10

11

12

13

14

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.08.588465; this version posted April 8, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Measuring the burden of hundreds of BioBricks defines an

evolutionary limit on constructability in synthetic biology

Noor Radde', Genevieve A. Mortensen', Diya Bhat', Shireen Shah', Joseph J. Clements",

Sean P. Leonard', Matthew J. McGuffie', Dennis M. Mishler'?, Jeffrey E. Barrick™
'Department of Molecular Biosciences, Center for Systems and Synthetic Biology,

The University of Texas at Austin, Austin, TX 78712, USA

’The Freshman Research Initiative, College of Natural Sciences, The University of Texas at
Austin, Austin, TX 78712, USA

*Equal contributions

#Correspondence: jbarrick@cm.utexas.edu



mailto:jbarrick@cm.utexas.edu
https://doi.org/10.1101/2024.04.08.588465
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.08.588465; this version posted April 8, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise
interferes with homeostasis. Populations of engineered cells can rapidly become dominated by
“escape mutants” that evolve to alleviate this burden by inactivating the intended function.
Synthetic biologists working with bacteria rely on genetic parts and devices encoded on
plasmids, but the burden of different engineered DNA sequences is rarely characterized. We
measured how 301 BioBricks on high-copy plasmids affected the growth rate of Escherichia
coli. Of these, 59 (19.6%) negatively impacted growth. The burden imposed by engineered DNA
is commonly associated with diverting ribosomes or other gene expression factors away from
producing endogenous genes that are essential for cellular replication. In line with this
expectation, BioBricks exhibiting burden were more likely to contain highly active constitutive
promoters and strong ribosome binding sites. By monitoring how much each BioBrick reduced
expression of a chromosomal GFP reporter, we found that the burden of most, but not all,
BioBricks could be wholly explained by diversion of gene expression resources. Overall, no
BioBricks reduced the growth rate of E. coli by >45%, which agreed with a population genetic
model that predicts such plasmids should be “unclonable” because escape mutants will take
over during growth of a bacterial colony or small laboratory culture from a transformed cell. We
made this model available as an interactive web tool for synthetic biology education and added

our burden measurements to the iGEM Registry descriptions of each BioBrick.

Keywords: evolutionary failure, genetic stability, metabolic burden, Registry of Standard

Biological Parts, International Genetically Engineered Machines (iGEM) competition
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INTRODUCTION
Synthetic biologists are engineering increasingly sophisticated functions into cells and deploying
these “living machines” in new and more challenging environments. For example, cells have
been created with genetic circuits that perform complex sensing and logic operations,'? and
bacterial symbionts have been engineered to improve the productivity and health of their plant
and animal hosts.*® However, unlike computer code, engineered DNA sequences in cells can
evolve, potentially making their functions unpredictable and unreliable.®’” Evolutionary failure—
when less-functional or nonfunctional mutants outcompete their ancestor—can occur rapidly if
an engineered function is highly burdensome to a cell or if the sequences that encode it are
especially mutation-prone.®'? In extreme cases, a population of cells may already become
dominated by “escape mutants” that have evolved inactivated variants of a designed sequence
after outgrowth of a single transformed cell into a colony or small laboratory culture, making that
construct essentially “unclonable”. To improve the foundations of bioengineering, we need to
better understand why certain DNA constructs are more burdensome to cells than others and
the limits on how much burden a cell can tolerate before unwanted evolution becomes a barrier.
Because all engineered DNA constructs must use resources from the cell to replicate
and express genes, these processes are the most common and predictable sources of
burden.”™ Burden from replicating engineered DNA in cells is typically negligible, even for very
high-copy plasmids in bacteria.™ Instead, transcriptional resources (e.g., RNA polymerases) or
translational resources (e.g., ribosomes, charged tRNAs) often become limiting when a foreign
DNA construct directs a cell to synthesize RNAs and proteins. Protein overexpression studies in
E. coli generally find that ribosomes are the most limiting factor, with a proportional decrease in
the growth rates of cells as producing more heterologous protein diverts more of their ribosomes
away from expressing host proteins needed for replication.'®='° Usage of gene expression

resources can be monitored using high-throughput approaches that globally profile RNA
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abundance and ribosomal occupancy® or reporter genes with expression levels that reflect the
depletion of overall cellular capacities for transcription and translation.?’

Burden may also arise due to how specific gene products expressed from an engineered
DNA construct interact with host cells. Metabolic engineering purposefully funnels precursor
molecules toward a target compound by expressing foreign enzymes, altering gene regulation,
and/or disrupting native pathways. These modifications will generally slow a cell’s growth, and
metabolic products or intermediates may also accumulate to levels that are detrimental to
cellular physiology.??~* Expressing certain types of proteins, such as proteases and integral
membrane proteins, is also known to be stressful or toxic to E. coli cells, due either directly to
their functions or to competition with native proteins for secretion machinery.?>?° Proteins used
for orthogonal control of gene expression, like T7 RNA polymerase and dCas9, can exhibit
excessive activity or off-target effects that are extremely burdensome.?” Finally, unintentional
expression of antisense and frameshifted gene products from cryptic promoters and ribosome
binding sites has been shown to be an unexpected source of burden in some constructs.®?

Sharing of standardized genetic parts has been a cornerstone of synthetic biology since
its inception.?®?° The Registry of Standard Biological Parts is a database of engineered DNA
sequences® that thousands of teams have contributed to as part of their participation in the
International Genetically Engineered Machines (iGEM) competition.*'*> Most BioBrick parts are
cloned into a small set of standard vector backbones, which makes these plasmids a useful
“‘common garden” for analyzing the properties of inserts encoding different genetic parts and
devices. In past studies, BioBricks have been used to compare standardized measurements of

promoter strength®® and fluorescent protein expression®*3°

across many labs. It has been
proposed that genetic reliability—in the evolutionary sense of for how many cell doublings a
certain level of function is maintained in a population—be listed on a data sheet describing a

genetic part,? but this property is rarely characterized in practice. One goal of iGEM is to

improve upon existing parts, and many BioBrick sequences are re-used by synthetic biology
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90 researchers outside of IGEM. Therefore, characterizing which of these parts are evolutionarily
91 unstable and understanding why this is the case would broadly benefit the field.
92 We measured the burden of 301 BioBrick plasmids from the iGEM Registry containing
93  DNA constructs ranging from individual parts to complex devices. None of these plasmids
94  reduced the growth rate of their E. coli hosts by >45%, in agreement with stochastic simulations
95  of evolution that predict a level of burden above this threshold would make a construct
96  “unclonable”. We found that 6 BioBrick plasmids had a burden of >30%, which would be
97  expected to be problematic on the laboratory scale, and that 19 had a burden of >20%, enough
98 that they might fail during process scale-up or in other applications in which cells continue to
99  divide. Several BioBrick plasmids, including two we used as controls, evolved mutations that
100 likely reduce their burden by compromising their designed functions. Finally, we determined that
101  depletion of gene expression resources is sufficient to explain the burden of most BioBrick
102  plasmids, though some reduce host growth rates for other, currently unknown reasons. Our
103  work demonstrates how standardized frameworks for measuring burden and simulating the
104  dynamics of evolutionary failure can be used to improve the reliability of bioengineering.
105
106 RESULTS
107 Model of Evolutionary Failure. Growth of a cell population that has been engineered with a
108 new DNA construct begins from a single transformed cell. As the population divides, progeny
109  with mutations in the sequence of the designed DNA construct will arise. If these mutations
110  alleviate a burden on the cells caused by the engineered DNA—most often by lessening or
111 eliminating a designed function that compromises their growth—then, the mutant cells will have
112  a competitive advantage. These higher-fitness cells will outreplicate and displace ancestral cells
113  with the original DNA construct until they dominate within the population and function declines.
114 To put our experimental measurements of burden into context, we first investigated the

115  expected timing of evolutionary failure using a differential equation model (Fig. 1A). This model
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has two parameters. The first is the burden (b) of the engineered DNA, expressed as a percent
reduction in the rate of replication of a cell containing the genetic construct. The model makes a
simplifying assumption that there is one category of mutations that leads to failure of the
engineered function in a way that completely alleviates its burden. The rate of these failure
mutations per cell division (u) is the second parameter. The typical dynamics for this model are
that “broken” cells with a failure mutation are initially very rare but then rapidly take over a

population as their fitness advantage is exponentially compounded over time (Fig. 1B).

