

1 Elasmobranchs Exhibit Species-Specific Epidermal 2 Microbiomes Guided by Denticle Topography

3

4 **Asha Z. Goodman^{1,*}, Bhavya Papudeshi², Maria Mora¹, Emma N. Kerr², Melissa Torres³, Jennifer Nero**
5 **Moffatt³, Laís F.O. Lima¹, Ingrid R. Niesman¹, Isabel Y. Moreno⁴, Michael P. Doane², Elizabeth A.**
6 **Dinsdale^{2,*}**

7 1 Department of Biology, San Diego State University, San Diego, CA 92182, USA; moramariaf21@gmail.com (M.M.);
8 kerr0171@flinders.edu.au (E.N. K.); laisfolima@gmail.com (L.F.O.L.); iniesman@sdsu.edu (I.R.N.)

9 2 Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, South
10 Australia 5045, Australia; npbhavya13@gmail.com (B.P.); michael.doane@flinders.edu.au (M.P.D.)

11 3 Birch Aquarium, Scripps Institution of Oceanography, University of California San Diego, CA 92093, USA; mlt006@ucsd.edu (M.T.);
12 jmoffatt@ucsd.edu (J.N.M.)

13 4 College of Optometry, University of Houston, Houston, TX 77204, USA

14

15 **Abstract:** Elasmobranch epidermal microbiomes are species-specific, yet microbial assembly and
16 retainment drivers are mainly unknown. The contribution of host-derived factors in recruiting an
17 associated microbiome is essential for understanding host-microbe interactions. Here, we focus on the
18 physical aspect of the host skin in structuring microbial communities. Each species of elasmobranch
19 exhibits unique denticle morphology, and we investigate whether microbial communities and
20 functional pathways are correlated with the morphological features or follow the phylogeny of the
21 three species. We extracted and sequenced the DNA from the epidermal microbial communities of
22 three captive shark species: Horn (*Heterodontus francisci*), Leopard (*Triakis semifasciata*), and Swell
23 shark (*Cephaloscyllium ventriosum*) and use electron microscopy to measure the dermal denticle
24 features of each species. Our results outline species-specific microbial communities, as microbiome
25 compositions vary at the phyla level; *C. ventriosum* hosted a higher relative abundance of
26 Pseudomonadota and Bacillota, while *H. francisci* were associated with a higher prevalence of
27 Euryarchaeota and Aquificae, and Bacteroidota and Crenarchaeota were ubiquitous with *T.*
28 *semifasciata*. Functional pathways performed by each species' respective microbiome were species-
29 specific metabolic. Microbial genes associated with aminosugars and electron-accepting reactions
30 were correlated with the distance between dermal denticles, whereas desiccation stress genes were
31 only present when the dermal denticle overlapped. Microbial genes associated with Pyrimidines,

32 chemotaxis and virulence followed the phylogeny of the sharks. Several microbial genera display
33 associations that resemble host evolutionary lineage, while others had linear relationships with
34 interdenticle distance. Therefore, denticle morphology was a selective influence for some microbes
35 and functions in the microbiome contributing to the phylosymbiosis.

36

37 **Importance**

38 Microbial communities form species-specific relationships with vertebrate hosts, but the drivers of
39 these relationships remain an outstanding question. We explore the relationship between a physical
40 feature of the host and the microbial community. A distinguishing feature of the subclass
41 Elasmobranchii (sharks, rays, and skates), is the presence of dermal denticles on the skin. These
42 structures protrude through the epidermis providing increased swimming efficiency for the host and
43 an artificial model skin affect microbial recruitment and establishment of cultured microbes but has
44 not been tested on natural microbiomes. Here, we show some naturally occurring microbial genera
45 and functional attributes were correlated with dermal denticle features, suggesting they are one, but
46 not only contributing factor in microbiome structure on benthic sharks.

47

48 **Keywords:** Elasmobranch, Skin microbiome, Phylosymbiosis

49 **Introduction**

50 The coupling of the eukaryotic host and its respective microbial communities ("microbiome")
51 has been reclassified as a meta-organism, representing the mutualistic dependence between a
52 multicellular organism and its respective microbial communities¹. Factors such as host age², life
53 history³, diet^{4,5}, environment^{6,7}, and body site⁸ contribute to the composition of microbial
54 communities to varying extents, both internally (e.g., oral, gut, reproductive tracts, etc.) and
55 externally (integumentary system, i.e. skin). As the largest organ of any body, the skin of a host is
56 implicated in numerous facets of host health with the outermost layer of skin, the epidermis,
57 providing a non-invasive avenue to investigate skin health and disease of a host. However, most

58 epidermal microbiome studies focus largely on mammals^{9,10}, particularly humans¹¹. Therefore,
59 characterizing the external microbiomes of non-humans is increasingly necessary to understand how
60 the recruitment and retainment of microbial communities leads to disease.

61 The epidermal microbiome of different marine vertebrates such as teleost fish, cartilaginous
62 fish (elasmobranchs), and marine mammals contains core microbial species that are conserved
63 throughout their geographic regions and genetically distinct from the surrounding environment^{4,12}.
64 Whale sharks (*Rhincodon typus*) from sub-tropical locations around the world share a core
65 microbiome, including the genera *Rheinheimera*, *Leeuwenhoekella*, *Algoriphagus*, *Sphingobium*,
66 *Aeqorivita*, and *Flavobacterium*⁵. Humpback whales (*Megaptera novaeangliae*) found across the
67 northern Pacific, have a distinct set of microbial species including *Psychrobacter*, *Tenacibaculum*,
68 uncultured *Moraxellaceae*, *Flavobacterium*, *Flavobacteriaceae*, and *Gracilibacteri*¹³. Despite the
69 highly diverse surface features of these ocean organisms, each possess unique mechanisms to recruit
70 and maintain respective core microbes. Fish dermis, for instance, feature goblet cells that produce a
71 thick layer of nutrient-rich mucus to cover dermal surfaces¹⁴, while marine mammals often shed their
72 skin to deter biofilm formation¹³. Elasmobranchs have dermal denticles that protrude through the
73 epidermis to aid in hydrodynamics, while possessing a reduced amount of mucus. These host
74 characteristics exhibit a selective effect with respect to epidermal microbiome structure: the physical
75 characteristic of the shark denticle topography aids in reducing fluid friction and deter biofilm
76 formation while physiological characteristics of the mucus layer provides antimicrobial properties.
77 The epidermal microbiomes of sharks, which have densely packed denticles, are highly shared across
78 individuals of the same species, while the epidermal microbiomes of stingray, which have sparse
79 dermal denticles and thick mucus, are more variable, suggesting the interaction of dermal denticles
80 and microbiome characteristics^{15,16}. Thus, while microbes pervasively associated with the epidermis
81 of fishes throughout the host's evolutionary history, describing the specific microbial species present
82 on the skin of marine vertebrates and the host factors influencing microbiome recruitment and
83 retainment is required.

84 The aforementioned host-microbiota relationships are a product of phylosymbiosis, an
85 outlined trend whereby associated microbial communities are deterministically assembled by host
86 phylogeny across evolutionary time¹⁷. Examples of these evolutionarily persistent associations
87 include those between coral reef invertebrates¹⁸, fish^{4,19}, and humans²⁰, and their respective
88 microbiomes. A long-standing relationship between a host and microbiome is one that exist between
89 that of sharks and their epidermal microbiome; having an extensive evolutionary history has allowed
90 sharks to adapt alongside a recruited and maintained microbiome and these phylosymbiotic trends
91 occur across shark species including leopard (*Triakis semifasciata*), thresher (*Alopias vulpinus*),
92 blacktip reef (*Carcharhinus melanopterus*), nurse (*Ginglymostoma cirratum*), tiger (*Galeocerdo*
93 *cuvier*), lemon (*Negaprion brevirostris*), sandbar (*Carcharhinus plumbeus*), Caribbean reef
94 (*Carcharhinus perezi*), and whale sharks (*Rhincodon typus*)^{8,19,21–23}. The host-related factors that
95 impact the phylosymbiotic relationship between epidermal microbiomes and shark hosts, remains an
96 outstanding question.

97 We previously reported the principle that captive, aquatic elasmobranch species maintain a
98 comparable epidermal microbiome to wild counterparts¹⁶. The nearby proximity of captive
99 elasmobranchs sampled in this study provided an opportunity to characterize the epidermal
100 microbiomes associated with *T. semifasciata*, *H. francisci*, and *C. ventriosum* populations and test
101 whether microbial patterns in benthic shark epidermal microbiomes mirror host phylogeny and
102 correlate with denticle morphology. These sharks were chosen as our model because the hosts are
103 phylogenetically distinct, having an evolutionary distance of approximately 200 million years
104 between *H. francisci* (Heterodontiformes) and both *T. semifasciata* and *C. ventriosum*
105 (Carcharhiniform)²⁴ (Figure 1), are relatively small, can be easily obtained from captive sources, and
106 possess unique dermal denticle topography. We aim to explore whether denticle topography is a
107 feature of the host that is influencing the microbial community and a mechanism underlying emergent
108 patterns of phylosymbiosis. We hypothesize the taxonomic composition of epidermal microbiomes
109 belonging to the benthic elasmobranch species will show correlations both with overall host
110 phylogeny and specific individual microbes. We anticipate the evolutionary lineage of each host

111 species, reflected through alterations in the composition of the microbiome, will also be modulated by
112 the topographical characteristics of the dermal denticles, albeit with weaker covariance.

113 **Results**

114 The epidermal microbiomes belonging to three benthic shark species, *T. semifasciata* (n=11), *H.*
115 *francisci* (n=10), and *C. ventriosum* (n=10) were sampled in captivity (Table 1) alongside water
116 column samples. Water-associated microbiomes collected from the captive environment were
117 statistically dissimilar to host microbiomes in PERMANOVA main group tests (PERMANOVA:
118 Genus, Pseudo-F_{df = 1, 33} = 3.85, P(perm) < 0.05) and pairwise analyses ($p < 0.05$), did not influence
119 host-associated microbiomes, and are not investigated further.

120 The total number of bacterial families present for each shark's microbiome ranged from 164 to
121 205 individuals associated with *T. semifasciata*, 176 to 205 with *H. francisci*, and 200 to 206 with *C.*
122 *ventriosum*. To evaluate the overall diversity each of each shark species, the alpha-diversity of the
123 epidermal microbiomes were compared and no differences of microbial community richness
124 (Margalef's *d*), evenness (Pielou's *J'*), or overall diversity (Inverse Simpson (1-*I*)) were observed
125 across shark species (Welch's t-test; $p > 0.05$; Table 2) at each taxonomic level (class, family, and
126 genus). The greatest differences observed were measures of richness at genus level, as *C. ventriosum*
127 were recorded to harbor the highest average overall diversity (8.88 ± 1.8 S.D.) followed by *T.*
128 *semifasciata* (6.36 ± 1.43), and finally *H. francisci* (5.51 ± 1.91).

129 The benthic sharks microbiome hosted a diversity of bacterial phyla, with the following
130 showing an average relative abundance greater than 1.0%: Euryarchaeota (5.0 ± 1.47 % S.D.; Figure
131 2), Tenericutes (2.76 ± 0.75 %), Pseudomonadota (2.41 ± 8.82 %), Bacillota (2.37 ± 1.76 %),
132 Actinobacteria (2.17 ± 1.26 %), Bacteroidota (1.59 ± 1.97 %), Cyanobacteria (1.58 ± 0.59 %),
133 Aquificae (1.32 ± 0.55 %), Crenarchaeota (1.3 ± 0.9 %), and Spirochaetes (1.23 ± 1.3 %). While each
134 host species harbored the same phyla, the relative abundance varied with *C. ventriosum* retaining the
135 highest relative abundance of Pseudomonadota (39.1 ± 3.25 %) and Bacillota (9.1 ± 3.6 %), while *H.*
136 *francisci* harbored highest relative abundances of Euryarchaeota (24.5 ± 10.8 %), and Tenericutes

137 (10.8 ± 2.2 %), and *T. semifasciata* highest relative abundance of Actinomycetota (6.32 ± 1.45 %)
138 and Crenarchaeota (5.61 ± 2.67 %).

