

1 Measuring the burden of hundreds of BioBricks defines an
2 evolutionary limit on constructability in synthetic biology

3

4 Noor Radde^{1*}, Genevieve A. Mortensen^{1*}, Diya Bhat¹, Shireen Shah¹, Joseph J. Clements¹,
5 Sean P. Leonard¹, Matthew J. McGuffie¹, Dennis M. Mishler^{1,2}, Jeffrey E. Barrick^{1#}

6

7 ¹Department of Molecular Biosciences, Center for Systems and Synthetic Biology,
8 The University of Texas at Austin, Austin, TX 78712, USA

9 ²The Freshman Research Initiative, College of Natural Sciences, The University of Texas at
10 Austin, Austin, TX 78712, USA

11

12 *Equal contributions

13

14 #Correspondence: jbarrick@cm.utexas.edu

15 **ABSTRACT**

16 Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise
17 interferes with homeostasis. Populations of engineered cells can rapidly become dominated by
18 “escape mutants” that evolve to alleviate this burden by inactivating the intended function.
19 Synthetic biologists working with bacteria rely on genetic parts and devices encoded on
20 plasmids, but the burden of different engineered DNA sequences is rarely characterized. We
21 measured how 301 BioBricks on high-copy plasmids affected the growth rate of *Escherichia*
22 *coli*. Of these, 59 (19.6%) negatively impacted growth. The burden imposed by engineered DNA
23 is commonly associated with diverting ribosomes or other gene expression factors away from
24 producing endogenous genes that are essential for cellular replication. In line with this
25 expectation, BioBricks exhibiting burden were more likely to contain highly active constitutive
26 promoters and strong ribosome binding sites. By monitoring how much each BioBrick reduced
27 expression of a chromosomal GFP reporter, we found that the burden of most, but not all,
28 BioBricks could be wholly explained by diversion of gene expression resources. Overall, no
29 BioBricks reduced the growth rate of *E. coli* by >45%, which agreed with a population genetic
30 model that predicts such plasmids should be “unclonable” because escape mutants will take
31 over during growth of a bacterial colony or small laboratory culture from a transformed cell. We
32 made this model available as an interactive web tool for synthetic biology education and added
33 our burden measurements to the iGEM Registry descriptions of each BioBrick.

34

35

36 **Keywords:** evolutionary failure, genetic stability, metabolic burden, Registry of Standard
37 Biological Parts, International Genetically Engineered Machines (iGEM) competition

38

39 **INTRODUCTION**

40 Synthetic biologists are engineering increasingly sophisticated functions into cells and deploying
41 these “living machines” in new and more challenging environments. For example, cells have
42 been created with genetic circuits that perform complex sensing and logic operations,^{1,2} and
43 bacterial symbionts have been engineered to improve the productivity and health of their plant
44 and animal hosts.^{3–5} However, unlike computer code, engineered DNA sequences in cells can
45 evolve, potentially making their functions unpredictable and unreliable.^{6,7} Evolutionary failure—
46 when less-functional or nonfunctional mutants outcompete their ancestor—can occur rapidly if
47 an engineered function is highly burdensome to a cell or if the sequences that encode it are
48 especially mutation-prone.^{8–12} In extreme cases, a population of cells may already become
49 dominated by “escape mutants” that have evolved inactivated variants of a designed sequence
50 after outgrowth of a single transformed cell into a colony or small laboratory culture, making that
51 construct essentially “unclonable”. To improve the foundations of bioengineering, we need to
52 better understand why certain DNA constructs are more burdensome to cells than others and
53 the limits on how much burden a cell can tolerate before unwanted evolution becomes a barrier.

54 Because all engineered DNA constructs must use resources from the cell to replicate
55 and express genes, these processes are the most common and predictable sources of
56 burden.¹³ Burden from replicating engineered DNA in cells is typically negligible, even for very
57 high-copy plasmids in bacteria.¹⁴ Instead, transcriptional resources (e.g., RNA polymerases) or
58 translational resources (e.g., ribosomes, charged tRNAs) often become limiting when a foreign
59 DNA construct directs a cell to synthesize RNAs and proteins. Protein overexpression studies in
60 *E. coli* generally find that ribosomes are the most limiting factor, with a proportional decrease in
61 the growth rates of cells as producing more heterologous protein diverts more of their ribosomes
62 away from expressing host proteins needed for replication.^{15–19} Usage of gene expression
63 resources can be monitored using high-throughput approaches that globally profile RNA

64 abundance and ribosomal occupancy²⁰ or reporter genes with expression levels that reflect the
65 depletion of overall cellular capacities for transcription and translation.²¹

66 Burden may also arise due to how specific gene products expressed from an engineered
67 DNA construct interact with host cells. Metabolic engineering purposefully funnels precursor
68 molecules toward a target compound by expressing foreign enzymes, altering gene regulation,
69 and/or disrupting native pathways. These modifications will generally slow a cell's growth, and
70 metabolic products or intermediates may also accumulate to levels that are detrimental to
71 cellular physiology.²²⁻²⁴ Expressing certain types of proteins, such as proteases and integral
72 membrane proteins, is also known to be stressful or toxic to *E. coli* cells, due either directly to
73 their functions or to competition with native proteins for secretion machinery.^{25,26} Proteins used
74 for orthogonal control of gene expression, like T7 RNA polymerase and dCas9, can exhibit
75 excessive activity or off-target effects that are extremely burdensome.²⁷ Finally, unintentional
76 expression of antisense and frameshifted gene products from cryptic promoters and ribosome
77 binding sites has been shown to be an unexpected source of burden in some constructs.^{9,20}

78 Sharing of standardized genetic parts has been a cornerstone of synthetic biology since
79 its inception.^{28,29} The Registry of Standard Biological Parts is a database of engineered DNA
80 sequences³⁰ that thousands of teams have contributed to as part of their participation in the
81 International Genetically Engineered Machines (iGEM) competition.^{31,32} Most BioBrick parts are
82 cloned into a small set of standard vector backbones, which makes these plasmids a useful
83 "common garden" for analyzing the properties of inserts encoding different genetic parts and
84 devices. In past studies, BioBricks have been used to compare standardized measurements of
85 promoter strength³³ and fluorescent protein expression^{34,35} across many labs. It has been
86 proposed that genetic reliability—in the evolutionary sense of for how many cell doublings a
87 certain level of function is maintained in a population—be listed on a data sheet describing a
88 genetic part,²⁹ but this property is rarely characterized in practice. One goal of iGEM is to
89 improve upon existing parts, and many BioBrick sequences are re-used by synthetic biology

90 researchers outside of iGEM. Therefore, characterizing which of these parts are evolutionarily
91 unstable and understanding why this is the case would broadly benefit the field.

92 We measured the burden of 301 BioBrick plasmids from the iGEM Registry containing
93 DNA constructs ranging from individual parts to complex devices. None of these plasmids
94 reduced the growth rate of their *E. coli* hosts by >45%, in agreement with stochastic simulations
95 of evolution that predict a level of burden above this threshold would make a construct
96 “unclonable”. We found that 6 BioBrick plasmids had a burden of >30%, which would be
97 expected to be problematic on the laboratory scale, and that 19 had a burden of >20%, enough
98 that they might fail during process scale-up or in other applications in which cells continue to
99 divide. Several BioBrick plasmids, including two we used as controls, evolved mutations that
100 likely reduce their burden by compromising their designed functions. Finally, we determined that
101 depletion of gene expression resources is sufficient to explain the burden of most BioBrick
102 plasmids, though some reduce host growth rates for other, currently unknown reasons. Our
103 work demonstrates how standardized frameworks for measuring burden and simulating the
104 dynamics of evolutionary failure can be used to improve the reliability of bioengineering.

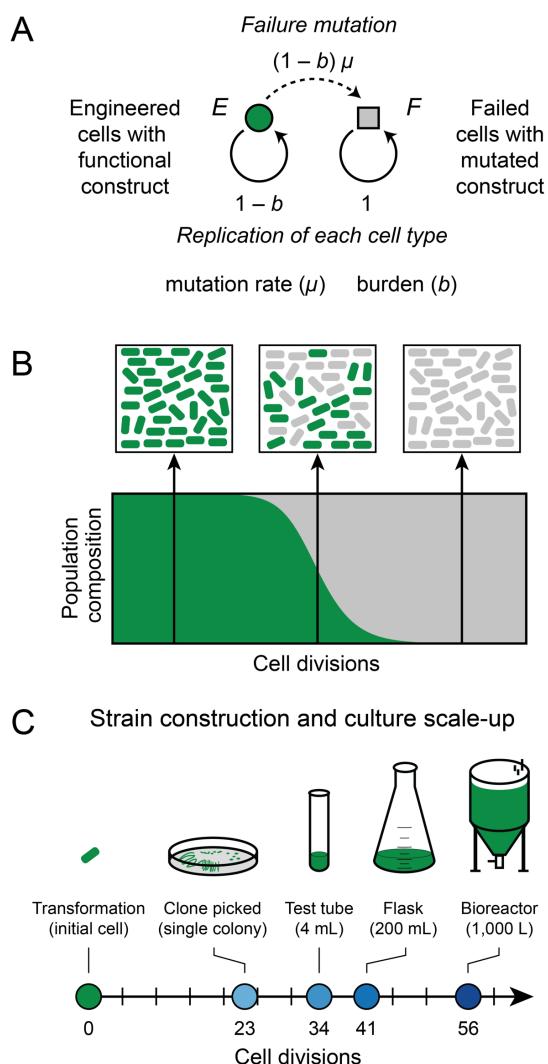
105

106 RESULTS

107 **Model of Evolutionary Failure.** Growth of a cell population that has been engineered with a
108 new DNA construct begins from a single transformed cell. As the population divides, progeny
109 with mutations in the sequence of the designed DNA construct will arise. If these mutations
110 alleviate a burden on the cells caused by the engineered DNA—most often by lessening or
111 eliminating a designed function that compromises their growth—then, the mutant cells will have
112 a competitive advantage. These higher-fitness cells will outreplicate and displace ancestral cells
113 with the original DNA construct until they dominate within the population and function declines.

114 To put our experimental measurements of burden into context, we first investigated the
115 expected timing of evolutionary failure using a differential equation model (**Fig. 1A**). This model

116 has two parameters. The first is the burden (b) of the engineered DNA, expressed as a percent
117 reduction in the rate of replication of a cell containing the genetic construct. The model makes a
118 simplifying assumption that there is one category of mutations that leads to failure of the
119 engineered function in a way that completely alleviates its burden. The rate of these failure
120 mutations per cell division (μ) is the second parameter. The typical dynamics for this model are
121 that “broken” cells with a failure mutation are initially very rare but then rapidly take over a
122 population as their fitness advantage is exponentially compounded over time (**Fig. 1B**).



123

124 **Fig. 1. Evolutionary failure of a population of engineered cells.** (A) Graphical representation
125 of a differential equation model with one class of failure mutations that completely alleviates the
126 fitness burden of an engineered DNA construct on a host cell. (B) Population dynamics
127 expected from this model. Subpopulations of failed cells with mutated constructs evolve and

128 outcompete the original engineered cells with functional constructs. Complete failure happens
129 rapidly once the mutant cells reach a detectable frequency in the population. (C) Approximate
130 numbers of cell divisions required for scale-up from a single engineered cell to laboratory and
131 industrial processes requiring different culture sizes. (See the text and **Table S1** for details.)

132 We wanted to understand what magnitude of burden would be likely to lead to evolutionary
133 failure of an engineered function during a typical scale-up process starting with a single bacterial
134 cell picked as a colony isolate after transformation with a newly cloned plasmid or some other
135 genome editing procedure (**Fig. 1C, Table S1**). We estimate that ~23 cell divisions occur by the
136 time a single cell produces a normal-sized colony containing ~8 million cells on an agar plate. If
137 this entire colony is placed into ~4 ml of LB in a test tube, it takes an additional ~11 cell divisions
138 to reach saturation, assuming a final density of $\sim 5 \times 10^9$ cells/ml. Growth to a 200 mL laboratory
139 scale at a higher cell density (e.g., in terrific broth for recombinant protein overexpression)
140 brings the total to ~40 cell divisions. Larger-scale industrial processes can reach even higher
141 cell densities such that ~56 cell divisions may be needed to saturate a 1,000 L bioreactor.

