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Abstract

Interoception, the perception and integration of physiological signals, is a fundamental aspect
of self-awareness and homeostasis. While previous work has explored interoceptive
processing in relation to the cardiac system, research in the respiratory domain, particularly in
relation to brain structure and function, is limited. To address this gap, we utilised a Bayesian
psychophysical model to quantify perceptual, metacognitive, and affective dimensions of
respiratory interoception in a sample of 207 healthy participants. We also measured individual
whole-brain microstructural indices of myelination, myeloarchitecture, and cortical iron using
guantitative brain imaging. Voxel-based quantification analyses revealed distinct patterns of
cortical microstructure in the insular, cingulate, and primary sensory cortices, which underpin
interoceptive perceptual sensitivity and precision. In addition, metacognitive bias was
associated with increased myelination of the cingulate cortex and periaqueductal grey, while
metacognitive sensitivity correlated with myelination of the midline prefrontal cortex. At an
affective level, sensitivity to respiratory resistance was related to the myelination of the primary
somatosensory cortex. By revealing specific histological brain patterns tied to individual
differences in respiratory interoception, our results uncover the neural pathways that govern
perceptual, metacognitive, and emotional facets of interoceptive processing.
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Introduction

Interoception, the sensing and processing of internal bodily signals, is critical for higher
cognitive processes such as emotion and self-awareness (Berntson & Khalsa, 2021; Craig,
2003; Seth, 2013). Interoception is critical for the regulation of internal states and the
maintenance of allostasis (i.e., proactive self-regulation), and has been shown to play a critical
function in the regulation of emotion, consciousness, and decision-making (Nikolova, Waade,
et al., 2021). Respiratory interoception (hereafter respiroception) stands out among the
interoceptive modalities owing to its relative ease of manipulability and its association with
respiratory and psychiatric conditions such as asthma (Dahme et al., 1996; Harrison, Marlow,
et al., 2021), chronic obstructive pulmonary disease (COPD) (Giardino et al., 2010), as well
as anxiety and panic disorders (Harrison, Kochli, et al., 2021; Paulus, 2013). To uncover the
neural basis of respiroception, we utilised recent developments in quantitative neuroimaging
to inter-relate in vivo markers of cortical histology to individual differences in perceptual,
metacognitive and affective dimensions of interoception.

Interoceptive ability is typically described using a dimensional model which
differentiates objective perceptual sensitivity to physiological signals from metacognitive
sensitivity (i.e., interoceptive accuracy and awareness, respectively) (Garfinkel et al., 2015,
2016). Metacognition in this context refers to the accurate monitoring of perceptual or cognitive
processes, and is quantified by the correlation of subjective confidence (i.e., interoceptive
sensibility) with decision accuracy (Fleming & Lau, 2014). Recent computational work
suggests that respiratory interoception can be further decomposed through a predictive
processing lens (Allen et al., 2022; Breendholt et al., 2023). This framework emphasises a
hierarchical view in which sensory prediction errors, which signal for example changes in
respiratory resistance or effort, are gated by their precision, or inverse uncertainty. Alterations
in interoceptive precision are thought to drive individual differences in perceptual,
metacognitive, and affective levels (Ainley et al., 2016; Nikolova, Waade, et al., 2021), and in
the cardiac domain has been linked to a range of psychiatric illnesses (Smith et al., 2020,
2021). While a recent study linked respiroceptive precision to the activation of the insula
(Harrison, Kdchli, et al., 2021), the importance of inter-individual variability in respiroception
across these dimensions and hierarchical levels has not been thoroughly investigated.

The psychophysiology underpinning the sensation and perception of breathing is
complex and involves both interoceptive and exteroceptive signals. Throughout the respiratory
cycle, airflow through the mouth, nose, and airways into the lungs is detected by
thermosensory and tactile receptors. Meanwhile, chemoreceptors signal variations in arterial
blood gases (Nishino, 2011), and the physical expansion and contraction of the lungs activate

stretch receptors distributed around the chest cavity and diaphragm. This rhythmic information
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is relayed to key brainstem and midbrain nuclei in the medulla and pons, such as the nucleus
tractus solitarii and periagueductal grey as well as subcortical structures including the
thalamus and amygdala. From there, respiroceptive brain pathways convey afferent signals
to the somatosensory cortex (Pattinson et al., 2009; Raux et al., 2007), and onward to higher-
order networks (Davenport & Vovk, 2009; Schroijen et al., 2020; von Leupoldt et al., 2008),
primarily involving the medial prefrontal (Biskamp et al., 2017), insular (Davenport & Vovk,
2009), and anterior cingulate cortices (von Leupoldt et al., 2008).

