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Abstract

Multi-spectral imaging (MSI) collection by unoccupied aerial vehicles (UAV) is an
important tool to measure growth of forage crops. Information from estimated growth curves can

be used to infer harvest biomass and to gain insights in the relationship of growth dynamics and
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harvest biomass stability across cuttings and years. In this study, we used MSI to evaluate
Alfalfa (Medicago sativa L. subsp. sativa) to understand the longitudinal relationship between
vegetative indices (VIs) and forage/biomass, as well as evaluation of irrigation treatments and
genotype by environment interactions (GEI) of different alfalfa cultivars. Alfalfa is a widely
cultivated perennial forage crop grown for high yield, nutritious forage quality for feed rations,
tolerance to abiotic stress, and nitrogen fixation properties in crop rotations. The direct
relationship between biomass and VIs such as Normalized difference vegetation index (NDVI),
green normalized difference vegetation index (GNDVI), red edge normalized difference
vegetation index (NDRE), and Near infrared (NIR) provide a non-destructive and high
throughput approach to measure biomass accumulation over subsequent alfalfa harvests. In this
study, we aimed to estimate the genetic parameters of alfalfa VIs and utilize longitudinal
modeling of VIs over growing seasons to identify potential relationships between stability in
growth parameters and cultivar stability for alfalfa biomass yield across cuttings and years. We
found VIs of GNDVI, NDRE, NDVI, NIR and simple ratios to be moderately heritable with
median values for the field trial in Ithaca, NY to be 0.64, 0.56, 0.45, 0.45 and 0.40 respectively,
Normal Irrigation (NI) trial in Leyendecker, NM to be 0.3967, 0.3813, 0.3751, 0.3239 and
0.3019 respectively, and Summer Irrigation Termination (SIT) trial in Leyendecker, NM to be
of 0.11225, 0.1389, 0.1375, 0.2539 and 0.1343, respectively. Genetic correlations between
NDVI and harvest biomass ranged from 0.52 - .99 in 2020 and 0.08 - .99 in 2021 in the NY trial.
Genetic correlations for NI trial in NM for NDVI ranged from 0.72 - .98 in 2021 and SIT ranged
from 0.34- 1.0 in 2021. Genotype by genotype by interaction (GGE) biplots were used to
differentiate between stable and unstable cultivars for locations NY and NM, and Random
regression modeling approaches were used to estimate growth parameters for each cutting.
Results showed high correspondence between stability in growth parameters and stability, or
persistency, in harvest biomass across cuttings and years. In NM, the SIT trial showed more
variation in growth curves due to stress conditions. The temporal growth curves derived from
NDVI, NIR and Simple ratio were found to be the best phenotypic indices on studying the
stability of growth parameters across different harvests. The strong correlation between VIs and
biomass present opportunities for more efficient screening of cultivars, and the correlation
between estimated growth parameters and harvest biomass suggest longitudinal modeling of VIs

can provide insights into temporal factors influencing cultivar stability.
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Introduction

Alfalfa (Medicago sativa L. subsp. sativa) is one of the most widely cultivated perennial
forage crops in the world with many desirable attributes such as high-yield capacity, good forage
quality, tolerance to abiotic stresses, and ability to fix nitrogen and nutrient cycling
(Annicchiarico et al. 2015; Hill et al. 1988). In the U.S. alfalfa is the fourth most widely grown
crop with an estimated annual value of 11.7 billion dollars (USDA/ARS 2020). Alfalfa is
allogamous and autotetraploid (2n = 4x = 32) and its cultivars are synthetic populations
consisting of heterozygous plants (Annicchiarico and Pecetti 2021). The genetic gain in alfalfa
has approached stagnation in the past few decades due to several factors including the perennial
nature of the crop (long breeding cycles), multiple harvests per year, inability to make gain in
harvest index due to harvesting of the entire crop, the high cost of phenotyping, tetrasomic
inheritance, high genotype by environment interaction (GxE), and high levels of non-additive
variance (Annicchiarico et al. 2015; Acharya et al. 2020). The narrow-sense heritability (h?) of
biomass yield of alfalfa is as low as 0.20 — 0.30 (Annicchiarico 2015; Acharya et al. 2020; Riday
and Brummer 2005) demanding extensive replications for phenotypic evaluation which further
limits the size of breeding materials to be evaluated, ultimately leading to low selection
efficiency. However, the ability to screen more materials will lead to higher effective selection

intensities leading to improved response to selection.

In recent years, the advancement in high-throughput phenotyping systems, including
multi-spectral imaging (MSI) platforms, have enabled the collection of high dimensional
phenotypic data from large experiments and breeding trials. MSI provides an effective and non-
destructive approach to evaluate the crop growth parameters throughout the crop growing
season. A number of reflectance vegetation indices can be derived from spectral reflectance
which have been efficiently used for large scale phenotyping and dynamic estimation of biomass
greenness, nitrogen content, pigment composition, photosynthesis status and water content
(Claudio et al. 2006; Mistele and Schmidhalter 2008; Schlemmer et al. 2005). MSI consists of a
set of images acquired at narrow wavelength bands including both visible and near infrared
(NIR) regions of the electromagnetic spectrum (Blasco et al. 2007; Chen et al. 2002). The
Normalized Difference Vegetation Index (NDVI), estimated by considering the difference NIR
and red wavelengths, is widely used to quantify biomass production. The green Normalized


https://doi.org/10.1101/2024.04.08.588572
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.08.588572; this version posted April 11, 2024. The copyright holder for this preprint (which

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118

119
120
121
122
123

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Difference Vegetation Index (GNDVI) is estimated by measuring the difference between NIR
and green wavelengths and is used to measure photosynthetic activity. Other vegetation indices
such as Normalized Difference Red-Edge (NDRE), Optimized Soil Adjusted Vegetation Index
(OSAVI), Simplified Canopy Chlorophyll Content Index (SCCCI), and Visible Atmospherically
Resistant Index (VARIgreen), have been used to predict grain yield but their use has been limited
on quantification of crop biomass. Santana et al. (2021) evaluated the relationship between
vegetation indices (VI1)s obtained from multispectral imagery and leaf N content and yield-
related traits in maize cultivars grown in different N levels, and found a positive relationship
between NDVI, NDRE and grain yield under adequate N levels. Da Silva et al. (2020) evaluated
the relationship between different VIs and soybean grain yield and verified a direct positive
effect of NDVI and SAVI on grain yield of soybean. However, there are limited studies
conducted on the relationship between different VIs and biomass yield of alfalfa crops, so further
studies assessing the relationship between Vs and crop forage/biomass yield are needed.
Identifying the cause-and-effect relationship between spectral and biomass yield provides an
efficient phenotyping process in breeding programs. Genotypes with better spectral variables can

be selected to achieve an efficient selection for biomass yield.

The use of MSI data could also be leveraged for monitoring crop growth over the
growing season. Extensions of crop growth models have been proposed to incorporate functional
relationships between the environmental variables and the phenotypic traits influencing yield and
agronomic performance of elite breeding lines (Chapman et al. 2002; Chapman et al. 2003;
Messina et al. 2015; Hammer et al. 2002; Chenu et al. 2009), and recent advancements in MSI
have increased the scalability of collecting non-destructive phenotypes on a large number of
experimental plots throughout the crop growth cycle. Collection of phenotypic data from
multiple time points allows the monitoring of crop growth and development and hence, can

increase the understanding of dynamic interactions of crop and environment.