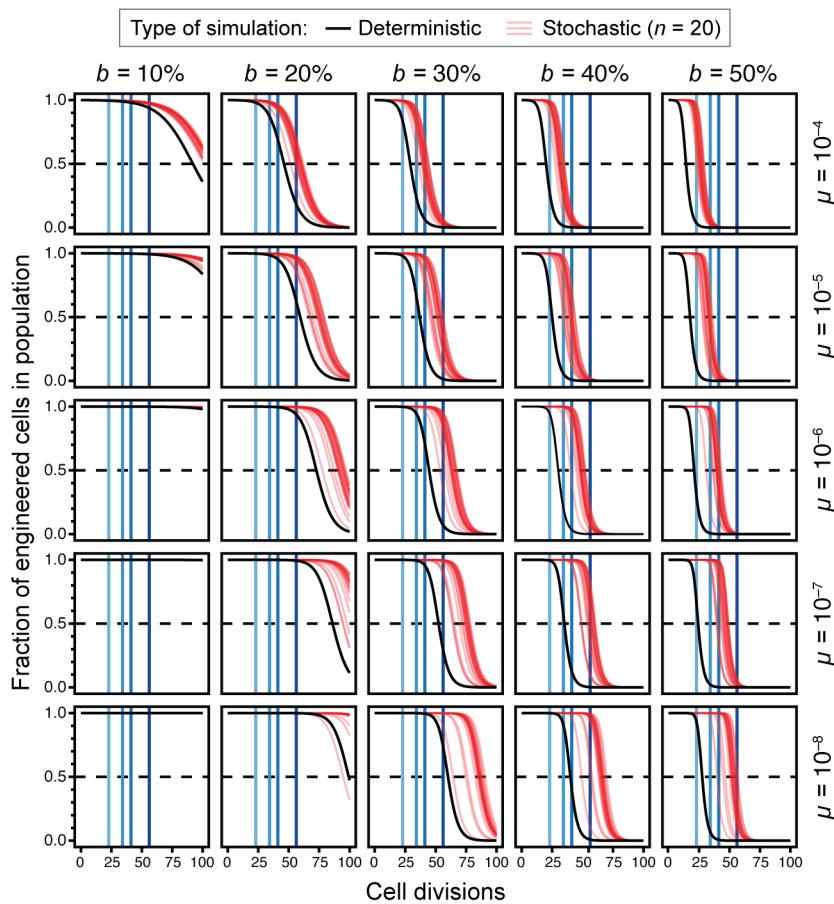
142 The rates of mutations leading to the failure of different DNA constructs can vary widely, so
143 we tested values of this parameter spanning several orders of magnitude: from 10^{-4} to 10^{-8} per
144 genome per cell division. One factor that plays into the mutation rate is the information content
145 of a sequence, i.e., how many base pairs must be specified to encode its function. Longer
146 engineered DNA sequences and those that are more densely coded are at a greater risk for
147 inactivating mutations.^{6,7} The rate of base substitutions in *E. coli* is $\sim 5 \times 10^{-10}$ per base pair per
148 generation,^{36,37} and most microbes with DNA genomes have similar mutation rates.^{38,39} Thus, if
149 a sequence contains protein-coding genes that constitute 1000 base pairs and 20% of the
150 substitutions in these genes lead to a loss of function, the failure rate will be $\sim 1 \times 10^{-7}$ per cell
151 division just from base substitutions. This estimate does not account for the presence of
152 sequence repeats that can act as mutational hotspots that cause specific large deletions and
153 small indels in certain sequence contexts at much higher rates.⁴⁰ Furthermore, selfish elements
154 in the host genome usually contribute other types of mutations that further increase the total rate

155 of failure mutations. In particular, transposon insertions often inactivate genes or sequences
156 required for gene expression in engineered DNA constructs.^{11,41,42}

157 In the end, empirical measurements generally find a rate of $\sim 10^{-6}$ per cell division for
158 mutations that inactivate a single-gene that is located in the chromosome of *E. coli* or another
159 bacterium.^{41,43} The effective mutation rate is much higher for engineered constructs maintained
160 on multicopy plasmids because each copy of the plasmid in a cell is at risk. If there are 100
161 copies of a plasmid, the chance of a plasmid with a certain mutation arising is ~ 100 -fold higher.
162 So, for example, the rate of reverting a stop codon in an engineered reporter construct, which is
163 expected to only occur via one or a few single base substitutions, has been measured as $\sim 10^{-7}$
164 rather than the value of $\sim 10^{-9}$ expected if this reporter were tested in the chromosome¹². For
165 plasmids that lack partitioning systems like pBR322 and pUC derivatives commonly used in *E.*
166 *coli*, one broken plasmid copy can rapidly lead to 100% failure of all plasmids in all cells in a
167 population because progeny that happen to inherit more broken plasmid copies due to random
168 segregation will outcompete those that do not. In summary, the effective rate of failure
169 mutations in a high-copy plasmid is usually much higher than the point mutation rate; it is
170 expected to be at least on the order of 10^{-5} and often as high as 10^{-4} per cell doubling. Though
171 mutational hotspots and multicopy plasmid replication are not explicitly accounted for in our
172 model, they justify exploring simulations with a wide range of mutation rates.

173 Previous studies of escape mutations have used the deterministic results of ordinary
174 differential equation (ODE) models to estimate the times to failure of engineered cells.^{6,11} This
175 framework assumes that mutants appear continuously and immediately at the beginning of the
176 simulation. However, in reality, mutations appear stochastically in single cells at very low rates,
177 and the dynamics can vary greatly depending on whether these “jackpots” occur early or late in
178 the growth of a population. Therefore, we compared the deterministic results for our ODE model
179 to stochastic simulations of this model to evaluate how and when the results varied. We found
180 that deterministic simulations consistently overestimate how unstable a construct will be for a

181 given combination of parameters (**Fig. 2**). The discrepancy becomes larger at lower mutation
182 rates where it mainly reflects the waiting time needed for the rare event that generates the first
183 mutant cell to appear in a population in the stochastic simulations, compared to the immediate
184 appearance of these mutants in the deterministic simulations. However, there are also
185 occasional stochastic simulation runs in which failure occurs sooner than it does in the
186 deterministic model due to early jackpots (as seen in the panel for $b = 20\%$, $\mu = 10^{-8}$).



187

188 **Fig. 2. Simulations of evolutionary failure times for populations of engineered cells.** In
189 each panel, the results for deterministic (black) and stochastic (red) simulations of the failure
190 model are shown for one combination of burden (b) and failure mutation rate (μ) parameters.
191 Vertical blue lines represent the culture scales shown in **Figure 1C**. Curves for stochastic
192 simulations are partially transparent so that one appears pink and overlapping trajectories from
193 multiple simulations appear red. Twenty stochastic simulations are displayed in each panel.

194



195

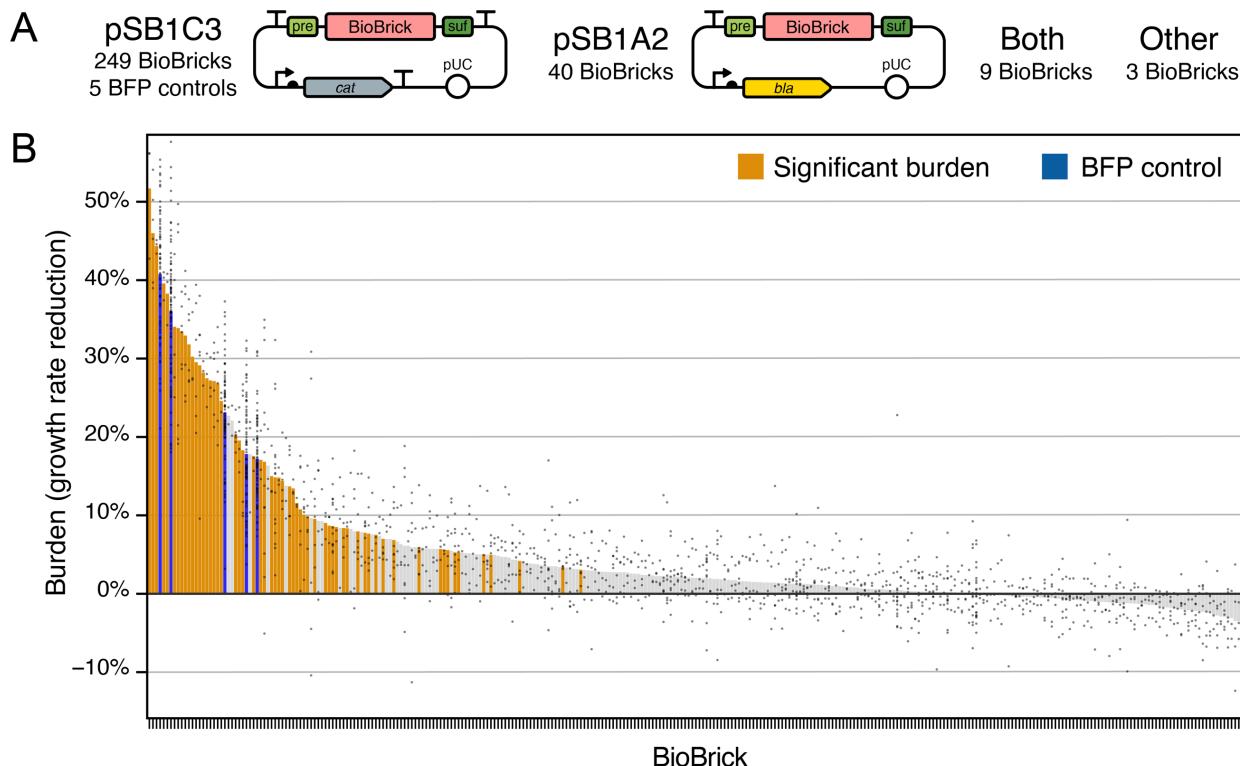
196 **Fig. 3. Cumulative distributions of times to 50% failure in stochastic simulations.** Curves
197 represent the output from 10,000 replicate simulations for each parameter combination.

198 Because we expect it to better represent the true evolutionary dynamics, we further
199 examined the results of the stochastic simulations (Fig. 3). They show that at a typical mutation
200 rate of 10^{-5} per cell doubling (expected for a plasmid-borne construct) a burden of $\geq 50\%$ would
201 lead to takeover of broken mutants in a test tube culture most of the time. At a mutation rate of
202 10^{-4} , constructs with a burden of $\geq 40\%$ would not survive on this small scale. Since one needs
203 to grow a single transformed cell into a culture of this size to purify and sequence a plasmid to
204 verify that it has the designed sequence, the model predicts that constructs this burdensome will
205 be essentially “unclonable”. Even for less-burdensome plasmids or for constructs experiencing
206 lower mutation rates (for example, single-copy genes in the chromosome), the model predicts
207 that failure may occur at larger scales if the burden reaches the 20-30% range.

208 We created an online version of our model that allows users to adjust the burden and failure
209 mutation rate parameters (<https://barricklab.org/burden-model>). There is an option to use the
210 stochastic or deterministic version of the model and compare the results. Additionally, users can
211 change the effective volume and density of their culture to understand the scale at which a DNA
212 construct with certain characteristics is likely to fail. This interactivity encourages users to
213 explore a range of parameters and to rerun simulations multiple times to see for themselves the
214 sizable impact of mutational stochasticity on the continuing functioning of devices constructed in
215 living, and therefore evolving cells. We believe that this resource will be useful for educating
216 both new and practicing synthetic biologists, as this type of random and self-reinforcing failure
217 can be confusing and does not have a direct parallel in traditional engineering fields.

218 **Burden of BioBrick Parts.** To test whether actual engineered DNA sequences obey the
219 evolutionary constraints predicted by our model of escape mutations, we examined a diverse
220 collection of engineered DNA sequences created for the iGEM (International Genetically
221 Engineered Machine) competition.³¹ These BioBricks range in complexity from small DNA
222 "parts", such as promoters and protein tags, to larger "devices" that consist of multiple genes
223 and operons. Historically, BioBricks in the Registry of Standard Biological Parts had to be
224 cloned into plasmids in ways that allowed them to be combined into larger constructs using a
225 specific assembly standard.⁴⁴ As a consequence, most BioBricks in the kit distributed to iGEM
226 teams are provided in plasmids pSB1C3, pSB1A2, or in both of these backbones (**Fig. 4A**).
227 pSB1C3 and pSB1A2 share the same high-copy pUC origin of replication and overall
228 organization, but they are maintained using different antibiotic resistance genes:
229 chloramphenicol acetyltransferase (*cat*) which confers chloramphenicol resistance (Cam^R) for
230 pSB1C3 versus β-lactamase (*bla*) which confers resistance to ampicillin and other β-lactams
231 (Amp^R) for pSB1A2. These plasmids also differ in how expression of the cloned BioBrick part is
232 insulated from elements in the plasmid backbone. pSB1A2 has a transcriptional terminator

233 upstream of the BioBrick prefix multiple cloning site. pSB1C3 has a terminator at the same site
234 and an additional terminator downstream of the BioBrick suffix multiple cloning site.



235

236 **Fig. 4. Measurements of BioBrick burden.** (A) Maps of the two plasmid backbones that
237 housed most of the 301 BioBricks that were tested and the five BFP controls that were included
238 in every assay. The prefix (pre) and suffix (suf) multiple cloning sites used in BioBrick assembly
239 are shown. (B) Burden of each BioBrick tested. Burden is the percentage reduction in the
240 growth rate of *E. coli* cells transformed with a BioBrick plasmid. Gray points are individual
241 measurements. Bars are the means for all measurements of a BioBrick. For BioBricks with
242 orange bars, the measured burden was significantly greater than zero (adjusted $p < 0.05$, one-
243 tailed t -tests with Benjamini-Hochberg correction for multiple testing). Data used to create this
244 figure are provided in **Table S2** and **Table S3**.

