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ABSTRACT 15 

Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise 16 

interferes with homeostasis. Populations of engineered cells can rapidly become dominated by 17 

“escape mutants” that evolve to alleviate this burden by inactivating the intended function. 18 

Synthetic biologists working with bacteria rely on genetic parts and devices encoded on 19 

plasmids, but the burden of different engineered DNA sequences is rarely characterized. We 20 

measured how 301 BioBricks on high-copy plasmids affected the growth rate of Escherichia 21 

coli. Of these, 59 (19.6%) negatively impacted growth. The burden imposed by engineered DNA 22 

is commonly associated with diverting ribosomes or other gene expression factors away from 23 

producing endogenous genes that are essential for cellular replication. In line with this 24 

expectation, BioBricks exhibiting burden were more likely to contain highly active constitutive 25 

promoters and strong ribosome binding sites. By monitoring how much each BioBrick reduced 26 

expression of a chromosomal GFP reporter, we found that the burden of most, but not all, 27 

BioBricks could be wholly explained by diversion of gene expression resources. Overall, no 28 

BioBricks reduced the growth rate of E. coli by >45%, which agreed with a population genetic 29 

model that predicts such plasmids should be “unclonable” because escape mutants will take 30 

over during growth of a bacterial colony or small laboratory culture from a transformed cell. We 31 

made this model available as an interactive web tool for synthetic biology education and added 32 

our burden measurements to the iGEM Registry descriptions of each BioBrick. 33 

 34 

 35 
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INTRODUCTION 39 

Synthetic biologists are engineering increasingly sophisticated functions into cells and deploying 40 

these “living machines” in new and more challenging environments. For example, cells have 41 

been created with genetic circuits that perform complex sensing and logic operations,1,2 and 42 

bacterial symbionts have been engineered to improve the productivity and health of their plant 43 

and animal hosts.3–5 However, unlike computer code, engineered DNA sequences in cells can 44 

evolve, potentially making their functions unpredictable and unreliable.6,7 Evolutionary failure—45 

when less-functional or nonfunctional mutants outcompete their ancestor—can occur rapidly if 46 

an engineered function is highly burdensome to a cell or if the sequences that encode it are 47 

especially mutation-prone.8–12 In extreme cases, a population of cells may already become 48 

dominated by “escape mutants” that have evolved inactivated variants of a designed sequence 49 

after outgrowth of a single transformed cell into a colony or small laboratory culture, making that 50 

construct essentially “unclonable”. To improve the foundations of bioengineering, we need to 51 

better understand why certain DNA constructs are more burdensome to cells than others and 52 

the limits on how much burden a cell can tolerate before unwanted evolution becomes a barrier. 53 

 Because all engineered DNA constructs must use resources from the cell to replicate 54 

and express genes, these processes are the most common and predictable sources of 55 

burden.13  Burden from replicating engineered DNA in cells is typically negligible, even for very 56 

high-copy plasmids in bacteria.14 Instead, transcriptional resources (e.g., RNA polymerases) or 57 

translational resources (e.g., ribosomes, charged tRNAs) often become limiting when a foreign 58 

DNA construct directs a cell to synthesize RNAs and proteins. Protein overexpression studies in 59 

E. coli generally find that ribosomes are the most limiting factor, with a proportional decrease in 60 

the growth rates of cells as producing more heterologous protein diverts more of their ribosomes 61 

away from expressing host proteins needed for replication.15–19 Usage of gene expression 62 

resources can be monitored using high-throughput approaches that globally profile RNA 63 
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abundance and ribosomal occupancy20 or reporter genes with expression levels that reflect the 64 

depletion of overall cellular capacities for transcription and translation.21 65 

 Burden may also arise due to how specific gene products expressed from an engineered 66 

DNA construct interact with host cells. Metabolic engineering purposefully funnels precursor 67 

molecules toward a target compound by expressing foreign enzymes, altering gene regulation, 68 

and/or disrupting native pathways. These modifications will generally slow a cell’s growth, and 69 

metabolic products or intermediates may also accumulate to levels that are detrimental to 70 

cellular physiology.22–24 Expressing certain types of proteins, such as proteases and integral 71 

membrane proteins, is also known to be stressful or toxic to E. coli cells, due either directly to 72 

their functions or to competition with native proteins for secretion machinery.25,26 Proteins used 73 

for orthogonal control of gene expression, like T7 RNA polymerase and dCas9, can exhibit 74 

excessive activity or off-target effects that are extremely burdensome.27 Finally, unintentional 75 

expression of antisense and frameshifted gene products from cryptic promoters and ribosome 76 

binding sites has been shown to be an unexpected source of burden in some constructs.9,20 77 

 Sharing of standardized genetic parts has been a cornerstone of synthetic biology since 78 

its inception.28,29 The Registry of Standard Biological Parts is a database of engineered DNA 79 

sequences30 that thousands of teams have contributed to as part of their participation in the 80 

International Genetically Engineered Machines (iGEM) competition.31,32 Most BioBrick parts are 81 

cloned into a small set of standard vector backbones, which makes these plasmids a useful 82 

“common garden” for analyzing the properties of inserts encoding different genetic parts and 83 

devices. In past studies, BioBricks have been used to compare standardized measurements of 84 

promoter strength33 and fluorescent protein expression34,35 across many labs. It has been 85 

proposed that genetic reliability—in the evolutionary sense of for how many cell doublings a 86 

certain level of function is maintained in a population—be listed on a data sheet describing a 87 

genetic part,29 but this property is rarely characterized in practice. One goal of iGEM is to 88 

improve upon existing parts, and many BioBrick sequences are re-used by synthetic biology 89 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.08.588465doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.08.588465
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5  

researchers outside of iGEM. Therefore, characterizing which of these parts are evolutionarily 90 

unstable and understanding why this is the case would broadly benefit the field. 91 

 We measured the burden of 301 BioBrick plasmids from the iGEM Registry containing 92 

DNA constructs ranging from individual parts to complex devices. None of these plasmids 93 

reduced the growth rate of their E. coli hosts by >45%, in agreement with stochastic simulations 94 

of evolution that predict a level of burden above this threshold would make a construct 95 

“unclonable”. We found that 6 BioBrick plasmids had a burden of >30%, which would be 96 

expected to be problematic on the laboratory scale, and that 19 had a burden of >20%, enough 97 

that they might fail during process scale-up or in other applications in which cells continue to 98 

divide. Several BioBrick plasmids, including two we used as controls, evolved mutations that 99 

likely reduce their burden by compromising their designed functions. Finally, we determined that 100 

depletion of gene expression resources is sufficient to explain the burden of most BioBrick 101 

plasmids, though some reduce host growth rates for other, currently unknown reasons. Our 102 

work demonstrates how standardized frameworks for measuring burden and simulating the 103 

dynamics of evolutionary failure can be used to improve the reliability of bioengineering. 104 

 105 

RESULTS 106 

Model of Evolutionary Failure. Growth of a cell population that has been engineered with a 107 

new DNA construct begins from a single transformed cell. As the population divides, progeny 108 

with mutations in the sequence of the designed DNA construct will arise. If these mutations 109 

alleviate a burden on the cells caused by the engineered DNA—most often by lessening or 110 

eliminating a designed function that compromises their growth—then, the mutant cells will have 111 

a competitive advantage. These higher-fitness cells will outreplicate and displace ancestral cells 112 

with the original DNA construct until they dominate within the population and function declines.  113 

To put our experimental measurements of burden into context, we first investigated the 114 

expected timing of evolutionary failure using a differential equation model (Fig. 1A). This model 115 
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has two parameters. The first is the burden (b) of the engineered DNA, expressed as a percent 116 

reduction in the rate of replication of a cell containing the genetic construct. The model makes a 117 

simplifying assumption that there is one category of mutations that leads to failure of the 118 

engineered function in a way that completely alleviates its burden. The rate of these failure 119 

mutations per cell division (µ) is the second parameter. The typical dynamics for this model are 120 

that “broken” cells with a failure mutation are initially very rare but then rapidly take over a 121 

population as their fitness advantage is exponentially compounded over time (Fig. 1B). 122 

 123 

Fig. 1. Evolutionary failure of a population of engineered cells. (A) Graphical representation 124 
of a differential equation model with one class of failure mutations that completely alleviates the 125 
fitness burden of an engineered DNA construct on a host cell. (B) Population dynamics 126 
expected from this model. Subpopulations of failed cells with mutated constructs evolve and 127 
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outcompete the original engineered cells with functional constructs. Complete failure happens 128 
rapidly once the mutant cells reach a detectable frequency in the population. (C) Approximate 129 
numbers of cell divisions required for scale-up from a single engineered cell to laboratory and 130 
industrial processes requiring different culture sizes. (See the text and Table S1 for details.) 131 

