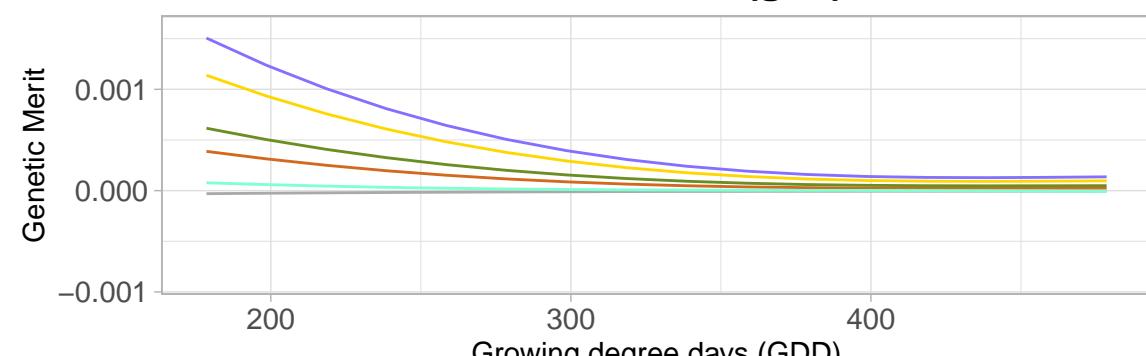
Unstable line (g13)



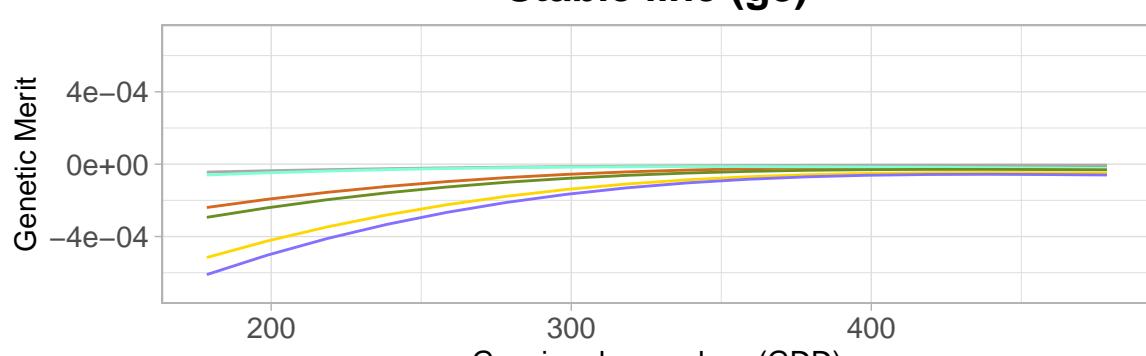
Stable line (g6)



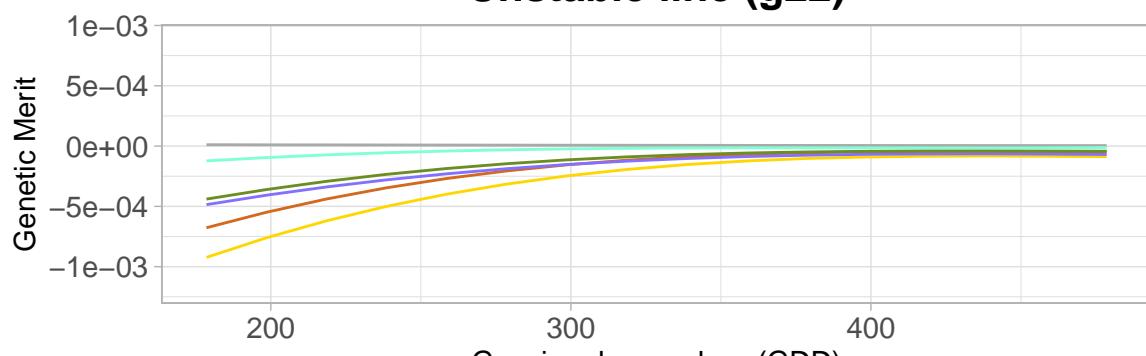
Unstable line (g21)



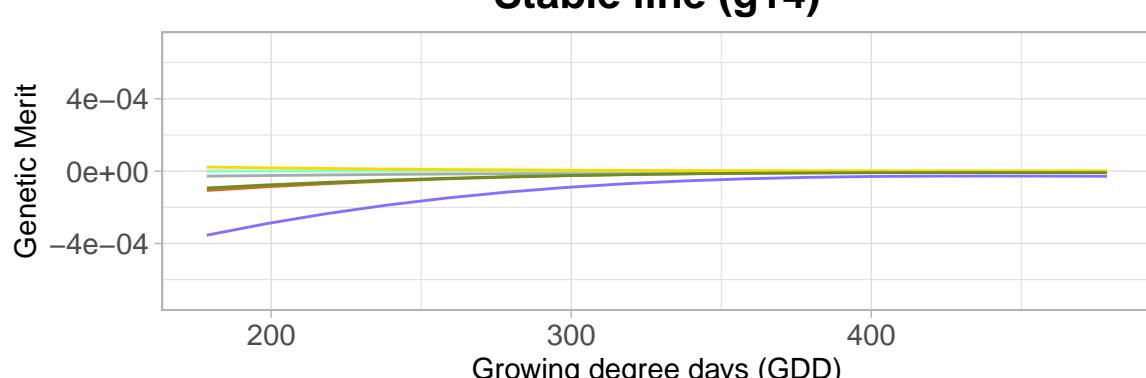
Stable line (g8)



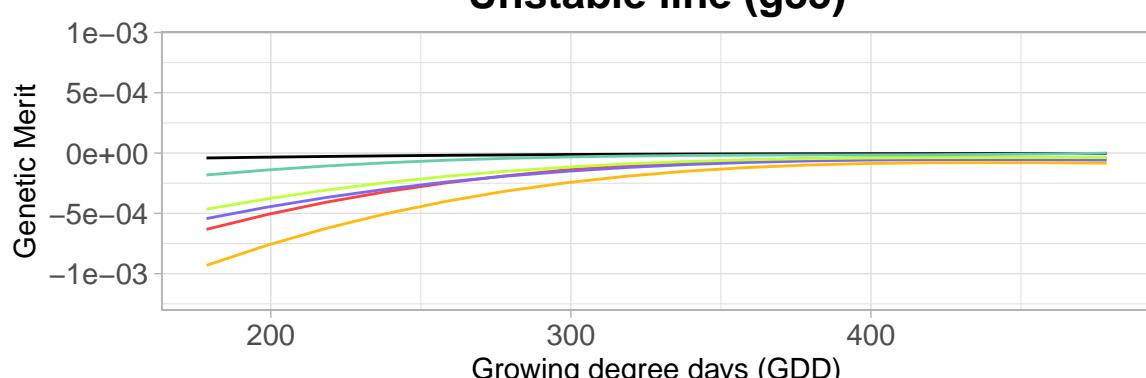
Unstable line (g22)



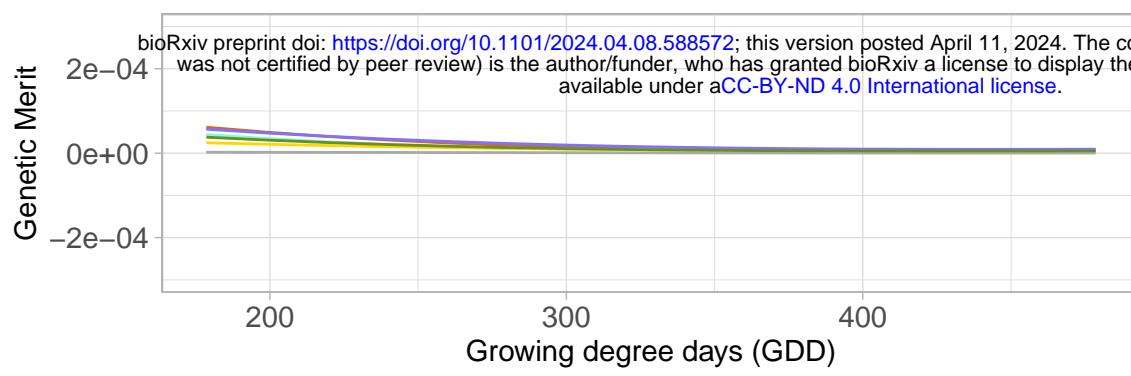
Stable line (g14)



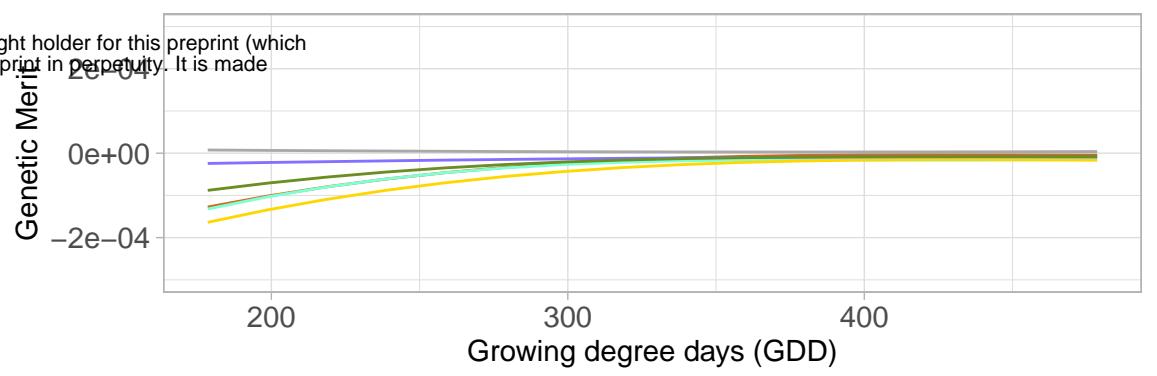
Unstable line (g35)



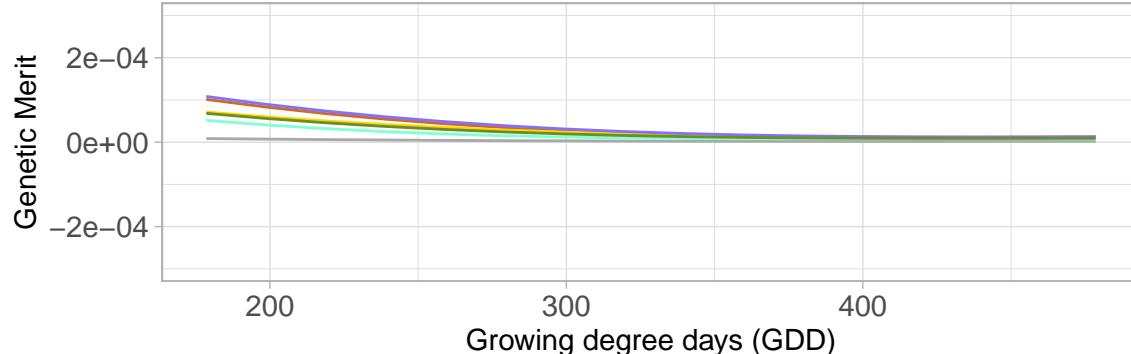
Stable line (g1)



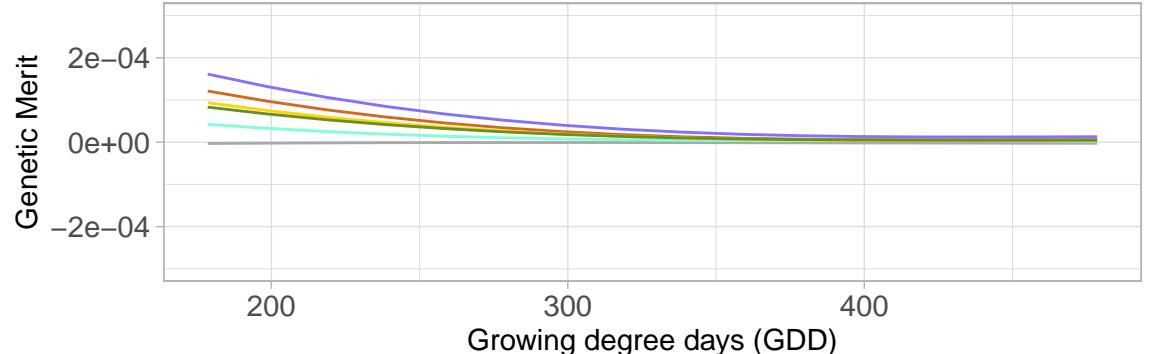
Unstable line (g3)



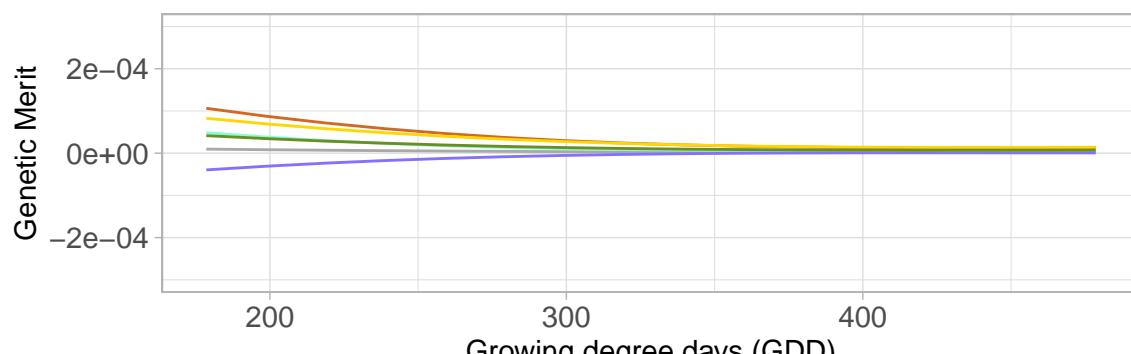
Stable line (g2)



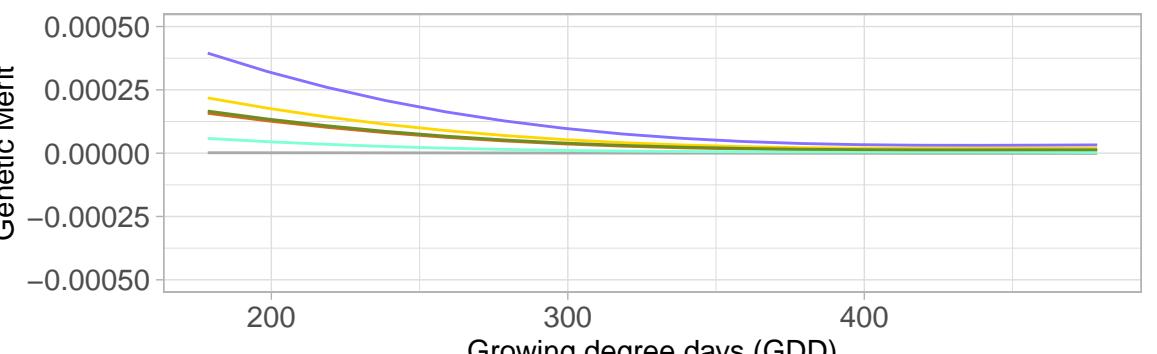
Unstable line (g13)



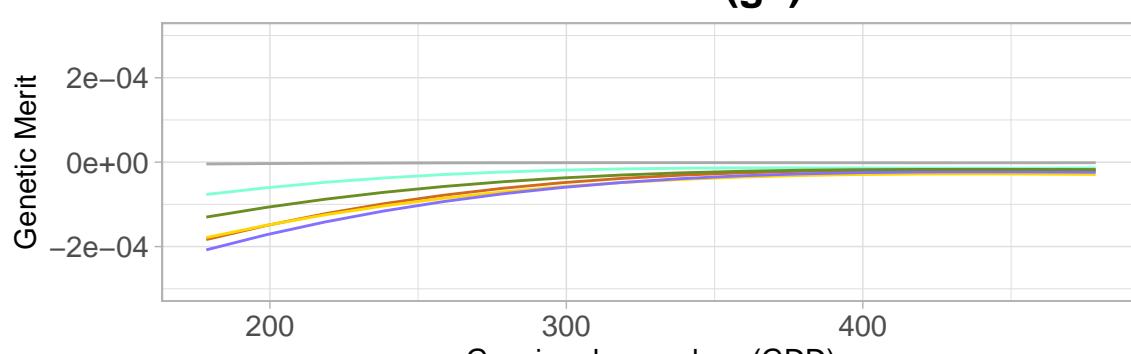
Stable line (g6)



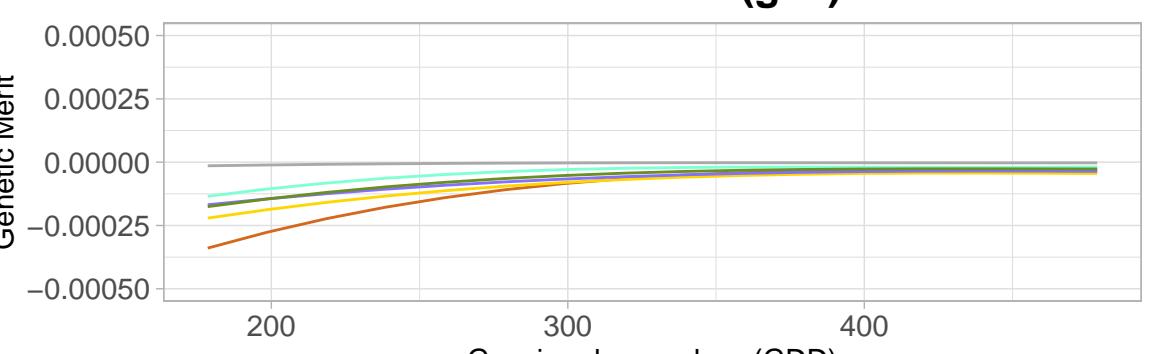
Unstable line (g21)



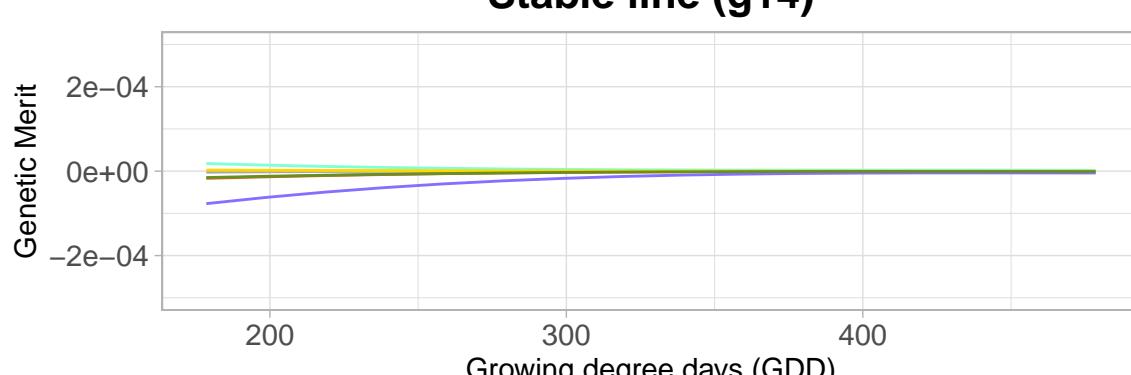
Stable line (g8)



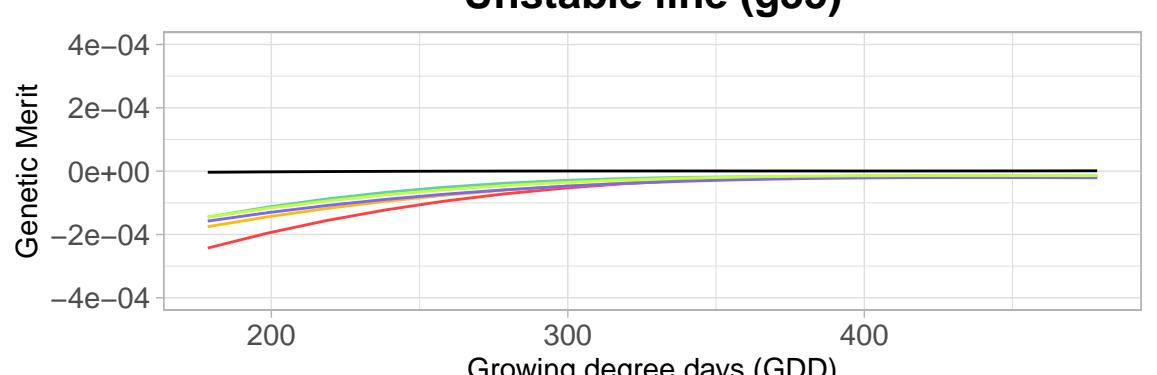
Unstable line (g22)



Stable line (g14)



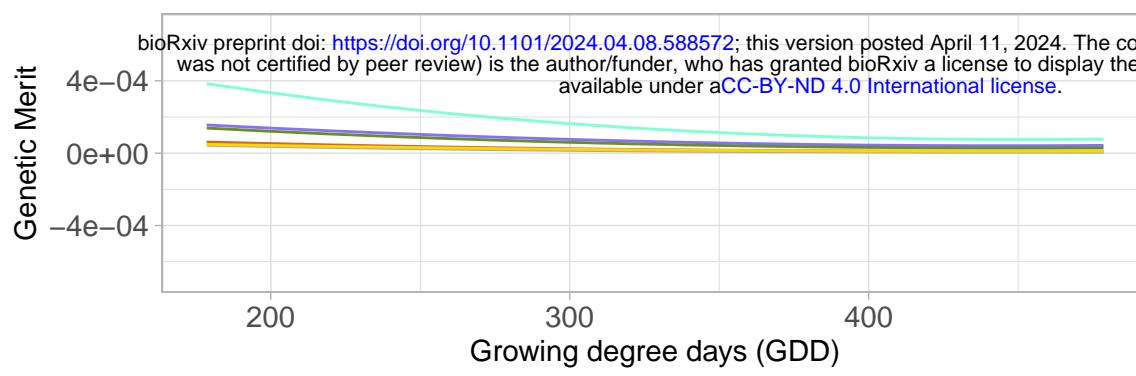
Unstable line (g35)



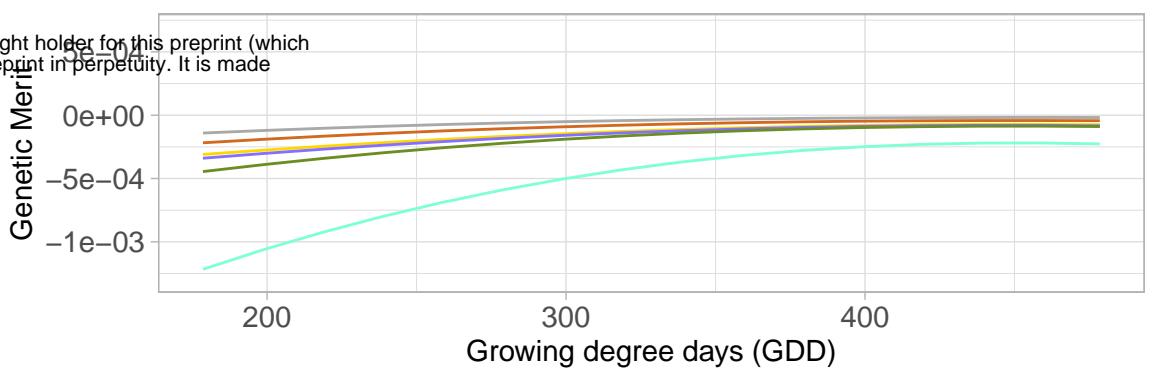
Harvest

- 2020cut2
- 2020cut3
- 2021cut1
- 2021cut2
- 2021cut3
- mean

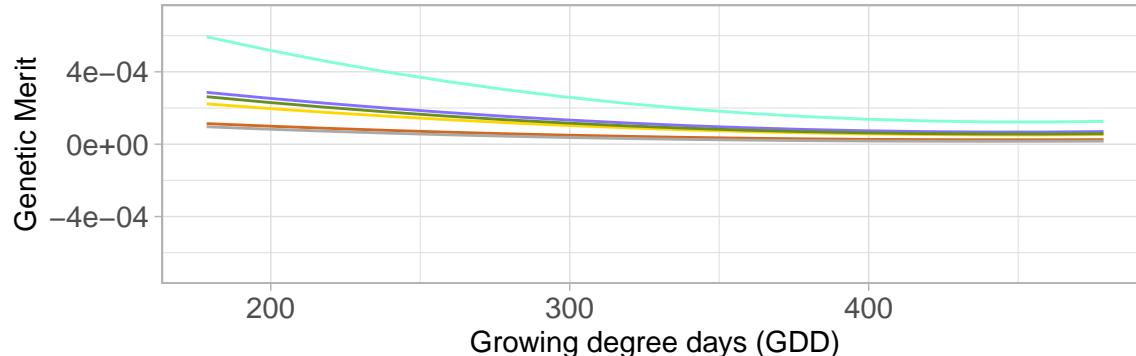
Stable line (g1)



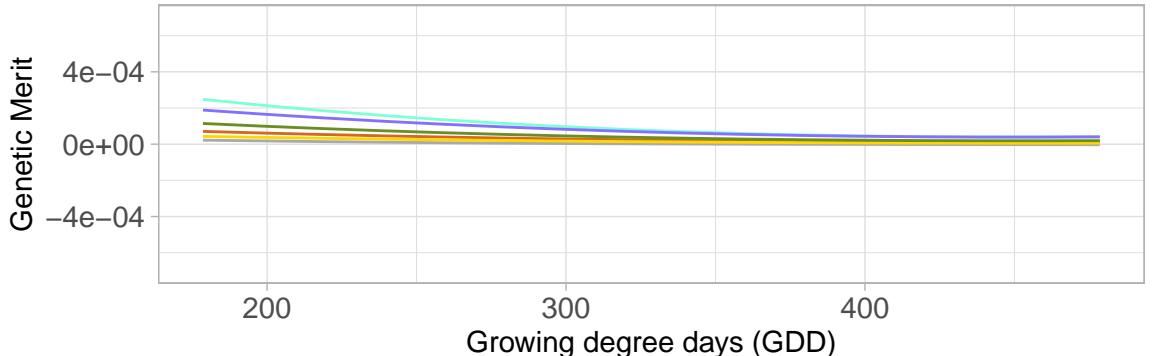
Unstable line (g3)