245 We measured the growth rates of *E. coli* DH10B derived cells transformed with BioBrick
246 plasmids to determine how many of these genetic parts and devices were burdensome and to
247 what extent. In each microplate assay, we included 5 pSB1C3-based BioBrick plasmids we
248 constructed with different promoter and ribosome binding site combinations driving expression
249 of blue fluorescent protein (BFP). These plasmids cause different amounts of burden and
250 served as internal controls. We normalized growth rates between assays to account for plate-to-

251 plate variation based on results for the BFP controls and an additional assumption that most
252 parts in each microplate would exhibit no burden (**Fig. S1, Table S2, and Methods**).

253 In total, we measured the effects of the 5 BFP control plasmids and 301 other BioBricks on
254 *E. coli* growth (**Fig. 4B, Table S3**). Of the 301 BioBricks we characterized, we tested 249 in
255 pSB1C3, 40 in pSB1A2, 9 in both of these plasmid backbones, and 3 housed in other similar
256 backbones (pSB1AK3 or pSB3C5). Even though different antibiotics were added to growth
257 media when testing BioBricks cloned into pSB1C3 and pSB1A2, there was not a significant
258 effect of the plasmid backbone on the growth rates measured for the 9 parts tested in both
259 plasmids ($p = 0.069$, $F_{1,56} = 3.44$, two-way ANOVA) (**Fig. S2A**). We also did not find evidence
260 for any overall difference in the distributions of growth rates measured for parts tested in
261 pSB1C3 versus the other three backbones ($p = 0.92$, two-sided Kolmogorov-Smirnov test) (**Fig.**
262 **S2B**). Therefore, we considered all of our measurements together, irrespective of the plasmid
263 backbone in which a BioBrick part was tested, in all further analyses.

264 Excluding the five BFP control plasmids, which were all burdensome, 112 of the 301 other
265 BioBrick part plasmids (37.2% of those tested) significantly decreased *E. coli* growth rates
266 relative to the majority of parts that had no burden before correcting for multiple testing
267 (individual one-tailed t -tests, $p < 0.05$). For 31 BioBricks the growth rate burden was significantly
268 greater than 10%, for 19 it was significantly greater than 20%, and for 6 it was significantly
269 greater than 30% (one-tailed t -tests, $p < 0.05$). In agreement with our population genetic model,
270 none of the BioBrick plasmids had a large enough burden (>45%) that they would be predicted
271 to mutate when growing a small test-tube culture in the laboratory (one-tailed t -tests, $p < 0.05$).
272 After accounting for multiple testing using the Benjamini-Hochberg procedure at a 5% false
273 discovery rate (FDR), we can conclude that 59 of the 301 tested BioBrick parts (19.6%) exhibit
274 some level of burden with high confidence (one-tailed t -tests, adjusted $p < 0.05$). **Table 1** lists
275 the 34 BioBricks that met this criterion and had a mean estimated burden of >10%.

276

277 **Table 1. Most burdensome BioBricks**

BioBrick [‡]	Seq [§]	Backbone	Burden (b) [†]	Fraction other burden (b ₀ /b) [*]	Subparts [¶]	Function [#]
K523022	M	pSB1C3	51.7 ± 19.2%	n.s.	<i>P_{lac}</i> & <i>lacZ'</i> <i>crtE</i> <i>crtl</i> <i>crtB</i>	Carotenoid synthesis (<i>Pantoea ananatis</i>)
K733010	C	pSB1C3	46.0 ± 6.2%	0.16–0.71	<i>P_{lac}</i> & <i>endB</i>	Antitoxin gene (<i>Bacillus subtilis</i>) ^B
J04450	NS	pSB1AK3	44.4 ± 2.2%	n.s.	<i>P_{lac}</i> & <i>mRFP1</i>	RFP reporter
K523014	C	pSB1C3	39.6 ± 4.7%	1.04–1.98	<i>P_{lac}</i> & <i>lacZ'</i> <i>bglX</i>	Cellobiose degradation
K523020	M, E	pSB1C3	38.3 ± 8.7%	n.s.	<i>P_{lac}</i> & <i>lacZ'</i> <i>INP</i> + <i>bglX</i>	Cellobiose degradation (INP, <i>Pseudomonas syringae</i>)
K608010	C	pSB1C3	34.1 ± 7.7%	NT	<i>P_{J23110}</i> & <i>GFP</i>	GFP reporter
K515100	C	pSB1C3	33.9 ± 15.9%	0.26–0.88	<i>P_{veg2}</i> & <i>laaM</i> & <i>laaH</i>	Indoleacetamide synthesis (<i>Pseudomonas savastanoi</i>) ^B
J61000	m	pSB1A2	33.4 ± 4.1%	0.21–0.96	<i>P_{cat}</i> & <i>cat</i>	Chloramphenicol resistance
K541526	C	pSB1C3	32.9 ± 7.8%	n.s.	<i>P_{veg}</i> & <i>reflectin1A</i>	Reflectin reporter (<i>Euprymna scolopes</i>) ^B
K592020	m	pSB1C3	31.8 ± 5.0%	NT	<i>P_{fixK2}</i> & <i>cL</i> (<i>λ</i>) <i>P_{cl}</i> & <i>amilICP</i>	Blue light sensor output (<i>Acropora millepora</i>)
J36335	m	pSB1C3	30.2 ± 12.2%	n.s.	<i>P_{lac}</i> & <i>kaiA</i> <i>P_{lac}</i> & <i>kaiC</i>	Circadian rhythm (<i>Synechococcus elongatus</i>)
I759017	C	pSB1C3	29.5 ± 8.3%	NT	<i>P_{tet}</i> [<i>cis5</i>] & <i>YFP</i>	YFP reporter
K346000	C	pSB1C3	29.1 ± 10.4%	n.s.	& <i>RNAP</i> (T3)	Phage RNA polymerase (Phage T3)
C0056	C	pSB1A2	28.2 ± 3.9%	n.s.	<i>cJ434</i> (<i>λ</i>)	Mutant phage repressor (Phage <i>λ</i>)
K880005	C	pSB1C3	27.5 ± 8.6%	n.s.	<i>P_{J23100}</i> &	Gene expression
C0053	NS	pSB1C3	27.2 ± 6.5%	n.s.	<i>cII</i> (<i>P22</i>)	Phage repressor (Phage P22)
K608012	C	pSB1C3	27.1 ± 4.7%	NT	<i>P_{J23110}</i> & <i>GFP</i>	GFP reporter
I759014	C	pSB1C3	26.8 ± 5.8%	n.s.	<i>P_{tet}</i> [<i>cis2</i>] & <i>YFP</i>	YFP reporter
K541502	C	pSB1C3	24.6 ± 3.2%	0.42–1.91	<i>P_{veg}</i> & <i>lipA_{sig}</i>	Gene expression/secretion (<i>Bacillus subtilis</i>) ^B
K395602	C	pSB1C3	20.3 ± 1.9%	0.09–0.38	<i>P_{T7}</i> & <i>MpAAT1</i>	Apple fragrance generator (<i>Malus pumila</i>)
K733013	C	pSB1C3	19.5 ± 3.3%	n.s.	<i>P_{veg}</i> & <i>GFP</i>	GFP reporter ^B
K523013	C	pSB1C3	18.3 ± 8.8%	NT	<i>P_{lac}</i> & <i>lacZ'</i> <i>INP</i> + <i>EYFP</i>	EYFP reporter (INP, <i>Pseudomonas syringae</i>)
I761014	C	pSB1C3	17.5 ± 5.0%	0.21–1.33	& <i>cinR</i> & <i>cinI</i>	Quorum sensing (<i>Rhizobium leguminosarum</i>)
C0051	NS	pSB1C3	17.1 ± 8.2%	n.s.	<i>λ</i> - <i>cI</i> + <i>LVA</i>	Phage repressor (Phage <i>λ</i>)
K137018	C	pSB1C3	16.8 ± 8.2%	NT	<i>P_{L-lacO1}</i> & <i>luxR</i> <i>P_{lux-R}</i> & <i>GFP</i>	Quorum sensing receiver (<i>Aliivibrio fischeri</i>)
K1149051	C	pSB1C3	15.0 ± 8.4%	n.s.	<i>P_{J23104}</i> & <i>phaC1</i> <i>phaA</i> <i>phaB1</i>	Polyhydroxybutyrate synthesis (<i>Ralstonia eutropha</i>)
K731721	C	pSB1C3	14.8 ± 4.4%	n.s.		Transcription terminator (Phage T7)
K639003	m	pSB1C3	14.8 ± 2.8%	n.s.	<i>P_{mb-P1}</i> & <i>lacI</i> <i>P_{L-lacO1}</i> & <i>mCherry</i>	Stress sensor
K541501	C	pSB1C3	14.4 ± 3.6%	n.s.	<i>P_{veg}</i> & <i>sacB_{sig}</i>	Gene expression/secretion (<i>Bacillus subtilis</i>) ^B
K608011	C	pSB1C3	13.7 ± 5.4%	NT	<i>P_{J23110}</i> & <i>GFP</i>	GFP reporter
K861172	NS	pSB1C3	13.4 ± 2.5%	n.s.	<i>P_{cstA}</i> & <i>cI</i> (<i>λ</i>)	Phage repressor (Phage <i>λ</i>)
K617004	C	pSB1C3	11.6 ± 1.5%	0.95–2.32	<i>attP</i> (<i>λ</i>) <i>P'OP</i>	Phage attachment site (Phage <i>λ</i>)
K325218	m	pSB1C3	10.8 ± 7.3%	0.76–1.55	<i>P_{araC}</i> & <i>luc</i> (orange)	Luciferase reporter (<i>Luciola cruciata</i>)
I712669	m	pSB1C3	10.1 ± 4.5%	NT	<i>P_{CMV}</i> <i>GFP</i>	GFP reporter ^M

[‡]BioBrick accession numbers. The 34 parts shown all had an estimated burden that was significantly greater than zero after correcting for multiple testing and had a mean estimated burden value of >10%. [§]Results of sequencing the BioBrick plasmid: C, reported BioBrick sequence was confirmed; M, major discrepancies found in BioBrick sequence; m, minor discrepancies found in BioBrick sequence; NS, not sequenced; E, part is reported to have errors in the iGEM Registry. Full sequencing results are provided in **Table S4**. [†]Burden as the percentage reduction in growth rate caused by the BioBrick ± estimated 95% confidence limits. ^{*}95% confidence interval on the fraction of burden from sources other than utilization of the host cell's gene expression capacity. n.s., value was not significantly greater than zero. NT, not tested because the BioBrick contains a protein that interferes with measurement of GFP fluorescence.

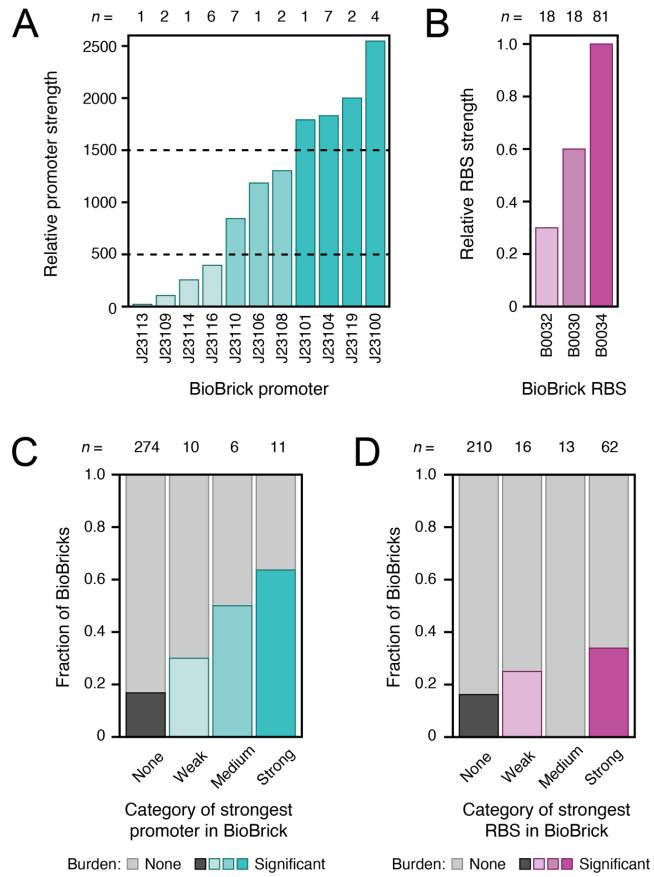
[¶]Representation of gene expression signals and genes in the BioBrick abbreviated as follows: *P_x*, promoter from gene or operon *x*; &, ribosome binding site; [y] other regulatory sequence. Other italicized entries are gene names.

[#]General description of the designed function of the BioBrick. For BioBricks that contain recombinant DNA encoding genes other than fluorescent proteins, the organism of origin is shown in parentheses. Superscript *B* or *M*, indicates that the gene expression sequences are intended to function in *Bacillus subtilis* or mammalian cells, respectively.