We wanted to understand what magnitude of burden would be likely to lead to evolutionary 132 

failure of an engineered function during a typical scale-up process starting with a single bacterial 133 

cell picked as a colony isolate after transformation with a newly cloned plasmid or some other 134 

genome editing procedure (Fig. 1C, Table S1). We estimate that ~23 cell divisions occur by the 135 

time a single cell produces a normal-sized colony containing ~8 million cells on an agar plate. If 136 

this entire colony is placed into ~4 ml of LB in a test tube, it takes an additional ~11 cell divisions 137 

to reach saturation, assuming a final density of ~5 ×109 cells/ml. Growth to a 200 mL laboratory 138 

scale at a higher cell density (e.g., in terrific broth for recombinant protein overexpression) 139 

brings the total to ~40 cell divisions. Larger-scale industrial processes can reach even higher 140 

cell densities such that ~56 cell divisions may be needed to saturate a 1,000 L bioreactor. 141 

The rates of mutations leading to the failure of different DNA constructs can vary widely, so 142 

we tested values of this parameter spanning several orders of magnitude: from 10−4 to 10−8 per 143 

genome per cell division. One factor that plays into the mutation rate is the information content 144 

of a sequence, i.e., how many base pairs must be specified to encode its function. Longer 145 

engineered DNA sequences and those that are more densely coded are at a greater risk for 146 

inactivating mutations.6,7 The rate of base substitutions in E. coli is ~5×10–10 per base pair per 147 

generation,36,37 and most microbes with DNA genomes have similar mutation rates.38,39 Thus, if 148 

a sequence contains protein-coding genes that constitute 1000 base pairs and 20% of the 149 

substitutions in these genes lead to a loss of function, the failure rate will be ~1×10–7 per cell 150 

division just from base substitutions. This estimate does not account for the presence of 151 

sequence repeats that can act as mutational hotspots that cause specific large deletions and 152 

small indels in certain sequence contexts at much higher rates.40 Furthermore, selfish elements 153 

in the host genome usually contribute other types of mutations that further increase the total rate 154 
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of failure mutations. In particular, transposon insertions often inactivate genes or sequences 155 

required for gene expression in engineered DNA constructs.11,41,42  156 

In the end, empirical measurements generally find a rate of ~10−6 per cell division for 157 

mutations that inactivate a single-gene that is located in the chromosome of E. coli or another 158 

bacterium.41,43 The effective mutation rate is much higher for engineered constructs maintained 159 

on multicopy plasmids because each copy of the plasmid in a cell is at risk. If there are 100 160 

copies of a plasmid, the chance of a plasmid with a certain mutation arising is ~100-fold higher. 161 

So, for example, the rate of reverting a stop codon in an engineered reporter construct, which is 162 

expected to only occur via one or a few single base substitutions, has been measured as ~10−7 163 

rather than the value of ~10−9 expected if this reporter were tested in the chromosome12. For 164 

plasmids that lack partitioning systems like pBR322 and pUC derivatives commonly used in E. 165 

coli, one broken plasmid copy can rapidly lead to 100% failure of all plasmids in all cells in a 166 

population because progeny that happen to inherit more broken plasmid copies due to random 167 

segregation will outcompete those that do not. In summary, the effective rate of failure 168 

mutations in a high-copy plasmid is usually much higher than the point mutation rate; it is 169 

expected to be at least on the order of 10−5 and often as high as 10−4 per cell doubling. Though 170 

mutational hotspots and multicopy plasmid replication are not explicitly accounted for in our 171 

model, they justify exploring simulations with a wide range of mutation rates.  172 

Previous studies of escape mutations have used the deterministic results of ordinary 173 

differential equation (ODE) models to estimate the times to failure of engineered cells.6,11 This 174 

framework assumes that mutants appear continuously and immediately at the beginning of the 175 

simulation. However, in reality, mutations appear stochastically in single cells at very low rates, 176 

and the dynamics can vary greatly depending on whether these “jackpots” occur early or late in 177 

the growth of a population. Therefore, we compared the deterministic results for our ODE model 178 

to stochastic simulations of this model to evaluate how and when the results varied. We found 179 

that deterministic simulations consistently overestimate how unstable a construct will be for a 180 
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given combination of parameters (Fig. 2). The discrepancy becomes larger at lower mutation 181 

rates where it mainly reflects the waiting time needed for the rare event that generates the first 182 

mutant cell to appear in a population in the stochastic simulations, compared to the immediate 183 

appearance of these mutants in the deterministic simulations. However, there are also 184 

occasional stochastic simulation runs in which failure occurs sooner than it does in the 185 

deterministic model due to early jackpots (as seen in the panel for b = 20%, µ = 10−8). 186 

 187 

Fig. 2. Simulations of evolutionary failure times for populations of engineered cells. In 188 
each panel, the results for deterministic (black) and stochastic (red) simulations of the failure 189 
model are shown for one combination of burden (b) and failure mutation rate (µ) parameters. 190 
Vertical blue lines represent the culture scales shown in Figure 1C. Curves for stochastic 191 
simulations are partially transparent so that one appears pink and overlapping trajectories from 192 
multiple simulations appear red. Twenty stochastic simulations are displayed in each panel. 193 

 194 
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 195 

Fig. 3. Cumulative distributions of times to 50% failure in stochastic simulations. Curves 196 
represent the output from 10,000 replicate simulations for each parameter combination. 197 

Because we expect it to better represent the true evolutionary dynamics, we further 198 

examined the results of the stochastic simulations (Fig. 3). They show that at a typical mutation 199 

rate of 10−5 per cell doubling (expected for a plasmid-borne construct) a burden of ≥50% would 200 

lead to takeover of broken mutants in a test tube culture most of the time. At a mutation rate of 201 

10−4, constructs with a burden of ≥40% would not survive on this small scale. Since one needs 202 

to grow a single transformed cell into a culture of this size to purify and sequence a plasmid to 203 

verify that it has the designed sequence, the model predicts that constructs this burdensome will 204 

be essentially “unclonable”. Even for less-burdensome plasmids or for constructs experiencing 205 

lower mutation rates (for example, single-copy genes in the chromosome), the model predicts 206 

that failure may occur at larger scales if the burden reaches the 20-30% range. 207 
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We created an online version of our model that allows users to adjust the burden and failure 208 

mutation rate parameters (https://barricklab.org/burden-model). There is an option to use the 209 

stochastic or deterministic version of the model and compare the results. Additionally, users can 210 

change the effective volume and density of their culture to understand the scale at which a DNA 211 

construct with certain characteristics is likely to fail. This interactivity encourages users to 212 

explore a range of parameters and to rerun simulations multiple times to see for themselves the 213 

sizable impact of mutational stochasticity on the continuing functioning of devices constructed in 214 

living, and therefore evolving cells. We believe that this resource will be useful for educating 215 

both new and practicing synthetic biologists, as this type of random and self-reinforcing failure 216 

can be confusing and does not have a direct parallel in traditional engineering fields. 217 

Burden of BioBrick Parts. To test whether actual engineered DNA sequences obey the 218 

evolutionary constraints predicted by our model of escape mutations, we examined a diverse 219 

collection of engineered DNA sequences created for the iGEM (International Genetically 220 

Engineered Machine) competition.31 These BioBricks range in complexity from small DNA 221 

"parts", such as promoters and protein tags, to larger "devices" that consist of multiple genes 222 

and operons. Historically, BioBricks in the Registry of Standard Biological Parts had to be 223 

cloned into plasmids in ways that allowed them to be combined into larger constructs using a 224 

specific assembly standard.44 As a consequence, most BioBricks in the kit distributed to iGEM 225 

teams are provided in plasmids pSB1C3, pSB1A2, or in both of these backbones (Fig. 4A). 226 

pSB1C3 and pSB1A2 share the same high-copy pUC origin of replication and overall 227 

organization, but they are maintained using different antibiotic resistance genes: 228 

chloramphenicol acetyltransferase (cat) which confers chloramphenicol resistance (CamR) for 229 

pSB1C3 versus β-lactamase (bla) which confers resistance to ampicillin and other β-lactams 230 

(AmpR) for pSB1A2. These plasmids also differ in how expression of the cloned BioBrick part is 231 

insulated from elements in the plasmid backbone. pSB1A2 has a transcriptional terminator 232 
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upstream of the BioBrick prefix multiple cloning site. pSB1C3 has a terminator at the same site 233 

and an additional terminator downstream of the BioBrick suffix multiple cloning site. 234 