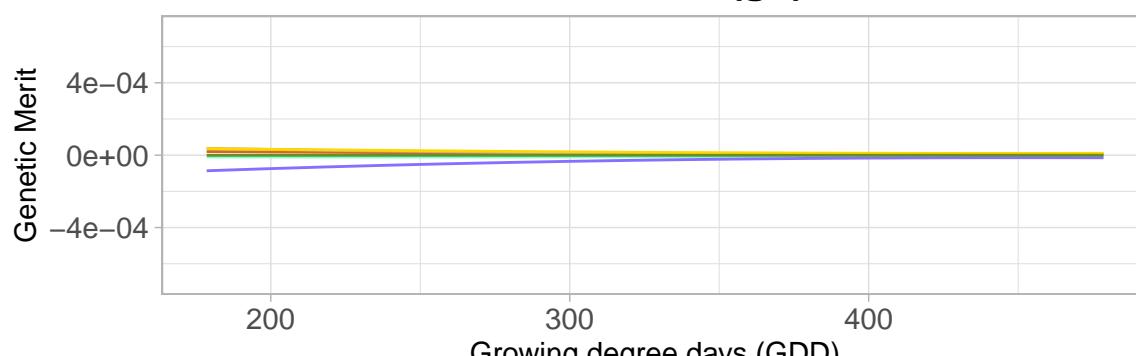
Stable line (g2)



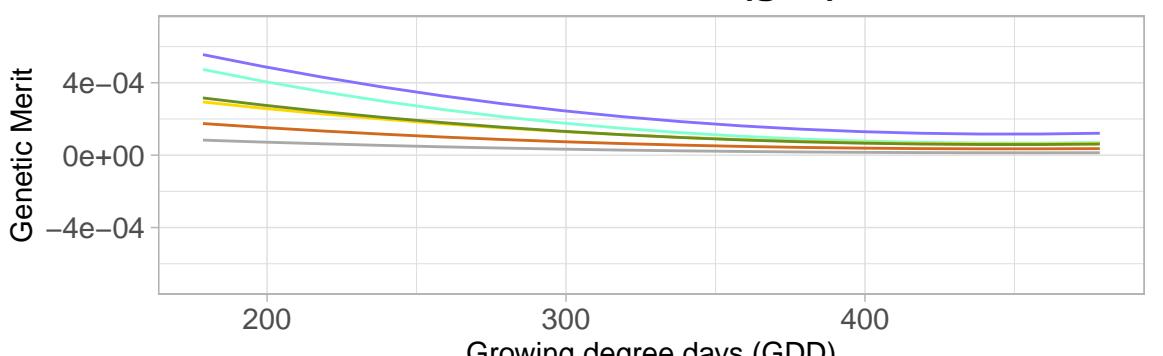
Unstable line (g13)



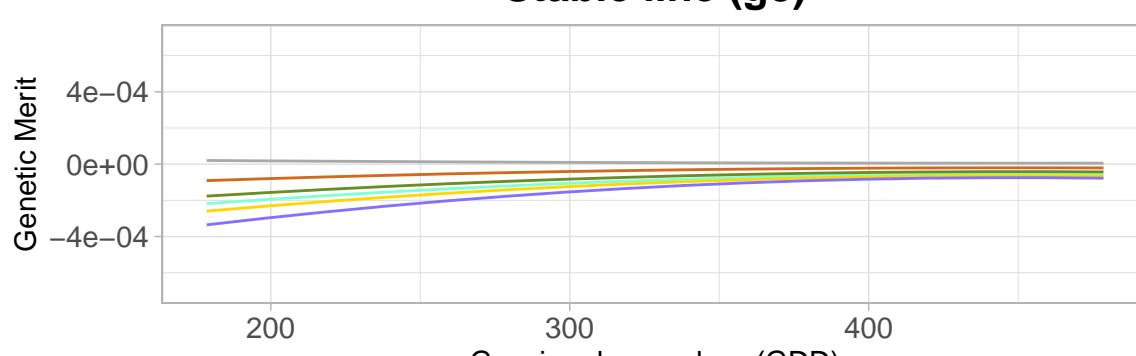
Stable line (g6)



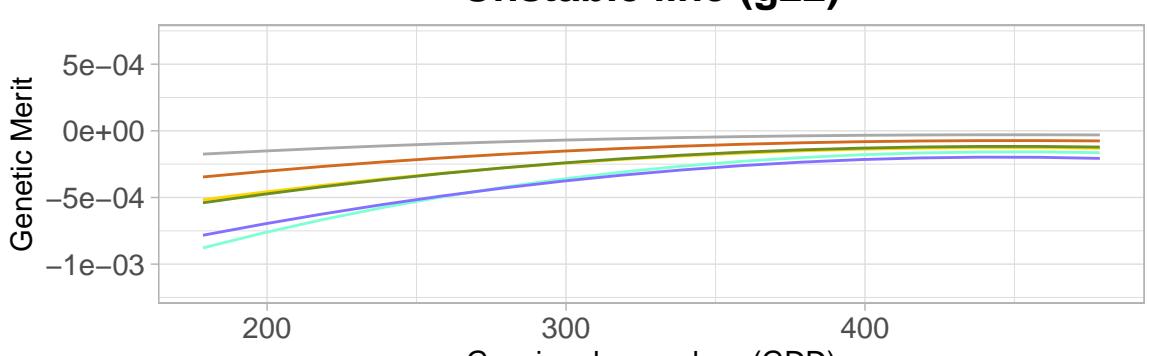
Unstable line (g21)



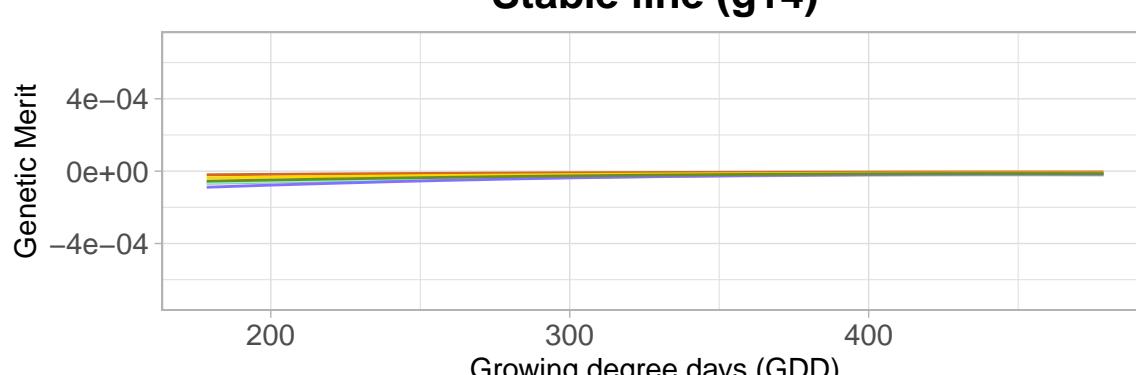
Stable line (g8)



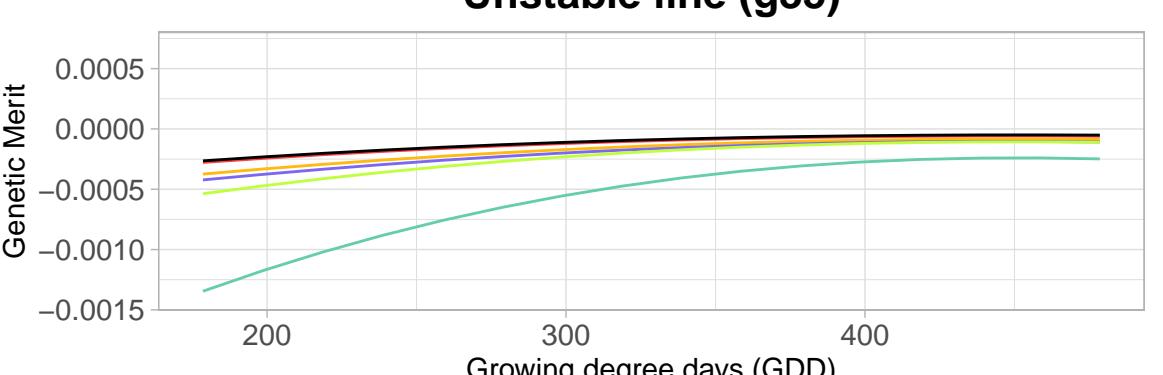
Unstable line (g22)



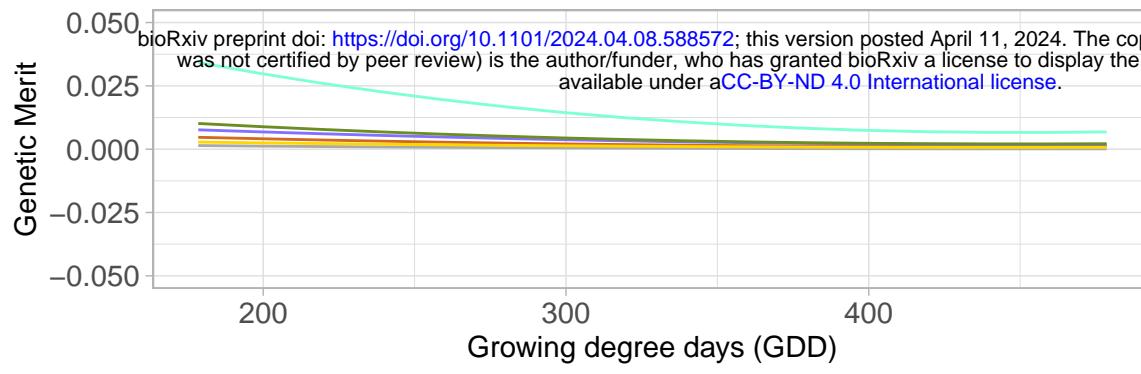
Stable line (g14)



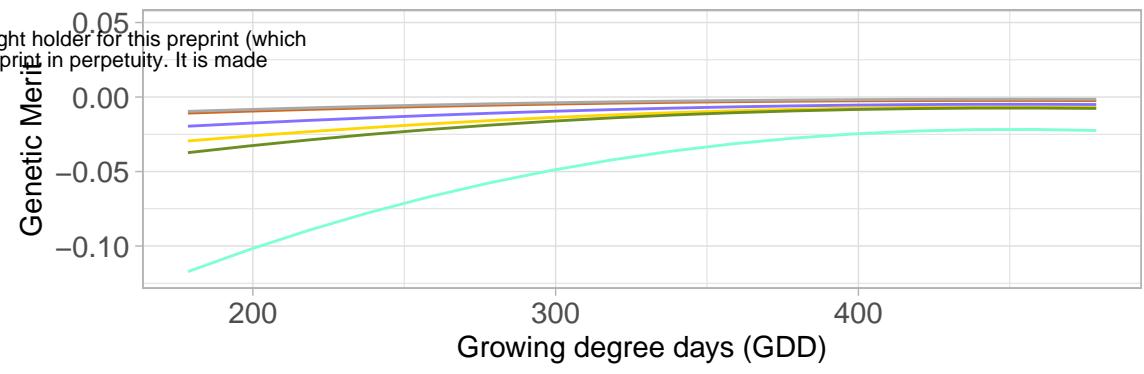
Unstable line (g35)



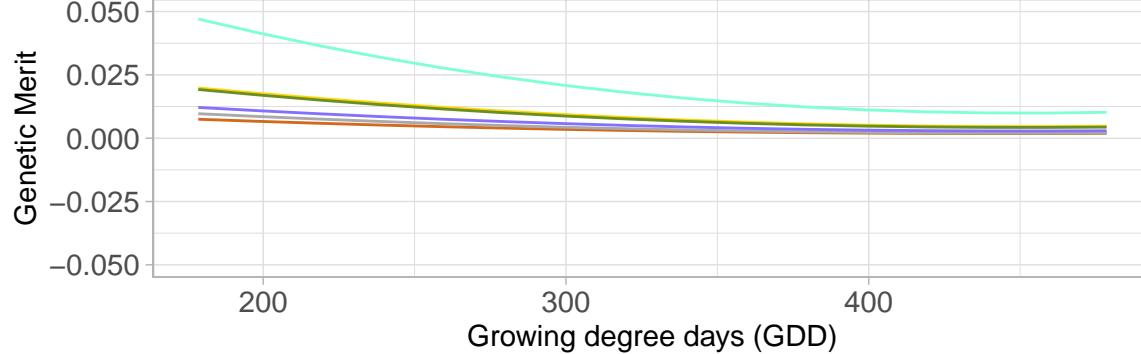
Stable line (g1)



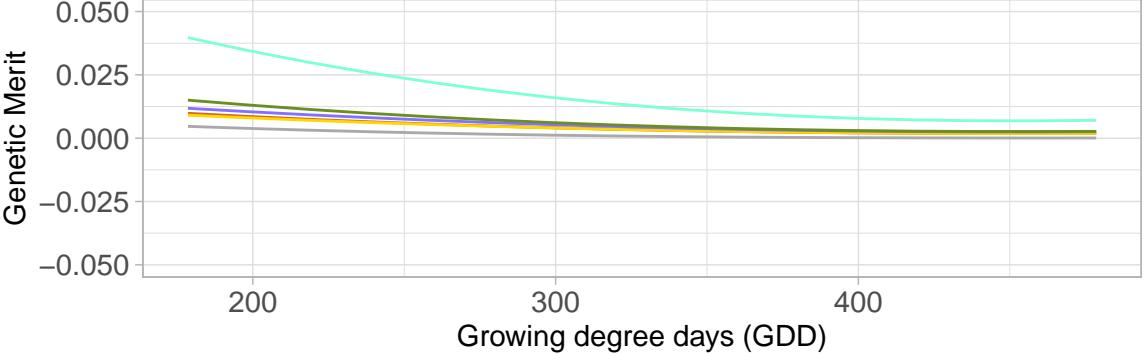
Unstable line (g3)



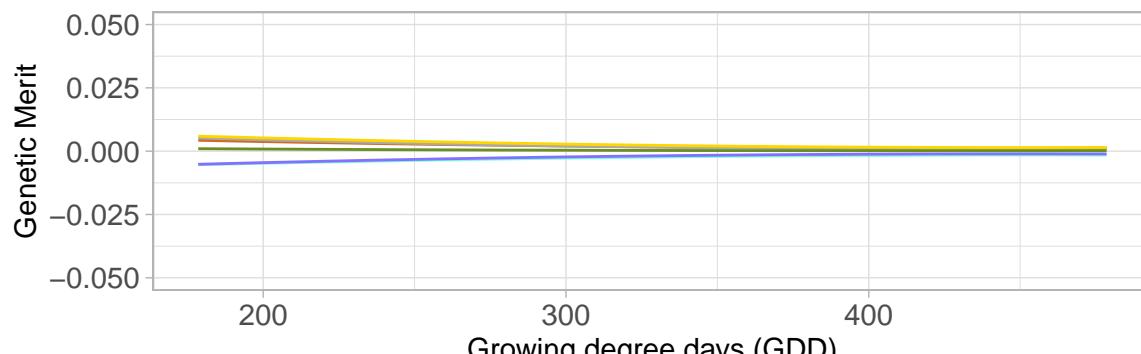
Stable line (g2)



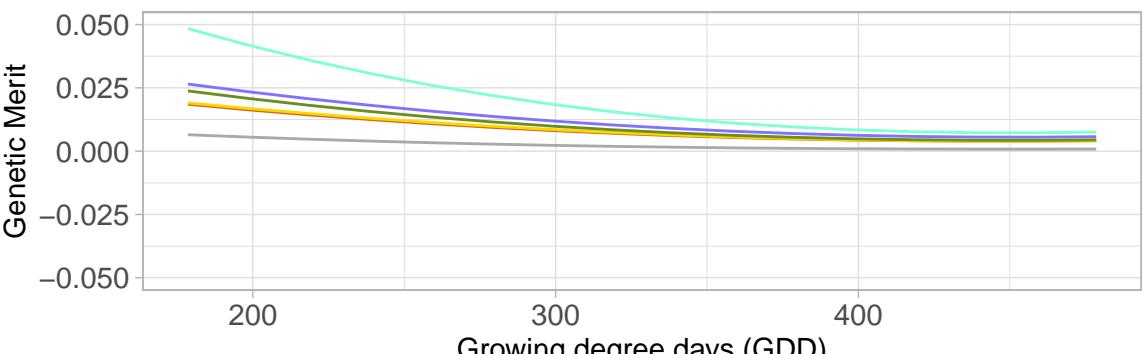
Unstable line (g13)



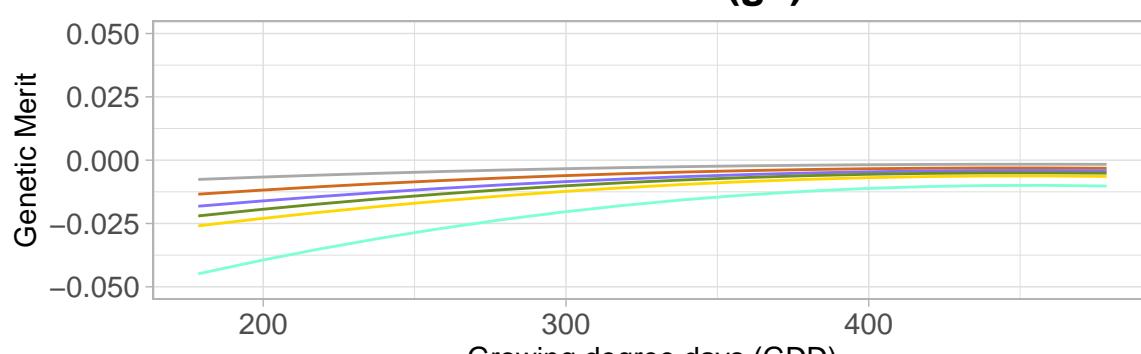
Stable line (g6)



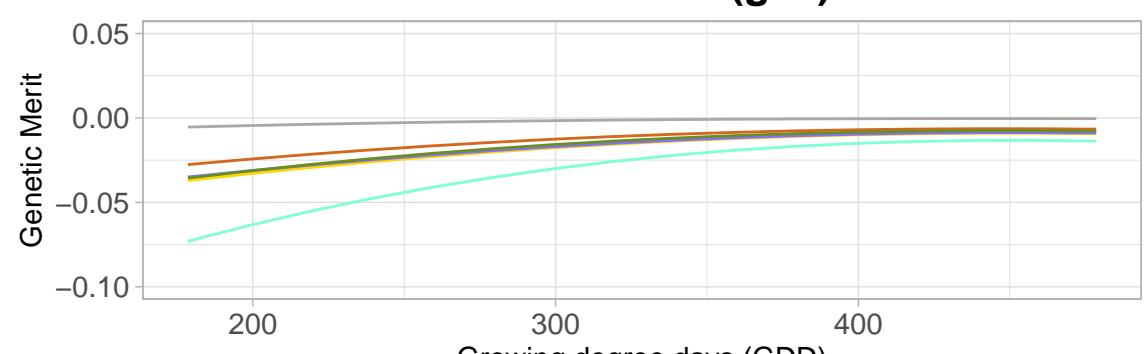
Unstable line (g21)



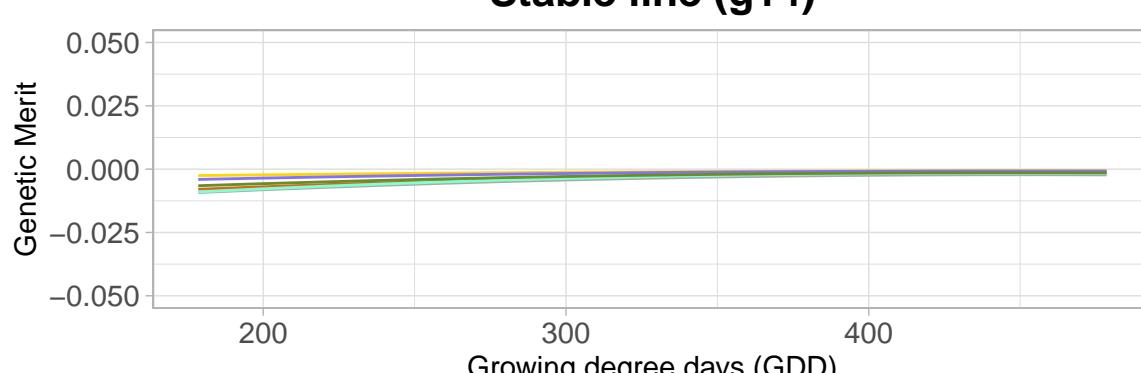
Stable line (g8)



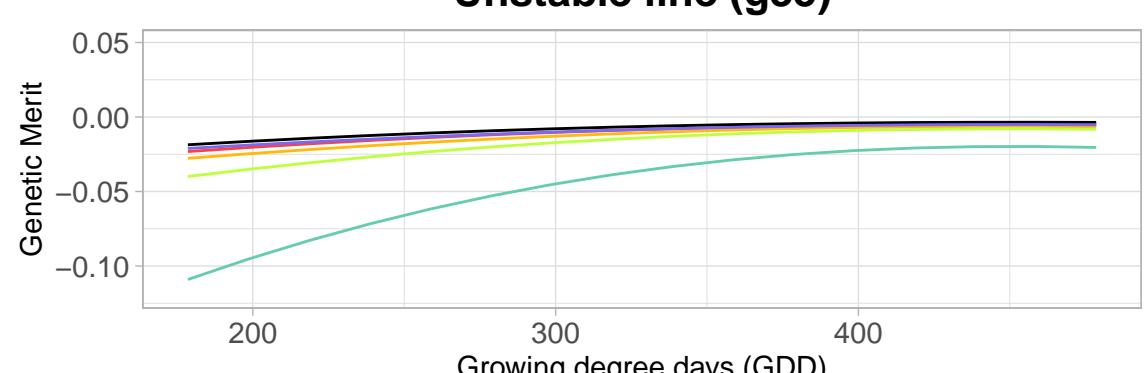
Unstable line (g22)



Stable line (g14)



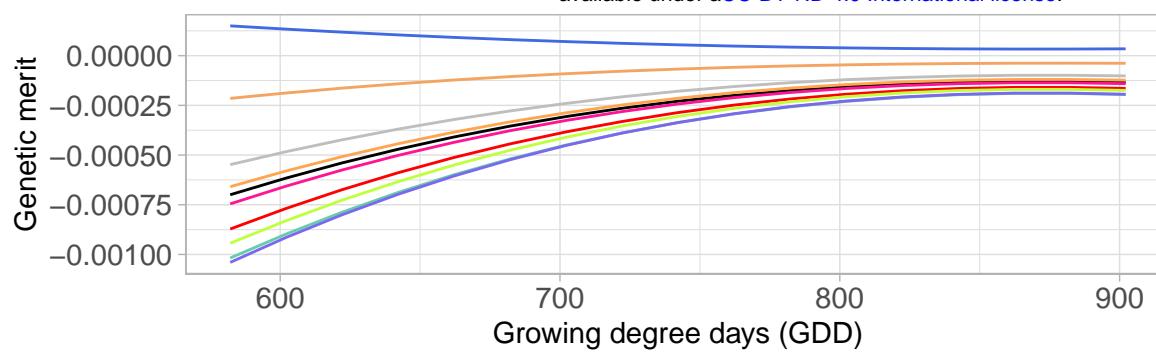
Unstable line (g35)



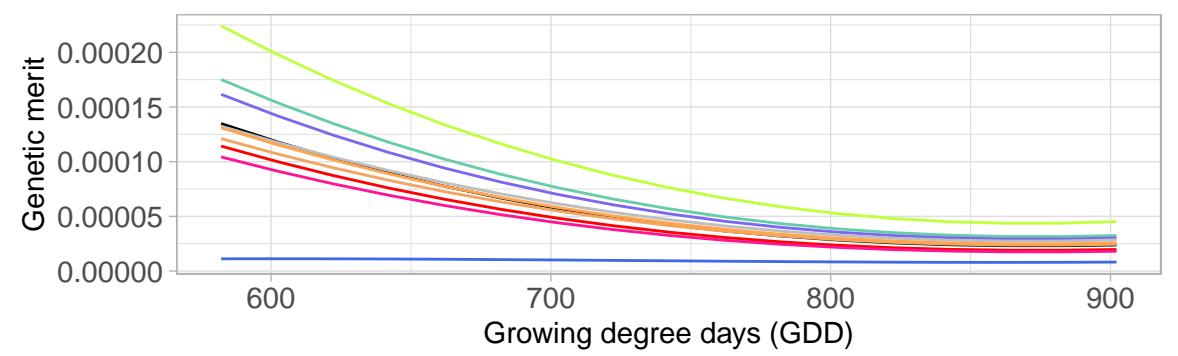
Harvest

- Nlcut3
- Nlcut4
- Nlcut5
- Nlcut6
- Nlcut7
- SITcut3
- SITcut4
- SITcut5
- SITcut7
- mean

