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Abstract 

Ebola virus (EBOV) is a high-consequence filovirus that gives rise to frequent epidemics with 
high case fatality rates and few therapeutic options. Here, we applied image-based screening of 
a genome-wide CRISPR library to systematically identify host cell regulators of Ebola virus 
infection in 39,085,093 million single cells. Measuring viral RNA and protein levels together with 
their localization in cells identified over 998 related host factors and provided detailed 
information about the role of each gene across the virus replication cycle. We trained a deep 
learning model on single-cell images to associate each host factor with predicted replication 
steps, and confirmed the predicted relationship for select host factors. Among the findings, we 
showed that the mitochondrial complex III subunit UQCRB is a post-entry regulator of Ebola 
virus RNA replication, and demonstrated that UQCRB inhibition with a small molecule reduced 
overall Ebola virus infection with an IC50 of 5 μM. Using a random forest model, we also 
identified perturbations that reduced infection by disrupting the equilibrium between viral RNA 
and protein. One such protein, STRAP, is a spliceosome-associated factor that was found to be 
closely associated with VP35, a viral protein required for RNA processing. Loss of STRAP 
expression resulted in a reduction in full-length viral genome production and subsequent 
production of non-infectious virus particles. Overall, the data produced in this genome-wide 
high-content single-cell screen and secondary screens in additional cell lines and related 
filoviruses (MARV and SUDV) revealed new insights about the role of host factors in virus 
replication and potential new targets for therapeutic intervention. 
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Introduction 

Ebolaviruses such as Zaire Ebola virus (EBOV), Sudan virus (SUDV), and the distantly related 
Marburg virus (MARV), are single-stranded, negative-sense filoviruses responsible for 
outbreaks with high case fatality rates, predominantly in West or equatorial Africa (Ilunga 
Kalenga et al., 2019; Lo et al., 2017). EBOV infection results in Ebola virus disease (EVD), 
characterized by inflammatory responses, immunosuppression, and major fluid losses (Malvy et 
al., 2019). Monoclonal antibody therapy has demonstrated modest efficacy, reducing EVD case 
fatality rates to 30% (Mulangu et al., 2019). While a recently FDA-approved live-attenuated 
recombinant VSV vaccine expressing EBOV glycoprotein (GP) resulted in EBOV-specific 
protection (Heppner et al., 2017; Mulangu et al., 2019), there are no approved vaccines against 
MARV or SUDV. 
 
Genetic screens are high-throughput methods that enable identification of host targets that 
modulate viral infection. However, due to the challenges of screening high-consequence 
viruses, previous genetic screens for Ebola virus often relied on the use of pseudotyped viruses 
(Bruchez et al., 2020; Carette et al., 2011; Cheng et al., 2015), precluding identification of post-
entry viral modulators, or on model virus genomes and reporter expression (Martin et al., 2018), 
which may not fully recapitulate the live Ebola virus life cycle. Two genome-wide screens that 
used live Ebola virus (Filone et al., 2015; Flint et al., 2019) both assessed virus-induced cell 
death, which for Ebola virus takes many days, and relied on selection and growth of surviving 
cells, a complex outcome biased towards recovery of near-complete blocks to virus replication 
seen upon loss of cell entry factors. Here, we set out to assess cell survival-independent 
phenotypes, allowing for recovery of host factors affecting any part of the virus replication cycle 
and enabling discovery of a larger range of therapeutic intervention points. 
 
Our optical pooled screening (OPS) (Feldman et al., 2019) approach enables image-based 
pooled genetic screens in tens of millions of cells (Carlson et al., 2023; Funk et al., 2022). OPS 
couples high-resolution images of single cells paired with targeted in situ sequencing readout of 
each cell’s specific genetic perturbation identity. In the pooled perturbation format, this approach 
scales to large numbers of cells and perturbations. This high throughput enables statistically 
high-powered analyses of the role of many individual host factors in cellular phenotypes at the 
cellular or subcellular levels. The high-content data produced by such image-based genetic 
screens can be used directly to derive meaningful insights into genetic function. Such insights 
can further support well-informed prioritization of hits for productive allocation of resources in 
downstream mechanistic studies (Carlson et al., 2023; Funk et al., 2022). Here, we present the 
first genome-wide multiparametric genetic screen for EBOV, evaluating viral protein and RNA 
synthesis as markers of infection, whose results characterize an extensive landscape of the 
effects of hundreds of host genes on EBOV replication. We apply machine learning approaches, 
including deep learning, to our image-based dataset of nearly 40 million single cells and identify 
regulators of distinct stages of the EBOV lifecycle, from cell entry, to inclusion body formation, 
and viral RNA transcription and replication. We confirmed hits via secondary screening in two 
cell lines with EBOV and across two distantly related filoviruses (SUDV and MARV) to robustly 
validate, generalize, and contextualize our results. UQCRB and STRAP, proteins respectively 
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involved in the mitochondrial respiratory chain and the spliceosome, were selected for further 
mechanistic analysis of their roles in virus replication.  
 
Results 

A genome-wide image-based genetic screen reveals regulators of distinct steps in the 
EBOV replication cycle    

EBOV is taken up into cells via macropinocytosis and then trafficked through endolysosomes. 
Following acidification, host cell cathepsins cleave the viral glycoprotein (GP) into an active form 
that binds to the intracellular host receptor NPC1, resulting in membrane fusion and cytoplasmic 
release of the viral capsid (Hoenen et al., 2019). Transcription from the negative stranded virus 
genome produces viral mRNAs and, in turn, production of viral proteins leads to formation of 
inclusion bodies (IBs), cytoplasmic foci that serve as sites for viral RNA synthesis (Hoenen et 
al., 2012, 2019; Nanbo et al., 2013). The EBOV nucleocapsid protein (NP) induces formation of 
these IBs (Miyake et al., 2020; Wu et al., 2023) and the viral polymerase cofactor VP35 
interacts with NP to regulate IB formation (Leung et al., 2015; Miyake et al., 2020). At later 
stages of infection, these proteins exhibit a diffuse cytoplasmic localization pattern and, finally, 
localize to the cell periphery during virus budding (Nanbo et al., 2013). These distinct stages of 
infection are not readily distinguishable by the use of simple intensity-based measurements, for 
example those typically employed in pooled flow cytometry-based screens. Genome-scale 
arrayed image-based screens suffer from batch effects that reduce sensitivity to true effects, 
and are further prohibitively costly and labor-intensive in most research laboratories.  
 
Here we applied OPS to define the contributions of host factors to distinct steps of the EBOV 
replication cycle at the genome-wide scale, obtaining images of nearly 40 million individual 
EBOV-infected HeLa-TetR-Cas9 cells transduced with a custom pool of ~80,000 sgRNAs 
targeting ~20,000 genes, including 454 non-targeting control sgRNAs (Fig. 1a). Cells were 
infected with wild-type EBOV in a maximum biocontainment laboratory; subsequently, we 
assayed the expression level and patterns of EBOV VP35 protein using immunofluorescence 
(IF) with a monoclonal antibody developed against recombinant VP35 and the Ebola VP35 
positive-sense RNA, which predominantly represents EBOV mRNA transcripts (Galão et al., 
2022), using fluorescence in situ hybridization (FISH) (Fig. S1a). EBOV infections were 
optimized to obtain >90% infection rates as evidenced by VP35 RNA and protein expression 
(Fig. S1b). In addition to measuring viral protein and RNA, we stained for the host transcription 
factor c-Jun, whose activity is increased in EBOV- and MARV-infected cells (Hölzer et al., 2016; 
Wynne et al., 2017), as well as LAMP1, a lysosomal protein, vimentin, which is useful for cell 
segmentation, and a nuclear stain (DAPI) (Fig. 1b). Since we had not previously incorporated 
FISH-based staining in OPS, FISH was optimized as part of our integrated IF and in situ 
sequencing workflow (Fig. S1a). To do so, we hybridized primary probes to viral RNA 
transcripts prior to targeted reverse transcription of sgRNAs. We then amplified the viral RNA 
signal via hybridization chain reaction (HCR) targeted to the primary probes as previously 
described (Choi et al., 2018), but with the omission of dextran sulfate, which inhibits the reverse 
transcriptase and polymerase activities necessary for readout of sgRNA sequences by in situ 
sequencing (Viennois et al., 2013). As expected, cells receiving sgRNAs targeting the Ebola 
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virus receptor NPC1 demonstrated robust loss of both the VP35 RNA and protein signals, and 
low levels of c-Jun in the cell nucleus (Fig. 1c, d).  
 
We identified 998 genetic knockouts that significantly impact Ebola virus infection (FDR-
adjusted p-value < 1e-4) as measured by a VP35 protein intensity statistic based on the 
difference in cumulative area under the curve (delta AUC), as previously described (Feldman et 
al., 2019). The delta AUC between the cumulative distribution of per-cell VP35 median intensity 
for each sgRNA relative to non-targeting control cells is a robust metric that captures shifts in 
the distributions of single-cell intensity values (Fig. 1e, Table S1, Table S2). Aside from NPC1, 
other genes previously shown to be required for EBOV infection were identified as top hits, 
including all six members of the HOPS complex, which regulates endolysosomal vesicle fusion 
(all six scored in the top 60 genes). Only one previous EBOV screen recovered all six members 
(Carette et al., 2011), highlighting the robustness of our screen and its sensitivity in the genome-
wide setting. CTSB and CTSL, required for GP cleavage prior to NPC1 binding, and other 
previously identified EBOV entry regulators (SPNS1, GNPTAB, UVRAG, PIKFYVE, FIG4, and 
EXT1) also scored (Carette et al., 2011; Cheng et al., 2015; Filone et al., 2015; Flint et al., 
2019), in addition to CAD, an enzyme critical for pyrimidine biosynthesis that was previously 
identified only in a screen using a synthetic genome replication system (Martin et al., 2018).  
 