The study of genotype by environment (GXE) interaction is one of the most important
areas in plant breeding whereby breeders try to understand the stability and plasticity of the
genotypes across different environments. In a perennial crop like alfalfa, the concept of
persistence, or consistent performance across seasons in the same location, is a key trait for elite

cultivar performance. While it may be viewed as a distinct concept from GxE, many of the same
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124  factors driving GXE are likely to play a role in persistence. For the purposes of this study we will
125  use the terms stability, and instability, to encompass the concepts of GXE and persistence in

126  harvest biomass yield. The traditional approach to study GXE and persistence relies on terminal
127  traits such as harvest biomass yield, which lack the temporal resolution to study the driving

128  factors leading to inconsistent performance across cuttings and growing seasons. In such

129  scenarios, images taken throughout the production years of a stand can enable the longitudinal
130  evaluation of a large number of breeding materials, providing insights into growth characteristics
131  leading to the stability or instability of cultivar performance under differing conditions.

132 Important growth parameters could be evaluated by studying the changes in (co)variance

133  between adjacent time points and end-of-season traits. Quantitative genetic models can be built
134  to accurately predict forage yields from MSI, especially given that the harvested product is

135 imaged directly. However, the challenge lies on fitting parsimonious models that can accurately

136  model the changes in covariance parameters across the growing season.

137 The phenotypic indices from high-throughput phenotyping (HTP) platforms are measured
138 at multiple time points throughout the crop growing season and hence, are considered as
139 longitudinal data. Repeatability models, multi-trait models, and random regression (RR) models
140 are used to fit such longitudinal data. Repeatability models assume constant variance and
141  correlation between measurements dates, which may not be true for longitudinal data collected at
142  different time points throughout the crop growth cycle (Meyer and Hill 1997). In the case of
143 multi-trait models, phenotypic traits measured at different time points are considered as distinct
144  response variables for each cultivar. The number of parameters required to be estimated is
145  directly related to number of time points. Hence, a strong correlation between consecutive
146  measurements, large (co)variance matrix structure between measurements at different time
147  points, and computational requirements restrict the application of a multi-trait model (MT)
148  model (Speidel 2011; Anche et al. 2020). However, the RR model requires fewer parameters
149  than MT models, can capture the change of a trait throughout the growth season, and does not
150 require the assumption of constant variances and correlations between measurement time points
151  (Meyer, 2020). RR models enable fitting of genetic and environmental effects over time
152  (Schaeffer 2004), and hence results in higher accuracy of breeding values (BVs) compared to

153  other statistical models. RR model also provide additional insights on temporal variation of
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154  biological and physiological processes underlying the trait of interest (Strucken et al. 2015) and
155  these models have been widely used in different area of research including GXE (Calus and
156  Veerkamp 2003; Oliveira et al. 2018). RR models commonly uses splines or Legendre
157  polynomials to model the (co)variance of measurements at or between each time points. The
158  objectives of this study were to (1) identify predictive image features for modeling growth and
159  development curves for alfalfa.; (2) determine the heritability and genetic variation for image
160  features collected throughout the growing season and (3) estimate the relationship between

161  observed stability for development/growth parameters and stability for alfalfa biomass yield.

162  Materials and Methods

163  Experimental materials and biomass phenotyping

164 In this study, we analyzed the data from two experimental locations, (1) Cornell
165  University Agricultural Research Experiment Station in Ithaca, NY, and (2) the Leyendecker
166  Plant Science Research Center of New Mexico State University (NMSU) located near Las
167  Cruces, New Mexico. A total of 36 cultivars were evaluated in the NY trial, representing both
168  publicly released cultivars and breeding populations including ‘Guardsman II’(Viands et al.,
169  2005), ‘Regen’ (Viands et al., 2007), ‘Algonquin’ (Baenziger, 1975),”Oneida VR’ (Viands et al.,
170  1990), ‘Oneida Ultra’ (Viands et al., 2004), and ‘Ezra’ (Viands et al., 2012). Entries were
171  planted on June 12, 2019, in a replicated trial with five replications in a randomized complete
172 block design (RCBD). Plots were 6 rows of alfalfa that were 1 m by 4 m and the space between
173  adjacent plots was 0.3 m. Forage yield was measured using a plot flail harvester, and dry matter
174  vyield for each plot was calculated from fresh forage weight and dry matter content samples.
175  Forage yield (FY) was collected on June 5, July 9, and August 26 of 2020 and June 16, July 26,
176  and September 13 of 2021.

177 A total of 24 cultivars and breeding populations with one covariate cultivar were planted
178 in the NMSU trial on September 27, 2019. The experiment was conducted under two irrigation
179  treatment conditions including normal irrigation (NI) and summer irrigation termination (SIT).
180  The NI treatment received flood irrigations approximately every 14 days from March through
181 late October. The SIT treatment only received flood irrigations from March through June and
182  again from late September through October. Both treatment fields were planted as RCBDs with
183  each having four replications. All experimental plots were located adjacent to a covariate plot of
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184  the cultivar, ‘NuMex Bill Melton’ (Ray et al., 2012). Each plot was comprised of three rows of
185 alfalfa, 3.35 m in length, with 30 cm spacing between rows within a plot, and 60 cm spacings
186  between neighboring plots and alfalfa borders. Forage biomass was harvested in 2020 with six
187  and three harvests occurring in the NI and SIT treatments, respectively. In 2021, forage biomass
188  was harvested seven times in the NI treatment and six times in the SIT treatment fields. All
189 forage biomass was harvested using a Carter flail harvester to collect fresh plot weights.
190  Subsamples of fresh chop forage were collected, weighed, and dried down to establish dry matter
191  weights.

192 Aerial phenotyping

193  NY trial

194 Aerial phenotyping for the NY trial commenced on April 6, 2020 in Ithaca, NY. A total
195  of 56 flights were conducted throughout the crop growth season. A total of 7, 6, and 7 flights
196  were flown before the first harvest (2020cutl), second harvest (2020cut2) and third harvest in
197 2020 (2020cut3) and a total of 22, 8, and 6 flights were flown before the first harvest (2021cutl),
198  second harvest (2021cutl) and third harvest of 2021 (2021cutl). Four ground control points
199  positioned at the four corners of the trial were measured with a Trimble RTK-GPS, which was
200  used to geo-locate plots. A DJI Matrice 600 Pro unmanned aerial vehicle (UAV) equipped with a
201  Micasense Rededge-MX multi-spectral camera was used for all flights. A flight plan was
202  designed to obtain an 80% overlap in images collected at a flight speed of 2 m/s and an altitude
203  of 20 m. Flights were conducted within 2 hours of solar noon on clear days when possible.

