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Abstract (186 words) 

To effectively depict the results of population genetics studies, it is essential to present ancestry composition 

and genetic distance. The growing amount of genomic data prompted us to design AncestryPainter 1.0, a Perl 

program to display the ancestry composition of numerous individuals using a rounded graph. Motivated by the 

requests of users in practical applications, we updated AncestryPainter to version 2.0 by coding in an R package 

and improving the layout, providing more options and compatible statistical functions for graphing. In particular, 

AncestryPainter 2.0 implements a method admixture history graph (AHG) to infer the admixture sequence of 

multiple ancestry populations, and allows for multiple pie charts at the center of the graph to display the ancestry 

composition of more than one target population. We also introduced an additional graphing module to visualize 

genetic distance through radial bars of varying lengths surrounding a core. Visualization functions per se have been 

enhanced in this update as well. Furthermore, AncestryPainter 2.0 includes two statistical modules to 1) merge 

ancestry proportion matrices and 2) infer admixture sequences through correlation analyses. AncestryPainter 2.0 is 

publicly available at https://github.com/Shuhua-Group/AncestryPainterV2 and https://pog.fudan.edu.cn/#/Software.  

 

Introduction 

As the amount of sequenced and genotyped genomes grows rapidly, the analysis and depiction of the 

population structure and genetic affinity of a larger number of human groups have become increasingly common. 

The visualization of ancestry composition and genetic distance plays a crucial role in presenting the findings of 

population genetics studies. The conventional method of displaying ancestry composition is to align individuals in 

a rectangular graph, which can be challenging to print when dealing with a large number of individuals. To address 

the aforementioned issue, a computational program named AncestryPainter was thereby developed using a circular 

graph to display ancestry composition. Moreover, version 1.0 of AncestryPainter can categorize input populations 

based on their representative ancestry and automatically sort populations and individuals according to their ancestry 

proportion. Alternatively, users can specify the population order by themselves. Users can also customize the 

population order and modify graphic features such as ancestry colors. 

Although AncestryPainter 1.0 has been applied to many population genetics studies, its limitations have 

hindered broader application. AncestryPainter 1.0 was written mainly in Perl but generates an R script to plot 

figures. The code structure inhibits users from conveniently modifying parameters when calling plotting functions 

within the R environment. The limited aesthetic parameters and monotonous layout, which only allows a single pie 
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chart to highlight the ancestry of a specific population or individual at the center of the plot, further restrict its use. 

In addition, no statistical function compatible with plotting functions (e.g., the clustering function in the R package 

“pheatmap”) is implemented in AncestryPainter. 

In this study, we developed version 2.0 of AncestryPainter using R language. This updated version retains 

most of the previous features while offering multiple layout styles for targets in a circular graph. Using the same 

basic plotting functions, we further designed a plot to display the genetic distance, in which the bars indicating 

genetic distance are arranged radially around the central target. To enhance the visual attraction of the plot, 

AncestryPainter 2.0 provides a variety of aesthetic parameters. Moreover, we implemented statistical functions to 

merge ancestry composition and infer the admixture topology in this package. Our R package aims to improve the 

visualization and processing of the results in population genetics studies.  

 

Methods 

Example dataset 

To illustrate the utilities of AncestryPainter 2.0, we used the genome-wide SNPs of 2422 modern human 

individuals in the Human Origins dataset(Lazaridis, et al. 2014) and 7 Kyrgyz individuals from the Estonian 

Biocentre Human Genome Diversity Panel (EGDP) (Pagani, et al. 2016) to generate the example data. We 

converged the Human Origins and EGDP data by bcftools (Danecek, et al. 2021) and performed 

ADMIXTURE(Alexander, et al. 2009) to estimate the ancestry makeup of the individuals for 10 repeats, specifying 

the ancestry component number (K) as 8. In addition, we ran an in-house Python script to calculate the genetic 

distance (FST)(Weir and Cockerham 1984) between populations. 