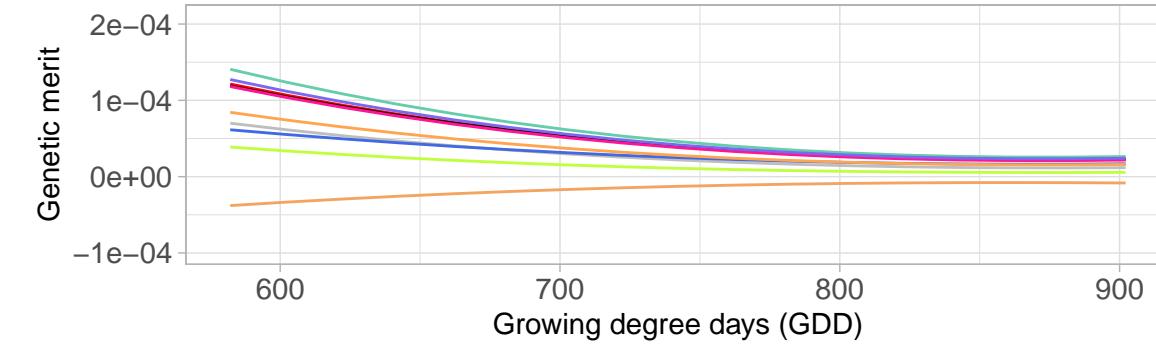
Stable line (G4)



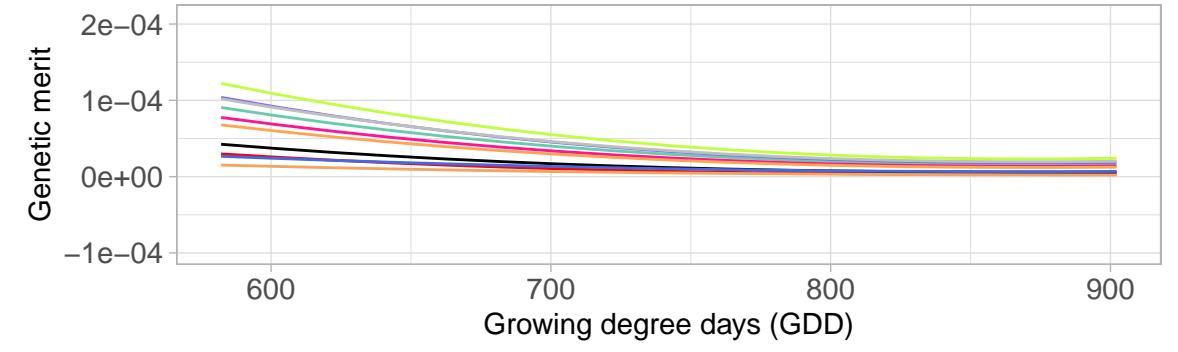
Unstable line (G1)



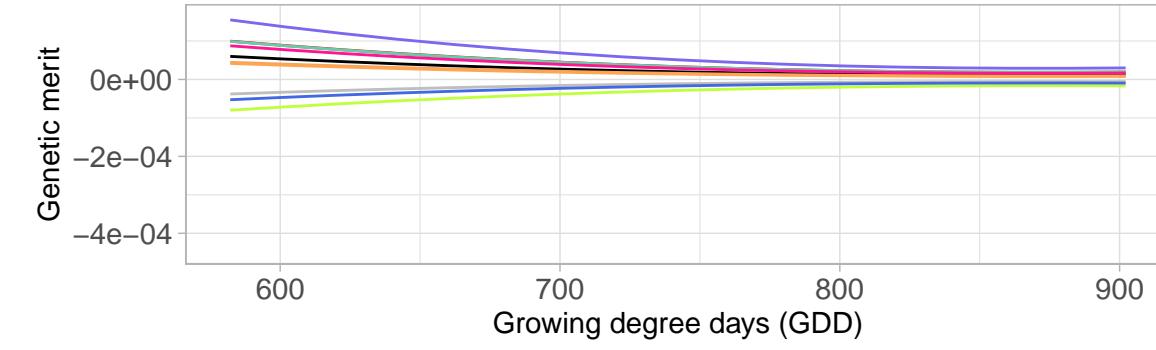
Stable line (G5)



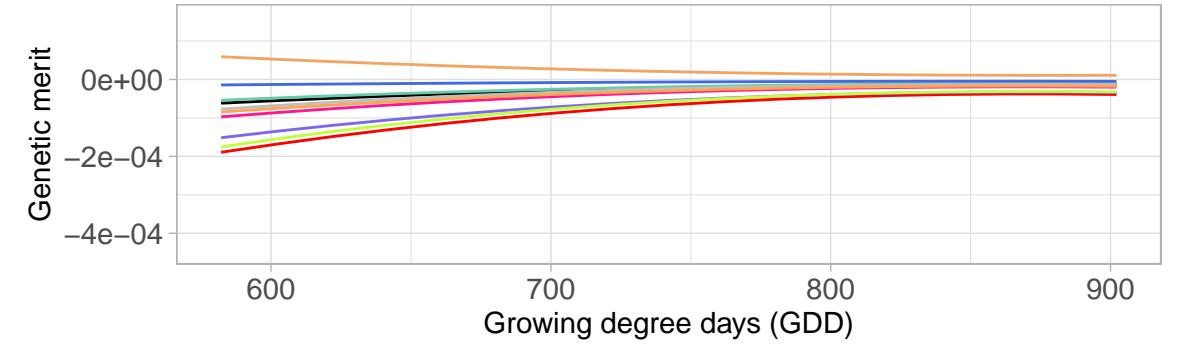
Unstable line (G11)



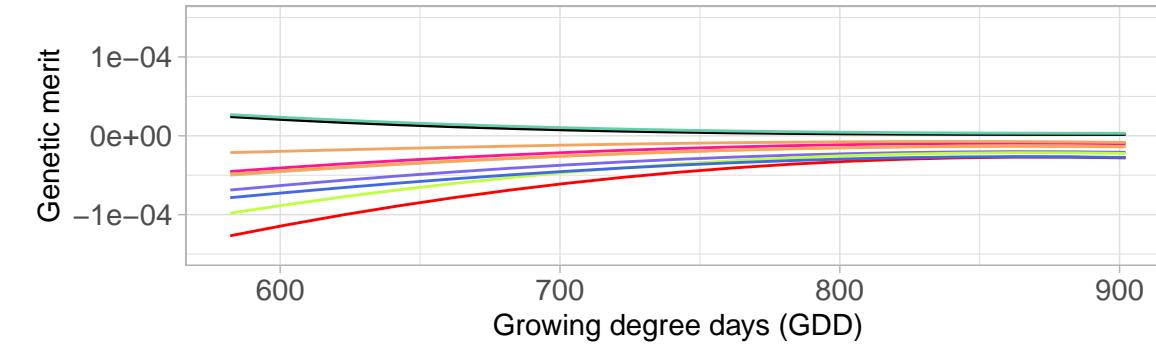
Stable line (G9)



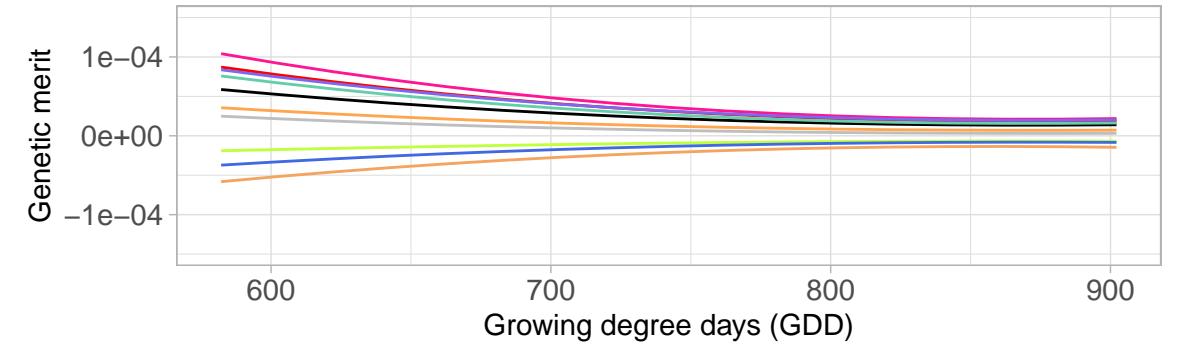
Unstable line (G17)



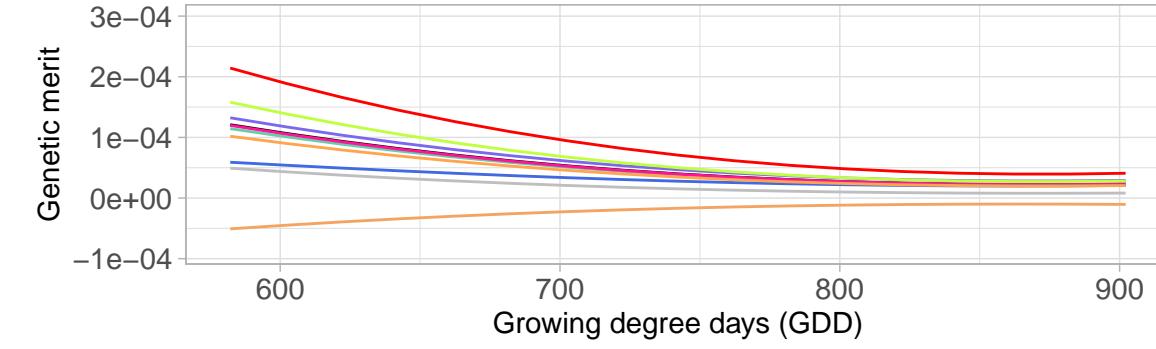
Stable line (G14)



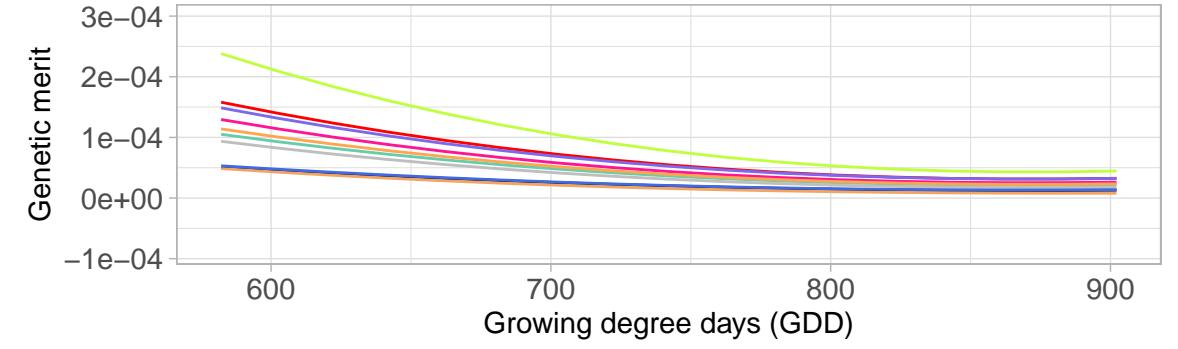
Unstable line (G21)



Stable line (G25)

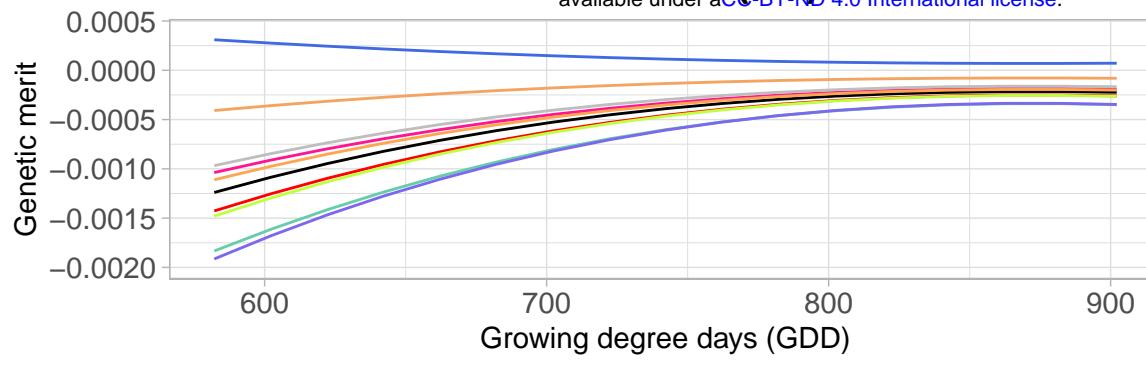


Unstable line (G23)

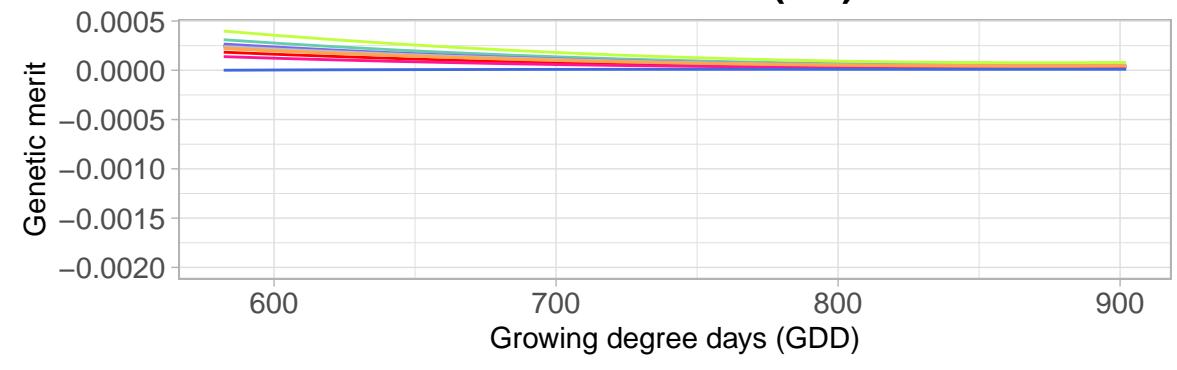


- Nlcut3
- Nlcut4
- Nlcut5
- Nlcut6
- Nlcut7
- SITcut3
- SITcut4
- SITcut5
- SITcut7
- mean

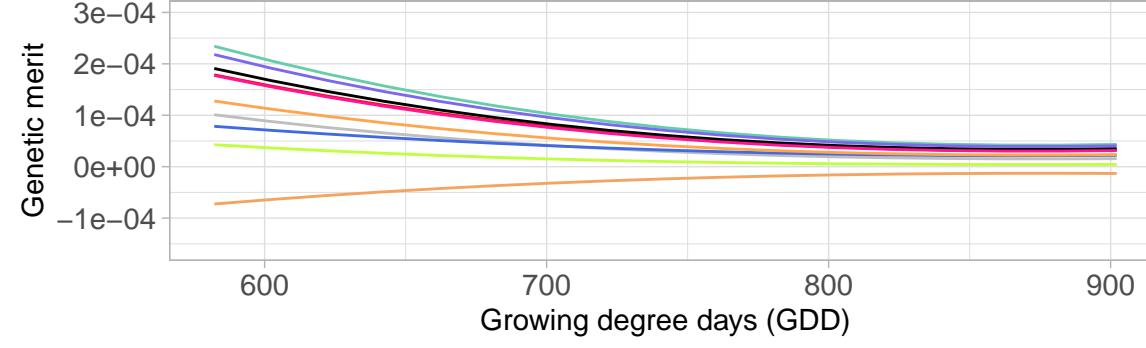
Stable line (G4)



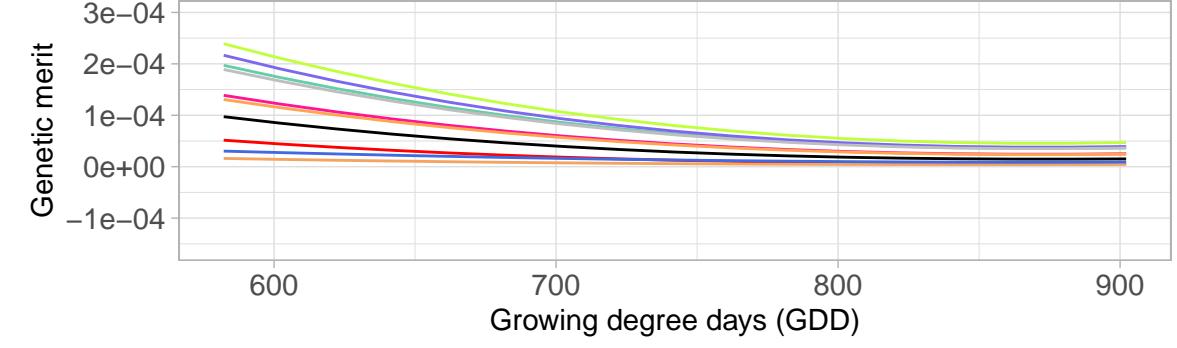
Unstable line (G1)



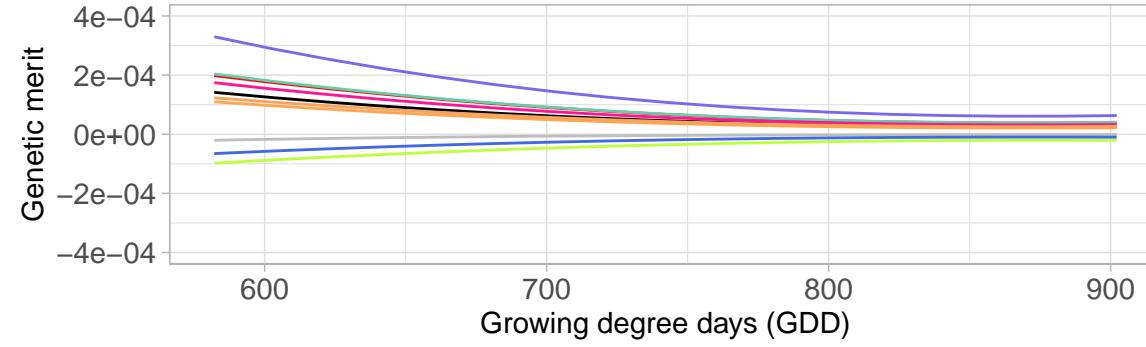
Stable line (G5)



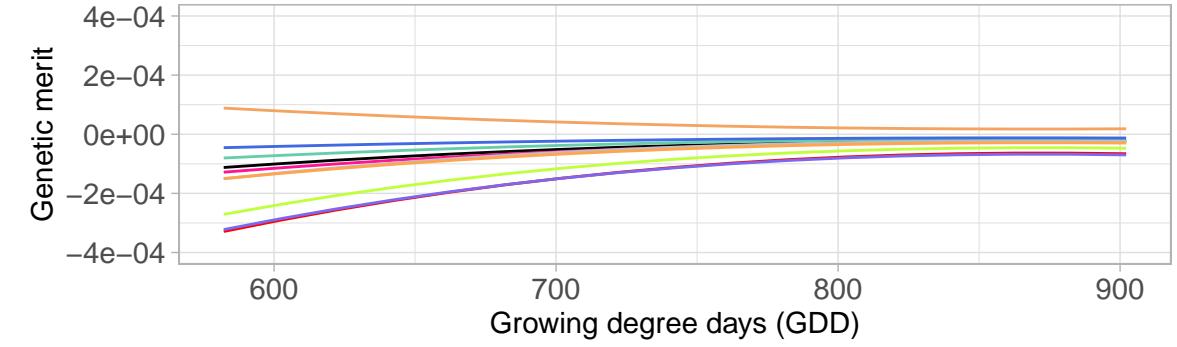
Unstable line (G11)



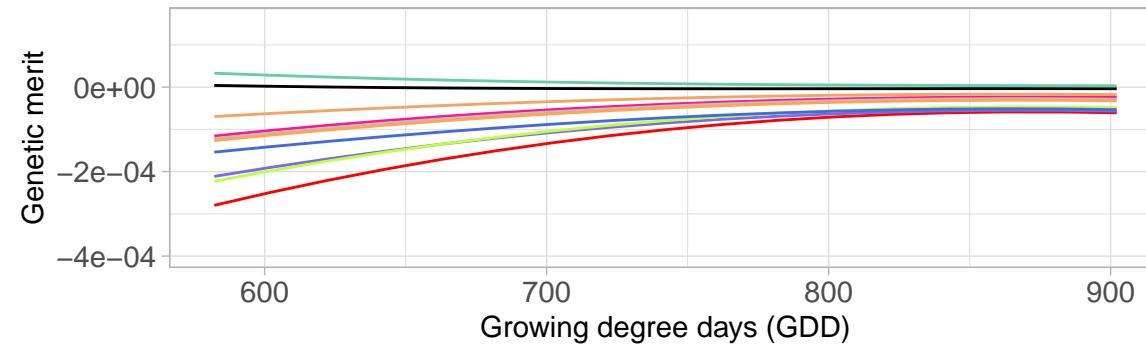
Stable line (G9)



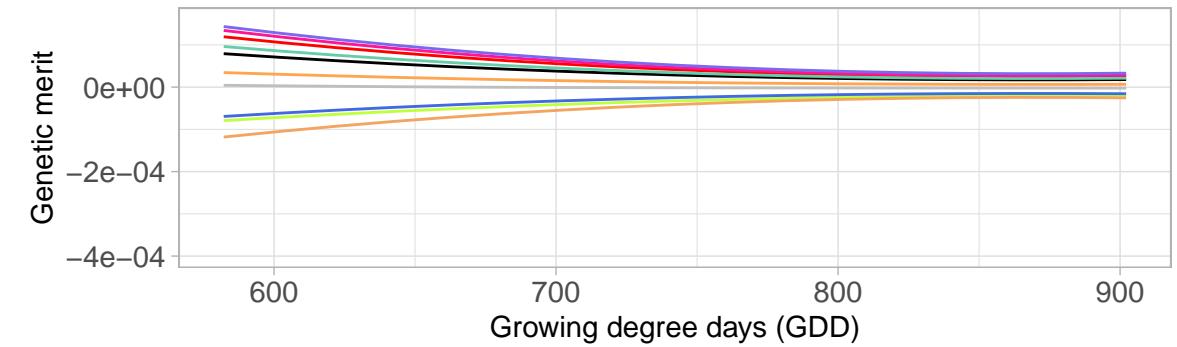
Unstable line (G17)



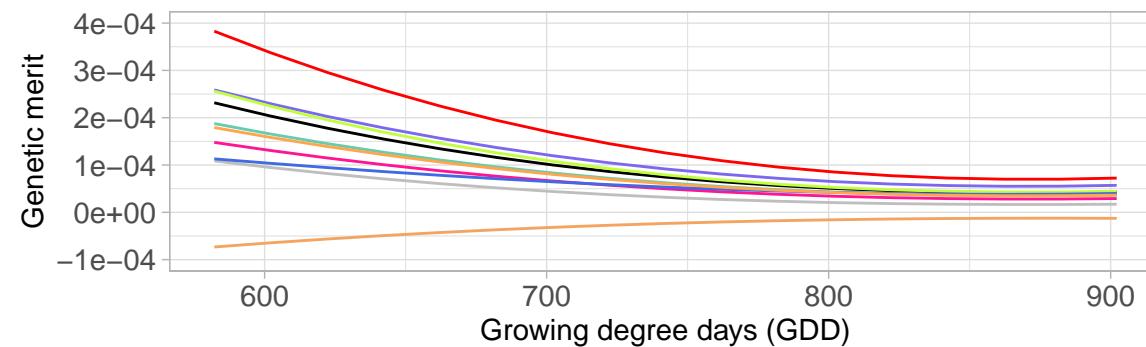
Stable line (G14)



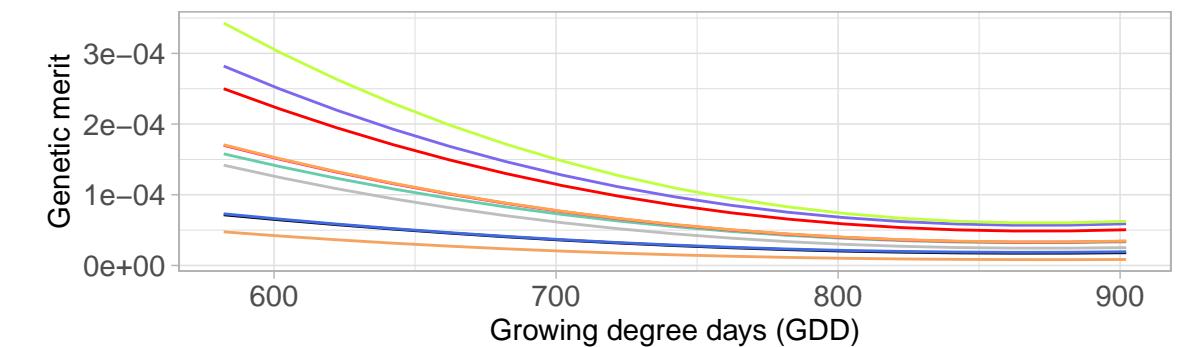
Unstable line (G21)



Stable line (G25)



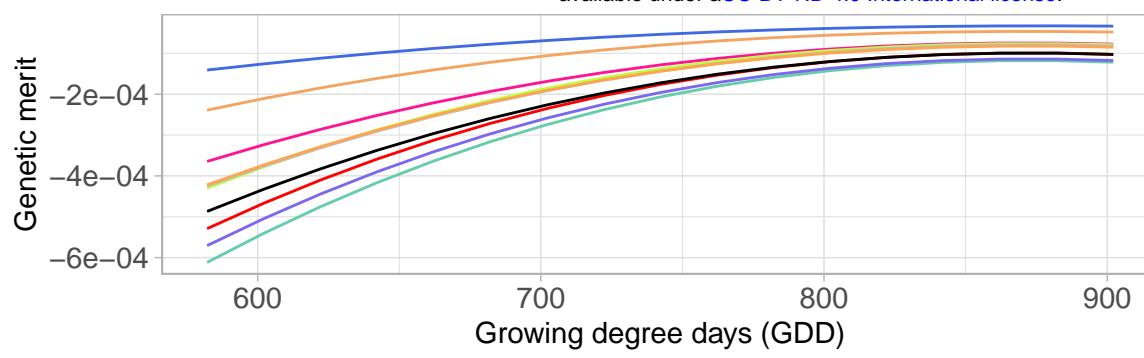
Unstable line (G23)



