

1 i

2

3 Cardiaca adipokinetic hormone and hedgehog signaling combine to generate intracellular waves
4 of Ca⁺⁺ in starved *Drosophila melanogaster* fat body

5

6 Short Title: AKH and Hh regulate *Drosophila melanogaster* fat body calcium.

7

8 Min Kang¹, Anthea Luo¹, Isabelle Becam², Anne Plessis² and Robert A. Holmgren^{1*}

9

10

11 ¹ Dept. of Molecular Biosciences, Northwestern Univ., Evanston, Illinois, United States of
12 America

13

14 ² CNRS, Institut Jacques Monod, Université de Paris Cité, Paris, France

15 * Corresponding author

16

17 E-mail: r-holmgren@northwestern.edu (RH)

18

19

20 **Abstract**

21

22 The *Drosophila melanogaster* fat body combines the functions of the vertebrate liver and
23 fat. It plays a central role in metabolism where it integrates information about nutritional status
24 to regulate fat utilization. During feeding, signaling through the Insulin Receptor causes
25 lipogenesis, while fasting leads to signaling through the cardiaca Adipokinetic Hormone
26 Receptor (AKHR) and mobilization of lipid stores. Here we examine intracellular calcium levels
27 in the fat body during fasting. In fasting early third instar larvae, spikes of intracellular calcium
28 are generated in the fat body lobes on either side of the brain. These spikes propagate through a
29 narrow connection into the main lobes of the fat body that lie along the length of the larva. The
30 spikes of intracellular Ca^{++} are dependent on the corpora cardiaca AKH expressing neurons and
31 AKHR. Unexpectedly, the spikes also require Hedgehog (Hh) signaling from the midgut
32 enterocytes and within the fat body. When Hh signaling is blocked, the Ca^{++} levels in the fat
33 body are elevated and the spiking behavior lost. Hh signaling appears to regulate fat body
34 intracellular Ca^{++} using both the transcription factor Cubitus interruptus and the trimeric G
35 protein G α i. AKH/Hh signaling in the fat body lobes on either side of the brain appears to
36 function as a pulse generator to initiate Ca^{++} spikes that then propagate through the main lobes of
37 the fat body. These studies show how signaling from the brain and the midgut and within the fat
38 body are integrated to regulate a key intracellular second messenger.

39

40

41 **Abbreviations**

42
43 CC, corpora cardiaca
44 EC, enterocytes
45

46 **Introduction**

47

48 The *Drosophila melanogaster* fat body integrates signals related to nutritional status to
49 regulate metabolism. It carries out the combined functions of the vertebrate liver and adipose
50 tissue. (1-3). In response to fasting, the corpora cardiaca (CC) neurons release Adipokinetic
51 Hormone (AKH) (4-6), the *D. melanogaster* homologue of Glucagon, which binds to the AKH
52 Receptor (AKHR). AKHR signals through G α q and G γ 1 to activate Phospholipase C and the
53 Inositol 1,4,5 triphosphate Receptor (IP $_3$ R), leading to elevated intracellular Ca $^{++}$ levels (7-9). In
54 *Manduca sexta*, AKH signaling in the fat body has also been shown to signal through G α s to
55 activate PKA (10, 11). As a consequence, glycogen and triglyceride stores are released from the
56 fat body (12). Elimination of the AKH producing neurons leads to decreased levels of trehalose
57 (a key *D. melanogaster* sugar) in the hemolymph while overexpression of AKH leads to
58 depletion of lipid droplets in the fat body (5, 13). Fasting also leads to a reduction in insulin
59 signaling, which promotes nuclear translocation of FOXO and the expression of lipases(14, 15).

60

61 Hedgehog (Hh) signaling from the midgut enterocytes (EC) has also been implicated in
62 the *D. melanogaster* starvation response (16-18). Loss of Hh signaling from midgut ECs
63 prevents neutral lipid mobilization upon starvation (17). This effect appears to involve direct

64 signaling to the fat body as manipulating the activity of the Hh receptor Patched (Ptc) in the fat
65 body sensitizes the larvae to starvation (17).

66

67 In the canonical Hh pathway, binding of Hh to its receptor Ptc blocks Ptc repression of
68 the G protein-coupled receptor (GPCR) Smoothened (Smo), which in turn leads to the activation
69 of the GLI family transcription factors (Cubitus interruptus (Ci) in *D. melanogaster*) (19). In the
70 fat body, starvation activates canonical Hh signaling and the direct transcriptional activation of
71 the *brummer* (*bmm*) lipase gene by Ci (18). While it has been demonstrated that Smo can also
72 couple to G α i (20-22), a role of trimeric G proteins in the canonical pathway has been difficult to
73 establish and is most likely modulatory (23). In vertebrates, G α i has been shown to be required
74 in certain contexts of non-canonical Smo signaling including Ca⁺⁺ spiking in the developing
75 spinal cord (24), proliferation of cerebellar granular neurons (25), and activation of the Warburg
76 effect in adipocytes (26).

77

78 Here we examine interplay between AKH and Hh signaling in the *D. melanogaster*
79 response to fasting. In response to starvation, Ca⁺⁺ pulses are initiated in the fat body lobes on
80 either side of the brain and propagate along narrow fat body connections to the main fat body
81 lobes along the length of the animal. Signaling from the CC AKH expressing neurons is
82 required for initiation of Ca⁺⁺ pulses in the fat body. In the absence of CC AKH expressing
83 neurons, intracellular Ca⁺⁺ levels in the fat body are low. Fat body Ca⁺⁺ pulses also require Hh
84 signaling. When Hh signaling is blocked in either the fat body or midgut EC, fat body
85 intracellular Ca⁺⁺ levels are elevated and the Ca⁺⁺ pulses are lost. These studies show how

86 signaling from the brain and the midgut and within the fat body are integrated to regulate a key
87 intracellular second messenger.

88

89

90 **Results**

91

92 **Fasting of early third instar larvae leads to spikes of intracellular
93 Ca^{++} which propagate along the length of the fat body.**

94

95 The fat body of the third instar *D. melanogaster* larva has a complex morphology (Fig 1).
96 There are two fat body lobes in the head region of the larva on either side of the brain and just
97 anterior to the cell bodies of the CC AKH producing neurons. These lobes are linked to the
98 trunk fat body by narrow connections. To examine intracellular Ca^{++} levels in the *D.*
99 *melanogaster* fat body of early third instar larvae, the GFP Ca^{++} indicator GCaMP6S was
100 employed (27). A *UAS-GCaMP6S* construct was driven in the fat body with *CG-Gal4* (16, 28).
101 In fed larvae, fat body intracellular Ca^{++} remain relatively low and constant (Video 1). In larvae
102 that have been starved for 24 hours, pulses of intracellular Ca^{++} initiate in two lobes of the fat
103 body on either side of the brain and propagate through a narrow fat body connection to the fat
104 body lobes that run along the length of the larvae (Video 2). Pulses advance as a coherent wave
105 (Fig 2A). Pulses of Ca^{++} can also occasionally back propagate from the trunk fat body into the
106 head lobes. The speed of pulse progression varied from 9 to 19 $\mu\text{m/sec}$, which is within the
107 expected range for intercellular calcium waves (29). With increasing lengths of starvation, the

108 pulses become more robust with increased amplitude (Fig 2 B-E). As an alternative means of
109 assaying intracellular Ca^{++} in the fat body, we generated a construct in which the fat body
110 specific *apolpp* promoter/enhancer was used to directly express GCaMP6S (S1 Fig). This
111 construct was particularly useful when assaying intracellular Ca^{++} in the fat body while
112 manipulating gene expression in a different tissue.

113

114 **Fig 1. GFP labeling of *D. melanogaster* larva fat body.** Early third instar male *w*; CG-Gal4
115 (7011)/+; UAS-GFP / + larva starved 24 hours to remove gut autofluorescence. The fat body is
116 marked with GFP. Labeled, but not shown, are the cell bodies of the AKH neurons. Also labeled
117 are the fat body lobes in the head, which is linked to the trunk fat body via narrow connections.
118 High resolution imaging of fat body Ca^{++} waves (Fig 2A) was conducted in the fat body region
119 labeled Fig 2A.

120

121 **Video 1. Live imaging of fed early third instar larva.** *yw; UAS-lacZ/CG-Gal4, UAS-*
122 *GCaMP6S* early third instar larva that has been fed. There is significant autofluorescence in the
123 gut with minimal Ca^{++} activity in the fat body.

124

125 **Video 2. Live imaging of an early third instar larva that has been starved for 24 hours.** *yw;*
126 *UAS-lacZ/CG-Gal4, UAS-GCaMP6S* early third instar larva that has been starved for 24 hours.
127 Strong Ca^{++} pulses are observed along the length of the fat body.

128

129 **Fig 2. In response to starvation, Ca^{++} pulses are initiated in the fat body lobes on either**
130 **side of the brain and propagate into the main fat body lobes.** All larvae in this figure are *w*;

131 *CG-Gal4* (7011), *UAS-GCaMP6S* (42746)/+ males, and panels B-E were imaged on a wide field
132 fluorescent microscope using identical settings. In this and subsequent figures, the fluorescence
133 intensities are in arbitrary units. (A) High resolution spinning disk confocal imaging of *D.*
134 *melanogaster* larvae starved 24 hours (time interval 5 sec.) (anterior up). (A1) Ca⁺⁺ levels in fat
135 body visualized at arbitrary time t = 0 second. (A2) Ca⁺⁺ levels in fat body visualized at t = 5
136 seconds. (A3) Ca⁺⁺ levels in fat body visualized at t = 10 seconds. (A4) Kymograph of fat body
137 over 400 seconds. (A5) GCaMP6S fluorescence levels vs. time. (B) *D. melanogaster* larvae in
138 fed state. (n=9) (C) *D. melanogaster* larvae starved 4 hours. (n=6) (D) *D. melanogaster* larvae
139 starved 24 hours. (n=11) (E) *D. melanogaster* larvae starved 48 hours. (n=11) (B,C,D,E-1)
140 Visualization of Ca⁺⁺ levels in fat body. (B,C,D,E-2) GCaMP6S fluorescence levels vs. time for
141 the marked region of the fat body lobe in the head. (B,C,D,E-3) GCaMP6S fluorescence levels
142 vs. time for the marked region of the medial fat body. It should be noted that there is significant
143 green autofluorescence from the gut in B that disappears following starvation.