Using sectors for visualization 

The graphic functions of AncestryPainter 2.0 are composed primarily based on the R package “graphics”. The 

sectors visualizing ancestry proportion or genetic distance are plotted by the function “polygon” in “graphics”. The 

coordinates of sectors on the canvas depend on 1) the order of the ancestry component indicated in the input data 

and 2) the initial plotting position. The sector size correlates with the quantity of ancestry proportion or genetic 

distance. In addition, we utilize other functions in the “graphics” package, such as “text” and “arrows” to annotate 

sectors. 

Merging ancestry proportion matrices 

This section is translated from the in-house Python script authored by Pan, et al (Pan, et al. 2022) 

(https://github.com/Shuhua-Group/ADMIXTURE.merge). This function merges the ancestry proportion matrices 

(called “target matrices”) estimated by software such as ADMIXTURE with the same dataset and the same ancestry 

component number (K). This function calculates and compares the correlation (measured by Pearson coefficient) 

between one ancestry component in a user-defined reference matrix (i.e., a reference component) and each of the 

ancestry components in the matrices to be merged (i.e., target components), and then matches the reference 

component with the target of the highest correlation coefficient. The function counts the number of target 

components matched with each reference component, and calculates the supporting ratio of all ancestry 

components in a reference matrix. The supporting ratio is defined as the ratio of the matched target component 

number to the total number of target matrices. In the merged matrix, the proportion of an ancestry component for 

each individual is the average of a group of matched ancestry components. A target matrix with all ancestry 

components matching those of the reference is defined as a consensus matrix “supporting” the reference, otherwise, 

it is regarded as a “conflicted” one. A larger number of consensus matrices indicates the reliability of the reference 

and vice versa. 
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Inferring admixture sequence using Admixture History Graph 

Pugach, et al (Pugach, et al. 2016) have introduced a method, Admixture History Graph (AHG), to infer the 

admixture sequence of multiple ancestry populations by calculating correlation coefficients between ancestry 

components, based on the idea that the admixture proportion of two previously admixed ancestries and that of a 

third ancestry would be independent in subsequent admixture events. Specifically, in the AHG test, the correlation 

efficiency is estimated with the covariance of 1) the ratio of the admixture proportion of two random-picking 

ancestry components and 2) the admixture proportion of the third ancestry component. For example, an already 

admixed population with two different ancestry components A and B meets with another episode of admixture 

bringing into this population a new ancestry component C, and the arrays of ancestry proportion of individuals in 

populations A, B, and C are available. The correlation coefficient can be calculated as follows: 

������, �; 
� � 
cov ��
� , 
�
 #�1, "cov"�  

This coefficient is expected to be zero. Practically, the admixture topology with the lowest corresponding 

correlation coefficient among the three combinations, i.e., ������, �; 
�, ������, 
; �� and ������, 
; ��, can 

be inferred as the best-fit. The supporting ratio of each admixture topology can be estimated by using ancestry 

proportion arrays of randomly-picked individuals from the given population.  

This metric has been modified and then applied to our previous study of the Uyghurs (Feng, et al. 2017) and 

the Huis (Ma, et al. 2021) in Northwestern China, in which the covariance was substituted by Pearson coefficient, 

because the latter can adjust the bias caused by admixture proportion differences among ancestry components: 

������, �; 
� � 
cor ��
� , 
�
 #�2, "cor"�  

However, the correlation efficient values of the same population combination (e.g., ������, �; 
� and 

������, �; 
�) can be distinct if the positions of ancestry components in the fraction are swapped (e.g., replacing 

A/B by B/A). To solve the issue, we defined a novel metric as an arithmetic mean of the two covariance or 

correlation values with swapping ancestry components: 
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Or 
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In addition, Oliveira, et al (Oliveira, et al. 2022) updated the original AHG metric by introducing 

logarithm-transformation, which eliminates the effect of swapping ancestry component positions. 