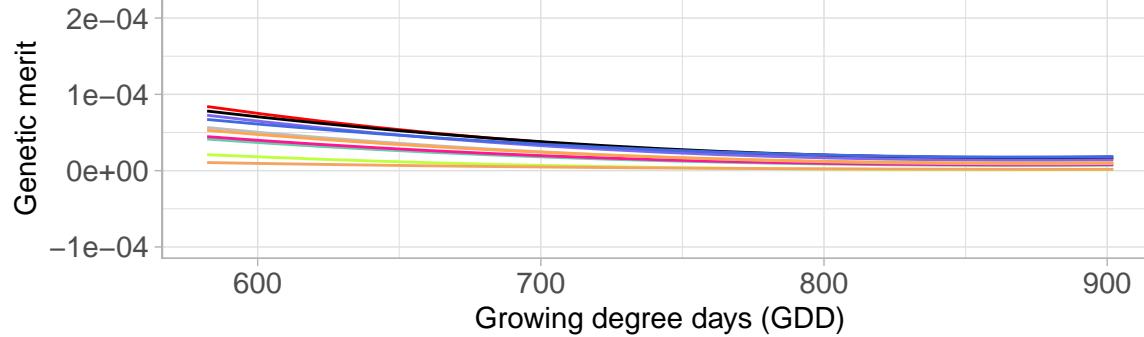
Harvest

- Nlcut3
- Nlcut4
- Nlcut5
- Nlcut6
- Nlcut7
- SITcut3
- SITcut4
- SITcut5
- SITcut7
- mean

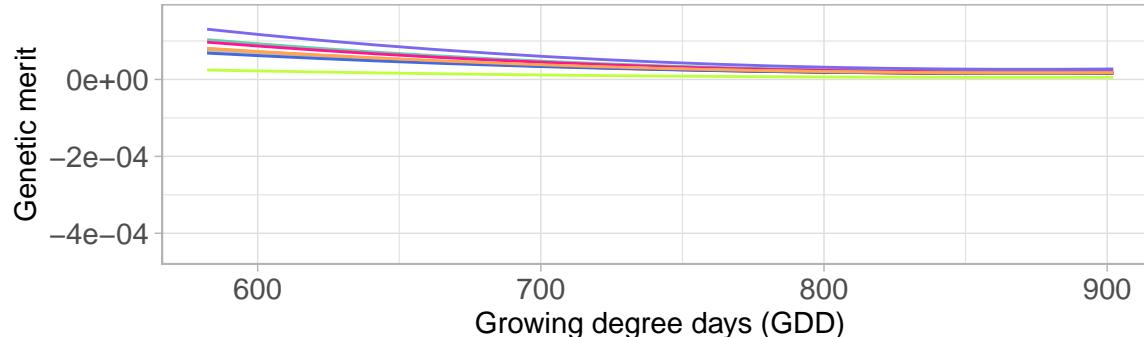
Stable line (G4)



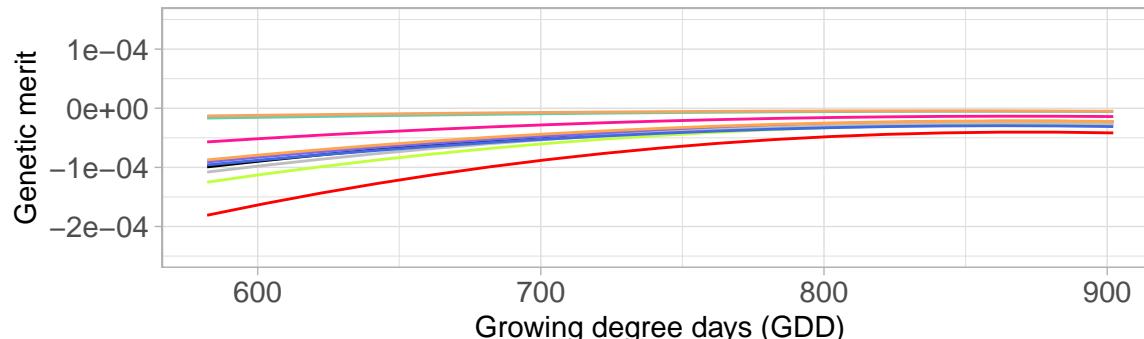
Stable line (G5)



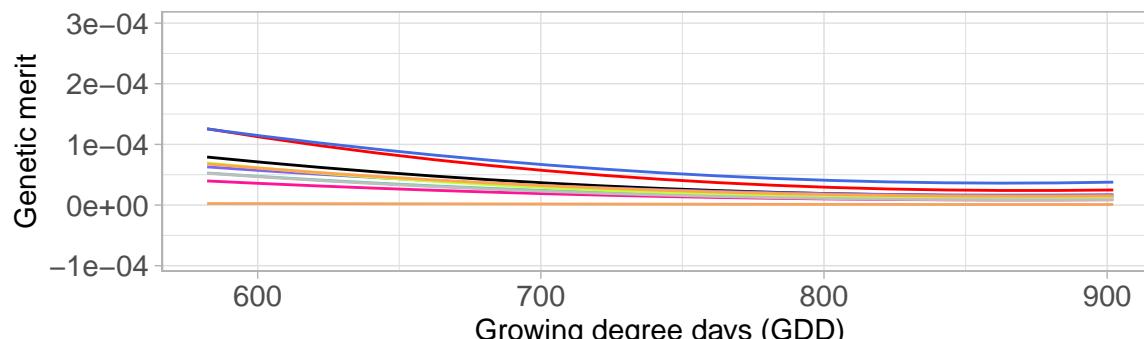
Stable line (G9)



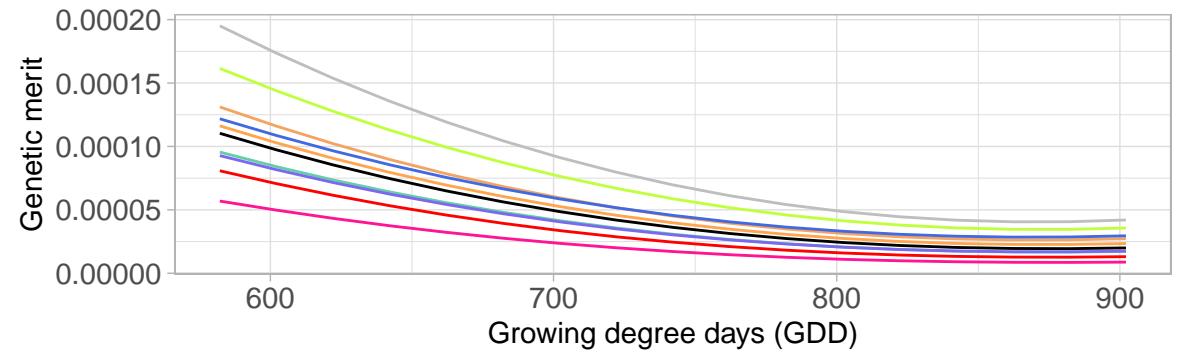
Stable line (G14)



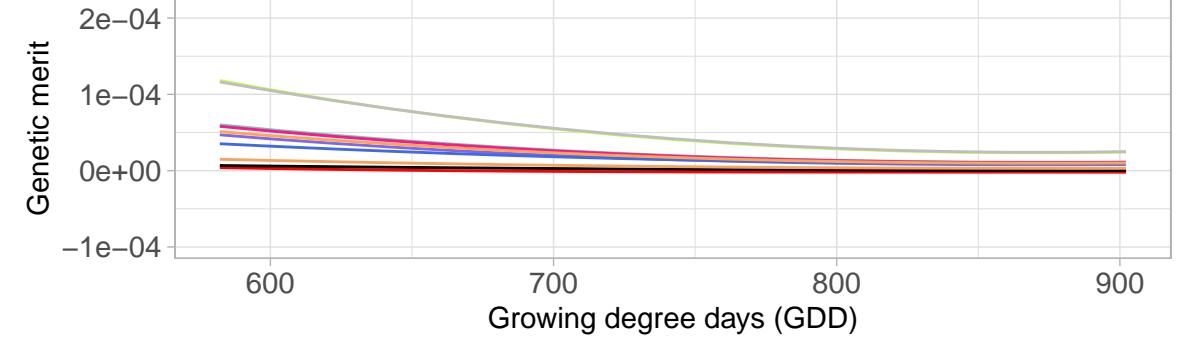
Stable line (G25)



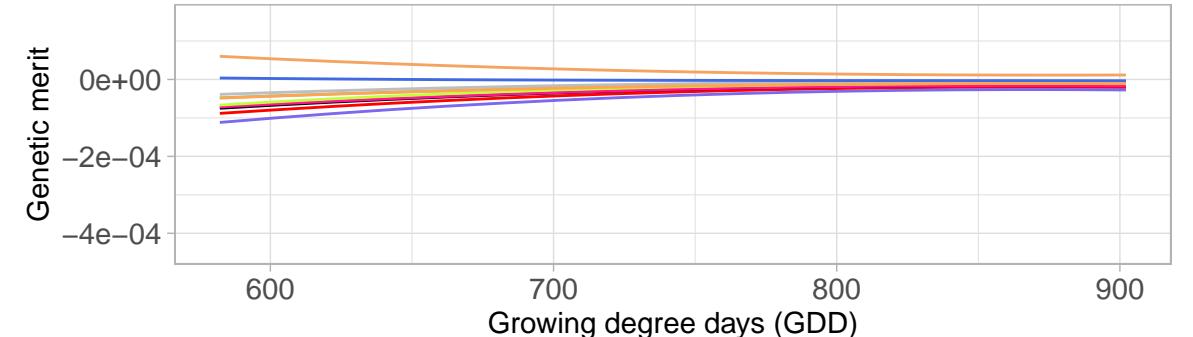
Unstable line (G1)



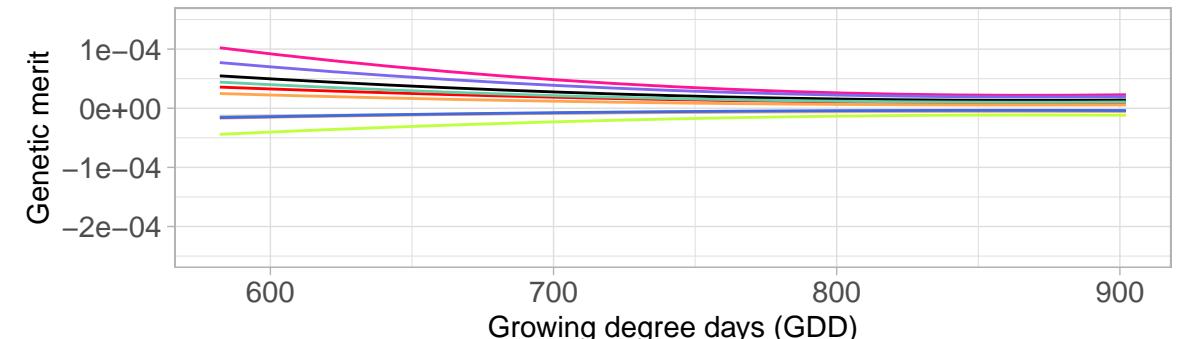
Unstable line (G11)



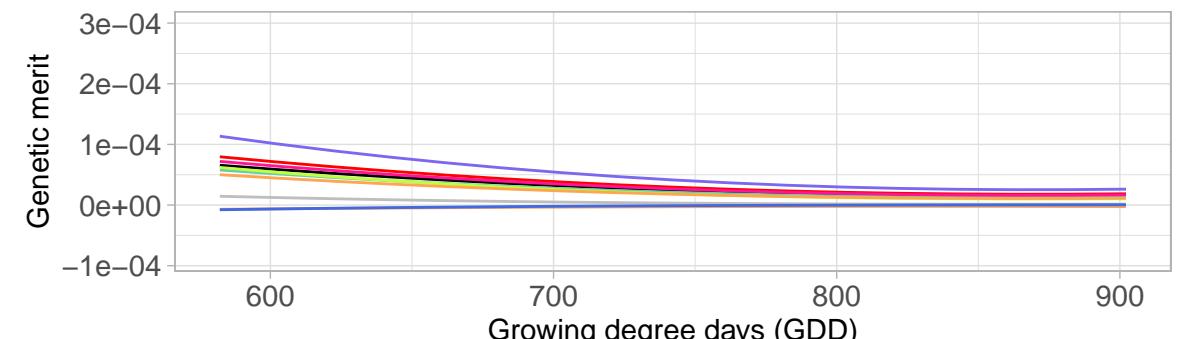
Unstable line (G17)

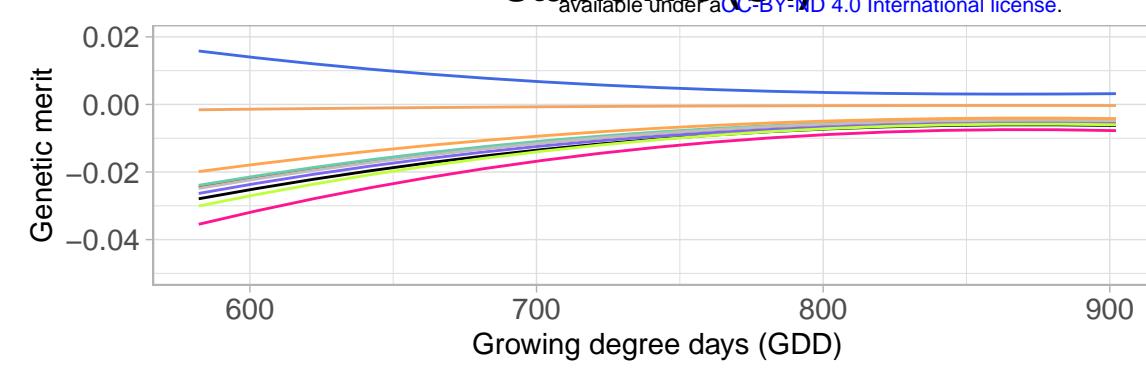
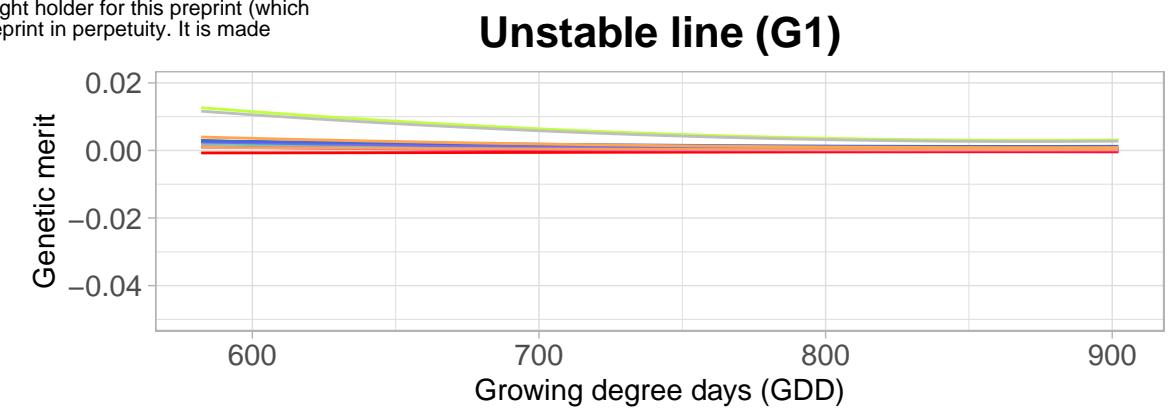
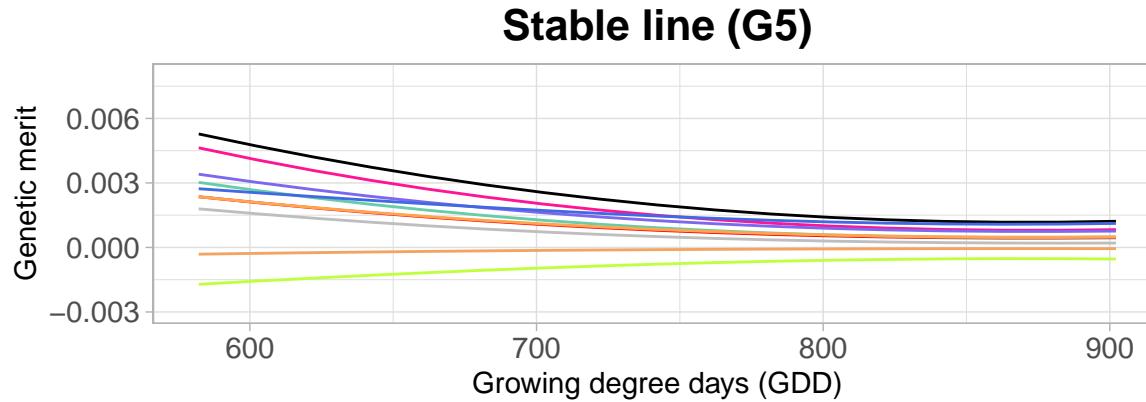
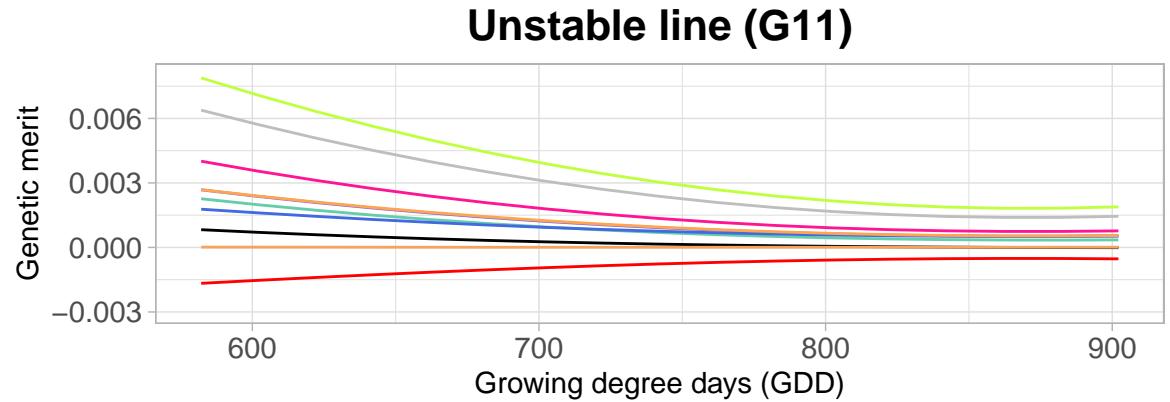
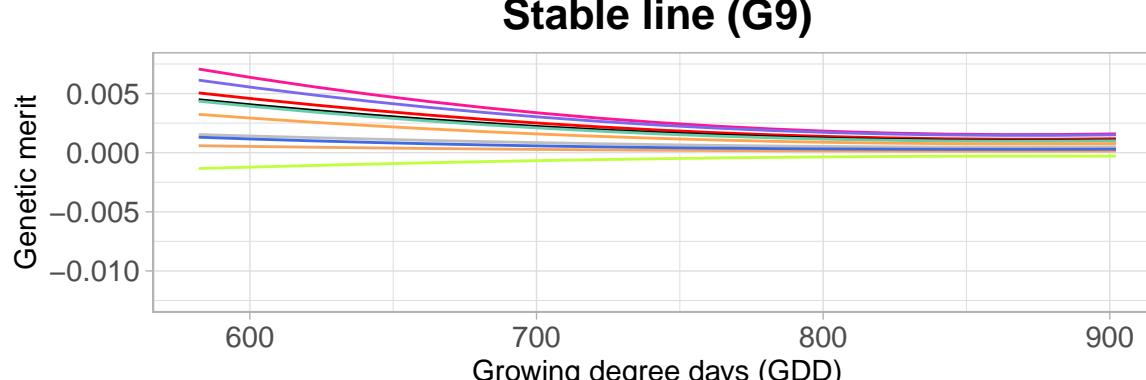
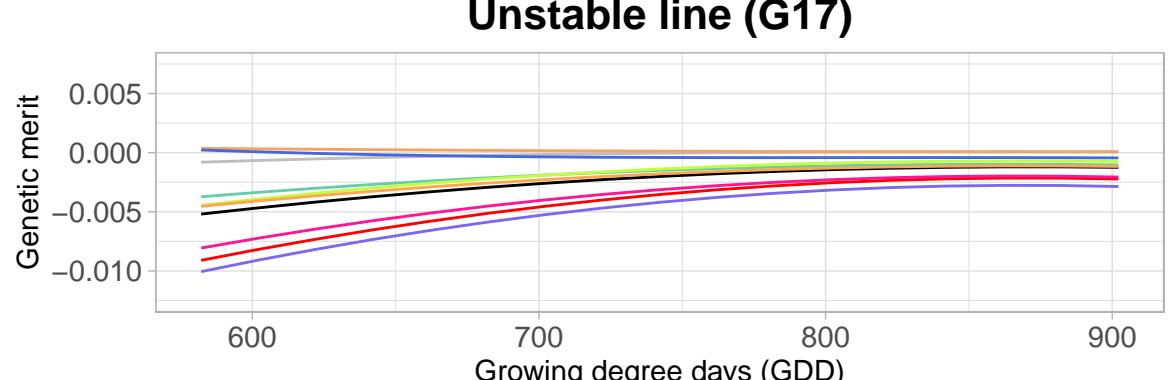
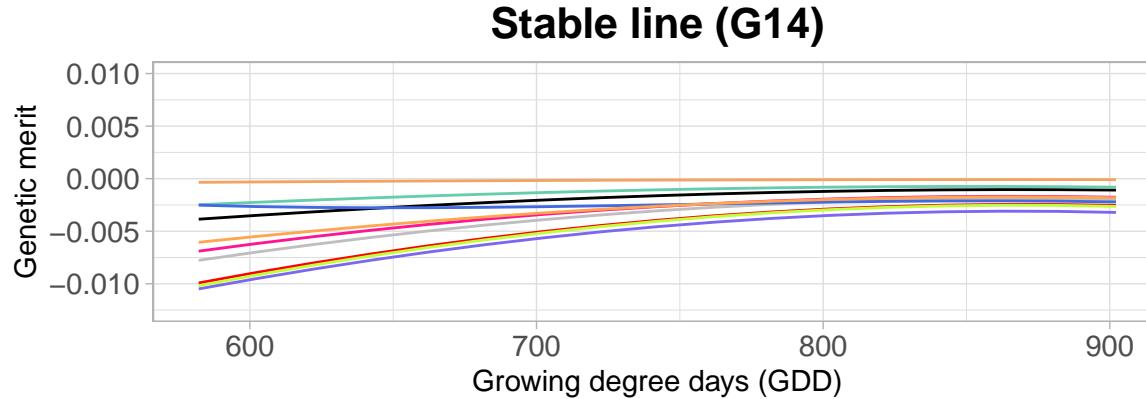
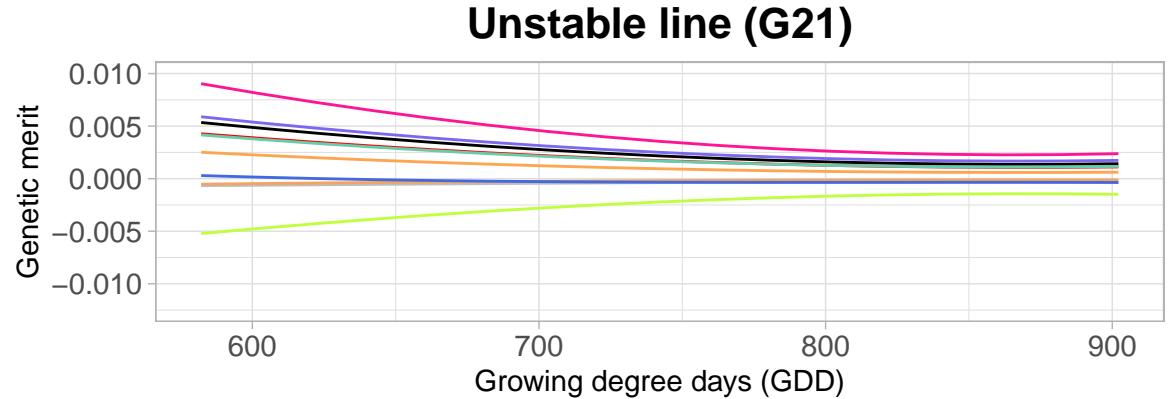
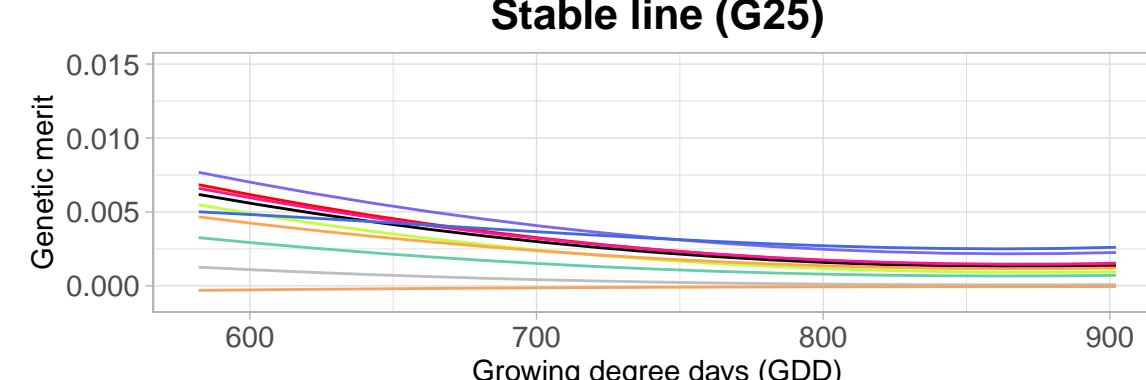
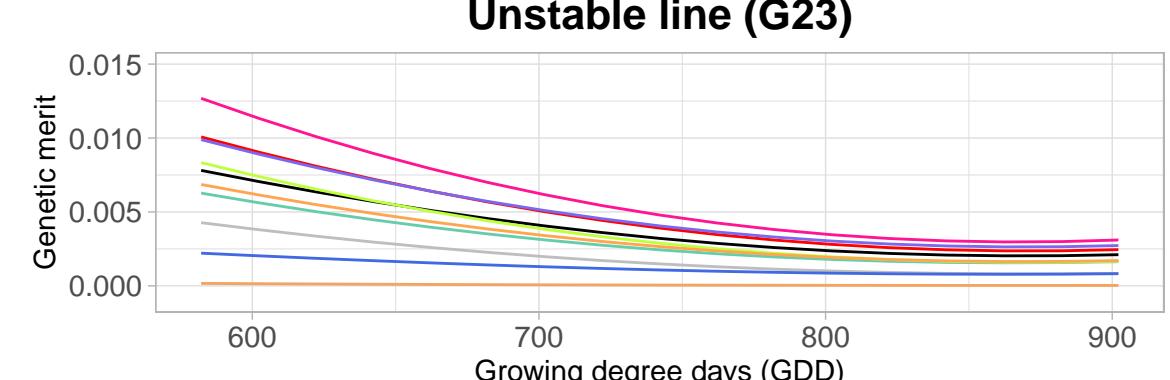