144

145 **Signaling from the AKH neurons through AKHR is required for the**
146 **generation of Ca⁺⁺ pulses in the fat body**

147

148 Previous work had shown that release of AKH from CC neurons and activation of AKHR
149 in the fat body regulate intracellular Ca⁺⁺ levels and the mobilization of lipids (4-6, 30). We
150 therefore decided to examine the role of AKH and its receptor in the generation of fat body Ca⁺⁺
151 pulses. AKH signaling was disrupted using two approaches. In the first, the CC AKH
152 expressing neurons were ablated using expression of the cell death inducing gene *rpr* (31). Loss
153 of the AKH expressing neurons removes Ca⁺⁺ pulses in the fat body of larvae that have been

154 starved for 24 hours and leaves fat body intracellular Ca⁺⁺ at low levels (Fig 3A). In the second,
155 fat body Ca⁺⁺ pulses were examined in *AKHR* null mutants. As seen in Fig 3B, loss of *AKHR*
156 function results in the absence of sustained Ca⁺⁺ pulses that originate from the fat body lobes in
157 the head. In half the animals, we unexpectedly observed low frequency fat body Ca⁺⁺ pulses
158 originating from the posterior end of the larva that were not normally present in wild type larvae
159 (Fig 3C). These results demonstrate that the CC AKH expressing neurons and AKHR are
160 required for Ca⁺⁺ pulse generation in the *D. melanogaster* fat body following starvation.

161

162 **Fig 3. Signaling from the AKH neurons through the AKHR is required for the generation**
163 **of Ca⁺⁺ pulses in the fat body** (A) *AKH-Gal4* (25683)/*UAS-rpr* (5824); *apolpp::GCaMP6S*/+
164 larvae identified by the absence of *dfd-YFP* marked balancer chromosomes. (n=6) (A1)
165 GCaMP6S fluorescence levels were visualized in the fat body following 24 hours of starvation.
166 (A2) GCaMP6S fluorescence levels vs. time for the marked region of the fat body lobe in the
167 head. (A3) GCaMP6S fluorescence levels vs. time for the marked region of the medial fat body.
168 The *AKH-Gal4* insertion line has independent expression of GFP in the annal pads, hindgut and
169 nervous system. (B) Homozygous *AKHR*^{null} (80937) females were crossed to *yw hs-flp*;
170 *AKHR*^{null}/CyO, *dfd-YFP*; *apolpp:GCaMP6S/TM6*, *dfd-YFP* males. Homozygous *AKHR*^{null}
171 mutants containing *apolpp:GCaMP6S* were identified by the absence of *dfd-YFP* marked
172 balancer chromosomes. (n=6) (C) Same genotype as B. An example of a second class of
173 *AKHR*^{null} larvae in which low frequency Ca⁺⁺ pulses originate in the fat body at the posterior end
174 of the larva. (n=6) (B,C-1) Ca⁺⁺ levels in the fat body visualized after 24 hours of starvation.
175 (B,C-2) GCaMP6S fluorescence levels vs. time for a marked region of fat body lobe in the head.

176 (B,C-3) GCaMP6S fluorescence levels vs. time for a marked region of fat body marked in
177 medial region of larvae

178

179 Knockdown of AKHR effectors disrupt Ca^{++} pulses.

180

181 Previous work has shown that *Gαq*, *Gγ1*, *PLC21C* and *IP₃R* (9) are all required for
182 elevated Ca^{++} levels in the fat body following starvation. To test whether this signaling cascade
183 is also required for Ca^{++} pulses, *UAS-RNAi* constructs targeting each of these components were
184 studied in larvae that had been starved for 24 hours. Knockdown of *Gαq* with two different
185 RNAi lines resulted in sporadic Ca^{++} pulses in the fat body lobes in the head and poor
186 propagation of Ca^{++} pulses into the trunk fat body (Fig 4A). Knockdown of *Gγ1* resulted in two
187 distinct phenotypic classes. In the first, larvae exhibited low frequency Ca^{++} pulsing in the fat
188 body lobes in the head and slow propagation of Ca^{++} waves into the trunk fat body (n=7) (Fig
189 4B), and in the second, larvae had elevated Ca^{++} in the fat body lobes within the head region,
190 modest levels of Ca^{++} in the fat body of the trunk region of the larvae, and a lack of pulsing
191 throughout the entire larvae (n=4). Knockdown of *PLC21C* resulted in variable pulsing in the
192 head region and poor pulse propagation into the trunk fat body (Fig 4C). Knockdown of the
193 *IP₃R* resulted in a loss of Ca^{++} pulses and low levels of Ca^{++} throughout the fat body (Fig 4D).
194 The low Ca^{++} levels in the knockdown mutants of *Gαq* and *IP₃R* and the lack of robust
195 propagation of Ca^{++} pulses in the knockdown mutants of *Gγ1* and *PLC21C* suggest that all of
196 these components function downstream of AKHR to mediate Ca^{++} pulse generation. As it has
197 been shown in *M. sexta* that AKH signaling also regulates *Gαs* and PKA (10, 11), RNAi was
198 used to target *Gαs*. In larvae starved for 24 hours, knockdown of *Gαs* resulted in a range of

199 phenotypes: three larvae had low frequency Ca^{++} pulsing in the head and intermediate levels of
200 intracellular Ca^{++} in the medial fat body, three lacked Ca^{++} pulsing, had high levels of
201 intracellular Ca^{++} in the fat body lobes in the head, and intermediate levels of intracellular Ca^{++}
202 in the medial fat body, and one larva had robust Ca^{++} waves originating from the posterior end of
203 the larva.

204

205 **Fig 4. The $\text{G}\alpha\text{q}$, $\text{G}\gamma\text{I}$, PLC21C and IP_3R signaling cascade and $\text{G}\alpha\text{s}$ are required for fat
206 body Ca^{++} pulsing following starvation.** (A) Male *CG-Gal4*, *UAS-GCaMP6S/+*; *UAS-RNAi*
207 *Gaq* (63987)/+ larva starved for 24 hours. (n=6) (B) Male *CG-Gal4*, *UAS-GCaMP6S/+*; *UAS-*
208 *RNAi GγI* (34372)/+ larva starved for 24 hours. (n=11) (C) Male *CG-Gal4*, *UAS-GCaMP6S/+*;
209 *UAS-RNAi PLC21C* (32169)/+ larva starved for 24 hours. (n=7) (D) *CG-Gal4 UAS-GCaMP6S/*
210 *+*; *UAS-RNAi-IP₃R* (25937)/+ larva starved for 24 hours. (n=11)(All eleven had low levels of
211 Ca^{++} , but in one animal a single pulse of elevated Ca^{++} occurred simultaneously throughout the
212 fat body that slowly faded away) (E) *CG-Gal4 UAS-GCaMP6S/ +*; *UAS-RNAi-Gαs* (50704)/+
213 larva starved for 24 hours. (n=7) (A,B,C,D,E-1) Visualization of Ca^{++} levels in the fat body.
214 (A,B,C,D,E-2) GCaMP6S fluorescence levels vs. time for marked region of a fat body lobe in
215 the head. (A,B,C,D,E-3) GCaMP6S fluorescence levels vs. time for marked region of the fat
216 body marked in the medial region of larvae.

217

218 **Loss of Hh signaling leads to elevated levels of Ca^{++} in the fat body
219 and blocks pulse generation.**

220

221 Given the previous studies showing a role for Hh signaling in the release of lipids from
222 the fat body following starvation (16-18), early third instar larvae mutant or knocked down for
223 various components of the Hh pathway were starved for the 24 hours and assayed for fat body
224 Ca^{++} pulsing. In the canonical Hh pathway the Fused (Fu) kinase is required for the full
225 activation of Smo (32) and release of the Ci transcription factor (33). The embryonic
226 development of *fu* mutants can be maternally rescued by heterozygous mothers. As the larvae
227 grow, the maternal contribution of Fu^{+} product is progressively diluted giving rise to variable
228 mutant phenotypes in larval tissues such as the imaginal discs. Here, roughly one half of the *fu*^{KO}
229 (34) larvae that have been starved for 24 hours exhibit loss of Ca^{++} pulsing and elevated Ca^{++}
230 levels throughout in the fat body (Fig 5A). A second approach to inhibit Smo activity made use
231 of the Ptc^{Aloop2} protein, which is unable to bind Hh and constitutively blocks Smo activation (35).
232 Larvae expressing *UAS-ptc*^{Aloop2} in the fat body consistently exhibited a starvation phenotype like
233 that of the *fu*^{KO} larvae with modestly elevated Ca^{++} levels and a lack of pulsing (Fig 5B). During
234 starvation Hh release from the midgut ECs was shown to be necessary for the activation of Hh
235 signaling in the fat body. Using the *Myo31D-Gal4* driver, we knocked down the expression of
236 *hh* in the midgut ECs, which led to a lack of pulsing in the fat body of starved larvae (Fig 5C).
237 Hh has also been shown to be expressed at low levels in the fat body (18). When RNA was used
238 to knockdown of *hh* in the fat body, Ca^{++} pulsing was also abolished (Fig 5D). Release of Hh is
239 known to require the presence of the Dispatched (Disp) protein in the signaling cells, and its
240 trafficking is thought to involve the Shifted (Shf) protein (36, 37) (*D. melanogaster* homologue
241 of SCUBE2) (38). The *Myo31D-Gal4* driver was used to knockdown *disp* in the midgut
242 enterocytes and results in the elimination of Ca^{++} pulsing in the fat body of starved larvae (S2A
243 Fig). *D. melanogaster* *shf*² mutants are homozygous viable and fertile with a modest Hh

244 phenotype in the wing. Starved larvae mutant for *shf*² exhibited elevated Ca⁺⁺ levels and a loss
245 of pulsing (Fig 5E).

246

247 **Fig 5. Loss of Hh signaling leads to elevated levels of Ca⁺⁺ in the fat body and blocks pulse**
248 **generation.** Male early third instar larvae were starved for 24 hours. (A) *fu*^{KO}/Y ; *CG-Gal4*,
249 *UAS-GCaMP6S* / +. (n = 15 with 7 larvae showing elevated Ca⁺⁺ levels and no pulsing and 8
250 larvae showing relatively normal pulsing) (B) *UAS-ptc*^{Δloop2}/+ ; *R4-Gal4* (33832),
251 *apolpp::GCaMP6S* / +. (n = 5) (*R4-GAL4* is expressed at higher levels than *CG-Gal4* in third
252 instar larvae.). (C) *Myo31D-Gal4* (*P{GawB}Myo31DF^{NP0001}*)/ +; *UAS-RNAi-hh* (31042)/
253 *apolpp::GCaMP6S*. (n = 5) (D) *CG-Gal4*, *UAS- GCaMP6S*/+; *UAS-RNAi-hh* (31042)/+. (n = 5)
254 (E) *Shf*²/Y; *CG-Gal4*, *UAS- GCaMP6S*/+. (n = 15) (A,B,C,D,E-1) Visualization of Ca⁺⁺ levels in
255 fat body. (A,B,C,D,E-2) GCaMP6S fluorescence levels vs. time for the marked region of fat
256 body lobe in the head. (A,B,C,D,E-3) GCaMP6S fluorescence levels vs. time for fat body
257 marked in medial region of larvae.