In addition to these factors, many genes and protein complexes not previously reported to 
regulate EBOV infection scored in our analysis of cellular VP35 protein expression levels (Fig. 
S1c) including PIK3C3, involved in autophagy and membrane trafficking; TIMM10, a member of 
the mitochondrial inner membrane translocase previously shown to interact with VP40 (Batra et 
al., 2018); as well as entire protein complexes including the conserved oligomeric golgi complex 
(COG1-8), the GET complex (GET1-4), the GARP complex (VPS51-54), retromer (VPS26A, 29, 
35; previously shown to be required for pseudotyped EBOV entry) (Poston et al., 2022), the CIA 
complex (MMS19 and CIAO2B), genes involved in heparan sulfate synthesis (NDST and 
UGDH, likely required for virus attachment to cells (O’Hearn et al., 2015)), and poorly 
characterized proteins such as TM9SF2 and PTAR1 (Fig. 1f). Our VP35 protein intensity-based 
metric also enabled identification of 57 negative regulators, none of which were previously 
shown to affect EBOV infection. These novel negative regulators were enriched for chaperones 
including HSP90B1, MESDC2, and UNC45A (UNC45A was previously shown to interact with 
Ebola VP30 (J. Fang et al., 2022)), integrin-related genes (such as ITGB1, ITGB5, and ITGAV), 
mRNA deadenylases (CNOT10, 11), and SAGA complex members (TADA2, TAF5L, TAF6L, 
TADA2B, SUPT20H) which modulate replication of other RNA viruses (Carlson et al., 2023; 
Guo et al., 2020) (Fig. 1f).  
 
Given that we produced statistically high-powered datasets identifying many regulators of VP35 
protein levels as well as VP35 RNA and c-Jun levels for each cell, we next sought to identify 
genes that differentially regulated VP35 RNA or c-Jun nuclear translocation relative to VP35 
protein levels, reasoning that such a dependency analysis may highlight genes with primary 
effects on cellular responses to infection rather than on viral replication itself. We specified 
features from the VP35 RNA and protein color channels of the single-cell images using 
CellProfiler-derived intensity, colocalization, size, shape, and subcellular distribution image 
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features (Bray et al., 2016) as previously described (Funk et al., 2022). We then trained two 
separate random forest regression models to predict the c-Jun nuclear intensity from the VP35 
RNA and protein features (Fig. 1g, h) as well as the VP35 RNA intensity from the VP35 protein 
features (Fig. 1i, Table S3). By looking for factors that, when targeted, resulted in uncoupling of 
these features that are typically correlated during infection, we systematically identified genes 
that separately regulated these responses. As expected, factors where the c-Jun protein levels 
were poorly predicted by viral VP35 and RNA levels included Jun itself as well as known MAP 
kinase pathway members (Fig. 1h). The gene with the strongest reduction in VP35 RNA relative 
to VP35 protein levels was the mRNA binding protein PABPC1, which was shown to interact 
with recombinantly expressed EBOV NP (García-Dorival et al., 2016) and was downregulated in 
EBOV-infected NHP monocytes (Kotliar et al., 2020). It is unclear if this interaction is through an 
RNA intermediate, to which each is known to bind. A number of other genes with functions 
related by STRING analysis also decreased EBOV VP35 RNA relative to protein levels (Fig. 1j), 
while only two genes, SRPK1 and STRAP, had the opposite effect, showing elevated RNA 
relative to protein (Fig. 1i). Notably, SRPK1 was previously shown to regulate EBOV 
transcription through phosphorylation of VP30 (Takamatsu et al., 2020). 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.04.06.588168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.06.588168
http://creativecommons.org/licenses/by/4.0/


 6 

Figure 1. Genome-wide optical pooled screening reveals regulators of multiple 
responses to Ebola virus infection. (A) Workflow for genome-wide optical pooled screen. (B) 
Example images of infected cells assayed across six distinct markers in the screen. Scale bar 
20 μm. (C) Histograms of VP35 RNA FISH, VP35 protein, and c-Jun transcription factor 
intensity levels in non-targeting or NPC1 KO cells from the screen, each histogram trace 
represents a distinct sgRNA targeting NPC1. (D) Randomly selected cells transduced with a 
non-targeting sgRNA or NPC1-targeting sgRNA show reduced levels of VP35 RNA (FISH), 
VP35 protein, and c-Jun in NPC1 knockout cells relative to non-targeting cells. (E) Volcano plot 
of the per-cell median VP35 protein intensity delta AUC between each gene and non-targeting 
control cells, black points represent distinct non-targeting control sgRNAs. (F) Enrichr gene 
ontology analysis of top terms significantly enriched in genes that showed reduced VP35 protein 
intensity upon knockout (purple) or increased VP35 protein intensity (gold). (G) Workflow for 
random forest regression model trained to predict either c-Jun nuclear intensity from VP35 RNA 
and protein features or VP35 RNA intensity from VP35 protein features. (H) Volcano plot of 
random forest regression model coefficients of determination for the c-Jun prediction task, black 
points represent distinct non-targeting control sgRNAs; genes in purple had a negative mean 
sum of residuals, indicating decreased c-Jun relative to model prediction, while genes in gold 
had a positive mean sum of residuals. (I) Volcano plot of random forest regression model 
coefficients of determination for the VP35 RNA prediction task, black points represent distinct 
non-targeting control sgRNAs. (J) STRING analysis of genes that had a negative mean sum of 
residuals for the VP35 RNA FISH prediction task; purple shade denotes magnitude of mean 
sum of residuals, indicating the amount that EBOV VP35 positive-sense RNA was decreased 
relative to protein levels. Edge thickness corresponds to confidence score; only interactions with 
a confidence score >= 0.7 in the full STRING v11.5 were considered.   
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Deep Neural Network Model Reveals Regulators of Ebola Virus Subcellular Protein 
Localization  

While overall VP35 protein and RNA levels were informative, the single-cell images contain 
more information about virus replication, including, for instance, subcellular localization patterns 
of these and additional markers as well as colocalization information. Others have shown that 
such patterns change over time and likely correspond to remodeling organelles for production of 
virions and altering the cell to disarm innate antiviral immune responses (Nanbo et al., 2013). 
Due to the complexity of these localization patterns, we sought to identify regulators of EBOV 
infection dynamics using a deep learning model. Autoencoders are classical deep learning 
models used to generate informative representations of the data in an unsupervised fashion 
(Baldi, 2012). We used a convolutional autoencoder consisting of 5 encoding and decoding 
layers and a 2048-dimensional bottleneck. The autoencoder was trained to reconstruct all six-
channel masked images of single cells. This corresponds to the unsupervised model in Fig. 2a 
and Fig. S2a-b. To obtain more informative embeddings, we fine-tuned this model with a 
supervised objective function to predict four human-labeled categories of EBOV VP35 protein 
subcellular localization, namely 1) faint, indicative of uninfected cells, 2) punctate, which 
represents cells with viral inclusion bodies at early stages of infection, 3) cytoplasmic, 
representing a later stage of infection with diffuse protein localization, and 4) peripheral, 
representing viral budding. These were manually annotated for over 3,000 cells for model 
training. PHATE (Moon et al., 2019) was then used to visualize the 2048-dimensional 
embedding of cells obtained from the two deep learning models: the entirely unsupervised 
autoencoder model as well as the autoencoder model which was subsequently fine-tuned using 
a supervised objective. While the unsupervised cell embeddings showed a lack of separation of 
the four phenotypic classes, the fine-tuned embeddings using the supervised objective showed 
clear separation among the four classes (Fig. 2b). An ordinal chi square test was used to 
identify genes that significantly altered the proportion of cells in each of the four phenotypic 
classes representing earlier or later stages of infection relative to non-targeting controls (Fig. 
2c, Table S4). 
 
While the most significant genes were the same as those identified by the simpler intensity 
metric (e.g. the intracellular receptor NPC1, the HOPS complex, and negative regulators 
MESDC2 and ITGB1), the fine-tuned autoencoder model allowed separation of cells that would 
otherwise have similar protein staining intensities but instead had distinct diffuse, faint, or 
punctate VP35 protein expression patterns (Fig. 2d). Genes with a high proportion of faint cells 
included many known entry or early infection regulators such as NPC1, as well as genes not 
previously identified as regulators of infection such as PIK3C3 and members of the GET 
complex that we had identified using VP35 intensity alone (Fig. 2d-e, protein insertion into ER 
membrane, purple). In contrast, many of the genes associated with a significant increase in 
punctate VP35 localization have not been previously linked to EBOV infection or to regulation of 
post-entry viral replication (Fig. 2e, green). Key enzymes in de novo pyrimidine biosynthesis 
(DHODH, CAD, and UMPS) previously shown to positively regulate EBOV replication (Luthra et 
al., 2018; Martin et al., 2018) were significantly enriched for the punctate phenotype, indicating 
that upon knockout of these genes EBOV had infected the cell and begun formation of inclusion 
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bodies but progression to the next replication step was impeded. Indeed, CAD was previously 
shown to colocalize with EBOV NP in inclusion bodies, affecting genome replication and 
transcription (Brandt et al., 2020). In addition to pyrimidine biosynthesis genes, we also 
identified genes involved in purine biosynthesis (MTHFD1, PAICS, PPAT, ATIC, and GART) not 
previously associated with EBOV replication, although mycophenolic acid, a small molecule 
inhibitor of GTP biosynthesis, is known to inhibit EBOV infection (Edwards et al., 2015). 
MTHFD1 knockdown and treatment with the MTHFD1 inhibitor carolacton was reported to 
inhibit Zika virus (ZIKV), mumps virus (MuV), and SARS-CoV-2 replication without affecting cell 
entry, suggesting a common requirement for RNA virus replication and the ability of our deep 
learning approach to separate effects of genetic knockouts by viral replication stage (Anderson 
et al., 2021). Knockdown of Elongator complex genes (ELP2-6) also led to an increase in 
punctate VP35 (Fig. 2e). The Elongator complex modifies tRNA molecules needed for 
translational efficiency and may also be required for optimal viral replication past the inclusion 
body formation stage (Hawer et al., 2018).  
 