Unstable line (G21)



Unstable line (G23)

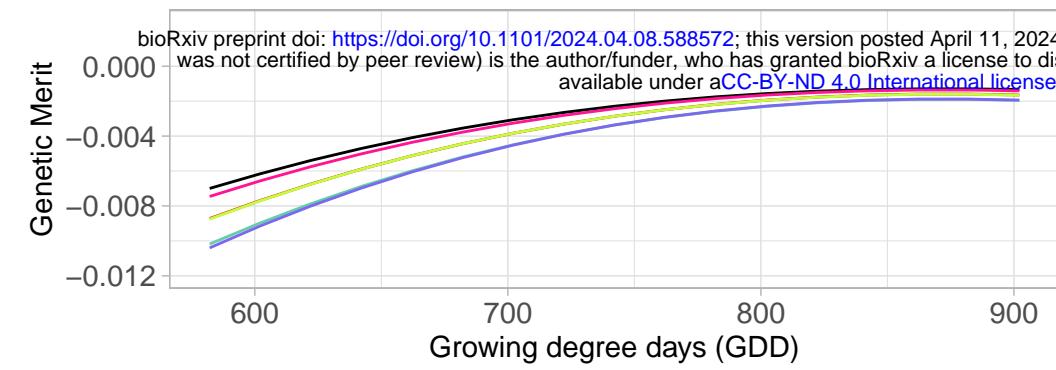




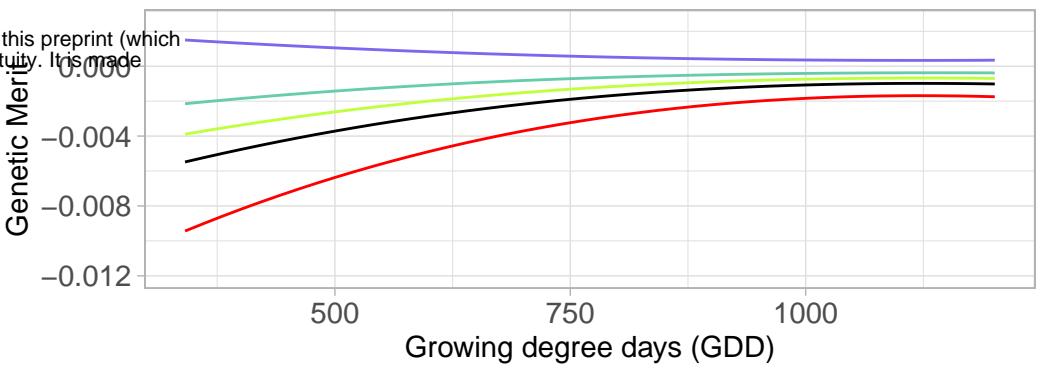
Harvest

- Nlcut3
- Nlcut4
- Nlcut5
- Nlcut6
- Nlcut7
- SITcut3
- SITcut4
- SITcut5
- SITcut7
- mean

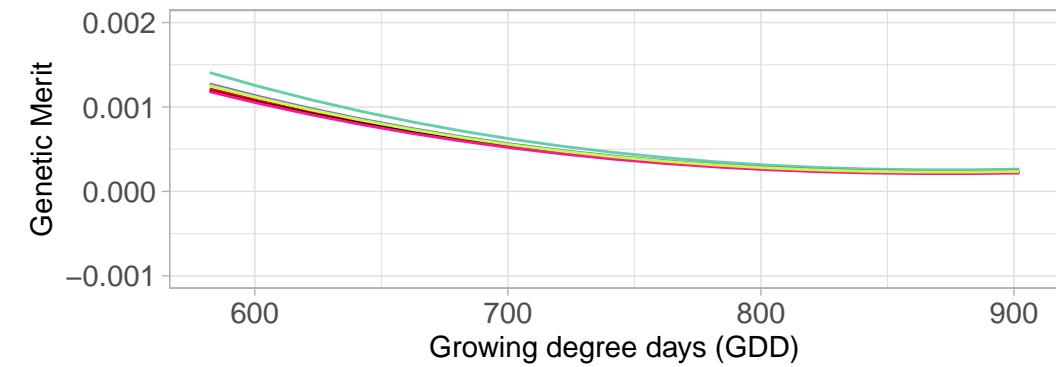
Stable line (G4)



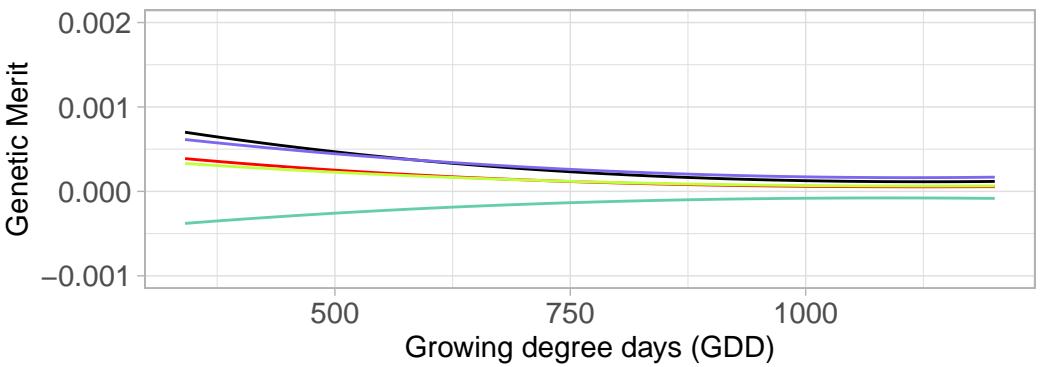
Stable line (G4)



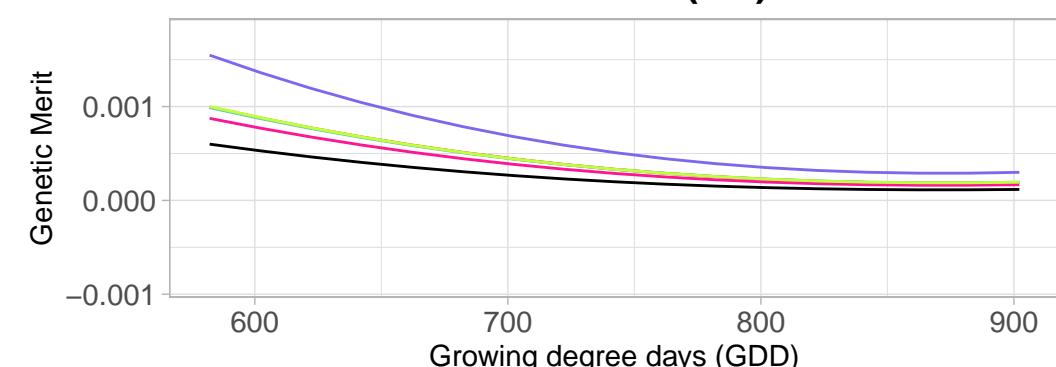
Stable line (G5)



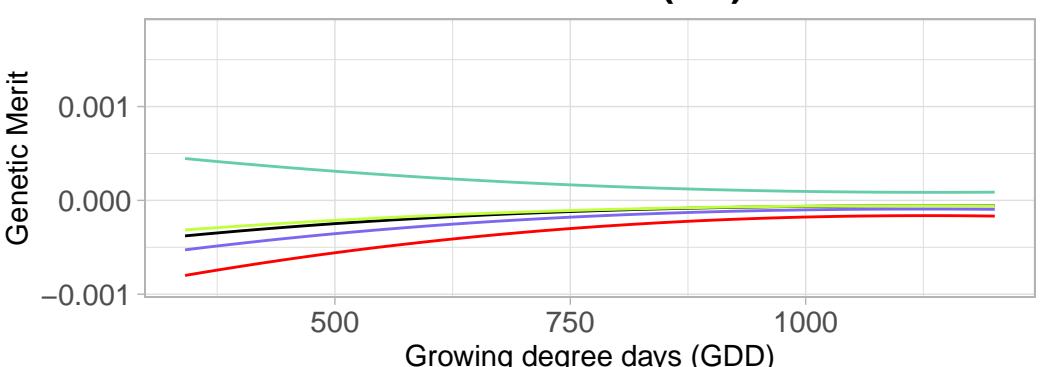
Stable line (G5)



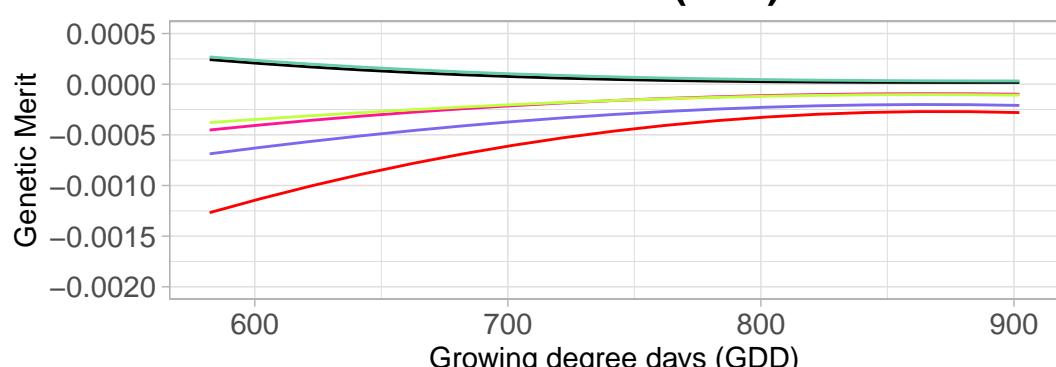
Stable line (G9)



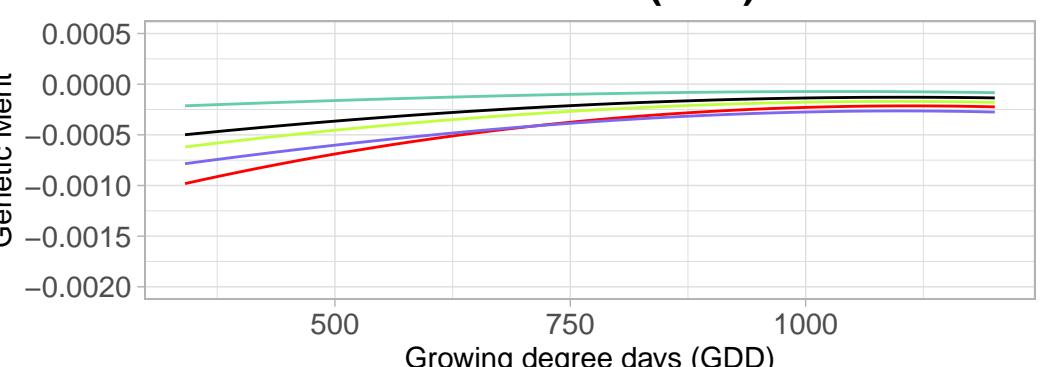
Stable line (G9)



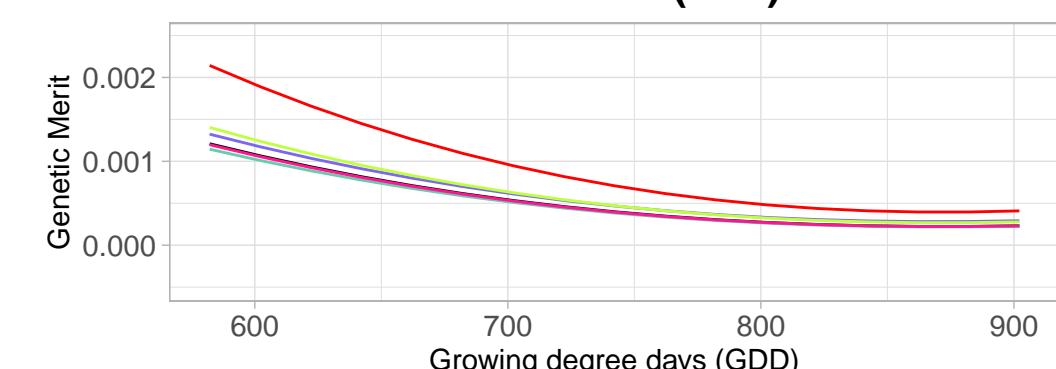
Stable line (G14)



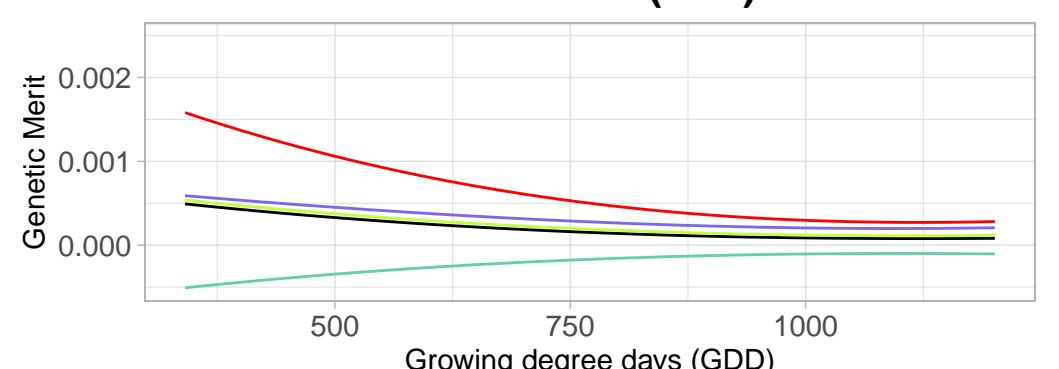
Stable line (G14)



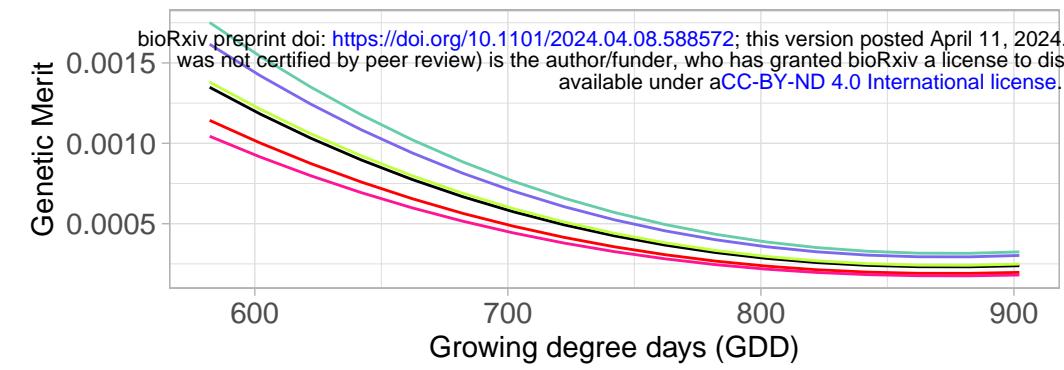
Stable line (G25)



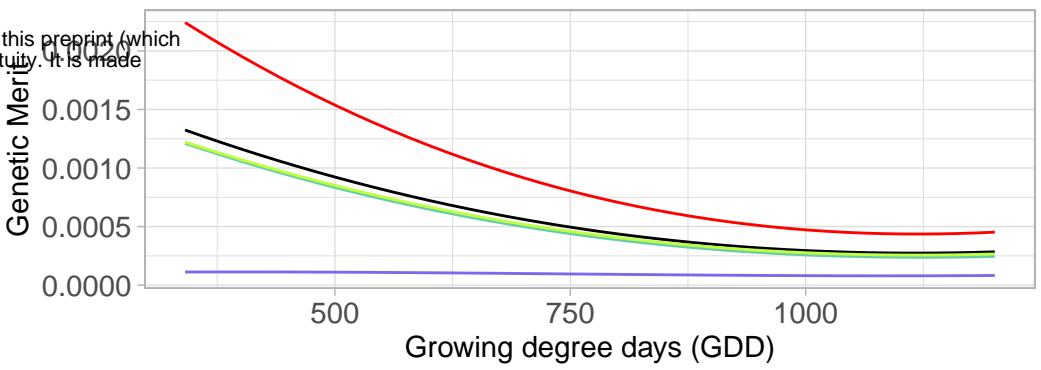
Stable line (G25)



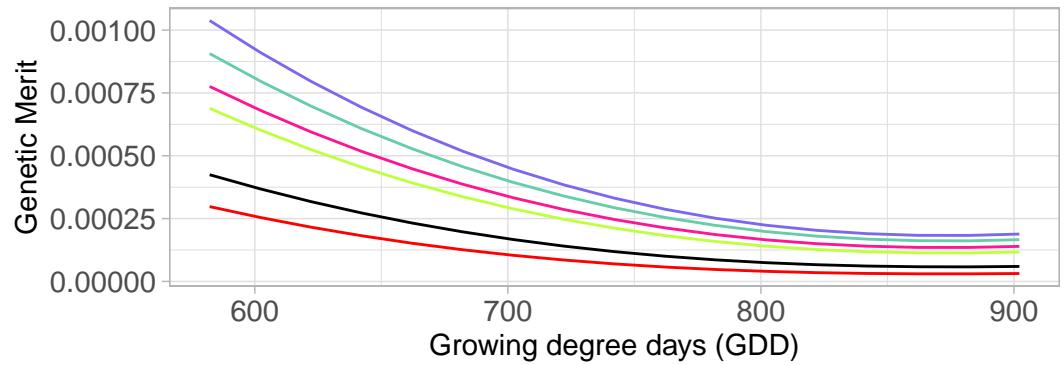
Unstable line (G1)



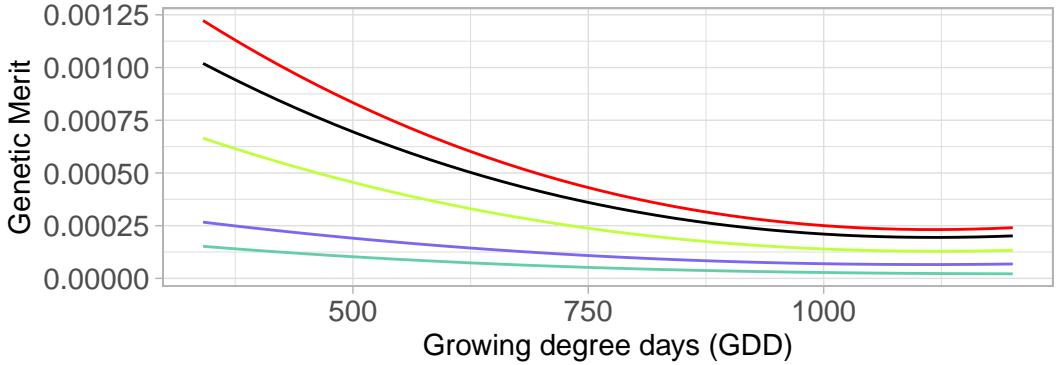
Unstable line (G1)



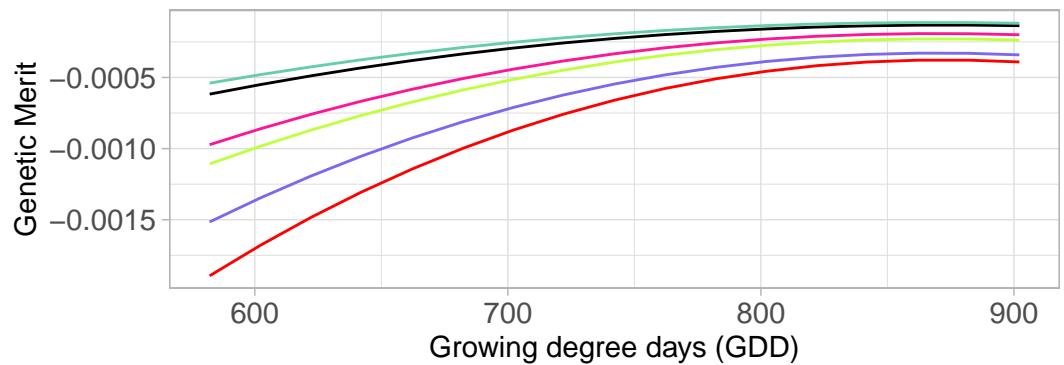
Unstable line (G11)



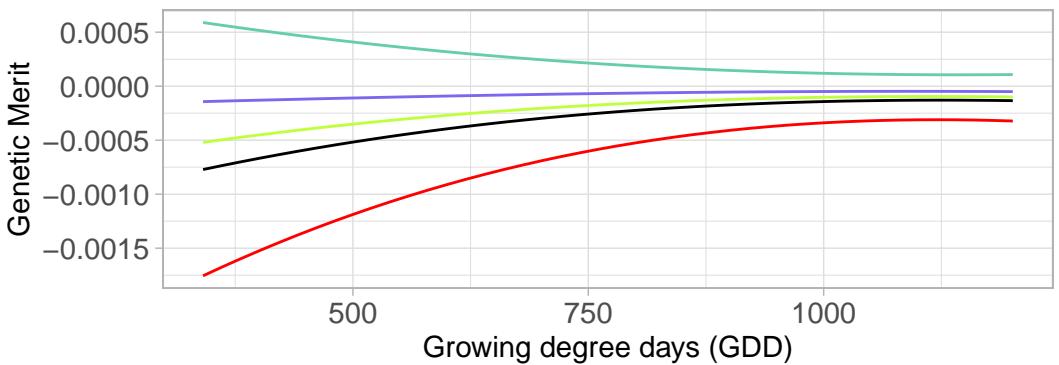
Unstable line (G11)



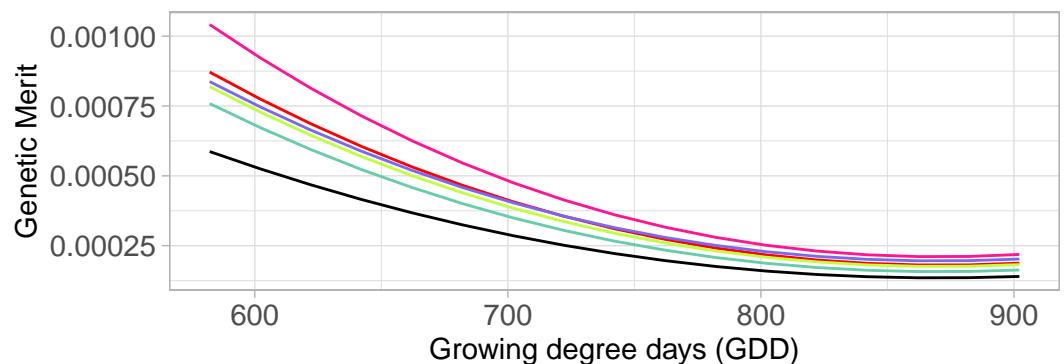
Unstable line (G17)



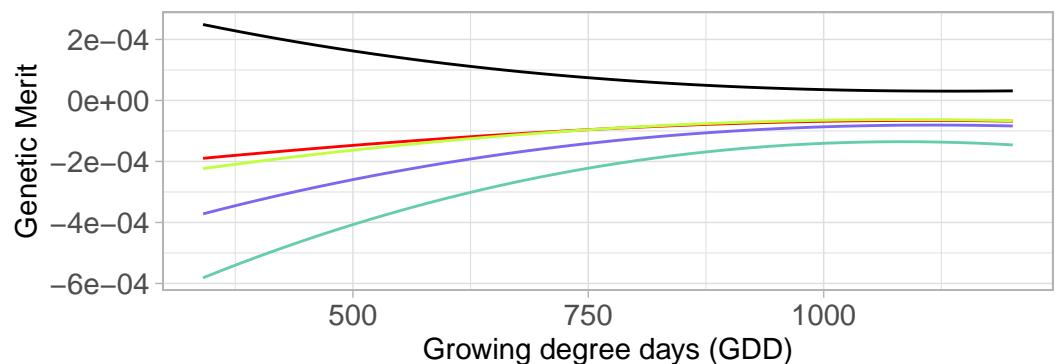
Unstable line (G17)



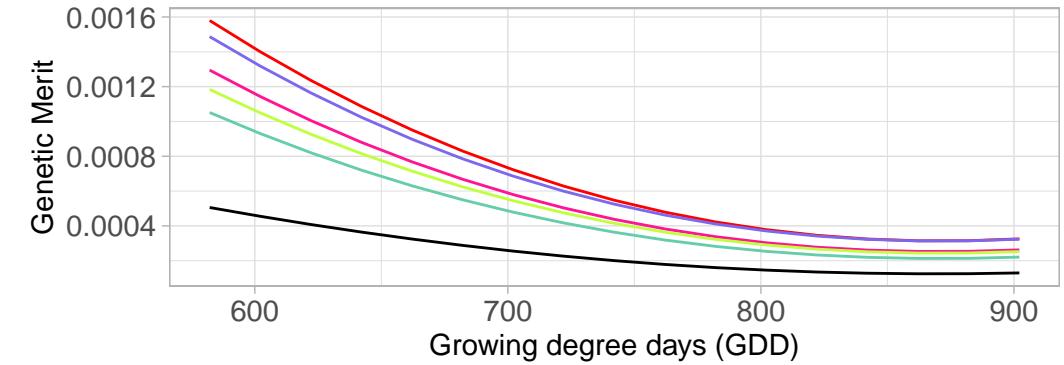
Unstable line (G21)