������, �; 
� � 
cov �log ��
�� , log�
��
 #�5, "cov_log"�  

Drawing on the metrics proposed above, we could also optimize the calculation of the correlation coefficients 

as: 

������, �; 
� � 
cor �log ��
�� , log�
��
 # �6, "cor_log"�  

To validate the efficiency of these metrics, we examined our methods and previously-published ones via three 

kinds of admixture scenario models (Figure. 2). These models were established based on that proposed by Feng, et 

al(Feng, et al. 2017). 

(1) (AB)C scenario: Populations A and B were initially admixed 120 generations ago to form the AB 
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population. After 90 generations of self-evolution, the AB population then mixed with Population C 30 generations 

ago, leading to the formation of the initial (AB)C population. This (AB)C population underwent a further 30 

generations of self-evolution to arrive at the final (AB)C population (Figure. 2A). When population A and 

population B admixed to form population (AB), the admixture proportion of population A was varied incrementally 

from 0.1 to 0.9, with a step size of 0.1. Similarly, when population (AB) was subsequently admixed with population 

C, the admixture proportion of population C was also varied incrementally from 0.1 to 0.9, with a step size of 0.1. 

Each admixture proportion scenario was simulated 100 times. 

(2) ((AB)(CD)) scenario: Populations A and B underwent admixture 120 generations ago to form the 

composite population (AB), while concurrently, Populations C and D were mixed to form the composite population 

(CD). Each of these newly formed populations, (AB) and (CD), then proceeded through 90 generations of isolated 

evolution before admixing 30 generations ago, giving rise to the initial combined population (AB)(CD). This 

combined population (AB)(CD) then experienced 30 generations of self-evolution to reach its final state (Figure. 

2B). During the admixture event between Populations A and B, the contribution from Population A was 

incrementally set from 0.1 to 0.9 in steps of 0.1. Similarly, for the admixture between Populations C and D, 

Population C's contribution was also incrementally set from 0.1 to 0.9 in steps of 0.1. During the admixture of 

composite Populations (AB) and (CD), the proportion of (AB) was set at 0.2, 0.3, 0.4, and 0.5. Each admixture 

proportion scenario was simulated 100 times. 

(3) ((AB)C)D scenario: Populations A and B initially admixed 150 generations ago to form the composite (AB) 

population. This AB population then underwent 90 generations of independent evolution before engaging in 

admixture with Population C 60 generations ago, culminating in the formation of the (AB)C population. After a 

further 30 generations of self-evolution, this (AB)C population then admixed with Population D to form the 

((AB)C)D population 30 generations ago. The ((AB)C)D population continued to evolve independently for an 

additional 30 generations to achieve its final genetic composition (Figure. 2C). During the admixture event between 

Populations A and B, the admixture proportions from Population A were specifically set at 0.2, 0.3, 0.4, and 0.5. 

When Population (AB) admixed with Population C, the admixture proportion from Population C varied 

sequentially from 0.1 to 0.9, with a step increment of 0.1. Subsequently, for the admixture event between 

Population (AB)C and Population D, Population D’s admixture proportion also ranged sequentially from 0.1 to 0.9, 

with the same step increment of 0.1. Each admixture proportion scenario was simulated 100 times. 

Populations in the three kinds of admixture scenario models were simulated by AdmixSim2(Zhang, Liu, et al. 

2021), an individual-based forward-time simulation tool that can flexibly and efficiently simulate population 

genomics data under complex evolutionary scenarios. For all 3 scenarios, the populations A, B, C, and D were 

randomly generated in accordance with the AdmixSim2 manual 

(https://github.com/Shuhua-Group/AdmixSim2/tree/master), without involving specific population information.  

During the simulation, we maintained a constant sample size of 5,000 individuals per population per 

generation. Due to factors such as genetic drift, some ancestral components may be represented at very low 

frequencies (below 1e-6) in the outcomes. These minor ancestral components are then set to a threshold value of 

1e-6, and the proportional frequencies of the remaining ancestral components are accordingly adjusted to ensure 

that the sum of all ancestral component proportions equals 1. In addition, we forced the proportion of each ancestry 

component in the ultimate admixed population to be greater than 0. 