258

259 These results suggest that there are two required sources of Hh for Ca⁺⁺ pulse generation,
260 an autocrine signal from the fat body itself and a paracrine/hormonal signal from the mid gut
261 ECs. The downstream components Fu and Ptc are also required along with the Hh chaperones
262 Disp and Shf.

263

264 **Generation of Ca⁺⁺ pulses following starvation requires the function**
265 **of both the transcription factor Ci and Gαi.**

266

267 Previous work has shown that in response to starvation Hh signaling activates the Ci
268 transcription factor to regulate the expression of *bmm* (18). In the absence of Hh signaling, the
269 Ci protein is processed into a repressor that blocks the expression of Hh target genes (39). Fat
270 body expression of a truncated form of Ci that mimics the Ci repressor resulted in elevated Ca⁺⁺
271 levels and a loss of pulsing (Fig 6A). As it has been shown in vertebrates that Smo can also
272 couple to G α i and regulate both intracellular Ca⁺⁺ and metabolism (20-22), animals homozygous
273 for a deletion in the *G α i* gene, *G α i*^{5.4}, that removes the start of translation were analyzed. As can
274 be seen in Fig 6B, loss of *G α i* leads to elevation of Ca⁺⁺ levels particularly in the fat body lobes
275 in the head and variable pulsing. Expression of an activated form of G α i (G α i^{Act}) decreased the
276 frequency of Ca⁺⁺ pulses (Fig 6C). G α i inhibits Adenylyl Cyclase activity and PKA.
277 Overexpression of the catalytic subunit of PKA, PKA-C1, was used to constitutively activate its
278 function and examine whether the phenotype mimics loss of Hh signaling. Seven animals had
279 varying degrees of pulsing while in three animals, pulsing was lost with moderate Ca⁺⁺ levels
280 (Fig 6D). The requirement for both Ci and G α i suggests that Hh signaling may act in different
281 ways to regulate starvation induced Ca⁺⁺ pulsing in the fat body. While regulated PKA activity
282 is clearly required for Ca⁺⁺ pulsing in the fat body, its regulation is likely complicated by
283 multiple inputs.

284

285 **Fig 6. Blocking Ci activity and loss of G α i inhibit Ca⁺⁺ pulsing.** (A) *CG-Gal4, UAS-*
286 *GCaMP6S/+; UAS-ciN/HA]/Zn/+* (40) male larva. (n=6) (B) *CG-Gal4/UAS-GCaPM6S;*
287 *G α i*^{5.4}/*G α i*^{5.4} (n= 6) (C) *CG-Gal4, UAS-GCaMP6S/UAS-G α i*^{Act} male larva. (n=12) Ten larvae
288 showed low frequency pulsing as shown and two larvae had modest intracellular Ca⁺⁺ levels
289 without pulsing. (D) *CG-Gal4, UAS-GCaMP6S/UAS-PKA-C1* (35554). (n=10) (A,B,C,D-1)

290 Visualization of Ca^{++} levels in fat body. (A,B,C,D-2) GCaMP6S fluorescence levels vs. time for
291 marked region of the fat body in the head of the larvae. (A,B,C,D-3) GCaMP6S fluorescence
292 levels vs. time for a marked region of the medial fat body

293

294

295 **Ca^{++} pulsing in the fat body of starved larvae requires SERCA
296 mediated Ca^{++} reuptake.**

297

298 Just as release of intracellular Ca^{++} stores by IP_3R is required for starvation induced Ca^{++}
299 pulsing in the fat body, we tested whether the return of Ca^{++} from the cytoplasm to the
300 endoplasmic reticulum (ER) required the Sarcoendoplasmic Reticulum Calcium ATPase
301 (SERCA) pump. RNAi knockdown of *SERCA* in the fat body of fed larvae has no effect on
302 intracellular Ca^{++} levels, which remain low (Fig 7A). In the case of larvae that have been starved
303 for 24 hours, knockdown of *SERCA* leads to elevated Ca^{++} levels and a loss of pulsing (Fig 7B).

304

305 **Fig 7. The Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) are required for the
306 generation of Ca^{++} pulses in the fat body.** Male *CG-Gal4 UAS-GCaMP6S/+; UAS-RNAi-*
307 *SERCA* (445811)/+ early third instar larvae were fed (n=5) (A) or starved for 24 hours (n=7)
308 (B) and assayed for pulse generation in the fat body. (A,B-1) Ca^{++} levels in fat body. (A,B-2)
309 GCaMP6S fluorescence levels vs. time for marked region in the fat body of the head. (A,B-3)
310 GCaMP6S fluorescence levels vs. time for the marked region of the medial fat body.

311

312

313 **Discussion**

314

315 **AKH and the AKHR are required for Ca⁺⁺ pulse generation in the**
316 **fat body of starved larvae.**

317

318 Previous work has shown that ablation of the AKH neurons leads to starvation resistance
319 and reduced trehalose levels in the hemolymph (5) and that a similar phenotype is observed with
320 *AKHR*^{null} mutants (30). AKHR signals through G α q, G γ 1, and PLC21C to elevate intracellular
321 Ca⁺⁺ levels and mobilize lipid stores in the fat body (9). Experiments in *M. sexta* have shown
322 that AKH can also stimulate the activity of PKA in the fat body and that mobilization of
323 extracellular Ca⁺⁺ leads to lipolysis (10, 11). We have taken advantage of the GFP Ca⁺⁺
324 indicator GCaMP6S (27) to follow fat body intracellular Ca⁺⁺ levels over time in fed and starved
325 early third instar larvae that have not reached the critical weight for pupation (41). In fed
326 animals intracellular Ca⁺⁺ levels are low and steady. With increasing extents of starvation, Ca⁺⁺
327 pulses of increasing amplitude are observed in the fat body. These pulses originate in fat body
328 lobes on either side of the larval brain where the CC AKH neurons are located and propagate
329 through a narrow connection to the rest of the fat body. The pulses are dependent on the
330 presence of the CC AKH neurons and AKHR, and in their absence, Ca⁺⁺ levels in the fat body
331 remain low even after starvation. The anatomical division of the fat body into two domains with
332 a narrow linkage suggests that this morphology is somehow used to regulate signaling within the
333 tissue and that the fat body lobes in the head of the larvae act as a pulse generator. Previous
334 work has highlighted the importance of the fat body to the regulation of *D. melanogaster*

335 metabolism; the results presented here show that there is communication within the fat body that
336 is likely important for modulating responses.

337

338 In a significant fraction of the starved *AKHR*^{null} mutants, a second source of Ca⁺⁺ pulsing
339 is observed originating from the posterior end of the fat body. It is possible that this second
340 signaling center allows mobilization of fat stores, complements AKH signaling and may explain
341 why *AKHR*^{null} mutants are viable and fertile.

342

343 The knockdown of *Gαq* in the fat body of starved larvae resulted in low frequency Ca⁺⁺
344 pulses in the fat body lobes in the head and poor propagation of Ca⁺⁺ pulses into the trunk fat
345 body. The phenotype was not as severe as the one observed with the loss of AKHR. This could
346 be a consequence of incomplete knockdown of *Gαq*, though similar phenotypes were also
347 observed with multiple RNAi lines. It is also possible that the G $\beta\gamma$ subunits have independent
348 roles. In most cases, the knockdown of *Gγ1* resulted in low frequency Ca⁺⁺ pulses as might be
349 expected, but in other larvae, the Ca⁺⁺ levels were unexpectedly elevated. It may be the case that
350 *Gγ1* can interact with more than one class of G α subunit, making it difficult to predict the
351 knockdown phenotype. With knockdown of *PLC21C*, variable pulsing was observed in the head
352 region with poor pulse propagation into the trunk fat body. Again, it may be the case that the
353 RNAi knockdown was not particularly effective with *PLC21C*. However, three different RNAi
354 lines were tried, and all gave similar phenotypes. Mobilization of intracellular Ca⁺⁺ stores is
355 required for pulse generation as RNAi knockdown of IP₃R blocks their formation. These results
356 show that activation of AKHR, its downstream signaling cascade of G α q, G γ 1, PLC21C, IP₃R
357 and release of intracellular Ca⁺⁺ stores are all required for Ca⁺⁺ pulse generation. It is possible

358 that extracellular Ca^{++} also plays a role in pulse generation and/or propagation, as influx of
359 extracellular Ca^{++} is required for the release of lipid stores in vertebrates (42).

360

361 **GCaMP6S can act as a Ca^{++} sink and disrupt Ca^{++} signaling.**

362

363 GCaMP6S is a powerful tool for studying intracellular Ca^{++} in living tissue, but to
364 function it must bind Ca^{++} . Consequently, GCaMP6S can act as a Ca^{++} sink. Depending on the
365 level of expression, this can disrupt Ca^{++} signaling to varying extents. This was most evident in
366 our experiments using *apolpp::GCaMP6S*. Ca^{++} pulsing was robust in the head lobes of the fat
367 body, but the transmission of the pulses into the trunk fat body was sporadic. We received 10
368 insertion lines of *apolpp::GCaMP6S* and used the one with the lowest expression level. In all
369 our experiments with *apolpp::GCaMP6S*, only one copy of the transgene was present. In
370 homozygotes with two doses of *apolpp::GCaMP6S*, aberrant high levels and broad waves of
371 intracellular Ca^{++} were regularly observed in the fat body of fed larvae (S1D Fig). We used *CG-*
372 *Gal4>UAS-GCaMP6S* in most of our experiments to minimize potential Ca^{++} sink artifacts, but
373 it is possible that even this modest expression of *GCaMP6S* sensitizes the tissue, and that in its
374 absence, the intrinsic Ca^{++} pulses would be more robust and extend further into the trunk fat
375 body.

376

377 **Hh signaling is required for Ca^{++} pulse generation in the fat body of
378 starved larvae.**

379

380 Previous work has shown that Hh signaling plays a role in various aspects of metabolism
381 in both *D. melanogaster* and vertebrates. Knockdown of Hh signaling leads to elevated levels of
382 triglycerides in the *D. melanogaster* fat body (16, 17, 43), and canonical Hh signaling in the fat
383 body activates the Ci transcription factor increasing the expression of the lipase encoding gene
384 *bmm* (18). In *D. melanogaster* adults, Hh signaling from midgut ECs to the taste sensilla
385 regulates sweet sensation and perception (44). In mouse activation of the Hh pathway in the
386 adipocyte lineage suppresses high fat diet induced obesity (45) and signals through G α i,
387 extracellular Ca⁺⁺, and Amp kinase to induce a Warburg-like shift in metabolism (26).