204  NMSU trial

205 Due to UAV equipment unavailability in 2020 and early 2021, aerial phenotyping
206  commenced on June 3, 2021, during the third harvest cycle’s regrowth initiation for both the NI
207 and SIT trials. A total of five harvests data from NI including Nlcut3, Nlcut4, Nicut5, Nlcut6,
208  Nlcut7 and a total of four harvests from SIT trials including SITcut3, SITcut4, SITcut5, SITcut?
209  from 2021 were used for crop growth modelling and stability analysis. Ground control points
210  were included near the four corners of each treatment field. The control points were placed on
211  permanent stand mounts prior to each imagery flight. Upon installation, each stand was geo-
212  located using an RTK-GPS. Multispectral imagery was captured using a DJI Matrice 600 Pro
213  UAV and a MicaSense RedEdge-MX camera. All imagery was captured with 75% side overlap

214 and 80% front overlap from a 20m altitude at 2.0 m/s. Imagery for both irrigation treatment

7
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fields was captured within the same flight cycle. Flights were conducted in mornings (10:00am
— 12:00pm), within 3 hours of solar noon, while temperatures were cool enough to not affect
UAYV performance. Imagery capture occurred once per week, averaging five flights per harvest
cycle, with the last flight occurring no more than two days prior to each biomass harvest. In
total, 25 imaging flights were conducted over the NMSU alfalfa studies in 2021.

Image processing and index calculations

Orthomosacis were constructed using Pix4D mapping software (https://www.pix4d.com),

and were subsequently uploaded into Imagebreed (www.imagebreed.org), a plot image database
(Morales et al. 2020), for image processing and storage and calculation of vegetative indices (V1)
at the plot level. Using these summary statistics, multiple VIs were calculated for each plot.
Normalized difference vegetation indices (NDVI) were calculated from mean pixel values of
near infrared (NIR) and Red bands of plot level images as:

NDVI — (RNIR_RR) (1)
(RNIR*RR)

where Ryr is the near infrared reflectance and R is the red reflectance. Green normalized
difference vegetation indices (GNDVI) and Normalized difference red edge indices (NDRE)
were calculated using green and red edge reflectance instead of the red reflectance in Eq. 1,

respectively.

A simple Ratio was calculated as:
Ratio = 2N (9)
Rp

Additionally, the cumulative value of the above mentioned phenotypic indices at a specific time
point, t, was calculated using using the rollmean function of zoo package in R statistical software
that takes phenotypic indices values and growing degree day(s) (GDD)(s) at each time point. The

equation is represented as:

AUC, = NDVI; + ¥t_,(AD; x rollmean(NDVI;, 2)) (3)
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where AUC, represents the calculated AUC value at time point t, AD; represents the time interval

between consecutive time points (4D; = 0 for time point 1) , rollmean(NDVI;, 2) represents the
rolling mean of NDVI values at time point t, and NDV; represents the NDVI value at time point
t.

GDDs were calculated as:

T + Tni
GDD = — 5 o — Tbase (4)

where T,,,, IS the maximum temperature, 7, is the minimum temperature, and 7,,,.= 4 °C as the
base temperature. The GDDs calculated for each time point were used as time covariates in the
RR models. For the first cuttings, GDDs were calculated starting on date of planting and up to
and including the date of harvest. For subsequent harvests, GDDs were calculated starting from
the day after the preceding harvest. The GDDs calculated for each time point were used as time

covariates in the RR models.

Models
A single-trait best linear unbiased prediction (ST-BLUP) model was fit to estimate the
genetic and residual variances. The ST-BLUP is defined as:

y=1u+Xb+Zg + e (5

where y is the vector of raw phenotype variables (phenotypic indices derived from MSI in this
study), 1 is the vector with elements of 1; u is the overall mean; b is the vector of fixed effect of
replicate; X is the design matrix that associates the fixed effect of replicates with response
variables; Z is the design matrix with g as a vector of random genetic effects g ~ N (0,10 7); e is
the vector of random residuals modeled as e ~ N (0, Io2) with an identically and independently

normal distribution of residuals and I is the identity matrix.
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The ratio of estimated genetic variance to the sum of the genetic variance and residual
variance was calculated to represent the broad sense heritability of biomass yield, and phenotypic
indices derived from MSI.

A bi-variate multi-trait model was fit to estimate the genetic and residual correlations

between biomass yield and mean values of VIs at each time point.

=l nlele xllalle zl)elo

where y; and y, are the vector of response variables of traits 1 and 2; u, and u, are the overall
means; g, and g, are the vectors of random genetic effects; b, and b, are the vectors of
replication effects; X; and X, are the incidence matrices linking b4 to y, and b, to y,; Z; and
Z, are the incidence matrices linking g4 to y; and g, to y,; e; and e, are vectors of random

residual effects for trait 1 and 2, respectively. It was also assumed that [g1  92]~N(0,E®I),

2
0 0 . . . . . .
where X = l o gzlzl is the unstructured genetic variance and covariance matrix of the traits

0921 agz

g2 o
and [e1 ez2]~N (0’ [ e e1zl ®I>

092 1 Gez

Random regression

Random regression models using third order of Legendre polynomials (RRLP) were used to fit a
model for mean VI values and cumulative values of VI (cVI) from all time points. The biomass
yield data was used as the final time point observations in the model. The variance of biomass
yield was scaled to match the variance of preceding observation of Vs ensuring that yield data
has similar variability pattern as VIs. The RR models were used to continuously model the
(co)variance of VI and cVI measurements at different time points as a function of time.

The general random regression model for a single trait can be formulated as (Schaeffer 2004):

VIt} .Br(t)‘l' Zk ¢(t)]kujk + ZK3 ¢(t)]kp]k + et] (7)

where, VI, is the plot level value of the j™ accession for VI at time point t; @(t)j isatime

covariate coefficient defined by a basis function evaluated at time point t; g, is the fixed effect

10
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295  or replicate r nested in time point t; uy, isa k™ random regression coefficient associated with the
296  genetic effects of the | accession; K1 is the number of random regression parameters for fixed
297  effect time trajectories; K2 and K3 are the number of random regression parameters for random
298  effects; pjx isa k™ permanent environmental random regression coefficient for the

299  accession j; €; is the vector of residuals. The random effects at any time point were calculated as
300 afunction of the estimated RR coefficients and standardized measure of GDDs calculated from

301 equation 3 on a per harvest basis during the growing season.
302 GGE biplot analysis

303  The genotype main effect plus genotype by environment (GGE) biplot analysis was performed
304  using the statistical R package called “metan” (Olivoto and Lucio 2020). Mean biomass yield
305 and its stability for all genotypes were visualized using GGE biplot. The GGE biplots were
306  constructed by plotting the first principal component (PC1) against the second principal
307  component (PC2) of the genotypes and environment calculated from a genotype-focused singular

308 value decomposition. The following GGE biplot model was used (Yan and Kang 2002):
309 Yl] - Y] = llxilhjl + linzhjZ + eij (8)

310  where Y;; is the mean biomass yield of genotype i in environment j; Y; is the mean yield across
311 all genotypes in environment j; [; and [, are the singular values for PC1 and PC2, respectively;
312 x;; and x;, are the PC1 and PC2 scores, respectively, for genotype i; h;; and h;, are the PC1 and

313  PC2 scores, respectively, for environment j; and €ij is the residual of the model associated with

314  genotype i in environment j.

315  Correlation between variance in biomass yield across environments and variance in VIs

316  across environments

317  In order to have both the yield data and Vs in the same scale, z-score normalization was done by
318  subtracting the mean (u) from the distribution and by dividing with the standard deviation of the
319  distribution (o). The z-score normalization was done for each environment. Each environment

320 was defined as a specific planting location and growth period. The correlation between the
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321  variance in yield and the variance in VIs of each genotype across locations was calculated using
322  Pearson’s correlation method for both NY and NM trials.