Further, we generated simulated data within the (AB)C scenario to evaluate the impact of varying sample sizes 

on algorithmic performance. Here, the metric employed was "mean_cor''. When population A and population B 

were mixed to form population (AB), the admixture proportion of population A was varied incrementally from 0.1 

to 0.5, with a step size of 0.1. Similarly, when population (AB) was subsequently admixed with population C, the 

admixture proportion of population C also varied incrementally from 0.1 to 0.9, with a step size of 0.1. Each 
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admixture proportion scenario was simulated 100 times. After the simulation data were prepared, we sequentially 

sampled 25, 50, 75, and 100 individuals from the admixed population to assess the effect of sample size on the 

efficacy of the algorithm. We documented the number of instances in which the algorithm accurately inferred the 

correct admixture model (accuracy). It turned out that a greater sampling size resulted in higher accuracy of 

inference and all the methods obtained the highest accuracy when the sapling size was 100 (Supplementary Table 

1).  

 

Description 

Visualization of ancestry makeup and genetic distance 

AncestryPainter 2.0 implements a "sectorplot" to visualize the ancestry composition of multiple populations. 

The users of our software have to provide an ancestry matrix with rows as individuals and columns as ancestry 

proportion, along with the annotation including individual ID and group ID. Users can specify the color code of 

ancestry components and the population order. If not, the colors of ancestry will be randomly generated, and the 

populations will be categorized into K (ancestry component number, see Methods) groups and then sorted 

according to their representative ancestry (i.e., the ancestry accounting for the largest proportion in this population), 

similar to what is done in AncestryPainter 1.0 (Feng, et al. 2018).  

An important function and new feature of our software is to display the ancestry composition of multiple 

target population(s) using pie charts in the center of the plot. In contrast to the AncestryPainter 1.0 which allows 

only one pie chart indicating one target population in the center, the newly-developed version 2.0 supports multiple 

target pie charts. This feature is inspired by some users of AncestryPainter 1.0 (Sala, et al. 2019; Khan and Khan 

2021; Ma, et al. 2021; Zhang, et al. 2021). The positions of the target pie charts can be adjusted via the arguments 

defined as 1) the distance between the centers of the target pie charts and the plot; 2) the angle between the line 

from the center of the plot to the center of the target pie chart and the right horizontal axis of the plot. 

Moreover, we designed some optional graphing elements and features to help annotate or beautify the plot. 

Users can add arrows from the sector indicating one population to the corresponding target pie chart, or legends 

that display the color code and names of the ancestry components. Users can also modify the font, size, and color of 

the target labels, the position of the legend, etc. For the output figures, we removed the option in version 1.0 to 

output graphs in “.pdf” or “.png” format directly. Instead, users can output graphs using internal R functions “pdf” 

“png”, etc. 

Another graphing function implemented in AncestryPainter 2.0, "radiationplot" can be used to visualize the 

genetic distance from one target population to another population. The plotting pattern was first present in a 

publication on the ancestral origin of Tibetans (Lu, et al. 2016). The required input of this plot is a four-column 

matrix containing information on populations, regions, genetic differences, and color codes. This plot includes a 

core indicating the target population surrounded radially by the sectors showing the genetic distance, with outer 

rings displaying the value range. The number and numeric range of outer rings can be modified by users as well. 

Similar to “sectorplot”, the sectors around the core can be automatically sorted according to their values. Moreover, 

“radiationplot” supports aesthetics and annotation such as text size/font and legends. 