139 The Kruskal-Wallis H test revealed these variations across species to be significant (p <
140 0.001) between *H. francisci* and both *C. ventriosum* and *T. semifasciata* for the relative abundance of
141 Pseudomonadota and Bacillota. Dissimilarities continued across lower taxonomic levels (all p-values
142 were Bonferroni-corrected). At class taxonomic level, the microbial compositions of microbiomes
143 associated with each benthic shark species exhibited significant differences (p < 0.001) for two taxa:
144 GammaPseudomonadota and Methanobacteria. Significant differences (p < 0.001) between *H.*
145 *francisci* and *C. ventriosum* included the bacterial classes Actinomycetota, Mollicutes, Aquificae, and
146 BetaPseudomonadota, while differences between *C. ventriosum* and *T. Semifasciata* were observed
147 for BetaPseudomonadota. At genus level, several microbes unambiguously varied between the shark
148 species (Figure 3). For example, the *Bacteriovorax* genus was only present in *T. semifasciata* (2.49 ±
149 2.15%), while both *Coprococcus* and *Ehrlichia* absent only in *T. semifasciata* epidermal
150 microbiomes. Similarly, *Staphylococcus* was not measured in *H. francisci* epidermal microbiomes.

151 Pairwise analyses were performed using the Tukey-Kramer post-hoc test at order taxonomic
152 level. The mean abundance order Aquificales on *C. ventriosum* was significantly higher than on both
153 *H. francisci* (p < 0.001) and *T. semifasciata* (p < 0.01). In contrast, for Alteromonadales, the mean
154 abundance in *C. ventriosum* was significantly lower than in both *H. francisci* (p < 0.001) and *T.*
155 *semifasciata* (p < 0.001). For Campylobacterales, *H. francisci* showed a significantly higher mean
156 abundance compared to both *C. ventriosum* (p < 0.001) and *T. semifasciata* (p < 0.001). Last, for the
157 microbial order Clostridiales, *C. ventriosum* had a higher mean abundance than *H. francisci* (p <
158 0.001), whereas *H. francisci* showed a lower mean abundance than *T. semifasciata* (p < 0.001).

159 We tested the similarity between and within the groups and identified the key microbes
160 contributing to the dissimilarities between shark species. Comparisons of taxonomic community
161 overlap (SIMPER analysis: 100 - dissimilarity index) within epidermal microbiomes associated with
162 *T. semifasciata*, *H. francisci*, and *C. ventriosum* at family taxonomic level revealed *C. ventriosum*
163 microbiomes to have higher similarity within the sample group (91.9) than those belonging to both *T.*

164 *semifasciata* (90.4) and *H. francisci* (78.4). The SIMPER analysis for abundance data at genus level
165 reported a dissimilarity coefficient of 62.4 between *C. ventriosum* and *H. francisci*, 58.4 between *T.*
166 *semifasciata* and *C. ventriosum*, and 53.3 between *T. semifasciata* and *H. francisci*. The most
167 important contributors to the epidermal microbiome dissimilarities between each group varied;
168 microbes belonging to the Bacillota phylum were the top contributors to the differences between *T.*
169 *semifasciata* and *H. francisci*, Methanobacteria were the most influential contributors to the
170 dissimilarity between *H. francisci* and *C. ventriosum*, and Bacteroidia-encompassing microbes
171 impacted the difference between *T. semifasciata* and *C. ventriosum* (Table 3). In pairwise
172 comparisons between *T. semifasciata* and *H. francisci*, the *Coprococcus* genus was found to
173 contribute the most to the dissimilarity, with a contribution of 4.45 %. This genus was present in *T.*
174 *semifasciata* but absent in *H. francisci*. Other significant contributors included *Methanothermobacter*
175 (3.69 %) and *Methanobacterium* (3.0 %), with the former being absent in *H. francisci*. When
176 comparing *H. francisci* and *C. ventriosum*, *Methanothermobacter* emerged as the top contributor to
177 the dissimilarity, with a contribution of 6.42 %, as it was more abundant in *C. ventriosum* than in *H.*
178 *francisci* metagenomes. In the comparison of *T. semifasciata* and *C. ventriosum*,
179 *Methanothermobacter* again contributed the most to the dissimilarity (5.61 %), being more abundant
180 in *T. semifasciata*.

181 We performed PERMANOVA tests on the microbial compositions of each shark to
182 determine if significant differences were present between the epidermal microbiomes associated with
183 each host species. The main PERMANOVA tests identified significant differences in the proportional
184 abundances at family and genus levels (PERMANOVA: family, pseudo- $F_{df=2,28}=7.65$, $P(\text{perm})=$
185 0.001; genus, pseudo- $F_{df=2,28}=6.79$, $P(\text{perm})=0.001$), while pairwise PERMANOVA tests outlined
186 significant differences ($P(\text{perm}) \leq 0.002$) between the epidermal microbiome belonging to each
187 species (Table 4) at each taxonomic level (order, family, and genus).

188 To clarify the relationships among the epidermal microbiomes of different host species,
189 hierarchical clustering was performed at the genus level for each sample. Using the Bray-Curtis
190 similarity index, the microbial genera within the epidermal microbiomes formed distinct clusters,

191 each corresponding to a unique host species (Figure 4A). An nMDS plot showed further clustering of
192 the metagenomes by host species with a stress value under the acceptable threshold (0.13), suggesting
193 the differences between host species are significant influencers over microbial community structure
194 (Figure 4B). Finally, Spearman's rank correlation coefficients, based on microbial genera,
195 demonstrated stronger pairwise relationships between *T. semifasciata* and *C. ventriosum* (0.63), than
196 between *H. francisci* (0.56), and between *H. francisci* and *C. ventriosum* (0.61; Figure 4).

197 **Dermal Denticle Morphology and Proportional Abundance Trends**

198 The three shark species had variable dermal denticle morphology (Figure 5). *T. semifasciata* had
199 overlapping dermal denticles, which were slightly elongated, *H. francisci* had square and crown shape
200 dermal denticle that were evenly spaced, whereas *C. ventriosum* dermal denticles were highly
201 elongated and widely, but unevenly spaced. Therefore, the most remarkable contrast in the
202 morphology of denticles was the spacing between each scale: *T. semifasciata* had the greatest overlap
203 ($-197 \pm 61.2 \mu\text{m}$) while *H. francisci* had a greater average distance between each placoid (226 ± 15.1
204 μm) and *C. ventriosum* denticles were arranged with the greatest interdenticile distances (426 ± 41.4
205 μm ; Figure 5).

206 In our investigation into the relationship between interdenticile distance and microbiome
207 composition, we plotted the distances between denticles against the relative taxonomic abundances of
208 the microbiome for each sampled shark species (Figure 6). Linear regression analysis revealed a
209 moderately positive correlation for *Ehrlichia* ($R^2 = 0.343$, slope = 0.003) and *Portiera* ($R^2 = 0.21$,
210 slope = 0.003). In contrast, *Bacteroides* exhibited a negative correlation ($R^2 = 0.43$, slope = -0.006)
211 with increasing interdenticile distance. Both the positive and negative trends were statistically
212 significant ($p < 0.001$), indicating weak to moderate linear relationships as evidenced by the

213 correlation coefficients. No significant correlation ($p > 0.05$) was observed between interdenticle
214 distance and the relative abundance of *Cyanothece* ($R^2 = 0.031$, slope = -0.011) when described by
215 simple linear regression. Moreover, the relationship between denticle distance and both *Coprococcus*
216 ($R^2 = 0.324$) and *Pseudoalteromonas* ($R^2 = 0.44$) were better described by second order polynomial
217 equations.

218 **Functional Profiles of Epidermal Microbiomes Across Shark Species**

219 Functional profiles of water-associated microbiomes collected from the captive environment
220 were statistically dissimilar to host microbiomes in PERMANOVA main group tests
221 (PERMANOVA: Genus, Pseudo-F_{df = 1, 31} = 3.21, P(perm) = 0.05) and pairwise analyses ($p < 0.05$)
222 and are not discussed further. Of the 35 broadest functional genes, pathways involved in carbohydrate
223 metabolism were most abundant ($4.83 \pm 0.1\%$ S.D.), followed by amino acid synthesis ($4.71 \pm 0.1\%$),
224 and protein metabolism ($4.5 \pm 0.26\%$). Although no significant difference overall was found between
225 each pair of shark species ($q = 0.85$, $p > 0.5$), utilizing multiple Mann-Whitney tests, we compared
226 the distributions of various functional genes across the three shark species (Table 5). For a more
227 specific comparison, a Kruskal-Wallis H test revealed significant differences across the three species
228 at the more specific functional level II including protein secretion system type 2 ($p = 0.047$), active
229 compounds in metazoan cell defense ($p = 0.023$), general stress response ($p = 0.04$), lysine
230 biosynthesis ($p < 0.001$), once-carbon metabolism ($p < 0.001$), and regulation of virulence ($p = 0.039$;
231 all p-values corrected).

232 To investigate the differences between the functional profiles of the metagenomes, we
233 performed a SIMPER analysis on the sequenced genes at subsystem level II. Despite our focus on
234 characterizing distinctions, we observed a high similarity between each species (SIMPER analysis:
235 100 - dissimilarity index), indicating a lack of pronounced differences at this level of analysis. Once

236 again, the *T. semifasciata* group was most similar to *C. ventriosum* (93), while *H. francisci* was more
237 dissimilar to both *C. ventriosum* (86) and *T. semifasciata* (85.3).

238 The functional gene potential of the microbiomes was significantly distinct across the three
239 species (PERMANOVA, pseudo- $F_{df=2,15} = 2.47$, $p < 0.001$; Table 6) at the broadest metabolic level.
240 The difference between the three species was also detected when analyzing variations of more
241 specific including SEED subsystem level II pathways (pseudo- $F_{df=2,15} = 2.11$, $p < 0.05$) and SEED
242 subsystem level 3 (pseudo- $F_{df=2,15} = 2.32$, $p < 0.05$) metabolic pathways. Pairwise PERMANOVA
243 also tests revealed consistently significant variations across species at each functional level (Table 7).
244 However, no singular functional genes at level II subsystems differed between *T. semifasciata* and *H.*
245 *francisci*.

246 In our exploration of the linear relationship between interdenticle distance and microbiome
247 functionality, we plotted the distances between denticles against the relative abundance of Level II
248 functional subsystems in the microbiome for each sampled shark species (Figure 7). Linear regression
249 analyses outlined a significantly moderate, negative correlation ($p < 0.001$) between genes encoding
250 for amino sugars ($R^2 = 0.38$, slope = -0.004) and increase distance between denticles. The remainder
251 of the significant relationships, notably those involving genes encoding chemotaxis ($R^2 = 0.18$),
252 regulation of virulence ($R^2 = 0.28$), and desiccation stress ($R^2 = 0.54$), electron-accepting reactions
253 ($R^2 = 0.38$), were more accurately characterized by second order (quadratic) curves, depicting a U-
254 shaped distribution. Functional genes encoding for pyrimidine biosynthesis ($R^2 = 0.38$) was
255 characterized by a bell-shaped curve.

256 The comprehensive multiple group comparisons did not uncover discernible linear
257 correlations co-varying with the trajectory of denticle distance. However, these comparisons did
258 provide evidence of host species-specific gene function levels. For example, the genes associated with
259 desiccation stress were exclusively found in the microbiomes of *T. semifasciata*, with a significant
260 average frequency ($p < 0.05$) of $0.113 \pm 0.09\%$. Notably elevated levels of genes associated with

261 pyrimidine biosynthesis were discernible in the metagenomes of *C. ventriosum*, with a significant
262 average frequency ($p < 0.001$) of $0.142 \pm 0.1\%$ while a significant reduction ($p < 0.01$) in the levels
263 of genes associated with virulence regulation in *H. francisci* microbiomes ($0.17 \pm 0.19\%$) as
264 compared to those observed in *T. semifasciata* ($0.48 \pm 0.2\%$) and *C. ventriosum* ($0.49 \pm 0.1\%$) was
265 observed.

266 We investigated phylosymbiotic trends in both the taxonomic composition and functional
267 gene profiles of the epidermal microbiomes associated with our three shark species. The theory of
268 phylosymbiosis posits that as the evolutionary distance between host species increases — as
269 determined by differences in the COX1 gene in our study — the dissimilarity of their associated
270 microbiomes should also increase. This divergence can manifest in both the types of microbes
271 (taxonomic dissimilarity) and in the functional genes those microbes carry (functional dissimilarity).
272 Between the three species, *H. francisci* featured the farthest evolutionary distance from *C. ventriosum*
273 and *T. semifasciata*, and we found significant increases in microbiome distance as the evolutionary
274 distance increased ($F_{df=1,144} = 5.1$, $Adj - R^2 = 0.04$, $p < 0.05$, Figure 8, left), supporting the argument
275 for phylosymbiosis. The gene function comparisons corroborated the phylosymbiotic trends, with
276 significant increase in dissimilarity again ($F_{df=1,144} = 64.3$, $Adj - R^2 = 0.3$, $p < 0.001$, Figure 8, right).