 235 

Fig. 4. Measurements of BioBrick burden. (A) Maps of the two plasmid backbones that 236 
housed most of the 301 BioBricks that were tested and the five BFP controls that were included 237 
in every assay. The prefix (pre) and suffix (suf) multiple cloning sites used in BioBrick assembly 238 
are shown. (B) Burden of each BioBrick tested. Burden is the percentage reduction in the 239 
growth rate of E. coli cells transformed with a BioBrick plasmid. Gray points are individual 240 
measurements. Bars are the means for all measurements of a BioBrick. For BioBricks with 241 
orange bars, the measured burden was significantly greater than zero (adjusted p < 0.05, one-242 
tailed t-tests with Benjamini-Hochberg correction for multiple testing). Data used to create this 243 
figure are provided in Table S2 and Table S3. 244 

We measured the growth rates of E. coli DH10B derived cells transformed with BioBrick 245 

plasmids to determine how many of these genetic parts and devices were burdensome and to 246 

what extent. In each microplate assay, we included 5 pSB1C3-based BioBrick plasmids we 247 

constructed with different promoter and ribosome binding site combinations driving expression 248 

of blue fluorescent protein (BFP). These plasmids cause different amounts of burden and 249 

served as internal controls. We normalized growth rates between assays to account for plate-to-250 
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plate variation based on results for the BFP controls and an additional assumption that most 251 

parts in each microplate would exhibit no burden (Fig. S1, Table S2, and Methods). 252 

 In total, we measured the effects of the 5 BFP control plasmids and 301 other BioBricks on 253 

E. coli growth (Fig. 4B, Table S3). Of the 301 BioBricks we characterized, we tested 249 in 254 

pSB1C3, 40 in pSB1A2, 9 in both of these plasmid backbones, and 3 housed in other similar 255 

backbones (pSB1AK3 or pSB3C5). Even though different antibiotics were added to growth 256 

media when testing BioBricks cloned into pSB1C3 and pSB1A2, there was not a significant 257 

effect of the plasmid backbone on the growth rates measured for the 9 parts tested in both 258 

plasmids (p = 0.069, F1,56 = 3.44, two-way ANOVA) (Fig. S2A). We also did not find evidence 259 

for any overall difference in the distributions of growth rates measured for parts tested in 260 

pSB1C3 versus the other three backbones (p = 0.92, two-sided Kolmogorov-Smirnov test) (Fig. 261 

S2B). Therefore, we considered all of our measurements together, irrespective of the plasmid 262 

backbone in which a BioBrick part was tested, in all further analyses. 263 

Excluding the five BFP control plasmids, which were all burdensome, 112 of the 301 other 264 

BioBrick part plasmids (37.2% of those tested) significantly decreased E. coli growth rates 265 

relative to the majority of parts that had no burden before correcting for multiple testing 266 

(individual one-tailed t-tests, p < 0.05). For 31 BioBricks the growth rate burden was significantly 267 

greater than 10%, for 19 it was significantly greater than 20%, and for 6 it was significantly 268 

greater than 30% (one-tailed t-tests, p < 0.05). In agreement with our population genetic model, 269 

none of the BioBrick plasmids had a large enough burden (>45%) that they would be predicted 270 

to mutate when growing a small test-tube culture in the laboratory (one-tailed t-tests, p < 0.05). 271 

After accounting for multiple testing using the Benjamini-Hochberg procedure at a 5% false 272 

discovery rate (FDR), we can conclude that 59 of the 301 tested BioBrick parts (19.6%) exhibit 273 

some level of burden with high confidence (one-tailed t-tests, adjusted p < 0.05). Table 1 lists 274 

the 34 BioBricks that met this criterion and had a mean estimated burden of >10%.  275 

  276 
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Table 1. Most burdensome BioBricks 277 
BioBrick‡ Seq& Backbone Burden (b)† Fraction other 

burden (bO/b)* 
Subparts¶ Function# 

K523022 M pSB1C3 51.7 ± 19.2% n.s. Plac &lacZ' crtE crtI crtB Carotenoid synthesis (Pantoea ananatis) 
K733010 C pSB1C3 46.0 ±   6.2% 0.16–0.71 Ptms &endB Antitoxin gene (Bacillus subtilis)B 
J04450 NS pSB1AK3 44.4 ±   2.2% n.s. Plac &mRFP1 RFP reporter 
K523014 C pSB1C3 39.6 ±   4.7% 1.04–1.98 Plac &lacZ' bglX Cellobiose degradation 
K523020 M, E pSB1C3 38.3 ±   8.7% n.s. Plac &lacZ' INP+bglX Cellobiose degradation (INP, Pseudomonas syringae) 
K608010 C pSB1C3 34.1 ±   7.7% NT PJ23110 &GFP GFP reporter 
K515100 C pSB1C3 33.9 ± 15.9% 0.26–0.88 Pveg2 &IaaM &IaaH Indoleacetamide synthesis (Pseudomonas savastanoi)B 
J61000 m pSB1A2 33.4 ±   4.1% 0.21–0.96 Pcat &cat Chloramphenicol resistance 
K541526 C pSB1C3 32.9 ±   7.8% n.s. Pveg &reflectin1A Reflectin reporter (Euprymna scolopes)B 
K592020 m pSB1C3 31.8 ±   5.0% NT PfixK2 &cI(λ) PcI &amilCP Blue light sensor output (Acropora millepora) 
J36335 m pSB1C3 30.2 ± 12.2% n.s. Plac &kaiA Plac &kaiC  Circadian rhythm (Synechococcus elongatus) 
I759017 C pSB1C3 29.5 ±   8.3% NT Ptet [cis5] &YFP YFP reporter 
K346000 C pSB1C3 29.1 ± 10.4% n.s. &RNAP(T3) Phage RNA polymerase (Phage T3) 
C0056 C pSB1A2 28.2 ±   3.9% n.s. cI434(λ) Mutant phage repressor (Phage λ) 
K880005 C pSB1C3 27.5 ±   8.6% n.s. PJ23100 & Gene expression 
C0053 NS pSB1C3 27.2 ±   6.5% n.s. cII(P22) Phage repressor (Phage P22) 
K608012 C pSB1C3 27.1 ±   4.7% NT PJ23110 &GFP GFP reporter 
I759014 C pSB1C3 26.8 ±   5.8% n.s. Ptet [cis2] &YFP YFP reporter 
K541502 C pSB1C3 24.6 ±   3.2% 0.42–1.91 Pveg &lipAsig Gene expression/secretion (Bacillus subtilis)B 
K395602 C pSB1C3 20.3 ±   1.9% 0.09–0.38 PT7 &MpAAT1 Apple fragrance generator (Malus pumila) 
K733013 C pSB1C3 19.5 ±   3.3% n.s. Pveg &GFP GFP reporterB 
K523013 C pSB1C3 18.3 ±   8.8% NT Plac &lacZ' INP+EYFP EYFP reporter (INP, Pseudomonas syringae) 
I761014 C pSB1C3 17.5 ±   5.0% 0.21–1.33 &cinR &cinI Quorum sensing (Rhizobium leguminosarum) 
C0051 NS pSB1C3 17.1 ±   8.2% n.s. λ-cI+LVA Phage repressor (Phage λ) 
K137018 C pSB1C3 16.8 ±   8.2% NT PL-lacO1 &luxR Plux-R &GFP Quorum sensing receiver (Aliivibrio fischeri) 
K1149051 C pSB1C3 15.0 ±   8.4% n.s. PJ23104 &phaC1 phaA phaB1 Polyhydroxybutyrate synthesis (Ralstonia eutropha) 
K731721 C pSB1C3 14.8 ±   4.4% n.s.  Transcription terminator (Phage T7) 
K639003 m pSB1C3 14.8 ±   2.8% n.s. PrrnB-P1 &lacI PL-lacO1 &mCherry Stress sensor 
K541501 C pSB1C3 14.4 ±   3.6% n.s. Pveg &sacBsig Gene expression/secretion (Bacillus subtilis)B 
K608011 C pSB1C3 13.7 ±   5.4% NT PJ23110 &GFP GFP reporter 
K861172 NS pSB1C3 13.4 ±   2.5% n.s. PcstA &cI(λ) Phage repressor (Phage λ) 
K617004 C pSB1C3 11.6 ±   1.5% 0.95–2.32 attP(λ) P'OP Phage attachment site (Phage λ) 
K325218 m pSB1C3 10.8 ±   7.3% 0.76–1.55 ParaC &luc(orange) Luciferase reporter (Luciola cruciata) 
I712669 m pSB1C3 10.1 ±   4.5% NT PCMV GFP GFP reporterM 
‡BioBrick accession numbers. The 34 parts shown all had an estimated burden that was significantly greater than 278 
zero after correcting for multiple testing and had a mean estimated burden value of >10%. &Results of sequencing the 279 
BioBrick plasmid: C, reported BioBrick sequence was confirmed; M, major discrepancies found in BioBrick sequence; 280 
m, minor discrepancies found in BioBrick sequence; NS, not sequenced; E, part is reported to have errors in the 281 
iGEM Registry. Full sequencing results are provided in Table S4. †Burden as the percentage reduction in growth rate 282 
caused by the BioBrick ± estimated 95% confidence limits. *95% confidence interval on the fraction of burden from 283 
sources other than utilization of the host cell’s gene expression capacity. n.s., value was not significantly greater than 284 
zero. NT, not tested because the BioBrick contains a protein that interferes with measurement of GFP fluorescence. 285 
¶Representation of gene expression signals and genes in the BioBrick abbreviated as follows: Px, promoter from gene 286 
or operon x; &, ribosome binding site; [y] other regulatory sequence. Other italicized entries are gene names. 287 
#General description of the designed function of the BioBrick. For BioBricks that contain recombinant DNA encoding 288 
genes other than fluorescent proteins, the organism of origin is shown in parentheses. Superscript B or M, indicates 289 
that the gene expression sequences are intended to function in Bacillus subtilis or mammalian cells, respectively. 290 
 291 
 292 