Merging ancestry proportion matrices 

A statistical function compatible with graphing functions is also introduced into AncestryPainter 2.0 for 

merging multiple ancestry proportion matrices estimated with the same dataset and the same ancestry component 

number (K) to obtain the averaged ancestry proportion for each individual. The required input can be the file names 

of the ancestry proportion data frames or the data frames directly. Each data frame contains (2 + K) columns, 

including two columns of individual and population annotation and an ancestry proportion matrix of K ancestry 
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components. Users can assign any one of the inputs as the reference matrix for merging. The function “ancmerge” 

outputs an R list including 1) a merged ancestry proportion matrix with annotation, 2) a data frame showing the 

representative group (with the largest ancestry proportion of the corresponding component) and the supporting ratio 

of each ancestry component, and two vectors showing the matrices 3) conformed and 4) conflicted with the 

reference.  

Inferring admixture topology 

We validated the efficiency of different variations of AHG by three admixture scenario models (Fig. 3; 

Methods). For the “(AB)C” model, given initial admixture proportion of A and C varying from 0.1 to 0.9, the 

metric “cov” obtained accuracy greater than 0.8 only if the initial proportion of C was not more than 0.6, and the 

distribution of accuracy values was asymmetric, indicating low robustness of this method. Similarly, the metric 

“mean_cov” showed a weakness with an extreme ratio of A (0.1 or 0.9). Compared to metrics “cov” and 

“mean_cov”, the other four methods (“cor” “mean_cor” “cov_log” and “cor_log”) showed better performance, 

while “cor” could obtain low accuracy (< 0.8) if the proportion of C was less than 0.7. In addition, “mean_cor” and 

“cor_log” had higher accuracy (> 0.6) than other metrics (Fig. 3A; Supplementary Table S2). 

When we validated efficiency of AHG metrics on the (AB)(CD) model, to make the differences of metrics 

more prominent, we chose a relatively biased proportion (0.2) of the admixed population (AB) (Fig. 3A), while the 

initial proportion of A and C varied from 0.1 to 0.9 (step size: 0.1). The metric “cov” showed the worst 

performance, and it was possible that “mean_cov” obtained a very low accuracy when A had an extremely low or 

high initial proportion (0.1 or 0.9). The rest of the metrics showed a better performance while a small proportion of 

A or C (0.1 or 0.9) could also reduce the accuracy. Among these metrics, “cor”, “mean_cor” and “cor_log” had 

relatively higher accuracy, ranging from 0.44 to 1, while the accuracy of “cov_log” might drop down to less than 

0.4 (Fig. 3B; Supplementary Table S3).  

For the ((AB)C)D model, we specified the initial proportion of A as 0.2, with C and D ranging from 0.1 to 0.9. 

Similar to the results of the (AB)(CD) model, “cov_log” “cor”“mean_cor” and “cor_log” outperformed “cov” and 

“mean_cov”. Moreover, “cov_log” and “cor_log” had higher median accuracy (>0.4) than “cor” (0.22) and 

“mean_cor” (0.38), indicating that it was more likely to obtain higher accurate admixture topology with “cov_log” 

and “cor_log” metrics (Fig. 3C; Supplementary Table S4). 

Overall, the metric “cor_log” showed the best performance among all metrics. We further evaluated its 

robustness with varying (AB) and A proportion (0.3, 0.4, 0.5) in the (AB)(CD) model and the ((AB)C)D model, 

respectively (Fig.4; Supplementary Table S5-S6). It turned out that “cor_log” obtained an accuracy greater than 0.7 

in most of the instances for the (AB)(CD) model (Fig. 4A; Supplementary Table S5). For the((AB)C)D model, if 

the extremely biased instances (the proportion of C or D = 0.1; the proportion of C or D = 0.9) were not taken into 

account, 90% of the “cor_log” results were greater than 0.5 (Fig. 4B; Supplementary Table S6). Given that 

admixture scenario similar to “(AB)(CD)” was more prevalent than “((AB)C)D” in previous studies(Feng, et al. 

2017; Ma, et al. 2021), the lower performance of “cor_log” on the “((AB)C)D” scenario model might not hinder the 

application of “cor_log” in population admixture study. Therefore, we employed “cor_log” as the AHG metric of 

AncestryPainter 2.0.  

 

Code examples 

Here are shown some examples of the usage of AncestryPainter 2.0. For full instructions and example data, 

please refer to the manual online (Data and code availability). 

