

1 **Title: Cyr61 delivery promotes angiogenesis during bone fracture repair**

2

3 **Short title:** Cyr61 in fracture repair

4

5 **Authors**

6 Annemarie Lang¹, Emily A. Eastburn^{1,2}, Mousa Younesi², Madhura Nijsure^{1,2}, Carly Siciliano^{1,2}, Annapurna
7 Pranatharthi Haran^{1,2}, Christopher J. Panebianco¹, Elizabeth Seidl^{1,2}, Rui Tang³, Eben Alsberg³, Nick J.
8 Willett^{4,5}, Riccardo Gottardi^{2,6}, Dongeun Huh², Joel D. Boerckel^{1,2*}

9

10 *To whom correspondence should be addressed:

11 Joel D. Boerckel

12 boerckel@pennmedicine.upenn.edu

13

14 **Affiliations**

15 ¹Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States

16 ²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States

17 ³Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States

18 ⁴Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR,
19 United States

20 ⁵The Veterans Affairs Portland Health Care System, Portland, OR, United States

21 ⁶Children's Hospital of Philadelphia, Philadelphia, PA, United States

22

23 **Abstract**

24 Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of
25 non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular
26 growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution
27 of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on
28 vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic
29 gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61
30 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture
31 repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization.
32 Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair,
33 particularly for fractures with stable fixation, and may have therapeutic potential for fractures with
34 limited blood vessel supply.

35 **Introduction**

36 Compromised vascular supply and insufficient neovascularization are primary clinical challenges to bone
37 repair and regeneration. Osteoblasts require close vascular proximity for oxygen and nutrients (1, 2),
38 and the osteoprogenitor cells that mediate bone repair mobilize via vascular invasion (3). In fractures,
39 especially in bones that have low peripheral vascular supply, insufficient neovascularization impedes
40 repair and elevates non-union risk (4). Insufficient vascularization is an even greater challenge for
41 segmental bone defect regeneration, which suffers from both insufficient progenitor cell pools and an
42 obliterated vascular bed (5, 6). Regenerative therapies that overcome these challenges for fracture
43 healing and bone defect regeneration could be transformative.