293 BioBricks containing gene expression parts are more likely to be burdensome. Only

294 BioBricks that express an RNA or protein product are expected to appreciably burden a host
 295 cell, as the cost of replicating plasmid DNA is generally negligible in comparison.¹⁴ Therefore,
 296 we hypothesized that the 59 BioBricks in the high-confidence burden set would be more likely
 297 than BioBricks that had no significant burden to contain strong gene expression signals. Series
 298 of constitutive promoter parts (J23100–J23119) and ribosome binding site (RBS) parts (B0030,
 299 B0032, and B0034) with known relative strengths are commonly reused in different BioBricks.

300 These promoters and RBS sequences can be divided into weak, medium, and strong variants
301 on the basis of experimental data reported in the iGEM Registry (**Fig. 5A,B**).⁴⁵



302

303 **Fig. 5. Strong promoter and ribosome binding sites are more likely to be found in**
304 **BioBricks exhibiting significant burden. (A, B)** Relative strengths of common promoters and
305 ribosome binding site (RBS) BioBrick parts, as reported in the iGEM Registry. The numbers of
306 examples of each promoter or RBS in the 301 BioBricks examined in this study are indicated
307 above the bars (n). Some of these BioBricks contain multiple instances of these promoter and
308 RBS parts. Dashed lines in **A** are the thresholds used to classify promoters as weak, medium,
309 or strong. **(C, D)** Fraction of BioBricks tested that exhibited significant burden when grouped by
310 the strongest gene expression element of each type that they contain. The total numbers of
311 parts in each category are shown above the bars (n).

312 We examined whether BioBricks that exhibited burden were more likely to include these
313 common gene expression parts than those that were not burdensome (**Fig. 5C,D**). BioBricks
314 that contained any of these constitutive promoters were 2.9 times as likely to be in the set of 59
315 BioBricks with significant burden compared to those that did not have one of these promoters (p
316 = 0.00040, Fisher's exact test), with a trend that the stronger promoters were even more likely to

317 be associated with burdensome BioBricks. Similarly, BioBricks that included the strongest of the
318 three RBS parts (B0034) were 2.1 times as likely to exhibit significant burden as BioBricks that
319 included only the two weaker RBS variants or none of the RBS sequences in this series ($p =$
320 0.0037, Fisher's exact test). None of the BioBricks that contained the medium-strength RBS
321 also had a constitutive promoter part, which can explain why this category noticeably deviated
322 from the general trends. Overall, these results agree with the general expectation that strong,
323 constitutive gene expression contributes to the burden of many BioBricks.

324 One case that stood out in examining these results was BioBrick K880005. It includes the
325 strongest constitutive promoter (J23100) and RBS (B0034) from these sets, but it does not
326 include a downstream open-reading frame. Nevertheless, K880005 is among the most
327 burdensome BioBricks that we measured: it reduces the growth rate of *E. coli* by $27.5 \pm 8.6\%$
328 (95% confidence interval) (**Table 1**). The high burden of this BioBrick may put it at risk of
329 mutating during laboratory propagation, even at the test-tube scale (**Fig. 3**). Its unexpected
330 burden could result from transcription and/or translation of sequences downstream of the part in
331 the BioBrick suffix sequence and plasmid backbone, even though it was tested in the pSB1C3
332 backbone that has transcriptional terminators designed to insulate the BioBrick.

333 **Mutations and variability in strains with BioBrick plasmids support a burden limit on**
334 **constructability.** To validate the identity and integrity of the plasmids we tested, we compared
335 whole-plasmid sequencing data for 215 BioBricks plus the 5 BFP controls to the sequences
336 reported in the iGEM Registry (**Table S4**, and **Methods**). Excluding the controls, we sequenced
337 214 of the 301 BioBricks for which we had burden measurements (71.1%). Of these, 8 plasmids
338 were initially misassigned to the wrong BioBrick and 3 others to the wrong backbone in our
339 results before we corrected them. For 185 of the 215 sequenced plasmids (86.0%), our results
340 perfectly matched the expected BioBrick sequences. Of the 30 others, we found relatively minor
341 discrepancies between the sequencing data and the reported BioBrick sequences for 23, and
342 the other 7 had major discrepancies, such as large deletions or transposon insertions.

343 It is not possible to determine with 100% certainty whether these discrepancies are due to
344 errors in the designed part sequences that were submitted to the iGEM Registry or mutations
345 that arose and took over cell populations because they reduced BioBrick burden. Most
346 discrepancies are single-base changes or deletions that may have no effect on genetic part
347 function. However, in the seven cases of major discrepancies we can be reasonably sure that
348 we have observed unplanned mutations with consequences. Two BioBricks (S03749, I759016)
349 were inactivated by insertion sequence (IS) elements that must have transposed into their
350 sequences after construction. Two BioBricks that were closely related to the second of these
351 (I759019, I759020) had frameshifting or large deletions. Two other parts related to one another
352 (K523020, K523022) also contained large deletions, and the first of these was marked as
353 “believed to contain major errors” in the iGEM Registry. Finally, most of BioBrick I732920 was
354 deleted, and its sequence marked as “inconsistent” in iGEM Registry.

355 Two of the BFP control BioBrick plasmids, which our own iGEM team constructed and
356 submitted to the iGEM Registry, demonstrate that there is a real risk of selecting cells that have
357 mutated copies of highly burdensome plasmids soon after they are created. We noticed that
358 there was a discrepancy in the order of the growth rates of strains carrying these plasmids in
359 our burden assays: the two control plasmids designed to have the strongest combinations of
360 promoters and ribosome-binding sites driving BFP expression unexpectedly exhibited the least
361 burden. Re-testing the frozen cell stocks of the original transformants of these plasmids
362 demonstrated that the derived stocks used in the burden assays had picked up mutations that
363 largely alleviated the burden of these two plasmids (**Fig. S3**). The burden was reduced from
364 45.8% to 17.8% in one case and 41.9% to 17.2% in the other. Further supporting the instability
365 of the two most burdensome BFP control plasmids, when we shared them with another iGEM
366 team, they found an insertion of an IS5 element occurred in the promoter driving BFP
367 expression in their transformant, which reduced but did not eliminate fluorescence.

368 Even if the original cell giving rise to a colony that is picked after transforming a plasmid or
369 after restreaking a stock has only intact copies of a plasmid, it may give rise to a heterogeneous
370 population of descendant cells as it is cultured, stored as a frozen stock, and revived. As our
371 simulations show, more burdensome plasmids will be at a greater risk of having newly evolved
372 mutants begin to take over the population during these steps. If this type of stochastic, partial
373 takeover of a cell population with mutants was occurring during our experiments, more
374 burdensome BioBricks might exhibit greater variability in their measured growth rates between
375 replicate cultures. In agreement with this hypothesis, we found a significant trend toward a
376 higher standard error of the mean for growth rates measured for BioBrick plasmids that had
377 higher burden ($p = 2.0 \times 10^{-11}$, two-tailed t -test for a non-zero slope) (**Fig. S4**).

378 In summary two lines of evidence support that “clonability” or “constructability” limits for
379 engineered DNA are creating an upper bound on what plasmids are possible to construct and
380 measure that might be causing us to underestimate the burden of some BioBrick designs. First,
381 our BFP control plasmids designed to have the strongest gene expression mutated during
382 construction and some of the BioBrick plasmids we characterized also sustained mutations that
383 likely reduce their burden. Second, we see more variation in our measurements of growth rates
384 for more burdensome BioBricks, which could be at least partially explained by cells with
385 mutations that reduce plasmid burden arising and beginning to take over during our assays.

386 **Redirecting gene expression capacity to recombinant protein production causes a
387 proportional reduction in growth rate.** The *E. coli* DH10B-GEM strain that we used as a host
388 for testing BioBrick burden has a constitutively expressed GFP gene integrated into its
389 chromosome (**Fig. 6A**). This GFP can be used to monitor how much the presence of a BioBrick
390 plasmid reduces the capacity of an *E. coli* cell for expressing its native proteins.^{21,46} If the main
391 source of burden from a plasmid is due to its use of any cellular resources or machinery that are
392 necessary to achieve translation of proteins (e.g., ribosomes), then one expects that for a given
393 reduction in GFP expression there will be a proportional reduction in growth rate. If there is a

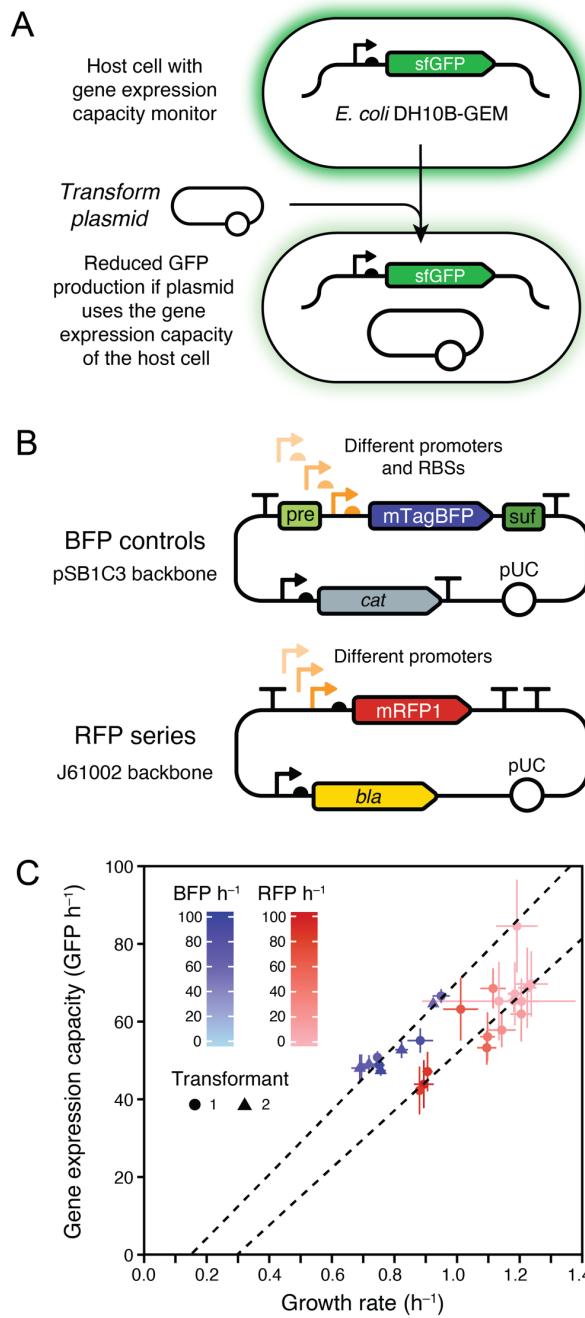
394 reduction in growth rate that is larger than expected relative to the reduction in GFP expression
395 that is observed, then some or all of the burden comes from other sources. For example, gene
396 products encoded on the plasmid may lead to depleting a cellular resource that is not directly
397 related to gene expression or have a toxic effect that interferes with homeostasis.

398 To establish that the monitoring device worked as expected, we initially tested two series of
399 plasmids that express other fluorescent proteins (FPs) at varying levels (**Fig. 6B**). The first was
400 our set of 5 burdensome BFP control plasmids that have different promoter and RBS
401 combinations. Here we used stocks of cells with the BFP plasmids that did not contain the
402 mutations that alleviated burden noted above. The second set consisted of 14 plasmids
403 available from the iGEM Registry that contain constitutive promoters of different strengths
404 driving expression of RFP. These RFP constructs were not included in the prior tests of BioBrick
405 burden because they are housed in a different plasmid backbone (J61002). In both cases, we
406 expected that all of the burden exhibited by these plasmids would be due to recombinant FP
407 expression depleting the translational capacity of the host cell. FP production does not use any
408 other types of limiting cellular resources, and these FPs are not expected to be toxic to cells
409 within the range of concentrations at which they are expressed.

410 In agreement with this expectation, we found that the growth rates of these strains were
411 reduced in proportion to how much they reduced GFP expression (**Fig. 6C, Table S5, Table**
412 **S6**). The Pearson correlation coefficients for this linear relationship were 0.93 and 0.81 for the
413 BFP and RFP plasmid series, respectively. The relationship between growth rate and GFP
414 expression differed slightly between the BFP and RFP series, but this was expected because
415 they have different plasmid backbones and were tested under different culture conditions (see
416 **Methods**). The growth rate reductions seen for RFP series plasmids were roughly in proportion
417 to the amount of recombinant protein that they expressed. By contrast, strains with BFP series
418 plasmids that experienced more gene expression burden did not necessarily produce more
419 BFP. This discrepancy is likely related to how different combinations of promoter and RBS

420 strengths can lead to translating the same amount of protein but with more or less efficient use
421 of ribosomes.²¹ As for the 301 BioBricks we tested and the unmutated BFP controls, none of the
422 RFP expression constructs had a burden of >45% in the "unclonable" range.