While the functional pathways supporting respiroception are relatively well established,
the contribution of variation in the structural configuration of these regions has not been
thoroughly examined. Inter-individual differences in brain microstructure, indexing the
myelination and/or neurobiological integrity of cortical units, could reflect variation in the
function of these pathways and therefore underpin individual respiroceptive abilities (Kanai et
al., 2010). Recent advances in quantitative MR imaging (Callaghan et al., 2014; Weiskopf et
al., 2015) allow for the mapping of contrasts that are sensitive to histological properties such
as myeloarchitecture, iron, and macromolecule content (e.g., myelination, oligodendrocytes
and other support structures). To investigate the neuroanatomical basis of individual
respiroceptive abilities, we employed voxel-based quantification (Draganski et al., 2011) to
correlate brain microstructure with individual interoceptive profiles spanning perceptual,

metacognitive and affective levels of processing.
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Figure 1. Respiratory resistance discrimination task (RRST) and dataset overview.

a. Schematic representation of the task apparatus and experimental set-up. Participants
breathe through a respiratory circuit on which titrated resistive loads are delivered via the
stimulus computer. b. Trial schematic depicting the 2IFC design of the task. On each trial
participants view a circular cue instructing them to prepare to inhale. The circle then blinks
and begins expanding, with the participant instructed to sharply inhale with the expansion of
the circle. The participant then exhales and takes a second breath, and a resistive load is
randomly applied on either breath one or two. This procedure of pacing the participant’s
breathing via visual cues is a novel feature of the RRST, and is intended to reduce intra- and
inter-subject variance in respiratory effort. Following the two breaths, the participant indicates
by keyboard press whether the first or second breath was more difficult. Across trials, the
difference between the loaded breaths is controlled via psychophysical staircasing (see
Methods). c. Participant inclusion and exclusion flow chart, representing the rigorous data
quality controls that were applied to behavioural and neuroimaging data. d. Distributions of
age and gender of the final sample of 207 participants included in the study. e. Average tissue
microstructure maps from 442 participants for Magnetization transfer (MT), longitudinal
relaxation rate (R1), and transverse relaxation rate (R2*). The scale bars represent the
estimated physical values of tissue properties in each map, quantified in standardised units,

and represent percent units (p.u.) for MT maps, and per second (s*) for R1 and R2* maps.
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Materials and Methods

Participants

A total of 565 (360 females, 205 males) participants (median age = 24, age range = 18 - 56)
took part in the Visceral Mind Project, a large-scale neuroimaging project at the Center of
Functionally Integrative Neuroscience, Aarhus University. Participants were recruited via the
SONA participation pool system and through local advertisements such as posters and social
media. The inclusion criteria required participants to have corrected-to-normal vision and
fluency in Danish or English. Participants did not take any medications except contraceptives
or over-the-counter antihistamines. Furthermore, participants were compatible with standard
MRI scanning requirements (i.e., no metal implants, claustrophobia, and not
pregnant/breastfeeding). The participants from this dataset took part in multiple tasks, MRI
scans, physiological recordings, as well as psychiatric and lifestyle inventories, spread over
three visits occurring on different days. The MRI and respiratory interoception data reported
in the present study were collected on different days, and the participants were compensated
for their participation. The local Region Midtjylland Ethics Committee granted ethical approval
for the study and all participants completed written informed consent. The study was

conducted in accordance with the Declaration of Helsinki.

Respiratory Interoception Task

Respiratory interoceptive ability was assessed by the Respiratory Resistance Sensitivity Task
(RRST, Nikolova, Harrison, et al., 2021). This task uses Psi, a Bayesian psychophysical
procedure to adaptively estimate subject-level thresholds and precision (Kontsevich & Tyler,
1999) for the detection of inspiratory resistances. We further assessed metacognitive bias
through average confidence ratings, as well as metacognitive performance, which reflects the
trial-level correspondence between confidence ratings and performance accuracy.
Participants were asked to breathe through a respiratory circuit, which is automatically
compressed by a custom device with fine granularity to produce varying resistance loads
(Figure 1 a.). In a two-interval forced choice (2IFC) design, each trial encompassed two
inhalations and a decision of which of the two was more difficult. This was followed by a visual
analog scale (VAS) confidence rating scale of the confidence that the response on that trial
was correct, on a range from “Guess” to “Certain” (Figure 1 b.). Participants performed a total
of 120 trials over the course of approximately 35 minutes, with > 2min breaks at intervals of
20 trials.

We modelled participant RRST behaviour using a Bayesian psychophysical model

which fitted a Weibull psychometric function with a guess rate y of 0.5 and a lapse rate A of
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0.02 (Eq. 1) to the trial-level responses, for each participant independently. For this model,
trials were coded as correct if participants accurately identified the interval containing a
resistance load. The estimated threshold corresponds to the perceptual sensitivity
(interoceptive accuracy) or the estimate of parameter « in Eq. 1, and the slope, or signal
uncertainty (precision), is the value of the g parameter. All analyses of individual differences

in respiratory interoception utilised the Psi-estimated psychophysical parameters.