BioBricks containing gene expression parts are more likely to be burdensome. Only 293 

BioBricks that express an RNA or protein product are expected to appreciably burden a host 294 

cell, as the cost of replicating plasmid DNA is generally negligible in comparison.14 Therefore, 295 

we hypothesized that the 59 BioBricks in the high-confidence burden set would be more likely 296 

than BioBricks that had no significant burden to contain strong gene expression signals. Series 297 

of constitutive promoter parts (J23100–J23119) and ribosome binding site (RBS) parts (B0030, 298 

B0032, and B0034) with known relative strengths are commonly reused in different BioBricks. 299 
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These promoters and RBS sequences can be divided into weak, medium, and strong variants 300 

on the basis of experimental data reported in the iGEM Registry (Fig. 5A,B).45 301 

 302 

Fig. 5. Strong promoter and ribosome binding sites are more likely to be found in 303 
BioBricks exhibiting significant burden. (A, B) Relative strengths of common promoters and 304 
ribosome binding site (RBS) BioBrick parts, as reported in the iGEM Registry. The numbers of 305 
examples of each promoter or RBS in the 301 BioBricks examined in this study are indicated 306 
above the bars (n). Some of these BioBricks contain multiple instances of these promoter and 307 
RBS parts. Dashed lines in A are the thresholds used to classify promoters as weak, medium, 308 
or strong. (C, D) Fraction of BioBricks tested that exhibited significant burden when grouped by 309 
the strongest gene expression element of each type that they contain. The total numbers of 310 
parts in each category are shown above the bars (n). 311 

We examined whether BioBricks that exhibited burden were more likely to include these 312 

common gene expression parts than those that were not burdensome (Fig. 5C,D). BioBricks 313 

that contained any of these constitutive promoters were 2.9 times as likely to be in the set of 59 314 

BioBricks with significant burden compared to those that did not have one of these promoters (p 315 

= 0.00040, Fisher's exact test), with a trend that the stronger promoters were even more likely to 316 
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be associated with burdensome BioBricks. Similarly, BioBricks that included the strongest of the 317 

three RBS parts (B0034) were 2.1 times as likely to exhibit significant burden as BioBricks that 318 

included only the two weaker RBS variants or none of the RBS sequences in this series (p = 319 

0.0037, Fisher's exact test). None of the BioBricks that contained the medium-strength RBS 320 

also had a constitutive promoter part, which can explain why this category noticeably deviated 321 

from the general trends. Overall, these results agree with the general expectation that strong, 322 

constitutive gene expression contributes to the burden of many BioBricks. 323 

One case that stood out in examining these results was BioBrick K880005. It includes the 324 

strongest constitutive promoter (J23100) and RBS (B0034) from these sets, but it does not 325 

include a downstream open-reading frame. Nevertheless, K880005 is among the most 326 

burdensome BioBricks that we measured: it reduces the growth rate of E. coli by 27.5 ± 8.6% 327 

(95% confidence interval) (Table 1). The high burden of this BioBrick may put it at risk of 328 

mutating during laboratory propagation, even at the test-tube scale (Fig. 3). Its unexpected 329 

burden could result from transcription and/or translation of sequences downstream of the part in 330 

the BioBrick suffix sequence and plasmid backbone, even though it was tested in the pSB1C3 331 

backbone that has transcriptional terminators designed to insulate the BioBrick.  332 

Mutations and variability in strains with BioBrick plasmids support a burden limit on 333 

constructability. To validate the identity and integrity of the plasmids we tested, we compared 334 

whole-plasmid sequencing data for 215 BioBricks plus the 5 BFP controls to the sequences 335 

reported in the iGEM Registry (Table S4, and Methods). Excluding the controls, we sequenced 336 

214 of the 301 BioBricks for which we had burden measurements (71.1%). Of these, 8 plasmids 337 

were initially misassigned to the wrong BioBrick and 3 others to the wrong backbone in our 338 

results before we corrected them. For 185 of the 215 sequenced plasmids (86.0%), our results 339 

perfectly matched the expected BioBrick sequences. Of the 30 others, we found relatively minor 340 

discrepancies between the sequencing data and the reported BioBrick sequences for 23, and 341 

the other 7 had major discrepancies, such as large deletions or transposon insertions. 342 
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It is not possible to determine with 100% certainty whether these discrepancies are due to 343 

errors in the designed part sequences that were submitted to the iGEM Registry or mutations 344 

that arose and took over cell populations because they reduced BioBrick burden. Most 345 

discrepancies are single-base changes or deletions that may have no effect on genetic part 346 

function. However, in the seven cases of major discrepancies we can be reasonably sure that 347 

we have observed unplanned mutations with consequences. Two BioBricks (S03749, I759016) 348 

were inactivated by insertion sequence (IS) elements that must have transposed into their 349 

sequences after construction. Two BioBricks that were closely related to the second of these 350 

(I759019, I759020) had frameshifting or large deletions. Two other parts related to one another 351 

(K523020, K523022) also contained large deletions, and the first of these was marked as 352 

“believed to contain major errors” in the iGEM Registry. Finally, most of BioBrick I732920 was 353 

deleted, and its sequence marked as “inconsistent” in iGEM Registry. 354 

Two of the BFP control BioBrick plasmids, which our own iGEM team constructed and 355 

submitted to the iGEM Registry, demonstrate that there is a real risk of selecting cells that have 356 

mutated copies of highly burdensome plasmids soon after they are created. We noticed that 357 

there was a discrepancy in the order of the growth rates of strains carrying these plasmids in 358 

our burden assays: the two control plasmids designed to have the strongest combinations of 359 

promoters and ribosome-binding sites driving BFP expression unexpectedly exhibited the least 360 

burden. Re-testing the frozen cell stocks of the original transformants of these plasmids 361 

demonstrated that the derived stocks used in the burden assays had picked up mutations that 362 

largely alleviated the burden of these two plasmids (Fig. S3). The burden was reduced from 363 

45.8% to 17.8% in one case and 41.9% to 17.2% in the other. Further supporting the instability 364 

of the two most burdensome BFP control plasmids, when we shared them with another iGEM 365 

team, they found an insertion of an IS5 element occurred in the promoter driving BFP 366 

expression in their transformant, which reduced but did not eliminate fluorescence. 367 
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Even if the original cell giving rise to a colony that is picked after transforming a plasmid or 368 

after resteaking a stock has only intact copies of a plasmid, it may give rise to a heterogeneous 369 

population of descendant cells as it is cultured, stored as a frozen stock, and revived. As our 370 

simulations show, more burdensome plasmids will be at a greater risk of having newly evolved 371 

mutants begin to take over the population during these steps. If this type of stochastic, partial 372 

takeover of a cell population with mutants was occurring during our experiments, more 373 

burdensome BioBricks might exhibit greater variability in their measured growth rates between 374 

replicate cultures. In agreement with this hypothesis, we found a significant trend toward a 375 

higher standard error of the mean for growth rates measured for BioBrick plasmids that had 376 

higher burden (p = 2.0×10−11, two-tailed t-test for a non-zero slope) (Fig. S4).  377 