423



424

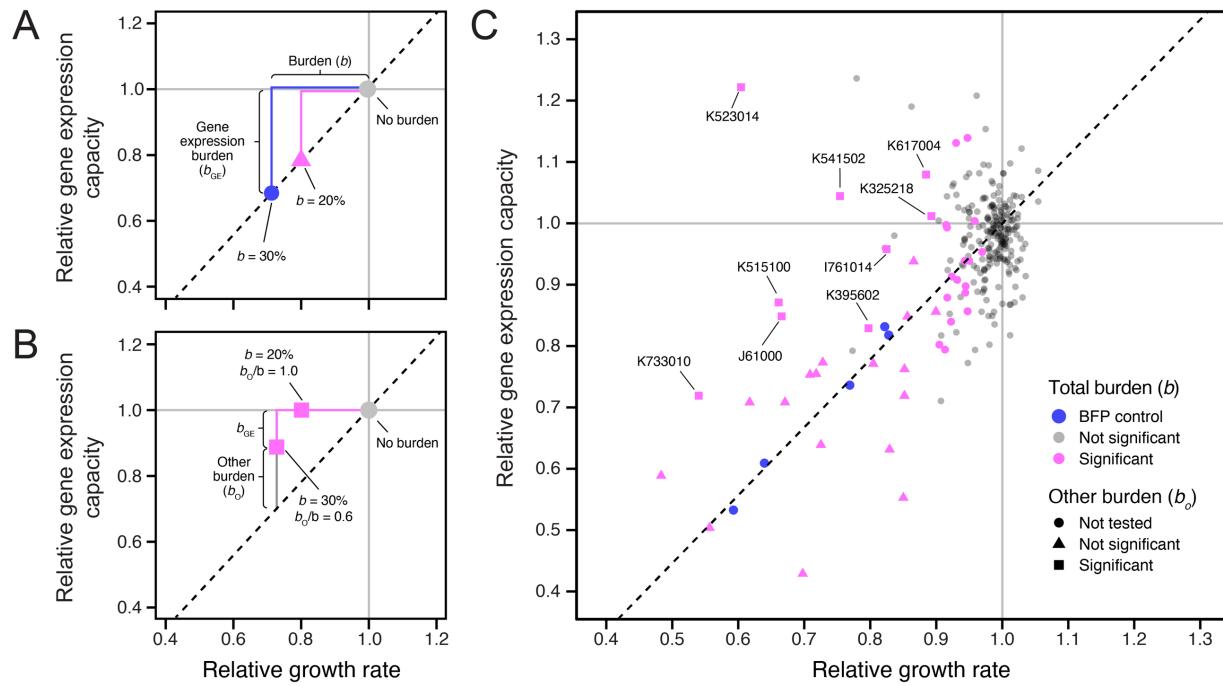
425 **Fig. 6. Expression of recombinant proteins from a plasmid reduces the growth rate of *E.*
426 *coli* because it diverts some of its capacity for gene expression. (A) *E. coli* DH10B-GEM
427 host strain with the gene expression capacity monitoring device that constitutively expresses**

428 GFP integrated into its chromosome. **(B)** Maps for the BFP and RFP plasmid series. **(C)** Growth
429 rates and fluorescent protein production rates for different BFP and RFP plasmids in *E. coli*
430 DH10B-GEM. Dashed lines are Deming regressions showing that the reduction in growth rate is
431 proportional to the reduction in the capacity of the host cell for protein expression within each
432 set of strains. The rate of GFP production from the monitoring device is used as a readout of
433 gene expression capacity. Rates of BFP and RFP production in cells with each type of plasmid
434 are indicated by shading in the respective color. Error bars are 95% confidence limits. Two
435 independent transformants of each BFP plasmid that were tested separately are displayed as
436 points with different shapes. GFP and BFP production rates were measured on different relative
437 scales and each series uses a different vector backbone and was measured under different
438 growth conditions, so results should only be compared within each series. Data used to create
439 this figure are provided in **Table S5** and **Table S6**.
440

441 **Some BioBricks exhibit burden from sources other than gene expression.** All of our
442 measurements of BioBrick burden were conducted in the *E. coli* DH10B-GEM host strain that
443 contained the GFP gene expression capacity monitor (**Fig. 6A**), so we next examined how GFP
444 production correlated with the previously characterized growth rates to understand whether the
445 burden of each BioBrick could be attributed partly or wholly to its use of the host cell's gene
446 expression resources. If GFP production was reduced in direct proportion to the growth rate, as
447 it was in the BFP control plasmids, this would indicate that all of the BioBrick burden was from
448 gene expression (**Fig. 7A**). If there was significant burden with no or less-than-the-expected
449 reduction in GFP production, then it would indicate a BioBrick was compromising *E. coli* growth
450 for some other reason (**Fig. 7B**). Of the 301 BioBricks tested, 42 encode GFP or another protein
451 that is expected to interfere with measuring GFP fluorescence, so they were excluded from this
452 analysis (see **Methods**). We again used the BFP plasmids as internal controls for normalizing
453 GFP production rates between different microplate assays (**Fig. S5** and **Methods**).

454 Plotting a linear relationship between the BFP plasmid controls, the no-burden BioBrick
455 plasmids, and the origin yields the expected trade-off between growth rate and GFP production
456 for the BFP plasmids and some of the measured BioBrick plasmids (**Fig. 7C**). However, some
457 parts displayed a higher GFP production rate than what would be expected from the measured
458 growth rate reduction, evidence that some or all of their burden arises for reasons other than
459 diverting the host cell's gene expression resources. Of the 26 BioBrick parts with high-

460 confidence predictions of burden >10% that could be evaluated in this assay, 9 (34.6%) had a
 461 significantly greater reduction in growth rate than predicted from the change in GFP production
 462 (adjusted $p < 0.05$, one-tailed t -tests with Benjamini-Hochberg correction for multiple testing),
 463 indicating that a component of their burden is due to a source other than reducing the gene
 464 expression capacity of the host cell (**Table 1**).



465

466 **Fig. 7. Some BioBricks exhibit burden from sources other than gene expression. (A)**
 467 Examples of expected results for two BioBricks that exhibit burden (b) that is wholly due to
 468 utilizing the gene expression capacity of the host cell. The reduction in growth rate is
 469 proportional to the reduction in GFP production according to a linear relationship (dashed line)
 470 that is established from measurements of control strains. **(B)** Examples of expected results for
 471 two BioBricks that exhibit burden from sources other than gene expression. **(C)** Results of
 472 measuring growth rates and GFP production rates for 259 BioBricks that do not contain
 473 fluorescent proteins that are expected to interfere with measuring GFP fluorescence in the *E.*
 474 *coli* host strain containing the gene expression capacity monitor. Points for each BioBrick are
 475 colored based on whether there was significant burden (reduction in growth rate). Symbols
 476 indicate whether the null hypothesis that all burden was due to utilizing the gene expression
 477 capacity of the host cell could be rejected. BioBricks with significant burden from sources other
 478 than gene expression are labeled with their accession numbers. Estimates of b_o/b for these
 479 BioBricks are shown in **Table 1**.
 480

481

482 **DISCUSSION**

483 By measuring the burden of 301 BioBricks and performing simulations, we established an
484 evolutionary limit on the constructability of engineered DNA sequences: none of the BioBricks
485 we tested slowed *E. coli* growth rates by >45%. Our results are in broad agreement with other
486 studies that have made similar measurements of growth defects and the effects of spontaneous
487 mutations that alleviate the burden of engineered DNA on bacterial cells.^{47,11} For example,
488 researchers testing a library of plasmids expressing three fluorescent proteins found that a
489 mutant that deleted one of these genes and took over populations after 30 generations of serial
490 transfer had an 89% higher exponential growth rate compared to the original engineered
491 strain,¹⁰ which corresponds to this mutation reducing burden by 47%. Similarly, the level of
492 burden under non-inducing conditions topped out in the 40-60% range for cells containing
493 various constructs in the study that developed the gene expression capacity monitor we used.²¹

494 We found potential mutations in some BioBricks relative to their designed sequences and
495 more variation in our measurements of more burdensome BioBricks. We also discovered that
496 two of the BioBricks we used as internal controls for our assays unexpectedly mutated while we
497 were using them in ways that maintained some BFP fluorescence yet reduced their burdens
498 from near the unclonable threshold (>40%) down to levels that can be reliably maintained during
499 growth on a laboratory scale (<20%). These results suggest that we may be underestimating
500 the burden of some BioBrick designs, either because their plasmids were mutated before we
501 obtained them or because new mutants arose and reached appreciable frequencies in our
502 assays. Some discrepancies are likely due to human errors in the sequences digitally submitted
503 to the Registry versus the original DNA samples themselves. For example, researchers might
504 have copied over a portion of a sequence from a prior plasmid map or part entry and assumed it
505 was correct and unchanged without ever empirically validating their construct. However, there is
506 also both direct and anecdotal evidence that some Biobricks are prone to mutate.

507 One such example of evolutionary instability is for the exceptionally well-characterized
508 BioBrick F2620 device. F2620 encodes a luciferase gene that is expressed in response to the
509 quorum sensing molecule acyl homoserine lactone.²⁹ It was not one of the BioBricks we tested.
510 F2620 was noted to reproducibly fail due to deletions between two 143-bp repeats introduced
511 by re-use of the B0015 double terminator part. When induced, device function declined between
512 56 and 74 cell doublings and was entirely lost after 92. The creators originally hypothesized that
513 failure was due to pre-existing mutant plasmid copies in their cell populations, but the instability
514 persisted even when they re-transformed the plasmid, confirming that it was due to evolution
515 fueled by *de novo* mutations. Our model shows how you can get deterministic-seeming failures
516 like this if the mutation rate is sufficiently high, as it can be for repeat-mediated deletions.⁴⁰

517 Few BioBricks have been characterized to the same extent as F2620. We discovered
518 inactivating deletions or transposon insertions in seven of the BioBrick plasmids, which likely
519 indicates that they are also especially prone to mutational failure. As an example, the
520 Registry page for BioBrick K523020—one of the most burdensome plasmids that we
521 measured—contains a warning, "Part submitted to Registry is believed to contain major errors,"
522 which is probably more typical of how a user of an unstable part would understand rapid
523 evolutionary failure due to mutations that are relieving burden. Future work could clarify whether
524 the cases of sequence discrepancies we encountered are already mutated BioBricks, especially
525 unstable BioBricks, or design errors by reverting the putative mutations to the designed
526 sequences and, if successful (i.e., the change does not make them so burdensome that they
527 are unclonable), measuring their burden. Alternatively, deep-sequencing populations of
528 plasmids isolated from laboratory-scale cultures could be used to characterize whether they
529 consist of mixtures of mutated and unmutated plasmids.^{11,48} Surveys of plasmids in other
530 repositories have also found that some acquire inactivating transposon insertions.⁴⁹

531 The GFP gene expression monitor that we used responds to changes in a cell's global
532 capacity for protein expression. For any one construct, this could theoretically represent

533 depletion of factors as diverse as the availability of RNA polymerases, ribosomes, initiation
534 factors, charged tRNAs, amino acids, or nucleotides. However, we expect that ribosome
535 availability is the limiting factor in all or nearly all BioBricks we tested, based on studies of
536 recombinant gene overexpression in *E. coli*.^{15–19} While we were able to establish overall trends
537 that plasmids containing strong constitutive promoters and ribosome-binding sites had a higher
538 chance of exhibiting burden, it was not possible to predict the gene expression component of
539 burden *a priori* on this set of sequences. Hopefully, ongoing improvements in tools for predicting
540 transcription and translation initiation rates trained on expanding databases of high-throughput
541 gene expression measurements^{50,51} will make this possible in *E. coli* and other organisms.

542 Burden can also arise for diverse reasons other than gene expression: anytime engineered
543 DNA taxes a cellular resource to the extent that it becomes a bottleneck for cell growth. For
544 example, genetic engineering can overwhelm protein export pathways or the capacities of
545 different subcellular compartments.^{25,26} Further case studies of the burdensome plasmids with
546 costs not associated with gene expression could reveal the origins of these costs. It would be
547 particularly useful to create other types of burden monitors, e.g. of protein secretion, membrane
548 occupancy,⁵² or different metabolic bottlenecks so that the relevant limiting factors could be
549 rapidly diagnosed and systems redesigned accordingly to make them more stable. This more
550 refined information will likely be needed to predict how the burden of a composite part or device
551 depends on the burden of each of the genetic parts from which it is constructed. If multiple
552 components use gene expression resources, then one might expect them to have additive
553 effects on burden, but if they use orthogonal (i.e., distinct) limiting resources, then one may find
554 that the combination is no more burdensome than the more burdensome of the two on its own.