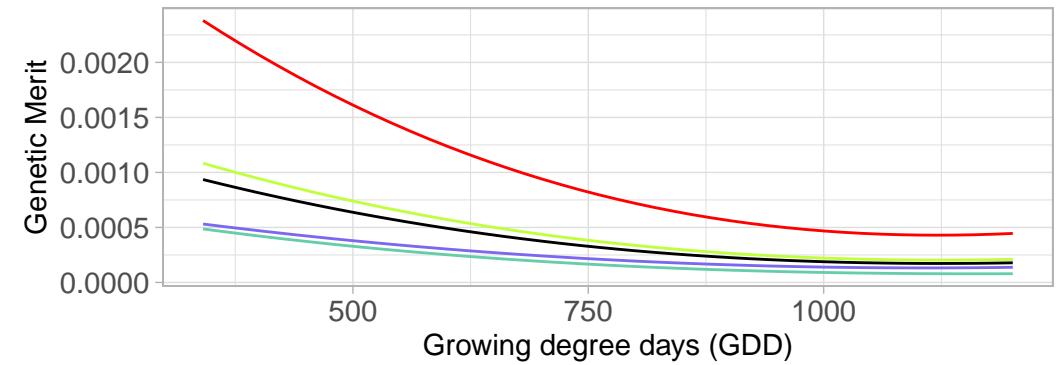
Unstable line (G21)



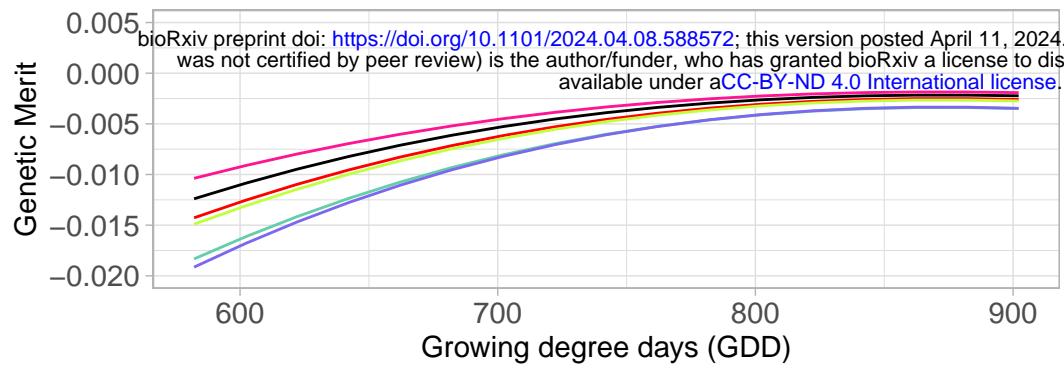
Unstable line (G23)



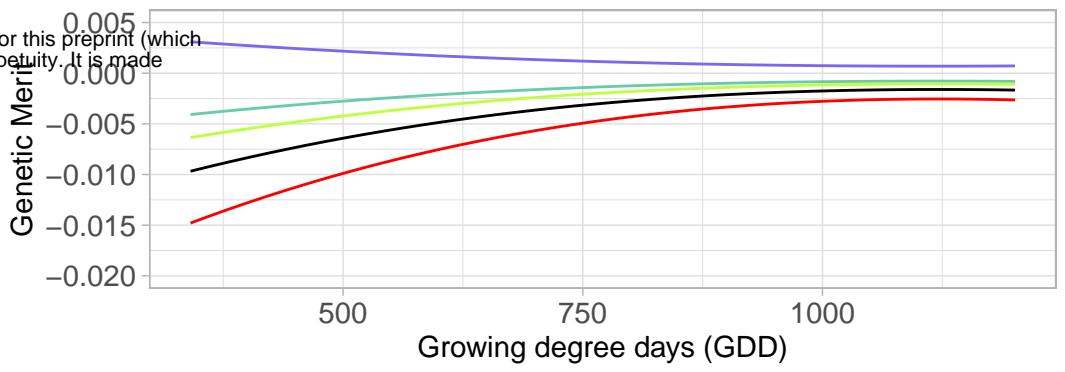
Unstable line (G23)



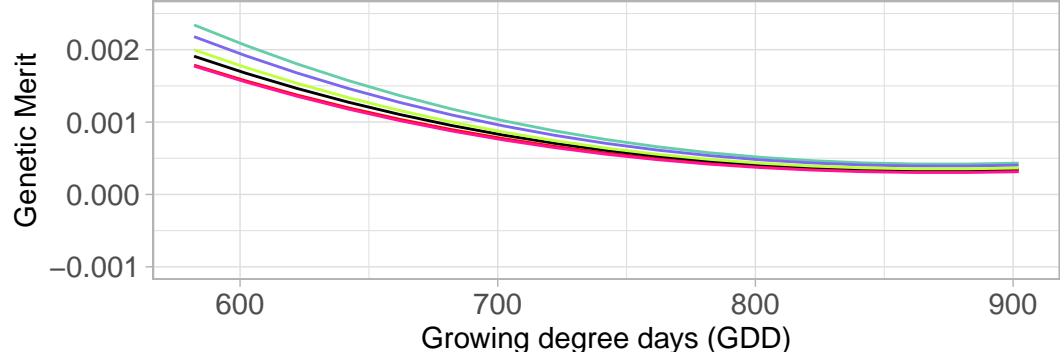
Stable line (G4)



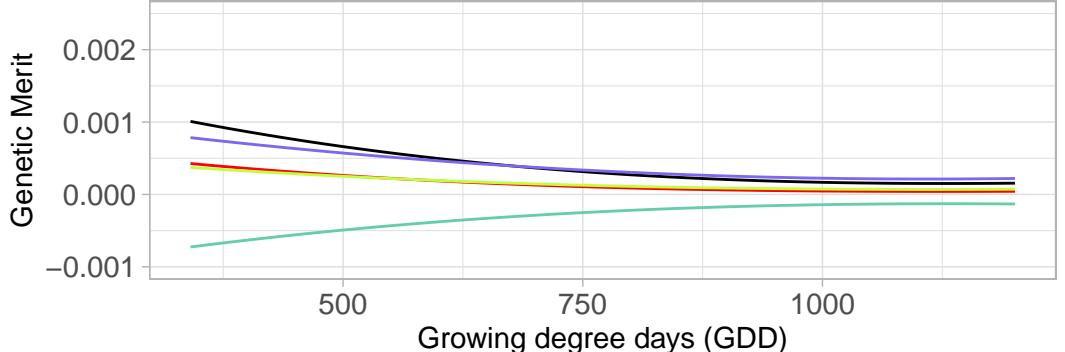
Stable line (G4)



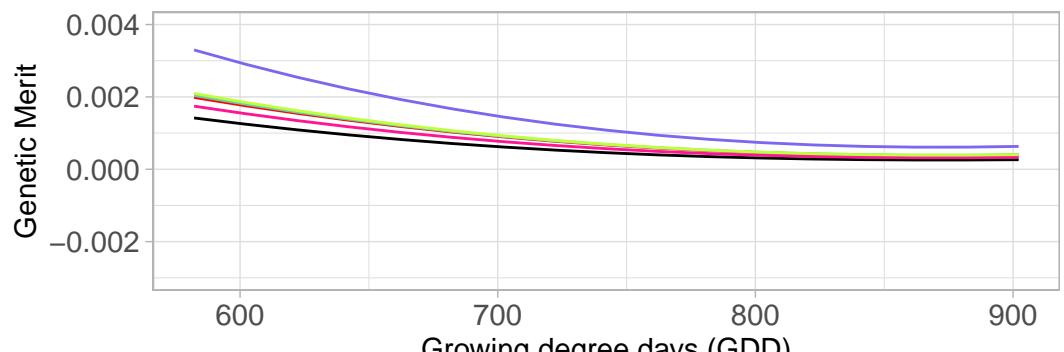
Stable line (G5)



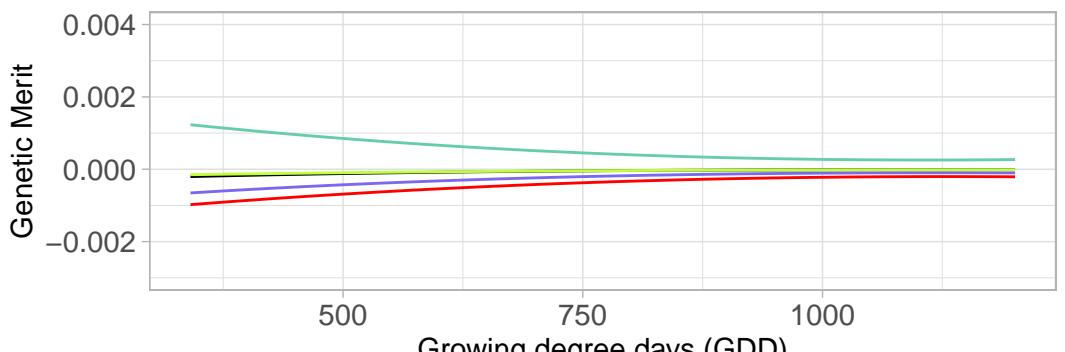
Stable line (G5)



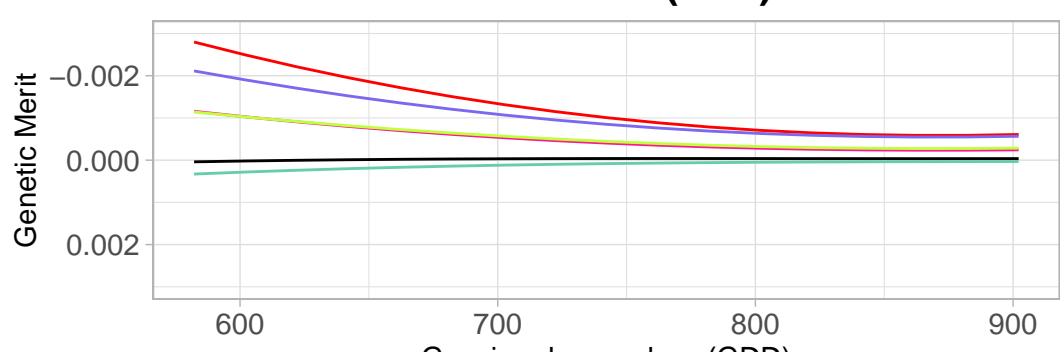
Stable line (G9)



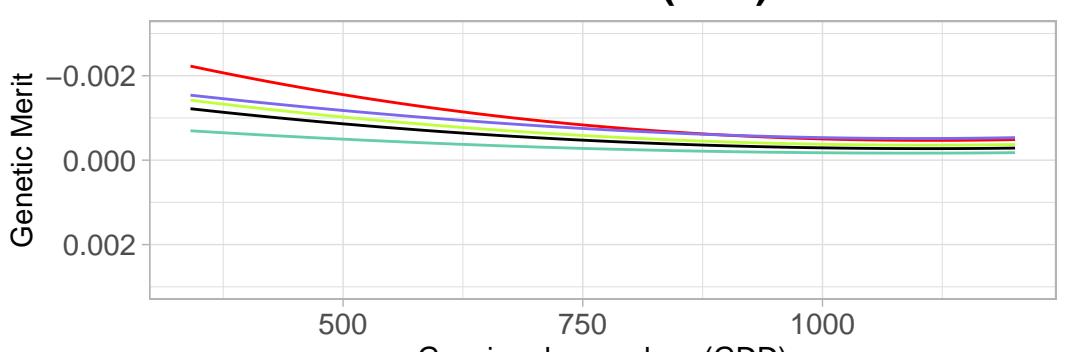
Stable line (G9)



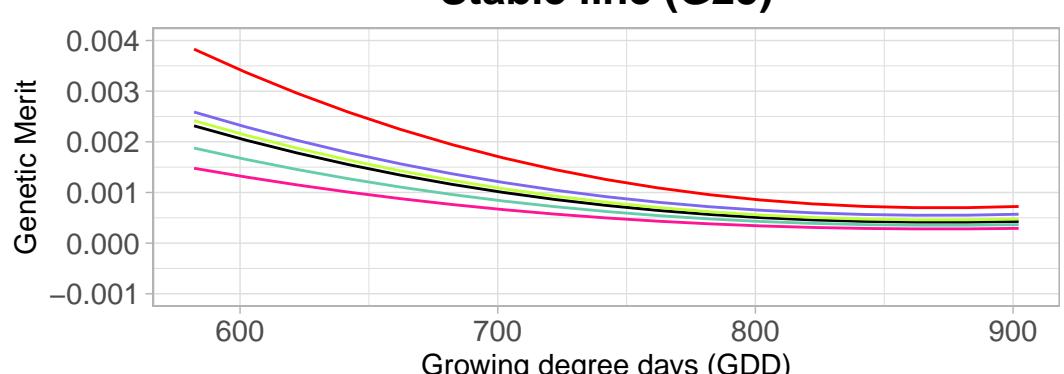
Stable line (G14)



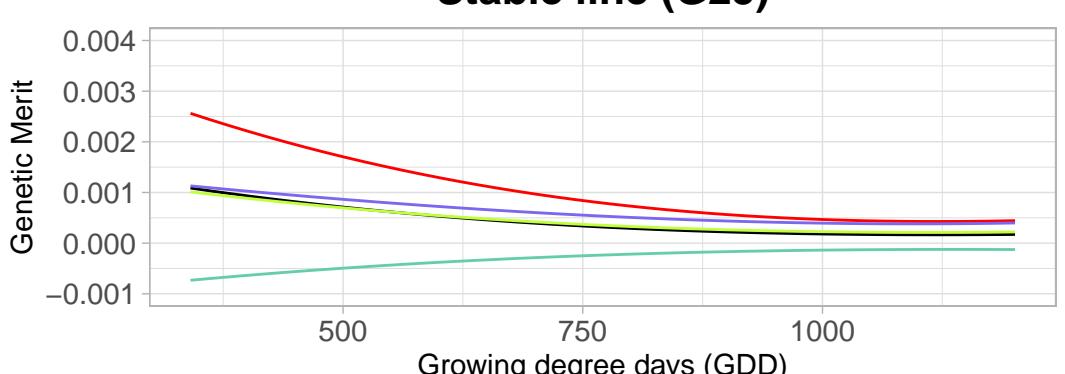
Stable line (G14)



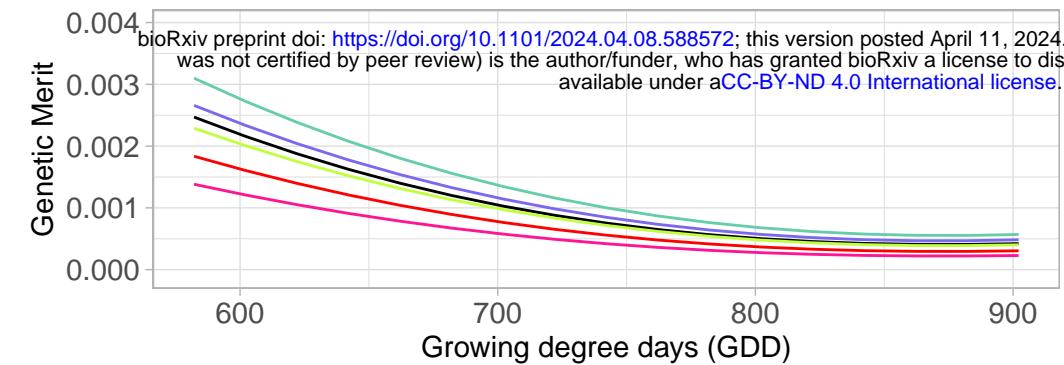
Stable line (G25)



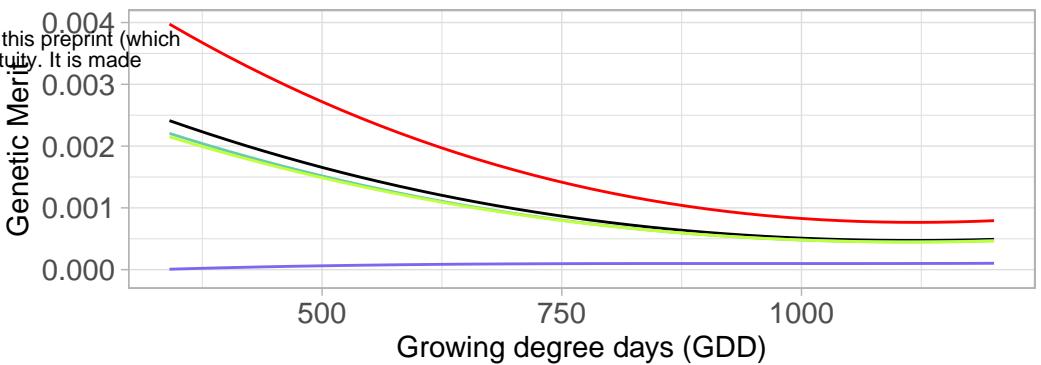
Stable line (G25)



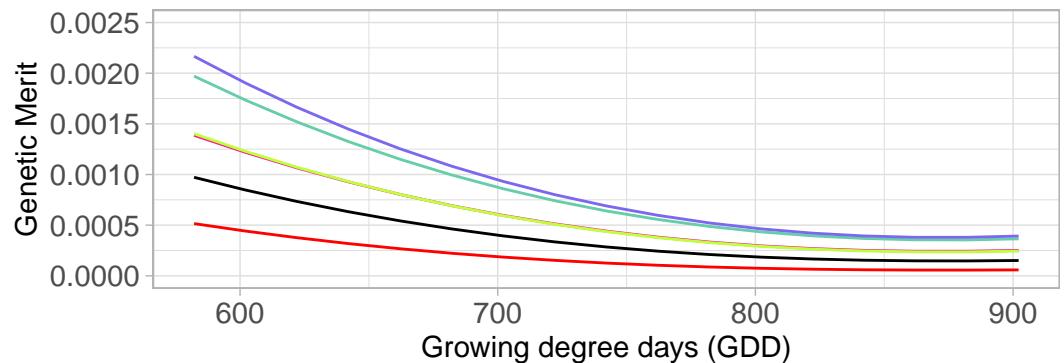
Unstable line (G1)



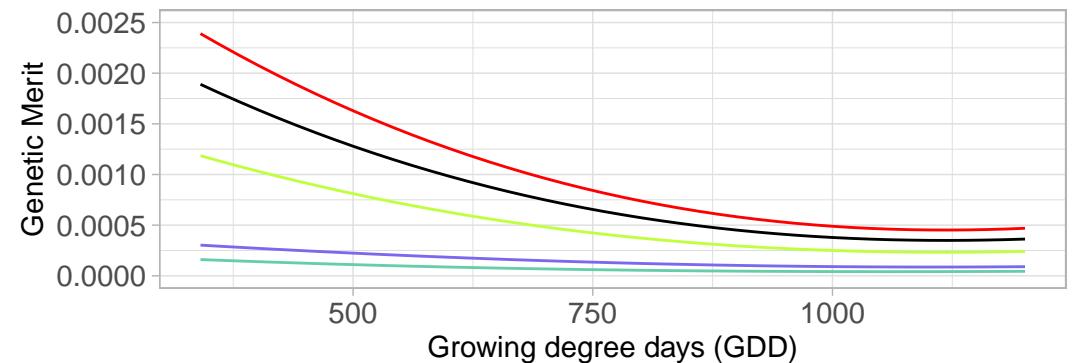
Unstable line (G1)



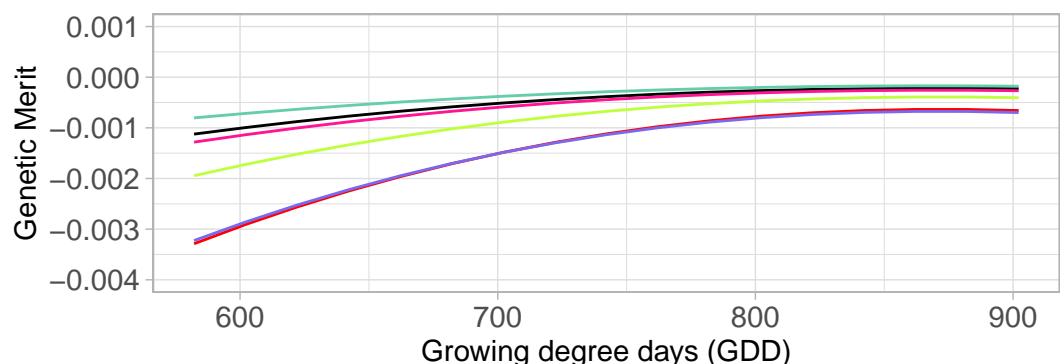
Unstable line (G11)



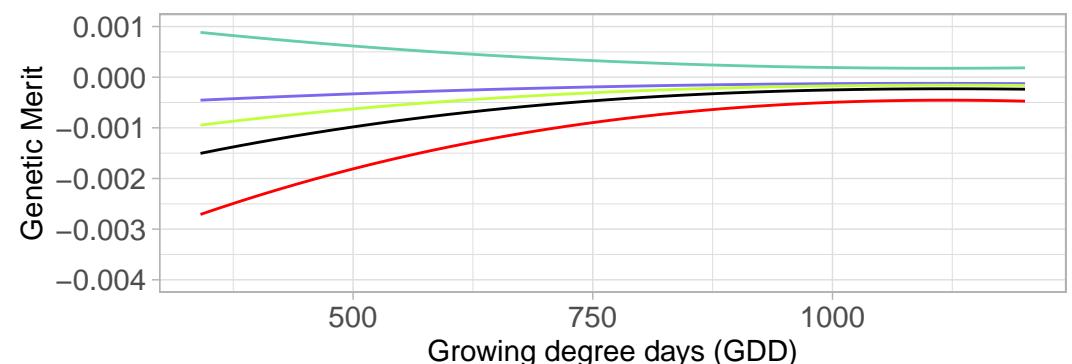
Unstable line (G11)



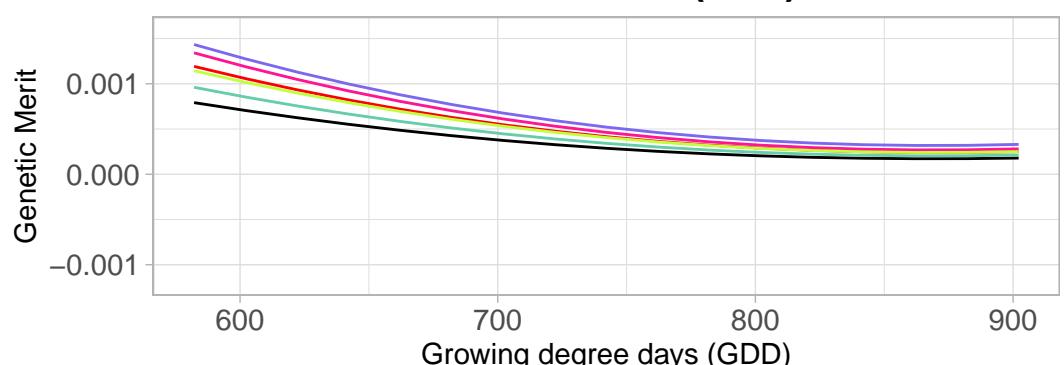
Unstable line (G17)



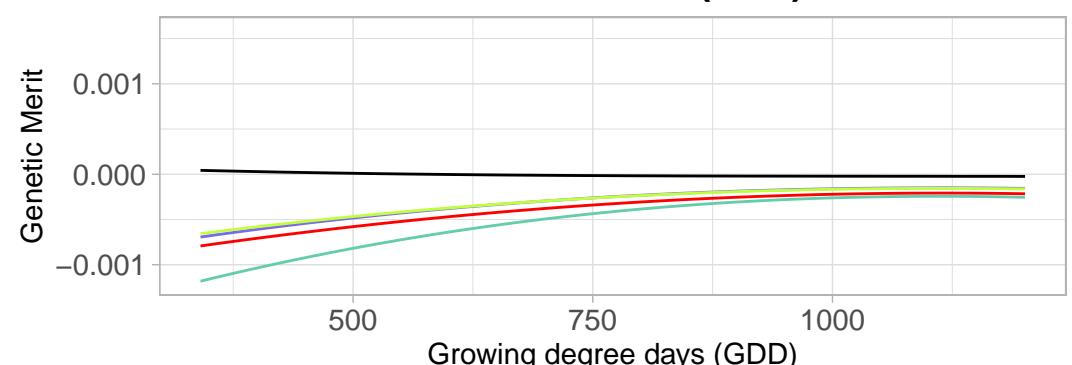
Unstable line (G17)



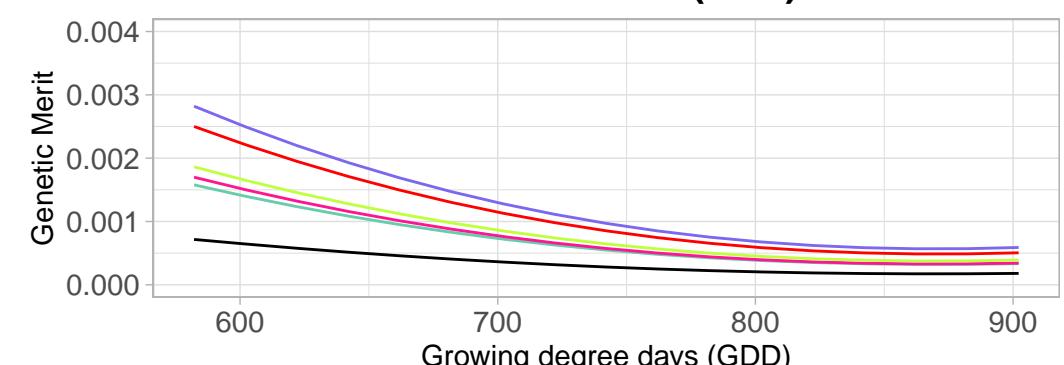
Unstable line (G21)