Another major category of genes that elevated VP35 puncta when knocked out were 
mitochondria-related genes including mitochondrial ribosomes, mitochondrial tRNA synthetases, 
and mitochondrial respiratory chain complex III and IV members. Specifically, knockouts of 
UQCRB, a complex III subunit, and HARS2, a mitochondrial tRNA synthetase (Fig. 2f, g), 
resulted in the most enhanced punctate phenotype. Mitochondrial function has not been 
previously linked to EBOV infection; however, EBOV VP30 and VP35 proteins physically 
interact with the mitochondrial ribosome and inner membrane components (Batra et al., 2018), 
and oxidative phosphorylation and expression of mitochondrial translation genes was found to 
increase upon EBOV infection (Woolsey et al., 2019). Many of the mitochondrial genes 
identified in our screen have a role in oxidative phosphorylation (OXPHOS), either directly (such 
as the complex III and IV subunits) or less directly (Arroyo et al., 2016) and OXPHOS plays a 
role in the propagation of other RNA viruses such as IAV (Bercovich-Kinori et al., 2016). In order 
to further investigate the effect of UQCRB inhibition on EBOV infection, we treated EBOV-
infected HeLa cells with terpestacin, a small molecule inhibitor of UQCRB (Jung et al., 2010), 
and observed clear reductions in EBOV infection (Fig. 2h) with little effect on cell viability as 
measured by nuclear count at the infection IC50 of 5 μM, highlighting an immediate practical 
application of results from our deep learning approach. 
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Figure 2. A deep neural network model reveals regulators of Ebola virus VP35 protein subcellular 
localization. (A) Architecture of the neural network model, trained first as an autoencoder with a latent 
space of 2048 dimensions to reconstruct input cell images (example input cell and autoencoder 
reconstruction shown) and subsequently fine-tuned to classify cells based on the manually annotated four 
classes of VP35 protein localization, with one example image shown for each class. (B) PHATE 
visualization of the single cell autoencoder embedding (2048 dimensions/cell) obtained from the two deep 
learning modes: fully unsupervised autoencoder model (left) colored by the predicted class labels, and 
fine-tuned autoencoder model using the supervised objective function (right) showing both the hand-
labeled training data as well as the predicted labels. (C) Volcano plot of per-gene mean ordinal chi square 
statistics and FDR-corrected p-values, black points represent distinct non-targeting sgRNAs. (D) 
Scatterplot of proportion of faint versus punctate VP35 staining patterns of cells for each gene, black 
points denote individual non-targeting sgRNAs. (E) Significantly enriched gene ontology terms for sets of 
genes with a high proportion of faint cells (purple) or punctate cells (green). (F) Images of VP35 protein 
expression (red) overlaid with nuclear mask (gray) in randomly selected cells with sgRNAs targeting the 
indicated genes. (G) Fine-tuned autoencoder embedding visualized using PHATE for cells with indicated 
gene knockouts; colors indicate the class labels predicted by the neural network. (H) Ebola virus infection 
and cell survival (normalized nuclei count relative to untreated) after 48 hours in HeLa cells treated with 
terpestacin.  
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Phenotypic profile clustering and matching reveal relationships between modulators of 
Ebola virus infection 

We next more closely examined the 998 genes that significantly altered overall virus infection as 
measured by VP35 protein or RNA levels (Table S1). For each autoencoder model, we 
extracted embeddings for individual cells and calculated cumulative delta AUCs for each 
embedding feature between cells with a given sgRNA and non-targeting control cells (Tables 
S5, S6). We then clustered the resulting embeddings to identify genes with similar effects (Fig. 
3a). While the clusters resulting from the two autoencoder models are similar (Fig. 3b), the fully 
unsupervised autoencoder model resulted in a larger number of clusters which were 
significantly enriched for at least one ontology term using Enrichr (23 versus 7). Single-cell 
images for genetic knockouts from distinct clusters are shown in Fig. 3c. Some genes that 
scored significantly for increased VP35 protein expression, such as integrins ITGAV (Fig. 3c) 
and ITGB1 (Fig. S3b), showed increased intensity in channels not directly related to VP35, such 
as vimentin and LAMP1, as well as cell rounding. We anticipate that the change in VP35 
expression pattern for such genes represents impact on cell morphology or cell health resulting 
in redistribution of the marker, rather than a change primarily affecting virus replication.   
 
To prioritize genes for further follow-up experimentation, we sought to control observed effects 
for the level of viral protein expression as a proxy for the level of infection in each cell. For each 
sgRNA in our screen we sampled non-targeting control cells whose distribution of VP35 protein 
median intensities matched the VP35 protein median intensity for the sgRNA of interest (Fig. 
3d), and re-computed delta AUCs between each sgRNA and the matched non-targeting control 
cells (Table S7). Next, we plotted the correlation of delta AUCs for features from all six imaging 
channels computed without matching (Table S1) against those from the matched condition (Fig. 
3e, Table S7). If the primary phenotypic effect of the genetic perturbation is to alter viral 
infection levels, we expect that the matched AUCs will be close to 0, as the perturbed cells 
would resemble non-targeting cells with the same infection levels without further morphological 
changes. Therefore, Pearson correlation between matched and unmatched delta AUCs will be 
modest, since single-cell images of the genetic perturbation of interest closely match images of 
non-targeting control cells with a similar infection level. Indeed, we see that features for NPC1 
knockout cells are much more modestly correlated between matched and unmatched conditions 
than features of the integrin ITGAV, which affects global cell morphology rather than viral 
replication specifically (Fig. 3e). Using this approach, we calculated Pearson correlations 
between matched and unmatched conditions for each of the genes in our screen (Fig. 3f) and 
used this metric to select genes with primary effects on viral replication rather than on cell health 
for targeted follow-up screening.  
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Figure 3. Phenotypic profile clustering and matching on infection level reveal relationships 
between Ebola virus infection modulators. (A) PHATE visualization of the embeddings derived from 
the fully unsupervised and the fine-tuned autoencoder models; each point represents the average 
embedding of a gene knockout of interest. Points in purple indicate genes that decreased Ebola protein 
intensity upon knockout, while points in gold increased intensity. (B) Heatmap of Jaccard similarities 
between cluster memberships for all clusters with at least one significant GO term identified using the fully 
unsupervised model as well as the fine-tuned model. (C) Single-cell images of representative gene 
knockouts from distinct clusters. (D) Schematic of recalculation of cumulative delta AUCs for autoencoder 
embeddings between each sgRNA and non-targeting control cells after matching on VP35 protein levels 
in non-targeting controls. (E) Correlations between delta AUCs calculated without matching on VP35 
protein levels compared to with matching on VP35 protein levels for non-targeting controls, NPC1 
knockout, and ITGAV knockout cells; each point represents one individual feature. (F) Correlation 
between the mean PHATE potential distance from non-targeting controls in the fine-tuned autoencoder 
embedding (indicative of the EBOV infection phenotype strength) and the z-scored Pearson correlation 
distance between matched and unmatched features from (E); each point represents a gene of interest. 
Points in red indicate genes that have abnormal cell health, while points in blue represent hit phenotypes 
under conditions where overall cell health was less affected. 
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Targeted image-based genetic screens identify cell- and virus-specific filovirus 
regulators 

To evaluate the contributions of cell type, filovirus strain and infection timing to outcomes of the 
screen we targeted 113 hit genes (manually sub-selected from hits with VP35 protein intensity 
FDR-adjusted p-value <1e-4, as well as genes with lower impact on cell health, Fig. 3f) of 
interest from our genome-wide screen with 6 sgRNAs per gene and 475,000 to over 1 million 
cells per condition. Screen conditions varied: 1) timepoints (16 and 24 hours), both earlier than 
the primary screen (48 hours) to increase power for identification of negative regulators of viral 
replication; 2) cell lines, the HeLa cells used in the genome-wide screen and Huh7 cells, a liver 
cell line relevant to filovirus disease; and 3) distinct filoviruses from the genera Orthoebolavirus 
(Ebola virus Mayinga, Sudan virus Gulu) and Orthomarburgvirus (Marburg virus Musoke) (Fig. 
4a, Table S8). As in our primary screen, we assayed filovirus protein (VP35 for EBOV and 
SUDV; VP40 for MARV), and VP35 RNA via probes designed against the VP35 sequences of 
each virus, as well as c-Jun nuclear translocation. 
 
Principal component analysis (PCA) of features from non-targeting control sgRNAs from each 
experimental condition showed separation of outcomes by cell type across PC1 (46% variance 
explained), with time not being a major contributor to outcome variance for the same cell and 
virus types. Comparing the cumulative delta AUCs from the genome-wide screen with the 24 
hour infection timepoint from the secondary screen resulted in strong correlations (Pearson r >= 
0.87) for both VP35 protein and RNA levels (Fig. 4c), broadly validating these primary screen 
hits. Known regulators such as NPC1 and SPNS1 were concordant across cell lines, viruses, 
and timepoints (Fig. 4d, e), as well as retromer complex members (VPS26A and VPS35), which 
were more recently associated with EBOV cell entry (Poston et al., 2022), and associated genes 
newly identified in this study, including PIK3C3, GET4, and the GARP complex (VPS51, 52, 53, 
and 54) (Fig. 4d). The ubiquitin ligase COP1 scored as a negative regulator in 10/12 screening 
conditions (Fig. 4d, e). The mechanism for COP1’s regulation of EBOV infection is unclear; 
however, COP1 targets c-Jun for degradation, among other substrates (Migliorini et al., 2011), 
so increased c-Jun protein levels in COP1 knockout cells may favor filovirus replication.  
 