277 **Discussion**

278 *Heterodontus francisci*, *Triakis semifasciata*, and *Cephaloscyllium ventriosum*, maintain an
279 evolutionary distance of approximately 200 million years, with *T. semifasciata* and *C. ventriosum*
280 belonging to the Carcharhiniform order and *H. francisci* of the Heterodontiformes and the host's
281 phylogenetic lineage shaped the epidermal microbiome, even when these benthic sharks inhabit the
282 same coastal environment. Therefore, the unique morphological and physiological traits of the sharks
283 directly impacted the relationship between host and epidermal microbiomes. Our research clarifies
284 these intricate relationships, demonstrating that each shark species harbors a distinct microbial
285 community characterized by both taxonomic composition and functional gene profiles. Interestingly,

286 these microbiomes are influenced by the specific dermal denticle topography of the host, suggesting
287 an intricate interplay between physical host characteristics and microbial colonization.

288 We evaluated the impact of host evolution across the sharks and observed a clear grouping of
289 the *C. ventriosum* metagenomes in the plotted dendrogram, while *H. francisci* and *T. semifasciata*
290 samples are more interspersed, suggesting more variability in the microbial communities of these
291 species. However, consistent with the phylosymbiotic trend *T. semifasciata* and *C. ventriosum*
292 metagenomes are more closely related to each other than *H. francisci* metagenomes. Moreover,
293 metrics outlined by performing SIMPER analysis corroborate a significant co-evolution congruity in
294 the epidermal microbiomes between *C. ventriosum* and *T. semifasciata* shark species. Finally, we
295 found that as the evolutionary distance between host species increased, as measured by differences in
296 the COX1 gene, the dissimilarity of their associated microbiomes also increased. This pattern was
297 observed both in the taxonomic composition and functional gene profiles of the microbiomes,
298 suggesting a deep intertwining of host evolution and microbiome development.

299 Building on phylosymbiotic trends, we found each shark species to harbor unique
300 microbiome composition. For example, significant variation at phylum level, including differences in
301 Pseudomonadota and Firmicute abundance between the three host species. While the skin of the shark
302 species was dominated by Pseudomonadota, species-specific variations were observed among the
303 Pseudomonadota classes Beta- and Gamma- proteobacteria. These distinctions echo a similar study
304 finding fish, captive dolphins, whales, and killer whales which harbor species-specific microbiomes
305 ⁴². Even though each host harbored a species-specific microbiome, we did observe some common
306 features. Most notably, the Pseudoalteromonadaceae family was dominant across all shark hosts,
307 consistent with microbiome surveys of *T. semifasciata* ¹⁶. This family of bacteria is well-known for its
308 crucial roles in biofilm formation and the deterrence of potential microbial predator colonization ^{43,44}.
309 An equally important contributor to the microbial compositions are the *Sphingomonodacaea*
310 population which, belonging to the Alpha-proteobacteria clade, are key contributors to initial biofilm
311 formation and are able utilize a wide array of organic compounds⁴⁵. Together, these two major

312 contributors dominate the microbiome of *T. semifasciata*, *H. francisci*, and *C. ventriosum*, and we
313 theorize these phyla represent core contributors and regulators to the microbiome composition of
314 elasmobranchs, being identified in multiple shark and ray species^{5,8,15,19}.

315 We investigated the impact of a host-derived factor, denticle topography, on the microbial
316 compositions across the three species by quantifying the relationship between microbial abundance
317 and interdenticle distance. We postulated that the overarching influence on microbial symbiotic
318 associations across host species would be dictated by host phylogeny, with the effects of denticle
319 topography exerting a selective influence on individual microbial constituents, contingent upon their
320 unique bacterial characteristics, in a case-specific manner and found substantiating evidence for this
321 theory. For example, the *Staphylococcus* genus was significantly more abundant in the metagenomes
322 of *C. ventriosum*, less so in *T. semifasciata*, and completely absent in *H. francisci*. The associative
323 pattern may be dictated by host phylogeny via differences in denticle coverage and subsequent mucus
324 production across the three species. To better understand this phenomena we look to one study in
325 which the attachment of two bacteria, *Escherichia coli* and *Staphylococcus aureus*, displayed varied
326 attachment rates based on the surface of the synthetic models mimicking shark skin⁴⁶. The attachment
327 of *S. aureus* was inhibited on the surfaces resembling the highly structured shark denticle
328 environment. Therefore, *Staphylococcus* associations may be selectively favored by the unique
329 combination of decreased denticle coverage and increased mucus production characteristic of *C.*
330 *ventriosum*. To build upon this theory, we posit the enhanced denticle overlap and less pronounced
331 riblet elevation in conjunction with minimal but protein-rich mucus of *T. semifasciata* skin, provides
332 a conducive surface for *Staphylococcus* to colonize⁴⁷, while *C. ventriosum* offers the greatest
333 opportunity for providing mucus production as a function of exposed epidermis. Last, the distinct
334 structural environment of *H. francisci*'s dermal denticles, characterized by pronounced riblets and
335 troughs, may be less hospitable to *Staphylococcus*, despite the potential assistance provided by mucus
336 produced from a more exposed epidermal environment. Studies outline *Staphylococcus* species, such
337 as *S. aureus*, to be considered common primary pathogens and implicated in wound infections^{48–50}.

338 We understand coastal marine environments may serve as reservoirs of antibiotic-resistant strains of

339 *Staphylococcus*, and the increased abundance across shark species may be indicators of increasingly
340 opportunistic pathogenicity of associated microbiomes⁵¹⁻⁵³. We observed similar phylosymbiotic
341 trends between *Pseudoalteromonas* abundance and shark hosts, whereby host phylogeny served as a
342 greater predictor of microbial association than respective denticle morphology. The associative
343 behavior of the *Pseudoalteromonas* genus is a key contributor to biofilm regulation due to initial
344 adhesion capabilities, subsequent pathogenic inhibition via the production of antibiofilm
345 molecules^{43,54,55}, and biosurfactants⁵⁶. While the adhesion behavior of *Pseudoalteromonas* has not
346 been investigated in the context of synthetic shark epidermal models, we can theorize this genus
347 assumes the archetype of prolific biofilm initiator⁵⁷ and regulator⁵⁸ across all three species. Taken
348 together, our observations underscore the intricate relationship between host denticle topography and
349 microbial taxa, with *Staphylococcus* and *Pseudoalteromonas* serving as illustrative examples of how
350 microbial colonization patterns are influenced by the host's phylogenetic lineage via unique denticle
351 topography.

352 Building on our observations, we were intrigued by the taxonomic abundances which echoed
353 the denticle morphology. For example, *Ehrlichia*, often associated with pathogenic outcomes, and
354 *Portiera*, known for its symbiotic relationships in insect hosts, both show positive covariance with
355 increasing denticle distance. This association may reflect their adaptability to the physical
356 environment provided by the denticle morphology, yet the specifics of this relationship are not well
357 understood, and further research is warranted. It is therefore interesting to consider the ecological
358 interaction between these bacteria and the composition of the shark denticles: denticle composition
359 offers an ecological niche rich in organic matter including collagen fibers, which provide the
360 scaffolding for the primary dentin mineral Hydroxyapatite⁵⁹. Consequently, the moderate, negative
361 covariance between *Bacteroides* and increasing interdenticle distance proved interesting given the
362 wide distribution of the genus in marine degrading complex biopolymers, such as polysaccharides
363 and proteins, which are integral to biofilm formation and organic carbon cycling⁶⁰. The observed
364 negative correlation between this genus and increasing interdenticle distance suggests that the
365 decrease in denticle density may lead to a reduction in the available organic matter derived from

366 enamel and dentine, substances that *Bacteroides* utilize, and therefore deter *Bacteroides* biofilm
367 formation. Overall, the interplay between denticle morphology and bacterial associations is a
368 complex, multifaceted relationship that extends beyond the confines of physical structure to include
369 factors such as host physiology, including mucus production, and other environmental conditions.

370 The functional profiles of the epidermal metagenomes showed *T. semifasciata* microbiomes
371 were most similar to *C. ventriosum*, while *H. francisci* was more dissimilar to both *C. ventriosum* and
372 *T. semifasciata*, indicating functional redundancy and co-evolutionary trends and mirroring of
373 phylogenetic distances between the species. We observed a significant, negative, covariance between
374 genes encoding for both amino sugars and electron-accepting reactions with greater interdentine
375 distance. The observed relationship suggests that as denticle distance increases, microbes could be
376 adapting their metabolic processes, specifically those related to amino sugar utilization, in response to
377 the physical structure of the epidermis. This adaptation, reminiscent of how marine bacteria modulate
378 their amino sugar production based on environmental cues, could involve an upsurge in the
379 production of glucosamine and galactosamine, two pivotal amino sugars in bacterial physiology
380 prevalent in marine ecosystems⁶¹. These linear trends establish a direct connection between shark skin
381 morphology and specific functions of the epidermal microbiome. However, we also observed
382 complex interplay between denticle distance and functional profiles of epidermal microbiomes when
383 we mapped curvilinear relationships mirroring host phylogeny more closely than denticle
384 morphology. For example, we observed U-shaped curves for chemotaxis, desiccation stress, and
385 regulation of virulence, and bell curve line fitting pyrimidine biosynthesis, indicating a higher
386 concentration of these genes at both the lower and higher extremes of interdentine distance. This
387 pattern of gene abundance, shaped by denticle distance, has notable implications for the functional
388 potential of the microbiome, as these genes play critical roles in key microbial processes. Virulence
389 regulation is implicated in disease-causing capabilities in bacteria in response to environmental cues
390 including nutrient concentrations, pH, temperature, and host-derived factors⁶². The diminished
391 representation of virulence regulation-associated genes within the epidermal microbiome associated
392 with *H. francisci* implies heightened microbiome stability; a decreased necessity for bacterial

393 pathogenesis could be indicative of a host-derived microbial community rather than an
394 environmentally driven one, given habitats are conserved across the three species^{63,64}.

395 Further investigation into each bacterial community's tendency to follow or deviate from
396 phylosymbiotic trends yielded insights into potential ecological interactions. For instance, genes
397 related to desiccation stress were uniquely present in the microbiomes of leopard sharks, potentially
398 due to the placement of goblet cells beneath the epidermis, resulting in a reduced mucus layer
399 compared to other taxa. This suggests a heightened reliance on the dermal denticles for protection
400 against desiccation. By highlighting functional gene differences, we further the knowledge about the
401 influence of denticle distance for each shark host on associated bacterial populations. For example,
402 the high denticle overlap covaried with elevated relative levels of genes encoding chemotaxis and
403 flagellar movement suggests motile bacteria utilize the consistent and expansive area on or
404 underneath the overlapping denticles instead of relying on the fluidics of the aqueous environment.
405 The increased motility facilitated by flagella in the metagenomes can be theorized to allow bacteria to
406 infiltrate and navigate biofilms, leading to a greater overall area of adhesion⁶⁵. The relationship
407 between bacterial motility and denticle overlap is invites varying interpretations. Although bacterial
408 motility is not integral to biofilm initiation⁶⁶, consistent surfaces presented by high overlap may
409 facilitate biofilm formation, which requires swimming and twitching motility to navigate. Conversely,
410 as denticle spacing increases, the necessity for enhanced bacterial motility could arise to navigate the
411 intricate, aqueous environment, rather than relying on passive, random movement^{65,67}. Further
412 research is required to clarify the discriminating forces and reconcile these perspectives.

413 Previous efforts to understand these forces have already yielded insightful results. For
414 instance, research conducted by Doane *et al.*, which investigated the microbiomes of elasmobranchs
415 of *Rhincodon typus*, *T. semifasciata*, and *A. vulpinus*, found no phylosymbiotic trends were observed
416 within their functions¹⁹. However, we detected phylosymbiotic patterns between the benthic species
417 in this study both for microbial compositions and functional profile similarity. While we cannot
418 completely dismiss the role of denticle distance or mucosal production as selective mechanisms, we

419 posit the measured phylogenetic distance between *H. francisci* and both *T. semifasciata* and *C. ventriosum* is greater than that between *R. typus*, *T. semifasciata* and *A. vulpinus* and therefore, the pressure exerted by evolutionary distance is more evident. This theory is strengthened when considering sampling location as a driver of microbiome composition. If the environment exerted a greater pressure, we would expect to observe higher similarity between the benthic shark, and yet our findings revealed significant dissimilarities both between and within the groups.