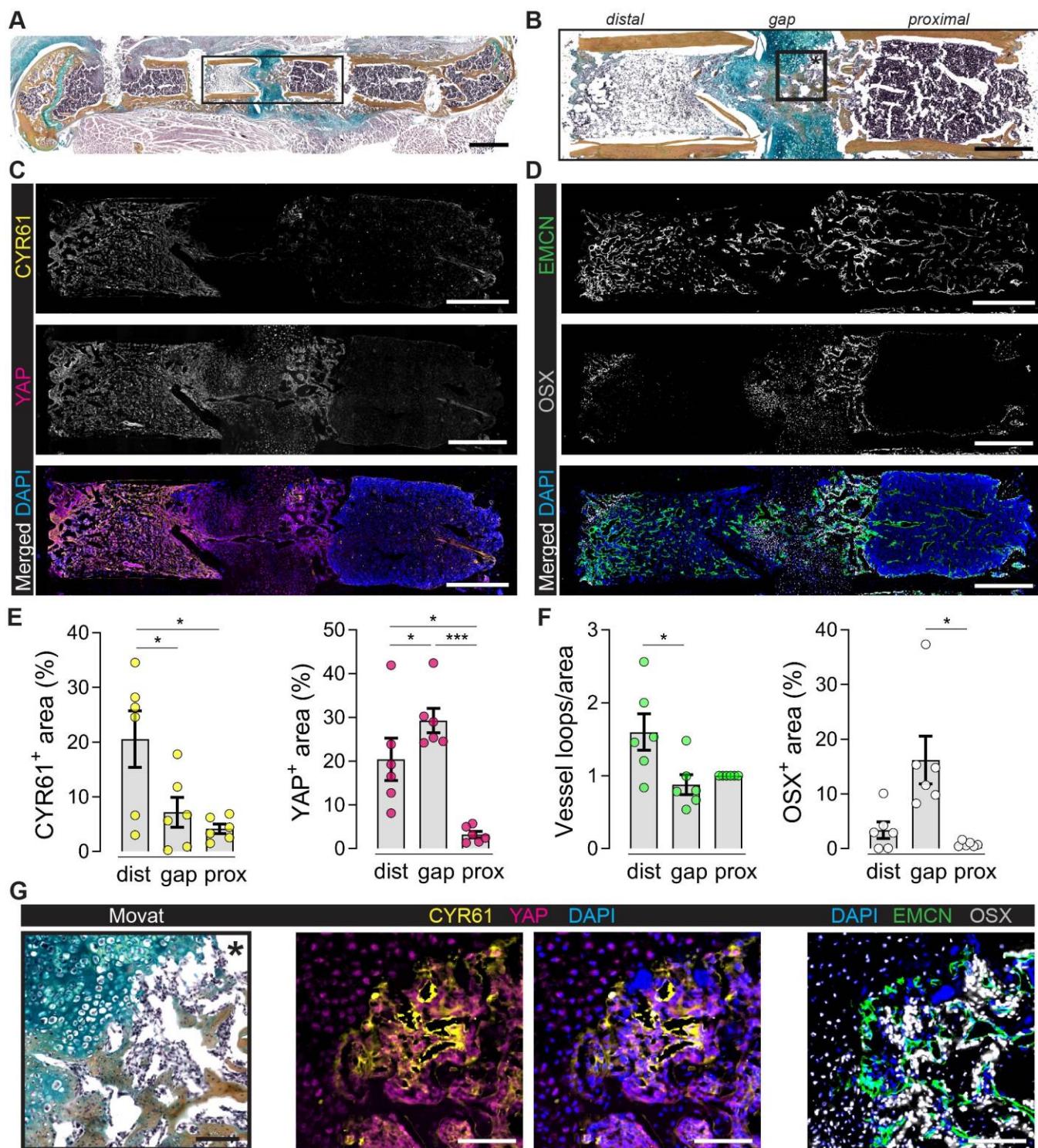
44 Mechanical stimuli determine the mode of bone healing. While low interfragmentary strains promote
45 intramembranous (direct) ossification, high strains induce endochondral ossification (through a cartilage
46 callus) (7-9). Previously, we found that mechanical loading can either promote or enhance bone healing,
47 depending on interfragmentary strain magnitude and timing. Further, we found that these mechanical
48 cues directly regulate neovascularization during bone regeneration (10-12). Mechanistically, we
49 identified the transcriptional regulator Yes-associated protein (YAP) and transcriptional co-activator with
50 PDZ-binding motif (TAZ) as key mechano-transducers during fracture repair (13), bone development (14,
51 15) and angiogenesis (12, 16). However, YAP and TAZ are oncogenes (17), suggesting that targeted
52 activation of YAP/TAZ themselves would not be a feasible therapeutic for bone repair. However, multiple
53 studies from our lab (11-13, 15, 16, 18) and others (19-22) identify Cysteine-rich angiogenic inducer 61
54 (Cyr61, also known as CCN1), as a direct target of YAP/TAZ mechanosignaling that may direct
55 regeneration.

56 Cyr61 is a matricellular growth factor that functions as an integrin ligand (23-26) and integrates into the
57 matrix via its N-terminal heparin binding domain (27, 28). Cyr61, a product of a growth
58 factor-inducible immediate early gene, is associated with the cell surface and the
59 extracellular matrix (27, 29, 30), and has been reported to regulate both chondrogenesis and
60 osteogenesis during skeletal development (31-33). Cyr61 has also been implicated in fracture repair.
61 Specifically, Cyr61 expression is elevated by mechanical stimulation during fracture repair (34, 35), and
62 single-nucleotide polymorphisms to Cyr61 in patients increases risk for fracture non-union (36). Only one
63 study has delivered recombinant Cyr61 during bone repair, investigating distraction osteogenesis in a
64 rabbit model (37). In this study, a Cyr61-coated collagen sponge was wrapped around the osteotomy
65 site at the time of surgery, prior to distraction (37). Cyr61 delivery increased bone strength, but did not
66 significantly alter bone volume, suggesting Cyr61 may not simply promote osteogenesis during bone
67 repair (37). The cellular targets of Cyr61 delivery and impacts of Cyr61 presentation on
68 mechanoregulation of bone repair are unknown.