In summary two lines of evidence support that “clonability” or “constructability” limits for 378 

engineered DNA are creating an upper bound on what plasmids are possible to construct and 379 

measure that might be causing us to underestimate the burden of some BioBrick designs. First, 380 

our BFP control plasmids designed to have the strongest gene expression mutated during 381 

construction and some of the BioBrick plasmids we characterized also sustained mutations that 382 

likely reduce their burden. Second, we see more variation in our measurements of growth rates 383 

for more burdensome BioBricks, which could be at least partially explained by cells with 384 

mutations that reduce plasmid burden arising and beginning to take over during our assays. 385 

Redirecting gene expression capacity to recombinant protein production causes a 386 

proportional reduction in growth rate. The E. coli DH10B-GEM strain that we used as a host 387 

for testing BioBrick burden has a constitutively expressed GFP gene integrated into its 388 

chromosome (Fig. 6A). This GFP can be used to monitor how much the presence of a BioBrick 389 

plasmid reduces the capacity of an E. coli cell for expressing its native proteins.21,46 If the main 390 

source of burden from a plasmid is due to its use of any cellular resources or machinery that are 391 

necessary to achieve translation of proteins (e.g., ribosomes), then one expects that for a given 392 

reduction in GFP expression there will be a proportional reduction in growth rate. If there is a 393 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.08.588465doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.08.588465
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19  

reduction in growth rate that is larger than expected relative to the reduction in GFP expression 394 

that is observed, then some or all of the burden comes from other sources. For example, gene 395 

products encoded on the plasmid may lead to depleting a cellular resource that is not directly 396 

related to gene expression or have a toxic effect that interferes with homeostasis. 397 

To establish that the monitoring device worked as expected, we initially tested two series of 398 

plasmids that express other fluorescent proteins (FPs) at varying levels (Fig. 6B). The first was 399 

our set of 5 burdensome BFP control plasmids that have different promoter and RBS 400 

combinations. Here we used stocks of cells with the BFP plasmids that did not contain the 401 

mutations that alleviated burden noted above. The second set consisted of 14 plasmids 402 

available from the iGEM Registry that contain constitutive promoters of different strengths 403 

driving expression of RFP. These RFP constructs were not included in the prior tests of BioBrick 404 

burden because they are housed in a different plasmid backbone (J61002). In both cases, we 405 

expected that all of the burden exhibited by these plasmids would be due to recombinant FP 406 

expression depleting the translational capacity of the host cell. FP production does not use any 407 

other types of limiting cellular resources, and these FPs are not expected to be toxic to cells 408 

within the range of concentrations at which they are expressed. 409 

In agreement with this expectation, we found that the growth rates of these strains were 410 

reduced in proportion to how much they reduced GFP expression (Fig. 6C, Table S5, Table 411 

S6). The Pearson correlation coefficients for this linear relationship were 0.93 and 0.81 for the 412 

BFP and RFP plasmid series, respectively. The relationship between growth rate and GFP 413 

expression differed slightly between the BFP and RFP series, but this was expected because 414 

they have different plasmid backbones and were tested under different culture conditions (see 415 

Methods). The growth rate reductions seen for RFP series plasmids were roughly in proportion 416 

to the amount of recombinant protein that they expressed. By contrast, strains with BFP series 417 

plasmids that experienced more gene expression burden did not necessarily produce more 418 

BFP. This discrepancy is likely related to how different combinations of promoter and RBS 419 
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strengths can lead to translating the same amount of protein but with more or less efficient use 420 

of ribosomes.21 As for the 301 BioBricks we tested and the unmutated BFP controls, none of the 421 

RFP expression constructs had a burden of >45% in the "unclonable" range. 422 

 423 

 424 
Fig. 6. Expression of recombinant proteins from a plasmid reduces the growth rate of E. 425 
coli because it diverts some of its capacity for gene expression. (A) E. coli DH10B-GEM 426 
host strain with the gene expression capacity monitoring device that constitutively expresses 427 
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GFP integrated into its chromosome. (B) Maps for the BFP and RFP plasmid series. (C) Growth 428 
rates and fluorescent protein production rates for different BFP and RFP plasmids in E. coli 429 
DH10B-GEM. Dashed lines are Deming regressions showing that the reduction in growth rate is 430 
proportional to the reduction in the capacity of the host cell for protein expression within each 431 
set of strains. The rate of GFP production from the monitoring device is used as a readout of 432 
gene expression capacity. Rates of BFP and RFP production in cells with each type of plasmid 433 
are indicated by shading in the respective color. Error bars are 95% confidence limits. Two 434 
independent transformants of each BFP plasmid that were tested separately are displayed as 435 
points with different shapes. GFP and BFP production rates were measured on different relative 436 
scales and each series uses a different vector backbone and was measured under different 437 
growth conditions, so results should only be compared within each series. Data used to create 438 
this figure are provided in Table S5 and Table S6. 439 

 440 

Some BioBricks exhibit burden from sources other than gene expression. All of our 441 

measurements of BioBrick burden were conducted in the E. coli DH10B-GEM host strain that 442 

contained the GFP gene expression capacity monitor (Fig. 6A), so we next examined how GFP 443 

production correlated with the previously characterized growth rates to understand whether the 444 

burden of each BioBrick could be attributed partly or wholly to its use of the host cell’s gene 445 

expression resources. If GFP production was reduced in direct proportion to the growth rate, as 446 

it was in the BFP control plasmids, this would indicate that all of the BioBrick burden was from 447 

gene expression (Fig. 7A). If there was significant burden with no or less-than-the-expected 448 

reduction in GFP production, then it would indicate a BioBrick was compromising E. coli growth 449 

for some other reason (Fig. 7B). Of the 301 BioBricks tested, 42 encode GFP or another protein 450 

that is expected to interfere with measuring GFP fluorescence, so they were excluded from this 451 

analysis (see Methods). We again used the BFP plasmids as internal controls for normalizing 452 

GFP production rates between different microplate assays (Fig. S5 and Methods).  453 

Plotting a linear relationship between the BFP plasmid controls, the no-burden BioBrick 454 

plasmids, and the origin yields the expected trade-off between growth rate and GFP production 455 

for the BFP plasmids and some of the measured BioBrick plasmids (Fig. 7C). However, some 456 

parts displayed a higher GFP production rate than what would be expected from the measured 457 

growth rate reduction, evidence that some or all of their burden arises for reasons other than 458 

diverting the host cell’s gene expression resources. Of the 26 BioBrick parts with high-459 
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confidence predictions of burden >10% that could be evaluated in this assay, 9 (34.6%) had a 460 

significantly greater reduction in growth rate than predicted from the change in GFP production 461 

(adjusted p < 0.05, one-tailed t-tests with Benjamini-Hochberg correction for multiple testing), 462 

indicating that a component of their burden is due to a source other than reducing the gene 463 

expression capacity of the host cell (Table 1). 464 

 465 

Fig. 7. Some BioBricks exhibit burden from sources other than gene expression. (A) 466 
Examples of expected results for two BioBricks that exhibit burden (b) that is wholly due to 467 
utilizing the gene expression capacity of the host cell. The reduction in growth rate is 468 
proportional to the reduction in GFP production according to a linear relationship (dashed line) 469 
that is established from measurements of control strains. (B) Examples of expected results for 470 
two BioBricks that exhibit burden from sources other than gene expression. (C) Results of 471 
measuring growth rates and GFP production rates for 259 BioBricks that do not contain 472 
fluorescent proteins that are expected to interfere with measuring GFP fluorescence in the E. 473 
coli host strain containing the gene expression capacity monitor. Points for each BioBrick are 474 
colored based on whether there was significant burden (reduction in growth rate). Symbols 475 
indicate whether the null hypothesis that all burden was due to utilizing the gene expression 476 
capacity of the host cell could be rejected. BioBricks with significant burden from sources other 477 
than gene expression are labeled with their accession numbers. Estimates of bO/b for these 478 
BioBricks are shown in Table 1. 479 
 480 

  481 
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DISCUSSION 482 

By measuring the burden of 301 BioBricks and performing simulations, we established an 483 

evolutionary limit on the constructability of engineered DNA sequences: none of the BioBricks 484 

we tested slowed E. coli growth rates by >45%. Our results are in broad agreement with other 485 

studies that have made similar measurements of growth defects and the effects of spontaneous 486 

mutations that alleviate the burden of engineered DNA on bacterial cells.47,11 For example, 487 

researchers testing a library of plasmids expressing three fluorescent proteins found that a 488 

mutant that deleted one of these genes and took over populations after 30 generations of serial 489 

transfer had an 89% higher exponential growth rate compared to the original engineered 490 

strain,10 which corresponds to this mutation reducing burden by 47%. Similarly, the level of 491 

burden under non-inducing conditions topped out in the 40-60% range for cells containing 492 

various constructs in the study that developed the gene expression capacity monitor we used.21 493 