Example 1: visualization for ancestry composition by sectorplot 
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In this example, we first read a series of input files into variables in the R environment, including the ancestry 

proportion matrix (“exp_q”), the individual and population annotation (“exp_ind”), the previously sorted 

population order (‘exp_order’) and the color code of the ancestry components (“exp_cols”).  

 

Next, these variables are passed to the “sectorplot” function with the target specified as the populations 

“Xuun”, “French” and “Dai”. The layout of the target pie charts is determined by the parameters “tarang1” and 

“tarang2”, which means the angle of the center of the pie chart in the polar coordinate system with the plot center 

as the origin. In addition, the flag “legend_mode” is specified as TRUE to show the legend of the ancestry 

components. The output is written in a PDF file and is illustrated in Fig. 1A. 

 

Example2: visualization for genetic distance 

Below is shown an example to use our R package to visualize the genetic distance from a target “Tujia” to 

reference populations, a tab-separated file is read into an R data frame and passed to the “data” parameter of 

“radiationplot”. The population label which is to be shown in the core of the plot should be passed to the “target” 

parameter. The “sorting” flag controls whether to sort the bars indicating genetic distance. Regarding the outer 

rings marking the genetic distance values, the number of the rings and the decimal of the values on the rings are 

controlled by parameters “num” and “digits”, respectively. Similar to “sectorplot”, users can decide whether to 

show the legend (“legend_mode”) and adjust the legend position (“legend.pos”). Moreover, the text size in the plot 

(e.g., “ring.text.cex”) can be modified as well. The output is illustrated in Fig. 1B. 

 

Example3: Ancestry composition merging 

In this example, we use an internal R function “list.files” to read the names of ancestry proportion files into a 

vector, which is then passed to the parameter “tar_anc_filelist” of the function “ancmerge” with “K” specified as 8. 

> exp_fst <- read.table("./inst/extdata/exp_fst.local.1.txt", stringsAsFactors = F, header 

= F) 

> # Graphing 

> pdf('exp_fst.local.1.pdf', height = 8, width = 8) 

> radiationplot(data = exp_fst, target = "Tujia", sorting = T, num = 3, digits = 3, legend_mode 

= T, legend.pos = "right", ring.text.cex = 0.7) 

> dev.off() 

> # Graphing 

> pdf("exp_ances.K8.2.pdf", width = 45, height = 45) 

> sectorplot(Q = exp_q, ind = exp_ind, target = c("Xuun", "French", "Dai"), poporder = 

exp_order, ancescols = exp_cols, tarang1 = 90, tarang2 = 330, legend_mode = T) 

> dev.off() 

> setwd(‘/home/users/yourpath/AncestryPainterV2’) 

> # input 

> exp_q <- read.table("./inst/extdata/exp_ances.K8.2.Q", header = F) 

> exp_ind <- read.table('./inst/extdata/exp_ances.K8.2.ind', header = F) 

> exp_order <- read.table('./inst/extdata/exp_ances.K8.2.order', stringsAsFactors = F, 

header = F)$V1 

> exp_cols <- read.table('./inst/extdata/exp_ances.K8.2.color', stringsAsFactors = F, 

header = F)$V1 
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The reference ancestry proportion matrix is specified as the first one of the matrices. The function prints the time 

and working directory, and prints “Done.” after all of the comparing and merging processes are completed. 

 

Users can view the output merged ancestry proportion matrix (“results$merged_ancesrty”) and the supporting 

ratio of the representative populations for ancestry components (“results$sipporting_ratio”). 

 

Example4: Admixture history topology 

We included the whole procedure of AHG, combination of ancestry components, sampling of individuals, and 

calculation of correlation coefficients in one function “ahg”. The output of this function contains 1) a data frame of 

all ancestry component combinations and all the possible admixture topologies together with the corresponding 

supporting number over all bootstrap runs; 2) the correlation coefficient of admixture topologies in each bootstrap 

run. Bootstrap number and sampling size can be specified via parameters “times” and “num”, respectively. It is 

recommended to sample as many individuals as possible to raise the accuracy of inferring the admixture topology.  

