

1 **Topology changes of the regenerating *Hydra* define actin nematic defects as mechanical
2 organizers of morphogenesis.**

3

4 Yamin Ravichandran¹, Matthias Vogg², Karsten Kruse^{1,3}, Daniel JG Pearce³, Aurélien Roux¹

5

6 **Affiliations:**

7 ¹Department of Biochemistry, Université de Genève, CH-1211 Genève, Switzerland

8 ²Department of Genetics & Evolution, Université de Genève, CH-1211 Genève, Switzerland

9 ³Department of Theoretical Physics, Université de Genève, CH-1211 Genève, Switzerland

10

11 **Abstract: 196 words**

12

13 *Hydra* is named after the mythological animal for its regenerative capabilities, but contrary
14 to its mythological counterpart, it only regenerates one head when cut. Here we show that
15 soft compression of head regenerating tissues induces the regeneration of viable, two headed
16 animals. Topological defects in the supracellular nematic organization of actin were
17 previously correlated with the new head regeneration site¹. Soft compression creates new
18 topological defects associated with additional heads. To test the necessity of topological
19 defects in head regeneration, we changed the topology of the tissue. By compressing the head
20 regenerating tissues along their body axis, topological defects of the foot and of the
21 regenerating head fused together, forming a toroid with no defects. Perfectly ordered toroids
22 did not regenerate over eight days and eventually disintegrated. Spheroids made from
23 excised body column tissue partially lose their actin order during regeneration. Compression
24 of spheroids generated toroids with actin defects. These tissues regenerated into toroidal
25 animals with functional head and foot, and a bifurcated body. Our results show that
26 topological defects in the actin order are necessary to shape the head of the regenerating
27 *Hydra*, supporting the notion that actin topological defects are mechanical organizers of
28 morphogenesis.

29

30

31

32 **TEXT: 2998 words**

33 Morphogenesis and regeneration share common principles of development that establish body axes
34 and cell fates. But less is known about how cells and tissues coordinate forces that shape
35 organisms. *Hydra* is an established animal model for regeneration and developmental biology
36 since the eighteenth century². The evolutionarily conserved Wnt family proteins specify the body
37 axis in the animal by forming the head organiser complex³⁻⁶. Upregulation of β -catenin - a
38 mechanosensing transducer of the Wnt pathway - leads to the formation of additional heads during
39 regeneration, showing that head determination and tissue mechanics are coupled⁷.
40 Mechanical cues such as osmotic oscillations are also essential for *Hydra* regeneration⁸. Breaking
41 of symmetry in these oscillations driven by muscular contractions plays a role in specifying the
42 body axis^{9,10}. These contractions rely on ordered basal actin bundles that display supracellular
43 organization, reminiscent of a liquid crystal-like nematic order: in the adult animal, they align
44 parallel to the body axis in the ectoderm, forming aster-like topological defects at the foot and at
45 the mouth, and in the endoderm, they form concentric circles around the body of the animal^{1,11}.
46 Topological defects are singularities in the nematic order, surrounded by a specific pattern of order
47 function of their topological charge. On surfaces, the distortion of the nematic field around defects
48 is energetically coupled to curvature, an effect that can passively drive surface deformation¹². In
49 living systems that behave as active materials able to generate internal forces, topological defects
50 can generate unique patterns of stress around them which can drive motion or deformation¹².
51 Examples of defects acting as force-organizing centres include defects required for cell extrusion,
52 cell sorting and collective cell migration¹³. More recently we showed that the three-dimensional
53 growth of cellular vortices is shaped by integer topological defects¹⁴, a process similar to the germ
54 band extension in *drosophila*¹⁵. These studies highlight the possible role of defects as mechanical
55 organizers of morphogenesis in biological systems¹⁵. This concept is most supported by recent
56 studies conducted in *Hydra* showing a strong correlation between the position of topological
57 defects in the actin with the position of the new mouth and foot during regeneration¹.

58

59 Given the nematic properties of actin¹, we aimed at changing the nematic order in the regenerating
60 *Hydra* to probe the role of actin defects. For this, we confined *Hydra* during head regeneration:
61 adult animals were sectioned in their transverse plane, and the part containing the foot, hereafter
62 called the head-regenerating tissue, was left to recover for 6 hours. Head-regenerating tissues were
63 then subjected to soft compression between an agarose slab of varying stiffness (0.5%, 1% and 2%
64 agarose) and a glass bottomed dish. Head-regenerating tissues were kept under compression for
65 four days post-dissection (dpd), and then released on day five (Fig. 1a). Animals were screened at
66 12dpd to allow all tissues to complete regeneration before phenotypic analysis. As a control, to
67 confirm that agarose did not impact regeneration, head-regenerating tissues were embedded in
68 agarose. These tissues regenerated into viable uniaxial animals within 4dpd (Fig. 1b and
69 Supplementary Video 1).

70

71 Under compression, head-regenerating tissues adopted one of three possible orientations; lateral,
72 oral or aboral. In lateral, the tissue axis is perpendicular to the compression axis, oral corresponds
73 to compression aligned with the tissue axis, the foot facing the glass, and aboral is the inverse of
74 oral orientation (Fig. 1c). We captured the tissue orientation 12h post-compression (24 hours post-
75 dissection (hpd)). We observed that under the softest 0.5% agarose compression (0.5% AC), all
76 head-regenerating tissues oriented laterally (Extended Data Fig.1a), while with stiffer agarose (1%
77 and 2% AC) a significant fraction displayed oral and aboral orientations indicating their inability
78 to reorient under compression (Extended Data Fig.1a).

79

80 At 12 dpd, the most striking phenotype was a substantial proportion of bicephalous animals (30%
81 at 0.5% AC) (Fig. 1d,e). As the single foot is symmetrically connected to the two heads, we refer
82 to them hereafter as biaxial animals. Uniaxial animals with ectopic tentacles were also observed
83 (25% at 0.5% AC), similar to the ectopic tentacles observed in weak Wnt3 overexpressing mutants
84 (Extended data Fig. 1b)^{6,16}. However, biaxial animals are not equivalent to Wnt3 overexpressing
85 mutants with ectopic heads, as ectopic heads form after the establishment of the primary body axis
86 marked with the primary head^{6,16}. The biaxial animals were viable, and the two heads functional
87 as evidenced by an *Artemia* feeding assay (Extended Data Fig. 1c and Supplementary Video 1). *In*
88 *situ* hybridization of Wnt3 RNA confirmed the full differentiation of the additional heads
89 (Extended Data Fig. 1d).

90

91 We observed that deformation of head-regenerating tissues increased gradually with the agarose
92 stiffness (Extended Data Fig. 1e). The most notable change induced by increasing stiffness was a
93 significant fraction of dead animals at 1% and 2% AC (Fig. 1e). Furthermore, the initial orientation
94 dramatically changed the relative proportions of the phenotypes: tissues oriented laterally
95 displayed the same phenotypic distribution in regenerated animals for both 0.5% and 1% AC (Fig.
96 1e). However, head-regenerating tissues with oral and aboral orientations, present only in 1% and
97 2% AC, had a much higher proportion of death (Supplementary Video 2). Thus, orientation of
98 head-regenerating tissues impacted the phenotypic distribution more than increasing agarose
99 stiffness (Fig. 1e).