We found potential mutations in some BioBricks relative to their designed sequences and 494 

more variation in our measurements of more burdensome BioBricks. We also discovered that 495 

two of the BioBricks we used as internal controls for our assays unexpectedly mutated while we 496 

were using them in ways that maintained some BFP fluorescence yet reduced their burdens 497 

from near the unclonable threshold (>40%) down to levels that can be reliably maintained during 498 

growth on a laboratory scale (<20%). These results suggest that we may be underestimating 499 

the burden of some BioBrick designs, either because their plasmids were mutated before we 500 

obtained them or because new mutants arose and reached appreciable frequencies in our 501 

assays. Some discrepancies are likely due to human errors in the sequences digitally submitted 502 

to the Registry versus the original DNA samples themselves. For example, researchers might 503 

have copied over a portion of a sequence from a prior plasmid map or part entry and assumed it 504 

was correct and unchanged without ever empirically validating their construct. However, there is 505 

also both direct and anecdotal evidence that some Biobricks are prone to mutate.  506 
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One such example of evolutionary instability is for the exceptionally well-characterized 507 

BioBrick F2620 device. F2620 encodes a luciferase gene that is expressed in response to the 508 

quorum sensing molecule acyl homoserine lactone.29 It was not one of the BioBricks we tested. 509 

F2620 was noted to reproducibly fail due to deletions between two 143-bp repeats introduced 510 

by re-use of the B0015 double terminator part. When induced, device function declined between 511 

56 and 74 cell doublings and was entirely lost after 92. The creators originally hypothesized that 512 

failure was due to pre-existing mutant plasmid copies in their cell populations, but the instability 513 

persisted even when they re-transformed the plasmid, confirming that it was due to evolution 514 

fueled by de novo mutations. Our model shows how you can get deterministic-seeming failures 515 

like this if the mutation rate is sufficiently high, as it can be for repeat-mediated deletions.40  516 

Few BioBricks have been characterized to the same extent as F2620. We discovered 517 

inactivating deletions or transposon insertions in seven of the BioBrick plasmids, which likely 518 

indicates that that they are also especially prone to mutational failure. As an example, the 519 

Registry page for BioBrick K523020—one of the most burdensome plasmids that we 520 

measured—contains a warning, "Part submitted to Registry is believed to contain major errors,” 521 

which is probably more typical of how a user of an unstable part would understand rapid 522 

evolutionary failure due to mutations that are relieving burden. Future work could clarify whether 523 

the cases of sequence discrepancies we encountered are already mutated BioBricks, especially 524 

unstable BioBricks, or design errors by reverting the putative mutations to the designed 525 

sequences and, if successful (i.e., the change does not make them so burdensome that they 526 

are unclonable), measuring their burden. Alternatively, deep-sequencing populations of 527 

plasmids isolated from laboratory-scale cultures could be used to characterize whether they 528 

consist of mixtures of mutated and unmutated plasmids.11,48 Surveys of plasmids in other 529 

repositories have also found that some acquire inactivating transposon insertions.49 530 

The GFP gene expression monitor that we used responds to changes in a cell’s global 531 

capacity for protein expression. For any one construct, this could theoretically represent 532 
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depletion of factors as diverse as the availability of RNA polymerases, ribosomes, initiation 533 

factors, charged tRNAs, amino acids, or nucleotides. However, we expect that ribosome 534 

availability is the limiting factor in all or nearly all BioBricks we tested, based on studies of 535 

recombinant gene overexpression in E. coli.15–19 While we were able to establish overall trends 536 

that plasmids containing strong constitutive promoters and ribosome-binding sites had a higher 537 

chance of exhibiting burden, it was not possible to predict the gene expression component of 538 

burden a priori on this set of sequences. Hopefully, ongoing improvements in tools for predicting 539 

transcription and translation initiation rates trained on expanding databases of high-throughput 540 

gene expression measurements50,51 will make this possible in E. coli and other organisms. 541 

Burden can also arise for diverse reasons other than gene expression: anytime engineered 542 

DNA taxes a cellular resource to the extent that it becomes a bottleneck for cell growth. For 543 

example, genetic engineering can overwhelm protein export pathways or the capacities of 544 

different subcellular compartments.25,26 Further case studies of the burdensome plasmids with 545 

costs not associated with gene expression could reveal the origins of these costs. It would be 546 

particularly useful to create other types of burden monitors, e.g. of protein secretion, membrane 547 

occupancy,52 or different metabolic bottlenecks so that the relevant limiting factors could be 548 

rapidly diagnosed and systems redesigned accordingly to make them more stable. This more 549 

refined information will likely be needed to predict how the burden of a composite part or device 550 

depends on the burden of each of the genetic parts from which it is constructed. If multiple 551 

components use gene expression resources, then one might expect them to have additive 552 

effects on burden, but if they use orthogonal (i.e., distinct) limiting resources, then one may find 553 

that the combination is no more burdensome than the more burdensome of the two on its own. 554 

We measured burden as a decrease in the exponential growth rate of E. coli host cells. 555 

While this was convenient for making replicated, high-throughput measurements in a microplate 556 

reader, it does not fully reflect how a DNA construct impacts the evolutionary fitness of a cell. 557 

For example, it is possible that engineering a cell changes the lag time before growth begins,53 558 
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survival during stationary phase, colony growth on agar, or survival of cryopreservation. 559 

Furthermore, our approach can only be applied to understand genetic stability under laboratory 560 

conditions, not in environmental contexts or host-associated microbiomes. Co-culture 561 

competition assays between a strain of interest and a reference strain could be used to 562 

measure fitness in a way that captures all components of fitness in any environment.54 To make 563 

these measurement high-throughput, host strains with unique sequence barcodes in their 564 

chromosomes and transformed with different engineered plasmids or DNA constructs could be 565 

simultaneously competed all-against-one-another in bulk competitive fitness assays.55,56 566 

Researchers can take actions to improve the constructability and stability of especially 567 

burdensome engineered DNA sequences. Most obviously, using low- or medium-copy plasmids 568 

rather than high-copy ones or integrating constructs into the chromosome of a bacterium to 569 

make them single-copy will often reduce burden into the cloneable and stable ranges.10 570 

Systems have also been engineered for controlling plasmid copy number, so that DNA parts 571 

can be maintained in cells at a low copy number and then amplified on demand.14,57 Similarly, 572 

reducing the burden of a construct can be achieved by altering promoter and ribosome-binding 573 

site strengths or by using inducible promoters, as long as these changes are compatible with 574 

device function.10,21 Systems that regulate expression in response to the growth rate of a cell58,59 575 

or that couple continued functioning of the engineered DNA to cell survival60 can more directly 576 

buffer against evolutionary failure. Another category of more ambitious approaches is to 577 

introduce orthogonal polymerases61 or ribosomes62,63 into a cell to prevent synthetic constructs 578 

from competing with native gene expression, though the requirement that a cell produce the 579 

necessary machinery may itself be burdensome. Next, aspects of the growth environment can 580 

sometimes be changed. For example, supplementing media with vitamins or altering salt 581 

concentrations has been reported to stabilize certain constructs.11,22 A final category of 582 

approaches seeks to reduce the chances of mutations to improve the evolutionary stability of 583 
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genetic constructs.7,64 For example, cells with lower mutation rates can be created by deleting or 584 

repressing transposons 9,65 or by altering cellular processes that affect point mutation rates.12 585 

We created an interactive model of failure mutations in a cell population that can be used to 586 

explore how tuning mutation rates and construct burden affect whether a DNA construct is likely 587 

to remain intact cell populations that are grown to typical different laboratory and production 588 

scales. Similar deterministic6,11 and stochastic66 models have been developed by others. Models 589 

that include individual steps in gene expression and RNA and protein degradation are also 590 

beginning to be used to examine evolutionary stability.21,67 Our model and these others still do 591 

not consider or fully take into account several complications. First, rather than one category of 592 

mutation leading to complete failure, there are typically multiple categories of mutations, some 593 

of which only partially alleviate the burden, occurring at different rates in real systems.10,11 594 

Equally important, plasmids are multi-copy within cells so the fitness benefit of a mutation can 595 

take several generations to fully manifest and depends on how plasmids segregate between 596 

daughter cells. These intricacies of plasmid evolution have been tackled by a variety of more 597 

complex models that could be applied to engineered plasmids.68 Finally, models that take into 598 

account different phases of cellular growth could be used to further refine these dynamics.69 599 