555 We measured burden as a decrease in the exponential growth rate of *E. coli* host cells.
556 While this was convenient for making replicated, high-throughput measurements in a microplate
557 reader, it does not fully reflect how a DNA construct impacts the evolutionary fitness of a cell.
558 For example, it is possible that engineering a cell changes the lag time before growth begins,⁵³

559 survival during stationary phase, colony growth on agar, or survival of cryopreservation.
560 Furthermore, our approach can only be applied to understand genetic stability under laboratory
561 conditions, not in environmental contexts or host-associated microbiomes. Co-culture
562 competition assays between a strain of interest and a reference strain could be used to
563 measure fitness in a way that captures all components of fitness in any environment.⁵⁴ To make
564 these measurement high-throughput, host strains with unique sequence barcodes in their
565 chromosomes and transformed with different engineered plasmids or DNA constructs could be
566 simultaneously competed all-against-one-another in bulk competitive fitness assays.^{55,56}

567 Researchers can take actions to improve the constructability and stability of especially
568 burdensome engineered DNA sequences. Most obviously, using low- or medium-copy plasmids
569 rather than high-copy ones or integrating constructs into the chromosome of a bacterium to
570 make them single-copy will often reduce burden into the cloneable and stable ranges.¹⁰
571 Systems have also been engineered for controlling plasmid copy number, so that DNA parts
572 can be maintained in cells at a low copy number and then amplified on demand.^{14,57} Similarly,
573 reducing the burden of a construct can be achieved by altering promoter and ribosome-binding
574 site strengths or by using inducible promoters, as long as these changes are compatible with
575 device function.^{10,21} Systems that regulate expression in response to the growth rate of a cell^{58,59}
576 or that couple continued functioning of the engineered DNA to cell survival⁶⁰ can more directly
577 buffer against evolutionary failure. Another category of more ambitious approaches is to
578 introduce orthogonal polymerases⁶¹ or ribosomes^{62,63} into a cell to prevent synthetic constructs
579 from competing with native gene expression, though the requirement that a cell produce the
580 necessary machinery may itself be burdensome. Next, aspects of the growth environment can
581 sometimes be changed. For example, supplementing media with vitamins or altering salt
582 concentrations has been reported to stabilize certain constructs.^{11,22} A final category of
583 approaches seeks to reduce the chances of mutations to improve the evolutionary stability of

584 genetic constructs.^{7,64} For example, cells with lower mutation rates can be created by deleting or
585 repressing transposons^{9,65} or by altering cellular processes that affect point mutation rates.¹²

586 We created an interactive model of failure mutations in a cell population that can be used to
587 explore how tuning mutation rates and construct burden affect whether a DNA construct is likely
588 to remain intact cell populations that are grown to typical different laboratory and production
589 scales. Similar deterministic^{6,11} and stochastic⁶⁶ models have been developed by others. Models
590 that include individual steps in gene expression and RNA and protein degradation are also
591 beginning to be used to examine evolutionary stability.^{21,67} Our model and these others still do
592 not consider or fully take into account several complications. First, rather than one category of
593 mutation leading to complete failure, there are typically multiple categories of mutations, some
594 of which only partially alleviate the burden, occurring at different rates in real systems.^{10,11}

595 Equally important, plasmids are multi-copy within cells so the fitness benefit of a mutation can
596 take several generations to fully manifest and depends on how plasmids segregate between
597 daughter cells. These intricacies of plasmid evolution have been tackled by a variety of more
598 complex models that could be applied to engineered plasmids.⁶⁸ Finally, models that take into
599 account different phases of cellular growth could be used to further refine these dynamics.⁶⁹

600 Improving our understanding of what types of synthetic DNA constructs exhibit different
601 types of burden and modeling the effects on the reliability and predictability of cellular function
602 over time is important for realizing synthetic biology applications. Researchers designing
603 engineered cells should be aware of when they are nearing a danger zone of evolutionary
604 stability where DNA designs may become unconstructable, and they should recognize that the
605 stochastic nature of evolutionary failure may lead to large variation in their experimental results,
606 failure during process scale-up, or loss of function when cells are deployed for long periods of
607 time in complex environments outside of the lab, such as in animal and plant microbiomes. Our
608 simulations and results will contribute to spreading this awareness and achieving these goals.

609 The main conclusion can be summarized as a rule of thumb: to avoid unwanted evolution of
610 engineered microbes at a laboratory scale, do not burden their growth by more than ~30%.

611

612 METHODS

613 **Model of evolutionary failure.** We implemented a model in R that is similar to one used by
614 *Rugbjer et al.* to predict loss of production from an engineered cell population due to escape
615 mutations.¹¹ We parameterized our model such that failed (i.e., mutated) cells, F , have a relative
616 growth rate of one. Engineered cells, E , have a growth rate that is this value minus the burden,
617 b , of the engineered construct. The corresponding equations for how the numbers of engineered
618 cells, $E(t)$, and failed cells, $F(t)$, change over time are:

619
$$\frac{dE(t)}{dt} = (1 - b)E(t) - \mu (1 - b)E(t) \quad (1)$$

620
$$\frac{dF(t)}{dt} = F(t) + \mu (1 - b)E(t) \quad (2)$$

621 Growth of cells in batch culture typically continues until a certain number of total cell doublings
622 occurs that exhausts the provided resources rather than for a certain fixed period of time.
623 Therefore, we chose to plot the dynamics of engineered and failed cell populations versus the
624 number of cell doublings, $D(t)$, that have occurred at a given time:

625
$$D(t) = \log_2 [E(t) + F(t)] \quad (3)$$

626 For stochastic simulations of this model, we used the *adaptivetau* R package.⁷⁰ We also created
627 an online version (<https://barricklab.org/shiny/burden-model>) that can perform deterministic and
628 stochastic simulations of this model using the Shiny R package.⁷¹

629 **Media and growth conditions.** *E. coli* was cultured at 37 °C in Lysogeny Broth (LB) (10 g
630 tryptone, 5 g yeast extract, 10 g NaCl per liter) with 16 g/L agar added for solid media. Unless
631 otherwise indicated, liquid cultures were grown in 18 mm × 150 mm glass test tubes with orbital
632 shaking at 200 r.p.m over a 1-inch diameter. Antibiotics were added at the following
633 concentrations: carbenicillin (100 µg/ml), chloramphenicol (20 µg/ml), kanamycin (50 µg/ml).

634 **Gene expression monitor strain construction.** *E. coli* DH10B-GEM (JEB1203), the host
635 strain used in the burden assays, was created using plasmids and methods described in
636 Haldimann *et al.*⁷² and Ceroni *et al.*²¹ Briefly, we inserted the constitutive GFP expression
637 cassette cloned into pAH63 (Addgene #66073) into the *E. coli* chromosome at the λ integration
638 site by electroporating this plasmid into DH10B cells containing the helper plasmid pInt-ts
639 (Addgene #66076) and selecting for kanamycin resistant colonies. pAH63 has a *pir*-dependent
640 R6K origin, so it does not replicate in the recipient cells. pInt-ts has a pSC101ts origin and was
641 cured by screening colonies after further growth at the restrictive temperature of 42 °C to create
642 DH10B-GEM. We also obtained and characterized *E. coli* DH10GFP (Addgene #109392), a
643 strain constructed in the same way in the prior study of burden by Ceroni *et al.*²¹

644 We isolated genomic DNA from cultures of DH10B-GEM and DH10GFP using a PureLink
645 Genomic DNA Mini Kit (Invitrogen). Then, we prepared Illumina libraries using 10 µg of DNA as
646 input into a 2S Turbo DNA Library kit (Swift Biosciences) using 50% reaction volumes and a
647 final PCR step with custom adapters that added dual 6-bp sample barcodes. Sequencing was
648 carried out on a HiSeq X Ten by Psomagen. Reads were compared to *E. coli* DH10B genome
649 (GenBank: NC_010473) and pAH63 plasmid sequences using *breseq*.^{73,74} Split-read mappings
650 (new junction evidence) between plasmid and chromosomal sequences verified that the GFP
651 cassette was integrated at the expected site in both strains. There were two shared differences,
652 a single base insertion in an intergenic region and a synonymous base substitution, between
653 both strains and the DH10B reference genome. DH10GFP also had two additional mutations, a
654 nonsynonymous mutation in *uspF* and an IS4 element insertion in *mdtL*.

655 **Transformation of BioBrick plasmids.** We made DH10B-GEM competent cells as follows.
656 A 10 ml liquid culture of cells was grown overnight in a 50 mL Erlenmeyer flask from an aliquot
657 of the glycerol stock. The entire culture was then added to 500 ml of LB in a 2 L Erlenmeyer
658 flask. This culture was incubated until reaching mid-exponential phase (an OD600 between 0.4
659 and 0.6). At this point, it was divided into 35 ml aliquots and centrifuged at room temperature for

660 10 minutes at 3400 × g. Then, the supernatant was removed and all cell pellets were combined
661 by resuspended (via vortexing) in a total of 150 ml of a 10% (v/v) glycerol + 100 mM CaCl₂
662 solution chilled on ice. Next, 30 ml fractions of the cells were centrifuged again at room
663 temperature for 10 minutes at 3400 × g. Again, the pellets were combined, resuspending in a
664 total of 20 ml of chilled glycerol-CaCl₂ this time. After incubating this mixture on ice for 25 min,
665 200 µl aliquots were snap frozen in liquid nitrogen. Competent cells were stored at –80°C.

666 Heat shock was used to transform BioBrick plasmids into DH10B-GEM. This transformation
667 method entailed transferring 2 µl of a miniprep of the plasmid of interest into 50 µl of competent
668 cells and incubating on ice for 1 hour. After this, the mixture was placed in a 42°C heat bath for
669 30 seconds and then immediately placed back on ice for another 30 minutes. Next, we added
670 950 µl of SOC media and incubated at 37°C in a shaker incubator for at least an hour. After
671 SOC recovery, we pelleted the cells and decanted 800 µl of the supernatant. We resuspended
672 the pellet in the remaining 200 µl of supernatant and then plated this onto an LB agar plate with
673 the appropriate antibiotic. After overnight incubation at 37°C, we picked a colony, grew an
674 overnight culture in liquid LB media, added glycerol to 15% (v/v), and froze a stock at –80°C.

675 **BFP plasmid construction.** Five control plasmids expressing different levels of mTagBFP
676 were created by assembling BioBrick parts from the iGEM registry. The mTagBFP sequence
677 was from part plasmid K592100. It was combined with five promoter+RBS composite parts
678 (K608002, K608003, K608004, K608006, and K608007), by using each of their pSB1C3 part
679 plasmids as the vector backbone in a separate postfixing BioBrick assembly reaction.^{44,75} For
680 cloning, we used enzymes from New England Biolabs under standard conditions. Briefly,
681 K592100 was double digested using XbaI and Spel restriction enzymes in CutSmart buffer.
682 Separately, each of the vector backbones was double digested using Spel and PstI-HF
683 restriction enzymes in CutSmart buffer followed by incubation with calf intestinal alkaline
684 phosphatase for 1 h. Digested products were then gel extracted and purified using a QIAquick
685 Gel Extraction Kit before being ligated together using T4 DNA ligase. Ligated products were

686 purified using butanol precipitation and then electroporated into competent TOP10 *E. coli* cells.
687 Transformed cells were recovered in SOC for 1 hour at 37°C, followed by plating on LB agar
688 containing chloramphenicol. After incubation at 37°C for 18 hours, we inoculated isolated
689 colonies into fresh LB liquid media containing chloramphenicol and grew these cultures at 37°C
690 for 18 hours. The five resulting composite BioBrick parts were deposited in the iGEM Registry
691 as K3174002, K3174003, K3174004, K3174006, and K3174007.

692 **Plasmid sequencing.** We sequenced BioBrick plasmids isolated from the DH10B-GEM cell
693 stocks that were used for burden assays. In addition, we sequenced plasmids isolated from the
694 TOP10 cell stocks into which the BFP controls were first transformed. Plasmid DNA was purified
695 using a QIAprep Spin Miniprep Kit (QIAGEN) or a PureLink Quick Plasmid Miniprep Kit
696 (Invitrogen). We performed Sanger sequencing on multiple stocks of the BFP control plasmids,
697 in-house Illumina sequencing on these and the other plasmid samples, and outsourced
698 Nanopore sequencing on additional plasmid samples. For Illumina sequencing, up to 10 ng of
699 plasmid DNA was used as input for sequencing library preparation using the 2S Turbo DNA
700 Library kit (Swift Biosciences) with 20% reaction volumes. Custom adapters containing dual 6-
701 bp sample barcodes were incorporated during the final PCR step. The resulting DNA libraries
702 were pooled and sequenced on an iSeq 100 instrument. Nanopore data was obtained from
703 Plasmidsaurus. Porechop⁷⁶ and fastp⁷⁷ were used to trim adaptors from sequencing reads.

704 To analyze sequencing results, we first reconstructed the expected BioBrick plasmid
705 sequences from information available on the iGEM Registry webpages (part sequences, vector
706 sequences, and compatibility with different assembly standards). Then, we analyzed Illumina
707 and Nanopore sequencing data in two ways. First, we compared reads to the expected plasmid
708 sequences using *breseq*⁷³ to see if there were any discrepancies. Second, we performed *de*
709 *novo* assembly of reads using either Unicycler⁷⁸ or flye,⁷⁹ annotated the resulting assemblies
710 with pLannotate,⁸⁰ and examined them for matches to the expected parts using blastn
711 searches⁸¹ against a database of all BioBrick parts included in the 2018 iGEM distribution kit.