388

389 Interplay between Hh and Ca⁺⁺ signaling has been identified in a number of tissues. In
390 the *D. melanogaster* lymph gland, Ca⁺⁺ signaling through gap junctions modulates the Hh
391 pathway (46), but in this case the Hh pathway appears to be downstream of Ca⁺⁺ signaling. In
392 *Xenopus laevis* developing spinal cord, Shh increases Ca⁺⁺ spike activity through mobilization of
393 intracellular Ca⁺⁺ stores and Ca⁺⁺ influx (24). Shh can also increase Ca⁺⁺ oscillations in cultured
394 mouse astrocytes (47). In zebrafish mobilization of intracellular Ca⁺⁺ is required for Shh
395 dependent gene expression and appropriate specification of cell fates (48). During the
396 specification of chick feathers, Shh responsive mesenchymal cells have synchronized Ca⁺⁺
397 oscillations that are disrupted following inhibition of Hh signaling (49). In vertebrates, Hh
398 signaling occurs in the primary cilium. In *X. laevis*, it has been shown that Shh enhances Ca⁺⁺
399 activity in the primary cilium both through the release of intracellular stores and by influx
400 through the Cation Channel subfamily C member 3 (50).

401

402 In the fat body of starved *D. melanogaster* larvae, canonical Hh signaling contributes to
403 the release of lipid stores by upregulating the expression of the *bmm* lipase gene (18). Our
404 results provide strong evidence for second function of Hh signaling to clear cytoplasmic Ca⁺⁺
405 generated in response to AKH signaling and thereby enable pulse propagation. In the absence of
406 Hh signaling (*fu*^{KO}, *ptc*^{ΔL2} and *shf*²) in the fat body of starved larvae, Ca⁺⁺ levels are elevated, and
407 pulsing is lost. The phenotype of *Gαi*^{5.4} mutants was not as severe as other approaches used to
408 disrupt Hh signaling. This suggests there is an additional output from Smo, which may involve
409 direct regulation PKA through PKA binding to a pseudo-substrate site on the Smo C-terminal tail
410 (51). Clearing cytoplasmic Ca⁺⁺ requires SERCA as its knockdown by RNAi leads to elevated
411 Ca⁺⁺ levels and a lack of pulsing in the fat body of starved larvae. In fed larvae, knockdown of
412 SERCA had no effect, suggesting that the elevated Ca⁺⁺ levels in the SERCA knockdown starved
413 larvae were likely dependent on AKH signaling releasing Ca⁺⁺ from intracellular stores. How
414 Hh signaling and the activation of Gαi lead to the clearing of cytoplasmic Ca⁺⁺ is unclear. PKA
415 regulation of SERCA activity has been observed in cardiomyocytes (52) but the sign of the
416 regulation is the opposite of that observed here.

417

418 **Ca⁺⁺ pulse initiation and propagation.**

419

420 The Ca⁺⁺ pulses observed in the fat body of starved larvae originate in the head lobes of
421 the fat body on either side of the CC AKH expressing neurons. The simplest explanation for the
422 observed pulse frequency is the possible pulsatile release of AKH from these neurons. These
423 pulses are then propagated through the head fat body lobes and then into the fat body along the
424 trunk of the larvae. It seems likely that the pulses are propagated from cell to cell through gap

425 junctions rather than by paracrine mechanism (29) as the same clusters of cells tend to repeatedly
426 pulse together and the paths of the Ca^{++} pulses seem to follow cells that are tightly connected to
427 each other. The role of Hh signaling in this process appears to be to clear Ca^{++} from the
428 cytoplasm. This is likely to be important for the active regeneration of the Ca^{++} pulse. Active
429 Ca^{++} waves, as opposed to passive ones, are characterized by relatively constant propagation
430 velocity over long distances, which is the case here (29). In the absence of Hh signaling, Ca^{++}
431 levels are high, and pulsing is lost. This may be a consequence of prolonged elevated Ca^{++}
432 inhibiting the function of gap junctions (53). This may explain the difference between the
433 *apolpp::GCaMP6S* starved larvae in S1B Fig vs. S1C In B, the larva has elevated Ca^{++} in the
434 trunk and Ca^{++} pulse propagation to the trunk fat body is lost, while in C, the Ca^{++} levels are low
435 and pulses propagate. Integration of signals to generate coordinated intracellular Ca^{++} waves has
436 also been observed in mouse liver (54).

437

438 **Hh signaling and lipid metabolism**

439

440 The intimate relationship between lipids and Hh signaling has long been noted (55). It
441 has been proposed that the Hh pathway originated as a feedback loop between Ptc and Smo,
442 where Ptc pumped sterols across the plasma membrane and Smo acted as a sensor to down
443 regulate *ptc* expression when sterol levels were sufficiently high. Coupling Hh to Ptc function
444 enabled the pathway to be utilized for intercellular communication and developmental patterning
445 (56). It may be that Smo signaling through Gai to down regulate PKA activity predates its
446 transcriptional regulation of *ptc*. PKA is an important regulator of metabolism, and its activation
447 leads to lipolysis (57). With the newly available structural data, it has been shown that binding

448 of cholesterol in a deep pocket of Smo appears to necessary for its activation, and Ptc appears to
449 function as a transporter of cholesterol from the inner to the outer plasma membrane (58). Smo
450 sensing of membrane cholesterol could have been used to assess the state of cellular lipids and
451 down regulate lipolysis by down regulating PKA activity. This regulation could become more
452 sophisticated by adding transcriptional regulation of *ptc*, signaling within a tissue by regulation
453 of Ca⁺⁺ levels, and communication between cells through gap junctions. Finally, the addition of
454 Hh regulation of Ptc would integrate communication between tissues, allowing integrated
455 regulation of metabolism and development.

456

457 **Materials and Methods**

458

459 ***D. melanogaster* strains**

460

461 The majority of strains used in this study were obtained from the Bloomington
462 Drosophila Stock center. *UAS-ptc^{Δloop2}* was obtained from G. Struhl. The *dfd-YFP* balancer
463 chromosomes were obtained from G. Beitel

464

465 ***D. melanogaster* transgene construction**

466

467 *apolpp::GCaMP6S*: The *apolpp* enhancer promoter regions was amplified from a *w¹¹¹⁸*
468 female fly using NEB Phusion polymerase and the following primers GCC TCG AGC AGT
469 GGT CTC CTG CTG TCA C and GCG GAT CCC ACA CAG ACC ATC CGC GAA TT. It

470 was then cloned as an Xho I, BamH I fragment into corresponding sites of pCaSpeR 4 to
471 generate pCaSpeR-apolpp. The GCaMP6S sequences were amplified from Addgene plasmid
472 #40753 (59) using NEB Phusion polymerase and the following primers GCA GAT CTC GCC
473 ACC ATG GG and CTG ATT ATG ATC TAG AGT CGC GGC CG. The product was digested
474 with Bgl II and Not I and cloned into the BamH I and Not I sites of pCaSpeR-apolpp to generate
475 pCaSpeR-apolpp-GCaMP6S. The splice sites, intron and polyadenylation site from pUAST (60)
476 were amplified using NEB Phusion polymerase and the following primers GGA ATT CGT TAA
477 CAG ATC TTG CGG CC and GC GAA TTC TTG AAT TAG GCC TTC TAG TGG ATC C
478 and cloned into pCaSpeR-apolpp-GCaMP6S using Not I and EcoR I to generate
479 apolpp::GCaMP6S. All PCR inserts were sequenced. Transgenic lines were generated by
480 BestGene Inc.

481

482 *UAS-Gai^{act}* was generated from the Gai cDNA clone (Addgene) LD22201. The Q205L
483 activating mutation (61) was generated by amplifying the Gai insert as two fragments using
484 NEB Phusion polymerase the primer pairs CCG GAT CCG AAG AGT GCG CGA AGT GAG
485 with CGA TCG CAG GCC ACC CAC ATC GAA AAG TTT G and GGT GGC CTG CGA
486 TCG GAG CG with GGC TCG AGT ACA AAA CCC ACC GGC TGT C. (The underlined
487 bases substitute an L codon for Q.) The two PCR fragments were then used in a second round of
488 amplification with NEB Phusion polymerase and the outside primers CCG GAT CCG AAG
489 AGT GCG CGA AGT GAG and GGC TCG AGT ACA AAA CCC ACC GGC TGT C to
490 generate the Q205L substitution. The fragment was digested with BamH I and Xho I and cloned
491 into the Bgl II, Xho I sites of pUAST to generate *UAS-Gai^{act}*. The PCR insert was sequenced to
492 confirm the substitution. Transgenic lines were generated by BestGene Inc.

493

494 **Generation of *Gαi* mutation.**

495

496 Imprecise excisions of P{SUPor}Galphai[KG01907] were generated and sequenced. The
497 deletion *Gai*^{5.4} starts after nucleotide 19 of the *Gai* transcript, inserts the nucleotides
498 TGATGAAATAACATAT and ends in the first intron before the sequence ATGCAACAAAGTG
499 removing 1.2 kb, the start of translation, and the first splice donor. This mutation has a similar
500 phenotype to the *Gai*^{P8} deletion mutation (62).

501

502 **Imaging**

503

504 Unless otherwise noted, experiments used room temperature (~22C) third instar larvae
505 (not yet at the critical weight). Animals were reared on molasses medium supplemented with
506 yeast. Larvae were either directly mounted (fed) or placed for the indicated length of time in
507 starvation vials containing 0.75% agar 0.5X PBS. For mounting, a chamber was constructed
508 using two pieces of double-sided Scotch tape. Individual larvae were lightly coated in
509 Halocarbon 400 oil, positioned between the two strips of tape, and immobilized by placing a
510 coverslip on top. Imaging was performed using either a Leica DM6B widefield fluorescent
511 microscope with LED illumination, or in Fig 2A, a Leica spinning disk confocal. All wide field
512 images of GCaMP6S fluorescence were collected using identical settings, and the stitching
513 function of the LAS X software was used to generate composite images. Subsequent analysis
514 was done using ImageJ.

515

516 Acknowledgements

517

518 We thank Gary Struhl and Greg Beitel for providing *D. melanogaster* stocks. Additional
519 stocks in this study were obtained from the Bloomington Drosophila Stock Center (NIH
520 P40OD018537). Microscopy was performed at the Biological Imaging Facility at Northwestern
521 University (RRID:SCR_017767), MK was the recipient of a Northwestern Summer
522 Undergraduate Research Grant. We would also like to thank Shirley Huang, Nilofar Khanbhai,
523 and Danielle Millan, previous undergraduates in the lab who helped to work out the
524 methodology used in these experiments.