Improving our understanding of what types of synthetic DNA constructs exhibit different 600 

types of burden and modeling the effects on the reliability and predictability of cellular function 601 

over time is important for realizing synthetic biology applications. Researchers designing 602 

engineered cells should be aware of when they are nearing a danger zone of evolutionary 603 

stability where DNA designs may become unconstructable, and they should recognize that the 604 

stochastic nature of evolutionary failure may lead to large variation in their experimental results, 605 

failure during process scale-up, or loss of function when cells are deployed for long periods of 606 

time in complex environments outside of the lab, such as in animal and plant microbiomes. Our 607 

simulations and results will contribute to spreading this awareness and achieving these goals. 608 
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The main conclusion can be summarized as a rule of thumb: to avoid unwanted evolution of 609 

engineered microbes at a laboratory scale, do not burden their growth by more than ~30%. 610 

 611 

METHODS 612 

Model of evolutionary failure. We implemented a model in R that is similar to one used by 613 

Rugbjerg et al. to predict loss of production from an engineered cell population due to escape 614 

mutations.11 We parameterized our model such that failed (i.e., mutated) cells, F, have a relative 615 

growth rate of one. Engineered cells, E, have a growth rate that is this value minus the burden, 616 

b, of the engineered construct. The corresponding equations for how the numbers of engineered 617 

cells, E(t), and failed cells, F(t), change over time are: 618 

!"($)
!$

= (1 − 𝑏)𝐸(𝑡) − 𝜇	(1 − 𝑏)𝐸(𝑡)	   (1) 619 

!&($)
!$

= 𝐹(𝑡) + 𝜇	(1 − 𝑏)𝐸(𝑡)	     (2) 620 

Growth of cells in batch culture typically continues until a certain number of total cell doublings 621 

occurs that exhausts the provided resources rather than for a certain fixed period of time. 622 

Therefore, we chose to plot the dynamics of engineered and failed cell populations versus the 623 

number of cell doublings, D(t), that have occurred at a given time: 624 

𝐷(𝑡) = log'	[𝐸(𝑡) + 	𝐹(𝑡)]      (3) 625 

For stochastic simulations of this model, we used the adaptivetau R package.70 We also created 626 

an online version (https://barricklab.org/shiny/burden-model) that can perform deterministic and 627 

stochastic simulations of this model using the Shiny R package.71  628 

Media and growth conditions. E. coli was cultured at 37 °C in Lysogeny Broth (LB) (10 g 629 

tryptone, 5 g yeast extract, 10 g NaCl per liter) with 16 g/L agar added for solid media. Unless 630 

otherwise indicated, liquid cultures were grown in 18 mm × 150 mm glass test tubes with orbital 631 

shaking at 200 r.p.m over a 1-inch diameter. Antibiotics were added at the following 632 

concentrations: carbenicillin (100 µg/ml), chloramphenicol (20 µg/ml), kanamycin (50 µg/ml). 633 
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Gene expression monitor strain construction. E. coli DH10B-GEM (JEB1203), the host 634 

strain used in the burden assays, was created using plasmids and methods described in 635 

Haldimann et al.72 and Ceroni et al.21 Briefly, we inserted the constitutive GFP expression 636 

cassette cloned into pAH63 (Addgene #66073) into the E. coli chromosome at the λ integration 637 

site by electroporating this plasmid into DH10B cells containing the helper plasmid pInt-ts 638 

(Addgene #66076) and selecting for kanamycin resistant colonies. pAH63 has a pir-dependent 639 

R6K origin, so it does not replicate in the recipient cells. pInt-ts has a pSC101ts origin and was 640 

cured by screening colonies after further growth at the restrictive temperature of 42 °C to create 641 

DH10B-GEM. We also obtained and characterized E. coli DH10GFP (Addgene #109392), a 642 

strain constructed in the same way in the prior study of burden by Ceroni et al.21  643 

We isolated genomic DNA from cultures of DH10B-GEM and DH10GFP using a PureLink 644 

Genomic DNA Mini Kit (Invitrogen). Then, we prepared Illumina libraries using 10 µg of DNA as 645 

input into a 2S Turbo DNA Library kit (Swift Biosciences) using 50% reaction volumes and a 646 

final PCR step with custom adapters that added dual 6-bp sample barcodes. Sequencing was 647 

carried out on a HiSeq X Ten by Psomagen. Reads were compared to E. coli DH10B genome 648 

(GenBank: NC_010473) and pAH63 plasmid sequences using breseq.73,74 Split-read mappings 649 

(new junction evidence) between plasmid and chromosomal sequences verified that the GFP 650 

cassette was integrated at the expected site in both strains. There were two shared differences, 651 

a single base insertion in an intergenic region and a synonymous base substitution, between 652 

both strains and the DH10B reference genome. DH10GFP also had two additional mutations, a 653 

nonsynonymous mutation in uspF and an IS4 element insertion in mdtL. 654 

Transformation of BioBrick plasmids. We made DH10B-GEM competent cells as follows. 655 

A 10 ml liquid culture of cells was grown overnight in a 50 mL Erlenmeyer flask from an aliquot 656 

of the glycerol stock. The entire culture was then added to 500 ml of LB in a 2 L Erlenmeyer 657 

flask. This culture was incubated until reaching mid-exponential phase (an OD600 between 0.4 658 

and 0.6). At this point, it was divided into 35 ml aliquots and centrifuged at room temperature for 659 
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10 minutes at 3400 × g. Then, the supernatant was removed and all cell pellets were combined 660 

by resuspended (via vortexing) in a total of 150 ml of a 10% (v/v) glycerol + 100 mM CaCl2 661 

solution chilled on ice. Next, 30 ml fractions of the cells were centrifuged again at room 662 

temperature for 10 minutes at 3400 × g. Again, the pellets were combined, resuspending in a 663 

total of 20 ml of chilled glycerol-CaCl2 this time. After incubating this mixture on ice for 25 min, 664 

200 µl aliquots were snap frozen in liquid nitrogen. Competent cells were stored at –80°C. 665 

Heat shock was used to transform BioBrick plasmids into DH10B-GEM. This transformation 666 

method entailed transferring 2 µl of a miniprep of the plasmid of interest into 50 µl of competent 667 

cells and incubating on ice for 1 hour. After this, the mixture was placed in a 42°C heat bath for 668 

30 seconds and then immediately placed back on ice for another 30 minutes. Next, we added 669 

950 µl of SOC media and incubated at 37°C in a shaker incubator for at least an hour. After 670 

SOC recovery, we pelleted the cells and decanted 800 µl of the supernatant. We resuspended 671 

the pellet in the remaining 200 µl of supernatant and then plated this onto an LB agar plate with 672 

the appropriate antibiotic. After overnight incubation at 37°C, we picked a colony, grew an 673 

overnight culture in liquid LB media, added glycerol to 15% (v/v), and froze a stock at –80°C. 674 

BFP plasmid construction. Five control plasmids expressing different levels of mTagBFP 675 

were created by assembling BioBrick parts from the iGEM registry. The mTagBFP sequence 676 

was from part plasmid K592100. It was combined with five promoter+RBS composite parts 677 

(K608002, K608003, K608004, K608006, and K608007), by using each of their pSB1C3 part 678 

plasmids as the vector backbone in a separate postfixing BioBrick assembly reaction.44,75 For 679 

cloning, we used enzymes from New England Biolabs under standard conditions. Briefly, 680 

K592100 was double digested using XbaI and SpeI restriction enzymes in CutSmart buffer. 681 

Separately, each of the vector backbones was double digested using SpeI and PstI-HF 682 

restriction enzymes in CutSmart buffer followed by incubation with calf intestinal alkaline 683 

phosphatase for 1 h. Digested products were then gel extracted and purified using a QIAquick 684 

Gel Extraction Kit before being ligated together using T4 DNA ligase. Ligated products were 685 
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purified using butanol precipitation and then electroporated into competent TOP10 E. coli cells. 686 

Transformed cells were recovered in SOC for 1 hour at 37°C, followed by plating on LB agar 687 

containing chloramphenicol. After incubation at 37°C for 18 hours, we inoculated isolated 688 

colonies into fresh LB liquid media containing chloramphenicol and grew these cultures at 37°C 689 

for 18 hours. The five resulting composite BioBrick parts were deposited in the iGEM Registry 690 

as K3174002, K3174003, K3174004, K3174006, and K3174007.  691 

Plasmid sequencing. We sequenced BioBrick plasmids isolated from the DH10B-GEM cell 692 

stocks that were used for burden assays. In addition, we sequenced plasmids isolated from the 693 