69 We hypothesized that the mechano-activated YAP/TAZ target gene Cyr61 can promote bone
70 regeneration by mediating angiogenic/osteogenic crosstalk. Here, we map the distribution of
71 endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery, under

72 varied ambulatory loading conditions, effected by stiff or compliant fixation. We found that endogenous
73 Cyr61 associates with the vascularized extracellular matrix and cellular YAP abundance in endochondral
74 tissues after fracture. Treatment with Cyr61 did not promote chondrogenesis or osteogenesis in vitro or
75 in the fracture callus *in vivo*. In contrast, Cyr61 treatment induced endothelial tube formation and vessel
76 maturation in vitro and promoted neovascularization in the fracture callus. However, early ambulatory
77 mechanical loading abrogated the angiogenic effects of Cyr61 delivery. Together, we found that Cyr61
78 delivery promoted angiogenesis during fracture repair, but not under mechanical conditions that were
79 mechanically unfavorable for functional vascularization.

80 **Results**

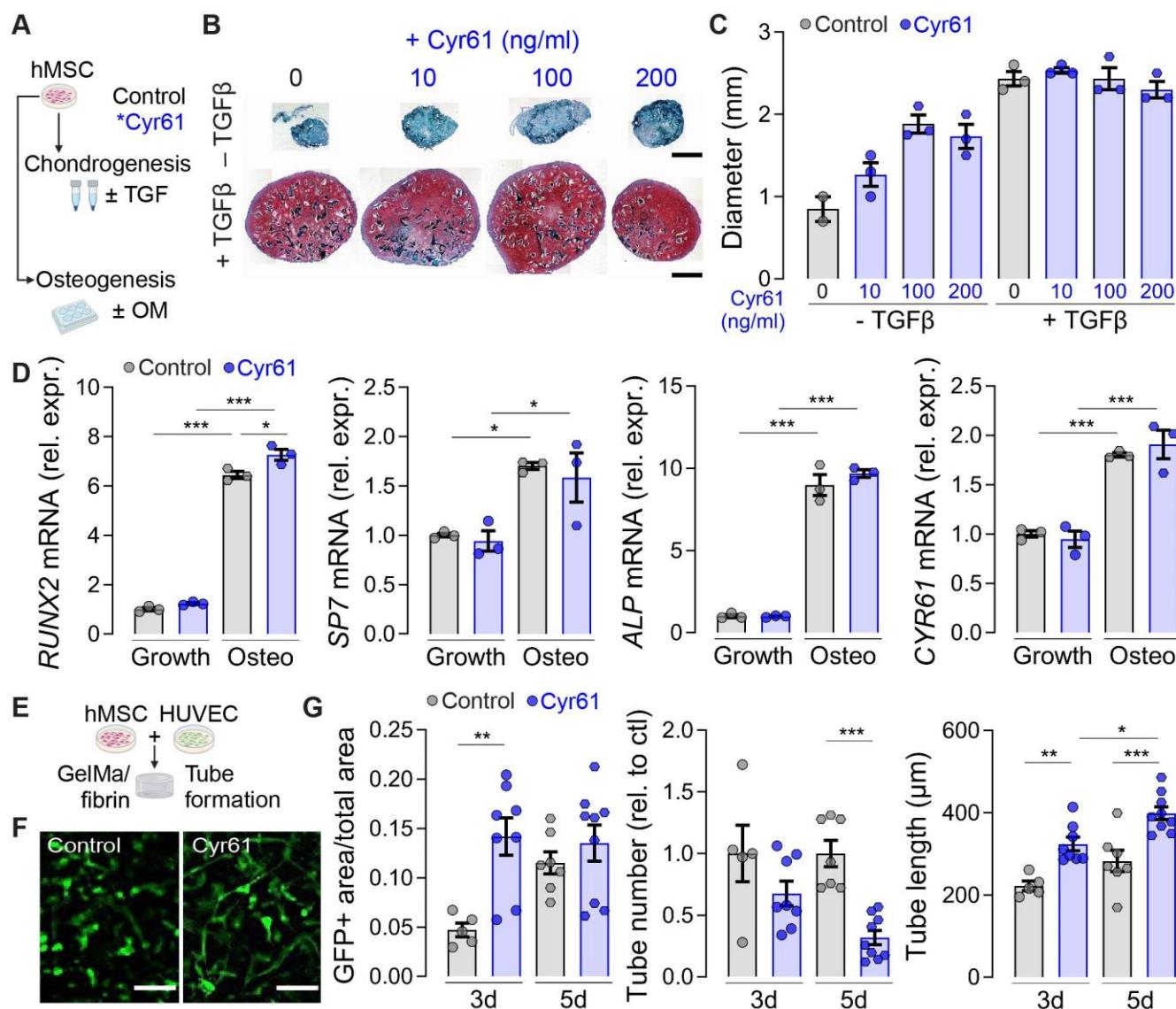


81 ***Cyr61 associates with vascularized extracellular matrix after fracture***

82 First, to understand how exogenous Cyr61 delivery might influence fracture repair, we examined the
83 spatial patterns of endogenous Cyr61 abundance, its upstream regulator, YAP, and their spatial