We next examined virus-specific regulators (Fig. 4f, g), identifying knockout of TAF5L as 
increasing EBOV and SUDV infection levels while decreasing infection levels of the more 
distantly related MARV (Fig. 4f, g). We also found that VPS35L strongly decreased EBOV 
infection levels but had modest effects on SUDV and MARV infection, while VPS35 knockout 
reduced replication of all filoviruses and in both cell types (Fig. 4d). VPS35L and VPS35 are 
members of the retriever and retromer endosomal recycling complexes, respectively (McNally et 
al., 2017). The distinct effects of VPS35 and VPS35L knockouts may indicate different 
dependencies of filovirus infection on ER recycling and ER-Golgi trafficking through the retromer 
and retriever complexes.  
 
Finally, we investigated cell-type-specific regulators (Fig. 4h, i). PCYT2, a phospholipid 
synthesis enzyme which positively regulates formation of lipid droplets (Roberts et al., 2022) 
increased EBOV infection in Huh7 cells, while decreasing infection in HeLa cells. Interestingly, 
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this gene is more highly expressed in Huh7 cells (Barretina et al., 2012), which have higher lipid 
droplet content than HeLa cells (Monson et al., 2018), indicating that the differences we 
observed in viral infection could be due to distinct underlying cellular lipid environments. Several 
other cell-type-specific regulators were related to mitochondrial function (BCS1L, PRMT1, and 
HARS2, among others) (Fig. 4h, Fig. S4f). The strong defect in viral replication observed in 
HeLa cells upon loss of components related to mitochondrial respiration was typically not 
observed in Huh7 cells. 
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Figure 4. Targeted follow-up screens identify concordant and cell- and virus-specific 
ebolavirus regulators. (A) Workflow for targeted secondary screens with 2 cell lines, 3 viruses, 
and 2 timepoints for a total of 12 screening conditions. Phylogenetic relationship modified from 
previous work (Carroll et al., 2013), scale is substitutions per site. (B) PCA of non-targeting 
control sgRNA phenotypic profiles from each of indicated screening conditions. Early and late 
indicate 16 and 24 h infection times respectively.  (C) Correlation between genome-wide and 
secondary screen VP35 protein and RNA delta AUCs (dAUCs); black lines indicate standard 
deviation for non-targeting control sgRNAs in each screen centered around the mean value for 
non-targeting sgRNAs in the screen. (D) Heatmap showing z-scored dAUC values for genes 
concordant across screen conditions (white cells indicate conditions where p > 0.05 relative to 
non-targeting controls in the same condition). Z-scores were calculated on delta AUC values for 
all genes in each screen condition relative to means and standard deviations for non-targeting 
sgRNAs. Hierarchical clustering performed using Pearson correlations. (E) Single-cell images 
from the secondary screen of select concordant genes (DAPI in gray, VP35 protein in red). (F) 
Heatmap as in (D) for genes with virus-specific effects (white cells indicate conditions where p > 
0.05). (G) Single-cell images from the secondary screen of select virus-specific genes (DAPI in 
gray, VP35 protein for EBOV/SUDV or VP40 protein for MARV in red). (H) Heatmap as in (D) 
for genes with cell type-specific effects (white cells indicate conditions where p > 0.05). (I) 
Single-cell images from the secondary screen of select cell type-specific genes (DAPI in gray, 
VP35 protein in red, VP35 RNA in green).  
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Mechanistic characterization of STRAP as a positive regulator of viral replication 

The results of the analyses from the primary screen demonstrate that optical pooled screening 
is a powerful tool to identify host factors regulating EBOV infection. Secondary screening 
validated that the hit genes produced robust image-based phenotypes that in many cases were 
seen across different cell types and filoviruses. One hit that stood out across multiple datasets 
was Serine/Threonine Kinase Receptor Associated Protein, or STRAP. STRAP was one of only 
two proteins identified in the random forest analysis as having an unusual phenotype of 
increased viral RNA relative to VP35 staining intensity upon knockout (Fig. 1i) and was 
identified by the fine-tuned autoencoder model as having a significantly different distribution of 
VP35 staining phenotypes compared to non-targeting controls (Fig. 5a). While STRAP KO did 
score for decreasing VP35 intensity, it was not among the top hits based on this single 
measurement. STRAP KO cells showed more than 2-fold increase in the proportion of Faint 
cells, and a 60% and 50% increase in the proportion of Punctate and Peripheral cells relative to 
non-targeting controls with an accompanying drop in the proportion of Cytoplasmic cells. Taken 
together, this profile suggested a unique mechanism of action, where the KO cell population is 
being shifted into both an earlier stage of infection, represented by the increase in Faint and 
Punctate classes, and a later stage of infection, represented by the Peripheral class. 
Examination of single-cell intensity histograms from the genome-wide screen revealed that 
while there was minimal change in the intensity distribution for protein staining, the RNA levels 
in STRAP KO cells took on a bimodal distribution, with distinct populations of cells having less 
viral RNA or more viral RNA compared to the NT controls - an observation only possible at the 
single-cell level and where single cell-matched perturbation identities were available given the 
pooled format (Fig. 5b). Also of note was a strong reduction in c-Jun nuclear intensity in STRAP 
KO cells, consistent with previous reports where STRAP plays a role in c-Jun signaling (Reiner 
et al., 2011).  
 
To further study the effects of STRAP KO on viral infection, we generated single-cell clones that 
showed undetectable levels of STRAP by immunoblot, and two were selected for further 
assays. First, to confirm the phenotype of overall increased RNA in the KOs, cells were 
incubated with virus at a high multiplicity of infection (MOI = 3) for 72 hours. qPCR of cell 
lysates showed a strong increase in viral RNA, on average twice that seen in a non-targeting 
control cell line (Fig. 5c). Surprisingly, despite the overall increase in viral RNA in cells, vRNA in 
the supernatant was reduced by 3-8 fold (Fig. 5d) and a 5-fold reduction in infectious virus was 
observed (Fig. 5e). Images of the infected cell monolayer stained for EBOV protein showed a 
greater number of single cells and smaller foci, indicating that while infection could initiate 
normally, there was limited virus spread, consistent with cells producing fewer overall infectious 
virus particles (Fig. 5f).  
 
While STRAP KO cells produced fewer infectious virions, the mechanism by which STRAP was 
modulating viral infection remained unclear. Our previous qPCR assays did not distinguish 
between positive and negative sense RNA, or between viral mRNA and genomic RNA (gRNA). 
We used a two-step PCR with primers designed to specifically target the negative sense EBOV 
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gRNA to investigate further. After challenge at an MOI of 3, EBOV gRNA was significantly 
reduced by 2-3.3 fold in STRAP KO cells compared to the NT controls (Fig. 5g). Contrasting 
with the overall 2-fold increase seen in total viral RNA, the decrease in genomic RNA suggested 
dysregulation of viral RNA transcription such that the balance between mRNA and genome 
production had been disrupted.  
 
STRAP is commonly found throughout the cytoplasm and nucleus of the cell, with a diffuse 
immunofluorescent staining pattern. However, upon EBOV infection, STRAP was  recruited to 
the viral inclusion bodies (Fig. 5h) as indicated by STRAP staining directly overlapping VP35, a 
major component of inclusion bodies. To confirm the close association of STRAP and VP35, we 
performed a proximity ligation assay (PLA) for STRAP and VP35 (Fig. 5i). The PLA assay 
yields a fluorescent signal when two proteins are within 40 nm of each other (Söderberg et al., 
2006), and the intensity and volume of the signal in the cell increases proportionally with a 
greater number of associative events. Performing PLA with two viral proteins, VP35 and VP30, 
which would normally closely associate during genome replication, yielded strong signal and 
displayed both punctate and diffuse phenotypes. PLA performed on uninfected cells showed no 
signal. When performed with VP35 and STRAP, the signal was similar to that of VP35 and 
VP30, indicating a similar close association. Punctate and diffuse phenotypes were also visible, 
suggesting that the interaction can occur outside of virus inclusion bodies. The identification of 
STRAP as a regulator of the equilibrium between virus RNA and virus protein and how this 
alters the infectivity of progeny virus, is a new mechanistic dependence that will be further 
evaluated in future work.  
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Figure 5. STRAP KO impacts virus RNA expression levels and virus infectivity. (A) Distribution of 
phenotypes from the primary genome-wide screen as predicted by the fine-tuned autoencoder model for 
non-targeting controls and STRAP. (B) Histograms of staining intensity for VP35 protein (ICF), VP35 
mRNA by FISH, and nuclear c-Jun at single-cell resolution from the primary screen. Each yellow line 
represents a distinct sgRNA targeting STRAP. (C) Measurement of total viral RNA in clonal cell lines that 
were KO for STRAP (B03 or E08) or non-targeting cell line (NT) after challenge with virus at MOI = 3 at 
72 hours by qPCR. One-way ANOVA comparing each clonal line to the non-targeting control, 
****p<0.0001. (D) Measurement of total viral RNA in the supernatant after challenge with MOI = 0.1 after 
72 hours by qPCR. **p=0.0086. (E) Measurement of infectious virus in the supernatant after 72 hours by 
FFU assay, *p<0.025. (F) Measurement of number of cells infected after challenge and allowing 72 h to 
spread. Infection efficiency was calculated as the number of infected cells divided by total nuclei 
normalized to the non-targeting control, ****p<0.0001. Right panels show representative images of non-
targeting and STRAP knockout cells. (G) Measurements of EBOV negative sense genomic RNA 
synthesis in cells after 72 hours at MOI =3. One-way ANOVA was used to compare two different STRAP 
knockout cell lines to non-targeting controls. ***p=0.0002. **p=0.0067. (H) Immunostaining for native 
STRAP protein and EBOV VP35 in infected cells showing accumulation of STRAP within viral inclusion 
bodies as marked by VP35 staining. Scale bar is 20 μm. (I) Duolink Proximity Ligation Assay using 
antibodies against VP35 and STRAP in infected and uninfected cells indicating close association of 
STRAP with viral proteins within and outside the inclusion bodies. VP35 and VP30 specific antibodies 
were used on infected cells as a positive control. Scale bar is 50 μm.    
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Discussion 