A Failure mutation
(1-b)u
R Py
Engineered E . = F Failed
cells with cells with
functional U U mutated
construct construct
1-b 1

Replication of each cell type

mutation rate (u)  burden (b)

Population
composition

Cell divisions

C Strain construction and culture scale-up

Y

Transformation Clone picked Testtube  Flask Bioreactor

(initial cell)  (single colony) (4 mL) (200 mL) (1,000 L)
| ~ |~
+—+—+—+0—+0@+—+—0@>
0 23 34 41 56

Cell divisions

Fig. 1. Evolutionary failure of a population of engineered cells. (A) Graphical representation
of a differential equation model with one class of failure mutations that completely alleviates the
fitness burden of an engineered DNA construct on a host cell. (B) Population dynamics
expected from this model. Subpopulations of failed cells with mutated constructs evolve and
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128  outcompete the original engineered cells with functional constructs. Complete failure happens
129  rapidly once the mutant cells reach a detectable frequency in the population. (C) Approximate
130  numbers of cell divisions required for scale-up from a single engineered cell to laboratory and
131 industrial processes requiring different culture sizes. (See the text and Table S1 for details.)

132 We wanted to understand what magnitude of burden would be likely to lead to evolutionary
133 failure of an engineered function during a typical scale-up process starting with a single bacterial
134  cell picked as a colony isolate after transformation with a newly cloned plasmid or some other
135 genome editing procedure (Fig. 1C, Table S1). We estimate that ~23 cell divisions occur by the
136 time a single cell produces a normal-sized colony containing ~8 million cells on an agar plate. If
137  this entire colony is placed into ~4 ml of LB in a test tube, it takes an additional ~11 cell divisions
138  to reach saturation, assuming a final density of ~5 x10° cells/ml. Growth to a 200 mL laboratory
139 scale at a higher cell density (e.g., in terrific broth for recombinant protein overexpression)

140  brings the total to ~40 cell divisions. Larger-scale industrial processes can reach even higher
141  cell densities such that ~56 cell divisions may be needed to saturate a 1,000 L bioreactor.

142 The rates of mutations leading to the failure of different DNA constructs can vary widely, so
143  we tested values of this parameter spanning several orders of magnitude: from 10™ to 1078 per
144  genome per cell division. One factor that plays into the mutation rate is the information content
145 of a sequence, i.e., how many base pairs must be specified to encode its function. Longer

146  engineered DNA sequences and those that are more densely coded are at a greater risk for
147  inactivating mutations.®’ The rate of base substitutions in E. coli is ~5x107"° per base pair per

3637 and most microbes with DNA genomes have similar mutation rates.®=° Thus, if

148  generation,
149  a sequence contains protein-coding genes that constitute 1000 base pairs and 20% of the
150  substitutions in these genes lead to a loss of function, the failure rate will be ~1x10~" per cell
151  division just from base substitutions. This estimate does not account for the presence of

152  sequence repeats that can act as mutational hotspots that cause specific large deletions and

153  small indels in certain sequence contexts at much higher rates.*® Furthermore, selfish elements

154  in the host genome usually contribute other types of mutations that further increase the total rate
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155  of failure mutations. In particular, transposon insertions often inactivate genes or sequences
156  required for gene expression in engineered DNA constructs.!"#'42

157 In the end, empirical measurements generally find a rate of ~107° per cell division for

158  mutations that inactivate a single-gene that is located in the chromosome of E. coli or another
159  bacterium.*'*® The effective mutation rate is much higher for engineered constructs maintained
160  on multicopy plasmids because each copy of the plasmid in a cell is at risk. If there are 100

161 copies of a plasmid, the chance of a plasmid with a certain mutation arising is ~100-fold higher.
162  So, for example, the rate of reverting a stop codon in an engineered reporter construct, which is
163  expected to only occur via one or a few single base substitutions, has been measured as ~10~’
164  rather than the value of ~107° expected if this reporter were tested in the chromosome'?. For
165  plasmids that lack partitioning systems like pBR322 and pUC derivatives commonly used in E.
166  coli, one broken plasmid copy can rapidly lead to 100% failure of all plasmids in all cells in a
167  population because progeny that happen to inherit more broken plasmid copies due to random
168  segregation will outcompete those that do not. In summary, the effective rate of failure

169  mutations in a high-copy plasmid is usually much higher than the point mutation rate; it is

170  expected to be at least on the order of 107 and often as high as 10™ per cell doubling. Though
171 mutational hotspots and multicopy plasmid replication are not explicitly accounted for in our
172 model, they justify exploring simulations with a wide range of mutation rates.

173 Previous studies of escape mutations have used the deterministic results of ordinary

174  differential equation (ODE) models to estimate the times to failure of engineered cells.®'" This
175  framework assumes that mutants appear continuously and immediately at the beginning of the
176  simulation. However, in reality, mutations appear stochastically in single cells at very low rates,
177  and the dynamics can vary greatly depending on whether these “jackpots” occur early or late in
178  the growth of a population. Therefore, we compared the deterministic results for our ODE model
179  to stochastic simulations of this model to evaluate how and when the results varied. We found

180 that deterministic simulations consistently overestimate how unstable a construct will be for a
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181  given combination of parameters (Fig. 2). The discrepancy becomes larger at lower mutation
182  rates where it mainly reflects the waiting time needed for the rare event that generates the first
183  mutant cell to appear in a population in the stochastic simulations, compared to the immediate
184  appearance of these mutants in the deterministic simulations. However, there are also

185  occasional stochastic simulation runs in which failure occurs sooner than it does in the

186  deterministic model due to early jackpots (as seen in the panel for b = 20%, u = 107%).

‘ Type of simulation: — Deterministic Stochastic (n = 20) ‘
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187 Cell divisions

188 Fig. 2. Simulations of evolutionary failure times for populations of engineered cells. In
189  each panel, the results for deterministic (black) and stochastic (red) simulations of the failure
190  model are shown for one combination of burden (b) and failure mutation rate (u) parameters.
191  Vertical blue lines represent the culture scales shown in Figure 1C. Curves for stochastic

192  simulations are partially transparent so that one appears pink and overlapping trajectories from
193  multiple simulations appear red. Twenty stochastic simulations are displayed in each panel.

194
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196  Fig. 3. Cumulative distributions of times to 50% failure in stochastic simulations. Curves
197  represent the output from 10,000 replicate simulations for each parameter combination.

198 Because we expect it to better represent the true evolutionary dynamics, we further

199  examined the results of the stochastic simulations (Fig. 3). They show that at a typical mutation
200 rate of 107° per cell doubling (expected for a plasmid-borne construct) a burden of 250% would
201  lead to takeover of broken mutants in a test tube culture most of the time. At a mutation rate of
202 107, constructs with a burden of 240% would not survive on this small scale. Since one needs
203 to grow a single transformed cell into a culture of this size to purify and sequence a plasmid to
204  verify that it has the designed sequence, the model predicts that constructs this burdensome will
205 be essentially “unclonable”. Even for less-burdensome plasmids or for constructs experiencing
206 lower mutation rates (for example, single-copy genes in the chromosome), the model predicts

207 that failure may occur at larger scales if the burden reaches the 20-30% range.

10
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208 We created an online version of our model that allows users to adjust the burden and failure

209  mutation rate parameters (https://barricklab.org/burden-model). There is an option to use the

210  stochastic or deterministic version of the model and compare the results. Additionally, users can
211 change the effective volume and density of their culture to understand the scale at which a DNA
212  construct with certain characteristics is likely to fail. This interactivity encourages users to

213  explore a range of parameters and to rerun simulations multiple times to see for themselves the
214  sizable impact of mutational stochasticity on the continuing functioning of devices constructed in
215 living, and therefore evolving cells. We believe that this resource will be useful for educating
216  both new and practicing synthetic biologists, as this type of random and self-reinforcing failure
217  can be confusing and does not have a direct parallel in traditional engineering fields.

218 Burden of BioBrick Parts. To test whether actual engineered DNA sequences obey the
219  evolutionary constraints predicted by our model of escape mutations, we examined a diverse
220 collection of engineered DNA sequences created for the iGEM (International Genetically

221 Engineered Machine) competition.®! These BioBricks range in complexity from small DNA

222  "parts", such as promoters and protein tags, to larger "devices" that consist of multiple genes
223  and operons. Historically, BioBricks in the Registry of Standard Biological Parts had to be

224  cloned into plasmids in ways that allowed them to be combined into larger constructs using a
225  specific assembly standard.** As a consequence, most BioBricks in the kit distributed to iGEM
226  teams are provided in plasmids pSB1C3, pSB1A2, or in both of these backbones (Fig. 4A).