525

526 References

- 527 1. Heier C, Kühnlein RP. Triacylglycerol Metabolism in *Drosophila melanogaster*. *Genetics*.
528 2018;210(4):1163-84.
- 529 2. Ahmad M, He L, Perrimon N. Regulation of insulin and adipokinetic hormone/glucagon
530 production in flies. *Wiley Interdiscip Rev Dev Biol*. 2020;9(2):e360.
- 531 3. Meschi E, Delanoue R. Adipokine and fat body in flies: Connecting organs. *Mol Cell
532 Endocrinol*. 2021;533:111339.
- 533 4. Noyes BE, Katz FN, Schaffer MH. Identification and expression of the *Drosophila*
534 adipokinetic hormone gene. *Mol Cell Endocrinol*. 1995;109(2):133-41.
- 535 5. Lee G, Park JH. Hemolymph sugar homeostasis and starvation-induced hyperactivity
536 affected by genetic manipulations of the adipokinetic hormone-encoding gene in *Drosophila*
537 *melanogaster*. *Genetics*. 2004;167(1):311-23.
- 538 6. Kim SK, Rulifson EJ. Conserved mechanisms of glucose sensing and regulation by
539 *Drosophila corpora cardiaca* cells. *Nature*. 2004;431(7006):316-20.
- 540 7. Park Y, Kim YJ, Adams ME. Identification of G protein-coupled receptors for *Drosophila*
541 PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor
542 coevolution. *Proc Natl Acad Sci U S A*. 2002;99(17):11423-8.
- 543 8. Staubli F, Jorgensen TJ, Cazzamali G, Williamson M, Lenz C, Sondergaard L, et al.
544 Molecular identification of the insect adipokinetic hormone receptors. *Proc Natl Acad Sci U S A*.
545 2002;99(6):3446-51.
- 546 9. Baumbach J, Xu Y, Hehlert P, Kühnlein RP. Gαq, Gy1 and Plc21C control *Drosophila* body
547 fat storage. *J Genet Genomics*. 2014;41(5):283-92.

548 10. Arrese EL, Flowers MT, Gazard JL, Wells MA. Calcium and cAMP are second messengers
549 in the adipokinetic hormone-induced lipolysis of triacylglycerols in *Manduca sexta* fat body. *J*
550 *Lipid Res.* 1999;40(3):556-64.

551 11. Patel RT, Soulages JL, Hariharasundaram B, Arrese EL. Activation of the lipid droplet
552 controls the rate of lipolysis of triglycerides in the insect fat body. *J Biol Chem.*
553 2005;280(24):22624-31.

554 12. G  de G, Auerswald L. Mode of action of neuropeptides from the adipokinetic hormone
555 family. *Gen Comp Endocrinol.* 2003;132(1):10-20.

556 13. Isabel G, Martin JR, Chidami S, Veenstra JA, Rosay P. AKH-producing neuroendocrine cell
557 ablation decreases trehalose and induces behavioral changes in *Drosophila*. *Am J Physiol Regul*
558 *Integr Comp Physiol.* 2005;288(2):R531-8.

559 14. Vihervaara T, Puig O. dFO XO regulates transcription of a *Drosophila* acid lipase. *J Mol*
560 *Biol.* 2008;376(5):1215-23.

561 15. Wang B, Moya N, Niessen S, Hoover H, Mihaylova MM, Shaw RJ, et al. A hormone-
562 dependent module regulating energy balance. *Cell.* 2011;145(4):596-606.

563 16. Suh JM, Gao X, McKay J, McKay R, Salo Z, Graff JM. Hedgehog signaling plays a
564 conserved role in inhibiting fat formation. *Cell Metab.* 2006;3(1):25-34.

565 17. Rodenfels J, Lavrynenko O, Ayciriex S, Sampaio JL, Carvalho M, Shevchenko A, et al.
566 Production of systemically circulating Hedgehog by the intestine couples nutrition to growth
567 and development. *Genes Dev.* 2014;28(23):2636-51.

568 18. Zhang J, Liu Y, Jiang K, Jia J. Hedgehog signaling promotes lipolysis in adipose tissue
569 through directly regulating Bmm/ATGL lipase. *Dev Biol.* 2020;457(1):128-39.

570 19. Briscoe J, Th  rond PP. The mechanisms of Hedgehog signalling and its roles in
571 development and disease. *Nat Rev Mol Cell Biol.* 2013;14(7):416-29.

572 20. DeCamp DL, Thompson TM, de Sauvage FJ, Lerner MR. Smoothened activates Galphai-
573 mediated signaling in frog melanophores. *J Biol Chem.* 2000;275(34):26322-7.

574 21. Riobo NA, Saucy B, Dilizio C, Manning DR. Activation of heterotrimeric G proteins by
575 Smoothened. *Proc Natl Acad Sci U S A.* 2006;103(33):12607-12.

576 22. Shen F, Cheng L, Douglas AE, Riobo NA, Manning DR. Smoothened is a fully competent
577 activator of the heterotrimeric G protein G(i). *Mol Pharmacol.* 2013;83(3):691-7.

578 23. Ogden SK, Fei DL, Schilling NS, Ahmed YF, Hwa J, Robbins DJ. G protein Galphai functions
579 immediately downstream of Smoothened in Hedgehog signalling. *Nature.* 2008;456(7224):967-
580 70.

581 24. Belgacem YH, Borodinsky LN. Sonic hedgehog signaling is decoded by calcium spike
582 activity in the developing spinal cord. *Proc Natl Acad Sci U S A.* 2011;108(11):4482-7.

583 25. Barzi M, Kostrz D, Menendez A, Pons S. Sonic Hedgehog-induced proliferation requires
584 specific G   inhibitory proteins. *J Biol Chem.* 2011;286(10):8067-74.

585 26. Teperino R, Amann S, Bayer M, McGee SL, Loipetzberger A, Connor T, et al. Hedgehog
586 partial agonism drives Warburg-like metabolism in muscle and brown fat. *Cell.*
587 2012;151(2):414-26.

588 27. Berlin S, Carroll EC, Newman ZL, Okada HO, Quinn CM, Kallman B, et al.
589 Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. *Nat*
590 *Methods.* 2015;12(9):852-8.

591 28. Hoshizaki DK, Blackburn T, Price C, Ghosh M, Miles K, Ragucci M, et al. Embryonic fat-
592 cell lineage in *Drosophila melanogaster*. *Development*. 1994;120(9):2489-99.

593 29. Leybaert L, Sanderson MJ. Intercellular Ca(2+) waves: mechanisms and function. *Physiol*
594 *Rev*. 2012;92(3):1359-92.

595 30. Bharucha KN, Tarr P, Zipursky SL. A glucagon-like endocrine pathway in *Drosophila*
596 modulates both lipid and carbohydrate homeostasis. *J Exp Biol*. 2008;211(Pt 19):3103-10.

597 31. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. Genetic control of
598 programmed cell death in *Drosophila*. *Science*. 1994;264(5159):677-83.

599 32. Sanial M, Bécam I, Hofmann L, Behague J, Argüelles C, Gourhand V, et al. Dose-
600 dependent transduction of Hedgehog relies on phosphorylation-based feedback between the
601 G-protein-coupled receptor Smoothened and the kinase Fused. *Development*.
602 2017;144(10):1841-50.

603 33. Wang QT, Holmgren RA. Nuclear import of *cubitus interruptus* is regulated by hedgehog
604 via a mechanism distinct from Ci stabilization and Ci activation. *Development*.
605 2000;127(14):3131-9.

606 34. Gonçalves Antunes M, Sanial M, Contremoulin V, Carvalho S, Plessis A, Becam I. High
607 hedgehog signaling is transduced by a multikinase-dependent switch controlling the apico-basal
608 distribution of the GPCR smoothened. *Elife*. 2022;11.

609 35. Casali A, Struhl G. Reading the Hedgehog morphogen gradient by measuring the ratio of
610 bound to unbound Patched protein. *Nature*. 2004;431(7004):76-80.

611 36. Sánchez-Hernández D, Sierra J, Ortigão-Farias JR, Guerrero I. The WIF domain of the
612 human and *Drosophila* Wif-1 secreted factors confers specificity for Wnt or Hedgehog.
613 *Development*. 2012;139(20):3849-58.

614 37. Avanesov A, Blair SS. The *Drosophila* WIF1 homolog Shifted maintains glycan-
615 independent Hedgehog signaling and interacts with the Hedgehog co-receptors Ihog and Boi.
616 *Development*. 2013;140(1):107-16.

617 38. Siebold C, Rohatgi R. The Inseparable Relationship Between Cholesterol and Hedgehog
618 Signaling. *Annu Rev Biochem*. 2023;92:273-98.

619 39. Aza-Blanc P, Ramírez-Weber FA, Laget MP, Schwartz C, Kornberg TB. Proteolysis that is
620 inhibited by hedgehog targets *Cubitus interruptus* protein to the nucleus and converts it to a
621 repressor. *Cell*. 1997;89(7):1043-53.

622 40. Hepker J, Wang QT, Motzny CK, Holmgren R, Orenic TV. *Drosophila cubitus interruptus*
623 forms a negative feedback loop with patched and regulates expression of Hedgehog target
624 genes. *Development*. 1997;124(2):549-58.

625 41. De Moed GHK, C. L. J. J; De Jong, G.; Scharloo, W. Critical weight for the induction of
626 pupariation in *Drosophila melanogaster*: genetic and environmental variation. *J Evol Biol*.
627 1999;12:852-8.

628 42. Maus M, Cuk M, Patel B, Lian J, Ouimet M, Kaufmann U, et al. Store-Operated Ca(2+)
629 Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid
630 Metabolism. *Cell Metab*. 2017;25(3):698-712.

631 43. Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT, Zhang X, et al. *Drosophila*
632 genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose
633 cell fate. *Cell*. 2010;140(1):148-60.

634 44. Zhao Y, Khallaf MA, Johansson E, Dzaki N, Bhat S, Alfredsson J, et al. Hedgehog-mediated
635 gut-taste neuron axis controls sweet perception in *Drosophila*. *Nat Commun.* 2022;13(1):7810.

636 45. Shi Y, Long F. Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in
637 adult mice. *Elife.* 2017;6.

638 46. Ho KYL, An K, Carr RL, Dvoskin AD, Ou AYJ, Vogl W, et al. Maintenance of hematopoietic
639 stem cell niche homeostasis requires gap junction-mediated calcium signaling. *Proc Natl Acad
640 Sci U S A.* 2023;120(45):e2303018120.

641 47. Adachi C, Kakinuma N, Jo SH, Ishii T, Arai Y, Arai S, et al. Sonic hedgehog enhances
642 calcium oscillations in hippocampal astrocytes. *J Biol Chem.* 2019;294(44):16034-48.

643 48. Klatt Shaw D, Gunther D, Juryneac MJ, Chagovetz AA, Ritchie E, Grunwald DJ. Intracellular
644 Calcium Mobilization Is Required for Sonic Hedgehog Signaling. *Dev Cell.* 2018;45(4):512-25.e5.

645 49. Li A, Cho JH, Reid B, Tseng CC, He L, Tan P, et al. Calcium oscillations coordinate feather
646 mesenchymal cell movement by SHH dependent modulation of gap junction networks. *Nat
647 Commun.* 2018;9(1):5377.