Ebola virus disease remains poorly understood, despite frequent outbreaks with persistent high 
case fatality rates. Genome-wide screens for host factors impacting EBOV infection have been 
limited to cytotoxicity-based approaches where cells susceptible to infection succumb to 
cytopathic effects of the virus. This work has been productive but tends to bias toward strong 
early blocks to infection, such as the loss of entry receptors. Another approach used more 
recently for other viruses, such as SARS-CoV-2, has been FACS selection of cells with 
reporters of infection such as GFP or endogenous virus proteins. The latter approach can 
identify factors that support infection as well as act as restriction factors. Each approach 
typically examines one pre-defined parameter of the infection process. Here, we used an image-
based pooled screening technology, OPS, to directly link single-cell genetic knockouts with 
multiple single-cell phenotypes including EBOV infection levels by measuring several distinct 
aspects of the replication cycle and its effects including viral RNA transcription, protein 
translation using VP35 expression, and the host responses measured via c-Jun nuclear 
translocation. The RNA measurements were made possible through a new workflow for 
integration of targeted RNA FISH with our in situ sequencing and immunofluorescence 
protocols, which enables future image-based screens to integrate host or pathogen RNA levels 
and localization into cellular phenotypic profiles. By interrogating single-cell images via multiple 
approaches we have obtained a unique, holistic view of host factor involvement in Ebola virus 
replication. 
  
The data-rich images obtained report many aspects of the infection process, creating a powerful 
opportunity to extend our understanding of host factor dependence. We evaluated the data with 
three complementary analytical approaches and expect the data to be a resource for further 
future analyses. A first basic analysis separately examined the intensity of each marker of 
infection (viral protein, RNA, and nuclear c-Jun levels), similar to the analysis procedure for 
single-phenotype enrichment screens such as FACS screens, with the distinction that each 
single-cell phenotype is directly linked to the perturbation delivered to that particular cell. This 
approach revealed many host factors that are known to be important for EBOV infection 
including NPC1 and members of the HOPS complex, which are all involved in uptake of virus 
into cells. Unlike previous cell survival screens, we also identified several negative regulators of 
filovirus replication under multiple conditions, such as COP1, MYH9, and RAPGEF1. Even at 
this simplistic level, new host factors not previously reported were identified, including PIK3C3, 
the GARP complex, and the GET complex. We also rigorously validated the effects of host 
factors on multiple filoviruses and in distinct cell types through a set of 12 secondary screens, 
which were highly correlated with the primary genome-wide screen (Pearson correlation >= 
0.87).  
 
To effectively leverage this high-content imaging data, we next applied deep learning 
approaches. In particular, we trained unsupervised autoencoders directly on single-cell images, 
and fine-tuned the resulting model to classify four hand-labeled phenotypes describing distinct 
categories of VP35 protein subcellular localization. This enabled linkage of altered VP35 
punctate staining patterns to specific host factors that likely regulate genome replication, such 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.04.06.588168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.06.588168
http://creativecommons.org/licenses/by/4.0/


 19 

as some members of the pyrimidine and purine biosynthesis pathways, many of which were not 
previously linked to Ebola infection and are druggable. Furthermore, terpestacin, a small 
molecule inhibitor of UQCRB, a gene that our fine-tuned autoencoder model predicted as 
increasing the fraction of punctate EBOV VP35, is able to decrease EBOV infection in cells, 
presenting an actionable new therapeutic hypothesis for EBOV infection therapy. 
  
The third key analytical approach we employed was random forest regression analysis to 
identify host factors that, when knocked out, altered relationships between readouts of infection 
that are typically correlated. Using this approach, we revealed that knockout of STRAP, a 
spliceosome component, did not alter levels of virus protein production but rather resulted in 
increased levels of viral positive-sense RNA and a loss in negative stranded genomes. 
Furthermore, STRAP was found localized within 40 nm of EBOV VP35, which is involved in the 
switch between mRNA and gRNA synthesis, in what appeared to be inclusion bodies, indicating 
that is likely sequestered with the viral replication machinery where it can impact when negative 
strand synthesis occurs. Since particles of EBOV can assemble in the absence of genomic 
RNA, adopting other cellular RNAs, (Warfield et al., 2003) our result indicates that virus particle 
production would be normal but since they lack genomic RNA, they are non-infectious. This 
outcome  represents a new potential target for therapeutic intervention that will be evaluated in 
future work. Identifying this factor and its mechanism of action would have been challenging 
through previously established FACS or cytotoxic screening approaches.   
  
High-content single-cell screens with multi-dimensional outputs are becoming routine and were 
demonstrated at genomic-scale perturbations with a variety of imaging and even transcriptomic 
readouts (Carlson et al., 2023; Ramezani et al., 2023; Replogle et al., 2022). However, aside 
from this study and a previous OPS of Sendai virus infection (Carlson et al., 2023), high-content 
profiling screens of host-pathogen interactions have been limited. Notable recent examples 
include targeted transcriptome screens that revealed perturbation-induced changes in 
transcriptional trajectories upon HCMV (Hein & Weissman, 2022) and SARS-CoV-2 (Sunshine 
et al., 2022) infection. Importantly, high-content perturbation screens like these and that which 
we report here did not require a priori specification of phenotypes of interest but rather resulted 
in rich data resources that can be mined to rapidly generate and investigate hypotheses based 
on primary screening data alone (Bock et al., 2022), provided the achievement of adequate 
quantitative performance of the perturbation and phenotyping steps, and adequate cell 
sampling. Here, we sampled an average of 2000 cells per gene and key cell feature scores 
were correlated across independent replicates at r = 0.7-0.9.  
 
Our image-based genetic screens and analytical approaches revealed multiple genes that 
modulate distinct stages of the EBOV life cycle, from viral entry, to EBOV RNA replication and 
the formation of viral inclusion bodies, including several genes with available small molecule 
ligands of potential therapeutic value. This work also serves as a general framework for 
systematically identifying regulators of distinct steps in host-virus interaction dynamics directly 
from data produced in a single genetic screen, enabling rapid identification of a broader set of 
potential therapeutic targets for diverse pathogens. 
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Methods 

Library cloning, lentivirus production, and transduction 
Libraries were cloned into a CROP-seq-puro-v2 (Addgene #127458) backbone and lentivirus 
was then produced and transduced as previously described (Feldman et al., 2022). Multiplicity 
of infection for library transductions was estimated by counting colonies following sparse plating 
and antibiotic selection with puromycin.  
 

Virus infection, phenotyping, and in situ sequencing for genome-wide screen 
HeLa-TetR-Cas9 clonal cells previously described (Feldman et al., 2019) were used for primary 
screening. Following transduction, cells were selected with puromycin (1 μg/mL) for 3 days after 
transduction and library representation was validated by NGS. Cas9 expression was induced 
with 1 μg/mL doxycycline for 1 week and cells were then seeded in ten 6-well glass-bottom 
dishes at 400,000 cells/well two days prior to fixation. Zaire ebolavirus (strain Mayinga) was 
added at a multiplicity of infection (MOI) of ~3 in 2mL media/well for 28 hours prior to fixation. 
Cells were fixed by removing media and adding 10% neutral-buffered formalin (Fisher Scientific 
LC146705) for >6  hours. 
 