425 **Caveats**

426 Coupling core microbiomes of healthy animals with host-derived factors of microbiota recruitment will aid in the development of reliable biomarkers of shark ecology. However, although 427 we have identified correlations between denticle topography and microbiome composition, our study 428 design does not allow us to establish causality. Also, due to the high complexity of abiotic factors 429 (e.g., water temperature, pH, salinity, and dissolved oxygen), and future threats of increased ocean 430 temperatures, further research is needed to test the influence of environmental variables on the ability 431 of marine hosts to recruit and retain epidermal microbes under extreme temperature shifts in 432 controlled settings.

434 **Conclusion**

435 In an exploration of the intricate relationship between host physiological characteristics and 436 microbial community structures, we hypothesized the unique dermal denticles morphology of each 437 shark species would parallel the influence of host phylogeny on the composition and structure of their 438 corresponding epidermal microbiomes. Preliminary observations of epidermal microbiome taxonomic 439 compositions and functional potentials differed between *T. semifasciata*, *H. francisci*, and *C. ventriosum* 440 irrespective of the hosts sharing a captive environment. However, while our results reveal 441 a compelling concordance between the diversity of epidermal microbiomes and host phylogeny 442 among the examined shark species, we also observed consistent, yet weak, linear relationships with 443 respect to denticle distance, a trait that does not follow the same phylogenetic pattern. This suggests a 444 potential complex interplay between host evolutionary history and specific morphological traits in 445 shaping the shark epidermal microbiome. The results of this study support the notion of

446 phylosymbiosis, while suggesting denticle morphology provides a template for the assembly of
447 microbial communities on shark skin.

448

449 **Materials and Methods**

450 Epidermal microbiomes of captive *T. semifasciata* ($n = 4$), *H. francisci* ($n = 3$), and *C.*
451 *ventriosum* ($n = 10$) were sampled in the summer of 2018 at the Birch Aquarium at Scripps Institution
452 of Oceanography in La Jolla, California. In the summer of 2019, captive *T. semifasciata* ($n = 6$) were
453 again sampled at the Birch Aquarium. Finally, in the summer of 2020, the epidermal microbiome of
454 *H. francisci* ($n = 8$) were sampled in captivity at the National Oceanic and Atmospheric
455 Administration (NOAA) in La Jolla, California. For all sampling events, captive sharks were
456 immobilized in a sling for consistent collection of epidermal microbiomes located between the
457 pectoral and dorsal fins above the lateral line on the left flank of each shark. Epidermal microbiomes
458 were collected using a blunt, closed-circuit syringe prefilled with 100 kDa filtered seawater to flush
459 the epidermis and displace microbes^{19,25,26}. Approximately 200 mL of captured microbes were then
460 collected on a 0.22 μ m sterivex, with one sterivex per individual. Water-associated microbial
461 communities were collected using bulk water samples where approximately 60 L of tank water were
462 simultaneously collected and first filtered through a nylon mesh sieve (200 μ m pore size) to remove
463 unwanted debris and eukaryotic organisms and second, concentrated using tangential flow filtration
464 (100 kDa;^{27,28} to produce ~500 mL of tank water. The resulting concentration of tank water was
465 filtered using a 0.22 μ m sterivex.

466 Microbial cells anchored in sterivex filters were lysed by incubating the filters at 37 °C and
467 25 μ L of proteinase K/SDS solution and resulting free DNA was extracted and purified using the
468 Macherey-Nagel NucleoSpin Tissue Kit. The eluted DNA was prepared for shotgun metagenomic
469 library sequencing using the Swift 2S Plus Kit (Swift Biosciences) and sequenced using an Illumina
470 MiSeq sequencer. Samples were run in tandem using DNA barcoding throughout several sequencing
471 runs as performed in previous studies^{26,27,29}. Resulting reads were processed for quality to remove

472 artificial duplicates: reads with greater than 10 unknown nucleotides (n), and reads fewer than 60 base
473 pairs (bp) in length via Prinseq++³⁰. High quality, paired end reads were annotated via the
474 Metagenomic Rapid Annotations using Subsystems Technology (MG-RAST; Keegan, Glass, and
475 Meyer 2016) online database. MG-RAST calls taxonomic and functional gene assignments using
476 BLAST comparisons to the National Center for Biotechnology (NCBI) and SEED genome databases
477 ³². Sequencing annotations were conducted using the following parameters: e-value >10⁻⁵, 70 %
478 identity, and > 60 bp alignment length.

479 Skin punches of 6 mm diameter were obtained from the dorsal flank regions of *H. francisci*,
480 *T. semifasciata* and *C. ventriosum* sharks as metagenomic samples were collected. Biopsy specimen
481 included the top layer of denticles and underlying dermal layers. Samples were rapidly frozen in
482 liquid nitrogen (LN₂) upon collection and maintained at cryogenic temperatures until fixed. Then, a
483 2.0 % glutaraldehyde (C₅H₈O₂; Electron Microscopy Sciences, Hatfield, PA cat # 16100) and 0.1 M
484 cacodylate buffer (C₆H₁₂AsNO₂) was prepared fresh and the frozen skin punches dropped into the
485 room temperature fixative. Samples were stored in fix at 4°C until prepared for scanning electron
486 microscopy (SEM) analysis.

487 For SEM, tissues pieces were washed three times with 0.1 M cacodylate buffer to remove
488 residual fix. They were further post-fixed in 1.0 % osmium tetroxide (OsO₄; Electron Microscopy
489 Sciences; Hatfield, PA cat #19150) in 0.1 M cacodylate buffer for 60 minutes at room temperature.
490 Samples were dehydrated through a standard ethanol series of 30 %, 50 %, 75 %, two times 95 % and
491 two times 100 % for 15 minutes each. Tissues pieces were critical point dried using liquid carbon
492 dioxide (CO₂) using a Samdri 790 CPD (Rockville, MD, USA). After drying, shark skin pieces were
493 mounted with denticles facing up on 12mm Al stubs and double sticky carbon tape. The stubs were
494 coated with ~6nm platinum before viewing on FEI Quanta 450 SEM (Quanta 450, Hillsboro, OR
495 USA) at 5-10kV.

496 For each shark species, the dimensions of the dermal denticles were measured. Dermal
497 denticles were imaged at 100x magnification with a minimum of five fields per shark. On each image,

498 five random denticles were selected and the widest and longest point of the denticle was measured. In
499 addition, the distance to the nearest denticle was measured to provide an estimate of the inter-denticle
500 distance.

501 *2.4. Statistical Analyses*

502 To study the impact of host phylogeny on the microbiomes of three captive shark species, we
503 used several statistical analyses used historically in microbiome research^{27,33,34}; first, to address the
504 potential influence of rare taxa on the results, we fourth root transformed the data, followed by
505 standardization ²⁸, which is preferred to rarefaction ^{35,36}. To assess the alpha-diversity of the microbial
506 communities, we used Margalef's (d), Pielou's (J'), and Inverse Simpson's ($1/\lambda$) indices to measure
507 richness, evenness, and diversity, respectively ³⁷⁻³⁹. We tested the beta-diversity of the microbiomes
508 by first comparing the microbiomes of sharks to the water column and second comparing between
509 shark species using permutation multivariate analysis of variance (PERMANOVA). The
510 PERMANOVA ran with 999 random permutations per analysis. To identify the similarities and
511 differences between the groups, we calculated similarity percentage breakdowns (SIMPER)⁴⁰. Mean
512 rank comparisons were performed using the multiple comparison Friedman test, and to control the
513 false discovery rate, the two-stage step-up method of Benamini, Krieger and Yekutieli was used. We
514 conducted both PERMANOVA and non-parametric Kruskal-Wallis H tests on the relative abundance
515 of microbial taxa from the levels of order to genus to examine changes in the microbiome's taxonomy
516 belonging to each host species. These tests were chosen as both do not assume a normal distribution
517 and are appropriate for comparing three or more unrelated groups. Following community-level
518 analyses, post-hoc analyses were performed to interpret the pairwise differences between the three
519 shark species. In cases where the Kruskal-Wallis H test identified significant differences, the Tukey-
520 Kramer post hoc test was applied to conduct pairwise comparisons between the groups. This post hoc
521 test adjusts for multiple comparisons, reducing the likelihood of Type I errors. Last, a Bonferroni
522 correction was applied to further control the family-wise error rate, adjusting the significance level to

523 account for the multiple hypotheses tested. An alpha of 0.05 was used as the significance level for
524 statistical tests.

525 To visualize the associations between metagenomes belonging to different but closely related
526 species we generated non-metric multidimensional scaling (nMDS) derived from Bray-Curtis
527 matrices⁴¹. We chose an nMDS for its rank-based method of representing complex and non-linear
528 relationships between multiple variable data. The Bray-Curtis dissimilarity was used as it effectively
529 measures differences in community composition, accounting for the presence, absence, and
530 abundance of species. A PERMDISP analysis was used to test for differences in group dispersion or
531 homogeneity of the multivariate variations.

532 We simultaneously analyzed the abundance of genes in the microbiome as a proxy for gene
533 expression. To assess the functional potential of the metagenomes of captive *H. francisci*, *T.*
534 *semifasciata* and *C. ventriosum* sharks, we again used a PERMANOVA analysis. We also conducted
535 an ANOVA with a post hoc Tukey test to identify differences in metabolism, which were visualized
536 using the Statistical Analysis of Metagenomic Profiles (STAMP; v2.1.3;
537 <https://beikolab.cs.dal.ca/software/STAMP>) software. All statistical analyses were performed using
538 Primer-e package 7 (v7.0.2; accessed on 28 January 2022; www.primer-e.com/permanova.html) with
539 the PERMANOVA+ add on, STAMP, and GraphPad PRISM 9 (v9.1.2; <https://www.graphpad.com>),
540 and R studio. All graphs were generated using GraphPad PRISM 9. The SEED's Subsystem
541 Annotation was used to categorize the functional pathways into a hierarchical structure, ranging from
542 broad metabolic pathways (Subsystem Level 1) to increasingly specific gene functions (Subsystem
543 Levels II & III). This allowed us to map key biochemical functions to their parent pathways.

544 The correlation between microbial family relative abundance and the distance between shark
545 denticles was examined using a regression model. To assess the strength and significance of the
546 correlation, a scatter plot of the two variables was generated for each genus, along with respective p-
547 value. The least squares regression line was superimposed on the scatter plot and the R-squared value
548 was calculated, indicating how well the line fit the data.

549 To test whether skin microbiome composition was linked with host phylogeny, we calculated
550 host distance by aligning the cytochrome c oxidase I (COX1) gene of each species using Clustal
551 Omega on the EMBL-EBI server using default parameters. COX1 genes were downloaded from
552 NCBI and used because it represents the only host gene publicly available for host phylogenetic
553 comparison. We determined the relationship of host distance to microbiome similarity using linear
554 modeling (lm; R)¹⁹.

555

556

557

558 **Funding:** This research was funded by contributions from the S. Lo and B. Billings Fund for Global
559 Shark Conservation and Research.

560 **Institutional Review Board Statement:** Animal handling and ethics were reviewed at San Diego
561 State University through IACUC under permit APF #14-05-011D, APF #17-11-010D, APF # 18-05-
562 007D, approved May 24th, 2018. Sampling was conducted under state permit SCP #12847 and SCP
563 #9893 from the California Department of Fish and Wildlife.

564 **Acknowledgments:** The authors would like to thank the Birch Aquarium at Scripps for allowing us
565 to conduct research on site alongside staff. Students in the SDSU undergraduate ecological
566 metagenomic class provide the sequencing of the leopard shark metagenomes.

567 **Data availability.** All data and sequences were deposited in the NCBI Sequence Read Archive
568 database.

569 **Conflicts of Interest:** The authors declare no conflict of interest.