648 50. Shim S, Goyal R, Panoutsopoulos AA, Balashova OA, Lee D, Borodinsky LN. Calcium
649 dynamics at the neural cell primary cilium regulate Hedgehog signaling-dependent
650 neurogenesis in the embryonic neural tube. *Proc Natl Acad Sci U S A.*
651 2023;120(23):e2220037120.

652 51. Happ JT, Arveseth CD, Bruystens J, Bertinetti D, Nelson IB, Olivieri C, et al. A PKA
653 inhibitor motif within SMOOTHENED controls Hedgehog signal transduction. *Nat Struct Mol
654 Biol.* 2022;29(10):990-9.

655 52. Masterson LR, Yu T, Shi L, Wang Y, Gustavsson M, Mueller MM, et al. cAMP-dependent
656 protein kinase A selects the excited state of the membrane substrate phospholamban. *J Mol
657 Biol.* 2011;412(2):155-64.

658 53. Peracchia C. Calmodulin-Mediated Regulation of Gap Junction Channels. *Int J Mol Sci.*
659 2020;21(2).

660 54. Gaspers LD, Pierobon N, Thomas AP. Intercellular calcium waves integrate hormonal
661 control of glucose output in the intact liver. *J Physiol.* 2019;597(11):2867-85.

662 55. Eaton S. Multiple roles for lipids in the Hedgehog signalling pathway. *Nat Rev Mol Cell
663 Biol.* 2008;9(6):437-45.

664 56. Hausmann G, von Mering C, Basler K. The hedgehog signaling pathway: where did it
665 come from? *PLoS Biol.* 2009;7(6):e1000146.

666 57. Carmen GY, Víctor SM. Signalling mechanisms regulating lipolysis. *Cell Signal.*
667 2006;18(4):401-8.

668 58. Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. *Nat Rev
669 Mol Cell Biol.* 2023;24(9):668-87.

670 59. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive
671 fluorescent proteins for imaging neuronal activity. *Nature.* 2013;499(7458):295-300.

672 60. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and
673 generating dominant phenotypes. *Development.* 1993;118(2):401-15.

674 61. Schaefer M, Petronczki M, Dorner D, Forte M, Knoblich JA. Heterotrimeric G proteins
675 direct two modes of asymmetric cell division in the *Drosophila* nervous system. *Cell.*
676 2001;107(2):183-94.

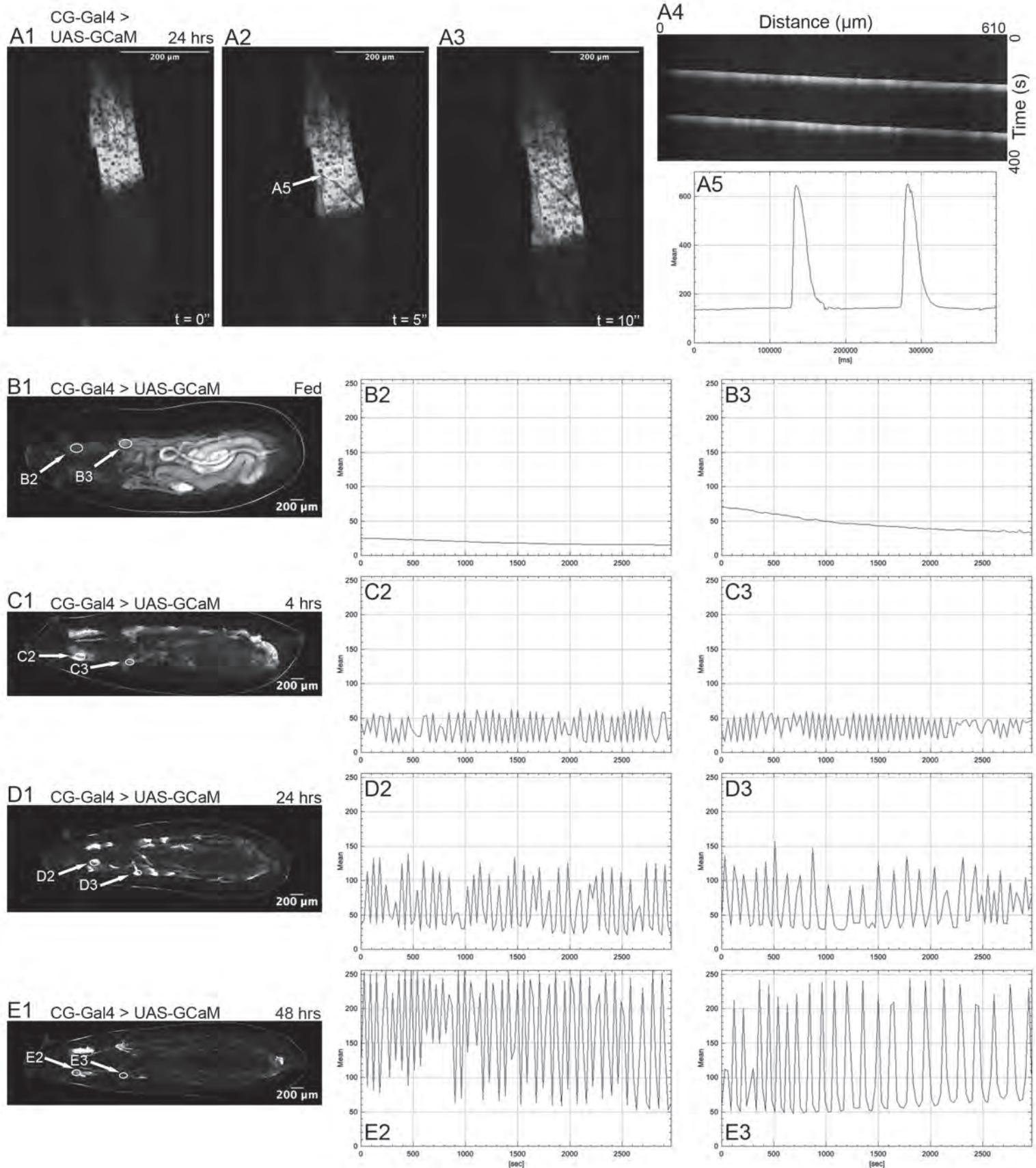
677 62. Yu F, Cai Y, Kaushik R, Yang X, Chia W. Distinct roles of Galphai and Gbeta13F subunits of
678 the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric
679 divisions. *J Cell Biol.* 2003;162(4):623-33.