227 pSB1C3 and pSB1A2 share the same high-copy pUC origin of replication and overall

228 organization, but they are maintained using different antibiotic resistance genes:

229  chloramphenicol acetyltransferase (cat) which confers chloramphenicol resistance (Cam®) for
230 pSB1C3 versus B-lactamase (bla) which confers resistance to ampicillin and other 3-lactams
231 (AmpR) for pSB1A2. These plasmids also differ in how expression of the cloned BioBrick part is

232  insulated from elements in the plasmid backbone. pSB1A2 has a transcriptional terminator

11
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233  upstream of the BioBrick prefix multiple cloning site. pSB1C3 has a terminator at the same site

234  and an additional terminator downstream of the BioBrick suffix multiple cloning site.

ioBricks o L R
5 BEP controls 40 BioBricks — O 9 BioBricks 3 BioBricks

Significant burden l BFP control

50% - : g
40% - =:f;j -
30% -
20% -

10%

Burden (growth rate reduction)

0%

-10% 4

UL

235 BioBrick

236 Fig. 4. Measurements of BioBrick burden. (A) Maps of the two plasmid backbones that

237  housed most of the 301 BioBricks that were tested and the five BFP controls that were included
238 in every assay. The prefix (pre) and suffix (suf) multiple cloning sites used in BioBrick assembly
239 are shown. (B) Burden of each BioBrick tested. Burden is the percentage reduction in the

240  growth rate of E. coli cells transformed with a BioBrick plasmid. Gray points are individual

241 measurements. Bars are the means for all measurements of a BioBrick. For BioBricks with

242  orange bars, the measured burden was significantly greater than zero (adjusted p < 0.05, one-
243 tailed t-tests with Benjamini-Hochberg correction for multiple testing). Data used to create this
244  figure are provided in Table S2 and Table S3.

245 We measured the growth rates of E. coli DH10B derived cells transformed with BioBrick
246  plasmids to determine how many of these genetic parts and devices were burdensome and to
247  what extent. In each microplate assay, we included 5 pSB1C3-based BioBrick plasmids we
248  constructed with different promoter and ribosome binding site combinations driving expression
249  of blue fluorescent protein (BFP). These plasmids cause different amounts of burden and

250 served as internal controls. We normalized growth rates between assays to account for plate-to-

12
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251 plate variation based on results for the BFP controls and an additional assumption that most
252  parts in each microplate would exhibit no burden (Fig. S1, Table S2, and Methods).

253 In total, we measured the effects of the 5 BFP control plasmids and 301 other BioBricks on
254  E. coli growth (Fig. 4B, Table S3). Of the 301 BioBricks we characterized, we tested 249 in
255 pSB1C3, 40 in pSB1A2, 9 in both of these plasmid backbones, and 3 housed in other similar
256  backbones (pSB1AK3 or pSB3C5). Even though different antibiotics were added to growth

257  media when testing BioBricks cloned into pSB1C3 and pSB1A2, there was not a significant
258 effect of the plasmid backbone on the growth rates measured for the 9 parts tested in both

259  plasmids (p = 0.069, F1s6 = 3.44, two-way ANOVA) (Fig. S2A). We also did not find evidence
260 for any overall difference in the distributions of growth rates measured for parts tested in

261  pSB1C3 versus the other three backbones (p = 0.92, two-sided Kolmogorov-Smirnov test) (Fig.
262  S2B). Therefore, we considered all of our measurements together, irrespective of the plasmid
263  backbone in which a BioBrick part was tested, in all further analyses.

264 Excluding the five BFP control plasmids, which were all burdensome, 112 of the 301 other
265  BioBrick part plasmids (37.2% of those tested) significantly decreased E. coli growth rates

266 relative to the majority of parts that had no burden before correcting for multiple testing

267  (individual one-tailed t-tests, p < 0.05). For 31 BioBricks the growth rate burden was significantly
268  greater than 10%, for 19 it was significantly greater than 20%, and for 6 it was significantly

269  greater than 30% (one-tailed t-tests, p < 0.05). In agreement with our population genetic model,
270  none of the BioBrick plasmids had a large enough burden (>45%) that they would be predicted
271  to mutate when growing a small test-tube culture in the laboratory (one-tailed t-tests, p < 0.05).
272  After accounting for multiple testing using the Benjamini-Hochberg procedure at a 5% false
273  discovery rate (FDR), we can conclude that 59 of the 301 tested BioBrick parts (19.6%) exhibit
274  some level of burden with high confidence (one-tailed t-tests, adjusted p < 0.05). Table 1 lists
275  the 34 BioBricks that met this criterion and had a mean estimated burden of >10%.

276
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Table 1. Most burdensome BioBricks
BioBrick! Seq® Backbone Burden (b)t Fraction other Subparts? Function?

burden (bolb)*
K523022 M pSB1C3 51.7 £19.2% n.s. Puac &lacZ' crtE crtl crtB Carotenoid synthesis (Pantoea ananatis)
K733010 C pSB1C3 46.0+ 6.2% 0.16-0.71 Pums &endB Antitoxin gene (Bacillus subtilis)?
J04450 NS  pSB1AK3 444+ 22% n.s. Plac 8MRFP1 RFP reporter
K523014 C pSB1C3 396+ 4.7% 1.04-1.98 Puac &lacZ' bgiX Cellobiose degradation
K523020 M, E pSB1C3 383+ 8.7% n.s. Puac &lacZ' INP+bglX Cellobiose degradation (INP, Pseudomonas syringae)
K608010 Cc pSB1C3 341+ 7.7% NT Puozi10 &GFP GFP reporter
K515100 C pSB1C3 33.9+15.9% 0.26-0.88 Pueg2 &laaM &laaH Indoleacetamide synthesis (Pseudomonas savastanoi)®
J61000 m pSB1A2 334+ 41% 0.21-0.96 Peat &cat Chloramphenicol resistance
K541526 C pSB1C3 329+ 7.8% n.s. Pueg &reflectin1A Reflectin reporter (Euprymna scolopes)?
K592020 m pSB1C3 318+ 5.0% NT Prixkz2 &cl(A) Poi &amilCP Blue light sensor output (Acropora millepora)
J36335 m pSB1C3 30.2+12.2% n.s. Plac &kaiA Piac &kaiC Circadian rhythm (Synechococcus elongatus)
1759017 Cc pSB1C3 295+ 8.3% NT Pt [cis5] &YFP YFP reporter
K346000 C pSB1C3 29.1 £ 10.4% n.s. &RNAP(T3) Phage RNA polymerase (Phage T3)
C0056 C pSB1A2 282+ 3.9% n.s. cl434(A) Mutant phage repressor (Phage A)
K880005 C pSB1C3 275+ 8.6% n.s. Pu23100 & Gene expression
C0053 NS pSB1C3 272+ 6.5% n.s. cll(P22) Phage repressor (Phage P22)
K608012 Cc pSB1C3 271+ 47% NT Pu23110&GFP GFP reporter
1759014 Cc pSB1C3 268+ 5.8% n.s. Pt [cis2] &YFP YFP reporter
K541502 C pSB1C3 246+ 3.2% 0.42-1.91 Pueg &lipAsig Gene expression/secretion (Bacillus subtilis)®
K395602 C pSB1C3 203+ 1.9% 0.09-0.38 Pr7 &MpAAT1 Apple fragrance generator (Malus pumila)
K733013 C pSB1C3 195+ 3.3% n.s. Pyeg &GFP GFP reporter?
K523013 C pSB1C3 183+ 8.8% NT Piac &lacZ' INP+EYFP EYFP reporter (INP, Pseudomonas syringae)
1761014 C pSB1C3 175+ 5.0% 0.21-1.33 &cinR &cinl Quorum sensing (Rhizobium leguminosarum)
C0051 NS pSB1C3 171+ 82% n.s. A-cl+LVA Phage repressor (Phage A)
K137018 C pSB1C3 16.8+ 8.2% NT Priacor &IUXR Piux-r &GFP Quorum sensing receiver (Aliivibrio fischeri)
K1149051 C pSB1C3 15.0+ 8.4% n.s. Pu23104 &phaC1 phaA phaB1 Polyhydroxybutyrate synthesis (Ralstonia eutropha)
K731721 C pSB1C3 148+ 4.4% n.s. Transcription terminator (Phage T7)
K639003 m pSB1C3 148+ 2.8% n.s. Pumns-p1 &lacl Priacor &mCherry  Stress sensor
K541501 C pSB1C3 144+ 3.6% n.s. Pueg &sacBsig Gene expression/secretion (Bacillus subtilis)®
K608011 Cc pSB1C3 137+ 5.4% NT Pu23110&GFP GFP reporter
K861172 NS pSB1C3 134+ 2.5% n.s. Pesta &cl(A) Phage repressor (Phage A)
K617004 C pSB1C3 116+ 1.5% 0.95-2.32 attP(A) P'OP Phage attachment site (Phage A)
K325218 m pSB1C3 108+ 7.3% 0.76-1.55 Parac &luc(orange) Luciferase reporter (Luciola cruciata)
1712669 m pSB1C3 101+ 4.5% NT Pcw GFP GFP reporter"