570

571 References

- 572 1. Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. *Zoology* **114**, 185–
573 190 (2011).
- 574 2. Mika, K., Okamoto, A. S., Shubin, N. H. & Welch, D. B. M. Bacterial community dynamics
575 during embryonic development of the little skate (*Leucoraja erinacea*). doi:10.1186/s42523-
576 021-00136-x
- 577 3. Denison, E. R., Rhodes, R. G., McLellan, W. A., Pabst, D. A. & Erwin, P. M. Host phylogeny
578 and life history stage shape the gut microbiome in dwarf (*Kogia sima*) and pygmy (*Kogia*
579 *breviceps*) sperm whales. *Sci. Rep.* **10**, 1–13 (2020).
- 580 4. Chiarello, M. *et al.* Skin microbiome of coral reef fish is highly variable and driven by host
581 phylogeny and diet. *Microbiome* **6**, 1–14 (2018).
- 582 5. Doane, M.P. *et al* Emergent community architecture despite distinct diversity in the global
583 whale shark (*Rhincodon typus*) epidermal microbiome. 2023 *Sci. Rep.* 13:12747
- 584 6. Scanes, E. *et al.* Microbiomes of an oyster are shaped by metabolism and environment. *Sci.*
585 *Rep.* **11**, 1–7 (2021).
- 586 7. Scanes, E. *et al.* Microbiome response differs among selected lines of Sydney rock oysters to
587 ocean warming and acidification. *FEMS Microbiol. Ecol.* **97**, 1–13 (2021).
- 588 8. Storo, R., Easson, C. G., Shivji, M. S. & Lopez, J. V. A. Microbiome analyses demonstrate
589 specific communities within five shark species. *Front. Microbiol.* **12**, 1–10 (2021).
- 590 9. Lavrinienko, A., Tukalenko, E., Mappes, T. & Watts, P. C. Skin and gut microbiomes of a
591 wild mammal respond to different environmental cues. *Microbiome* **6**, 1–16 (2018).
- 592 10. Ross, A. A., Rodrigues Hoffmann, A. & Neufeld, J. D. The skin microbiome of vertebrates.
593 *Microbiome* **7**, 79 (2019).
- 594 11. Long, S. M. *et al.* Metabolomics provide sensitive insights into the impacts of low level
595 environmental contamination on fish health—a pilot study. *Metabolites* **10**, (2020).
- 596 12. Sehnal, L. *et al.* Microbiome composition and function in aquatic vertebrates: Small organisms
597 making big impacts on aquatic animal health. *Frontiers in Microbiology* **12**, (2021).
- 598 13. Apprill, A. *et al.* Humpback whale populations share a core skin bacterial community:
599 Towards a health index for marine mammals? *PLoS One* **9**, e90785 (2014).

600 14. Larsen, A., Tao, Z., Bullard, S. A. & Arias, C. R. Diversity of the skin microbiota of fishes:
601 Evidence for host species specificity. *FEMS Microbiol. Ecol.* **85**, 483–494 (2013).

602 15. Kerr, E. N. *et al.* Stingray epidermal microbiomes are species-specific with local adaptations.
603 *Front. Microbiol.* **14**, 1–13 (2023).

604 16. Goodman, A. Z. *et al.* Epidermal microbiomes of leopard sharks (*Triakis semifasciata*) are
605 consistent across captive and wild environments. *Microorganisms* **10**, (2022).

606 17. Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R.
607 Phylosymbiosis: Relationships and functional effects of microbial communities across host
608 evolutionary history. *PLoS Biol.* **15**, 1–29 (2017).

609 18. Pollock, F. J. *et al.* Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny.
610 *Nat. Commun.* **9**, 1–13 (2018).

611 19. Doane, M. P. *et al.* The skin microbiome of elasmobranchs follows phylosymbiosis, but in
612 teleost fishes, the microbiomes converge. *Microbiome* **8**, 93 (2020).

613 20. Bay, L. *et al.* Universal dermal microbiome in human skin. *MBio* **11**, 1–13 (2020).

614 21. Gilbert, B. & Bennett, J. R. Partitioning variation in ecological communities: Do the numbers
615 add up? *J. Appl. Ecol.* **47**, 1071–1082 (2010).

616 22. Pogoreutz, C. *et al.* Similar bacterial communities on healthy and injured skin of black tip reef
617 sharks. *Anim. Microbiome* **1**, 1–16 (2019).

618 23. Johri, S. *et al.* Mitochondrial genome to aid species delimitation and effective conservation of
619 the Sharpnose Guitarfish (*Glaucostegus granulatus*). *Meta Gene* **24**, 100648 (2020).

620 24. Inoue, J. G. *et al.* Evolutionary origin and phylogeny of the modern Holocephalans
621 (Chondrichthyes: Chimaeriformes): A mitogenomic perspective. *Mol. Biol. Evol.* **27**, 2576–
622 2586 (2010).

623 25. Doane, M. P. *et al.* Mitochondrial recovery from shotgun metagenome sequencing enabling
624 phylogenetic analysis of the common thresher shark (*Alopias vulpinus*). *Meta Gene* **15**, 10–15
625 (2018).

626 26. Doane, M. P., Haggerty, J. M., Kacev, D., Papudeshi, B. & Dinsdale, E. A. The skin
627 microbiome of the common thresher shark (*Alopias vulpinus*) has low taxonomic and gene
628 function β -diversity. *Environ. Microbiol. Rep.* **9**, 357–373 (2017).

629 27. Dinsdale, E. A. *et al.* Functional metagenomic profiling of nine biomes. *Nature* **452**, 629

630 (2008).

631 28. Lima, L. F. O. *et al.* Modeling of the coral microbiome : The influence of temperature and
632 microbial network. **11**, 1–17 (2020).

633 29. Walsh, K. *et al.* Aura-biomes are present in the water layer above coral reef benthic macro-
634 organisms. *PeerJ* **5**, e3666 (2017).

635 30. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets.
636 *Bioinformatics* **27**, 863–864 (2011).

637 31. Keegan, K. P., Glass, E. M. & Meyer, F. MG-RAST, a metagenomics service for analysis of
638 microbial community structure and function. *Methods Mol. Biol.* **1399**, 207–233 (2016).

639 32. Overbeek, R. *et al.* The SEED and the Rapid Annotation of microbial genomes using
640 Subsystems Technology (RAST). *Nucleic Acids Res.* **42**, 206–214 (2014).

641 33. Haas, A. F. *et al.* Global microbialization of coral reefs. *Nat. Microbiol.* **1**, 1–7 (2016).

642 34. Papudeshi, B. *et al.* Optimizing and evaluating the reconstruction of Metagenome-assembled
643 microbial genomes. *BMC Genomics* **18**, 1–13 (2017).

644 35. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Corrigendum: Shotgun
645 metagenomics, from sampling to analysis. *Nat. Biotechnol.* **35**, 1211 (2017).

646 36. McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is
647 Inadmissible. *PLoS Comput. Biol.* **10**, (2014).

648 37. Chao, A. & Shen, T. J. S Index of Diversity When There Are Unseen Species in Sample.
649 *Environ. Ecol. Stat.* **10**, 429–443 (2003).

650 38. Death, R. Margalef's Index. in *Encyclopedia of Ecology, Five-Volume Set* 2209–2210
651 (Elsevier Inc., 2008). doi:10.1016/B978-008045405-4.00117-8

652 39. Pielou, E. C. The measurement of diversity in different types of biological collections. *J.*
653 *Theor. Biol.* **13**, 131–144 (1966).

654 40. Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. 117–
655 143 (1993).

656 41. Kruskal, J. B. Multidimensional scaling by optimizing goodness. (1964).

657 42. Chiarello, M., Villéger, S., Bouvier, C., Auguet, J. C. & Bouvier, T. Captive bottlenose

658 dolphins and killer whales harbor a species-specific skin microbiota that varies among
659 individuals. *Sci. Rep.* **7**, 1–12 (2017).

660 43. Bowman, J. P. Bioactive compound synthetic capacity and ecological significance of marine
661 bacterial genus *Pseudoalteromonas*. 220–241 (2007).

662 44. Pujalte, M. J., Sitjà-Bobadilla, A., Macián, M. C., Álvarez-Pellitero, P. & Garay, E.
663 Occurrence and virulence of *Pseudoalteromonas* spp. in cultured gilthead sea bream (*Sparus*
664 *aurata* L.) and European sea bass (*Dicentrarchus labrax* L.). Molecular and phenotypic
665 characterisation of *P. undina* strain U58. *Aquaculture* **271**, 47–53 (2007).

666 45. Lührig, K. *et al.* Bacterial community analysis of drinking water biofilms in southern Sweden.
667 *Microbes Environ.* **30**, 99–107 (2015).

668 46. Sakamoto, A. *et al.* Antibacterial effects of protruding and recessed shark skin micropatterned
669 surfaces of polyacrylate plate with a shallow groove. *FEMS Microbiol. Lett.* **361**, 10–16
670 (2014).

671 47. Doane, M. P. *et al.* The epidermal microbiome within an aggregation of leopard sharks
(*Triakis semifasciata*) has taxonomic flexibility with gene functional stability across three
673 time-points. *Microb. Ecol.* (2022). doi:10.1007/s00248-022-01969-y

674 48. Oh, W. T. *et al.* *Staphylococcus xylosus* infection in rainbow trout (*Oncorhynchus mykiss*) as a
675 primary pathogenic cause of eye protrusion and mortality. *Microorganisms* (2019).
676 doi:10.3390/microorganisms7090330

677 49. Azeez Khalid, N. S. & A. Jaafar, N. N. Antibacterial effect of alcoholic extract of Juglans
678 Regia L. Stem Bark and Inner Stratum of Oak Fruit (Jaft) on *Staphylococcus Aureus* isolated
679 from wound infection. *Tikrit J. Pure Sci.* (2019). doi:10.25130/tjps.v24i2.346

680 50. Oluyele, O. & Mk, O. Antibiotics susceptibility patterns and plasmid profile of *Staphylococcus*
681 *aureus* isolated from patients with wound infections attending four hospitals in Akure, Ondo
682 State. *J. Adv. Microbiol.* (2017). doi:10.9734/jamb/2017/33879

683 51. Tsigalou, C. Spreading of antimicrobial resistance (AMR) across clinical borders. *Erciyes*
684 *Med. J.* (2019). doi:10.14744/etd.2019.99075

685 52. Ettoumi, B. *et al.* Microdiversity of deep-sea Bacillales; Isolated from Tyrrhenian Sea
686 sediments as revealed by ARISA, 16S rRNA gene sequencing and BOX-PCR fingerprinting.
687 *Microbes Environ.* (2013). doi:10.1264/jsme2.me13013

688 53. Akanbi, O. E., Njom, H. A., Fri, J., Otigbu, A. C. & Clarke, A. M. Antimicrobial susceptibility

689 of *Staphylococcus aureus* isolated from recreational waters and beach sand in Eastern Cape
690 Province of South Africa. *Int. J. Environ. Res. Public Health* (2017).
691 doi:10.3390/ijerph14091001

692 54. Holmström, C. & Kjelleberg, S. Marine *Pseudoalteromonas* species are associated with higher
693 organisms and produce biologically active extracellular agents. doi:10.1111/j.1574-
694 6941.1999.tb00656.x

695 55. Andreo-Vidal, A., Sanchez-Amat, A. & Campillo-Brocal, J. C. The *pseudoalteromonas*
696 *luteoviolacea* L-amino acid oxidase with antimicrobial activity is a flavoenzyme. *Mar. Drugs*
697 **16**, (2018).

698 56. Krolicka, A., Boccadoro, C., Nilsen, M. M. & Baussant, T. Capturing early changes in the
699 marine bacterial community as a result of crude oil pollution in a mesocosm experiment.
700 *Microbes Environ.* **32**, 358–366 (2017).

701 57. Zeng, Z. *et al.* Biofilm formation and heat stress induce pyomelanin production in deep-sea
702 *Pseudoalteromonas* sp. SM9913. *Front. Microbiol.* **8**, 1–11 (2017).

703 58. Ritter, A. *et al.* Proteomic studies highlight outer-membrane proteins related to biofilm
704 development in the marine bacterium *Pseudoalteromonas* sp. D41. *Proteomics* (2012).
705 doi:10.1002/pmic.201100644

706 59. Perez, V. J. *et al.* Late Miocene chondrichthyans from Lago Bayano, Panama: Functional
707 diversity, environment and biogeography. *J. Paleontol.* **91**, 512–547 (2017).

708 60. Edwards, J. L. *et al.* Identification of carbohydrate metabolism genes in the metagenome of a
709 marine biofilm community shown to be dominated by Gammaproteobacteria and
710 Bacteroidetes. *Genes (Basel)*. **1**, 371–384 (2010).

711 61. Benner, R. & Kaiser, K. Abundance of amino sugars and peptidoglycan in marine particulate
712 and dissolved organic matter. *Limnol. Oceanogr.* **48**, 118–128 (2003).