680

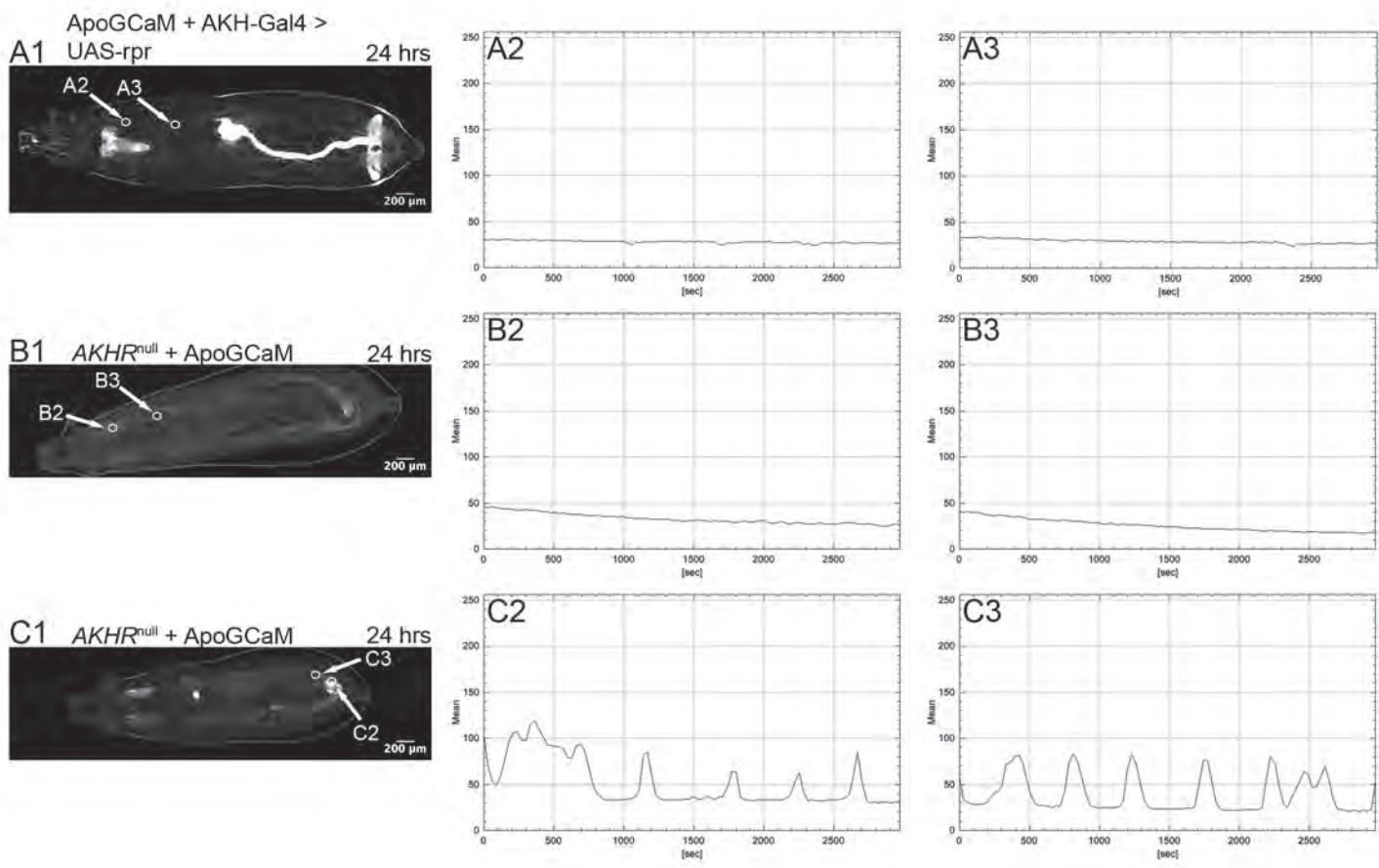
681 **Supporting information captions**

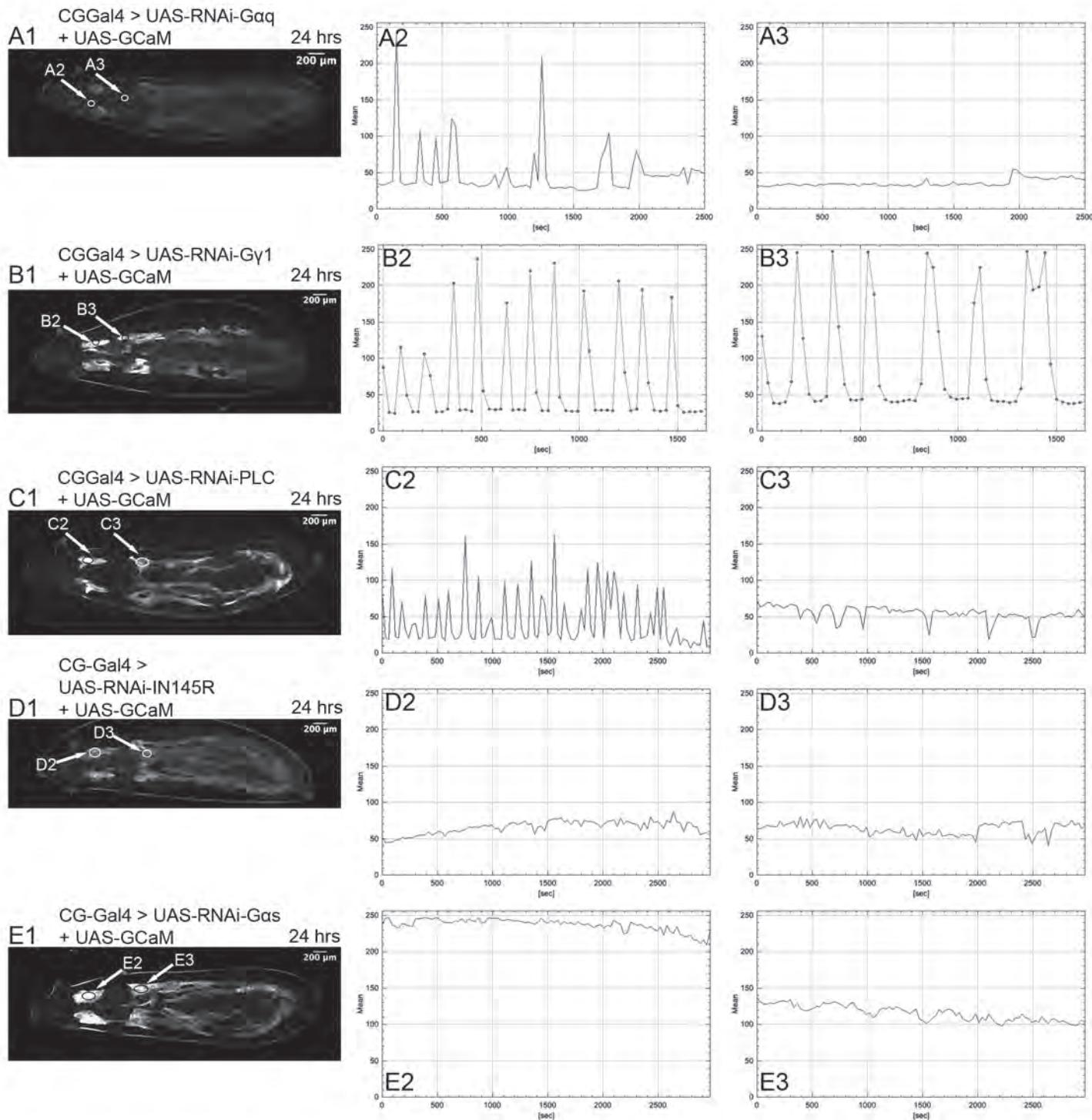
682

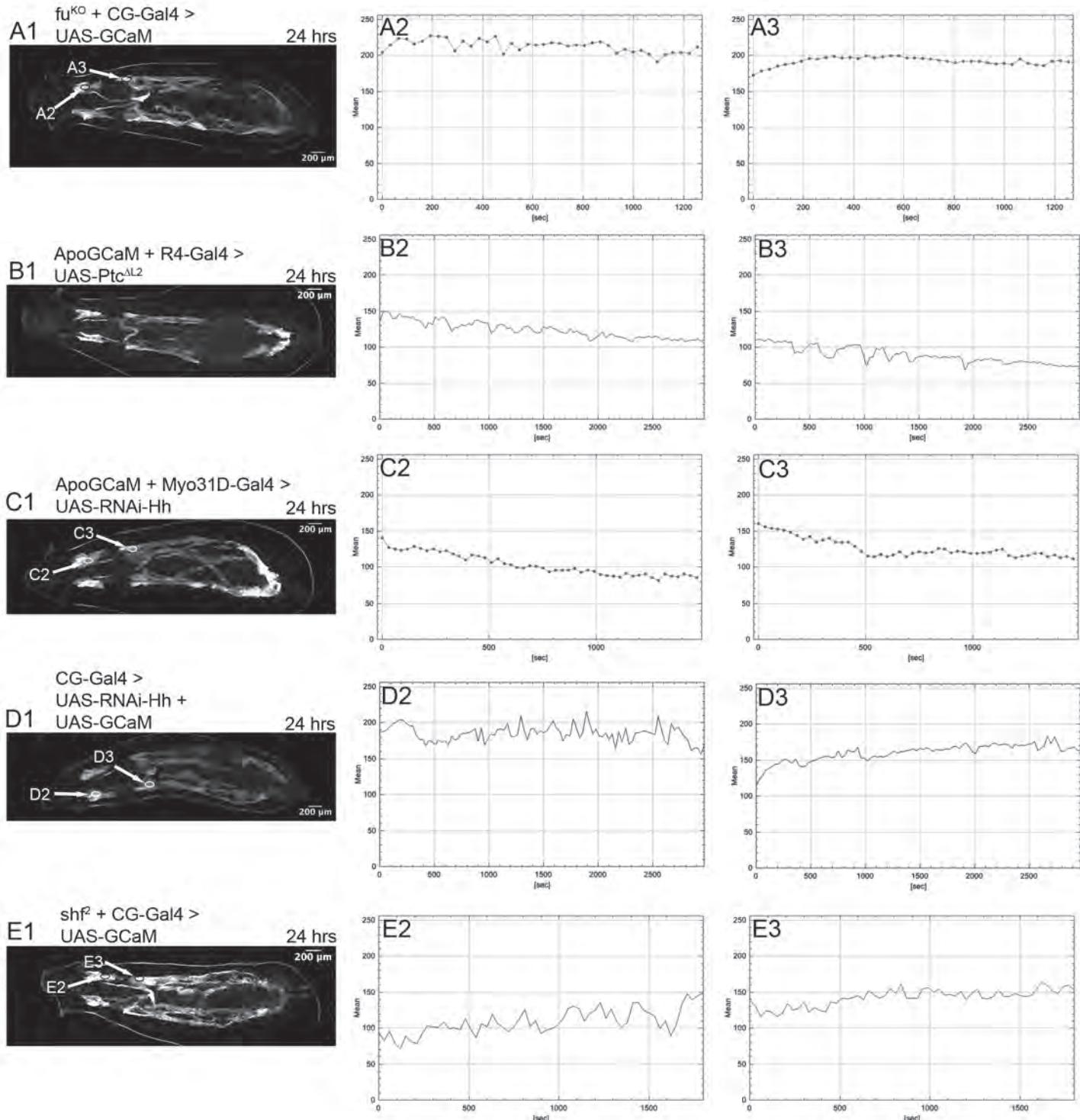
683 **S1 Fig. Analysis of Ca⁺⁺ pulses with *apolpp::GCaMP6S*.** (A-C) *CG-Gal4/UAS-LacZ*;
684 *apolpp::GCaMP6S* male larvae imaged using the same settings as Figure 1. In experiments
685 where *apolpp::GCaMP6S* was used to assay intracellular Ca⁺⁺ in the fat body, there is more
686 variability in the Ca⁺⁺ pulses, and pulse propagation is less robust with roughly half the animals
687 only showing pulsing in the fat body lobes of the head region and the other half having pulsing in
688 the head region and only weak pulse progressing into the fat body lobes of the larval trunk. (A)
689 Fed male larva where Ca⁺⁺ pulses are absent. (B and C) Representative larvae that have been
690 starved for 24 hours. (B) Ca⁺⁺ pulses are only observed in the fat body lobes of the head. (n=20) .
691 (C) Ca⁺⁺ pulses from the fat body lobes of the head are only weakly transmitted to fat body lobes
692 of the larval trunk. (n=20) (D) *yw; CyO, dfd-YFP/Sp; apolpp::GCaMP6S/apolpp::GCaMP6S*
693 fed larvae (n=6). Even under fed conditions half of the larvae exhibited abnormal, high intensity,
694 Ca⁺⁺ pulses in the larval trunk fat body. In the other half, the larvae exhibited elevated Ca⁺⁺
695 levels. For this genotype the gain on the camera had to be reduced to avoid saturating the image.
696 This is evident by comparing the gut autofluorescence levels between A1 and D1. (A,B,C,D-1)
697 Ca⁺⁺ levels in fat body. (A,B,C,D-2) GCaMP6S fluorescence levels in a defined region from a fat
698 body lobe in the head region. (A,B,C,D-3) GCaMP6S fluorescence levels vs. time for the marked
699 region of the medial fat body.


700

701 **S2 Fig. Release of Hh from midgut enterocytes is necessary for the generation of Ca^{++}**
702 **pulses in starved larvae.** (A) *Myo31D-Gal4* / +; *UAS-RNAi-disp* / *apolpp::GCaMP6S* male
703 larva starved for 24 hours. 10 animals had no Ca^{++} pulsing, while two animals had sporadic
704 uncoordinated pulsing in the fat body lobes in the head. (n=12) (A1) Ca^{++} levels in fat body.
705 (A2) GCaMP6S fluorescence levels vs. time for marked region of the fat body in the head of
706 larvae. (A3) GCaMP6S fluorescence levels vs. time for marked region of the medial fat body.
707
708