*BioBrick accession numbers. The 34 parts shown all had an estimated burden that was significantly greater than
zero after correcting for multiple testing and had a mean estimated burden value of >10%. ¥Results of sequencing the
BioBrick plasmid: C, reported BioBrick sequence was confirmed; M, major discrepancies found in BioBrick sequence;
m, minor discrepancies found in BioBrick sequence; NS, not sequenced; E, part is reported to have errors in the
iGEM Registry. Full sequencing results are provided in Table S4. TBurden as the percentage reduction in growth rate
caused by the BioBrick + estimated 95% confidence limits. *95% confidence interval on the fraction of burden from
sources other than utilization of the host cell’s gene expression capacity. n.s., value was not significantly greater than
zero. NT, not tested because the BioBrick contains a protein that interferes with measurement of GFP fluorescence.
TRepresentation of gene expression signals and genes in the BioBrick abbreviated as follows: Py, promoter from gene
or operon x; &, ribosome binding site; [y] other regulatory sequence. Other italicized entries are gene names.
#General description of the designed function of the BioBrick. For BioBricks that contain recombinant DNA encoding
genes other than fluorescent proteins, the organism of origin is shown in parentheses. Superscript B or M, indicates
that the gene expression sequences are intended to function in Bacillus subtilis or mammalian cells, respectively.

BioBricks containing gene expression parts are more likely to be burdensome. Only

BioBricks that express an RNA or protein product are expected to appreciably burden a host

cell, as the cost of replicating plasmid DNA is generally negligible in comparison.' Therefore,

we hypothesized that the 59 BioBricks in the high-confidence burden set would be more likely

than BioBricks that had no significant burden to contain strong gene expression signals. Series

of constitutive promoter parts (J23100-J23119) and ribosome binding site (RBS) parts (B0030,

B0032, and B0034) with known relative strengths are commonly reused in different BioBricks.
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These promoters and RBS sequences can be divided into weak, medium, and strong variants

on the basis of experimental data reported in the iGEM Registry (Fig. 5A,B).*°

A n= 12167121724 B n= 18 18 81
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Fig. 5. Strong promoter and ribosome binding sites are more likely to be found in
BioBricks exhibiting significant burden. (A, B) Relative strengths of common promoters and
ribosome binding site (RBS) BioBrick parts, as reported in the iGEM Registry. The numbers of
examples of each promoter or RBS in the 301 BioBricks examined in this study are indicated
above the bars (n). Some of these BioBricks contain multiple instances of these promoter and
RBS parts. Dashed lines in A are the thresholds used to classify promoters as weak, medium,
or strong. (C, D) Fraction of BioBricks tested that exhibited significant burden when grouped by
the strongest gene expression element of each type that they contain. The total numbers of
parts in each category are shown above the bars (n).

We examined whether BioBricks that exhibited burden were more likely to include these
common gene expression parts than those that were not burdensome (Fig. 5C,D). BioBricks
that contained any of these constitutive promoters were 2.9 times as likely to be in the set of 59
BioBricks with significant burden compared to those that did not have one of these promoters (p

= 0.00040, Fisher's exact test), with a trend that the stronger promoters were even more likely to
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317  be associated with burdensome BioBricks. Similarly, BioBricks that included the strongest of the
318 three RBS parts (B0034) were 2.1 times as likely to exhibit significant burden as BioBricks that
319  included only the two weaker RBS variants or none of the RBS sequences in this series (p =
320 0.0037, Fisher's exact test). None of the BioBricks that contained the medium-strength RBS

321  also had a constitutive promoter part, which can explain why this category noticeably deviated
322  from the general trends. Overall, these results agree with the general expectation that strong,
323  constitutive gene expression contributes to the burden of many BioBricks.

324 One case that stood out in examining these results was BioBrick K880005. It includes the
325  strongest constitutive promoter (J23100) and RBS (B0034) from these sets, but it does not

326  include a downstream open-reading frame. Nevertheless, K880005 is among the most

327  burdensome BioBricks that we measured: it reduces the growth rate of E. coli by 27.5 £ 8.6%
328 (95% confidence interval) (Table 1). The high burden of this BioBrick may put it at risk of

329  mutating during laboratory propagation, even at the test-tube scale (Fig. 3). Its unexpected

330  burden could result from transcription and/or translation of sequences downstream of the part in
331  the BioBrick suffix sequence and plasmid backbone, even though it was tested in the pSB1C3
332  backbone that has transcriptional terminators designed to insulate the BioBrick.

333 Mutations and variability in strains with BioBrick plasmids support a burden limit on
334  constructability. To validate the identity and integrity of the plasmids we tested, we compared
335  whole-plasmid sequencing data for 215 BioBricks plus the 5 BFP controls to the sequences
336  reported in the IGEM Registry (Table S4, and Methods). Excluding the controls, we sequenced
337 214 of the 301 BioBricks for which we had burden measurements (71.1%). Of these, 8 plasmids
338  were initially misassigned to the wrong BioBrick and 3 others to the wrong backbone in our

339 results before we corrected them. For 185 of the 215 sequenced plasmids (86.0%), our results
340 perfectly matched the expected BioBrick sequences. Of the 30 others, we found relatively minor
341 discrepancies between the sequencing data and the reported BioBrick sequences for 23, and

342 the other 7 had major discrepancies, such as large deletions or transposon insertions.
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343 It is not possible to determine with 100% certainty whether these discrepancies are due to
344  errors in the designed part sequences that were submitted to the iGEM Registry or mutations
345 that arose and took over cell populations because they reduced BioBrick burden. Most

346  discrepancies are single-base changes or deletions that may have no effect on genetic part
347  function. However, in the seven cases of major discrepancies we can be reasonably sure that
348  we have observed unplanned mutations with consequences. Two BioBricks (S03749, 1759016)
349  were inactivated by insertion sequence (IS) elements that must have transposed into their

350 sequences after construction. Two BioBricks that were closely related to the second of these
351 (1759019, 1759020) had frameshifting or large deletions. Two other parts related to one another
352  (K523020, K523022) also contained large deletions, and the first of these was marked as

353  “believed to contain major errors” in the iIGEM Registry. Finally, most of BioBrick 1732920 was
354  deleted, and its sequence marked as “inconsistent” in iIGEM Registry.

355 Two of the BFP control BioBrick plasmids, which our own iGEM team constructed and

356  submitted to the iIGEM Registry, demonstrate that there is a real risk of selecting cells that have
357  mutated copies of highly burdensome plasmids soon after they are created. We noticed that
358 there was a discrepancy in the order of the growth rates of strains carrying these plasmids in
359  our burden assays: the two control plasmids designed to have the strongest combinations of
360 promoters and ribosome-binding sites driving BFP expression unexpectedly exhibited the least
361 burden. Re-testing the frozen cell stocks of the original transformants of these plasmids

362 demonstrated that the derived stocks used in the burden assays had picked up mutations that
363 largely alleviated the burden of these two plasmids (Fig. S3). The burden was reduced from
364  45.8% to 17.8% in one case and 41.9% to 17.2% in the other. Further supporting the instability
365  of the two most burdensome BFP control plasmids, when we shared them with another iGEM
366 team, they found an insertion of an IS5 element occurred in the promoter driving BFP

367  expression in their transformant, which reduced but did not eliminate fluorescence.
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368 Even if the original cell giving rise to a colony that is picked after transforming a plasmid or
369  after resteaking a stock has only intact copies of a plasmid, it may give rise to a heterogeneous
370  population of descendant cells as it is cultured, stored as a frozen stock, and revived. As our
371  simulations show, more burdensome plasmids will be at a greater risk of having newly evolved
372  mutants begin to take over the population during these steps. If this type of stochastic, partial
373  takeover of a cell population with mutants was occurring during our experiments, more

374  burdensome BioBricks might exhibit greater variability in their measured growth rates between
375  replicate cultures. In agreement with this hypothesis, we found a significant trend toward a

376  higher standard error of the mean for growth rates measured for BioBrick plasmids that had
377  higher burden (p = 2.0x107"", two-tailed t-test for a non-zero slope) (Fig. S4).