712 **BioBrick plasmid burden assays.** We performed burden assays largely as described
713 previously.²¹ Strains were revived by adding aliquots of -80 °C freezer stocks to test tubes
714 containing LB with the antibiotic for maintaining their respective BioBrick plasmids. After
715 overnight growth (12-18 h), we vortexed each culture for three seconds and loaded 5 µl into a
716 Nunc MicroWell 96-well optical-bottom plate (ThermoScientific Cat. No. 265301) in triplicate.
717 Every plate included the five control strains (JEB1204-1208), each also loaded in 5 µl in
718 triplicate, and 12 blank wells (LB only). This arrangement allowed for a total of 23 strains to be
719 tested per plate. To start the assay, a multichannel pipette was used to add 195 µl of LB pre-
720 warmed to 37°C to every well with pipetting up and down several times to mix. Using a Tecan
721 Infinite Pro M200 Plate Reader, optical density at 600 nm and GFP fluorescence (excitation:
722 485 nm; emission 528 nm) were recorded every 10 minutes with 7 minutes of orbital shaking
723 during each cycle. Each plate was run for a minimum of 6 hours.

724 **RFP and BFP plasmid burden assays.** For the series of plasmids expressing RFP under
725 control of different promoters, we performed burden assays using the normal procedure plus an
726 additional measurement of RFP fluorescence (excitation: 585 nm; emission: 610 nm). For
727 correlating BFP expression in the control strains to reduced GFP expression, we added a
728 measurement of BFP fluorescence (excitation: 405 nm; emission: 453 nm). The extra
729 fluorescence reads for the RFP and BFP experiments reduced the proportion of shaking time in
730 each measurement cycle, resulting in slower maximum growth rates than were observed with
731 the standard burden assay procedure. RFP samples were measured every 10 minutes with 6.5
732 minutes of shaking during each cycle. BFP samples were measured every 10 minutes with 7
733 minutes of shaking during each cycle. For the RFP series we also monitored cell density using
734 OD660 instead of OD600 to avoid interference from RFP absorbance.⁸²

735 **Burden analysis.** To analyze the burden assay data for one plate, we first subtracted the
736 average values of all media blanks from the OD and fluorescence measurements. Next, to deal
737 with well-to-well variation in background levels, we shifted the values to force the means of the

738 points over the first hour of measurements for each strain to match the grand mean for those
739 data points over all replicates of that strain. We then fit growth rates using nonlinear least-
740 squares regression to an exponential model: $C(t) = C_0 e^{rt}$. We assumed that OD is directly
741 proportional to the number of cells at a given time, $C(t)$. C_0 is the initial number of cells, and r is
742 the specific growth rate. We fit C_0 and r for all sets of nine consecutive measurements (a 90-
743 minute window in the standard assay) after the OD exceeded 0.03 and recorded the largest
744 value of r as the maximum specific growth rate for that strain. To determine the fluorescent
745 protein (e.g., GFP) production rate per cell, p , we repeated this procedure while fitting
746 fluorescence values to the equation: $F(t) = F_0 + C_0 (p/r) (e^{rt} - 1)$. F_0 is the initial fluorescence and
747 $F(t)$ is the fluorescence at time t . This equation is derived by integrating the relationship $dF/dt =$
748 $p C(t)$. We fit F_0 and p in this model to the data while keeping C_0 and r fixed to the values
749 determined from the OD curve fit for the corresponding time window. Again, we recorded the
750 largest value of p across all time points as the maximum fluorescent protein production rate.

751 To account for plate-to-plate variation in growth and GFP production rate estimates (Fig.
752 **S1A, S3A**), we normalized measurements made on different plates. In our experimental design
753 a majority of the plasmids tested in each plate are expected to exhibit negligible burden. This let
754 us estimate the growth and GFP production rates corresponding to 'no-burden' for a given plate
755 by examining the distributions of values measured. Specifically, we calculated the density
756 distributions of growth and GFP production rates using a Gaussian kernel function with
757 bandwidths of 0.014 and 300, respectively, for all non-control strains. To account for multimodal
758 distributions, we took the no-burden value as the highest value among all peaks in the density
759 distribution that were at least 50% as high as the highest peak. Then, we normalized all rate
760 estimates by dividing them by the corresponding no-burden value for that plate (Fig. **S1B, S3B**).
761 The final distributions of the mean values for each BioBrick plasmid have a major peak at the
762 no-burden value with a noticeable shoulder of strains with a slightly decreased growth rate or
763 GFP production rate, in addition to some strains with much lower values (Fig. **S1C, S3C**).

764 Some BioBricks encode proteins that interfere with measuring GFP fluorescence. Therefore,
765 for the analysis of gene expression capacity and burden, we disregarded all BioBricks described
766 as including GFP; YFP, which has overlapping fluorescence; or the amilCP blue chromoprotein,
767 which strongly absorbs at the wavelength monitored for GFP emission.⁸³ For the 26 remaining
768 BioBricks that also had growth rate reductions that were statistically significant and mean
769 estimated burdens $\geq 10\%$, we determined whether the observed GFP production rate was
770 compatible with the null hypothesis that all of the burden was due to the BioBrick utilizing the
771 gene expression capacity of the host cells. We determined the expected relationship between
772 growth rate and GFP production rate for purely gene expression burden from measurements of
773 the BFP control plasmids across all plates. Specifically, we used Deming regression to fit this
774 linear relationship, which takes into account measurement errors in both dimensions, and we
775 further required that the fit pass through the no-burden values (i.e., a normalized growth rate of
776 1.0 and normalized GFP production rate of 1.0). Then, we determined the chance that each
777 BioBrick was located above the BFP regression using a two-dimensional probability distribution
778 of each assuming maximum likelihood *t*-distributions for growth rate and GFP production rate.
779 We took one-half of this value to estimate a one-tailed *p*-value for the hypothesis that there was
780 significant burden for the test plasmid from a source other than utilization of the host cell's gene
781 expression resources.

782

783 **SUPPORTING INFORMATION**

784 **Fig. S1.** Growth rate measurements for all microplate assays.

785 **Fig. S2.** Comparison of growth rates measured for BioBricks in different vector backbones.

786 **Fig. S3.** BFP plasmids in cell stocks used for microplate assays mutated to reduce burden.

787 **Fig. S4.** Growth rate measurements for BioBricks with higher burden exhibit more variability.

788 **Fig. S5.** GFP production rate measurements for all microplate assays.

789

790 **DATA AVAILABILITY**

791 Simulation code, unprocessed data files, analysis scripts, and plasmid assemblies have been
792 archived in a GitHub repository (<https://github.com/berricklab/iGEM2019>) and on Zenodo (doi:
793 10.5281/zenodo.10938726). Raw plasmid and genome sequencing data are available from the
794 NCBI Sequence Read Archive (Accession PRJNA1090925).

795

796 **AUTHOR CONTRIBUTIONS**

797 **Conceptualization:** Noor Radde, Genevieve A. Mortensen, Diya Bhat, Shireen Shah, Joseph J. Clements, Sean P. Leonard, Matthew J. McGuffie, Dennis M. Mishler, Jeffrey E. Barrick

799 **Data curation:** Noor Radde, Genevieve A. Mortensen, Jeffrey E. Barrick

800 **Formal analysis:** Noor Radde, Genevieve A. Mortensen, Jeffrey E. Barrick

801 **Funding acquisition:** Dennis M. Mishler, Jeffrey E. Barrick

802 **Investigation:** Noor Radde, Genevieve A. Mortensen, Diya Bhat, Shireen Shah, Joseph J. Clements, Sean P. Leonard, Matthew J. McGuffie, Jeffrey E. Barrick

804 **Project administration:** Dennis M. Mishler, Jeffrey E. Barrick

805 **Software:** Genevieve A. Mortensen, Jeffrey E. Barrick

806 **Supervision:** Sean P. Leonard, Matthew J. McGuffie, Dennis M. Mishler, Jeffrey E. Barrick

807 **Visualization:** Noor Radde, Genevieve A. Mortensen, Jeffrey E. Barrick

808 **Writing – original draft:** Noor Radde, Genevieve A. Mortensen, Jeffrey E. Barrick

809 **Writing – review & editing:** Noor Radde, Genevieve A. Mortensen, Sean P. Leonard, Dennis M. Mishler, Jeffrey E. Barrick

811

812 **ACKNOWLEDGMENTS**

813 We thank Angela Pak, Emily Garcia, Mina Kim, Alex MacAskill, Raul Lopez, and Michelle Chang for performing various experiments and participating in the UT Austin 2019 iGEM team;
815 Daniel Deatherage and Jack Dwenger for assistance with genome and plasmid sequencing;

816 and Giaochau Nguyen, Vrinda Rajkumar, Marco Sanchez, Jeremy Fitzgerald, and Sidharth
817 Kapur from the Microbe Hackers Freshman Research Initiative stream for cloning the BFP
818 control plasmids. We thank the 2019 Michigan State University, Rice University, and Texas
819 Tech University iGEM teams, iGEM judges, and members of the Barrick lab for useful feedback.
820 We acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at
821 Austin for providing high performance computing resources.

822

823 **FUNDING**

824 This research was supported by the National Science Foundation (CBET-1554179, IOS-
825 2103208, and MCB-2123996), the National Science Foundation BEACON Center for the Study
826 of Evolution (DBI-0939454), the National Institutes of Health (R01GM088344), and the U.S.
827 Army Research Office (W911NF-20-1-0195). The University of Texas at Austin Freshman
828 Research Initiative (FRI) acknowledges support from the Howard Hughes Medical Institute
829 (#52008124). The University of Texas at Austin College of Natural Sciences and Department of
830 Molecular Biosciences provided additional support for the FRI program and iGEM participation.

831

832 **REFERENCES**

- 833 1. Weinberg, B. H. *et al.* Large-scale design of robust genetic circuits with multiple inputs and
834 outputs for mammalian cells. *Nat. Biotechnol.* **35**, 453–462 (2017).
- 835 2. Andrews, L. B., Nielsen, A. A. K. & Voigt, C. A. Cellular checkpoint control using
836 programmable sequential logic. *Science* **361**, eaap8987 (2018).
- 837 3. Ryu, M. *et al.* Control of nitrogen fixation in bacteria that associate with cereals. *Nat.*
838 *Microbiol.* 80–84 (2019) doi:10.1038/s41564-019-0631-2.
- 839 4. Isabella, V. M. *et al.* Development of a synthetic live bacterial therapeutic for the human
840 metabolic disease phenylketonuria. *Nat. Biotechnol.* **36**, 857–864 (2018).

841 5. Leonard, S. P. *et al.* Engineered symbionts activate honey bee immunity and limit
842 pathogens. *Science* **367**, 573–576 (2020).

843 6. Arkin, A. P. & Fletcher, D. A. Fast, cheap and somewhat in control. *Genome Biol.* **7**, 114
844 (2006).

845 7. Renda, B. A., Hammerling, M. J. & Barrick, J. E. Engineering reduced evolutionary potential
846 for synthetic biology. *Mol. Biosyst.* **10**, 1668–1678 (2014).

847 8. Sleight, S. C., Bartley, B. A., Lieviant, J. A. & Sauro, H. M. Designing and engineering
848 evolutionary robust genetic circuits. *J. Biol. Eng.* **4**, 12 (2010).

849 9. Umenhoffer, K. *et al.* Reduced evolvability of *Escherichia coli* MDS42, an IS-less cellular
850 chassis for molecular and synthetic biology applications. *Microb. Cell Factories* **9**, 38 (2010).

851 10. Sleight, S. C. & Sauro, H. M. Visualization of evolutionary stability dynamics and competitive
852 fitness of *Escherichia coli* engineered with randomized multigene circuits. *ACS Synth. Biol.*
853 **2**, 519–528 (2013).

854 11. Rugbjerg, P., Myling-Petersen, N., Porse, A., Sarup-Lytzen, K. & Sommer, M. O. A. Diverse
855 genetic error modes constrain large-scale bio-based production. *Nat. Commun.* **9**, 787
856 (2018).

857 12. Deatherage, D. E., Leon, D., Rodriguez, Á. E., Omar, S. K. & Barrick, J. E. Directed
858 evolution of *Escherichia coli* with lower-than-natural plasmid mutation rates. *Nucleic Acids
859 Res.* **46**, 9236–9250 (2018).

860 13. Borkowski, O., Ceroni, F., Stan, G.-B. & Ellis, T. Overloaded and stressed: whole-cell
861 considerations for bacterial synthetic biology. *Curr. Opin. Microbiol.* **33**, 123–130 (2016).

862 14. Rouches, M. V., Xu, Y., Cortes, L. B. G. & Lambert, G. A plasmid system with tunable copy
863 number. *Nat. Commun.* **13**, 3908 (2022).

864 15. Bentley, W. E., Mirjalili, N., Andersen, D. C., Davis, R. H. & Kompala, D. S. Plasmid-
865 encoded protein: the principal factor in the ‘metabolic burden’ associated with recombinant
866 bacteria. *Biotechnol. Bioeng.* **35**, 668–681 (1990).

867 16. Vind, J., Sørensen, M. A., Rasmussen, M. D. & Pedersen, S. Synthesis of proteins in
868 *Escherichia coli* is limited by the concentration of free ribosomes. Expression from reporter
869 genes does not always reflect functional mRNA levels. *J. Mol. Biol.* **231**, 678–688 (1993).

870 17. Glick, B. R. Metabolic load and heterologous gene expression. *Biotechnol. Adv.* **13**, 247–
871 261 (1995).