713 62. Silphaduang, U., Mascarenhas, M., Karmali, M. A. & Coombes, B. K. Repression of
714 intracellular virulence factors in *Salmonella* by the Hha and YdgT nucleoid-associated
715 proteins. *J. Bacteriol.* (2007). doi:10.1128/jb.00002-07

716 63. Vidal, J. E. *et al.* Evidence That the Agr-Like quorum sensing system regulates the toxin
717 production, cytotoxicity and pathogenicity of *Clostridium perfringens* Type C isolate CN3685.
718 *Mol. Microbiol.* (2011). doi:10.1111/j.1365-2958.2011.07925.x

719 64. Lee, S. E. *et al.* *Vibrio vulnificus* has the transmembrane transcription activator ToxRS

720 stimulating the expression of the hemolysin gene *vvhA*. *J. Bacteriol.* (2000).
721 doi:10.1128/jb.182.12.3405-3415.2000

722 65. Houry, A., Briandet, R., Aymerich, S. & Gohar, M. Involvement of motility and flagella in
723 *Bacillus cereus* biofilm formation. *Microbiology* **156**, 1009–1018 (2010).

724 66. Pompilio, A. *et al.* Factors associated with adherence to and biofilm formation on polystyrene
725 by *Stenotrophomonas maltophilia*: The role of cell surface hydrophobicity and motility. *Fems
726 Microbiol. Lett.* (2008). doi:10.1111/j.1574-6968.2008.01292.x

727 67. Silva, V., Pereira, J. A., Maltez, L., Torres, C. & Igrejas, G. Influence of environmental factors
728 on biofilm formation of *Staphylococci* isolated from wastewater and surface water. *Pathogens*
729 (2022). doi:10.3390/pathogens11101069

730

731

732

Goodman et al 2024 Tables

Table 1. Metadata for sampled elasmobranch epidermal microbiomes. Shark species abbreviated as follows: *Heterodontus francisci* (HS, Horn Shark), *Triakis semifasciata* (LS, Leopard Shark), and *Cephaloscyllium ventriosum* (SS, Swell Shark). Sampling environments designated in sample name as Birch Aquarium (BA) or National Oceanic and Atmospheric Administration (NOAA).

Host Species	Sample Name	Year	Sex	BP	Sequences
<i>Heterodontus francisci</i>	HS BA 1	2018	Female	105,565,799	5,217,911
	HS BA 2	2018	Male	82,214,142	2,876,236
	HS BA 3	2018	Female	74,359,847	454,887
	HS NOAA 1	2020	Female	79,764,450	540,818
	HS NOAA 2	2020	Female	34,456,117	108,399
	HS NOAA 3	2020	Female	165,544,580	995,733
	HS NOAA 4	2020	Female	143,548,493	508,012
	HS NOAA 5	2020	Female	133,890,137	260,273
	HS NOAA 6	2020	Female	112,568,752	2,626,021
	HS NOAA 7	2020	Female	165,377,448	512,408
	HS NOAA 8	2020	Female	296,267,509	441,426
<i>Triakis semifasciata</i>	LS BA 1	2018	Female	13,254,680	1,470,279
	LS BA 2	2018	Female	165,572,548	295,852
	LS BA 3	2018	Male	129,410,990	516,511
	LS BA 4	2018	Female	140,813,416	261,381
	LS BA 5	2019	Female	814,847,485	3,179,134
	LS BA 6	2019	Female	494,586,101	246,558
	LS BA 7	2019	Female	559,061,883	410,944
	LS BA 8	2019	Female	451,224,580	2,592,630
	LS BA 9	2019	Female	877,376,851	563,299
	LS BA 10	2019	Female	438,923,920	429,758
<i>Cephaloscyllium ventriosum</i>	SS BA 1	2018	Female	110,491,568	4,549,152
	SS BA 2	2018	Female	104,513,010	36,040
	SS BA 3	2018	Female	146,650,534	360,783
	SS BA 4	2018	Female	162,351,778	490,856
	SS BA 5	2018	Female	147,803,072	447,888
	SS BA 6	2018	Male	170,635,774	517,078
	SS BA 7	2018	Male	170,164,874	320,471
	SS BA 8	2018	Male	175,053,487	624,057
	SS BA 9	2018	Male	502,674,714	402,315
	SS BA 10	2018	Male	1,097,190,642	445,369

Table 2. Average alpha-diversity metrics of richness, evenness and overall diversity for epidermal microbiome communities associated with *T. semifasciata*, *H. francisci* and *C. ventriosum*.

Host Species	Margalef's (<i>d</i>) Index	Pielou's (<i>J'</i>) Index	Inverse Simpson (1- λ) Index
	\pm S.D.	\pm S.D.	\pm S.D.
<i>T. semifasciata</i>	6.36 \pm 1.43	0.999 \pm 1.4E-04	0.985 \pm 0.002
<i>H. francisci</i>	5.51 \pm 1.91	0.999 \pm 9.5E-05	0.979 \pm 0.003
<i>C. ventriosum</i>	8.88 \pm 1.8	0.999 \pm 5.9E-05	0.992 \pm 0.001

Table 3. Pairwise comparison and resulting percent contribution of genera driving differences between epidermal microbiomes associated with each host, determined by SIMPER analysis.

Host Shark Species	Genus	Contribution (%)	Average Relative Abundance	
			<i>T. semifasciata</i>	<i>H. francisci</i>
<i>T. semifasciata</i> vs <i>H. francisci</i>	<i>Coprococcus</i>	4.45	0.0	4.74
	<i>Methanothermobacter</i>	3.69	0.0	3.93
	<i>Methanobacterium</i>	3.0	1.16	3.44
	<i>Haloquadratum</i>	3.01	3.27	5.32
	<i>Jonesia</i>	2.91	4.6	2.01
	<i>Caldivirga</i>	2.78	2.97	0.0
<i>H. francisci</i> vs <i>C. ventriosum</i>			<i>C. ventriosum</i>	<i>H. francisci</i>
	<i>Methanothermobacter</i>	6.42	9.63	4.26
	<i>Methanobacterium</i>	3.19	4.74	1.22
	<i>Coprococcus</i>	3.36	5.18	1.56
	<i>Thermocrinis</i>	2.76	5.97	2.67
	<i>Bacteroides</i>	2.68	3.48	0.52
	<i>Haloquadratum</i>	2.63	5.32	2.67
	<i>Pseudoalteromonas</i>	2.62	0.23	3.5
	<i>Tremblaya</i>	2.5	6.08	3.09
<i>T. semifasciata</i> vs <i>C. ventriosum</i>			<i>T. semifasciata</i>	<i>C. ventriosum</i>
	<i>Methanothermobacter</i>	5.61	4.61	1.3
	<i>Bacteroides</i>	3.62	4.76	0.52
	<i>Methanobacterium</i>	2.35	0.0	2.86
	<i>Pseudoalteromonas</i>	2.45	3.36	1.56
	<i>Ehrlichia</i>	2.29	0.0	2.68
	<i>Caldivirga</i>	2.25	2.97	1.09

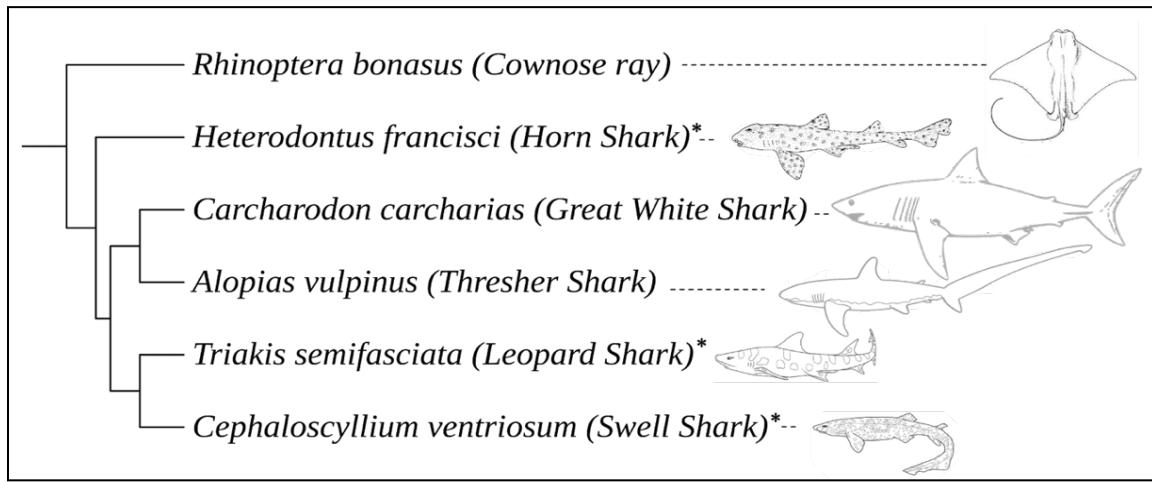
Table 4. Summary of pairwise PERMANOVA results for epidermal microbiome compositions between elasmobranch species at order, family, and genus level (999 permutations).

Host Factors, Taxa	Order Level		Family Level		Genera Level	
	t(test)	P-(perm)	t(test)	P-(perm)	t(test)	P-(perm)
<i>T. semifasciata</i> vs <i>H. francisci</i>	2.26	0.002	2.34	0.002	2.34	0.001
<i>T. semifasciata</i> vs <i>C. ventriosum</i>	2.93	0.001	2.55	0.001	2.76	0.001
<i>C. ventriosum</i> vs <i>H. francisci</i>	3.11	0.001	3.52	0.001	2.93	0.001

Table 5. Pairwise comparison of mean rank for functional pathways between three shark species: *T. semifasciata* (TS), *C. ventriosum* (CV), and *H. francisci* (HF). Table illustrates the p-values, mean ranks, mean rank differences, Mann-Whitney *U* statistics, and q-values, corrected using the two-stage step-up Benjamini, Krieger and Yekutieli FDR method.

Functional Pathway	P-value	Mean Rank			Mean Rank Diff.	Mann-Whitney <i>U</i>	q-value
		HF	TS	CV			
Cell Division and Cell Cycle	6.8E-05	6.364	16.1	-9.736	4	6.87E-04	
Cell Wall and Capsule	5.5E-04	6.818	15.6	-8.782	9	1.85E-03	
DNA Metabolism	7.9E-04	6.909	15.5	-8.591	10	1.99E-03	
Dormancy and Sporulation	2.1E-03	7.182	15.2	-8.018	13	3.47E-03	
Fatty Acids, Lipids, and Isoprenoids	2.1E-03	7.182	15.2	-8.018	13	3.47E-03	
Iron acquisition and metabolism	2.8E-03	7.27	15.1	-7.827	14	3.98E-03	
Membrane Transport	8.0E-03	7.64	14.7	-7.064	18	9.45E-03	
Miscellaneous	2.8E-03	14.7	6.9	7.827	14	3.98E-03	
Motility and Chemotaxis	2.1E-03	14.8	6.8	8.018	13	3.47E-03	
Nucleosides and Nucleotides	2.6E-04	15.34	6.2	9.164	7	1.03E-03	
Phosphorus Metabolism	1.7E-04	15.5	6.1	9.355	6	8.59E-04	
Photosynthesis	1.7E-04	15.5	6.1	9.355	6	8.59E-04	
Potassium metabolism	4.0E-05	15.7	5.8	9.927	3	6.87E-04	
Protein Metabolism	6.8E-05	6.36	16.1	-9.736	4	9.62E-04	
Respiration	3.8E-04	6.73	15.7	-8.973	8	1.54E-03	
Secondary Metabolism	2.6E-04	15.4	6.2	9.164	7	1.44E-03	
Stress Response	3.8E-04	15.3	6.3	8.973	8	1.54E-03	
Sulfur Metabolism	2.8E-03	7.3	15.1	-7.827	14	8.68E-03	
Virulence, Disease and Defense	2.8E-03	7.3	15.1	-7.827	14	8.68E-03	
Central metabolism	1.1E-05		5.5	15.5	-10	0	3.72E-04

Table 6. Summary of PERMANOVA and PERMDISP main test results across benthic shark epidermal microbiome functional subsystem levels I, II, and III (999 permutations).


Gene Function: Level I	PERMANOVA					PERMDISP	
	df	SS	MS	P _{seu} do- <i>F</i>	<i>P</i> -(perm)	<i>F</i> -value	<i>P</i> -(perm)
Benthic Sharks	2	14.4	4.82	5.75	0.001	6.56	0.039
Res	28	11.7	0.837				
Total	30	26.2					
Gene Function: Level II							
Benthic Sharks	2	47.1	23.6	3.22	0.001	10.8	0.007
Res	28	102.5	7.32				
Total	30	149.6					
Gene Function: Level III							
Benthic Sharks	2	329.6	109.9	2.65	0.005	18.3	0.004
Res	28	580.7	41.5				
Total	30	910.3					

df = degrees of freedom, SS = sum of squares, MS = mean sum of squares.

Table 7. Summary of Pairwise PERMANOVA results between benthic shark species at functional subsystem levels I, II, and III (999 permutations).