> # Results 

> results$merged_ancestry[1:5, 1:5] 

            1        2         3         4     5 

1      Egypt1 Egyptian 0.1165650 0.1253105 1e-05 

2     Egypt11 Egyptian 0.1146445 0.1138775 1e-05 

3 Egypt22TD21 Egyptian 0.1005125 0.0932620 1e-05 

4 Egypt9AQ177 Egyptian 0.1238020 0.0970490 1e-05 

5 Egypt5AQ172 Egyptian 0.0821510 0.0974555 1e-05 

> results$supporting_ratio 

  component represent_pop support_counts support_ratio 

1     comp1        Yoruba             10           1.0 

2     comp2         Hadza              2           0.2 

3     comp3 Ju_hoan_North             10           1.0 

4     comp4        Papuan             10           1.0 

5     comp5         Chane             10           1.0 

6     comp6        Korean              2           0.2 

7     comp7          Mala             10           1.0 

8     comp8     Sardinian             10           1.0 

> # input 

> ancfiles <- list.files("./inst/extdata/", pattern = "[0-9]\\.ancestry", full.names = T) 

> # Merging 

> results <- ancmerge(tar_anc_filelist = ancfiles, ref = ancfiles[1], K = 8) 

Time: 

2023-01-22 20:00:05 

Path: 

/home/users/yourpath/AncestryPainterV2 

Done. 
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In the example above, the string "Ances5_Ances6_Ances7" indicates a combination of ancestry components 

"Ances5" "Ances6" and "Ances7", and "(Ances5,Ances6:Ances7)" indicates the admixture topology in which that 

"Ances5" and "Ances6" admixes first and the joint ancestry admixes with "Ances7" later.    

 

Discussion 

In this study, we developed a new version of AncestryPainter which can be used to illustrate the ancestry 

compositions and genetic distance along with statistical functions to merge multiple ancestry proportion matrices or 

infer admixture topology. Moreover, we introduced the AHG algorithm into AncestryPainter for the inference of 

admixture topology. We compared the accuracy of six AHG metrics on three different admixture scenario models 

using simulated populations. The metric “cor_log” showed an overall better performance than other metrics, and 

thus we implemented this metric in the AHG function. 

The AHG method is easy to operate and has a high accuracy with (AB)C and (AB)(CD) admixture scenario 

models. However, the accuracy of all AHG metrics is low when the proportion of any ancestor is too small. It can 

be interpreted as the effect of genetic drift, which can be simulated by AdmixSim2. When descendants are 

> # input 

> ances_mat <- read.table(‘./inst/extdata/Kyrgyz_ancestry_mat.txt’, sep = “\t”, header = 

T) 

> head(ances_mat)[,1:4] 

       individual population Ances1 Ances2 

1 GS000016193-ASM     Kyrgyz      1e-05  0.0007425 

2    Bishkek28446     Kyrgyz      1e-05  0.0028260 

3 GS000016177-ASM     Kyrgyz      1e-05  0.0000100 

4 GS000016187-ASM     Kyrgyz      1e-05  0.0000100 

5    Bishkek28452     Kyrgyz      1e-05  0.0000100 

6    Bishkek28456     Kyrgyz      1e-05  0.0000100 

> result <- ahg(ances_mat[,c(“Ances5”, “Ances6”, “Ances7”, “Ances8”)], num = 5, times = 100) 

Done. 