100

101 To test whether soft compression was essential for phenotype generation, we compressed the head-
102 regenerating tissues between stiffer plastic microfluidic channels of fixed thickness. At 200
103 microns confinement, only dead tissues were obtained, and at 400 microns, no phenotypic changes
104 were observed (Extended Data Fig. 1f,g). Moreover, compressing head-regenerating tissues
105 between two 1% agarose slabs increased the penetrance of phenotypes, while reducing the
106 proportion of deaths (Extended Data Fig.1h). We therefore concluded that soft compression was
107 essential, probably applying sufficient constraints to cause biaxial phenotype, still allowing for
108 contractions essential for regeneration⁸. Our results show that soft compression of foot tissues
109 during regeneration of the head can trigger head duplication, leading to viable bicephalous animals.

110

111 We further investigated the reasons for such a dramatic change in morphogenetic outcome. Given
112 the correlation between the position of actin topological defects and site of new head regeneration¹,
113 we wondered how the actin nematic order was modified during compression. 3D two photon
114 imaging of biaxial animals (12dpd) showed that ectodermal actin retains its long-range nematic
115 order, but that additional defects were present at the mouth position, and in between the heads
116 (Extended Data Fig. 2a). We wondered when these additional defects appeared under compression.

117

118 To visualize actin order during regeneration, head-regenerating tissues were prepared from
119 Lifeact-GFP expressing animals¹⁷ and imaged under compression by live spinning disk confocal
120 microscopy. Head-regenerating tissues inherited the actin nematic order, with a single topological

121 defect on the basal disc, and longitudinal fibres expanding towards the regenerating wound (Fig
122 1a, 2a). Upon compression the wound edge was strikingly flattened out and regenerated two heads
123 at the tissue extremities in 30% of the 0.5% AC animals within 4dpd (Fig 2b, Supplementary Video
124 2). In animals that successfully regenerated, actin order was retained throughout regeneration
125 confirming that long range actin order was mostly kept during compression (Fig 2a).

126

127 During regeneration under 0.5% AC, proportions of each phenotype were similar than observed
128 previously in the fully regenerated animals (Fig 2b). In less than 1% of the cases, tissues did not
129 regenerate but remained viable until the end of compression (4dpd) (Fig 2a,b). The non-
130 regenerative fraction significantly increased in 1% AC (28%), as higher stiffness may slow down
131 the tissues' contractions (Supplementary Video 3) delaying regeneration, and death became
132 significant. For 2% AC, 40% of the head-regenerating tissues underwent death, while uniaxial
133 tissues became minor. Thus, the phenotypes appeared during compression, and increasing agarose
134 stiffness increased prevalence of mechanically induced phenotype and death. Therefore,
135 phenotypes visible in the released animals appeared earlier because of compression (Fig 1e,
136 Supplementary Video 4).

137

138 In 1% and 2% AC, some of the head-regenerating tissues regenerating two heads were orally
139 oriented, with the mouth/wound side facing the glass. In this case, two +1 aster defects were clearly
140 visualized while the two heads emerged (Fig. 2c, Extended Data Fig.2b), consistently with the
141 reported correlation between +1 aster defect position and head regeneration¹. We concluded from
142 these results that the regeneration of two heads correlated with the emergence of two aster defects
143 under compression. Based on our previous findings that integer topological defects can organize
144 cellular stresses that shape tissues we imagined that the tissue shape required for regenerating the
145 head could be generated by the actin stress field around the defects¹⁴. We further envisioned that a
146 second defect could create a tissue shape adapted to a second head.

147

148 To test these hypotheses, we undertook a theoretical approach. We approximate the head-
149 regenerating tissue as a thin elastic nematic material in which active stress is generated parallel to
150 the nematic orientation. We approximate the initial shape of the regenerating *Hydra* as a sphere
151 and the actin supracellular organization is described by the nematic orientation field on its surface.

152 We assume that all nematic orientation fields feature an aster at the pole corresponding to the foot.
153 The remaining orientation field is broadly inferred from experimental images. For uniaxial
154 regeneration, the actin supracellular organisation features a single aster on the mouth pole (Fig 2c).
155 At the end of uniaxial simulations, the active elastic adopts an elongated shape similar to a single
156 headed *Hydra*, with defects at the tips (Fig 2c, Supplementary Video 5). In a thin elastic active
157 nematic, aster defects are able to generate protrusions by organizing active stress^{18,19}. During
158 biaxial regeneration of *Hydra*, we observed a third aster associated with the additional head (Fig.
159 2c), which we included in the initial nematic orientation field; this required an additional pair of
160 negative defects to preserve the total topological charge. During biaxial simulations, the spherical
161 surface undergoes a splitting of the central axis, resulting in a bi-axial shape (Fig 2c,
162 Supplementary Video 6). Thus, our simulations show that the shape of a second head can emerge
163 from an additional aster in the orientation field of the supracellular actin. Our results show that
164 each head regeneration correlates with an aster defect of the actin supracellular organization on
165 the head-regenerating tissue, supporting the notion that an actin defect is required to shape a head.
166
167 To test further the requirement of actin-defects, we next turned our attention to head-regenerating
168 tissues that failed to regenerate under compression, previously referred to as non-regenerative
169 tissues. These may be just delayed in regeneration or may lack features essential to regeneration.
170 To test whether compression had simply slowed down regeneration, we determined the ability of
171 1% AC non-regenerative tissues to regenerate post compression release. These tissues were
172 released from compression at 5dpd and a large proportion of these non-regenerative tissues did
173 regenerate as screened at 12dpd (> 80%, Fig. 3a). The remaining 20% (approx. 5% of the initial
174 pool) were unable to regenerate even after release. We defined them as persistent non-regenerative
175 tissues (Fig. 3b). Live colour imaging 12h post release showed the presence of a longitudinal tube-
176 like thickening at the centre of the persistent non-regenerative tissues (Fig. 3c, Extended Data 3a).
177 Epifluorescence imaging revealed the presence of a tissue fold forming a tunnel through the tissue
178 resulting in the topology of a torus (Fig. 3b). By comparison at 12h post release, tissues with a
179 spherical topology had already regenerated primitive tentacles (Fig. 3c). 360° light-sheet
180 microscopy confirmed the toroidal topology of the persistent non-regenerative tissues, hereafter
181 called toroids. These images also showed that the actin orientation field displayed rotational
182 symmetry, thus featuring no defects (Fig. 3d and Extended Data Fig. 3b). As its Euler characteristic

183 equals zero, the torus is the only topology supporting a fully ordered actin superstructure, with no
184 defects. The lack of defects in toroids could therefore be associated with their inability to
185 regenerate.