P(correct)y = Uy (20, f,A) = (1= X) — (5 — A)exp(—(%)-ﬁ) Eq. 1

To examine metacognitive performance, we applied a signal theoretic model to
distinguish metacognitive sensitivity (i.e., the sensitivity of confidence ratings to objective
accuracy) from metacognitive bias (i.e., the overall tendency to report low or high confidence)
(Fleming & Lau, 2014). In the context of interoception, metacognitive bias is sometimes called
“interoceptive sensibility” (Garfinkel et al., 2016).

Metacognitive sensitivity was estimated by calculating the area under the type 2 (i.e.,
metacognition) receiver operating characteristic (aROC) curve, a non-parametric measure
which indexes the relationship between metacognitive “hits” and “misses” (Fleming et al
Science) (Fleming et al., 2010). Metacognitive bias was calculated as the average confidence
rating across all trials, irrespective of accuracy. For the estimation of aROC, the continuous
confidence ratings were binned into four equally spaced intervals (Galvin et al.,, 2003;
Maniscalco & Lau, 2012). This binning strategy, based on guidelines established in previous
studies (Fleming, 2017; Fleming & Lau, 2014; Maniscalco & Lau, 2012), normalises the
confidence quantiles for each participant and minimises the risk of empty bins, thereby
enhancing the robustness of metacognitive sensitivity estimation.

To probe the affective dimension of respiratory interoception, participants reported
subjective levels of ‘unpleasantness’ using a VAS scale ranging from ‘Not unpleasant’ to ‘Very

unpleasant’ at intervals of 20 trials throughout the task (i.e., before each break).

Statistical Analysis

RRST Variables

To evaluate the correlations between estimated RRST variables included in the analysis, we
calculated Spearman coefficients (see Supplementary figure 2). A repeated measures
ANOVA was performed to assess the effect of sampling time point on displeasure ratings, with
age and gender as covariates. The means and standard deviations of the displeasure ratings

are presented in Supplementary table 1. As Mauchly’s test of sphericity indicated that the
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sphericity assumption was violated, x? (14) = 230.74, the degrees of freedom were corrected
using Greenhouse-Geisser sphericity estimates (¢ = 0.42). These statistical analyses were
performed in JASP (0.18.3) (JASP, 2024).

Hierarchical Modelling of Respiroceptive Psychophysics

To estimate the overall psychophysical function at a population level (Figure 3 a.), we applied
a post-hoc hierarchical Bayesian model (Gelman & Hill, 2006; McGlothlin & Viele, 2018). This
comprehensive model integrated data from all trials and participants, employing a Weibull
function for the fit. The model was characterised by fixed parameters for both the guess rate
(establishing the lower asymptote) at 0.5 and the lapse rate at 0.05. Alpha (i.e., threshold) and
beta (i.e. slope) were estimated as free parameters.

Multi-Parameter Brain Mapping

We used a well-established gMRI protocol (Weiskopf et al., 2013, 2015) to map percent
saturation due to magnetization transfer (MT), longitudinal relaxation rate (R1) and effective
transverse relaxation rate (R2*), followed by voxel based quantification to relate individual

differences in respiroception to patterns of brain microstructure.

Data Acquisition

The imaging data were collected using a 3T MR system (Magnhetom Prisma, Siemens
healthcare, Erlangen, Germany), using a standard 32-channel radiofrequency (RF) head coll
and a body coil. A set of high-resolution whole brain T1-weighted anatomical images (0.8 mm?
isotropic) were acquired using an MP-RAGE sequence (repetition time=2.2 s, echo
time =2.51 ms, matrix size =256 x 256 x 192 voxels, flip angle = 8°, AP acquisition direction).

Whole-brain image acquisitions at isotropic 0.8 mm resolution were obtained using an
MPM quantitative imaging protocol (Callaghan et al., 2019; Weiskopf et al., 2013). The
sequences consisted of three spoiled multi-echo 3D fast low angle shot (FLASH) acquisitions
and three additional calibration sequences in order to correct for RF transmit field
inhomogeneities. The FLASH sequences were acquired with MT, PD and T1 weighting. A flip
angle of 6° was used for the MT- and PD-weighted images, and 21° for the T1l-weighted
acquisitions. MT-weighting used a Gaussian RF pulse 2 kHz off resonance with 4 ms duration
and a nominal flip rate of 220°. The field of view was 256 mm head-foot, 224mm anterior-
posterior, and 179mm right-left. Gradient echoes with alternating readout gradient polarity
were acquired using equidistant echo times ranging from 2.34 to 13.8ms (MT) or 18.4ms (PD
and T1), using a readout bandwidth of 490 Hz/pixel. For the MT-weighted acquisition, only 6

echoes were collected to achieve a repetition time (TR) of 25ms for all FLASH volumes. For
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accelerated data acquisition, partially parallel imaging was performed using the GRAPPA
algorithm, with an acceleration factor of 2 in each phase encoded direction and 40 integrated
reference lines. A slab rotation of 30° was used for all acquisitions. The B1 mapping acquisition
comprised 11 measurements with the nominal flip rate ranging from 115° to 65° in 5° steps.