84 relationship to the vasculature and osteo-/chondro-progenitor cells at 14 days post-fracture (dpf) in a
85 mouse femoral fracture model (**Fig. 1A, B**). We stabilized fractures with either stiff or compliant fixators
86 to alter ambulatory load transfer and interfragmentary motion (38).

87 We stained fractures for Cyr61, YAP, endomucin (EMCN, to mark endothelial cells) and osterix (OSX, to
88 mark osteoprogenitor-lineage cells and hypertrophic chondrocytes) (**Fig. 1C, D**). Differences between
89 stiff and compliant fixation on Cyr61 abundance and spatial distribution were not statistically significant
90 (**Supplementary Fig. S1**). Therefore, for further image analysis, we combined these groups and defined
91 three different regions of interest (ROI): the fracture gap (between the bone ends) and the distal and
92 proximal bone marrow, spanning the endosteal region between the fracture gap and the next pin (**Fig.**
93 **1A**).

94 Cyr61 abundance was most prominent in the fracture-adjacent bone marrow (**Fig. 1C, E**), but was not
95 highly expressed in the fracture gap (**Fig. 1G**) consistent with prior reports (34). Cyr61 staining was
96 particularly evident in close proximity to EMCN-positive endothelial cells (**Fig. 1C-G**). Both OSX and YAP
97 were abundant in the gap, consistent with our prior studies on the roles of YAP/TAZ signaling in OSX-
98 expressing cells during endochondral bone regeneration and development (13, 15) (cf. **Fig. 1F**, **Fig 1E**).