186
187 To confirm the lack of regeneration after release, toroids were imaged live. The toroids retained
188 their shape over 60 hrs post release and did not break symmetry in their actin order nor regenerate
189 (Fig 3e, Supplementary Video 7). The toroids eventually disintegrated before 12dpd, explaining
190 why only dead or regenerated animals were observed at 12dpd (Fig 1c). In conclusion, head-
191 regenerating tissues that acquired the topology of a torus, with no topological defects in the actin
192 superstructure, could not regenerate.

193
194 We then studied how this unique topology change could occur under compression. In aboral and
195 oral orientations, head-regenerating tissues occasionally underwent tissue tear right at the centre
196 of the actin aster suggesting a local increase in stress (Fig 3f). A mirror tear occurred at the antipole
197 of the head-regenerating tissue. The tissue tears during contractions, which are oriented radially
198 around the defect (Supplementary Video 8). Wound healing occurs along the body axis fusing the
199 two tears, annihilating the two aster defects, and giving rise to a defect-less toroid (Fig 3f)²⁰.

200
201 As mentioned previously, aster defects deform thin active nematic elastic materials into a
202 protrusion, and the compression against the defect could invert the protrusion¹⁸. As a consequence,
203 the two ends of non-regenerative tissue would buckle inward under axial compression, which only
204 occurs for oral or aboral orientations. To test this, we initialize our simulations with two asters
205 placed at opposite poles and compression along the same axis. Simulations show that compression
206 indeed inverts the protrusions that result from aster defects (Fig. 4a). In our experiments, we
207 observed the same inversion of protrusions associated with asters at foot sites under compression
208 (Fig. 4b Extended Data Fig. 4c). This simultaneous inward buckling of tissue defects aids in the
209 fusion event required for toroid formation (Fig. 3f), while preserving the symmetry allowing for a
210 defect-less actin superstructure.

211
212 Changes in topology are non-continuous changes in a shape: they require tearing and/or fusion of
213 surfaces and are only witnessed during drastic stages of morphogenesis such as gastrulation. To

214 discriminate whether the change of topology or the lack of defects blocks regeneration, we aimed
215 to generate toroids with topological defects and test whether they would regenerate. Previous
216 work^{1,21} using the excised body column tissue of *Hydra* reported partial loss of supracellular actin
217 order during initial stages of regeneration while it reshapes as a sphere, referred to as spheroid
218 hereafter (Fig. 4c). Spheroids have been shown to regenerate into both uniaxial and biaxial animals
219 (Extended Data Fig. 4a)²¹, suggesting that spheroids can have additional defects, generating new
220 heads. We hypothesized that when subjected to compression, a fraction of spheroids will undergo
221 tear and form toroidal tissues featuring additional topological defects.

222

223 Spheroids under compression were imaged by live spinning-disk confocal microscopy. Large areas
224 where actin lacked nematic order were visible (Fig. 4c). Initially, no topological defects were seen,
225 but 16hpd, the actin superstructure emerged and topological defects appeared (Fig. 4c Time 10-
226 36hpd, Supplementary Video 10). As expected, certain tissues underwent tear and changed
227 topology before global actin order was established (Fig. 4d). This is opposed to the topological
228 change of toroids reported above, which occurs with preserved actin order. Furthermore, aster
229 defects were clearly visible in the actin superstructure of spheroids when the tissue was still under
230 compression undergoing wound healing (Fig. 4d, Time 53hpd, Supplementary Video 11). At the
231 position of these defects, head and foot features appeared, showing that toroidal tissues with
232 defects are able to regenerate (Fig. 4e).

233

234 Among the regeneration features that appeared on toroidal tissues with defects were protuberances
235 on their contour, reminiscent of dome shapes coupled to aster defects (Fig. 4d,e)¹⁸. To test whether
236 these protuberances could be created by stress gradients linked to defects, we simulated toroidal
237 surfaces with and without defects (Fig. 4f). Simulations of toroids with no defects fail to break
238 symmetry and remains perfectly toroidal (Supplementary Video 12), whereas simulations featuring
239 defects break symmetry and form protuberances colocalizing with defects (Supplementary Video
240 13).

241

242 To test whether toroids with defects would further regenerate into viable animals, we released them
243 from compression at 5dpd and observed that they were able to recover and thrive. After
244 compression, we observed a multitude of phenotypes including toroidal animals with a head and

245 foot (Fig. 4f), and new phenotypes such as bipedal animals (Extended Data Fig. 4a). The induction
246 of tissue tear and consequent wound healing depended on the stiffness of agarose used for
247 compression, as toroidal animals were only generated using 1% AC (Extended Data Fig. 4c). These
248 animals have fully functional head and foot, able to trap *Artemia* (Supplementary Video 14), while
249 having a hole that bifurcates their gastrovascular cavity (Fig. 4g). Overall, *Hydra* toroidal tissues
250 with actin defects regenerate live toroidal animals with a head and a foot, conserving their unique
251 topology, showing that actin topological defects are necessary for forming a new head and
252 establishing body axis.

253

254 Overall, these results strongly support a necessary role of actin integer topological defects in the
255 regeneration of *Hydra*'s head. Simulations based on active nematics theory support that these actin
256 defects establish the stress field required for positively curved surfaces shaping the new head.
257 These simulations are supported by the observations that tearing and buckling occur predominantly
258 at the defects, as expected from the stress field calculated from the theory. How the mechanical
259 role of actin topological defects is coupled to the Wnt organizer remains to be explored. However,
260 recent findings propose that stretching of cells associated with larger stresses at the defects may
261 be coupled to Wnt production through mechano-sensing signalling²² in line with past findings
262 suggesting a tight coupling mechanochemical coupling in the animal^{8,9,23}.

263

264 The common topology of developing and regenerating tissues is equivalent to the one of a sphere,
265 with a total charge of +2. Our work shows that topology is an important constraint that participate
266 in the establishment of the body axis and thus the body plan. Topology thus may have participated
267 in the selection of common features of body plans through evolution. It is also notable that embryos
268 change their topology at critical steps during their development: during gastrulation, but also
269 during somitogenesis or neurulation. Thus, genetically controlled changes in the embryo topology
270 may participate in establishing the final body plan. Our work opens new perspectives for
271 understanding how topological changes are required for morphogenesis, but also on how topology
272 could be used to create new body plans.

273

274 **References**

275 1. Maroudas-Sacks, Y. *et al.* Topological defects in the nematic order of actin fibres as
276 organization centres of Hydra morphogenesis. *Nature Physics* 2020 17:2 **17**, 251–259
277 (2020).

278 2. Galliot, B. Hydra, a fruitful model system for 270 years. *International Journal of*
279 *Developmental Biology* vol. 56 411–423 Preprint at
280 <https://doi.org/10.1387/ijdb.120086bg> (2012).

281 3. Hobmayer, B. *et al.* WNT signalling molecules act in axis formation in the diploblastic
282 metazoan Hydra. *Nature* **407**, 186–189 (2000).

283 4. Lengfeld, T. *et al.* Multiple Wnts are involved in Hydra organizer formation and
284 regeneration. *Dev Biol* **330**, 186–199 (2009).