The total scanning time for the gMRI acquisitions was approximately 26 minutes.

Map Creation

All gMRI images were preprocessed using the hMRI toolbox v. 0.5.0 (January 2023) (Tabelow
et al.,, 2019) and SMP12 (version 12.r7771, Wellcome Trust Centre for Neuroimaging,
http://lwww fil.ion.ucl.ac.uk/spm/), to correct the raw gMRI images for spatial transmit, receive
field inhomogeneities and obtain quantitative MT, PD, R1 and R2* estimate maps. Apart from
the enabling of imperfect spoiling correction, the hMRI toolbox was configured using the
standard settings. All images were reoriented to MNI standard space prior to map creation.
This processing produced four maps modelling different aspects of tissue microstructure: an
MT map sensitive to myeloarchitectural integrity (Helms et al., 2008), a PD map representing
tissue water content, and R1 map reflecting myelination, iron concentration and water content
(primarily driven by myelination) (Lutti et al., 2014), and an R2* map sensitive to tissue iron
concentration (Langkammer et al., 2010).

The unified segmentation approach (Ashburner & Friston, 2005) was used to segment
MT saturation maps into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
probability maps. Tissue probability maps based on multi-parametric maps developed by Lorio
et al. (Lorio et al., 2016) were used, without bias field correction given that MT maps do not
show significant bias field modulation. The GM and WM probability maps were then used to
perform inter-subject registration using Diffeomorphic Image Registration (DARTEL), a
nonlinear diffeomorphic algorithm (Ashburner, 2007). The MT, PD, R1 and R2* maps were
then normalised to MNI space (at isotropic 1 mm resolution) using the resulting DARTEL
template and participant-specific deformation fields. The nonlinear registration of the
guantitative maps was based on the MT maps due to their high contrast in subcortical
structures, and a WM-GM contrast in the cortex similar to T1 weighted images (Helms et al.,
2009). Finally, tissue-weighted smoothing was applied using a kernel of 4 mm full width at half
maximum (FWHM) using the voxel-based quantification (VBQ) approach (Draganski et al.,
2011). Note that, in contrast to voxel based morphometry analysis, this VBQ smoothing
approach aims to minimise partial volume effects and optimally preserves the quantitative
values of the original gMRI images by not modulating the parameter maps to account for
volume changes. The resulting GM segments for each map were used for all statistical
analyses. For visualisation purposes, an average MT map in standard space was generated

based on all 442 participants in the study (Figure 1 e.).
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Participant Exclusion Criteria and MRI Quality Control

Following inspection, several participants were removed from all analyses for reasons related
to either MRI or behavioural data. Three participants were excluded immediately following MR
data collection for medical reasons (one cerebral palsy and two other suspected brain
abnormalities). Multi-parameter mapping contrast images were acquired for 503 total
participants. Three participants were excluded due to errors in the scanning sequences. As
MPM data is known to be particularly sensitive to motion artefacts, a thorough quality control
(QC) assessment was performed to identify high-motion images. Visual QC HTML reports
were created of each participant using the hMRI-vQC toolbox (Sherif et al., 2022), and all
reports were visually inspected and labelled by two researchers. Doubtful cases were
discussed, and a further 57 participants were excluded due to excessive motion affecting the
tissue-class segmentation. Data from the remaining 443 participants was used in the spatial
analysis and template creation using DARTEL. Of the remaining participants, 307 completed
the RRST. Participants who were behavioural outliers (based on the interquartile range; Q1-
1.51QR, Q3+1.5IQR) on the threshold, slope, accuracy or aROC estimates, were excluded
from further analyses as these values can indicate a failure of the staircasing procedure and/or
a poor understanding of the task instructions. These criteria resulted in excluding 67
participants, leaving 240 participants with RRST data for further analyses. The overlap
between the RRST and MPM data left 207 participants for VBQ analyses (145 females, 62

males, median age = 24, age range = 18-52, see Figure 1 c. & d.).

Data Availability

All original code, raw psychophysical data and anonymized summary variables are publicly
available on GitHub. Summary statistical brain maps are available on NeuroVault. The raw
neuroimaging data reported in this study comprise part of a larger dataset and will be made
public as part of a dedicated paper following the passage of a mandatory data embargo which

protects participants data privacy rights.