872 18. Stoebel, D. M., Dean, A. M. & Dykhuizen, D. E. The cost of expression of *Escherichia coli*
873 *lac* operon proteins is in the process, not in the products. *Genetics* **178**, 1653–60 (2008).

874 19. Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell
875 growth and gene expression: origins and consequences. *Science* **330**, 1099–1102 (2010).

876 20. Espah Borujeni, A., Zhang, J., Doosthosseini, H., Nielsen, A. A. K. & Voigt, C. A. Genetic
877 circuit characterization by inferring RNA polymerase movement and ribosome usage. *Nat.*
878 *Commun.* **11**, 5001 (2020).

879 21. Ceroni, F., Algar, R., Stan, G.-B. & Ellis, T. Quantifying cellular capacity identifies gene
880 expression designs with reduced burden. *Nat. Methods* **12**, 415–418 (2015).

881 22. Sandoval, C. M. *et al.* Use of pantothenate as a metabolic switch increases the genetic
882 stability of farnesene producing *Saccharomyces cerevisiae*. *Metab. Eng.* **25**, 1–12 (2014).

883 23. Burgard, A., Burk, M. J., Osterhout, R., Van Dien, S. & Yim, H. Development of a
884 commercial scale process for production of 1,4-butanediol from sugar. *Curr. Opin.*
885 *Biotechnol.* **42**, 118–125 (2016).

886 24. Wu, G. *et al.* Metabolic burden: cornerstones in synthetic biology and metabolic engineering
887 applications. *Trends Biotechnol.* **34**, 652–664 (2016).

888 25. Gubellini, F. *et al.* Physiological response to membrane protein overexpression in *E. coli*.
889 *Mol. Cell. Proteomics* **10**, (2011).

890 26. Kwon, K. *et al.* Recombinant expression and functional analysis of proteases from
891 *Streptococcus pneumoniae*, *Bacillus anthracis*, and *Yersinia pestis*. *BMC Biochem.* **12**, 17
892 (2011).

893 27. Zhang, S. & Voigt, C. A. Engineered dCas9 with reduced toxicity in bacteria: implications for
894 genetic circuit design. *Nucleic Acids Res.* **46**, 11115–11125 (2018).

895 28. Andrianantoandro, E., Basu, S., Karig, D. K. & Weiss, R. Synthetic biology: new engineering
896 rules for an emerging discipline. *Mol. Syst. Biol.* **2**, 2006.0028 (2006).

897 29. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological
898 parts and devices. *Nat. Biotechnol.* **26**, 787–793 (2008).

899 30. Registry of Standard Biological Parts. http://parts.igem.org/Main_Page.

900 31. Smolke, C. D. Building outside of the box: iGEM and the BioBricks Foundation. *Nat.*
901 *Biotechnol.* **27**, 1099–1102 (2009).

902 32. Vilanova, C. & Porcar, M. iGEM 2.0—refoundations for engineering biology. *Nat. Biotechnol.*
903 **32**, 420–424 (2014).

904 33. Kelly, J. R. *et al.* Measuring the activity of BioBrick promoters using an *in vivo* reference
905 standard. *J. Biol. Eng.* **3**, 4 (2009).

906 34. Beal, J. *et al.* Reproducibility of fluorescent expression from engineered biological
907 constructs in *E. coli*. *PLoS ONE* **11**, e0150182 (2016).

908 35. Beal, J. *et al.* Quantification of bacterial fluorescence using independent calibrants. *PLoS*
909 *ONE* **13**, e0199432 (2018).

910 36. Wielgoss, S. *et al.* Mutation rate inferred from synonymous substitutions in a long-term
911 evolution experiment with *Escherichia coli*. *G3 Bethesda* **1**, 183–186 (2011).

912 37. Lee, H., Popodi, E., Tang, H. & Foster, P. L. Rate and molecular spectrum of spontaneous
913 mutations in the bacterium *Escherichia coli* as determined by whole-genome sequencing.
914 *Proc. Natl. Acad. Sci. U. S. A.* **109**, E2774–E2783 (2012).

915 38. Drake, J. W. A constant rate of spontaneous mutation in DNA-based microbes. *Proc. Natl.*
916 *Acad. Sci. U. S. A.* **88**, 7160–7164 (1991).

917 39. Lynch, M. Evolution of the mutation rate. *Trends Genet.* **26**, 345–352 (2010).

918 40. Jack, B. R. *et al.* Predicting the genetic stability of engineered DNA sequences with the EFM
919 calculator. *ACS Synth. Biol.* **4**, 939–943 (2014).

920 41. Geng, P., Leonard, S. P., Mishler, D. M. & Barrick, J. E. Synthetic genome defenses against
921 selfish DNA elements stabilize engineered bacteria against evolutionary failure. *ACS Synth.*
922 *Biol.* **8**, 521–531 (2019).

923 42. Nyerges, Á. *et al.* CRISPR-interference-based modulation of mobile genetic elements in
924 bacteria. *Synth. Biol. Oxf. Engl.* **4**, ysz008 (2019).

925 43. Fehér, T., Cseh, B., Umenhoffer, K., Karcagi, I. & Pósfai, G. Characterization of *cycA*
926 mutants of *Escherichia coli*. An assay for measuring in vivo mutation rates. *Mutat. Res.* **595**,
927 184–190 (2006).

928 44. Shetty, R. P., Endy, D. & Knight, T. F. Engineering BioBrick vectors from BioBrick parts. *J.*
929 *Biol. Eng.* **2**, 5 (2008).

930 45. Galdzicki, M., Rodriguez, C., Chandran, D., Sauro, H. M. & Gennari, J. H. Standard
931 biological parts knowledgebase. *PLoS ONE* **6**, e17005–e17005 (2011).

932 46. Borkowski, O. *et al.* Cell-free prediction of protein expression costs for growing cells. *Nat.*
933 *Commun.* **9**, 1457 (2018).

934 47. Sleight, S. C., Bartley, B. A., Lieviant, J. A. & Sauro, H. M. Designing and engineering
935 evolutionary robust genetic circuits. *J. Biol. Eng.* **4**, 12–12 (2010).

936 48. Zhang, X., Deatherage, D. E., Zheng, H., Georgoulis, S. J. & Barrick, J. E. Evolution of
937 satellite plasmids can prolong the maintenance of newly acquired accessory genes in
938 bacteria. *Nat. Commun.* **10**, 5809–5809 (2019).

939 49. Brkljacic, J. *et al.* Frequency, composition and mobility of *Escherichia coli*-derived
940 transposable elements in holdings of plasmid repositories. *Microb. Biotechnol.* **15**, 455–468
941 (2022).

942 50. Reis, A. C. & Salis, H. M. An automated model test system for systematic development and
943 improvement of gene expression models. *ACS Synth. Biol.* **9**, 3145–3156 (2020).

944 51. LaFleur, T. L. Automated model-predictive design of synthetic promoters to control
945 transcriptional profiles in bacteria. *Nat. Commun.* **13**, 5159 (2022).

946 52. Zhuang, K., Vemuri, G. N. & Mahadevan, R. Economics of membrane occupancy and
947 respiro-fermentation. *Mol. Syst. Biol.* **7**, 500 (2011).

948 53. Shachrai, I., Zaslaver, A., Alon, U. & Dekel, E. Cost of unneeded proteins in *E. coli* is
949 reduced after several generations in exponential growth. *Mol. Cell* **38**, 758–67 (2010).

950 54. Barrick, J. E. *et al.* Daily transfers, archiving populations, and measuring fitness in the long-
951 term evolution experiment with *Escherichia coli*. *J. Vis. Exp.* e65342 (2023)
952 doi:10.3791/65342.

953 55. Chochinov, C. A. & Nguyen Ba, A. N. Bulk-fitness measurements using barcode sequencing
954 analysis in yeast. in *Yeast Functional Genomics* (ed. Devaux, F.) vol. 2477 399–415
955 (Springer US, New York, NY, 2022).

956 56. Li, F., Tarkington, J. & Sherlock, G. Fit-Seq2.0: An improved software for high-throughput
957 fitness measurements using pooled competition assays. *J. Mol. Evol.* **91**, 334–344 (2023).

958 57. Joshi, S. H.-N., Yong, C. & Gyorgy, A. Inducible plasmid copy number control for synthetic
959 biology in commonly used *E. coli* strains. *Nat. Commun.* **13**, 6691 (2022).

960 58. Ceroni, F. *et al.* Burden-driven feedback control of gene expression. *Nat. Methods* **15**, 387–
961 393 (2018).

962 59. Barajas, C., Huang, H.-H., Gibson, J., Sandoval, L. & Del Vecchio, D. Feedforward growth
963 rate control mitigates gene activation burden. *Nat. Commun.* **13**, 7054 (2022).

964 60. Rubjerg, P., Sarup-Lytzen, K., Nagy, M. & Sommer, M. O. A. Synthetic addiction extends
965 the productive life time of engineered *Escherichia coli* populations. *Proc. Natl. Acad. Sci.*
966 **115**, 2347–2352 (2018).

967 61. Segall-Shapiro, T. H., Meyer, A. J., Ellington, A. D., Sontag, E. D. & Voigt, C. a. A ‘resource
968 allocator’ for transcription based on a highly fragmented T7 RNA polymerase. *Mol. Syst.*
969 *Biol.* **10**, 742–742 (2014).

970 62. Wang, K., Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Evolved orthogonal ribosomes
971 enhance the efficiency of synthetic genetic code expansion. *Nat Biotechnol* **25**, 770–777
972 (2007).

973 63. Orelle, C. *et al.* Protein synthesis by ribosomes with tethered subunits. *Nature* **524**, 119–124
974 (2015).

975 64. Ellis, T. Predicting how evolution will beat us. *Microb. Biotechnol.* **12**, 41–43 (2019).

976 65. Suárez, G. A., Renda, B. A., Dasgupta, A. & Barrick, J. E. Reduced mutation rate and
977 increased transformability of transposon-free *Acinetobacter baylyi* ADP1-ISx. *Appl. Environ.*
978 *Microbiol.* **83**, e01025-17 (2017).

979 66. Battaglino, B., Arduino, A. & Pagliano, C. Mathematical modeling for the design of evolution
980 experiments to study the genetic instability of metabolically engineered photosynthetic
981 microorganisms. *Algal Res.* **52**, 102093 (2020).

982 67. Nikolados, E.-M., Weiße, A. Y., Ceroni, F. & Oyarzún, D. A. Growth defects and loss-of-
983 function in synthetic gene circuits. *ACS Synth. Biol.* **8**, 1231–1240 (2019).

984 68. Hernández-Beltrán, J. C. R., San Millán, A., Fuentes-Hernández, A. & Peña-Miller, R.
985 Mathematical models of plasmid population dynamics. *Front. Microbiol.* **12**, 606396 (2021).

986 69. Nyström, A., Papachristodoulou, A. & Angel, A. A dynamic model of resource allocation in
987 response to the presence of a synthetic construct. *ACS Synth. Biol.* **7**, 1201–1210 (2018).

988 70. Johnson, P. adaptivetau: tau-leaping stochastic simulation. [https://cran.r-
989 project.org/package=adaptivetau](https://cran.r-project.org/package=adaptivetau) (2019).

990 71. Chang, W. *et al.* shiny: Web Application Framework for R. <https://shiny.posit.co/> (2024).

991 72. Haldimann, A. & Wanner, B. L. Conditional-replication, integration, excision, and retrieval
992 plasmid-host systems for gene structure-function studies of bacteria. *J. Bacteriol.* **183**,
993 6384–6393 (2001).

994 73. Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes
995 from next-generation sequencing data using *breseq*. *Methods Mol. Biol.* **1151**, 165–188
996 (2014).

997 74. Barrick, J. E. *et al.* Identifying structural variation in haploid microbial genomes from short-
998 read resequencing data using *breseq*. *BMC Genomics* **15**, 1039–1039 (2014).

999 75. Knight, T. *Idempotent Vector Design for Standard Assembly of Biobricks*.
1000 <http://dx.doi.org/http://hdl.handle.net/1721.1/21168> (2003).

1001 76. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Completing bacterial genome assemblies
1002 with multiplex MinION sequencing. *Microb. Genomics* **3**, e000132 (2017).

1003 77. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
1004 *Bioinformatics* **34**, i884–i890 (2018).

1005 78. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome
1006 assemblies from short and long sequencing reads. *PLOS Comput. Biol.* **13**, e1005595
1007 (2017).

1008 79. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads
1009 using repeat graphs. *Nat. Biotechnol.* **37**, 540–546 (2019).

1010 80. McGuffie, M. J. & Barrick, J. E. pLannotate: engineered plasmid annotation. *Nucleic Acids
1011 Res.* **49**, W516–W522 (2021).

1012 81. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421–421
1013 (2009).

1014 82. Hecht, A., Endy, D., Salit, M. & Munson, M. S. When wavelengths collide: Bias in cell
1015 abundance measurements due to expressed fluorescent proteins. *ACS Synth. Biol.* **5**,
1016 1024–7 (2016).

1017 83. Alieva, N. O. *et al.* Diversity and evolution of coral fluorescent proteins. *PLoS ONE* **3**, e2680
1018 (2008).

1019