285 5. Broun, M., Gee, L., Reinhardt, B. & Bode, H. R. Formation of the head organizer in hydra
286 involves the canonical Wnt pathway. *Development* **132**, 2907–2916 (2005).

287 6. Vogg, M. C. *et al.* An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop
288 restricts head organizer activity in Hydra. doi:10.1038/s41467-018-08242-2.

289 7. Gee, L. *et al.* β-catenin plays a central role in setting up the head organizer in hydra. *Dev*
290 *Biol* **340**, 116–124 (2010).

291 8. Ferenc, J. *et al.* Mechanical oscillations orchestrate axial patterning through Wnt
292 activation in Hydra. *Sci Adv* **7**, 6897 (2021).

293 9. Kücke, M., Soriano, J., Pullarkat, P. A., Ott, A. & Nicola, E. M. An Osmoregulatory Basis
294 for Shape Oscillations in Regenerating Hydra. *Biophys J* **95**, 978–985 (2008).

295 10. Szymanski, J. R. & Yuste, R. Mapping the Whole-Body Muscle Activity of Hydra vulgaris.
296 *Current Biology* **29**, 1807-1817.e3 (2019).

297 11. Aufschnaiter, R., Wedlich-Söldner, R., Zhang, X. & Hobmayer, B. Apical and basal
298 epitheliomuscular F-actin dynamics during Hydra bud evagination. *Biol Open* **6**, 1137–
299 1148 (2017).

300 12. Pearce, D. J. G., Thibault, C., Chaboche, Q. & Blanch-Mercader, C. Passive defect driven
301 morphogenesis in nematic membranes. (2023).

302 13. Doostmohammadi, A. & Ladoux, B. Physics of liquid crystals in cell biology. *Trends Cell*
303 *Biol* 1–11 (2021) doi:10.1016/j.tcb.2021.09.012.

304 14. Guillamat, P., Blanch-Mercader, C., Pernollet, G., Kruse, K. & Roux, A. Integer topological
305 defects organize stresses driving tissue morphogenesis. *Nature Materials* 2022 1–10
306 (2022) doi:10.1038/s41563-022-01194-5.

307 15. Nandi, S., Balse, A., Inamdar, M. M., Kumar, K. V. & Narasimha, M. Actomyosin cables
308 position cell cohorts during Drosophila germband retraction by entraining their
309 morphodynamic and mechanical properties. *bioRxiv* 2022.09.23.509113 (2022)
310 doi:10.1101/2022.09.23.509113.

311 16. Mercker, M. *et al.* β -Catenin and canonical Wnts control two separate pattern formation
312 systems in Hydra : Insights from mathematical modelling Summary of experiments
313 contrasting the function of β -Catenin and HyWnt3. *bioRxiv* 1–19 (2021)
314 doi:10.1101/2021.02.05.429954.

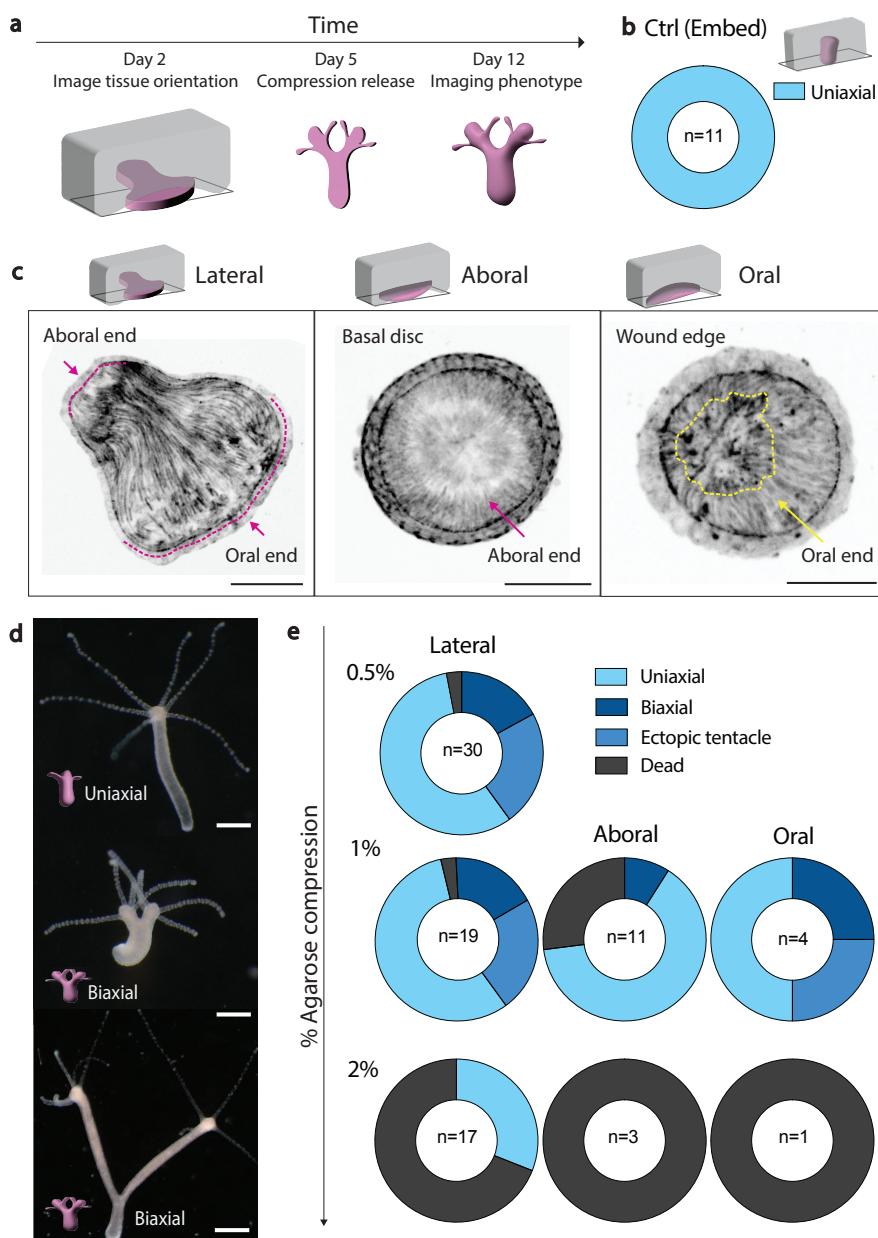
315 17. Aufschnaiter, R., Wedlich-Söldner, R., Zhang, X. & Hobmayer, B. Apical and basal
316 epitheliomuscular F-actin dynamics during Hydra bud evagination. *Biol Open* **6**, 1137–
317 1148 (2017).

318 18. Pearce, D. J. G., Gat, S., Livne, G., Bernheim-Groszasser, A. & Kruse, K. *Defect-Driven*
319 *Shape Transitions in Elastic Active Nematic Shells*.

320 19. Duffy, D. *et al.* Shape programming lines of concentrated Gaussian curvature. *J Appl Phys*
321 **129**, 224701 (2021).