Voxel Based Quantification Analysis

Grey and white matter masks were generated based on our samples, by averaging the
smoothed, modulated GM and WM segment images, and thresholding the result at p > 0.2.
Inter-subject variation in MT, R1 and R2* GM maps were modelled in separate multiple linear
regression analyses. The RRST threshold, slope, mean confidence, aROC, and mean

displeasure were used as regressors of interest in the VBQ analysis (see Supplementary
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table 2 for a full list of regressors included). We further controlled for variables known to
influence respiratory physiology and/or interoception, modelling daily cigarette smoking, self-
reported tendency for intranasal versus intraoral breathing, as well as respiratory interoceptive
sensibility as measured by items #4, 11, 21, 26 on the multidimensional assessment of
interoceptive awareness (MAIA-II; Mehling et al., 2018). Finally, we included age, gender,
body mass index (BMI) and total intracranial volume (TIV) as nuisance covariates in all
analyses, following recommended procedures for computational neuroanatomy (Ridgway et
al., 2008). All positive and negative main effects analyses were small-volume corrected within
the GM mask. Whole-brain maps of each positive and negative t-contrast were analysed using
a cluster corrected FWE-cluster p-value with p < 0.001 inclusion threshold (Hupé, 2015;
Ridgway et al., 2008). All statistical analyses were conducted in SPM12, and the JuBrain
Anatomy Toolbox v. 3.0 (Eickhoff et al., 2005) was used to determine anatomical labels and

regional percentages. See Figure 2 for the MPM analysis pipeline.
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Figure 2. Multi-parameter mapping analysis pipeline.

Multi-echo MPM images and bias fields were acquired for MT, PD and T1 contrasts, alongside
position-specific RF maps. Auto-reorientation and map creation using the hMRI toolbox
produced gMRI maps for MT, R1 and R2*. A combination of automated and manual quality
control was performed on these maps, followed by spatial processing including segmentation,
diffeomorphic deformation (DARTEL) and tissue-weighted smoothing. The resulting
guantitative images were analysed using voxel based quantification in a multiple linear
regression analysis, to identify locations in each map type that relate to respiratory

interoception parameters while controlling for various nuisance covariates.

Results

Respiroception Psychophysics

Perception

We first analysed behavioural respiratory interoception data from the RRST, using the
hierarchical bayesian fit to the trial-wise obstruction percentage. Across our sample, the mean
threshold was 72.70% obstruction (mean, s.d. = 11.86, range: 26.08 - 98.75). The average
slope, corresponding to the sensory precision, was 3.44 (mean, s.d. = 3.13, range: 0.10 - 6.53,
Figure 3 a.). Note that for the Weibull function, a lower slope estimate corresponds to greater
response precision. The Psi method effectively controlled the session-level performance at a
rate of approximately 70 - 80% correct responses (Figure 4 d.), assuring that further analysis

of metacognition was not confounded by differences in accuracy performance.
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Figure 3. RRST psychophysics and VBQ results for the perceptual level.

a. Grand mean psychometric fit (yellow) overlaid on individual PMF fits (grey), demonstrating
that average respiratory thresholds are approximately 70% airway obstruction (teal point), with
substantive inter-individual variance around this value. PMF fits are based on hierarchical
estimates. b. and ¢c. R1 map values in the postcentral gyrus are positively correlated to
respiroceptive precision (slope parameter), while MT map values in the anterior insula
correlate negatively to respiroceptive accuracy (threshold). Maps are FWE-cluster corrected
for multiple comparisons at pFWE < 0.05.

Metacognition and Affective Ratings

With respect to the metacognition parameters, we estimated the confidence bias, or the
tendency to report low or high confidence, by taking the mean of confidence ratings over the
entire session for each participant. We observed substantial variability in confidence bias
across participants, with a range from 22 - 91% (Figure 4 a.). We further calculated the area
under the type 2 receiver operating characteristic (aROC) curve, which estimates
metacognitive sensitivity while accounting for confidence bias. Whereas perceptual
performance was controlled at 70 - 80% accuracy, aROC estimates varied from 0.51 to 0.85
(Figure 4 d.).

Ratings of unpleasantness, indexing respiroceptive resistance-induced negative
affect, showed that the task was perceived as mildly aversive, with median ratings of 22.92%.
However, individual participants showed substantial variability, both in their mean rating (S.D.
=28.16%, 95% C.I. = 26.22 - 33.34), as well as in the pattern of ratings across blocks (Figure
5 a.). We replicated our previous results (Nikolova et al., 2022) showing that there is large
inter-individual variability in subjective unpleasantness ratings throughout the task. We tested
whether there was a significant effect of time within participants using a rmANOVA (factor of
timepoint, Greenhouse-Geiser sphericity correction), and found no significant linear effect of
timepoint (F(3.200, 611.108) = 2.086, p = .097).
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To estimate the inter-dependence of perception, metacognition and affect ratings, we
calculated Spearman correlation coefficients between each pair of variables. This revealed
that respiroceptive threshold was moderately related to slope and unpleasantness ratings
(slope: r(250) = 0.20, p < 0.005; unpleasantness: r(250) = 0.17, p < 0.005), whereas the
metacognition measures aROC and mean confidence were not correlated to any of the other
variables (Supplementary figure 2 b.). A benefit of the RRST is that it allows for the
estimation of the threshold and slope, enabling their relative contributions to be controlled for
and assessed independently in the subsequent VBQ analysis. We also observed that gender
was correlated with threshold (r(250) = -0.27, p < 0.005), unpleasantness (r(250) = -0.18, p <
0.005) and BMI (r(250) = 0.22, p < 0.005), and that age correlated negatively with slope (r(250)
=-0.20, p < 0.005), and positively with BMI (r(250) = 0.23, p < 0.005).