Host Factors	Level I		Level II		Level III	
	<i>t</i> (test)	<i>P</i> -(perm)	<i>t</i> (test)	<i>P</i> -(perm)	<i>t</i> (test)	<i>P</i> -(perm)
<i>T. semifasciata</i> vs <i>H. francisci</i>	2.11	0.002	2.16	0.001	1.35	0.001
<i>T. semifasciata</i> vs <i>C. ventriosum</i>	1.72	0.001	1.78	0.009	1.72	0.011
<i>C. ventriosum</i> vs <i>H. francisci</i>	2.07	0.001	2.01	0.001	1.31	0.005

Goodman et al 2024 Figures

Figure

1. Phylogeny of a subset of elasmobranch species to highlight the relationships of the species investigated in this paper (denoted with an asterisk).

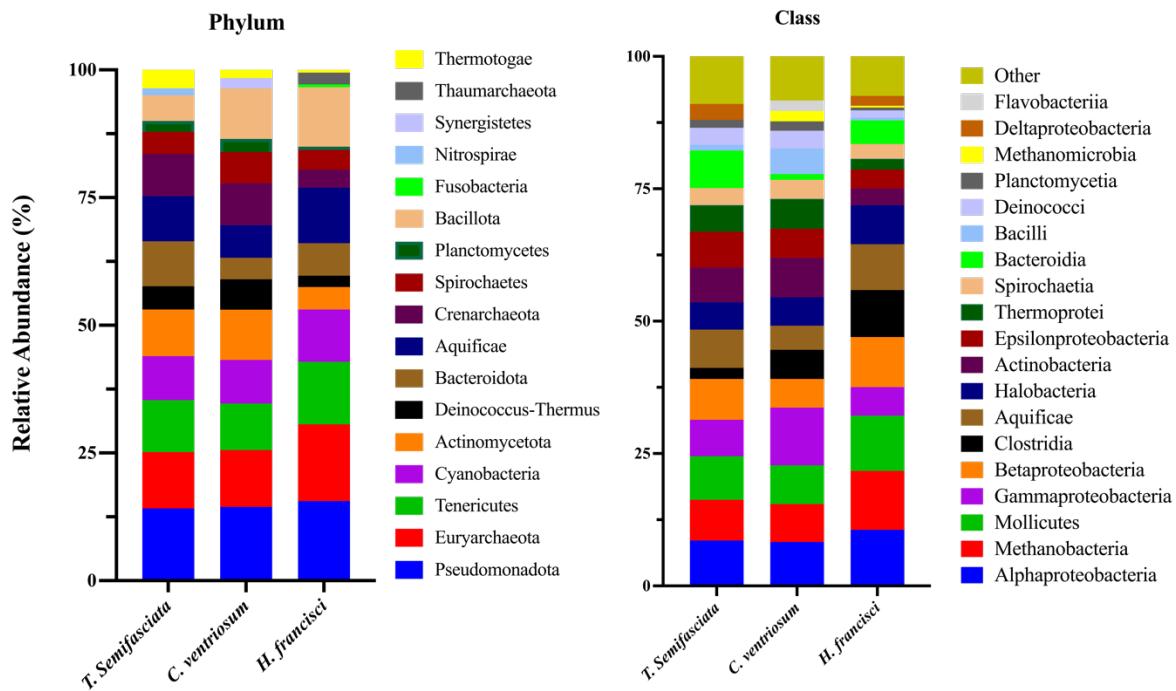


Figure 2. Taxonomic composition of reads from metagenomics sequences from elasmobranch epidermal microbiomes. Left) Relative abundance of microbial phyla identified three benthic shark species. Right) Top 20 class in ascending order based on average by shark species.

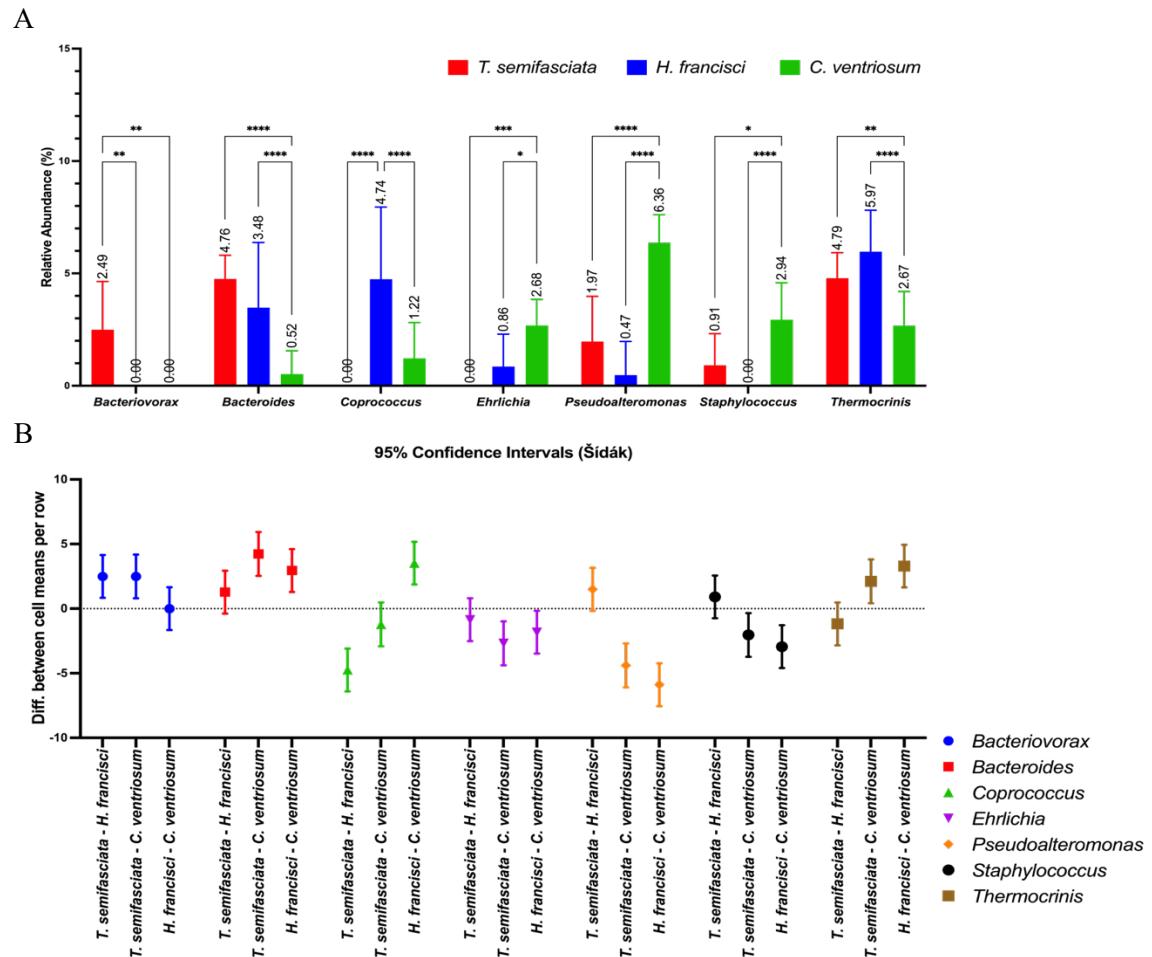


Figure 3. Significant contributors to epidermal microbiomes at A) genus level for associated microbiomes with B) corresponding 95 % confidence intervals.

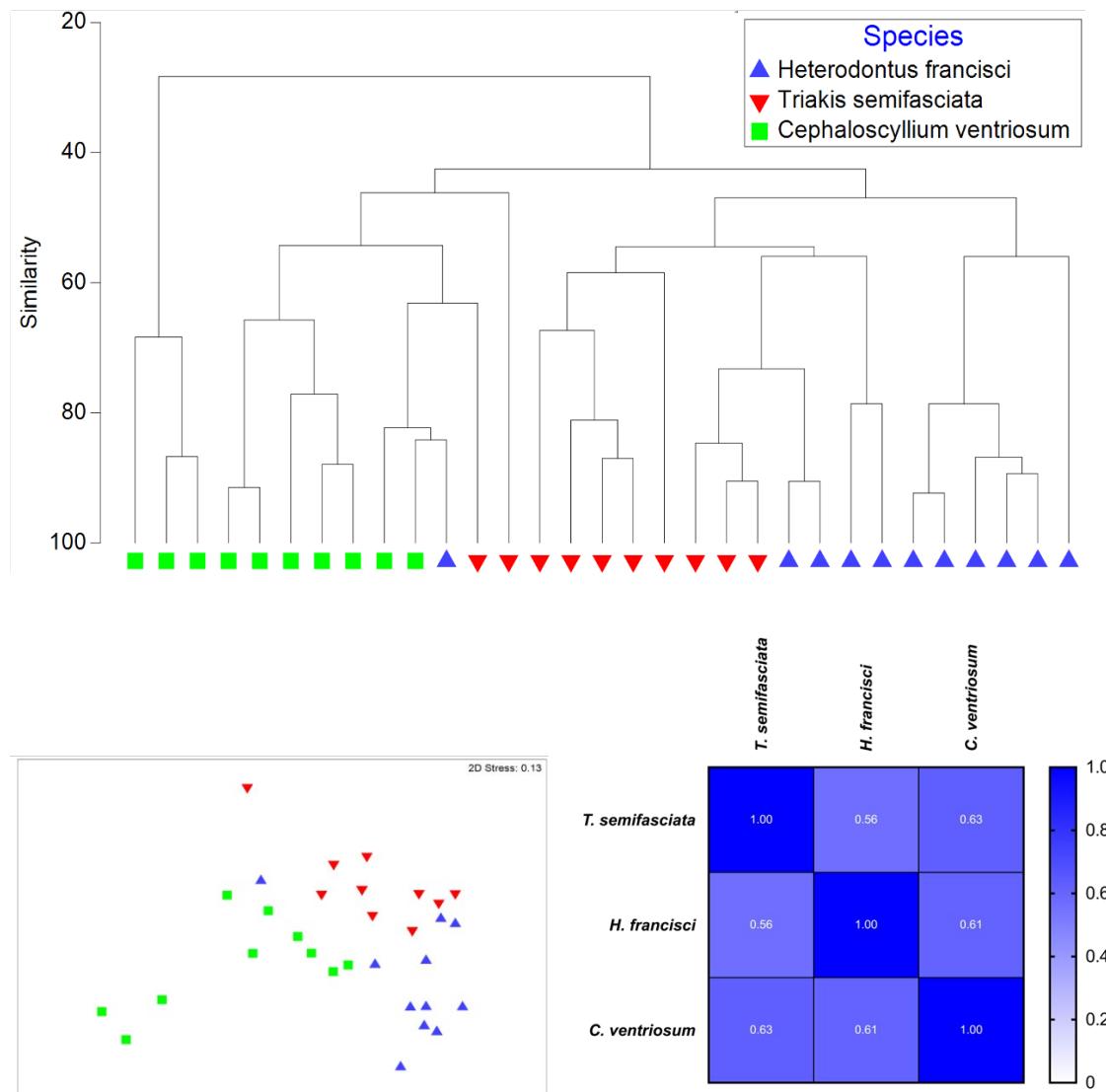


Figure 4. For *Heterodontus francisci*, *Triakis semifasciata*, and *Cephaloscyllium ventriosum*: A) Hierarchical clustering of epidermal metagenomes based on Bray-Curtis dissimilarities derived from fourth root transformed and standardized abundances at the genus level. B) Centroid nMDS ordination plots illustrating spatial differences among epidermal microbiomes. C) Spearman's correlation matrix showcasing correlation coefficients among microbial genera.