323  Results

324

325  Heritability of phenotypic indices and biomass yield

326 For the Helfer trial, the minimum heritability of GNDVI, NDVI, NDRE, NIR and Ratio

327  was 0, whereas the maximum heritability of GNDVI, NDVI, NDRE, NIR and Ratio was 0.92,
328 0.84, 0.92, 0.88 and 0.85, respectively (Fig. 1). The maximum heritability value of GNDVI and
329 NDRE was highest among all indices followed by NIR. The median value of heritability was
330 highest for GNDVI, followed by NDRE, NDVI, NIR and Ratio, 0.64, 0.56, 0.45, 0.45 and 0.40,
331  respectively (Fig. 1). For 2020, the heritability of biomass yield was highest for the first harvest
332  (0.56) followed by the third harvest (0.32) and second harvest (0.31). For 2021, the heritability
333  was highest for the third harvest (0.62) followed by the second harvest (0.57) and the first
334  harvest (0.31).

335
336 For the NMSU trial in 2021, the minimum and median heritability values of the

337  phenotypic indices under NI were higher than those under SIT whereas the maximum heritability
338  of the phenotypic indices were higher under SIT. Under the NI, GNDVI, NDVI, NDRE, NIR and
339  Ratio had minimum heritability values of 0.1827, 0.1076, 0.1867, 0 and 0.1112, respectively.
340 Maximum heritability values for NMSU, GNDVI, NDVI, NDRE, NIR and Ratio were 0.7122,
341 0.7015, 0.6987, 0.662 and 0.6972, respectively; and median heritability values were 0.3967,
342  0.3813, 0.3751, 0.3239 and 0.3019, respectively (Fig. 2(a)).

343
344 Under SIT, GNDVI, NDVI, NDRE, NIR and Ratio had minimum heritability values of

345 0.0357, 0.027, 0.0209, 0.028 and 0.0189 respectively. Maximum heritability values for GNDVI,
346  NDVI, NDRE, NIR and Ratio were 0.7824, 0.7764, 0.7377, 0.6905 and 0.7047 respectively; and
347  median heritability values were 0.11225, 0.1389, 0.1375, 0.2539 and 0.1343 respectively (Fig.
348  2(b)). Under NI, the heritability of biomass yield was highest for seventh (0.40) followed by
349  third (0.31) and fourth (0.29). Under SIT, the heritability of biomass yield was highest for sixth
350  (0.79) followed by the third (0.196) harvest (Fig. 2(b)).

351
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352  Phenotypic correlation of phenotypic indices and biomass yield

353 For the Ithaca, NY trial, the last imaging of the crop growing season was taken 9, 3 and 4
354  days before the first, second and third harvest of 2020, respectively, and 6, 3, and 3 days before
355  first, second and third harvest of 2021, respectively. For both years the genetic correlation of all
356  phenotypic indices with biomass yield was strongest for the second harvest followed by the third
357  harvest and first harvest (Fig. 3(a), Fig. 3(b)).

358 Among all phenotypic indices in 2020, the phenotypic correlation with biomass yield was
359  strongest for NIR (0.57) followed by Ratio (0.56) and NDVI (0.56) for the first harvest; Ratio
360 (0.81) followed by NDVI (0.78) and GNDVI (0.76) for the second harvest; and GNDVI (0.68)
361 followed by NIR (0.65) and NDRE (0.64) for the third harvest (Fig. 3(a)). In 2021, the
362  phenotypic correlation with biomass yield was strongest for Ratio (0.19), followed by GNDVI
363  (0.18) and NDVI (0.15) for the first harvest; the phenotypic correlation with biomass yield was
364  strongest for GNDVI (0.78) followed by NDRE (0.74) and NDVI (0.64) for the second harvest;
365  the phenotypic correlation with biomass yield was highest strongest for NDRE (0.73) followed
366 by GNDVI (0.61) and NDVI (0.58) for the third harvest (Fig. 3(b)).

367

368 Genetic correlation between biomass yield and phenotypic indices at different
369 imaging time points

370

371 NY trial

372 For the first harvest of 2020, biomass yield demonstrated the highest genetic correlations
373  with NDVI (range: 0.90 — 0.99) and NIR (range: 0.93 — 0.99) whereas biomass yield had lowest
374  correlation with Ratio (range: 0.69 - 0.96) (Fig. 4). For the second and third harvests of 2020,
375 Ratio showed the highest genetic correlations with ranges of 0.94 - 0.99 and 0.69 - 0.99,
376  respectively, while NDRE had the lowest genetic correlations ranging from 0.18 to 0.94 and 0.70
377 10 0.98, respectively (Fig. 4).

378

379 For the first harvest of 2021, the genetic correlation of Ratio and NIR with the biomass
380 yield was strongest ranging from 0.68 —0.99 and 0.1 — 0.99 respectively. The genetic correlation
381  of NIR with biomass yield was lower than other phenotypic indices in early crop growth stage
382  for the same harvest (Fig. 4). This pattern was only seen for one harvest out of six harvests. For

383  the second and third harvest of 2021, the genetic correlation of NIR was strongest for second
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384  harvest and third harvest ranging from 0.84 — 0.99 and 0.91 to 1 respectively whereas genetic
385 correlation of NDVI and GNDVI had lowest genetic correlations for second and third harvest.
386  The genetic correlation of second and third harvest of NDVI ranged from 0.08 to 0.94 and 0.72
387  to 0.99 respectively for second and third harvest and the genetic correlation of second and third
388  harvest of GNDVI ranged from 0.53 — 0.98 and 0.23 to 0.97 respectively (Fig. 4).

389

390 NMSU trial

391

392 Under NI, the genetic correlation of NDVI and Ratio at all imaging time points were

393  highest for all harvests except for June 25 to Jul 22 regrowth cycle of 2021 (Fig. 5). The genetic
394  correlation of NDVI ranged from 0.8 to 0.97 for May 28 to June 24 regrowth cycle , 0.72 to 0.97
395  for June 25 to Jul 22 regrowth cycle, 0.78 to 0.96 for July 23 to August 27 regrowth cycle , 0.77
396 to 0.97 for August 28 to September 29 regrowth cycle, 0.88 to 0.98 for September 30 to
397  November 12 regrowth cycle and the genetic correlation of Ratio ranged from 0.69 to 0.95 for
398 May 28 to June 24 regrowth cycle, 0.69 to 0.97 for June 25 to Jul 22 regrowth cycle, 0.69 to 0.94
399 for July 23 to August 27 regrowthcycle, 0.69 to 0.96 for August 28 to September
400 29 regrowth cycle, and 0.69 to 0.97 for September 30 to November 12 regrowth cycle (Fig. 5).
401

402 Under SIT, NDVI and Ratio had highest genetic correlation with biomass yield compared
403  to other phenotypic indices. Genetic correlations ranged from 0.84 to 0.97 for May 28 to June
404 25 regrowth cycle, 0.91 to 0.97 for June 26 to Jul 22 regrowth cycle, 0.99 to 1 for July 23 to
405  August 26 regrowth cycle and 0.69 to 0.99 for August 27 to November 11 regrowth cycle for
406 NDVI and genetic correlation ranged from 0.69 to 0.95 for May 28 to June 25 regrowth cycle,
407 0.69 to 0.91 for June 26 to Jul 22regrowthcycle, 0.69 to 1 for July 23 to August
408 26 regrowth cycle and 0.69 to 0.99 for August 27 to November 11 regrowth cycle for Ratio (Fig.
409  6).