322 20. Lubensky, T. C. & Prost, J. Orientational order and vesicle shape. *Journal de Physique II* **2**,
323 371–382 (1992).

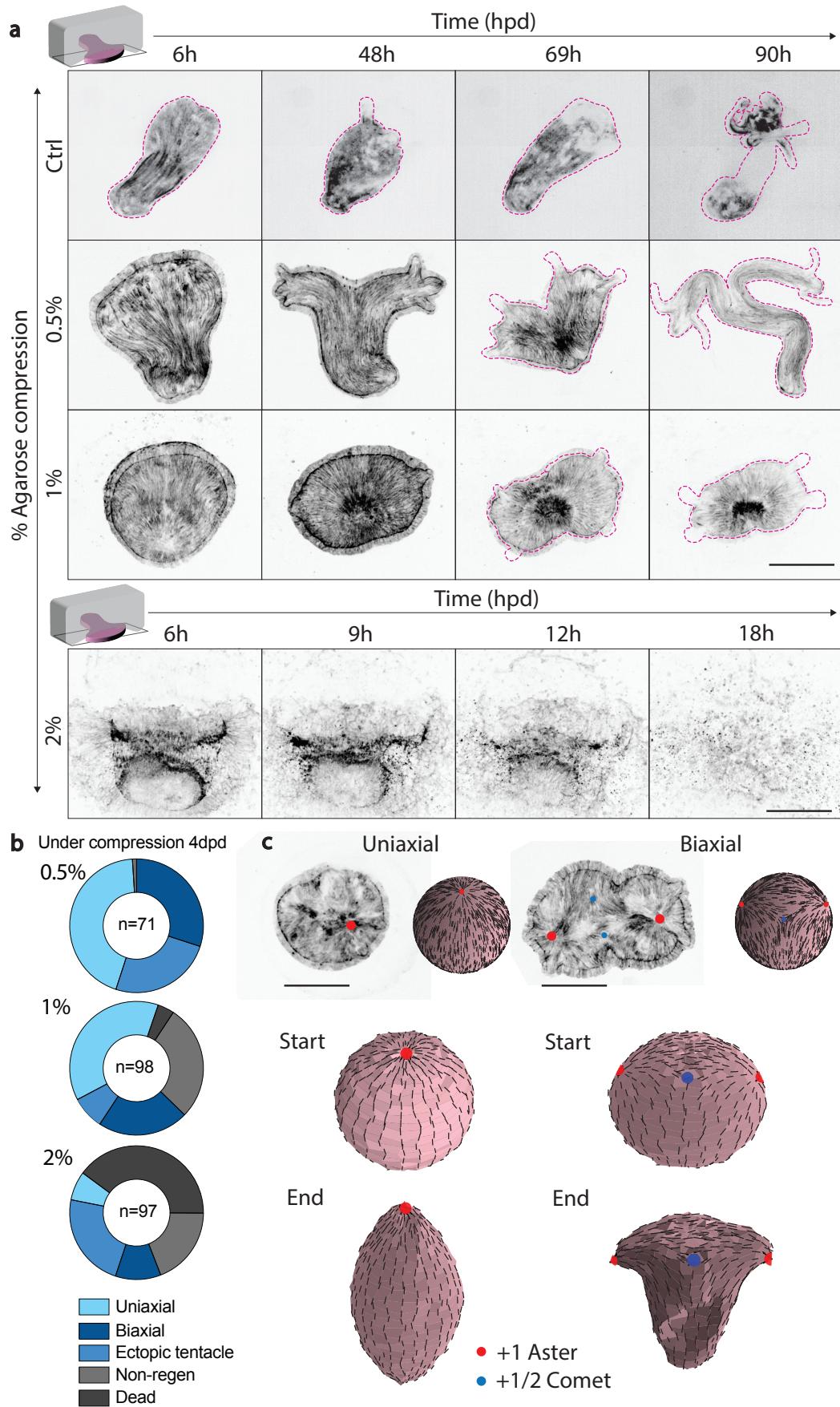
324 21. Livshits, A., Shani-Zerbib, L., Maroudas-Sacks, Y., Braun, E. & Keren, K. Structural
325 Inheritance of the Actin Cytoskeletal Organization Determines the Body Axis in
326 Regenerating Hydra. *Cell Rep* **18**, 1410–1421 (2017).