378 In summary two lines of evidence support that “clonability” or “constructability” limits for

379  engineered DNA are creating an upper bound on what plasmids are possible to construct and
380  measure that might be causing us to underestimate the burden of some BioBrick designs. First,
381  our BFP control plasmids designed to have the strongest gene expression mutated during

382  construction and some of the BioBrick plasmids we characterized also sustained mutations that
383 likely reduce their burden. Second, we see more variation in our measurements of growth rates
384  for more burdensome BioBricks, which could be at least partially explained by cells with

385  mutations that reduce plasmid burden arising and beginning to take over during our assays.
386 Redirecting gene expression capacity to recombinant protein production causes a
387  proportional reduction in growth rate. The E. coli DH10B-GEM strain that we used as a host
388 for testing BioBrick burden has a constitutively expressed GFP gene integrated into its

389  chromosome (Fig. 6A). This GFP can be used to monitor how much the presence of a BioBrick
390 plasmid reduces the capacity of an E. coli cell for expressing its native proteins.?'® If the main
391  source of burden from a plasmid is due to its use of any cellular resources or machinery that are
392  necessary to achieve translation of proteins (e.g., ribosomes), then one expects that for a given

393  reduction in GFP expression there will be a proportional reduction in growth rate. If there is a
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394  reduction in growth rate that is larger than expected relative to the reduction in GFP expression
395 thatis observed, then some or all of the burden comes from other sources. For example, gene
396  products encoded on the plasmid may lead to depleting a cellular resource that is not directly
397 related to gene expression or have a toxic effect that interferes with homeostasis.

398 To establish that the monitoring device worked as expected, we initially tested two series of
399 plasmids that express other fluorescent proteins (FPs) at varying levels (Fig. 6B). The first was
400 our set of 5 burdensome BFP control plasmids that have different promoter and RBS

401  combinations. Here we used stocks of cells with the BFP plasmids that did not contain the

402 mutations that alleviated burden noted above. The second set consisted of 14 plasmids

403 available from the iGEM Registry that contain constitutive promoters of different strengths

404  driving expression of RFP. These RFP constructs were not included in the prior tests of BioBrick
405 burden because they are housed in a different plasmid backbone (J61002). In both cases, we
406 expected that all of the burden exhibited by these plasmids would be due to recombinant FP
407  expression depleting the translational capacity of the host cell. FP production does not use any
408 other types of limiting cellular resources, and these FPs are not expected to be toxic to cells
409  within the range of concentrations at which they are expressed.

410 In agreement with this expectation, we found that the growth rates of these strains were
411  reduced in proportion to how much they reduced GFP expression (Fig. 6C, Table S5, Table
412  S6). The Pearson correlation coefficients for this linear relationship were 0.93 and 0.81 for the
413 BFP and RFP plasmid series, respectively. The relationship between growth rate and GFP

414  expression differed slightly between the BFP and RFP series, but this was expected because
415 they have different plasmid backbones and were tested under different culture conditions (see
416  Methods). The growth rate reductions seen for RFP series plasmids were roughly in proportion
417  to the amount of recombinant protein that they expressed. By contrast, strains with BFP series
418  plasmids that experienced more gene expression burden did not necessarily produce more

419  BFP. This discrepancy is likely related to how different combinations of promoter and RBS
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strengths can lead to translating the same amount of protein but with more or less efficient use
of ribosomes.?' As for the 301 BioBricks we tested and the unmutated BFP controls, none of the

RFP expression constructs had a burden of >45% in the "unclonable" range.
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Fig. 6. Expression of recombinant proteins from a plasmid reduces the growth rate of E.
coli because it diverts some of its capacity for gene expression. (A) E. coli DH10B-GEM
host strain with the gene expression capacity monitoring device that constitutively expresses
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428  GFP integrated into its chromosome. (B) Maps for the BFP and RFP plasmid series. (C) Growth
429 rates and fluorescent protein production rates for different BFP and RFP plasmids in E. coli

430 DH10B-GEM. Dashed lines are Deming regressions showing that the reduction in growth rate is
431 proportional to the reduction in the capacity of the host cell for protein expression within each
432  set of strains. The rate of GFP production from the monitoring device is used as a readout of
433  gene expression capacity. Rates of BFP and RFP production in cells with each type of plasmid
434  are indicated by shading in the respective color. Error bars are 95% confidence limits. Two

435 independent transformants of each BFP plasmid that were tested separately are displayed as
436  points with different shapes. GFP and BFP production rates were measured on different relative
437  scales and each series uses a different vector backbone and was measured under different
438  growth conditions, so results should only be compared within each series. Data used to create
439 this figure are provided in Table S5 and Table S6.

440

441 Some BioBricks exhibit burden from sources other than gene expression. All of our
442  measurements of BioBrick burden were conducted in the E. coli DH10B-GEM host strain that
443  contained the GFP gene expression capacity monitor (Fig. 6A), so we next examined how GFP
444  production correlated with the previously characterized growth rates to understand whether the
445  burden of each BioBrick could be attributed partly or wholly to its use of the host cell’s gene

446  expression resources. If GFP production was reduced in direct proportion to the growth rate, as
447 it was in the BFP control plasmids, this would indicate that all of the BioBrick burden was from
448  gene expression (Fig. 7A). If there was significant burden with no or less-than-the-expected
449  reduction in GFP production, then it would indicate a BioBrick was compromising E. coli growth
450 for some other reason (Fig. 7B). Of the 301 BioBricks tested, 42 encode GFP or another protein
451 thatis expected to interfere with measuring GFP fluorescence, so they were excluded from this
452  analysis (see Methods). We again used the BFP plasmids as internal controls for normalizing
453  GFP production rates between different microplate assays (Fig. S5 and Methods).

454 Plotting a linear relationship between the BFP plasmid controls, the no-burden BioBrick

455  plasmids, and the origin yields the expected trade-off between growth rate and GFP production
456  for the BFP plasmids and some of the measured BioBrick plasmids (Fig. 7C). However, some
457  parts displayed a higher GFP production rate than what would be expected from the measured

458  growth rate reduction, evidence that some or all of their burden arises for reasons other than

459  diverting the host cell’'s gene expression resources. Of the 26 BioBrick parts with high-
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460 confidence predictions of burden >10% that could be evaluated in this assay, 9 (34.6%) had a
461 significantly greater reduction in growth rate than predicted from the change in GFP production
462  (adjusted p < 0.05, one-tailed t-tests with Benjamini-Hochberg correction for multiple testing),
463 indicating that a component of their burden is due to a source other than reducing the gene
464  expression capacity of the host cell (Table 1).
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466 Fig. 7. Some BioBricks exhibit burden from sources other than gene expression. (A)
467  Examples of expected results for two BioBricks that exhibit burden (b) that is wholly due to
468  utilizing the gene expression capacity of the host cell. The reduction in growth rate is
469  proportional to the reduction in GFP production according to a linear relationship (dashed line)
470 thatis established from measurements of control strains. (B) Examples of expected results for
471  two BioBricks that exhibit burden from sources other than gene expression. (C) Results of
472  measuring growth rates and GFP production rates for 259 BioBricks that do not contain
473 fluorescent proteins that are expected to interfere with measuring GFP fluorescence in the E.
474  coli host strain containing the gene expression capacity monitor. Points for each BioBrick are
475  colored based on whether there was significant burden (reduction in growth rate). Symbols
476 indicate whether the null hypothesis that all burden was due to utilizing the gene expression
477  capacity of the host cell could be rejected. BioBricks with significant burden from sources other
478  than gene expression are labeled with their accession numbers. Estimates of bo/b for these
479  BioBricks are shown in Table 1.
480
481
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482  DISCUSSION