Cells were permeabilized with 100% methanol for 20 minutes; subsequently, the 
permeabilization solution was exchanged with PBS-T wash buffer (PBS + 0.05% Tween-20) by 
performing six 50% volume exchanges followed by three quick washes. Cells were incubated 
for 30 minutes at 37°C with homemade probe hybridization buffer (30% formamide 5x SSC 
0.1% Tween), then incubated with primary probes against VP35 positive-sense RNA 
(purchased from Molecular Instruments and diluted 1:250 in probe hybridization buffer with 
1:100 Ribolock) at 37°C for 4 hours. Samples were then washed 4x5 minutes in probe 
hybridization buffer at 37°C, washed 3x in PBS-T, and incubated in reverse transcription mix at 
37°C overnight. The reverse transcription mix consisted of 1x RevertAid RT buffer, 250 μM 
dNTPs, 0.2 mg/mL BSA, 1 μM RT primer with LNA bases, 
A+CT+CG+GT+GC+CA+CT+TTTTCAA, 0.8 U/μL Ribolock RNase inhibitor, and 4.8 U/μL 
RevertAid H minus reverse transcriptase in 750 μL/well. After reverse transcription, cells were 
washed 5x with PBS-T and post-fixed using 3% paraformaldehyde and 0.1% glutaraldehyde in 
PBS for 30 minutes, followed by washing with PBS-T 3 times. Samples were then incubated in 
homemade HCR FISH amplification buffer (5x SSC 0.1% Tween) at room temperature for 30 
minutes. Meanwhile, HCR hairpins (Molecular Instruments B1 probes conjugated to Alexa Fluor 
488) were separately prepared by heating at 95°C for 90 seconds and then cooling to room 
temperature in the dark for 30 minutes. Next, samples were incubated with probes diluted 1:125 
in probe amplification buffer for 2 hours at room temperature. Following incubation, excess 
hairpins were removed by washing 5 times for 5 minutes with probe amplification buffer. Primary 
antibodies against VP35 (1:3200 dilution), c-Jun (1:1800 dilution, Cell Signaling Technology 
Cat# 9165, RRID:AB_2130165), and vimentin (1:1300 dilution, Abcam Cat# ab24525, 
RRID:AB_778824) were added by incubating samples for 3.5 hours at 37°C in 3% BSA (VWR 
Cat# 97061-422) in PBS. Samples were then washed 3x in PBS-T for 3 minutes, and incubated 
with secondary antibodies: 1:1800 donkey anti-mouse antibody (Jackson ImmunoResearch 
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Labs Cat# 715-006-151, RRID:AB_2340762) disulfide-linked to Alexa Fluor 594 (Thermo Fisher 
A10270) via a custom conjugation, 1:1800 donkey anti-rabbit antibody (Jackson 
ImmunoResearch Labs Cat# 711-006-152, RRID:AB_2340586) disulfide-linked to Alexa Fluor 
647 (Thermo Fisher Scientific A10277) via a custom conjugation, and goat anti-chicken DyLight 
755 (Thermo Fisher Scientific SA5-10075), in 3% BSA for 3 hours at 37°C. Finally, samples 
were washed 6x with PBS-T for 3 minutes each, and 2x SSC with 200ng/mL DAPI was added to 
visualize nuclei to image samples. Following imaging, Alexa Fluor 594 and 647 antibodies were 
destained with 50mM TCEP in 2x SSC for 45 minutes at room temperature and FISH signal 
removed through treatment with 80% formamide in 2x SSC for 30 minutes at room temperature. 
In situ amplification of sgRNA sequences was then completed by incubating samples in a 
padlock probe and extension-ligation reaction mixture (1x Ampligase buffer, 0.4 U/μL RNase H, 
0.2 mg/mL BSA, 100 nM padlock probe - 
/5Phos/GTTTCAGAGCTATGCTCTCCTGTTCGCCAAATTCTACCCACCACCCACTCTCCAAA
GGACGAAACACCG, 0.02 U/μL TaqIT polymerase, 0.5 U/μL Ampligase and 50 nM dNTPs) for 
5 minutes at 37°C and 90 minutes at 45°C, and washing 2 times with PBS-T. Circularized 
padlocks were amplified using a rolling circle amplification mix (1x Phi29 buffer, 250 μM dNTPs, 
0.2 mg/mL BSA, 5% glycerol, and 1 U/μL Phi29 DNA polymerase) at 30°C overnight. 
AlexaFluor 488-conjugated LAMP1 (Cell Signaling Technology Cat# 58996, RRID:AB_2927691) 
was visualized via incubation for 2 hours at 37°C in 3% BSA at 1:500 dilution. Following 
imaging, in situ sequencing was performed as previously described using sequencing primer 
GCCAAATTCTACCCACCACCCACTCTCCAAAGGACGAAACACCG for 12 cycles  (Feldman et 
al., 2019). 
 

Virus infection, phenotyping, and in situ sequencing for secondary screen 
HeLa-TetR-Cas9 clonal cells used in the genome-wide screen and polyclonal Huh7 cells 
transduced with 311-Cas9 (Plasmid Addgene #96924) and selected using 10 µg/mL blasticidin 
for 7 days were used for secondary screening. EBOV (strain Mayinga), Marburg virus (strain 
Musoke), Sudan virus (strain Gulu) were added at MOIs of ~3 in 2mL media/well for 16 hours or 
24 hours prior to fixation. Viral RNA was amplified as described for the primary screen using 
virus strain-specific probes purchased from Molecular Instruments for positive-sense VP35. 
Antibody staining and in situ sequencing was performed as described for the primary screen 
except for Marburg virus, where an antibody against VP40 (1:1000, Integrated BioTherapeutics 
0203-012) rather than VP35 was used since no antibody for Marburg VP35 was available. In 
addition, antibodies for vimentin and LAMP1 were omitted to allow for slower higher-
magnification imaging. For Sudan virus, the same VP35 antibody was used as it recognized 
both EBOV and Sudan VP35 protein. In situ sequencing was performed for 6 cycles. 
 
Fluorescence microscopy for primary genome-wide and secondary targeted 

follow-up screens 

All in situ sequencing images were acquired using a Ti-2 Eclipse inverted epifluorescence 
microscope (Nikon) with automated XYZ stage control and hardware autofocus. The Lumencor 
CELESTA Light Engine was used for fluorescence illumination and all hardware was controlled 
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using NIS elements software with the JOBS module. In situ sequencing cycles were imaged 
using a 10X 0.45 NA CFI Plan Apo λ objective (Nikon MRD00105) with the following filters 
(Semrock) and exposure times for each base: G (546 nm laser at 40% power, emission 575/30 
nm, dichroic 552 nm, 200 ms); T (546 nm laser at 40% power, emission 615/24 nm, dichroic 
565 nm, 200 ms); A (637 nm laser at 40% power, emission 680/42 nm, dichroic 660 nm, 200 
ms); C (637 nm laser at 40% power, emission 732/68 nm, dichroic 660 nm, 200 ms). For the 
genome-wide primary screen, phenotyping images were acquired using a 20X 0.75 NA CFI 
Plan Apo λ objective (Nikon MRD00205) with the following filters (Semrock unless otherwise 
noted) and exposure times: DAPI (405 nm laser at 5% power, Chroma Multi LED set #89402, 
50ms), AF488 (477 nm laser at 30% power, Chroma Multi LED set #96372, 200ms), AF594 
(546 nm laser at 10% power, emission 615/24 nm, dichroic 565 nm, 200ms), AF647 (637 nm 
laser at 10% power, emission 680/42 nm, dichroic 660 nm, 200ms), Dylight 755 (749 nm laser 
at 10% power, emission 820/110 nm, dichroic 765 nm, 200ms).  
 
For the secondary screen, phenotyping images were acquired using a 40x 0.95 NA CFI Plan 
Apo λ objective (Nikon MRD70470) with the following filters and exposure times: DAPI (405 nm 
laser at 5% power, Chroma Multi LED set #89402, 50ms), AF594 (546 nm laser at 10% power, 
emission 615/24 nm, dichroic 565 nm, 200ms), and AF647 (637 nm laser at 10% power, 
emission 680/42 nm, dichroic 660 nm, 200ms). 
 
Quantification and Statistical Analysis 

Image analysis 

Images of cell phenotype and in situ sequencing of perturbations were manually aligned during 
acquisition using nuclear masks to calibrate the plate position to each of the four corner wells 
during screening. Alignment was then refined computationally via cross-correlation of DAPI 
signal between imaging acquisitions. Nuclei and cells were detected and segmented as 
previously described and in situ sequencing read calling was performed as previously described 
(Feldman et al., 2022). Data analysis functions were written in Python, using Snakemake for 
workflow control (Köster & Rahmann, 2012). Image analysis code is available on GitHub. 
Briefly, for segmentation of phenotyping images from the primary screen, nuclei were 
segmented using the following parameters: nuclei smooth = 4, nuclei radius = 15, nucleus area 
90-1200, DAPI intensity threshold = 1350. Cells were segmented using signal in the vimentin 
channels, at an intensity threshold = 3000. For segmentation of in situ sequencing images from 
the primary and secondary screens, nuclei were segmented using the following parameters: 
nuclei smooth = 1.15, nuclei radius = 15, nucleus area 20-400, DAPI intensity threshold = 1000-
2000, adjusted differently for each plate. Cells were segmented using signal in the four 
sequencing channels at intensity thresholds adjusted for each plate, between 2500 and 4200. 
For segmentation of phenotyping images from the secondary screen, nuclei were segmented 
using the following parameters: nuclei smooth = 9, nuclei radius = 100, nucleus area 200-
18,000 for HeLa cells or 200-50,000 for Huh7 cells, DAPI intensity threshold = 4000 for HeLa 
cells and 3000 for Huh7 cells. Cells were segmented using background cell signal in the Jun 
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channel, at an intensity threshold = 1525-1900 for Hela cells (depending on the assay plate) 
and 1625-1825 for Huh7 cells. All other parameters used for analysis were set to default 
settings. 
 

Optical pooled screen analysis 

Only cells with a minimum of one read matching a barcode in the library were analyzed. For the 
genome-wide screen, only genes with a minimum of one read matching an sgRNA in the library 
and 2 sgRNAs with at least 50 cells/sgRNA were considered for analysis. Features were 
normalized on a per-cell basis relative to cells in the same field of view by subtracting the 
median and dividing by the MAD x 1.4826 (Bray et al., 2016) and scores for features relative to 
non-targeting controls were determined by calculating differences in cumulative AUCs. These 
delta AUCs were averaged over sgRNAs for a given gene and significance was determined by 
comparing delta AUCs for individual sgRNAs to distributions bootstrapped from non-targeting 
control cells (bootstrapped 100,000 times). Gene-level p-values were calculated using Stouffer’s 
method and then corrected using the Benjamini-Hochberg procedure. Random forest regression 
models were trained on features from the VP35 protein channel only (for predicting VP35 RNA 
FISH levels) or the VP35 protein and RNA levels (for predicting c-Jun nuclear intensity) for   
50,000 randomly selected non-targeting control cells using 
sklearn.ensemble.RandomForestRegressor with scikit-learn 1.1.3, random state set to 7, 
n_estimators = 100, and max_features = ‘sqrt’ (Pedregosa et al., 2011). Statistical significance 
was determined as described for the cumulative AUC analysis above. 
 