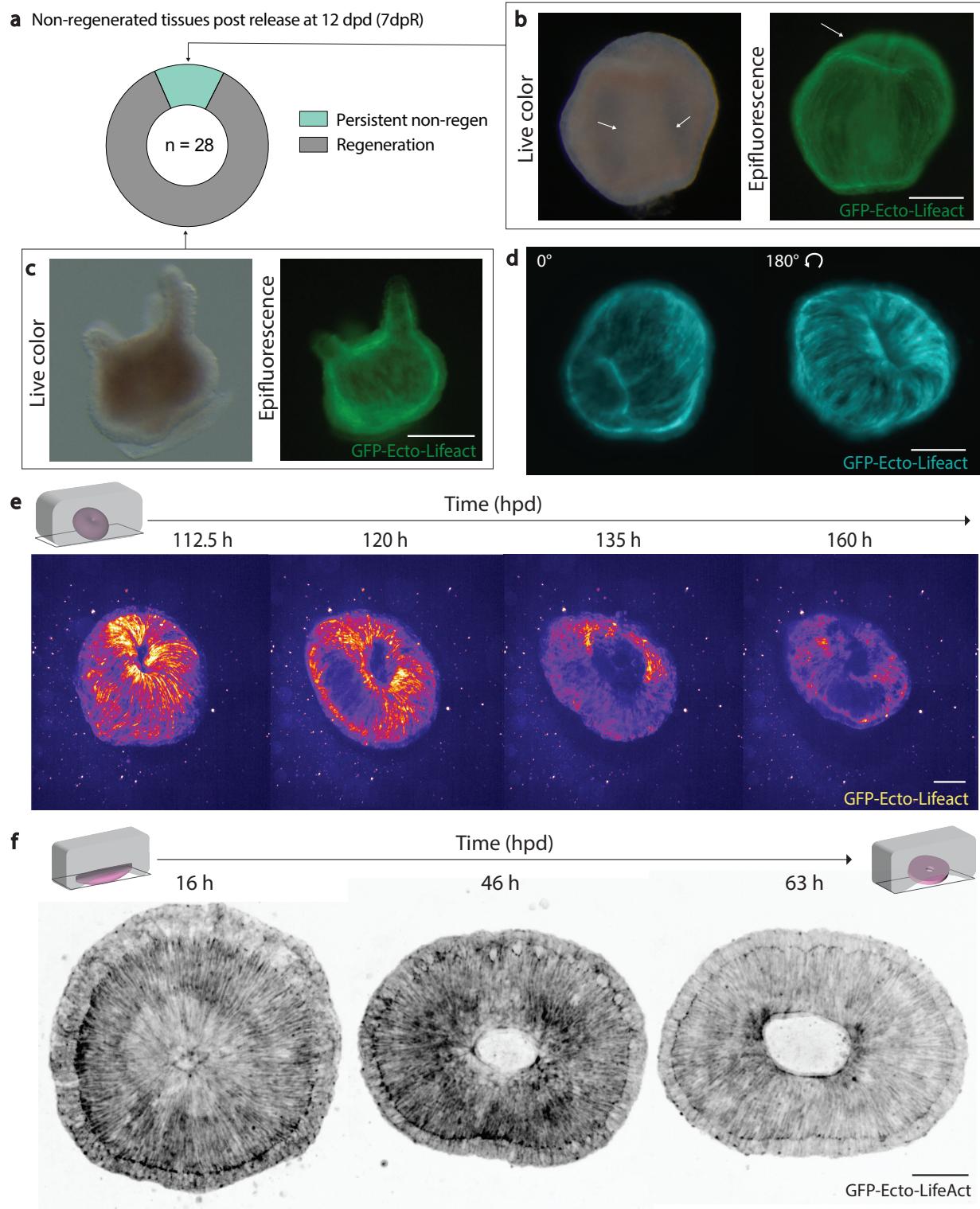

327 22. Suzuki, R. *et al.* Spatio-temporal Coordination of Active Deformation Forces and Wnt /
328 Hippo-Yap Signaling in Hydra Regeneration. *bioRxiv* 2023.09.18.558226 (2023)
329 doi:10.1101/2023.09.18.558226.

330 23. Perros, T. *et al.* Mechanical characterization of regenerating Hydra tissue spheres
331 Mechanics of regenerating Hydra. *bioRxiv* 2023.10.16.562504 (2023)
332 doi:10.1101/2023.10.16.562504.

333

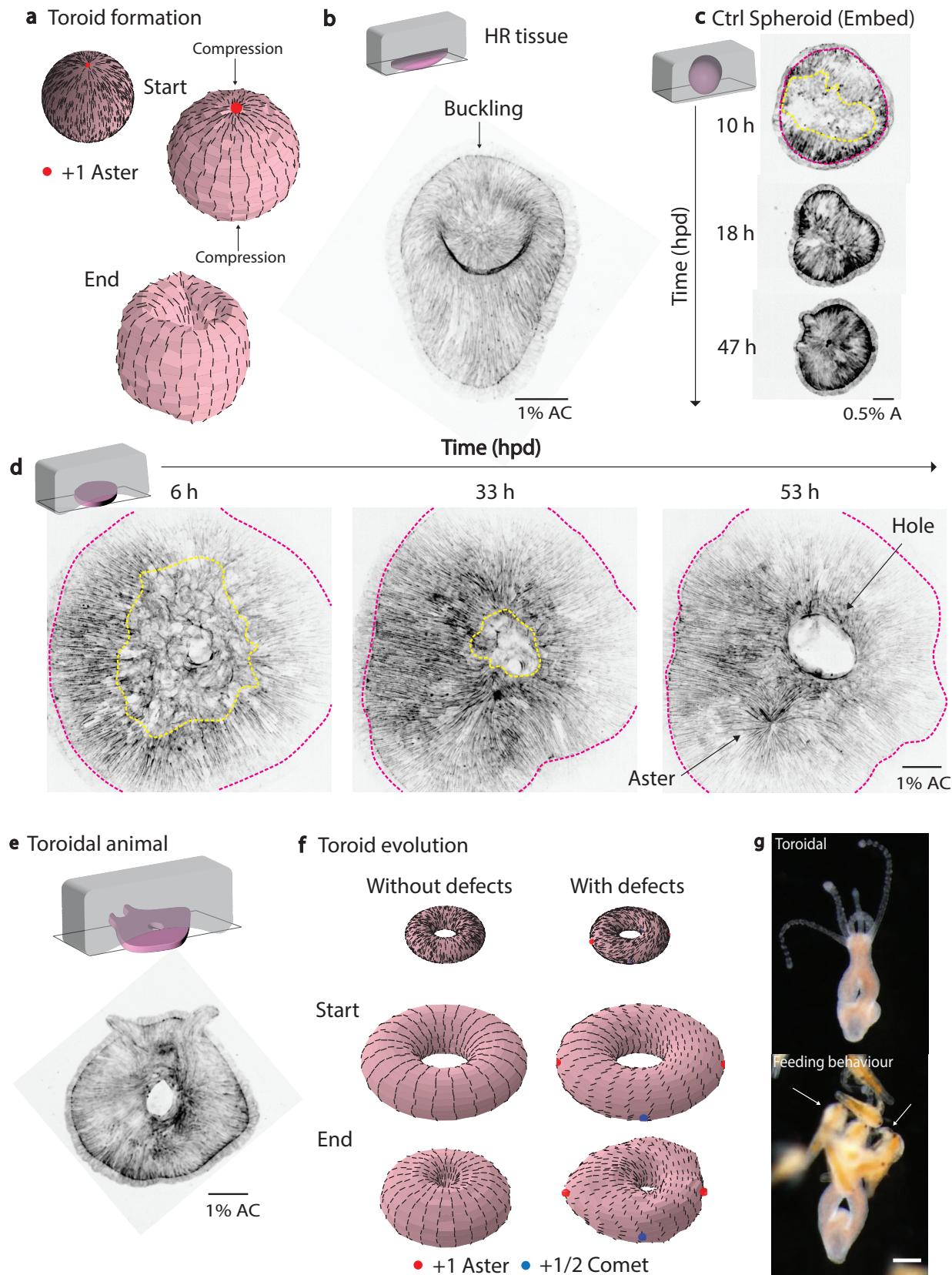
334


335 **Figure & legends:**


336

337 **Figure 1. Mechanical induction of bicephalous morphogenesis in *Hydra*.** **a**, Schematics showing the experimental
338 timeline of head-regenerating tissues compression, release and phenotype analysis. **b**, Ring p showing phenotype
339 distribution for control head regeneration experiment (0.5% agar embedded). **c**, Schematics of head-regenerating
340 tissue orientations under compression and corresponding spinning disk microscopy images of GFP-Ecto-LifeAct
341 tissues. Scale bars, 100 μ m. Pink dashed lines, tissue contours; arrows oral/aboral ends; orange dashed line, disordered
342 actin region. **d**, Binocular images of fully regenerated *Hydra* post compression release at 12dpd. Scale bars, 500 μ m.
343 **e**, Ring plot showing the distribution of phenotypes at 12dpd post compression release for different percentages of
344 agar, and different orientations.

345



347 **Figure 2. Regenerating tissues form two heads and two aster defects during compression. a,** Montages of live
348 spinning disk microscopy videos (maximum intensity projections) of GFP-Ecto-LifeAct head-regenerating tissues for
349 different % agar compression. Control is 0.5% agar embedded (Supplementary Video 2-5). Pink dashed lines
350 correspond to tissue contours. Scale bars, 100 μ m. **b,** Ring plot showing phenotype distribution at 4dpd under different
351 % agar compression. **c,** Simulations of deformation of active nematic spheres. Upper row, initial state of the nematic
352 order with corresponding picture of a head-regenerating tissue. Left column, uniaxial, with 2 aster defects (red dot,
353 the second - symmetrical - is not visible); right column, biaxial with 3 aster defects (red dots, one is not visible) and
354 compensating -1/2 defects (blue dots). Middle row, shape of the active nematic sphere at the beginning of simulations.
355 Bottom raw, shapes of active nematic spheres at the end of simulations. Scale bars 100 μ m.