> # output 

> result$topology[1:4,] 

            combination               topology number 

1  Ances5_Ances6_Ances7 (Ances5,Ances6:Ances7)     61 

2  Ances5_Ances6_Ances7 (Ances7,Ances5:Ances6)     25 

3  Ances5_Ances6_Ances7 (Ances6,Ances7:Ances5)     14 

4  Ances5_Ances6_Ances8 (Ances5,Ances6:Ances8)     48 

> 

> result$correlation$Ances5_Ances6_Ances7[1:4,] 

  (Ances5,Ances6:Ances7) (Ances7,Ances5:Ances6) (Ances6,Ances7:Ances5) 

1              0.7621099              0.4544778              0.8080153 

2              0.3691363              0.9451961              0.1928449 

3              0.9199136              0.9662632              0.6711390 

4              0.2581965              0.5798565              0.4424365 
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generated, an ancestry component may be lost or drastically decreased due to genetic drift and the ancestry 

proportion in the descendants tends to form a truncated normal distribution with large variance, which disturbs the 

correlation between previously admixed ancestry components. Accordingly, all AHG metrics do not perform well 

in the ((AB)C)D) scenario, a continuous admixture model, which may result from the large variance of each 

ancestral component after admixture. The AHG accuracy for the ((AB)C)D) the scenario might grow if all four 

ancestral proportions have a substantial admixture proportion (Fig. 4B). Collectively, AHG can be used as a 

"preliminary estimate" to infer the admixture topology and have to be combined with other methods, e.g., the 

three-population test (f3) (Patterson, et al. 2012). 

In the future, we plan to implement more functions and features, for instance, using multiple concentric circles 

in a single image to allow the displaying of ancestry makeup assuming different numbers of ancestry components, 

or annotating the subgroup information on a finer scale. Furthermore, we may introduce tree structure or network 

graphs to display the phylogenic relationship of populations and admixture topology. 

 

Data and code accessibility 

Example data and source code are available on GitHub (https://github.com/Shuhua-Group/AncestryPainterV2) 

and HumPOG website (https://pog.fudan.edu.cn/#/Software).  
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Figure legends 

Figure 1 Visualization of ancestry composition and genetic distance using AncestryPainterV2 

A) Plotted with “sectorplot” is the ancestry composition of 100 randomly-picked populations in the Human Origins 

Dataset given K = 8. The ancestry composition of three target populations (Xuun, French, and Dai) is displayed in 

pie charts at the center of the plot. See Example 1 for the code. B) Plotted with “radiationplot” is the genetic 

distance from the Tujia group in the Human Origins Dataset to 14 randomly-picked populations from East Asia and 

Southeast Asia. The genetic distance is indicated by the length of the bars radially surrounding the core indicating 

the target. See Example 2 for the code. 

 

Figure 2 Admixture scenario models for the validation of AHG metrics 

Simulated populations are marked in the oval frames, and the vertical axis left to the graph shows the admixture 

time. Admixture proportion is marked beside the arrows indicating admixture: A) (AB)C scenario, in which both p1 

and p2 vary from 0.1 to 0.9, with step size as 0.1; B) ((AB)(CD)) scenario, in which both p1 and p2 vary from 0.1 to 

0.9, with step size as 0.1, and p3 varies from 0.2 to 0.5, with step size as 0.1; C) ((AB)C)D scenario, in which p1 

varies from 0.2 to 0.5, with step size as 0.1, and both p2 and p3 vary from 0.1 to 0.9, with step size as 0.1. 

 

Figure 3 The accuracy of six AHG metrics on three admixture scenario models 

The heatmaps show the accuracy of six AHG metrics on three admixture scenario models: A) (AB)C scenario; B) 

((AB)(CD)) scenario; C) ((AB)C)D scenario. The accuracy value is indicated by the color gradient in the legend 

(high: blue; low: white). The initial proportion of the admixed population (AB) in B) was specified as 0.2. The 

initial proportion of the population A in C) was specified as 0.2. 

 

Figure 4 The accuracy of “cor_log” metric on two admixture scenario models 

The heatmaps show the accuracy of the “cor_log” metric on A) ((AB)(CD)) admixture scenario model and B) 

((AB)C)D admixture scenario model. The accuracy is indicated by the color gradient in the legend (high: blue; low: 

white) The initial proportion of population (AB) or population A is marked on the top of each heatmap. 
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