410
411  Genetic correlation among phenotypic indices at different imaging time points

412  Ithaca, NY trial
413 The genetic correlation of phenotypic indices at different time points were evaluated
414 running multi-trait models Supplemental Figure 1 (a) to (e)). The genetic correlation among NIR

415 and Ratio at different time points were strongest compared to other indices (Supplemental Figure
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416 1 (d), Supplemental Figure 1 (¢)). The genetic correlation of Ratio at different time points were
417  greater than 0.71 for all harvests of 2020 and 2021 except for the first harvest of 2021, where
418  genetic correlations between the first time point and the last 14 time points ranged from 0.49 to
419  0.67. The genetic correlations among NIR at different time points were greater than 0.65 for all
420  harvests of 2020 and 2021 except for third harvest of 2020 and first harvest of 2021, where the
421  genetic correlations ranged from -0.17 to 0.04 between first and last five imaging time points and
422  0.04 to 0.05 between first and last 14 imaging time points. The genetic correlations of NDVI,
423  GNDVI, and NDRE at different time points were in the range of 0.52 — 1, 0.2 -1, and 0.18 — 0.1,
424 respectively, for all three harvests of 2020 and the third harvest of 2021. Genetic correlations
425  were lower for first and second harvest of 2021 across all harvests (Supplemental Figure 1 (a) to
426  (e)). The genetic correlation of cumulative value of all the indices from second time point to
427  other time points were 1 whereas the genetic correlation of cumulative value of all the indices of

428  first time point with other time points were in the range of 0.9 — 0.99 (Supplemental Figure 2 (a)

429  to (e)).

430

431 NMSU trial

432

433 Under NI, among all phenotypic indices, the genetic correlation of NDVI and Ratio at

434  different time points were strongest (Supplemental Figure 3 (c), Supplemental Figure 3 (e)). The
435  genetic correlation of Ratio at different time points ranged from 0.69-0.98, 0.69-0.97, 0.69-0.98,
436  0.69-0.99, 0.69-0.98 for the May 28 to June 24 regrowth cycle, June 25 to Jul 22 regrowth cycle,
437  July 23 to August 27 regrowth cycle, August 28 to September 29 regrowth cycle and September
438 30 to November 12 regrowth cycle, respectively (Supplemental Figure 3 (e)). Similarly, the
439  genetic correlation of NDVI at different time points ranged from 0.72 - 0.99, 0.74 — 0.97, 0.76 —
440 0.98, 0.76 — 0.99 and 0.81 — 0.99 for the May 28 to June 24 regrowth cycle, June 25 to Jul
441 22 regrowth cycle, July 23 to August 27 regrowthcycle, August 28 to September
442 29 regrowth cycle and September 30 to November 12 regrowth cycle, respectively
443  (Supplemental Figure 3 (c)). The genetic correlations of NIR, GNDVI, and NDRE at different
444 time points were lowest compared to other indices (Supplemental Figure 3 (d), Supplemental
445  Figure 3 (a), Supplemental Figure 3 (b)). The genetic correlation of the cumulative value of all
446  the phenotypic indices of first time points with other time points were 0.99 and 1.0 for all other

447  time points (Supplemental Figure 4 (a) to (e)).
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448

449 Similarly, under SIT, the genetic correlation of Ratio and NDVI at different time points
450  were strongest (Supplemental Figure 5 (a) to (€)). The genetic correlation of Ratio at different
451  time points ranged from 0.69 — 0.98, 0.69 — 0.98, 0.69 — 1 and 0.69 — 0.99 for the May 28 to June
452 25 regrowth cycle, June 26 to Jul 22 regrowth cycle, July 23 to August 26 regrowth cycle and
453  August 27 to November 11 regrowth cycle, respectively (Supplemental Figure 5 (e)). Similarly,
454 the genetic correlation of NDVI ranged from 0.54 — 0.97, 0.56 — 0.97, 0.79 — 1, 0.34 — 0.98 for
455  the May 28 to June 25 regrowth cycle, June 26 to Jul 22 regrowth cycle, July 23 to August
456 26 regrowth cycle and August 27 to November 11 regrowth cycle, respectively (Supplemental
457  Figure 5 (a)). Among the other indices at different time points, the genetic correlation among
458  GNDVI ranged from 0.59 — 0.97, 0.49 — 0.96, 0.58 — 1, 0.06 — 0.98 for the third, fourth, fifth and
459  seventh harvest, respectively (Supplemental Figure 5 (a)), NDRE ranged from 0.71 — 0.98, 0.56
460 - 0.97, 048 — 1, -0.09 — 0.97 for the May 28 to June 25 regrowth cycle, June 26 to Jul
461 22 regrowth cycle, July 23 to August 26 regrowth cycle and August 27 to November
462 11 regrowth cycle harvest, respectively (Supplemental Figure 5 (b)), and NIR ranged from 0.2 —
463  0.95,0.65-0.98, 0.12 — 1, and -0.05 — 0.98 respectively for May 28 to June 25 regrowth cycle,
464  June 26 to Jul 22 regrowth cycle, July 23 to August 26 regrowth cycle and August 27 to
465  November 11 regrowth cycle, respectively (Supplemental Figure 5 (d)). The genetic correlation
466  of the cumulative value of all the phenotypic indices of first time points and other time points
467  were 0.99 whereas for other time points were 1 (Supplemental Figure 6 (a) to (e)).

468
469  Growth curve analysis using genetic merit calculated from Random Regression Model

470 The temporal growth curves of all alfalfa genotypes were constructed using breeding
471  values calculated using RRLP and different phenotypic indices as longitudinal phenotypic traits
472  (Supplemental Figures 7, 8, 9). The high-resolution temporal growth curves of different alfalfa
473  genotypes showed clear differences between high yielding and low yielding genotypes. Both raw
474 values of phenotypic indices and their respective cumulative values were used to run RR model.
475  Compared to the raw value, cumulative value of phenotypic indices gave better model fit and
476  higher resolution of temporal growth curves (Supplemental Figure 7(f) to 7(j), Supplemental
477  Figure 9(f) to 9(j)). Using the raw value of phenotypic indices as the phenotypic trait, a larger
478  spread in breeding values of the genotypes were observed in the early stages of growth,
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indicating greater genetic variance captured by the proximal sensing phenotypes in early growth

stages.

GGE biplot analysis

The GGE Biplots in Figs. 7 and 8, provide a “mean versus stability”” graph of cultivar
performance in NY and NMSU trials, respectively (Yan et al. 2007). The green single arrowed
line, referred to as the “average environment axis”, provides an indication of the mean
performance of cultivars, with the arrow pointing to a greater value according to their mean
performance across all environments. The green line that is perpendicular to the average
environment axis, provides an indication of stability in cultivar performance across
environments. As such, cultivars with projections closer to the average environment axis
exhibited more stable performance for harvested biomass across cuttings and years. An ideal
cultivar would have a high mean performance, further along in the average environment axis in
the direction indicated by the arrow, and would show stable performance with a projection near
the average environment axis. For the cultivars tested in NY (Fig. 7), the cultivars g1, g2, g10,
g29, and g32 were relatively stable and high yielding, and g8 was relatively stable and low
yielding. Cultivars g3, g13, g18, g22, g31 were relatively unstable and low yielding, and g4, g15,
920, g23 were relatively unstable and high yielding. A similar analysis was applied to the NMSU
trial data (Fig. 8), identifying G13, G14 and G15 as stable and low yielding cultivars, and G25,
G7 and G9 as relatively stable and high yielding cultivars. Results indicate that G24, G23 and
G21 were relatively unstable and high yielding, and G2, G8, G15, G17 were relatively unstable

and low yielding.