483 By measuring the burden of 301 BioBricks and performing simulations, we established an

484  evolutionary limit on the constructability of engineered DNA sequences: none of the BioBricks
485  we tested slowed E. coli growth rates by >45%. Our results are in broad agreement with other
486  studies that have made similar measurements of growth defects and the effects of spontaneous
487  mutations that alleviate the burden of engineered DNA on bacterial cells.*”""" For example,

488 researchers testing a library of plasmids expressing three fluorescent proteins found that a

489  mutant that deleted one of these genes and took over populations after 30 generations of serial
490 transfer had an 89% higher exponential growth rate compared to the original engineered

491  strain,'® which corresponds to this mutation reducing burden by 47%. Similarly, the level of

492  burden under non-inducing conditions topped out in the 40-60% range for cells containing

493  various constructs in the study that developed the gene expression capacity monitor we used.?'
494 We found potential mutations in some BioBricks relative to their designed sequences and
495  more variation in our measurements of more burdensome BioBricks. We also discovered that
496 two of the BioBricks we used as internal controls for our assays unexpectedly mutated while we
497  were using them in ways that maintained some BFP fluorescence yet reduced their burdens
498  from near the unclonable threshold (>40%) down to levels that can be reliably maintained during
499  growth on a laboratory scale (<20%). These results suggest that we may be underestimating
500 the burden of some BioBrick designs, either because their plasmids were mutated before we
501 obtained them or because new mutants arose and reached appreciable frequencies in our

502 assays. Some discrepancies are likely due to human errors in the sequences digitally submitted
503 to the Registry versus the original DNA samples themselves. For example, researchers might
504 have copied over a portion of a sequence from a prior plasmid map or part entry and assumed it
505 was correct and unchanged without ever empirically validating their construct. However, there is

506 also both direct and anecdotal evidence that some Biobricks are prone to mutate.
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507 One such example of evolutionary instability is for the exceptionally well-characterized

508 BioBrick F2620 device. F2620 encodes a luciferase gene that is expressed in response to the
509  quorum sensing molecule acyl homoserine lactone.? It was not one of the BioBricks we tested.
510 F2620 was noted to reproducibly fail due to deletions between two 143-bp repeats introduced
511 by re-use of the B0015 double terminator part. When induced, device function declined between
512 56 and 74 cell doublings and was entirely lost after 92. The creators originally hypothesized that
513 failure was due to pre-existing mutant plasmid copies in their cell populations, but the instability
514  persisted even when they re-transformed the plasmid, confirming that it was due to evolution
515 fueled by de novo mutations. Our model shows how you can get deterministic-seeming failures
516 like this if the mutation rate is sufficiently high, as it can be for repeat-mediated deletions.*°

517 Few BioBricks have been characterized to the same extent as F2620. We discovered

518 inactivating deletions or transposon insertions in seven of the BioBrick plasmids, which likely
519 indicates that that they are also especially prone to mutational failure. As an example, the

520 Registry page for BioBrick K523020—one of the most burdensome plasmids that we

521  measured—contains a warning, "Part submitted to Registry is believed to contain major errors,”
522  which is probably more typical of how a user of an unstable part would understand rapid

523  evolutionary failure due to mutations that are relieving burden. Future work could clarify whether
524  the cases of sequence discrepancies we encountered are already mutated BioBricks, especially
525 unstable BioBricks, or design errors by reverting the putative mutations to the designed

526  sequences and, if successful (i.e., the change does not make them so burdensome that they
527  are unclonable), measuring their burden. Alternatively, deep-sequencing populations of

528 plasmids isolated from laboratory-scale cultures could be used to characterize whether they
529  consist of mixtures of mutated and unmutated plasmids.'"*® Surveys of plasmids in other

530 repositories have also found that some acquire inactivating transposon insertions.*°

531 The GFP gene expression monitor that we used responds to changes in a cell’s global

532  capacity for protein expression. For any one construct, this could theoretically represent
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533  depletion of factors as diverse as the availability of RNA polymerases, ribosomes, initiation
534 factors, charged tRNAs, amino acids, or nucleotides. However, we expect that ribosome
535 availability is the limiting factor in all or nearly all BioBricks we tested, based on studies of

1519 While we were able to establish overall trends

536 recombinant gene overexpression in E. coli.
537 that plasmids containing strong constitutive promoters and ribosome-binding sites had a higher
538 chance of exhibiting burden, it was not possible to predict the gene expression component of
539  burden a priori on this set of sequences. Hopefully, ongoing improvements in tools for predicting
540 transcription and translation initiation rates trained on expanding databases of high-throughput

541  gene expression measurements®’®'

will make this possible in E. coli and other organisms.

542 Burden can also arise for diverse reasons other than gene expression: anytime engineered
543  DNA taxes a cellular resource to the extent that it becomes a bottleneck for cell growth. For
544  example, genetic engineering can overwhelm protein export pathways or the capacities of

545  different subcellular compartments.?>2?® Further case studies of the burdensome plasmids with
546  costs not associated with gene expression could reveal the origins of these costs. It would be
547  particularly useful to create other types of burden monitors, e.g. of protein secretion, membrane
548  occupancy,* or different metabolic bottlenecks so that the relevant limiting factors could be
549 rapidly diagnosed and systems redesigned accordingly to make them more stable. This more
550 refined information will likely be needed to predict how the burden of a composite part or device
551  depends on the burden of each of the genetic parts from which it is constructed. If multiple

552  components use gene expression resources, then one might expect them to have additive

553 effects on burden, but if they use orthogonal (i.e., distinct) limiting resources, then one may find
554  that the combination is no more burdensome than the more burdensome of the two on its own.
555 We measured burden as a decrease in the exponential growth rate of E. coli host cells.

556  While this was convenient for making replicated, high-throughput measurements in a microplate
557  reader, it does not fully reflect how a DNA construct impacts the evolutionary fitness of a cell.

558  For example, it is possible that engineering a cell changes the lag time before growth begins,>
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559  survival during stationary phase, colony growth on agar, or survival of cryopreservation.

560  Furthermore, our approach can only be applied to understand genetic stability under laboratory
561  conditions, not in environmental contexts or host-associated microbiomes. Co-culture

562  competition assays between a strain of interest and a reference strain could be used to

563 measure fitness in a way that captures all components of fitness in any environment.** To make
564 these measurement high-throughput, host strains with unique sequence barcodes in their

565 chromosomes and transformed with different engineered plasmids or DNA constructs could be
566  simultaneously competed all-against-one-another in bulk competitive fitness assays.*>®

567 Researchers can take actions to improve the constructability and stability of especially

568 burdensome engineered DNA sequences. Most obviously, using low- or medium-copy plasmids
569 rather than high-copy ones or integrating constructs into the chromosome of a bacterium to

570  make them single-copy will often reduce burden into the cloneable and stable ranges.™

571  Systems have also been engineered for controlling plasmid copy number, so that DNA parts
572  can be maintained in cells at a low copy number and then amplified on demand.'**” Similarly,
573  reducing the burden of a construct can be achieved by altering promoter and ribosome-binding
574  site strengths or by using inducible promoters, as long as these changes are compatible with
575  device function.'®?' Systems that regulate expression in response to the growth rate of a cell®®%°
576  or that couple continued functioning of the engineered DNA to cell survival®® can more directly
577  buffer against evolutionary failure. Another category of more ambitious approaches is to

578 introduce orthogonal polymerases®' or ribosomes®2¢?

into a cell to prevent synthetic constructs
579  from competing with native gene expression, though the requirement that a cell produce the
580 necessary machinery may itself be burdensome. Next, aspects of the growth environment can
581 sometimes be changed. For example, supplementing media with vitamins or altering salt

582  concentrations has been reported to stabilize certain constructs.'"?? A final category of

583  approaches seeks to reduce the chances of mutations to improve the evolutionary stability of
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584  genetic constructs.”® For example, cells with lower mutation rates can be created by deleting or
585  repressing transposons °%° or by altering cellular processes that affect point mutation rates.'?
586 We created an interactive model of failure mutations in a cell population that can be used to
587  explore how tuning mutation rates and construct burden affect whether a DNA construct is likely
588 to remain intact cell populations that are grown to typical different laboratory and production

611 and stochastic® models have been developed by others. Models

589  scales. Similar deterministic
590 that include individual steps in gene expression and RNA and protein degradation are also
591  beginning to be used to examine evolutionary stability.?"®” Our model and these others still do
592  not consider or fully take into account several complications. First, rather than one category of
593  mutation leading to complete failure, there are typically multiple categories of mutations, some
594  of which only partially alleviate the burden, occurring at different rates in real systems.'*"!