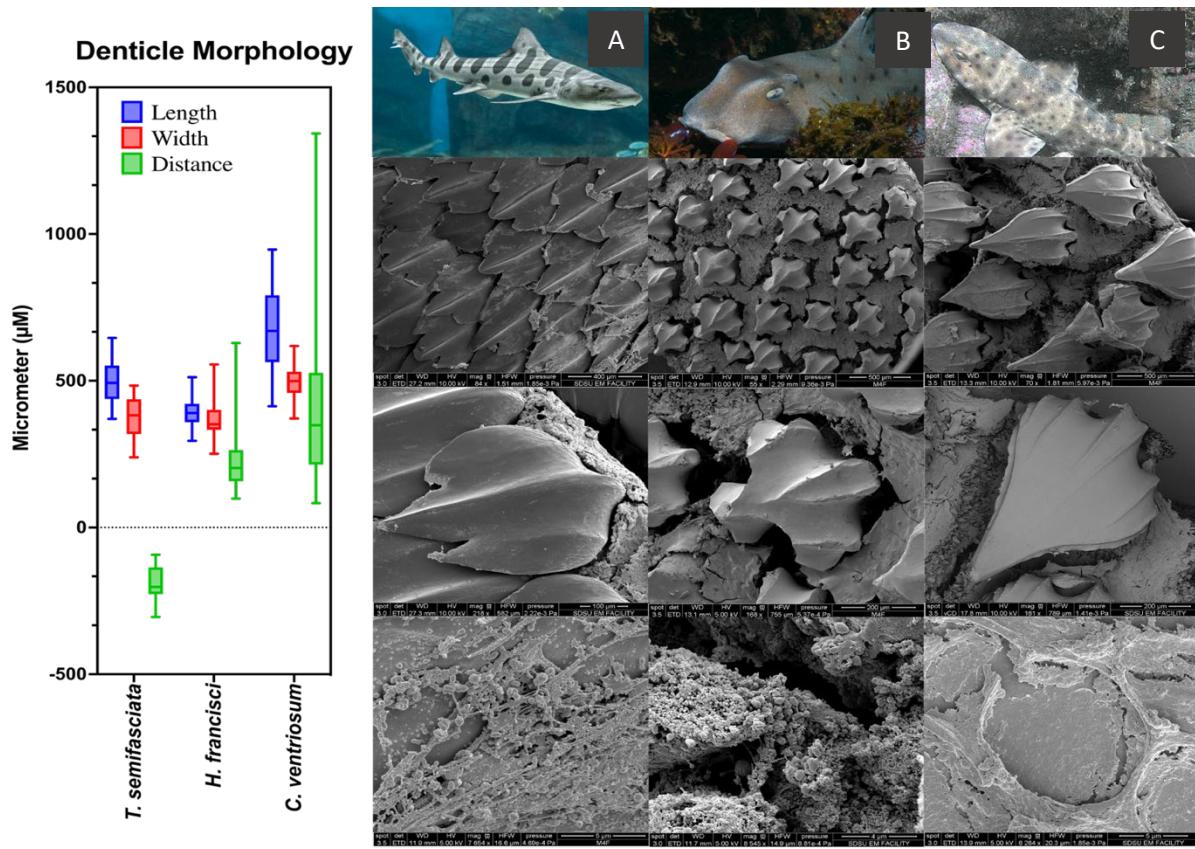


Figure 5. Box plot of denticle morphology depicting denticle length, width, and distance between denticles (left) measured and SEM images (right) at increasing magnification for A) *Triakis semifasciata*, B) *Heterodontus francisci* and C) *Cephaloscyllium ventriosum*. Magnification of SEM images in descending order is as follows: 500 μm , 200 μm , and 5 μm .

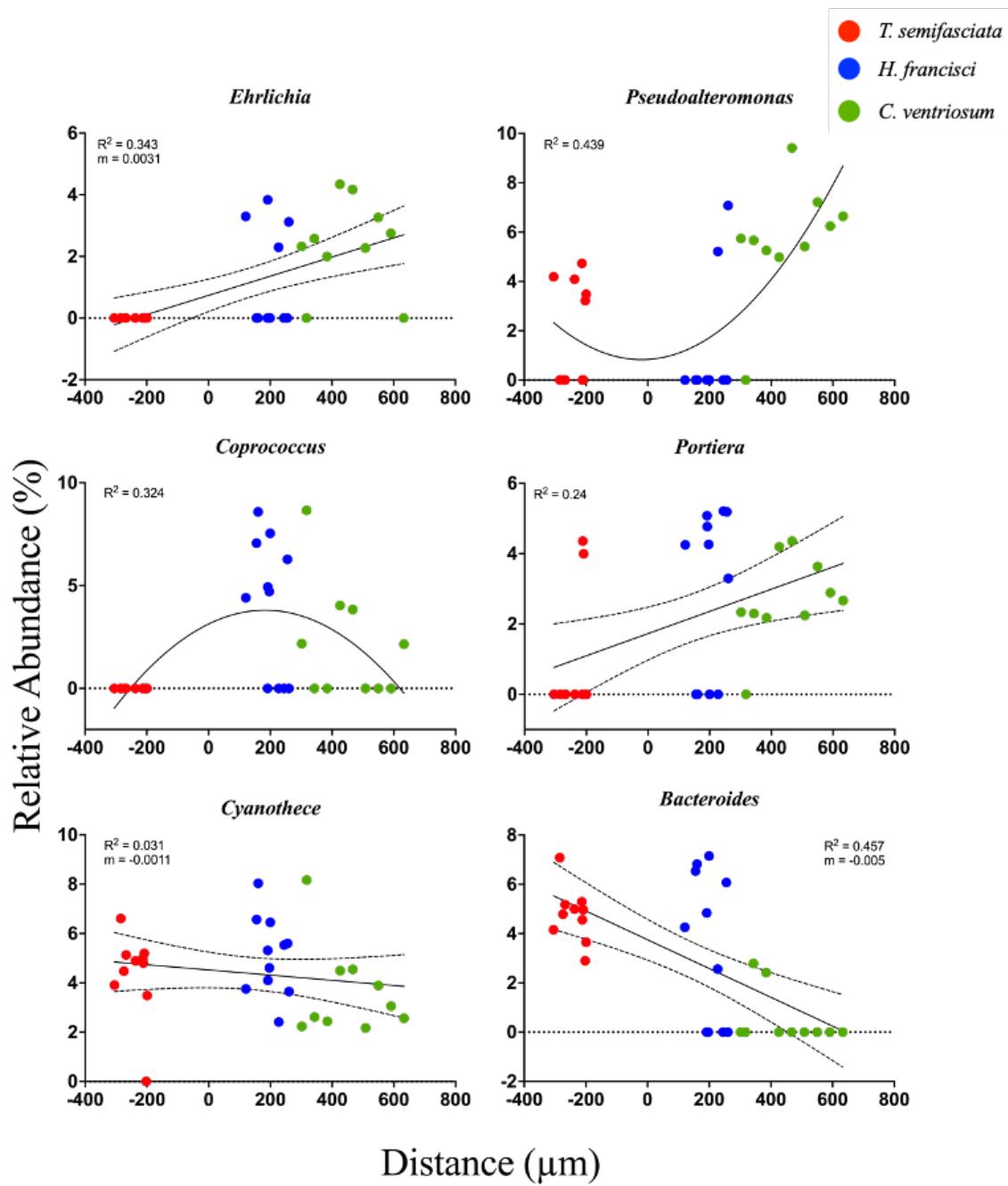


Figure 6. Scatter plots illustrating the correlation between interdenticle distances (x-axis) and microbial relative taxonomic abundance at the genus level (y-axis) for each shark sample. The curves represent the best fit from second-order polynomial regression analyses, and the associated goodness of fit (R^2) and slope (m) values are displayed. The surrounding shaded areas define the confidence intervals for the best-fit curves.

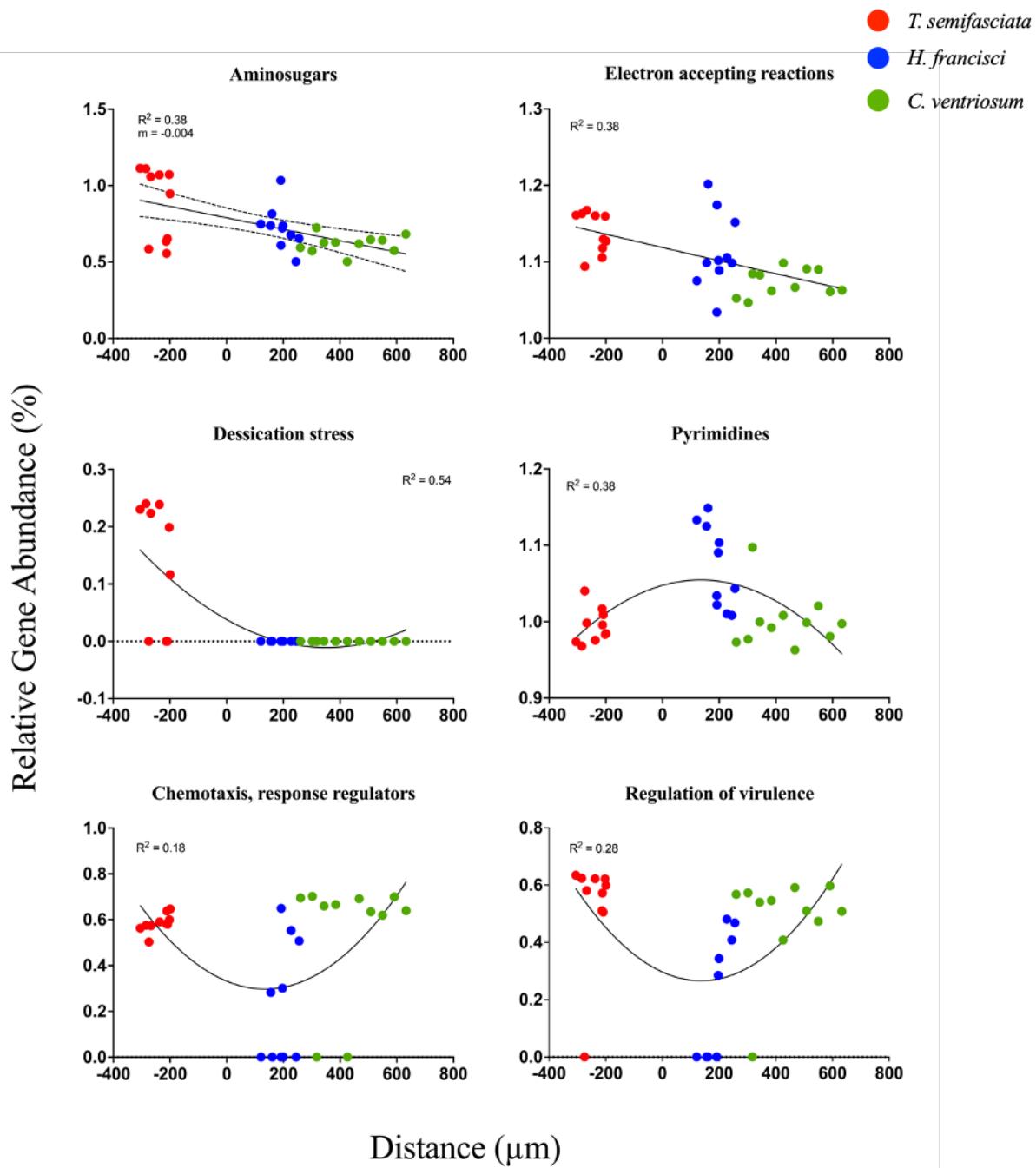


Figure 7. Scatter plots display the relationship between interdenticle distances (x-axis) and microbial relative functional gene abundance at SEED subsystem level 2 (y-axis) for each shark sample. The depicted best-fit lines are derived from both linear and second order polynomial regression analyses, each complete with their respective goodness of fit (R^2) and slope (m).

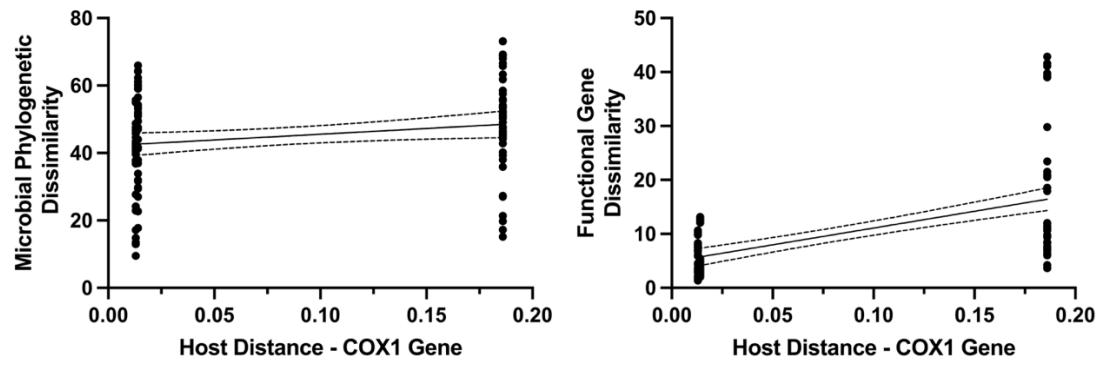


Figure 8. Phylosymbiotic comparison between host genetic divergence (COX1 gene) and epidermal microbiome phylogenetic dissimilarity (left) and gene function dissimilarity (right).