Stability and plasticity analysis using a growth curve modeling approach.

Among the most unstable and stable genotypes identified from GGE biplot analysis, five
stable and five unstable cultivars were selected (Fig.7, Fig.8). To determine whether stability in
biomass yield across cuttings was reflected in the plasticity of the plant growth, the growth
curves of these most stable and unstable cultivars across different environments were plotted
(Fig.9 - Fig.25). Results showed high variance in the growth curves of unstable cultivars across
all cuttings when compared to the stable cultivars in the Ithaca, NY trial (Fig.9 - Fig.13). Similar,
although less pronounced, results were observed for NMSU trial (Fig.14 - Fig.17). Among all
phenotypic indices, the growth curves estimated using NDVI and Ratio at Ithaca, NY were found
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511 to give clear separation in the stability and plasticity (Fig.10, Fig.13). Both the stable and
512  unstable cultivars were found to be more stable in NI than SIT of NMSU (Fig.18 — Fig. 25), with
513  differing growth patterns between the two irrigation treatments.

514

515 Using GNDVI, NDVI and Ratio as the phenotypic trait, the variance of stable cultivars
516 g1, g2, g6, g8, and g14 across all environments were less than the variance of unstable cultivars
517 g3, 913, g21, g22, g35 (Fig. 9, 10, 13) in Ithaca, NY trial. There was more separation during
518 early growth among the cultivars than at later timepoints. Similar results were observed for
519 NMSU trial. The temporal growth curves derived from NDVI, NIR and Ratio were found to be
520 the best discriminating the variance of genetic merit for stable and unstable cultivars across
521  different harvests (Fig. 15, Fig. 16, Fig. 17).

522
523  Stability and plasticity analysis across different irrigation conditions

524 The growth trajectories of stable and unstable cultivars were compared separately across
525  all cuttings of NI and SIT conditions (Fig. 18 to Fig. 25). The variance in growth curves of both
526  stable cultivars derived from GNDVI, NDVI and Ratio were found to be higher in summer

527 irrigation termination condition than in normal irrigation condition (Fig. 18, Fig. 20, Fig. 24).
528  Similar results were observed for unstable cultivars (Fig. 19, Fig. 21, Fig. 25).

529
530 Correlation of variance in yield and variance in genetic merit of phenotypic indices across

531  different environments

532 The variance in yield of all genotypes across different harvests was calculated for both
533 NY and NMSU trials. Similarly, the variance in genetic merit of all genotypes for VIs at
534  different time points across cuttings was calculated to determine if there was a relationship
535  between variation in growth curves and variation in harvest biomass. The estimated correlation
536  between the variance in yield and variance in genetic merit estimated from VIs at different time
537  points showed a significant correlation in NY, with values ranging from 0.61 to 0.67, 0.63 to
538 0.66, 0.60 to 0.71, 0.66 to 0.68, and 0.37 to 0.43 for NDVI, GNDVI, NDRE, NIR and Ratio
539  respectively (Table 1). For trials in NM, the correlation between the variance in harvest biomass

540 and the variance in genetic merit
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541  estimated from growth curves of all genotypes at different time points across different harvests
542  showed correlations that ranged from 0.19 to 0.35, 0.27 to 0.44, 0.16 to 0.36, 0.68 to 0.79 and
543  0.91to 0.93 for GNDVI, NDVI, NDRE, NIR and Ratio, respectively (Table 2).

544

545  Discussion

546

547 One of the objectives of this study was to evaluate the heritability of VIs derived from

548  MSIs and their genetic correlation with the terminal trait biomass yield. Results of this study
549  showed that the VIs have a moderate heritability (Fig 3, Fig 4) comparable to the heritability of
550  harvest biomass. Lower heritability was attributed to poor days of imaging such as the days with
551  cloudy and windy weather. Babar et al. (2007) reported moderate to high heritability of spectral
552  reflectance indices (SRIs) and higher heritability than for grain yield in wheat. Petsoulas et al.
553  (2022) reported moderate to high level of broad sense heritability where the heritability of NDRE
554  ranged from 0.292 to 0.879 and heritability of NDVI ranged from 0.446 to 0.928 in sesame. In
555  the same study, heritability of VIs were reported to be increased with growth stages and started
556  to reduce entering the ripening stage of sesame whereas Anche et al. (2020) reported lower
557  heritability of VIs in early reproductive stage and higher heritability estimates at mid-
558  reproductive stage and late reproductive stage of maize. Another study from (Galan et al. 2020),
559  showed moderate to high heritability estimates (H2 > 0.50) of 23 VIs in winter rye hybrids
560 estimated from hyperspectral reflectance data. Sun et al. (2017) reported that the heritability of
561 NDVI and NDRE ranged from moderate to high across different locations of wheat trial. Sharma
562 et al. (2022) reported consistently higher heritability of VARI and NDVI across growth phases
563 and locations where NDVI and VARI had higher heritability than dry biomass yield. In our
564  study, among all five VIs, GNDVI had highest value of maximum and median heritability.
565 GNDVI measures reflection in near infra-red region and green region of the electromagnetic
566  spectrum (Gitelson et al. 1996). GNDVI provides information about chlorophyll A concentration
567 in plants. The higher heritability of GNDVI might be due to the high biomass of the crop.
568 Sandhu et al. (2021) reported GNDVI as the best predictor of grain protein content of wheat.
569  Previous studies (Hassan et al. 2019; Yang et al. 2020) also reported GNDVI and NDRE as the
570  best predictor of grain yield and nutrient uptake efficiencies across the growth stages.

571
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572 Multi-trait models were fit to evaluate the correlation between Vs at different time points
573 and harvest biomass yield. The genetic correlations of all five VIs and the biomass yield was
574  found to be strong and statistically significant for all harvests and years. Among five VIs, NIR,
575 NDVI and Ratio had the strongest genetic correlations with biomass. Natarajan et al. (2019)
576  reported a strong correlation between NDVI and sugarcane stalk population and sugarcane yield
577  suggesting that canopy reflectance measurements at an early stage could be used as a screening
578 tool to estimate yield potential. Another study by Prabhakara et al. (2015) used NDVI for
579  prediction of biomass percentage of ground cover in winter forage crops. Other studies have also
580 reported significant association between NDVI and both biomass and GY in irrigated or high-
581 rainfall conditions (Reynolds et al. 1999; Aparicio et al. 2000; Freeman et al. 2003; Gutiérrez-
582  Rodriguez et al. 2004; Babar et al. 2006a; Prasad et al. 2007b; Erdle et al. 2013; Christopher et
583 al. 2014) drought stress (Gutiérrez-Rodriguez et al. 2004; Babar et al. 2006b; Reynolds et al.)
584  and heat stress environments (Reynolds et al. ; Gutierrez et al. 2010; Hazratkulova et al. 2012;
585  Lopes and Reynolds 2012). NDVI was also reported to predict grain yield in soybean (Ma et al.
586  2001), winter wheat (Raun et al. 2001), and durum wheat (Aparicio et al. 2000). The VIs NDVI,
587 GNDVI, SAVI, G-R were reported to be accurate for estimating biomass at an early stage
588 (Prabhakara et al. 2015) and they were saturated at later stages (Mutanga and Skidmore 2004;
589  Thenkabail et al. 2000). Chen et al. (2009) reported TVI (Triangular Vegetative Index) as useful
590 index for predicting canopy biomass at later stage. NDVI and SR are based on the red (visible)
591 and NIR wavelengths and give higher values at early growth stages, but their values decrease
592  with the advancement in growth cycle because plants are losing photosynthetically active plant
593  parts. Serrano et al. (2000) reported that simple ratio (SR) can reliably predict winter wheat grain
594  yield under nitrogen stresses. Among the three spectral indices, simple ratio (SR), normalized
595 difference vegetation index (NDVI), and photochemical reflectance index (PRI), SR was
596 identified as the best index for assessment of crop growth and yield in durum wheat (Aparicio et
597 al., 2000). Another study by Gutierrez et al. (2004) found the strongest correlation of SR and
598  NIR with cotton lint yield showing 60% and 58% of variations in cotton lint yield respectively.
599 In the same study, SR and NIR had higher coefficients of determination in cotton biomass and
600 leaf area index (LAI) compared to NDVI as these indices were not saturated at late growth stage
601  whereas (Aparicio et al. 2000; Aparicio et al. 2002) reported that NDVI and SR were not able to