Dimensionality Reduction, Clustering, and Gene Enrichment Analysis 

In Figures 1 and 2, Enrichr results (Kuleshov et al., 2016) were determined using gseapy 0.14.0 
(Z. Fang et al., 2023) with the 2021 KEGG and GO gene sets and 2016 Reactome gene sets. 
PHATE 1.0.10 (Moon et al., 2019) was used to perform dimensionality reduction on single cells with 
Euclidean distance, cosine mds distance, gamma = 1, knn = 5, 20 PCs in Figure 2. For gene-level 
clustering in Figure 3, PHATE with Euclidean distance, cosine mds distance, gamma = 1, knn = 3 
and the number of PCs giving 95% of the variance (282 for unsupervised and 372 for supervised 
features) were used. Following dimensionality reduction, Leiden clustering was performed with 
the resolution parameter determined based on the Adjusted Rand Score (ARS) computed by 
subsampling 95% of the data and re-clustering at least ten times for each resolution value. 
  
Deep learning model 

Unsupervised Training 

First, we trained an unsupervised convolutional autoencoder on 40 million 64x64 six-channel 
single-cell images.  We implemented a U-Net style architecture (Ronneberger et al., 2015) with 
an encoder containing 5 convolutional layers and a decoder containing 5 convolutional layers 
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(Fig. 2a).  We used strided convolution to reduce dimensionality of the images in the encoder, 
resulting in a 2048-dimensional embedding. Bilinear upsampling was used in the decoder to 
map from this 2048-dimensional latent space back to the original image space.     

For model selection, we used an 80/20 train/test split. In each epoch of training, at least 256 
cells were sampled from each training field of view. As a loss function, we used the mean 
squared error (MSE) over all reconstructed pixels within the watershed mask for each cell of 
interest. We used the Adam optimizer with a learning rate of 0.001, trained for 50 epochs with a 
random seed. Training and test loss curves are shown in Figure S2a. 

Supervised Training 

We then fine-tuned the encoder of the trained autoencoder by training a classification head with 
the Negative Log-Likelihood loss (NLL Loss) using Adam with a learning rate of 0.001. We used 
3,889 cell images manually labeled with one of four phenotypic categories in the set {faint, 
punctate, cytoplasmic, peripheral}. We used stratified dataset splitting implemented in scikit-
learn (Pedregosa et al., 2011) to ensure a balanced distribution of phenotypes across classes. 
Namely, we reserved 25% of the dataset, or 973 cell images, as a held-out test set, and the 
remaining 2,916 images were split into 4 stratified folds (train/validation) and used for fine-tuning 
the autoencoder. 

For fine-tuning the autoencoder, we applied the following data augmentations using the 
available image transforms in PyTorch: (1) rotations up to 180 degrees; (2) random vertical and 
horizontal flips; (3) random perspective with a distortion scale of .1; (4) random affine 
transformations with a shear of 10 and a scale of (.75, 1.25); and (4) Gaussian blur with a kernel 
size of 5 and standard deviation uniformly selected in the interval (0.05, 0.5). For training our 
model, we constructed a batch by sampling 5 images from each of the four classes, applying 5 
random transformations to each image, resulting in 100 images per batch.  We sampled 100 
batches in any given epoch. The balanced sampling strategy was used to account for any class 
imbalances.  We trained for a total of 50 epochs and chose the model that achieved the highest 
balanced accuracy defined as accuracy across each class weighted by the proportion of 
validation samples in the class.    

To fairly compare model performance across embeddings from various standard deep learning 
models on the held-out test set, we trained Support Vector Machines (SVMs) with a linear 
kernel on the embeddings extracted from these models on the held-out test set In particular, we 
split our test embeddings according to a 95-5 split, trained the SVM on the 95%, and evaluated 
model performance on the remaining 5%.  We trained SVMs on the embeddings obtained from 
the fully unsupervised autoencoder model, the fine-tuned autoencoder model, a pre-trained 
ResNet model, and hand-crafted features (Fig. S2d).        

To determine sgRNAs that significantly altered the proportion of cells in each phenotypic 
category, an ordinal chi squared test was performed using R 4.2.2 with the coin package 
(v1.0.9), and the results were combined at the gene level using Stouffer’s method. 
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Identification of Terpestacin as an Antiviral Compound 

The evening before the infection, ~15,000 HeLa cells were seeded into each well of a 96 well 
plate. The following day, terpestacin (Aurora Fine Chemicals, CA, USA), a known small 
molecule inhibitor of UQCRB, was dosed onto cells in a 9-point, 2-fold dose curve beginning at 
50µM. Cells were infected with EBOV at an MOI of 0.1-0.2 and allowed to infect for 48 hours. 
The plates were then fixed in 10% neutral-buffered formalin for >6 hours and removed from 
containment. The cells were washed, permeabilized with 0.1% Triton X-100, blocked with 3.5% 
BSA, and immunostained with an anti-EBOV GP monoclonal antibody (IBT, MD, USA). After 
several hours incubating at 37°C, the cells were washed in PBS and incubated in anti-mouse 
Alexa Fluor 488 secondary antibody (Thermo Fisher, MA, USA). Cells were again washed in 
PBS and nuclei were counterstained with Hoechst 33342. The plate was imaged with a BioTek 
Cytation 1 automated plate imager. Images were fed into a custom pipeline in CellProfiler 
(Broad Institute, MA, USA) used to count the number of infected cells and nuclei. Infection 
efficiency was calculated as the number of infected cells divided by the total number of nuclei 
(as a proxy for total cell count) and normalized to the average of cells treated with DMSO only. 
The total nuclei count, normalized to the average of the negative controls, was used to check for 
potential cytotoxicity. The normalized infection efficiency and normalized nuclei counts were 
plotted in GraphPad Prism 8.0.0 (GraphPad Software, CA, USA). A four parameter variable 
slope nonlinear regression was used to fit the data and calculate the antiviral IC50 of the 
compound. 
 
Generation of STRAP KO Cells 

The evening before transduction, 250,000 HeLa-TetR-Cas9 cells were seeded into a 12 well 
plate in DMEM supplemented with 10% FBS. The following morning, the medium was replaced 
with DMEM containing 8µg/mL polybrene. A lentiviral vector containing an sgRNA targeting 
STRAP purchased from the Broad Institute’s Genetic Perturbation Platform was added and the 
cells were spinoculated at 1000xg for 2 hours at 33°C. After spinoculation, the cells were 
transferred to the incubator for 3 hours, follow by medium replacement. 24 hours after 
spinoculation, the cells were split into medium containing 2µg/mL puromycin to begin selection. 
48 hours after beginning selection, the medium was replaced with that containing 2µg/mL 
puromycin and 1µg/mL doxycycline to induce Cas9 activation. Once the cells reached 
confluency, they were split into medium containing only 1µg/mL doxycycline and were 
maintained in doxycycline for one week. After one week, the cells were split into basic medium 
and single cell clones were obtained. Clonal populations were identified and verified as being 
STRAP KOs by capillary electrophoresis using a Jess automated immunodetection machine 
(Bio-Techne, MN, USA). Two clones, identified as B03 and E08, had no detectable STRAP 
expression and were used for subsequent experiments. 
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qPCR of EBOV RNA 

To detect and quantify total cellular EBOV RNA, NT or STRAP KO cells were infected at the 
indicated MOI and incubated for approximately 16 hours. Cells were washed once with PBS and 
harvested in TRIzol (ThermoFisher, MA, USA). RNA was processed by a Zymo Direct-zol RNA 
Miniprep kit as per manufacturer’s instructions. RT-qPCR was performed using the NEB Luna 
Universal Probe One-Step RT-qPCR kit (E3006L) on a Bio-Rad CFX Opus 96 Real Time PCR 
system. Primer/probe sequences for EBOV NP (forward- GCAGAGCAAGGACTGATACA, 
reverse- GTTCGCATCAAACGGAAAAT, probe- FAM-CAACAGCTT-ZEN-
GGCAATCAGTAGGACA-IABkFQ) and human GAPDH (forward- 
ACATCGCTCAGACACCATG, reverse- GTAGTGAGGTCAATGAAGGG, probe- Cy5-
AAGGTCGGAGTCAACGGATTTGGTC-IAbRQSp) were previously established. The 
thermocycler protocol was as follows: 55°C for 10 minutes, 95°C for 1 minute, then 40 cycles of 
95°C for 10 seconds and 60°C for 30 seconds. Primers and probes were synthesized by IDT 
(IA, USA). Four concentrations of synthetic RNA standards were used to calculate genome 
equivalents from Cq values. Each standard and sample were run in duplicate technical 
replicates and averaged. To detect extracellular EBOV RNA, NT or STRAP KO cells were 
infected at the indicated MoIs and incubated for ~72 hours. Supernatants from infected cells 
were harvested into TRIzol LS (ThermoFisher, MA, USA) in a 3:1 TRIzol LS to supernatant 
ratio.  RNA was processed and PCR was performed as above using the same primers. 