356
357
358
359

360 **Figure 3. Defect-less toroids fail to regenerate.** **a**, Ring plot showing fate of non-regenerated tissues after 4dpd
361 compression, and screened at 12dpd (5 days post-release). **b**, Left, live colour image of persistent non-regenerative
362 tissues 12h post compression release; white arrows show tubular tissue thickening. Right, corresponding
363 epifluorescence image of the tissue expressing GFP-Ecto-Lifeact displaying a tissue fold at the top (white arrow).
364 Scale bars, 500 μ m. **c**, Left, live colour image of regenerated tissues 12h post compression release (non-regenerated
365 after 4dpd compression) displaying tentacles. Right, corresponding epifluorescence image of the tissue expressing
366 GFP-Ecto-Lifeact. Scale bars, 200 μ m. **d**, Maximum intensity projections of a light-sheet microscopy stack of GFP-
367 Ecto-Lifeact expressing *Hydra* toroid. Left, top view. Right, bottom view. Scale bar 100 μ m. **e**, Spinning disk
368 microscopy timelapse (maximum intensity projections) of GFP-Ecto-LifeAct expressing *Hydra* toroid embedded in
369 0.5% agarose. Fire LUT was applied to appreciate three dimensionality. Scale bar, 100 μ m. **f**, Spinning disk
370 microscopy timelapse (maximum intensity projections) of GFP-Ecto-Lifeact head-regenerating tissue forming a
371 toroid. Scale bar, 100 μ m.
372

374 **Figure 4. Actin topological defects are necessary to shape head regeneration in *Hydra* toroids** **a**, Simulation of
375 toroid formation under compression. Top, initial order of the active nematic sphere, with corresponding Head-
376 regenerating tissue image. Middle, shape of the sphere at the start of simulations, arrows indicate orientation of the
377 constrain. Bottom, shape of the active nematic sphere at the end of the simulation. **b**, Head-regenerating tissue under
378 compression displaying buckling at +1 defect site. **c**, Control experiment of spheroid tissue regenerating in embedded
379 0.5% agarose. Pink dash line shows tissue contours, and orange dash line shows the area where actin lost nematic
380 order. **d**, Montage of spheroid tissue under 1% agar compression undergoing tissue tear and forming +1 aster defect
381 (arrow). Pink dash line shows tissue contours, and orange dash line shows the area where actin lost nematic order. **e**,
382 Toroidal tissue under compression regenerating a head with tentacles at 84hpd. **f**, Simulations of toroid evolution, with
383 and without defects. **a-e**, Scale bars, 100 μ m. **g**, Live colour images of **top**, toroidal animal and **bottom**, feeding
384 behaviour of toroidal animal. Scale bar, 200 μ m
385

386 **Movie captions:**

387

388 **Movie 1:** Biaxial animal feeding behaviour

389 **Movie 2:** Ctrl 0.5% agarose embedded animal regenerating one head

390 **Movie 3:** 0.5% agarose compressed head-regenerating tissue displaying biaxial phenotype post
391 regeneration

392 **Movie 4:** 1% agarose compressed head-regenerating tissue displaying biaxial phenotype post
393 regeneration

394 **Movie 5:** 2% agarose compressed head-regenerating tissue dying by disintegration

395 **Movie 6:** Simulation of uniaxial spheroid under compression

396 **Movie 7:** Simulation of biaxial spheroid under compression

397 **Movie 8:** Spinning disk video of toroid non regenerating post release

398 **Movie 9:** Toroid formation under agarose compression

399 **Movie 10:** Simulation of uniaxial spheroid under compression

400 **Movie 11:** Regeneration of an embedded spheroid (control)

401 **Movie 12:** Regeneration of a toroidal tissue with aster defects into toroidal animal.

402 **Movie 13:** Simulation of defectless toroid retains rotational symmetry

403 **Movie 14:** Simulation of toroid with defects generating protuberances correlated with defect
404 regions

405 **Movie 15:** Toroidal animal feeding behaviour

406

407 All videos have been compressed to 10fps unless specified in movie filename and playback speed
408 is 1x

409

410 **Methods**

411 **Animal culture**

412 All of the experiments were performed using transgenic *Hydra vulgaris* (strain Basel) expressing
413 Lifeact-GFP in the ectodermal cells provided by B. Hobmayer from the University of Innsbruck,
414 Austria¹¹.

415 Cultures were maintained in *Hydra* Medium (HM: 1 mM NaCl, 1 mM CaCl₂, 0.1 mM KCl, 0.1
416 mM MgSO₄, 1 mM Tris pH 7.6) at 18 °C. Animals were fed two to three times per week with
417 freshly hatched *Artemia nauplii* and starved for 24h before any experiment. Non-budding animals
418 that had fed were chosen at random from the dish.

419

420 **Sample preparation**

421 Animals approximately greater than 5mm long were transversely sectioned into three equal parts.
422 The head tissue was discarded. The body column was left to heal for 6h to form sealed spheroids.
423 The bottom third containing the foot was left to heal for 6h and used as the head-regenerating
424 tissue. A scalpel equipped with a no. 23 blade was used for dissections.

425

426 For control experiments, spheroids and head-regenerating tissues were embedded in a soft gel
427 (0.5% low-melting-point agarose (Sigma) prepared in HM)¹. The regenerating tissues were placed
428 in cooled down liquefied gel 6h post dissection and the gel were left to solidify. The tissues
429 naturally settled down to the glass bottom due to their density which made it easier to image them.

430

431 **Compression experiments**

432 20 ml of liquefied agarose (0.5%, 1% or 2%) was poured in a 10 ml petri dish in order to obtain a
433 constant height for the agarose slabs. The agarose was allowed to solidify with closed lids to
434 prevent evaporation. Once cooled, regenerating tissues were placed on the solidified agarose. With
435 the tissue at the centre an approximate 5mm x 5mm square cut is made in the agarose with a no.23
436 scalpel. Then, the agarose slab containing the tissue on its surface is gently excised out of the petri
437 dish with the scalpel and flipped over tissue side first on a 35mm glass bottomed Matek dish,
438 trapping the regenerating tissues between the glass bottom and the excised agarose slab. Extreme
439 precision is required during this step to avoid tissue shear and subsequent disintegration. After
440 placing roughly 4-5 agarose compressed tissues in each Matek, 3ml of liquefied agarose is poured

441 on top, in order to avoid evaporation and preventing tissues wiggling their way out of the
442 compression. After the agarose has been solidified, 2 ml of HM is added to each petri dish and lids
443 placed to further prevent evaporation during the course of the 4 days of regeneration at 18°C.

444

445 For agarose/agarose compression experiments, the Matek is coated with 1ml of 1% agarose prior
446 to compressing tissues with 1% agarose slabs.