Voxel Based Quantification

To examine the neurobiological correlates of inter-individual variability in respiroceptive
processing, we related parameter estimates of perceptual variables (threshold, slope),
metacognitive variables (mean confidence, aROC), and affect (unpleasantness ratings) to

brain microstructure. We found that MT saturation in the right anterior insula (k = 314; pFWEcon

< 0.001; peak voxel coordinates: x = 46 y = 24 z = -3) and left anterior cingulate cortex (k =

290; pFWEcor < 0.001; peak voxel coordinates: x =3y =54 z = 17) was negatively correlated
with respiroceptive threshold (Supplementary figure 2 b.), indicating that greater
myeloarchitectural integrity was associated with lower respiroceptive sensitivity. Meanwhile,
R1 in the right postcentral gyrus (k = 289; pFWEcor < 0.001; peak voxel coordinates: x = 37 y
=-30 z = 39) related positively with PMF slope estimates (Figure 3 b.). These results suggest
that the ability to accurately discriminate respiratory loads, as indicated by a reduced
threshold, is associated with myeloarchitecture in the anterior portions of the cingulate cortex
and insula. The precision in detecting resistive loads is instead related to local myelination in

primary somatosensory cortex, so that reduced myelination confers greater precision.
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Figure 4. Brain microstructural correlates of metacognitive bias and sensitivity.

a. Distribution of mean confidence ratings across the sample. b. Positive (red - yellow) and
negative (blue - green) confidence bias R1 map contrast. c. R1 values in the Superior
Colliculus and Periaqueductal Grey correlate positively with confidence bias. d. Accuracy
(teal) and metacognitive sensitivity (aROC, yellow), sorted by each participant's aROC
estimate. Participants show substantial variations in metacognition while accuracy is held
relatively constant by the Psi staircase procedure. e. R1 values in the anterior cingulate cortex
are negatively correlated to metacognitive sensitivity (aROC). f. R1 values in the right Anterior
Cingulate Cortex correlate negatively with metacognitive sensitivity as indexed by aROC.
Maps are FWE-cluster corrected for multiple comparisons at pFWE < 0.05.

Individual variability in confidence bias, or the tendency to provide high or low
confidence ratings regardless of performance, was positively correlated with R1 map values
in the right posterior cingulate cortex (k = 408; pFWEcor < 0.001; peak voxel coordinates: x =
-3y = 28 z = 38) and left superior parietal cortex (k = 792; pFWEcr < 0.001; peak voxel
coordinates: x = 33 y = -52 z = 65). Interestingly, we also observed associations with the R1

values in the midbrain, namely the periaqueductal grey and superior colliculus (k = 5260;

PFWEcor < 0.001; peak voxel coordinates: x = -13 y = -30 z = —-13); Figure 4 b.), indicating

that greater myelination in these regions was associated with a positive confidence bias. The
R2* values in the left posterior insula meanwhile, were negatively correlated to metacognitive

bias, suggesting that high iron concentrations in this region was associated with overall lower
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mean confidence ratings (k = 211; pFWEcr = 0.014; peak voxel coordinates: x =46y =24 z

=-3); Figure 4 b.).

While metacognitive bias relates an individual’'s propensity to be over- or under-
confident in their performance on a task, their metacognitive sensitivity indexes how well their
confidence ratings relate to the trial-by-trial accuracy. R1 map values in the left anterior
cingulate cortex (k = 866; pFWEcor < 0.001; peak voxel coordinates: x = -11y =53 z = 11)
and frontal pole (k = 191; pFWEcr = 0.01; peak voxel coordinates: X = -41y = 46 z = -4) were
negatively related to metacognitive sensitivity, as indexed by the type 2 aROC, indicating the
involvement of this region in metacognition and performance monitoring.

We found that variability in mean unpleasantness ratings induced by respiratory
resistance correlated positively with MT in areas BA 2 and 5L of the postcentral gyrus (k =
271; pFWEcr < 0.001; peak voxel coordinates: x = -40 y = -40 z = 50; Figure 5 b., c.),
suggesting that a greater myeloarchitectural integrity may indicate higher affective sensitivity

to the inspiratory resistive loads, rendering them more aversive.