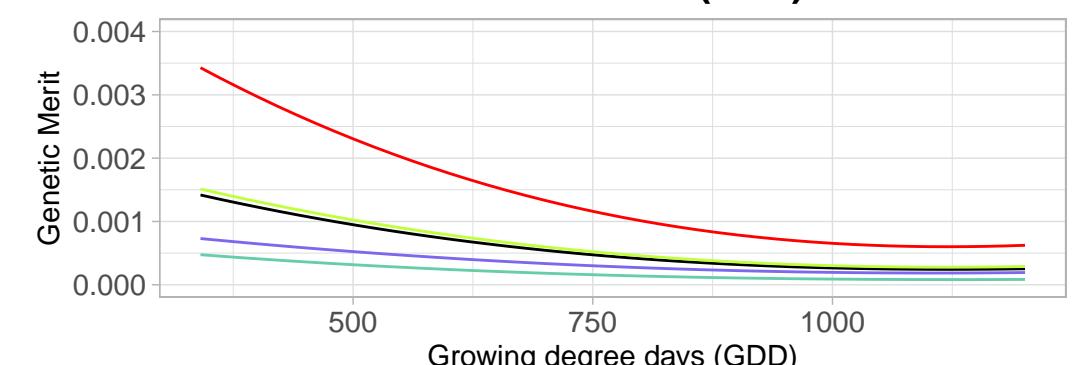
Unstable line (G21)



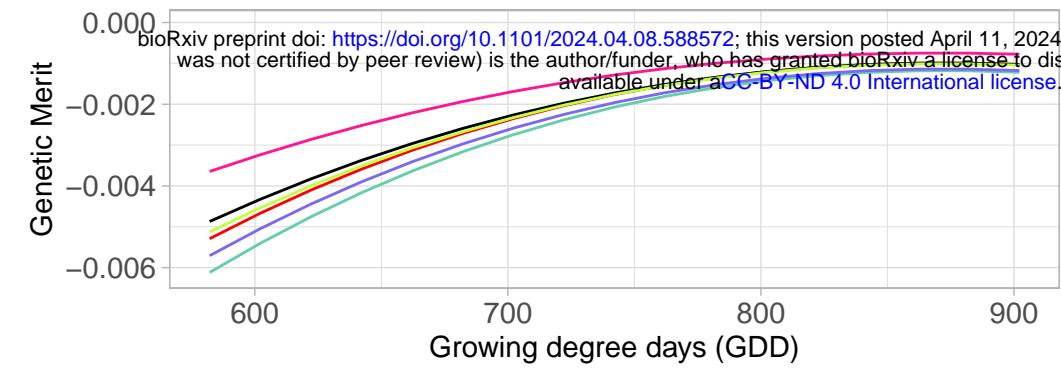
Unstable line (G23)



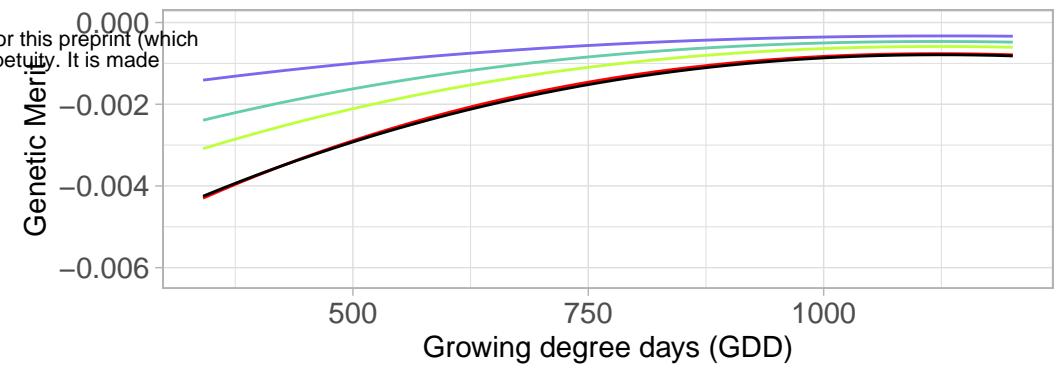
Unstable line (G23)



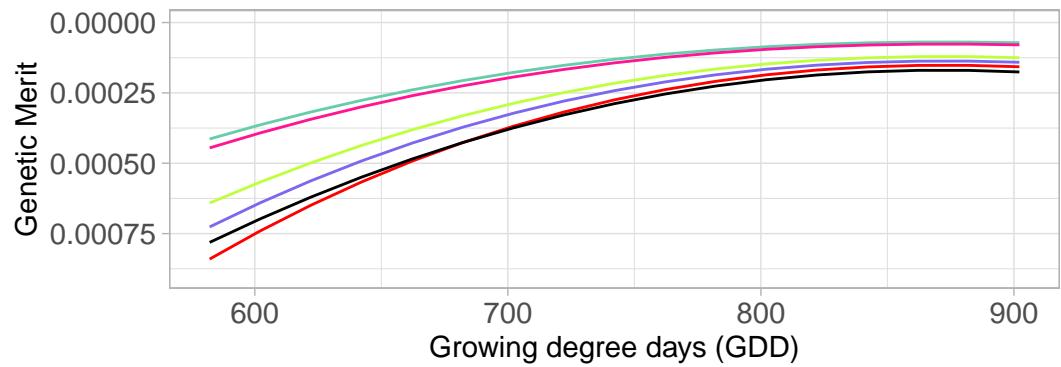
Stable line (G4)



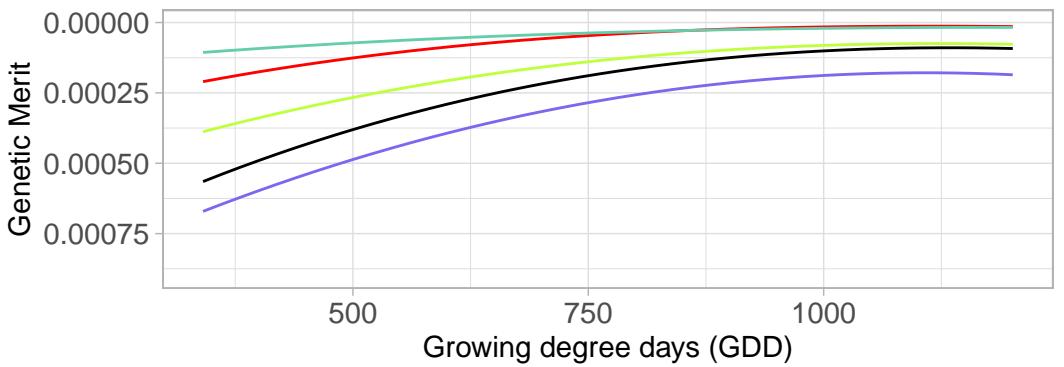
Stable line (G4)



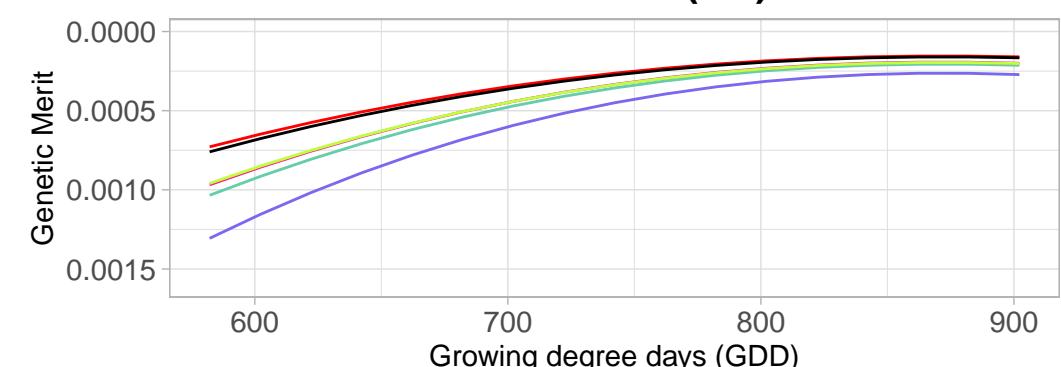
Stable line (G5)



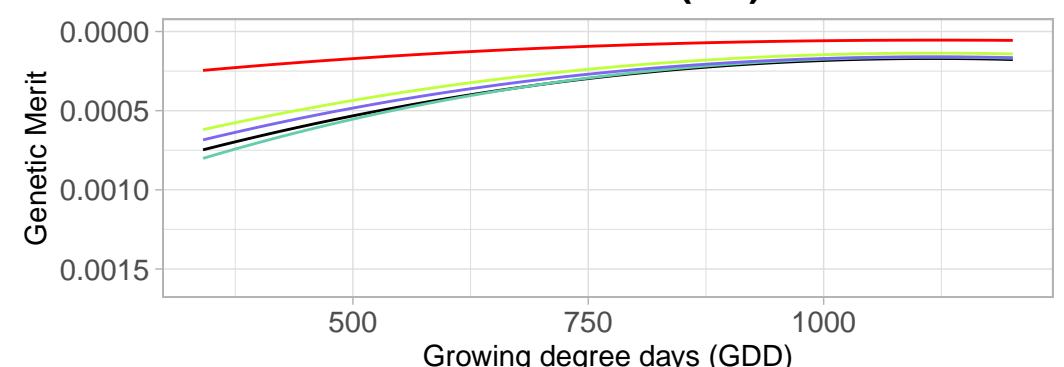
Stable line (G5)



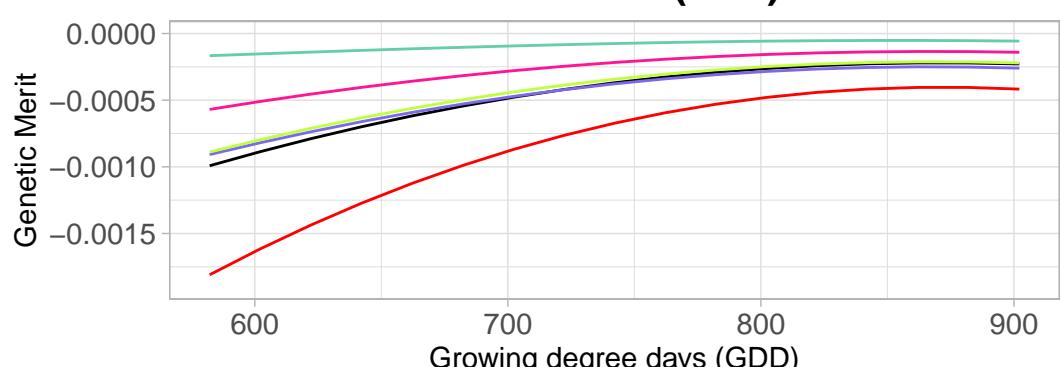
Stable line (G9)



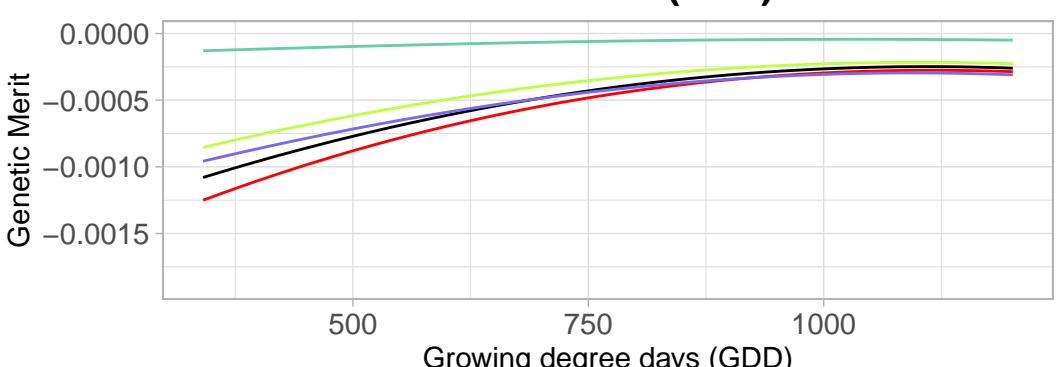
Stable line (G9)



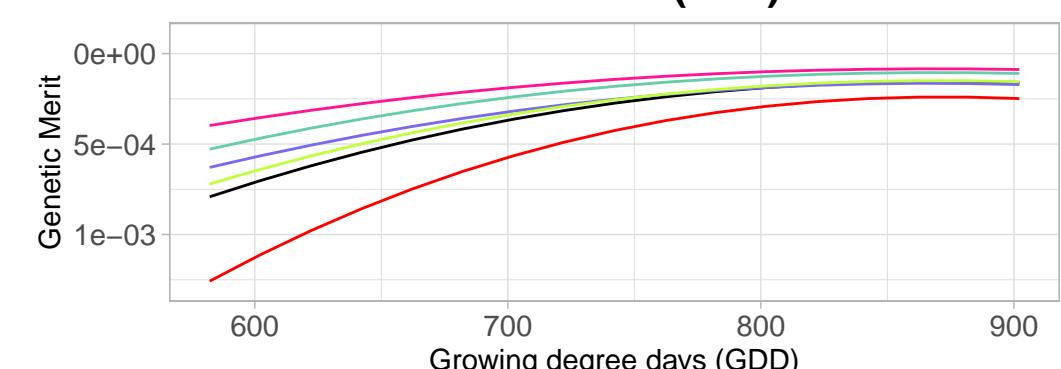
Stable line (G14)



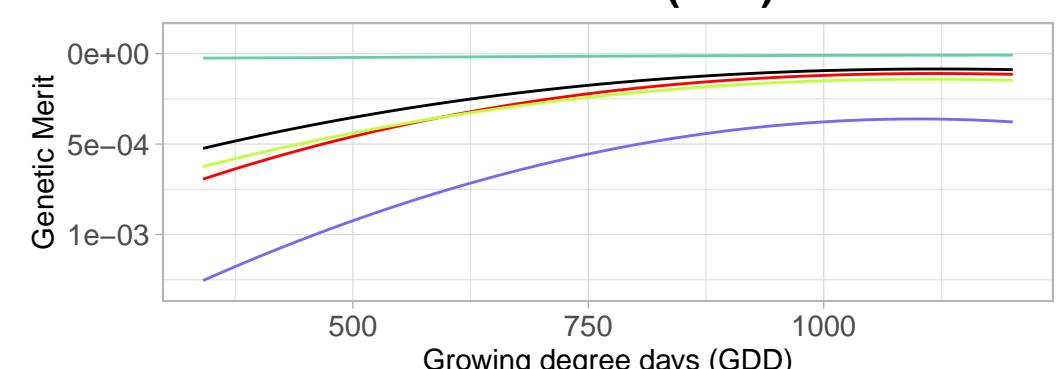
Stable line (G14)



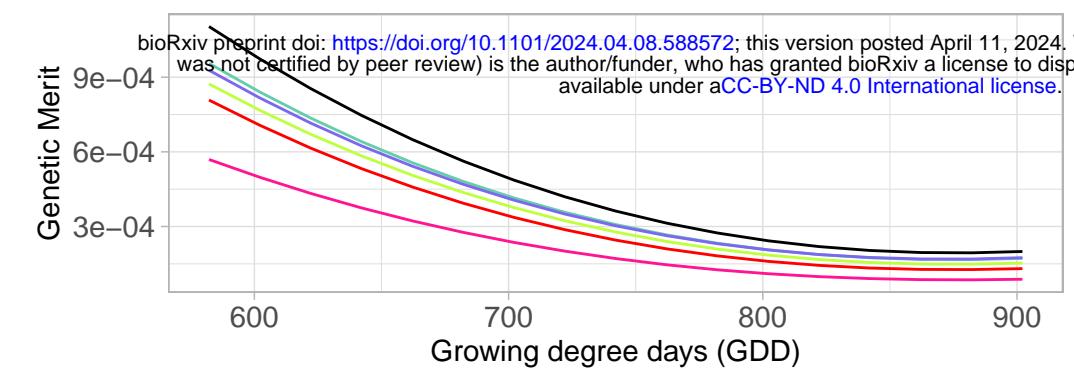
Stable line (G25)



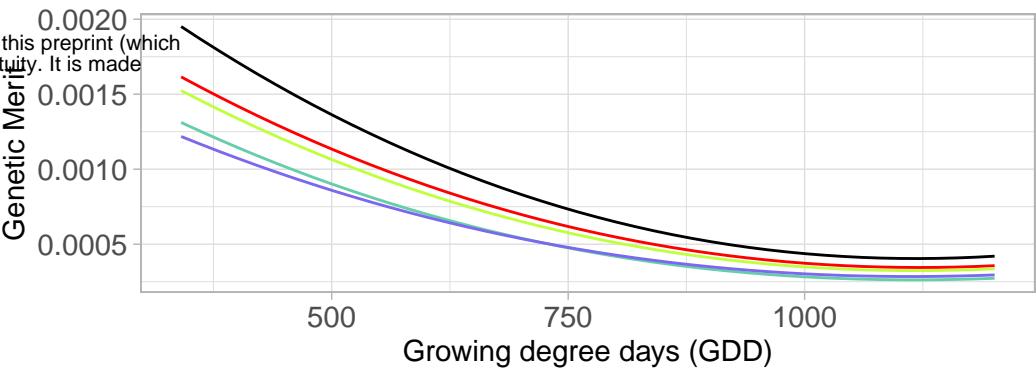
Stable line (G25)



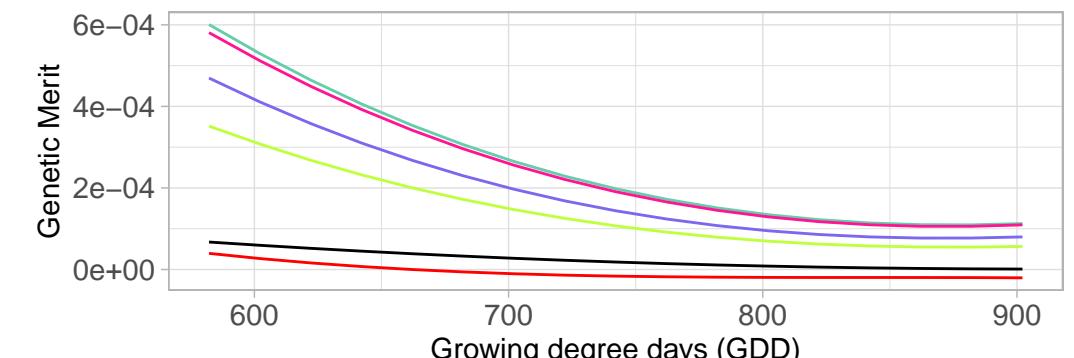
Unstable line (G1)



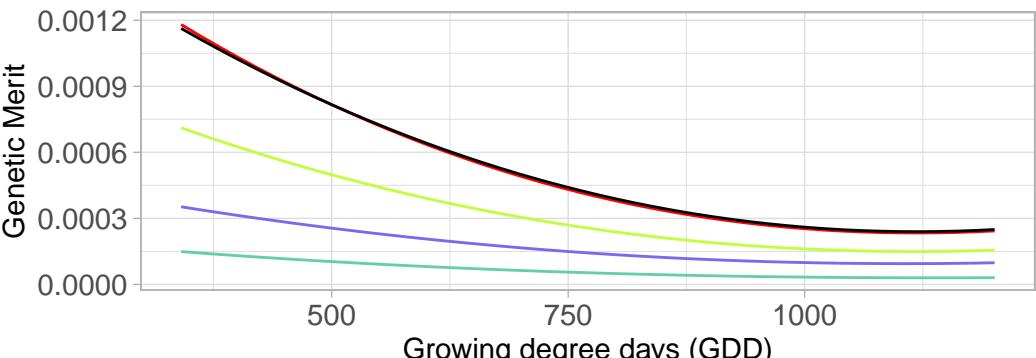
Unstable line (G1)



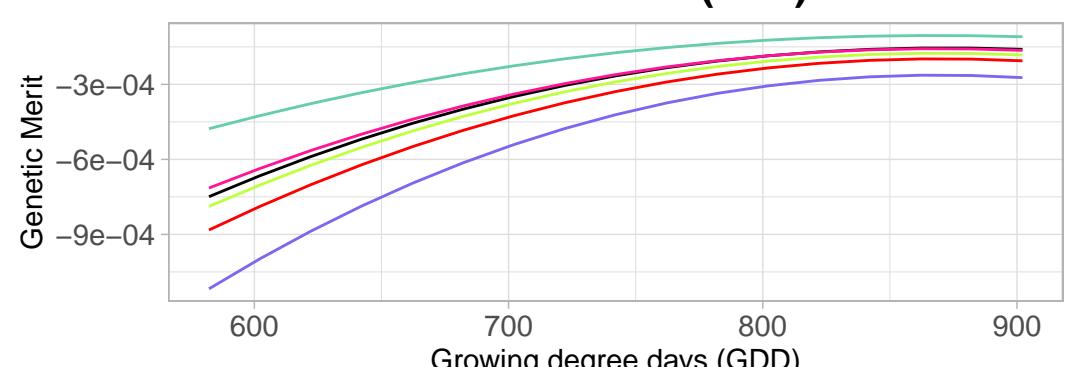
Unstable line (G11)



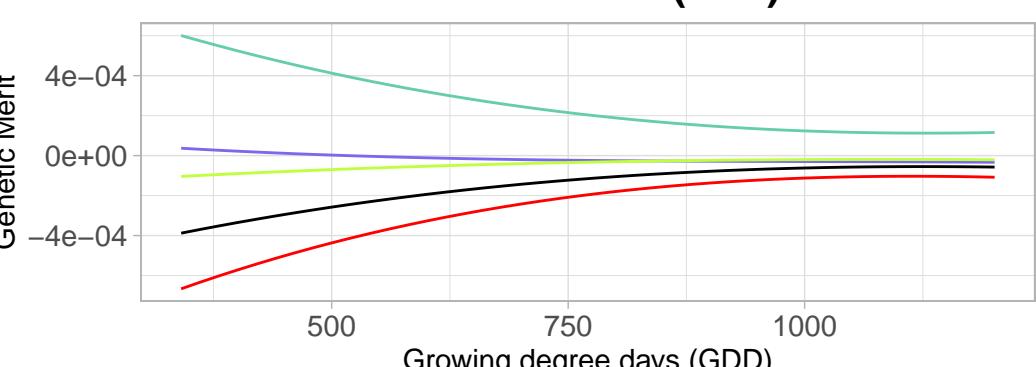
Unstable line (G11)



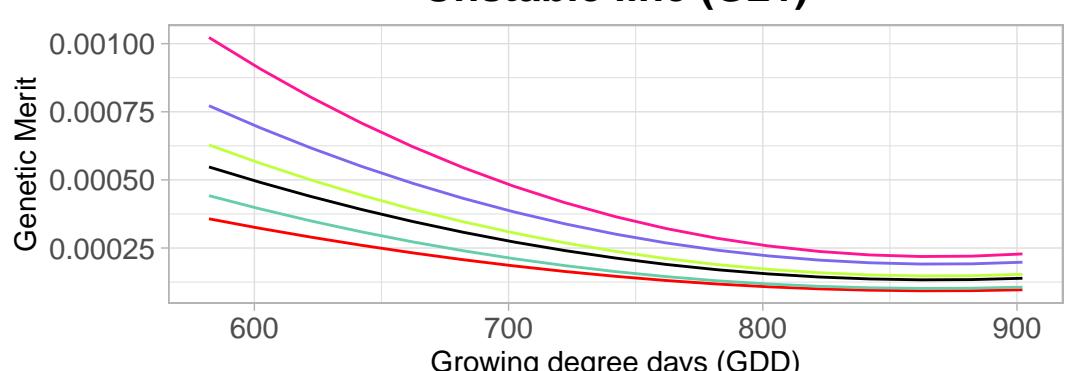
Unstable line (G17)



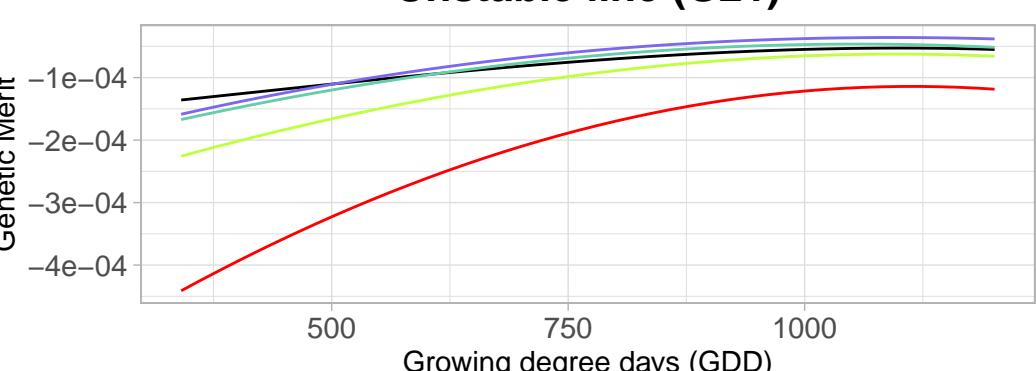
Unstable line (G17)