To quantify genome specific EBOV RNA, whole cell lysates of infected NT or STRAP cells were 
generated and processed as above. A two-step PCR was performed to specifically target EBOV 
genomic RNA, which has been previously described. For reverse transcription, an Invitrogen 
SuperScript III Reverse Transcriptase kit was used following the manufacturer's protocol. 
Briefly, 4µL purified RNA was mixed with 1µL 2uM gene-specific primer (EBOV-18046 forward, 
5’ GAGTTGATTAGTGTGTGCAATAGGTTTAC 3’), 1µL 10mM dNTP mix, and 4µL nuclease-
free water. The mixture was denatured for 5 minutes at 65°C, then cooled on ice for greater 
than 1 minute. After cooling, 4µL First Strand Buffer, 1µL 0.1M DTT, 1µL RNase inhibitor, 1µL 
SuperScript III reverse transcriptase, and 3µL nuclease-free water were added (total reaction 
volume of 20µL). Reverse transcription was performed at 55°C for 1 hour, and the enzyme was 
then inactivated at 85°C for 5 minutes. 4µL of the first reaction was used as the template for the 
subsequent qPCR using the BioRad iTaq Universal SYBR Green Supermix according to the 
manufacturer’s protocol. 
 
EBOV Immunostaining and Infection Efficiency Calculation 

Cells were infected as described above with a low MOI. After a 72 hour infection, the plates 
were fixed in 10% formalin and removed from containment. Cells were immunostained with an 
anti-EBOV GP mouse antibody (IBT, MD, USA) and Alexa Fluor 488 anti-mouse secondary 
(Thermo Fisher, MA, USA). Nuclei were counterstained with Hoechst 33342. Images were taken 
with a Biotek Cytation 1 automated plate imager. The number of infected cells and nuclei were 
quantified using a customized pipeline on CellProfiler (Broad Institute, MA, USA) and infection 
efficiency was calculated by dividing the total number of infected cells by the total number of 
nuclei. 
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Focus Forming Unit Assay 

Non-targeting and STRAP knockout HeLa cells were infected as described above with a low 
MOI in triplicate. After a 72 hour infection, supernatant was harvested from samples and diluted 
out onto HeLa cells in a 96 well plate in a 2-fold series. Cells were incubated for another 72 
hours to allow viral replication and spread. The plates were formalin fixed, removed from 
containment, and immunostained for EBOV GP as above. One focus forming unit was defined 
as a cluster of >5 infected cells. The lowest dilution with an average of >50 FFUs was used as 
the endpoint to calculate the viral titers. The data was normalized to the average of the non-
targeting controls. 
 
Co-immunostaining of EBOV VP35 and STRAP Proteins 

The night prior to infection, ~30,000 HeLa cells were seeded into 8 well chamber slides. Cells 
were infected with EBOV at an MOI of ~3 for 16-18 hours, then fixed in 10% formalin and 
removed from containment. Cells were permeabilized in 0.1% Triton X-100, blocked in 3.5% 
BSA, and immunostained with our anti-EBOV VP35 mouse antibody and an anti-STRAP rabbit 
antibody (Atlas Antibodies, Bromma, Sweden) at 1:3000 and 1:1000 respectively for several 
hours at 37°C. Cells were washed and anti-rabbit Alexa Fluor 488 and anti-mouse Alexa Fluor 
594 secondary antibodies were added (Thermo Fisher, MA, USA). After 1-2 hours, the cells 
were washed, and nuclei were counterstained with Hoechst 33342. Images were taken on a 
Nikon Ti2 Eclipse microscope. 
 
Proximity Ligation Assay 

The night prior to infection, ~7,000 HeLa cells were seeded into an 18 well chamber slide (Ibidi, 
Gräfelfing, Germany). The following evening, cells were infected with EBOV at an MOI of ~3. 
After 16-18 hours, the cells were fixed in 10% formalin and removed from containment. Cells 
were washed thoroughly with PBS, and the Duolink PLA kit was used (Sigma-Aldrich, MO, 
USA) according to the manufacturer’s protocol. Briefly, the blocking solution was added for 1 
hour at 37°C. The anti-EBOV VP35 mouse antibody and anti-STRAP rabbit antibody were 
diluted 1:3000 and 1:1000 respectively in antibody diluent and incubated at 37°C for 2-3 hours. 
The cells were washed in wash buffer A and diluted Duolink PLA probes were added for 1 hour 
at 37°C. Cells were washed in wash buffer A and the ligase was added in ligase buffer for 30 
minutes at 37°C. Cells were again washed in wash buffer A and the polymerase diluted in 
amplification buffer was added for 100 minutes at 37°C. The cells were finally washed in wash 
buffer B and the nuclei were counterstained with Hoechst 33342. Images were taken on a Nikon 
Ti2 Eclipse microscope. 
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Data and Code Availability 

Code is available at https://github.com/beccajcarlson/EBOVOpticalPooledScreen. Imaging data 

is available on Google Cloud Storage at gs://opspublic-east1/EBOVOpticalPooledScreen. 
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Table S1. Per-gene mean cumulative delta AUC scores and p-values for VP35 protein, VP35 
RNA FISH, and c-Jun channels in genome-wide screen. 
Table S2. Per-gene mean cumulative delta AUC scores for all predefined features. 
Table S3. Per-gene mean random forest regression results for VP35 RNA FISH and c-Jun 
predictions. 
Table S4. Per-gene mean deep learning predictions of VP35 subcellular protein localization and 
associated ordinal chi square statistics and p-values. 
Table S5. Per-gene mean cumulative delta AUC scores for unsupervised autoencoder features.  
Table S6. Per-gene mean cumulative delta AUC scores for supervised transfer learned 
features.  
Table S7. Mean delta AUCs per gene for all features with or without matching to infection level. 
Table S8. Per-gene mean delta AUC scores and p-values for VP35 protein and VP35 RNA 
FISH channels in all secondary screen conditions. 
Supplementary Figures 1-4.   
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Figure S1. (A) Integration of optical pooled screening workflow with RNA FISH detection using HCR 
amplification. (B) Histograms of intensity features in five channels for non-targeting controls cells that 
were infected or not infected in the genome-wide optical pooled screen. (C) Top 40 hits with increased or 
decreased VP35 protein levels and the number of non-Ebola virus genetic screens or Ebola-specific 
genetic screens they scored in. Genes not previously associated with Ebola in the literature are marked 
with an orange asterisk. (D) Gene set enrichment analysis of genes with significantly decreased (purple) 
or increased (gold) Ebola virus VP35 protein levels. (E) Volcano plot showing genes that scored 
significantly for changes in VP35 RNA levels by FISH. (F) Enrichr analysis of gene ontology terms 
significantly enriched in genes that reduced VP35 RNA levels. (G) Volcano plot showing genes that 
scored significantly for changes in c-Jun levels. (H) Enrichr analysis of gene ontology terms significantly 
enriched in genes that reduced or enhanced c-Jun levels. 
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Figure S2. (A) Fully unsupervised autoencoder reconstruction losses for training and test sets across 25 
epochs. (B) Examples of manually labeled faint, punctate, cytoplasmic, and peripheral input cell images 
with accompanying unsupervised autoencoder reconstructions. (C) Fine-tuned autoencoder trained using 
negative log likelihood loss with balanced validation accuracy also reported across 50 epochs of training. 
(D) Best model train and test set accuracies for the VP35 protein localization prediction task using SVMs 
on latent embeddings from the unsupervised autoencoder, predefined features, a Resnet-50 architecture 
trained on the prediction task, or the fine-tuned autoencoder. Predefined features include intensity, 
correlation, and texture morphological features similar to those previously described for Cell Painting 
(Bray et al., 2016). (E) Confusion matrix of model predictions vs manually labeled classifications on model 
test set. (F) Proportion of cells in each VP35 localization category for non-targeting controls and the 
genes with the largest proportion of faint (NPC1), punctate (UQCRB), and peripheral (ITGB1) cells. Error 
bars indicate SEM across sgRNAs targeting the same gene. 
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Figure S3. (A) Adjusted Rand score for Leiden clustering at different resolutions. (B) Additional single-cell 
images of select genetic knockouts from the genome-wide optical pooled screen. (C) Correlation between 
the PHATE potential distance from the clustering using the fine-tuned model and the adjusted FDR p-
value from the Kotliar study, noting genes whose expression significantly increased or decreased along 
with infection. (D) Correlation between the PHATE potential distance from the supervised clustering and 
the number of mass spectrometry studies that identified the genes as an interactor with an Ebola virus 
protein. (E) Venn diagram showing overlap between top optical pooled screen hits, genes that were 
present in at least one mass spectrometry study, and differentially expressed genes from Kotliar et al’s 
single-cell RNA sequencing study. (F) Correlation between the PHATE potential distance from the 
supervised clustering and the 95th percentile z-score for each gene in other virus genetic screens, see 
(G). (G) Unsupervised clustering of hits from genome-wide virus genetic screens, hierarchical clustering 
performed using cosine distance. 
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Figure S4. (A) Correlation between genome-wide c-Jun median nuclear delta AUC scores and secondary 
screen delta AUC scores; black lines indicate standard deviation for non-targeting control sgRNAs in 
each screen centered around the mean value for non-targeting sgRNAs in the screen. (B) Secondary 
screen mean viral protein (VP35 for EBOV and SUDV or VP40 for MARV) and RNA intensities in non-
targeting control sgRNAs relative to HeLa cells infected with EBOV. (C) Volcano plots for VP35 (EBOV, 
SUDV) or VP40 (MARV) protein expression in each of the twelve screening conditions. (D) Volcano plot 
for viral VP35 RNA levels in HeLa cells at the late timepoint condition. (E) Heatmaps showing the 
difference between HeLa cell and Huh7 cell z-scored delta AUCs for members of the GARP, retromer, 
and the Sec61 complex. Hierarchical clustering performed using Euclidean distance. (F) Heatmap 
showing z-scored delta AUC values for genes identified as enriched for a punctate phenotype in the 
genome-wide screen and also included in secondary screens (white cells indicate conditions where p > 
0.05). Hierarchical clustering performed using Pearson correlations. 
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