C.

g 8 B8

Unpleasantness rating (%)
B
=]

Y

1 2 3 K 5 6 25 50 75 100
Timepoint Unpleasantness

Figure 5. Brain microstructural correlates of affective ratings.

a. VAS scale ratings of how ‘unpleasant’ participants found the RRST, collected at intervals of
20 trials. Thin lines represent ratings of individual subjects, while teal markers show median
ratings at each timepoint and shaded area represents the standard error. While the mean of
these affective ratings shows minimal variability over the course of the session, there is inter-
individual variability in the affective scores. b. and c. Mean affective ratings are positively
correlated with MT map values in the right postcentral gyrus. Maps are FWE-cluster corrected
for multiple comparisons at pFWE < 0.05.
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Table 1: Summary of whole-brain VBQ results.
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Discussion

This study investigated the microstructural brain correlates of respiratory interoception across
perceptual, metacognitive and affective levels. For this purpose, we employed a Bayesian
psychophysical method to measure respiroceptive ability alongside quantitative MRI profiles
in a sample of over 200 participants. The present work represents the largest investigation of
respiroception to date, and also the first brain imaging study to utilise the respiratory resistance
sensitivity task (RRST), which differentiates interoceptive sensitivity and precision. We
replicated previous results indicating a population level threshold resistance sensitivity of
approximately 70% obstruction, and found similar levels of inter-individual variation in both
sensitivity and precision parameters (Nikolova et al., 2022). Here, we exploited this variability
to understand how each dimension of respiroception maps onto local differences in brain

microstructure.

Microstructural Brain Underpinnings of Respiroceptive Perception

We showed that the myeloarchitectural integrity of the anterior insular cortex (AIC) was related
to reduced respiroceptive thresholds and thus greater sensitivity to resistive loads. Greater
myeloarchitectural integrity in the AIC therefore may confer an improved ability to discriminate
inspiratory resistance. Previous studies have thoroughly established the involvement of the
AIC in processing visceral information (Barrett & Simmons, 2015; Craig, 2003; Seth, 2013)
and breathlessness (Faull & Pattinson, 2017). Interestingly, while the posterior insular cortex
is sometimes referred to as “primary viscerosensory cortex” (Craig, 2002; Critchley & Harrison,
2013; Nieuwenhuys, 2012), the AIC is known to have a more multi-modal profile. This is due
in part to the unique agranular cytoarchitecture and connectivity of the region, which has long-
distance projections across both cortical and subcortical structures and connects to limbic,
sensory and prefrontal areas (Menon & Uddin, 2010; Sridharan et al.,, 2008). These
connections allow the AIC to be involved in integrating sensory stimuli, extracting salience
cues, and communicating multimodal inputs in a modulatory way across the brain (Allen, 2020;
Seth, 2013). As discriminating resistive loads inevitably requires the integration of various
interoceptive and exteroceptive sensory cues, this finding highlights the integrative nature of
the region in determining respiroceptive sensitivity.

Respiroceptive precision, as measured by the slope of the psychometric function, was
associated with myelination in the primary somatosensory regions of the postcentral gyrus
that correspond to the mouth and throat areas (Belyk & Brown, 2014; Haggard & de Boer,
2014; Miyamoto et al., 2006). This connection echoes previous findings that the structure of

primary sensory areas is important for individual visual acuity and sensitivity (Duncan &
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Boynton, 2003; Schwarzkopf et al., 2011). Interestingly, our study highlights that respiratory
sensitivity and precision are tied to unique microstructural characteristics in somatosensory
and viscerosensory regions, suggesting respiroception uniquely recruits different branches of
the body-related neural pathways. Neurobiologically, post-mortem studies indicate that
myelination strongly correlates with R1 contrast in somatosensory areas (Lutti et al., 2014),
while magnetization transfer (MT) is more reflective of macromolecular content, indicating a
possible role for glial and support cells. Thus, respiroceptive precision might be linked to
myelination in the primary somatosensory cortex's grey matter, while interoceptive sensitivity
could depend more on the integrity and connectivity of the brain's myeloarchitecture,
particularly within the anterior insular cortex (AIC). Future studies utilising combined functional
and structural brain imaging will be needed to understand the contributions of these

microstructural features to respiratory processing.

Microstructural Brain Underpinnings of Respiroceptive Metacognition and Affect

Our findings further showed a relationship between metacognitive processing and cortical
myelination. Specifically, respiratory interoceptive sensibility (i.e., mean confidence or
metacognitive bias), correlated with myelination in distributed cortical regions such as the
posterior parietal and posterior cingulate cortices. In the exteroceptive domain, previous
studies found neural correlates of subjective confidence in similar brain regions (Bang &
Fleming, 2018; Kiani & Shadlen, 2009), suggesting that there may be multimodal confidence
representations spanning interoceptive and exteroceptive modalities in these areas. In
contrast, exteroceptive metacognitive sensitivity was previously linked to the activity,
myelination, and volume of the rostrolateral prefrontal cortex (Allen et al., 2017; Fleming et al.,
2010, 2012), whereas here we found that the myelination of the ventromedial prefrontal
cortices (VMPFC) correlated with respiroceptive metacognitive sensitivity. The VMPC has
been implicated in diverse aspects of brain-body interaction, self-processing, and
interoception, and this finding may therefore highlight more modality specific aspects of
metacognition for breathing (Azzalini et al., 2019; D’Argembeau, 2013; Nagai et al., 2004).