Figure 1


Figure 2


Figure 3

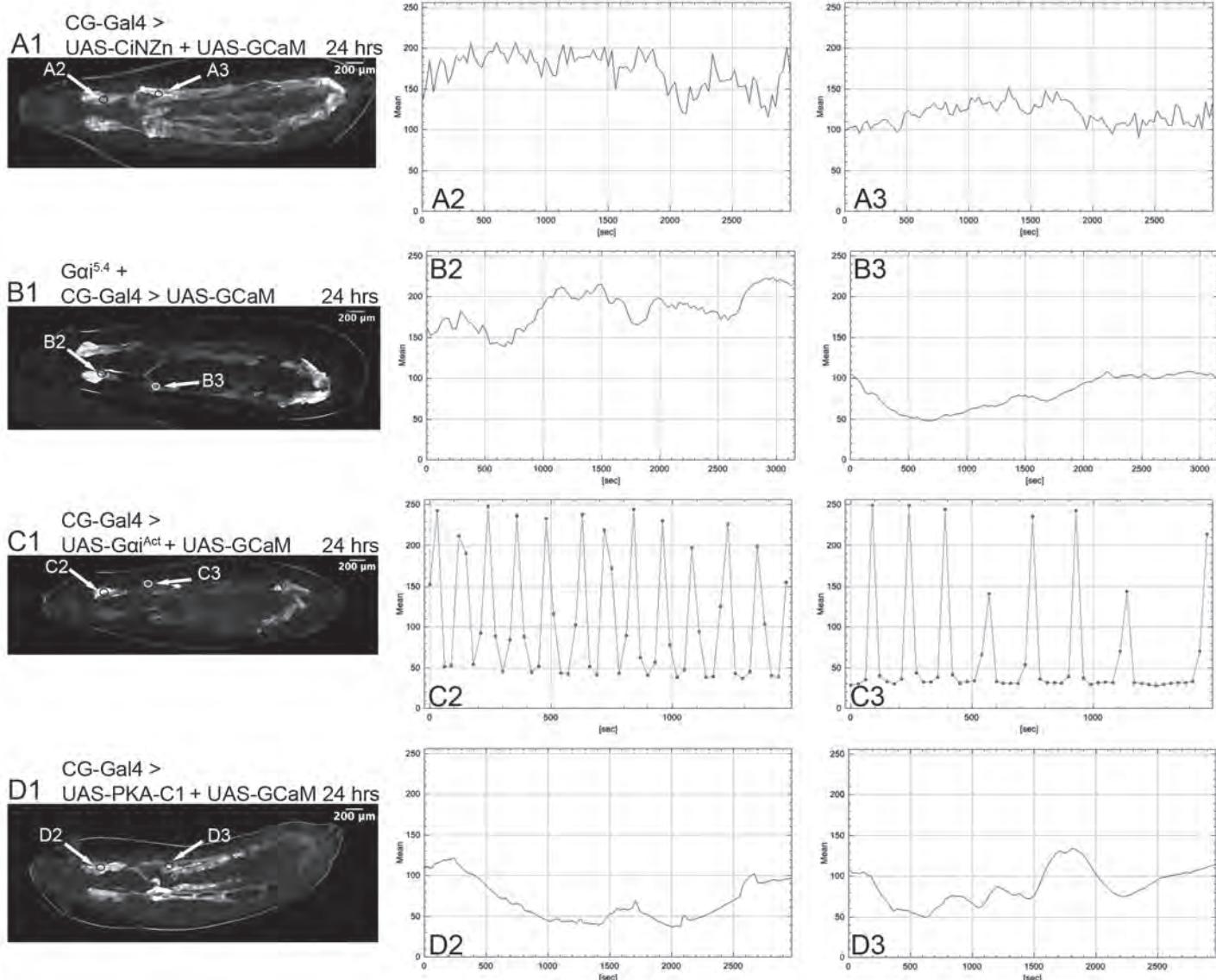

Figure 4

Figure 5

Figure 6

Figure 7

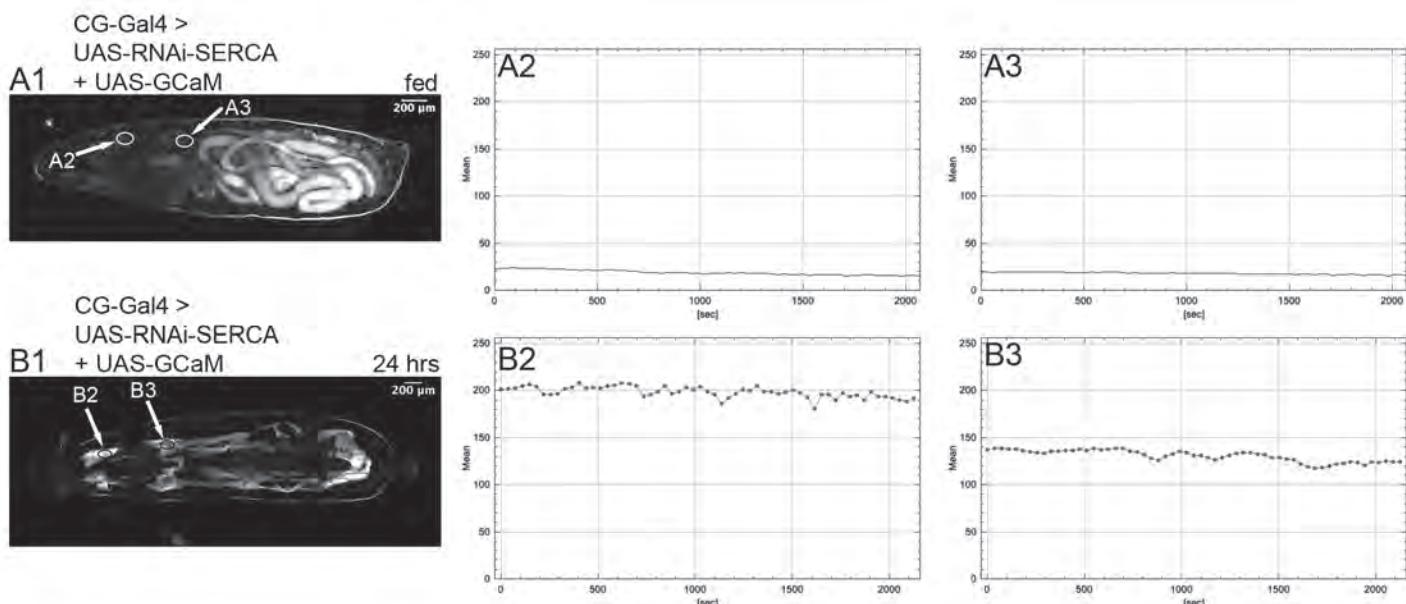


Figure S1

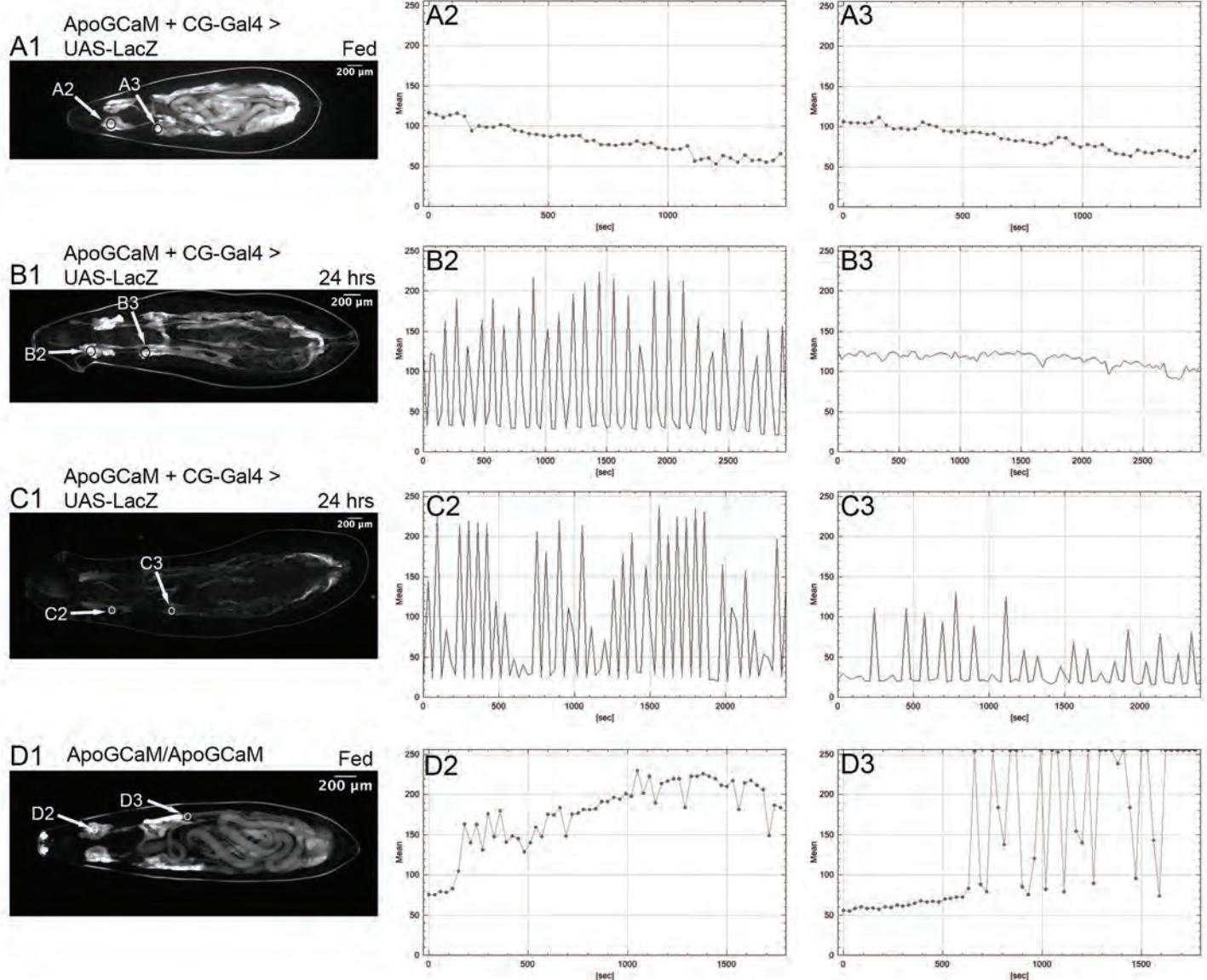
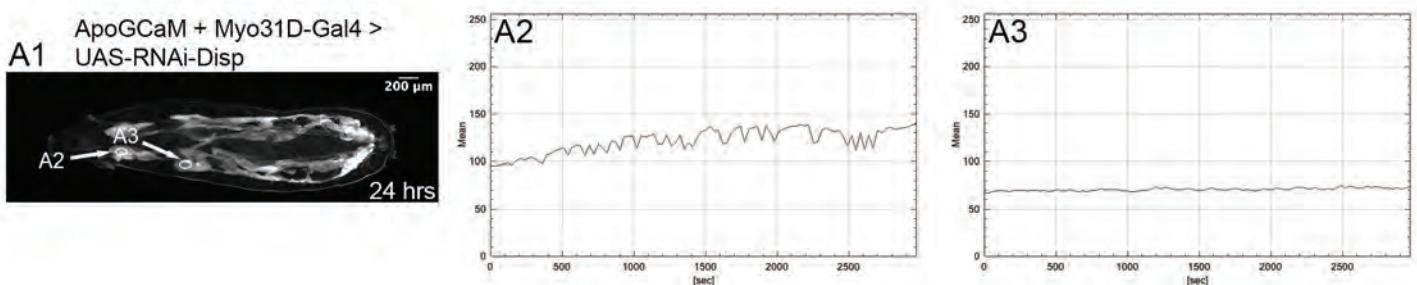



Figure S2