595  Equally important, plasmids are multi-copy within cells so the fitness benefit of a mutation can
596 take several generations to fully manifest and depends on how plasmids segregate between
597  daughter cells. These intricacies of plasmid evolution have been tackled by a variety of more
598  complex models that could be applied to engineered plasmids.®® Finally, models that take into
599  account different phases of cellular growth could be used to further refine these dynamics.®
600 Improving our understanding of what types of synthetic DNA constructs exhibit different

601  types of burden and modeling the effects on the reliability and predictability of cellular function
602 over time is important for realizing synthetic biology applications. Researchers designing

603 engineered cells should be aware of when they are nearing a danger zone of evolutionary

604  stability where DNA designs may become unconstructable, and they should recognize that the
605 stochastic nature of evolutionary failure may lead to large variation in their experimental results,
606 failure during process scale-up, or loss of function when cells are deployed for long periods of

607 time in complex environments outside of the lab, such as in animal and plant microbiomes. Our

608 simulations and results will contribute to spreading this awareness and achieving these goals.
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609  The main conclusion can be summarized as a rule of thumb: to avoid unwanted evolution of
610  engineered microbes at a laboratory scale, do not burden their growth by more than ~30%.

611

612 METHODS

613 Model of evolutionary failure. We implemented a model in R that is similar to one used by
614  Rugbjerg et al. to predict loss of production from an engineered cell population due to escape
615 mutations." We parameterized our model such that failed (i.e., mutated) cells, F, have a relative
616  growth rate of one. Engineered cells, E, have a growth rate that is this value minus the burden,
617 b, of the engineered construct. The corresponding equations for how the numbers of engineered

618 cells, E(t), and failed cells, F(t), change over time are:

619 WG _ (1 - pE®) — p (1 - b)E®) (1)

at

aF(t)
at

620 F(t)+u(1—-Db)E(t) (2)

621  Growth of cells in batch culture typically continues until a certain number of total cell doublings
622  occurs that exhausts the provided resources rather than for a certain fixed period of time.

623  Therefore, we chose to plot the dynamics of engineered and failed cell populations versus the
624  number of cell doublings, D(t), that have occurred at a given time:

625 D(t) =log, [E(t) + F(t)] (3)

626  For stochastic simulations of this model, we used the adaptivetau R package.”® We also created

627  anonline version (https://barricklab.org/shiny/burden-model) that can perform deterministic and

628  stochastic simulations of this model using the Shiny R package.”

629 Media and growth conditions. E. coli was cultured at 37 °C in Lysogeny Broth (LB) (10 g
630 tryptone, 5 g yeast extract, 10 g NaCl per liter) with 16 g/L agar added for solid media. Unless
631  otherwise indicated, liquid cultures were grown in 18 mm x 150 mm glass test tubes with orbital
632  shaking at 200 r.p.m over a 1-inch diameter. Antibiotics were added at the following

633  concentrations: carbenicillin (100 pg/ml), chloramphenicol (20 pg/ml), kanamycin (50 yg/ml).
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634 Gene expression monitor strain construction. E. coli DH10B-GEM (JEB1203), the host
635  strain used in the burden assays, was created using plasmids and methods described in

636  Haldimann et al.”? and Ceroni et al.?"

Briefly, we inserted the constitutive GFP expression

637  cassette cloned into pAH63 (Addgene #66073) into the E. coli chromosome at the A integration
638 site by electroporating this plasmid into DH10B cells containing the helper plasmid plnt-ts

639 (Addgene #66076) and selecting for kanamycin resistant colonies. pAH63 has a pir-dependent
640 R6K origin, so it does not replicate in the recipient cells. pint-ts has a pSC101ts origin and was
641 cured by screening colonies after further growth at the restrictive temperature of 42 °C to create
642 DH10B-GEM. We also obtained and characterized E. coli DH10GFP (Addgene #109392), a
643  strain constructed in the same way in the prior study of burden by Ceroni et al.?'

644 We isolated genomic DNA from cultures of DH10B-GEM and DH10GFP using a PureLink
645  Genomic DNA Mini Kit (Invitrogen). Then, we prepared lllumina libraries using 10 ug of DNA as
646 inputinto a 2S Turbo DNA Library kit (Swift Biosciences) using 50% reaction volumes and a
647 final PCR step with custom adapters that added dual 6-bp sample barcodes. Sequencing was
648 carried out on a HiSeq X Ten by Psomagen. Reads were compared to E. coli DH10B genome
649  (GenBank: NC_010473) and pAH63 plasmid sequences using breseq.”*’* Split-read mappings
650 (new junction evidence) between plasmid and chromosomal sequences verified that the GFP
651 cassette was integrated at the expected site in both strains. There were two shared differences,
652  a single base insertion in an intergenic region and a synonymous base substitution, between
653  both strains and the DH10B reference genome. DH10GFP also had two additional mutations, a
654  nonsynonymous mutation in uspF and an IS4 element insertion in mditL.

655 Transformation of BioBrick plasmids. We made DH10B-GEM competent cells as follows.
656 A 10 ml liquid culture of cells was grown overnight in a 50 mL Erlenmeyer flask from an aliquot
657  of the glycerol stock. The entire culture was then added to 500 ml of LB in a 2 L Erlenmeyer

658 flask. This culture was incubated until reaching mid-exponential phase (an OD600 between 0.4

659 and 0.6). At this point, it was divided into 35 ml aliquots and centrifuged at room temperature for
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660 10 minutes at 3400 x g. Then, the supernatant was removed and all cell pellets were combined
661 by resuspended (via vortexing) in a total of 150 ml of a 10% (v/v) glycerol + 100 mM CaCl:

662  solution chilled on ice. Next, 30 ml fractions of the cells were centrifuged again at room

663 temperature for 10 minutes at 3400 x g. Again, the pellets were combined, resuspending in a
664  total of 20 ml of chilled glycerol-CaCl. this time. After incubating this mixture on ice for 25 min,
665 200 pl aliquots were snap frozen in liquid nitrogen. Competent cells were stored at —80°C.

666 Heat shock was used to transform BioBrick plasmids into DH10B-GEM. This transformation
667  method entailed transferring 2 pl of a miniprep of the plasmid of interest into 50 ul of competent
668 cells and incubating on ice for 1 hour. After this, the mixture was placed in a 42°C heat bath for
669 30 seconds and then immediately placed back on ice for another 30 minutes. Next, we added
670 950 ul of SOC media and incubated at 37°C in a shaker incubator for at least an hour. After
671  SOC recovery, we pelleted the cells and decanted 800 pl of the supernatant. We resuspended
672  the pellet in the remaining 200 pl of supernatant and then plated this onto an LB agar plate with
673 the appropriate antibiotic. After overnight incubation at 37°C, we picked a colony, grew an

674  overnight culture in liquid LB media, added glycerol to 15% (v/v), and froze a stock at —-80°C.
675 BFP plasmid construction. Five control plasmids expressing different levels of mTagBFP
676  were created by assembling BioBrick parts from the iGEM registry. The mTagBFP sequence
677  was from part plasmid K592100. It was combined with five promoter+RBS composite parts

678 (K608002, K608003, K608004, K608006, and K608007), by using each of their pSB1C3 part
679 plasmids as the vector backbone in a separate postfixing BioBrick assembly reaction.**"® For
680 cloning, we used enzymes from New England Biolabs under standard conditions. Briefly,

681 K592100 was double digested using Xbal and Spel restriction enzymes in CutSmart buffer.
682  Separately, each of the vector backbones was double digested using Spel and Pstl-HF

683  restriction enzymes in CutSmart buffer followed by incubation with calf intestinal alkaline

684  phosphatase for 1 h. Digested products were then gel extracted and purified using a QlAquick

685  Gel Extraction Kit before being ligated together using T4 DNA ligase. Ligated products were
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686  purified using butanol precipitation and then electroporated into competent TOP10 E. coli cells.
687  Transformed cells were recovered in SOC for 1 hour at 37°C, followed by plating on LB agar
688  containing chloramphenicol. After incubation at 37°C for 18 hours, we inoculated isolated

689  colonies into fresh LB liquid media containing chloramphenicol and grew these cultures at 37°C
690 for 18 hours. The five resulting composite BioBrick parts were deposited in the iGEM Registry
691 as K3174002, K3174003, K3174004, K3174006, and K3174007.