602  predict variations in biomass successfully when estimated at later growth stages of durum wheat.
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603  Hence, the use of multiple indices is recommended to get better predictions of biomass yield as
604  different types of VIs are sensitive to different stages of crop growth and amount of biomass.
605  The high heritability and strong genetic correlation between VIs and biomass yield of alfalfa in
606  our study suggest that VIs can be used as a selection tool and help plant breeders to reliably
607 evaluate cultivars in a fast and nondestructive (Lobos et al. 2019; El-Hendawy et al. 2019;
608 Prasad et al. 2007a; Babar et al. 2007; Gutierrez et al. 2010).

609

610 RR models with third order Legendre polynomials provided the best fit and were used to
611  model the growth curve trajectories using VIs as phenotypes. Estimate RR coefficients were used
612  to obtain breeding values (BVs) for all time points between the first day of imaging and harvest.
613  Sun et al (2017) used RR model with cubic splines in wheat (Triticum aestivum) to obtain best
614  linear unbiased predictions of secondary traits derived from high-throughput hyperspectral and
615 thermal imaging. RR model with a linear spline was also reported as a potential alternative
616  approach to mixed model to fit the VIs from multiple time points (Anche et al. 2020), but
617  Legendre polynomials were found to provide a better fit to maize data in subsequent analyses
618  (Anche et al. 2023). When cumulative indices were used as phenotypes, the correlation was
619  found to increase through time (Fig 3-6). This could be because cumulative indices accounts for
620  earlier season VI data, and therefore becomes more informative than raw data on predicting
621  biomass yield of the growing season. Similar results were reported in maize (Anche et al. 2023),
622  concluding that cumulative Vs were better phenotype to model the covariance structures as they
623  provided more stable and consistent results compared to using raw VIs as a phenotype.

624

625 In our study, we observed a decreasing trend in the variance components over time for
626  each harvest. Higher genetic variation was observed in the breeding values of Vs in early
627  growth stages compared to later stages as cultivars reached full canopy cover. In alfalfa stands,
628 allowing the crop to reach maximum vegetation saturation before flowering is the ideal balance
629  to develop maximum biomass while also maintaining nutritional quality. A declining ability of
630  spectral indices to discriminate different genotypes was reported in other crops as the canopy
631 closes and its spectral reflectance saturated (Marti et al. 2007). In this study, all VIs showed

632  strong correlations with biomass yield across all time points, and the growth trajectories could
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633  separate high yielding and low yielding genotypes rapidly and efficiently starting in the early
634  stage of growth season.

635

636 The moderate heritability and moderate to strong genetic correlations with harvest
637  biomass observed in NY and NM trials, indicate that VIs collected via UAV can be used to
638 model temporal genetic variation associated with harvest biomass yield. RR models provided a
639  parsimonious approach to estimate temporal covariance functions and assess cultivar persistence
640 and stability, which can be affected by biotic and abiotic effects of the environment. The RR
641 model depicted dynamic aspects of phenotypes, which can enable better analysis cultivar
642 plasticity, adaptability, stability and yield performance (Alves et al. 2020) across a range of
643  dynamic environmental conditions through growth periods. As such, information on growth
644  curves can provide additional information for selecting lines that are best adapted to the target
645  environments.

646

647 The growth trajectories of stable genotypes and unstable genotypes in NI and SIT
648  termination of NMSU trial showed more instability in growth curves in SIT than NI (Figs 18 to
649 25). This is likely due to higher genetic variance among different cultivars in stressed
650 environment compared to normal condition and indicates that growth parameters may provide
651 additional information on stress tolerance. The observed correspondence in plasticity of growth
652 curves and stability in biomass harvest demonstrate the potential to model GXE temporally
653  throughout the growth period as a function of dynamic environmental variables. Esten et al.
654  (2018) reported stronger correlation of NDVI and GY (r = 0.25 — 0.54) and NDVI1 and biomass (r
655 = 0.17 — 0.46) in lowest yielding sites-years. In the same study, NDVI was reported to have
656  greater ability to detect biomass differences between lines in low-yielding environments, where
657  canopy closure was not present. Similar results were previously presented where stronger
658 correlations of NDVI and grain yield was observed under abiotic stress compared with high-
659 yielding environments (Gutiérrez-Rodriguez et al. 2004; Gutierrez et al. 2010; Lopes and
660  Reynolds 2012).

661
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Conclusion

The use of multi-spectral imaging for alfalfa over the growing seasons in NY and NMSU
demonstrated that VIs are heritable and that genetic correlations were significant for most time
points and years. The measurement of cumulative NDVI showed that correlations of NDVI to
biomass increased over time closer to harvest/cutting date. Strong correlations of NDVI to
biomass harvest increase the possibility of using MSI to reduce the amount of biomass harvest
phenotyping needed, potentially reducing phenotyping costs. The use of random regressions and
Legendre polynomials demonstrated that longitudinal modeling of VIs can capture genetic
variation, and stability in growth curves across cuttings was associated with stability in harvest
biomass over harvests, years, locations and irrigation treatments. These results indicate that
random regressions of VIs captures throughout a growth period can provide a greater dynamic
understanding of aspects of phenotypic plasticity, stability and yield performance for crop

improvement.
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Fig 1. Heritability of Phenotypic indices in the Ithaca, NY trial.

Fig 2. Heritability of Phenotypic indices in (a) Normal Irrigation (NMSU trial), (b) Summer
termination (NMSU trial)

Fig 3. Phenotypic correlation of different phenotypic indices with biomass yield (a) Harvest year
2020 and (b) Harvest year 2021

Fig 4. Genetic correlation of different phenotypic indices with harvest biomass yield for Ithaca,
NY trial (“Helfer” field). X-axis represents Growing degree days (GDD) and Y-axis represents
genetic correlation.

Fig 5. Genetic correlation of different phenotypic indices with final harvest biomass yield under
normal irrigation condition of NMSU trial. X-axis represents Growing degree days (GDD) and
Y-axis represents genetic correlation.

Fig 6. Genetic correlation of different phenotypic indices with final harvest biomass yield under
summer irrigation termination condition of NMSU trial. X-axis represents Growing degree days
(GDD) and Y-axis represents genetic correlation.