In addition to these cortical findings, we also showed that myelination levels in midbrain
regions including the periaqueductal grey (PAG) and superior colliculus were positively related
to confidence bias. The PAG is a core structure in the central autonomic network (Benarroch,
1993; Berntson & Khalsa, 2021; Saper, 2002), critical to neuromodulation in the perception of
dyspnea, as well as homeostatic regulation, affective responses, nociception and stress
(Bandler et al., 2000; Faull et al.,, 2019; Faull & Pattinson, 2017; Sclocco et al., 2018).
Increased myelination in the PAG could therefore contribute to the salience of ascending

respiratory signals, leading to increased interoceptive sensibility for breathing.
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Finally, subjective affective ratings related positively to myeloarchitecture in the
postcentral gyrus and intraparietal sulcus, in a region more dorsal to the effect we observed
for interoceptive precision. This region of the somatosensory cortex has been shown to be
involved in attentional regulation and anxious arousal (Brown et al., 2023), and it has been
proposed that neuromodulation of the nearby intraparietal sulcus (IPS; e.g., using TMS) could
be used to reduce attention to threat and anxious arousal in clinical samples. The IPS exhibits
strong functional connectivity within the fronto-parietal attention network (Cole et al., 2014),
as well as with subcortical regions such as the locus coeruleus, known to be involved in anxiety
(Liebe et al., 2022). Our findings therefore suggest a relationship between affective state and
myeloarchitecture in somatosensory cortex, and carry potential implications for attentional

regulation and anxious arousal.

Future Directions and Limitations

An advantage of our methodology is the inherent interpretability of quantitative MRI (qMRI)
units, facilitating direct comparisons with future investigations into the neural substrates of
interoceptive processing, and providing a normative sample of respiroceptive values and their
cortical correlates in brain microstructure. Our findings also raise questions about how genetic
and environmental factors shape local brain microstructure. Previous research highlights the
impact of life experiences on cortical grey matter volume, with studies in both rodents and
humans showing that early-life dietary iron changes predicting alterations in cortical
myelination, iron levels, and cognitive function (Greminger et al., 2014; Radlowski & Johnson,
2013). Exploring factors such as nutrition, stress, and adversity further, particularly through
prospective designs (e.g., Karcher & Barch, 2021), could offer valuable insights into how early-
life experiences influence the neural circuits supporting respiratory interoception.

Our study extends previous work linking exteroceptive perceptual abilities and
variation in cortical structure to the domain of respiratory interoception (Schwarzkopf et al.,
2011). However, while our results provide new information about the relationship between
brain structure and respiroception, they cannot speak to the underlying causal mechanisms
linking brain function, structure, and behaviour. Our findings thus motivate future work aimed
at unravelling how the microstructural brain variability revealed here might underpin specific
respiratory computational mechanisms, and also could motivate prospective cohort research
seeking to understand the aetiology of these structure-function relationships.

One possible drawback of our study is the lack of physiological measures (i.e., mouth
pressure and airway resistance) when estimating respiroceptive psychophysics. The
correlation between tube obstruction and airway resistance follows a nonlinear equation, such

that under constant airflow static resistance remains fixed for a given level of obstruction in
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the RRST. Nevertheless, the force exerted during inhalation can alter air flow in the
compressed area (the segment of silicone tubing in the breathing circuit), affecting differential
pressure. By measuring the air circuit's mechanical characteristics, such as airflow and
pressure, one could calculate the static resistance generated by a stimulus. This approach
would allow for adjusting stimulus threshold values based on physiological parameters unique
to each trial, thereby eliminating potential biases due to variations in individual breathing
patterns, like the force and duration of inhalation. Although we continuously recorded airflow
and differential pressure during the task, a technical issue resulted in a loss of stimulus
triggers, preventing analysis of this data. Nonetheless, our previous validation study
demonstrated that the relationship between tube obstruction and both resistance and pressure
follows a consistent log-linear pattern across different participants and stimulus levels
(Nikolova et al., 2022). This consistency is due to our task design, which uses visual cues to
standardise the force and duration of inspiratory breaths across trials, ensuring reliable
threshold estimation even without physiological data.

In conclusion, this study advances our understanding of respiratory interoception by
revealing distinct cortical underpinnings associated with interoceptive accuracy, precision, and
metacognitive processes. Our findings reveal previously unknown specificity in the cortical
and subcortical respiroceptive brain hierarchy, indicating that regionally specific differences in
brain microstructure underlie variations in respiratory interoception across multiple functional
levels. The respiroceptive brain profiles identified here can aid in the design of more targeted
investigations probing the neural mechanisms of respiroceptive ability and metacognition, their
clinical relevance, and the relative combinations of genetic factors and prior experiences in

shaping interoceptive processing.
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