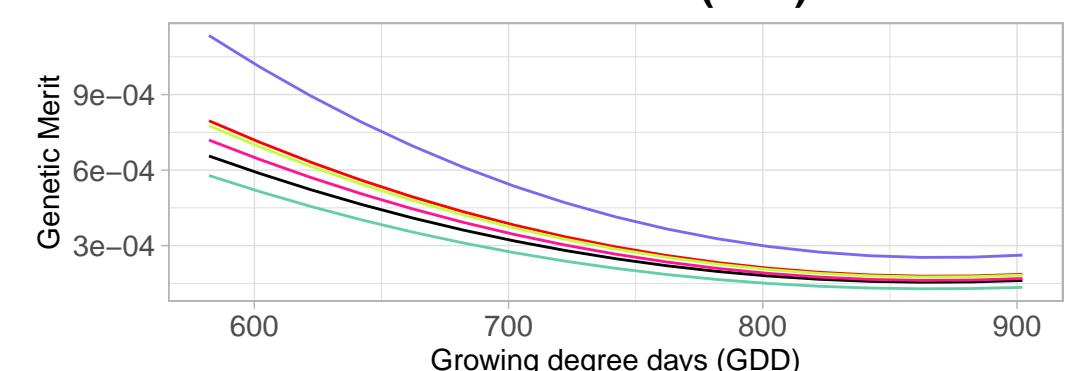
Unstable line (G21)



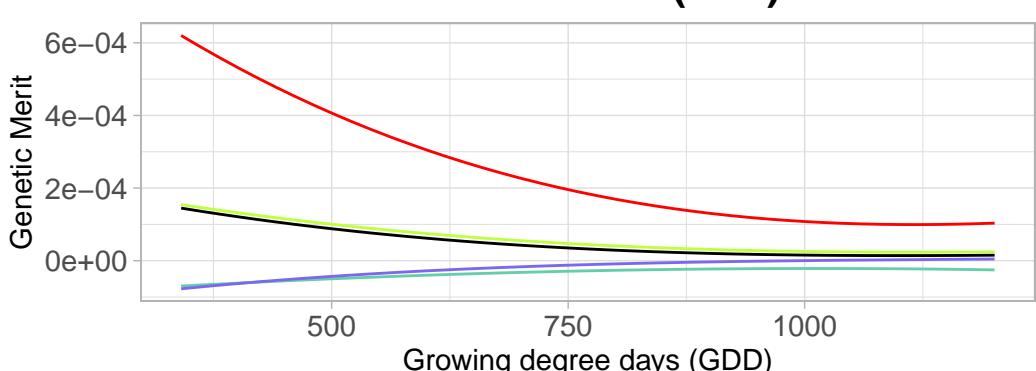
Unstable line (G21)



Unstable line (G23)



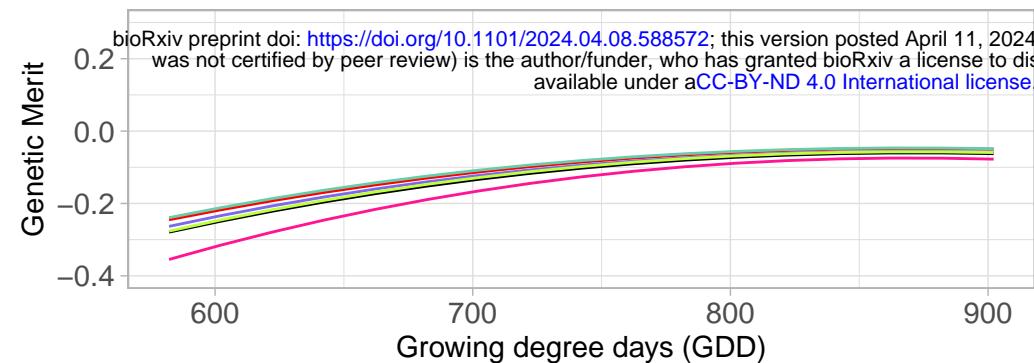
Unstable line (G23)



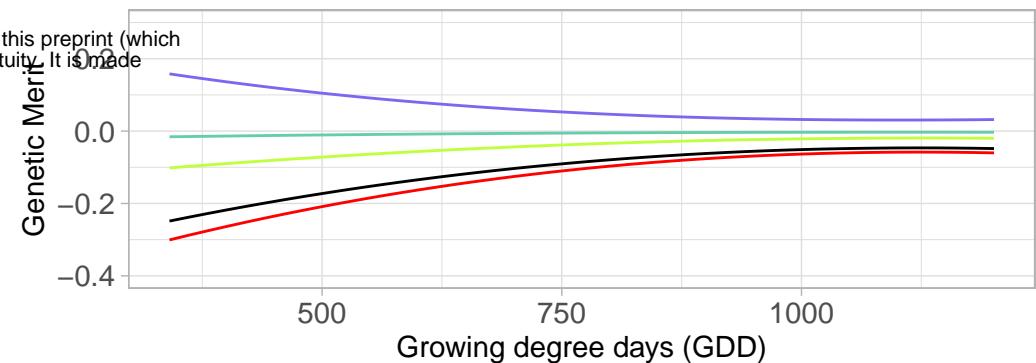
Harvest

- SITcut3
- SITcut4
- SITcut5
- SITcut7
- mean

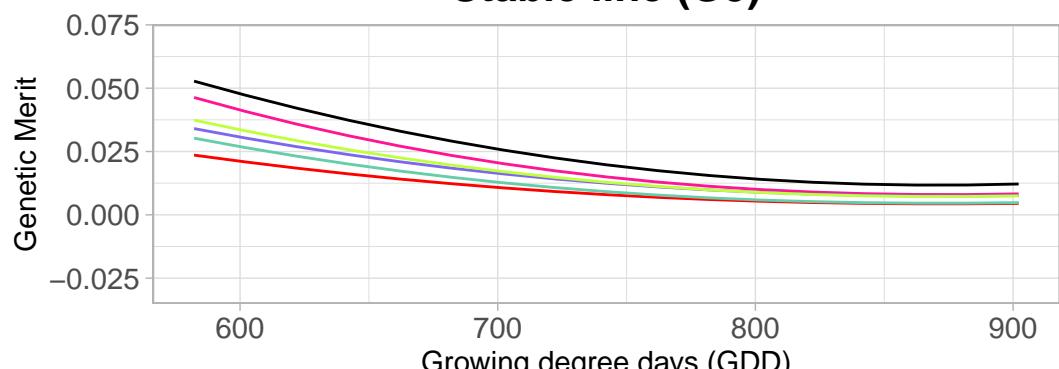
Stable line (G4)



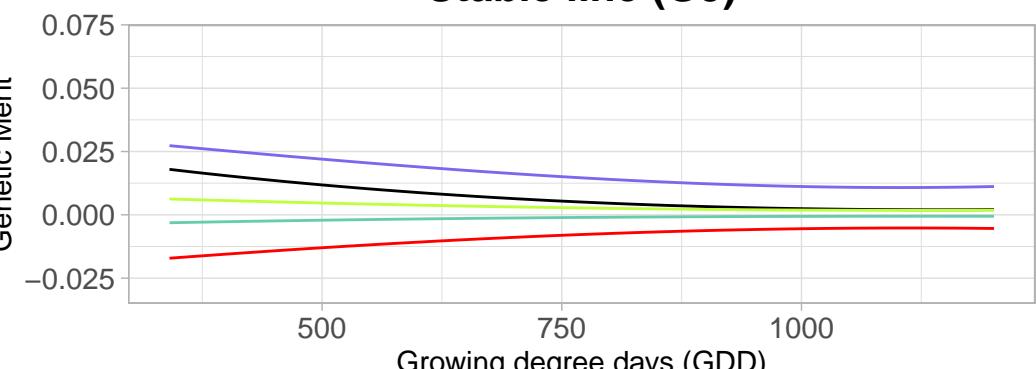
Stable line (G4)



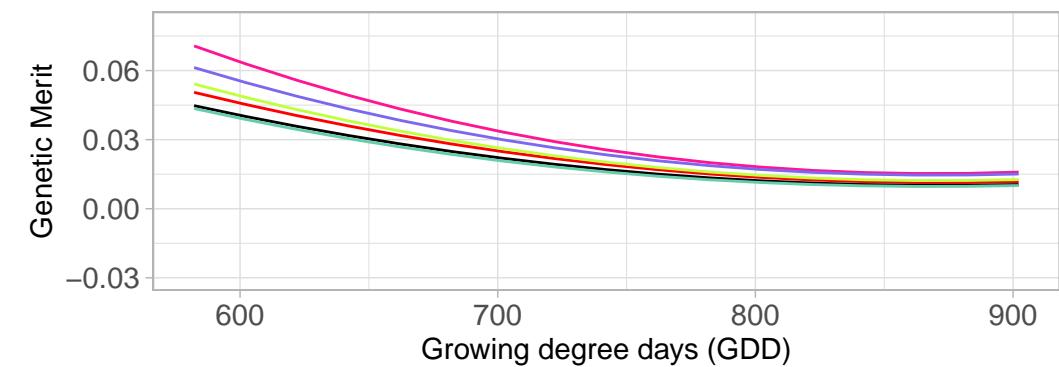
Stable line (G5)



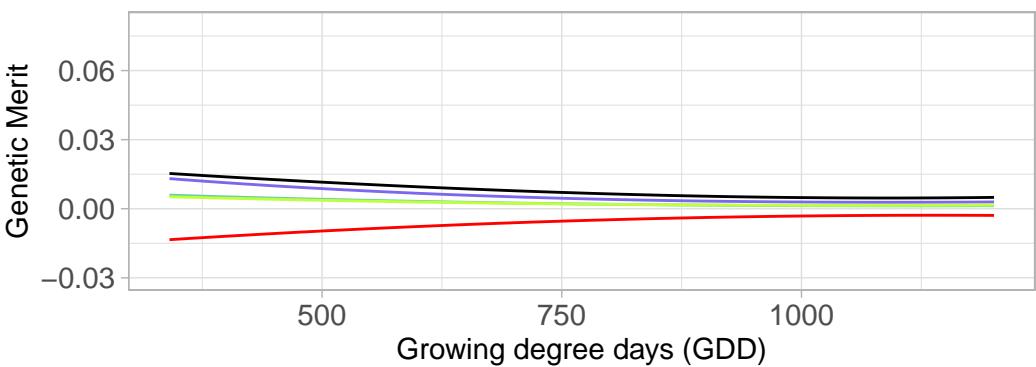
Stable line (G5)



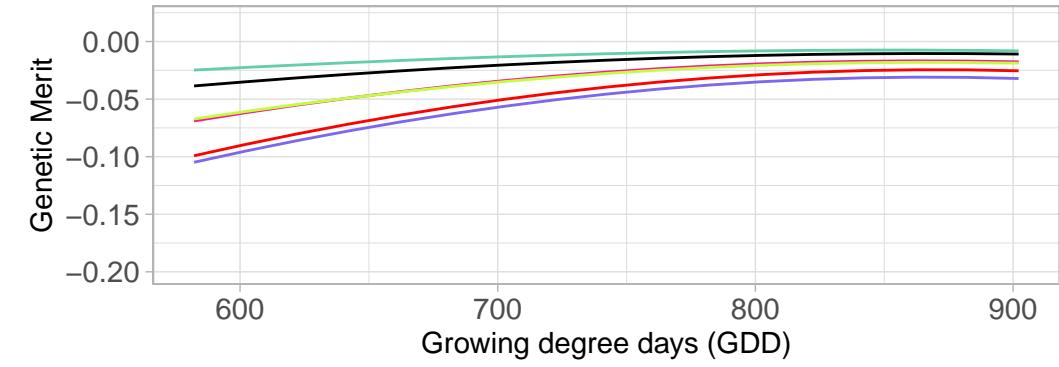
Stable line (G9)



Stable line (G9)



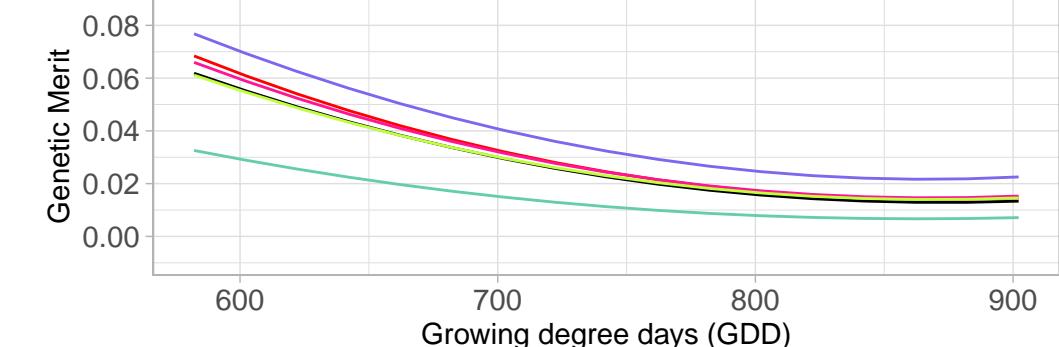
Stable line (G14)



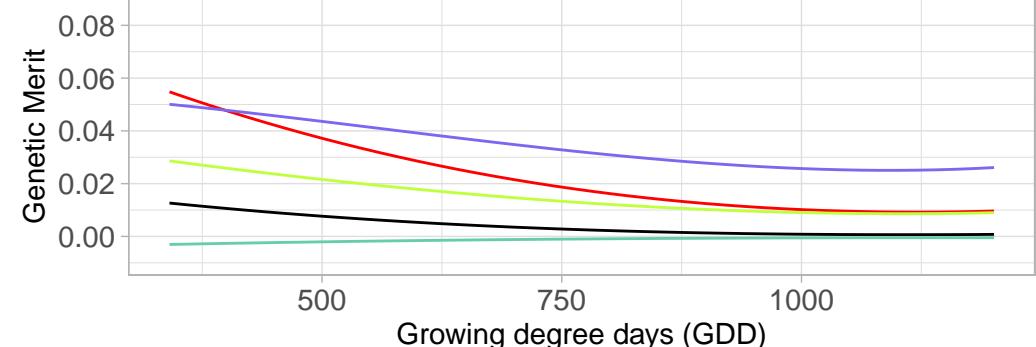
Stable line (G14)



Stable line (G25)



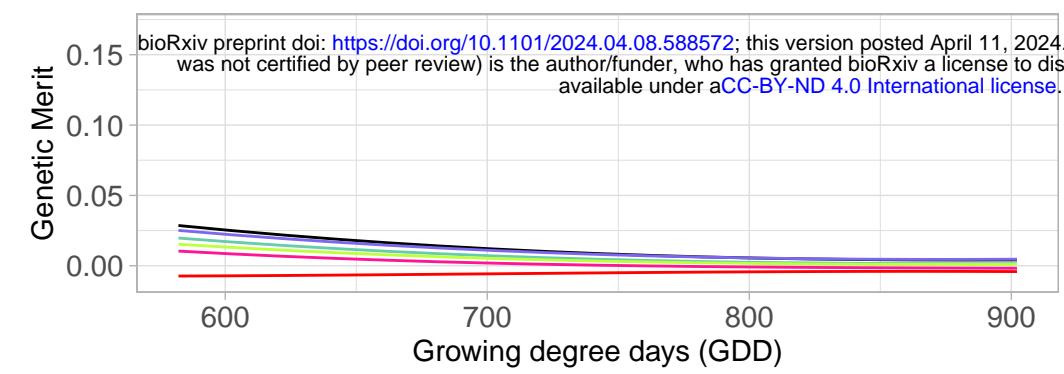
Stable line (G25)



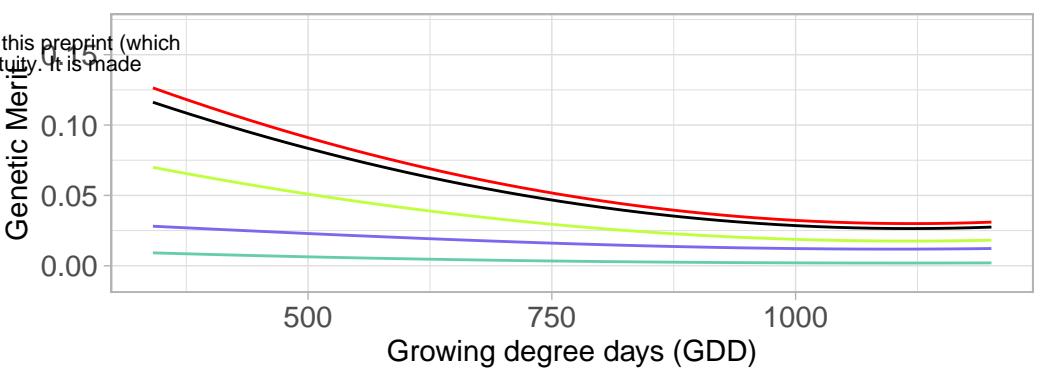
Harvest

- SITcut3
- SITcut4
- SITcut5
- SITcut7
- mean

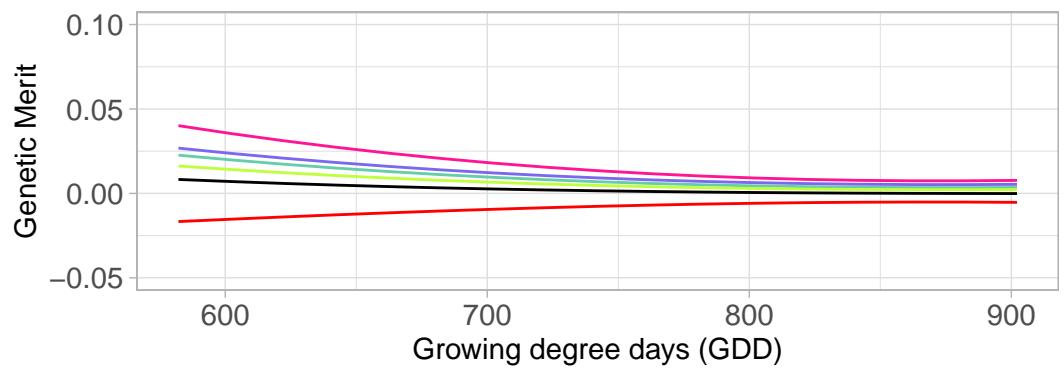
Unstable line (G1)



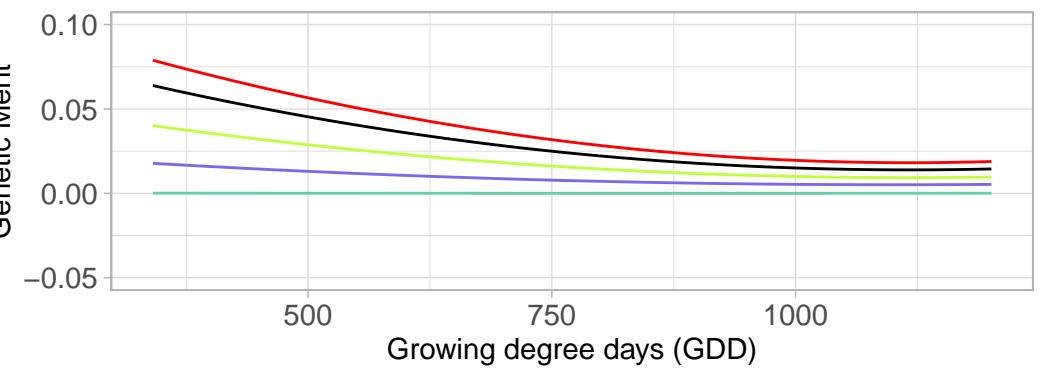
Unstable line (G1)



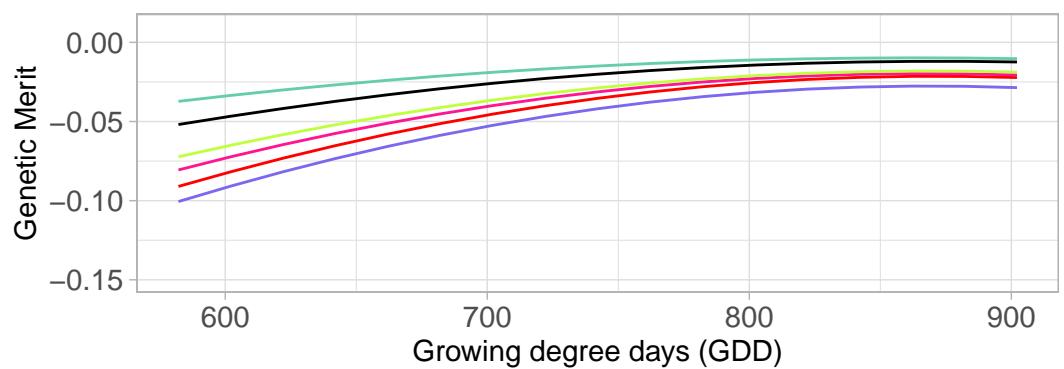
Unstable line (G11)



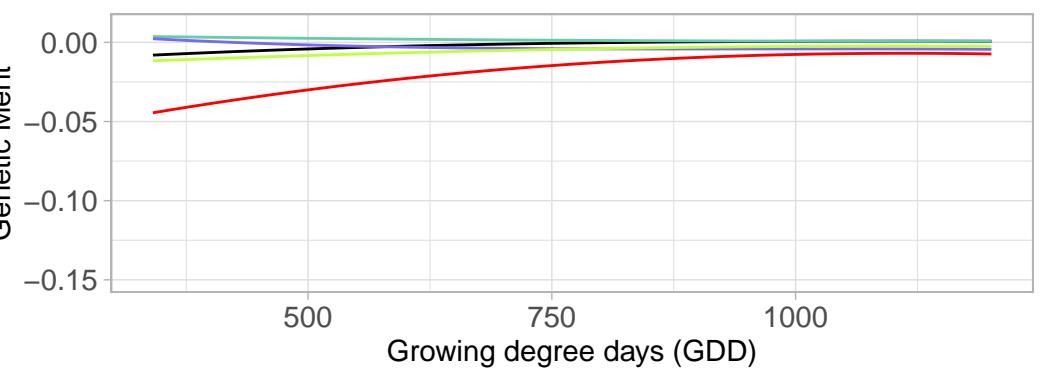
Unstable line (G11)



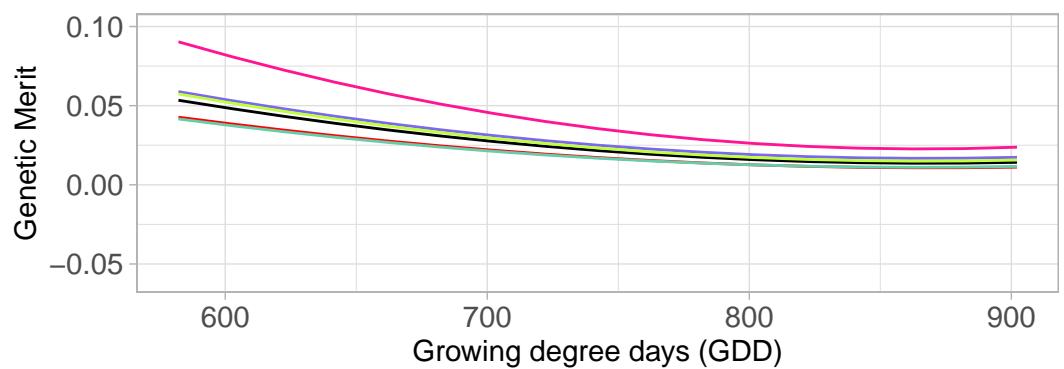
Unstable line (G17)



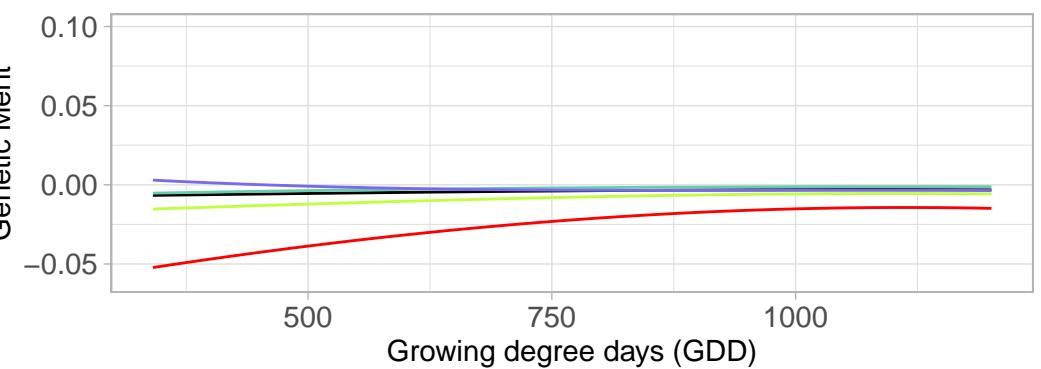
Unstable line (G17)



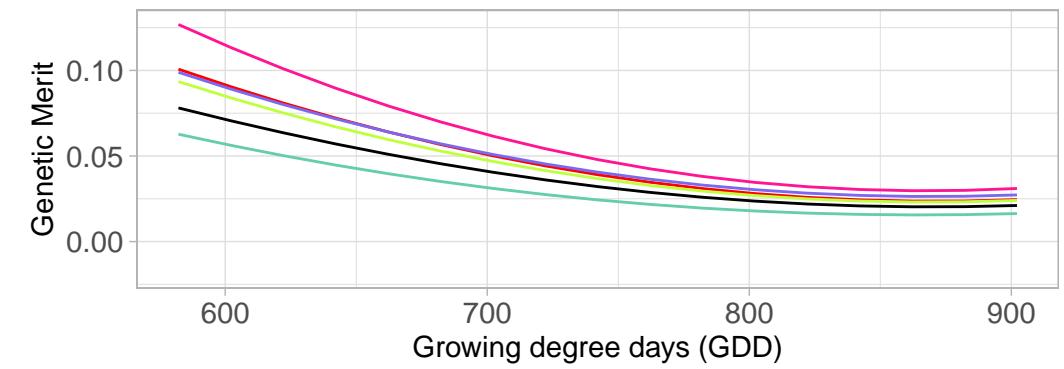
Unstable line (G21)



Unstable line (G21)



Unstable line (G23)



Unstable line (G23)