447

448 **Compression release**

449 On 5dpd the supernatant HM is removed from each dish. 5mm x 5mm cuts are made in agarose
450 around the tissues in the centre, located at the bottom. HM is flushed into the cuts which enables
451 the agarose slab to float and with it the compressed tissue at the bottom. This enables us to
452 minimize any shear faced by the tissue during compression release. The suspended
453 tissue/regenerated animal is collected with a glass Pasteur pipette and moved to a new well with
454 fresh HM.

455 For experiments where phenotypic screening was performed all the tissues were labelled on the
456 Matek with corresponding numbers and when released placed in labelled wells. This animal
457 labelling enabled us to identify the correlation between tissue orientation and what they
458 regenerated into when their phenotype was screened upon compression release.

459

460 **Microfluidic channel confinement**

461 200 um and 400 um ibidi sticky slide were used for channel confinement experiments. The tissue
462 was placed in the sticky channel and excess water removed then sealed with a glass coverslip.
463 Hydra media was then flushed into the wells gently and replenished every day to compensate for
464 evaporation loss. The tissues were confined for 4 days before images were taken to screen for
465 phenotype.

466

467 **Microscopy**

468 All time-lapse imaging was performed with an inverted microscope Nikon Ti-E installed in a room
469 where temperature was maintained at 20°C. The microscope was also equipped with an automated
470 stage and a Yokogawa CSU-W1 spinning disk unit. Image acquisition was performed with an
471 Andor Zyla 4.2 Plus camera, operated with Slidebook Software. Fluorescence 4D time-lapse

472 imaging was performed to capture actin dynamics in regenerating tissues either embedded or under
473 agarose slab compression using a10x (NA 0.30) objective. For all experiments under compression,
474 we acquired 2 images/h for 84h. All videos are maximum intensity z-projections of 42 z-stacks
475 each spaced 4um each.

476

477 Light-sheet microscopy was performed on a Miltenyi Biotec Ultramicroscope Blaze Light Sheet
478 equipped with 4.2 Megapixel sCMOS camera. 4X (NA 0.35) objective was used with 2.5x zoom.
479 The toroid was embedded in an agarose cube with HM buffer, and imaged in the light sheet. The
480 agarose cube was manually rotated to obtain different angles of the tissue. 4um thickness stacks
481 were taken. 184 z-stacks were taken and maximum intensity z-projected to compile final images.

482

483 An upright multiphoton confocal microscope - Leica SP8DIVE FALCON equipped with HyD
484 detectors was used to obtain the 3D images of bicephalous animals. Live imaging was possible
485 and ability to penetrate the tissue was achieved by using z-compensation mode where the laser
486 intensity was increased with increasing depth into the tissue. Tuneable multi-photon laser was
487 generated at 820nm to excite the GFP tagged Lifeact at 488nm. 25X (NA 0.95) IRAPO (max
488 transmission of IR and Vis and minimal axial shift up to 1300nm) water immersion objective was
489 used to image the samples. 4um z-stacks were used to image the samples in 3D.

490

491 **Whole mount *In Situ* Hybridization.**

492 *Hydra* at 12 dpd (7dpR) were relaxed in 2% urethane/HM for one minute, fixed in 4% PFA
493 prepared in HM (pH 7.5) for 4h at RT and stored in MeOH at -20 °C for at least one day. Samples
494 were rehydrated through a series of ethanol, PBSTw (Phosphate Buffer Saline, Tween 0.1%)
495 washes (75%, 50%, 25%) for 5 min each, washed 3× with PBSTw for 5 min, digested with 10
496 µg/mL Proteinase K (PK, Roche) in 0.1% SDS, PBSTw for 10 min, stopped by adding Glycine (4
497 mg/mL) and incubated for 10 min. Samples were washed 2x in PBSTw for 5 min, treated with
498 0.1M TEA for 2 × 5 min, incubated 5 min after adding acetic anhydride 0.25% (v/v), 5 min after
499 adding again acetic anhydride 0.25% (final concentration 0.5% v/v). Samples were then washed
500 in PBSTw 2×5 min, post-fixed in 4% formaldehyde, PBSTw for 20 min, washed in PBSTw 4×5
501 min before adding the pre-warmed pre-hybridization buffer (PreHyb: 50% Formamide, 0.1 %
502 CHAPS 1× Denhardt's, 0.1 mg/mL Heparin, 0.1% Tween, 5x SSC) and incubated for 2h at 58 °C.

503 Next, 350 μ L hybridization buffer (PreHyb containing 0.2 mg/mL t-RNA, 5% Dextran) containing
504 200 ng DIG-labelled riboprobe was heated 5 min at 80 °C, then placed on ice for 2 min. This mix
505 was added onto the samples, then incubated for 19h at 58 °C. Next, the samples were rinsed 3x in
506 pre-warmed PostHyb-1 (50% formamide, 5x saline-sodium citrate (SSC)) and successively
507 incubated for 10 min at 58°C in PostHyb-1, PostHyb-2 (75% PostHyb-1, 25% 2x SSC, 0.1%
508 Tween), PostHyb-3 (50% PostHyb-1, 50% 2 \times SSC 0.1% Tween) and PostHyb-4 (25% PostHyb-
509 1, 75% 2 \times SSC, 0.1% Tween). Samples were then washed 2 \times 30 min in 2 \times SSC, 0.1% Tween, 2 \times
510 30 min in 0.2x SSC, 0.1% Tween, 2 \times 10 min in MAB-Buffer1 (1 \times MAB, 0.1% Tween), blocked
511 in MAB-Buffer2 (20% sheep serum, MAB-Buffer1) for 1h and incubated with anti-DIG-AP
512 antibody (1:4000, Roche) in MAB-Buffer2 overnight at 4 °C.
513 Next, the samples were washed in MAB-Buffer1 for 4 \times 15 min, then in NTMT buffer (NaCl 0.1
514 M, Tris-HCl pH 9.5 0.1 M, Tween 0.1%) for 5 min and finally in NTMT, levamisole 1 mM for
515 2 \times 5 min. The colorimetric reaction was started by adding staining solution (Tris-HCl pH9.5 0.1
516 mM, NaCl 0.1 mM, Polyvinyl alcohol 7.8%, levamisole 1 mM) containing NBT/BCIP (Roche).
517 The background colour was removed by a series of washes in EtOH/PBSTw (30%/70%, 50%/50%,
518 70%/30%, 100% EtOH, 70%/30%, 50%/50%, 30%/70%), PBSTw 2 \times 10 min. Samples were post-
519 fixed for 20 min in formaldehyde 3.7% diluted in PBSTw, washed in PBSTw 3 \times 10 min and
520 mounted with Mowiol. All steps were performed at RT unless indicated otherwise.
521

522 **Statistical analyses.**

523 All graphs were made with the GraphPad Prism7 software. Two photon images were processed
524 using Imaris 8 software and all other images were processed using Fiji software. Schematic
525 illustrations and figures were assembled using Adobe Illustrator 2023.