Fig. 7. The “mean vs. stability” view of the genotype main effects plus genotype environment
interaction (GGE) biplot based on genotype environment yield data of 36 alfalfa genotypes
evaluated in six environments (First, Second and Third Harvest of 2020, and First, Second and
Third Harvest of 2021) of Helfer field in Ithaca, NY.

Fig. 8. The “mean vs. stability” view of the genotype main effects plus genotype environment
interaction (GGE) biplot based on genotype environment yield data of 24 alfalfa genotypes and
one covariate (G4) evaluated in nine environments - Nlcut3, Nlcut4, Nlcut5, Nlcut6, and Nlcut7
of normal irrigation and SITcut3, SITcut4, SITcut5 and SITcut7 of summer irrigation
termination of NMSU.
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928  Fig. 9. Growth curves derived from GNDVI of five stable and five unstable alfalfa cultivars
929  across five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis
930 indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using
931 Random Regression model with third order of Legendre polynomials.

932

933  Fig. 10. Growth curves derived from NDVI of five stable and five unstable alfalfa cultivars
934  across five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis
935 indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using
936  Random Regression model with third order of Legendre polynomials.

937

938  Fig. 11. Growth curves derived from NDRE of five stable and five unstable alfalfa cultivars
939 across five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis
940 indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using
941 Random Regression model with third order of Legendre polynomials.

942

943  Fig. 12. Growth curves derived from NIR of five stable and five unstable alfalfa cultivars across
944  five different harvest seasons (excluding first harvest) of the Ithaca, N trial. X-axis indicates
945  Growing degree days (GDD) and Y-axis indicates breeding values estimated using Random
946  Regression model with third order of Legendre polynomials.

947

948  Fig. 13. Growth curves derived from Ratio of five stable and five unstable alfalfa cultivars across
949 five different harvest seasons (excluding first harvest) of the Ithaca, NY trial. X-axis indicates
950 Growing degree days (GDD) and Y-axis indicates breeding values estimated using Random
951  Regression model with third order of Legendre polynomials.

952

953  Fig. 14. Growth curves derived from GNDVI of five stable and five unstable alfalfa cultivars
954  across nine different harvest seasons of the NMSU trial. X-axis indicates Growing degree days
955 (GDD) and Y-axis indicates breeding values estimated using Random Regression model with
956 third order of Legendre polynomials.

957

958  Fig. 15. Growth curves derived from NDVI of five stable and five unstable alfalfa cultivars
959  across nine different harvest seasons of the NMSU trial. X-axis indicates Growing degree days
960 (GDD) and Y-axis indicates breeding values estimated using Random Regression model with
961  third order of Legendre polynomials.

962

963  Fig. 16. Growth curves derived from NIR of five stable and five unstable alfalfa cultivars across
964  nine different harvest seasons of the NMSU trial. X-axis indicates Growing degree days (GDD)
965 and Y-axis indicates breeding values estimated using Random Regression model with third order
966  of Legendre polynomials.

967

968  Fig. 17. Growth curves derived from Ratio during the growing season of five stable and five
969 unstable alfalfa cultivars across nine different harvest seasons of the NMSU trial. X-axis

970 indicates Growing degree days (GDD) and Y-axis indicates breeding values estimated using
971  Random Regression model with third order of Legendre polynomials.

972
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Fig. 18. Growth curves derived from GNDVI of five stable alfalfa cultivars across five different
harvest seasons of normal irrigation and four different harvest seasons of early termination.

The left-hand side figures and right-hand side figures represents growth curves of stable cultivars
in normal irrigation condition (NI) and summer irrigation termination condition (SIT)
respectively.

Fig. 19. Growth curves derived from GNDVI of five unstable alfalfa cultivars across five
different harvest seasons of normal irrigation and four different harvest seasons of early
termination. The left-hand side figures and right-hand side figures represents growth curves of
stable cultivars in normal irrigation condition (NI) and summer irrigation termination condition
(SIT) respectively.

Fig. 20. Growth curves derived from NDVI of five stable alfalfa cultivars across five different
harvest seasons of normal irrigation and four different harvest seasons of early termination. The
left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.
Fig. 21. Growth curves derived from NDVI of five unstable alfalfa cultivars across five different
harvest seasons of normal irrigation and four different harvest seasons of early termination. The
left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.

Fig. 22. Growth curves derived from NIR of five stable alfalfa cultivars across five different
harvest seasons of normal irrigation and four different harvest seasons of early termination. The
left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.

Fig. 23. Growth curves derived from NIR of five unstable alfalfa cultivars across five different
harvest seasons of normal irrigation and four different harvest seasons of early termination. The
left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.

Fig. 24. Growth curves derived from Ratio of five stable alfalfa cultivars across five different
harvest seasons of normal irrigation and four different harvest seasons of early termination. The
left-hand side figures and right-hand side figures represents growth curves of stable cultivars in
normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.

Fig. 25. Growth curves derived from Ratio of five unstable alfalfa cultivars across five different
harvest seasons of normal irrigation and four different harvest seasons of early termination. The
left-hand side figures and right-hand side figures represents growth curves of stable cultivars in

normal irrigation condition (NI) and summer irrigation termination condition (SIT) respectively.
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Table 1. Correlation of variance of yield and variance of genetic merit estimated from random
regression legendre polynomial (RRLP) model with VIs (GNDVI, NDVI, NDRE, NIR, and Ratio) of
all cultivars across different environments of the Ithaca, N trial at different time points of growing

season.

Growing Degree Days

(GDD) GNDVI NDVI NDRE NIR Ratio
178.55 0.65* 0.67* 0.6* 0.68* 0.43*
218.55 0.64* 0.67* 0.61* 0.68* 0.43*
258.55 0.64* 0.67* 0.62* 0.68* 0.42*
298.55 0.63* 0.67* 0.64* 0.67* 0.42*
338.55 0.64* 0.65* 0.63* 0.66* 0.37
358.55 0.64* 0.65* 0.66* 0.66* 0.42*
378.55 0.65* 0.65* 0.67* 0.66* 0.42*
418.55 0.66* 0.63* 0.69* 0.65* 0.42*
438.55 0.66* 0.62* 0.69* 0.65* 0.42*
478.55 0.65* 0.61* 0.71* 0.66* 0.42*

* indicates P-value < 0.05
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Table 2. Correlation of variance of yield and variance of genetic merit estimated from random
regression legendre polynomial (RRLP) model with VIs (GNDVI, NDVI, NDRE, NIR, and Ratio) of
all cultivars across different environments of the NMSU trial at different time points of growing season

Growing Degree Days

(GDD) GNDVI NDVI NDRE NIR Ratio
342 0.19 0.27 0.16 0.68* 0.91*
402 0.2 0.28 0.18 0.69* 0.91*
462 0.22 0.3 0.2 0.7* 0.91*
522 0.24 0.33* 0.22 0.72* 0.92*
582 0.26 0.35* 0.25 0.73* 0.92*
642 0.29 0.38* 0.28 0.75* 0.92*
702 0.31* 0.4* 0.31 0.76* 0.92*
762 0.33* 0.42* 0.34* 0.77* 0.93*
822 0.35* 0.42* 0.35* 0.78* 0.93*
902 0.35* 0.44* 0.36* 0.79* 0.93*

* indicates P-value < 0.05
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