692 Plasmid sequencing. We sequenced BioBrick plasmids isolated from the DH10B-GEM cell
693  stocks that were used for burden assays. In addition, we sequenced plasmids isolated from the
694  TOP10 cell stocks into which the BFP controls were first transformed. Plasmid DNA was purified
695 using a QlAprep Spin Miniprep Kit (QIAGEN) or a PureLink Quick Plasmid Miniprep Kit

696  (Invitrogen). We performed Sanger sequencing on multiple stocks of the BFP control plasmids,
697 in-house lllumina sequencing on these and the other plasmid samples, and outsourced

698 Nanopore sequencing on additional plasmid samples. For lllumina sequencing, up to 10 ng of
699 plasmid DNA was used as input for sequencing library preparation using the 2S Turbo DNA
700 Library kit (Swift Biosciences) with 20% reaction volumes. Custom adapters containing dual 6-
701 bp sample barcodes were incorporated during the final PCR step. The resulting DNA libraries
702  were pooled and sequenced on an iSeq 100 instrument. Nanopore data was obtained from

703  Plasmidsaurus. Porechop’® and fastp’” were were used to trim adaptors from sequencing reads.
704 To analyze sequencing results, we first reconstructed the expected BioBrick plasmid

705  sequences from information available on the iGEM Registry webpages (part sequences, vector
706  sequences, and compatibility with different assembly standards). Then, we analyzed Illumina
707  and Nanopore sequencing data in two ways. First, we compared reads to the expected plasmid
708  sequences using breseq” to see if there were any discrepancies. Second, we performed de
709  novo assembly of reads using either Unicycler’® or flye,”® annotated the resulting assemblies
710  with pLannotate,® and examined them for matches to the expected parts using blastn

711 searches®' against a database of all BioBrick parts included in the 2018 iGEM distribution kit.
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712 BioBrick plasmid burden assays. We performed burden assays largely as described

713 previously.?' Strains were revived by adding aliquots of —80 °C freezer stocks to test tubes

714 containing LB with the antibiotic for maintaining their respective BioBrick plasmids. After

715  overnight growth (12-18 h), we vortexed each culture for three seconds and loaded 5 pl into a
716 Nunc MicroWell 96-well optical-bottom plate (ThermoScientific Cat. No. 265301) in triplicate.
717  Every plate included the five control strains (JEB1204-1208), each also loaded in 5 ul in

718  ftriplicate, and 12 blank wells (LB only). This arrangement allowed for a total of 23 strains to be
719  tested per plate. To start the assay, a multichannel pipette was used to add 195 pl of LB pre-
720 warmed to 37°C to every well with pipetting up and down several times to mix. Using a Tecan
721 Infinite Pro M200 Plate Reader, optical density at 600 nm and GFP fluorescence (excitation:
722 485 nm; emission 528 nm) were recorded every 10 minutes with 7 minutes of orbital shaking
723  during each cycle. Each plate was run for a minimum of 6 hours.

724 RFP and BFP plasmid burden assays. For the series of plasmids expressing RFP under
725  control of different promoters, we performed burden assays using the normal procedure plus an
726  additional measurement of RFP fluorescence (excitation: 585 nm; emission: 610 nm). For

727  correlating BFP expression in the control strains to reduced GFP expression, we added a

728  measurement of BFP fluorescence (excitation: 405 nm; emission: 453 nm). The extra

729  fluorescence reads for the RFP and BFP experiments reduced the proportion of shaking time in
730 each measurement cycle, resulting in slower maximum growth rates than were observed with
731  the standard burden assay procedure. RFP samples were measured every 10 minutes with 6.5
732  minutes of shaking during each cycle. BFP samples were measured every 10 minutes with 7
733  minutes of shaking during each cycle. For the RFP series we also monitored cell density using
734  OD660 instead of OD600 to avoid interference from RFP absorbance.®?

735 Burden analysis. To analyze the burden assay data for one plate, we first subtracted the
736  average values of all media blanks from the OD and fluorescence measurements. Next, to deal

737  with well-to-well variation in background levels, we shifted the values to force the means of the
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738  points over the first hour of measurements for each strain to match the grand mean for those
739  data points over all replicates of that strain. We then fit growth rates using nonlinear least-

740  squares regression to an exponential model: C(t) = C, e". We assumed that OD is directly

741 proportional to the number of cells at a given time, C(t). Co is the initial number of cells, and ris
742  the specific growth rate. We fit Co and r for all sets of nine consecutive measurements (a 90-
743  minute window in the standard assay) after the OD exceeded 0.03 and recorded the largest
744 value of r as the maximum specific growth rate for that strain. To determine the fluorescent

745  protein (e.g., GFP) production rate per cell, p, we repeated this procedure while fitting

746  fluorescence values to the equation: F(t) = Fo + Co (p/r) (" - 1). Fo is the initial fluorescence and
747  F(t) is the fluorescence at time t. This equation is derived by integrating the relationship dF/dt =
748  p C(t). We fit Fo and p in this model to the data while keeping Co and r fixed to the values

749  determined from the OD curve fit for the corresponding time window. Again, we recorded the
750 largest value of p across all time points as the maximum fluorescent protein production rate.
751 To account for plate-to-plate variation in growth and GFP production rate estimates (Fig.
752  S1A, S3A), we normalized measurements made on different plates. In our experimental design
753  a majority of the plasmids tested in each plate are expected to exhibit negligible burden. This let
754  us estimate the growth and GFP production rates corresponding to 'no-burden’ for a given plate
755 by examining the distributions of values measured. Specifically, we calculated the density

756  distributions of growth and GFP production rates using a Gaussian kernel function with

757  bandwidths of 0.014 and 300, respectively, for all non-control strains. To account for multimodal
758  distributions, we took the no-burden value as the highest value among all peaks in the density
759  distribution that were at least 50% as high as the highest peak. Then, we normalized all rate
760 estimates by dividing them by the corresponding no-burden value for that plate (Fig. S1B, S3B).
761 The final distributions of the mean values for each BioBrick plasmid have a major peak at the
762  no-burden value with a noticeable shoulder of strains with a slightly decreased growth rate or

763  GFP production rate, in addition to some strains with much lower values (Fig. S1C, S3C).
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764 Some BioBricks encode proteins that interfere with measuring GFP fluorescence. Therefore,
765  for the analysis of gene expression capacity and burden, we disregarded all BioBricks described
766  as including GFP; YFP, which has overlapping fluorescence; or the amilCP blue chromoprotein,
767  which strongly absorbs at the wavelength monitored for GFP emission.®® For the 26 remaining
768  BioBricks that also had growth rate reductions that were statistically significant and mean

769  estimated burdens 210%, we determined whether the observed GFP production rate was

770  compatible with the null hypothesis that all of the burden was due to the BioBrick utilizing the
771  gene expression capacity of the host cells. We determined the expected relationship between
772  growth rate and GFP production rate for purely gene expression burden from measurements of
773  the BFP control plasmids across all plates. Specifically, we used Deming regression to fit this
774  linear relationship, which takes into account measurement errors in both dimensions, and we
775  further required that the fit pass through the no-burden values (i.e., a normalized growth rate of
776 1.0 and normalized GFP production rate of 1.0). Then, we determined the chance that each
777  BioBrick was located above the BFP regression using a two-dimensional probability distribution
778  of each assuming maximum likelihood t-distributions for growth rate and GFP production rate.
779  We took one-half of this value to estimate a one-tailed p-value for the hypothesis that there was
780  significant burden for the test plasmid from a source other than utilization of the host cell’'s gene
781 expression resources.

782

783  SUPPORTING INFORMATION

784  Fig. S1. Growth rate measurements for all microplate assays.

785  Fig. S2. Comparison of growth rates measured for BioBricks in different vector backbones.

786  Fig. 83. BFP plasmids in cell stocks used for microplate assays mutated to reduce burden.

787  Fig. S4. Growth rate measurements for BioBricks with higher burden exhibit more variability.
788  Fig. 85. GFP production rate measurements for all microplate assays.

789
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790 DATA AVAILABILITY
791  Simulation code, unprocessed data files, analysis scripts, and plasmid assemblies have been

792  archived in a GitHub repository (https://github.com/barricklab/iGEM2019) and on Zenodo (doi:

793  10.5281/zen0do.10938726). Raw plasmid and genome sequencing data are available from the
794  NCBI Sequence Read Archive (Accession PRINA1090925).
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