TOP10 cell stocks into which the BFP controls were first transformed. Plasmid DNA was purified 694 

using a QIAprep Spin Miniprep Kit (QIAGEN) or a PureLink Quick Plasmid Miniprep Kit 695 

(Invitrogen). We performed Sanger sequencing on multiple stocks of the BFP control plasmids, 696 

in-house Illumina sequencing on these and the other plasmid samples, and outsourced 697 

Nanopore sequencing on additional plasmid samples. For Illumina sequencing, up to 10 ng of 698 

plasmid DNA was used as input for sequencing library preparation using the 2S Turbo DNA 699 

Library kit (Swift Biosciences) with 20% reaction volumes. Custom adapters containing dual 6-700 

bp sample barcodes were incorporated during the final PCR step. The resulting DNA libraries 701 

were pooled and sequenced on an iSeq 100 instrument. Nanopore data was obtained from 702 

Plasmidsaurus. Porechop76 and fastp77 were were used to trim adaptors from sequencing reads. 703 

To analyze sequencing results, we first reconstructed the expected BioBrick plasmid 704 

sequences from information available on the iGEM Registry webpages (part sequences, vector 705 

sequences, and compatibility with different assembly standards). Then, we analyzed Illumina 706 

and Nanopore sequencing data in two ways. First, we compared reads to the expected plasmid 707 

sequences using breseq73 to see if there were any discrepancies. Second, we performed de 708 

novo assembly of reads using either Unicycler78 or flye,79 annotated the resulting assemblies 709 

with pLannotate,80 and examined them for matches to the expected parts using blastn 710 

searches81 against a database of all BioBrick parts included in the 2018 iGEM distribution kit.  711 
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BioBrick plasmid burden assays. We performed burden assays largely as described 712 

previously.21 Strains were revived by adding aliquots of −80 °C freezer stocks to test tubes 713 

containing LB with the antibiotic for maintaining their respective BioBrick plasmids. After 714 

overnight growth (12-18 h), we vortexed each culture for three seconds and loaded 5 µl into a 715 

Nunc MicroWell 96-well optical-bottom plate (ThermoScientific Cat. No. 265301) in triplicate. 716 

Every plate included the five control strains (JEB1204-1208), each also loaded in 5 µl in 717 

triplicate, and 12 blank wells (LB only). This arrangement allowed for a total of 23 strains to be 718 

tested per plate. To start the assay, a multichannel pipette was used to add 195 µl of LB pre-719 

warmed to 37°C to every well with pipetting up and down several times to mix. Using a Tecan 720 

Infinite Pro M200 Plate Reader, optical density at 600 nm and GFP fluorescence (excitation: 721 

485 nm; emission 528 nm) were recorded every 10 minutes with 7 minutes of orbital shaking 722 

during each cycle. Each plate was run for a minimum of 6 hours. 723 

RFP and BFP plasmid burden assays. For the series of plasmids expressing RFP under 724 

control of different promoters, we performed burden assays using the normal procedure plus an 725 

additional measurement of RFP fluorescence (excitation: 585 nm; emission: 610 nm). For 726 

correlating BFP expression in the control strains to reduced GFP expression, we added a 727 

measurement of BFP fluorescence (excitation: 405 nm; emission: 453 nm). The extra 728 

fluorescence reads for the RFP and BFP experiments reduced the proportion of shaking time in 729 

each measurement cycle, resulting in slower maximum growth rates than were observed with 730 

the standard burden assay procedure. RFP samples were measured every 10 minutes with 6.5 731 

minutes of shaking during each cycle. BFP samples were measured every 10 minutes with 7 732 

minutes of shaking during each cycle. For the RFP series we also monitored cell density using 733 

OD660 instead of OD600 to avoid interference from RFP absorbance.82 734 

Burden analysis. To analyze the burden assay data for one plate, we first subtracted the 735 

average values of all media blanks from the OD and fluorescence measurements. Next, to deal 736 

with well-to-well variation in background levels, we shifted the values to force the means of the 737 
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points over the first hour of measurements for each strain to match the grand mean for those 738 

data points over all replicates of that strain. We then fit growth rates using nonlinear least-739 

squares regression to an exponential model: C(t) = C0 ert. We assumed that OD is directly 740 

proportional to the number of cells at a given time, C(t). C0 is the initial number of cells, and r is 741 

the specific growth rate. We fit C0 and r for all sets of nine consecutive measurements (a 90-742 

minute window in the standard assay) after the OD exceeded 0.03 and recorded the largest 743 

value of r as the maximum specific growth rate for that strain. To determine the fluorescent 744 

protein (e.g., GFP) production rate per cell, p, we repeated this procedure while fitting 745 

fluorescence values to the equation: F(t) = F0 + C0 (p/r) (ert − 1). F0 is the initial fluorescence and 746 

F(t) is the fluorescence at time t. This equation is derived by integrating the relationship dF/dt = 747 

p C(t). We fit F0 and p in this model to the data while keeping C0 and r fixed to the values 748 

determined from the OD curve fit for the corresponding time window. Again, we recorded the 749 

largest value of p across all time points as the maximum fluorescent protein production rate. 750 

To account for plate-to-plate variation in growth and GFP production rate estimates (Fig. 751 

S1A, S3A), we normalized measurements made on different plates. In our experimental design 752 

a majority of the plasmids tested in each plate are expected to exhibit negligible burden. This let 753 

us estimate the growth and GFP production rates corresponding to 'no-burden' for a given plate 754 

by examining the distributions of values measured. Specifically, we calculated the density 755 

distributions of growth and GFP production rates using a Gaussian kernel function with 756 

bandwidths of 0.014 and 300, respectively, for all non-control strains. To account for multimodal 757 

distributions, we took the no-burden value as the highest value among all peaks in the density 758 

distribution that were at least 50% as high as the highest peak. Then, we normalized all rate 759 

estimates by dividing them by the corresponding no-burden value for that plate (Fig. S1B, S3B). 760 

The final distributions of the mean values for each BioBrick plasmid have a major peak at the 761 

no-burden value with a noticeable shoulder of strains with a slightly decreased growth rate or 762 

GFP production rate, in addition to some strains with much lower values (Fig. S1C, S3C). 763 
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Some BioBricks encode proteins that interfere with measuring GFP fluorescence. Therefore, 764 

for the analysis of gene expression capacity and burden, we disregarded all BioBricks described 765 

as including GFP; YFP, which has overlapping fluorescence; or the amilCP blue chromoprotein, 766 

which strongly absorbs at the wavelength monitored for GFP emission.83 For the 26 remaining 767 

BioBricks that also had growth rate reductions that were statistically significant and mean 768 

estimated burdens ≥10%, we determined whether the observed GFP production rate was 769 

compatible with the null hypothesis that all of the burden was due to the BioBrick utilizing the 770 

gene expression capacity of the host cells. We determined the expected relationship between 771 

growth rate and GFP production rate for purely gene expression burden from measurements of 772 

the BFP control plasmids across all plates. Specifically, we used Deming regression to fit this 773 

linear relationship, which takes into account measurement errors in both dimensions, and we 774 

further required that the fit pass through the no-burden values (i.e., a normalized growth rate of 775 

1.0 and normalized GFP production rate of 1.0). Then, we determined the chance that each 776 

BioBrick was located above the BFP regression using a two-dimensional probability distribution 777 

of each assuming maximum likelihood t-distributions for growth rate and GFP production rate. 778 

We took one-half of this value to estimate a one-tailed p-value for the hypothesis that there was 779 

significant burden for the test plasmid from a source other than utilization of the host cell’s gene 780 

expression resources. 781 

 782 

SUPPORTING INFORMATION 783 

Fig. S1. Growth rate measurements for all microplate assays. 784 

Fig. S2. Comparison of growth rates measured for BioBricks in different vector backbones. 785 

Fig. S3. BFP plasmids in cell stocks used for microplate assays mutated to reduce burden. 786 

Fig. S4. Growth rate measurements for BioBricks with higher burden exhibit more variability. 787 

Fig. S5. GFP production rate measurements for all microplate assays. 788 

 789 
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DATA AVAILABILITY 790 

Simulation code, unprocessed data files, analysis scripts, and plasmid assemblies have been 791 

archived in a GitHub repository (https://github.com/barricklab/iGEM2019) and on Zenodo (doi: 792 

10.5281/zenodo.10938726). Raw plasmid and genome sequencing data are available from the 793 

NCBI Sequence Read Archive (Accession PRJNA1090925). 794 
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