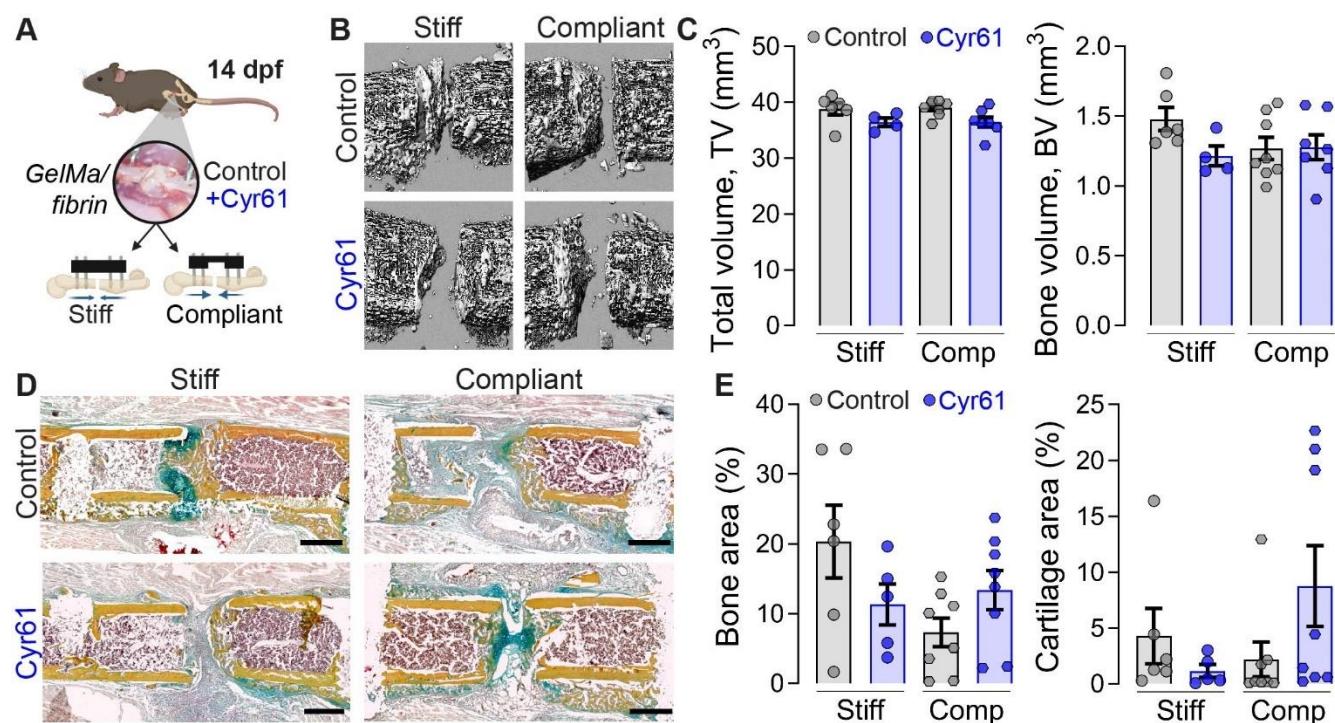

99
100 **Figure 1. Spatial expression of YAP, CCN1/CYR61, EMCN and OSX in the fractured bone at 14 dpf.** (A) Exemplary
101 Movat's Pentachrome staining 14 dpf; black box indicates ROI as magnified in B, C and D. (B) Magnification of
102 fracture gap and adjacent bone marrow areas (ROI from A; black box indicates ROI for G). (C, D) Overview
103 stainings. (E, F) Quantifications. One-way ANOVA with matched pairs was used to determine the statistical
104 significance; p-values are indicated with * $p < 0.05$; ** $p < 0.01$. (G) Magnifications from endochondral part of
105 fracture gap. Scale bars indicate 1 mm (A) and 500 μ m (B-D) and 100 μ m (G).

106 ***Cyr61 enhances endothelial tube formation in vitro, but not hMSC chondrogenesis or osteogenesis***

107 Next, to determine the direct effects of Cyr61 on chondrogenesis, osteogenesis and neovascularization,
108 we evaluated human bone marrow stromal cells (hMSCs) differentiation and 3D angiogenesis in vitro
109 (**Fig. 2A, E**). First, we evaluated the effects of exogenous Cyr61 on cartilage matrix deposition in a
110 transforming growth factor (TGF)- β 1-induced pellet chondrogenesis assay and osteogenic gene
111 induction in an osteogenic medium differentiation assay (**Fig. 2A**). In the pellet assay, Cyr61 treatment
112 modestly increased pellet size in a dose-dependent manner, in the absence of TGF- β 1, but did not induce
113 chondrocyte formation or glycosaminoglycan (GAG) deposition (**Fig. 2B**). Treatment with TGF- β 1
114 markedly induced chondrogenesis and GAG deposition, but Cyr61 co-treatment had no effect on
115 chondrogenesis, GAG production, or pellet size (**Fig. 2B, C**). In the osteogenesis assay, osteogenic
116 medium significantly induced mRNA expression of osteogenic marker genes *RUNX2*, *SP7*, and *ALP*, as
117 well as expression of *CYR61* (**Fig. 2D**). However, while exogenous Cyr61 treatment modestly, but
118 significantly, increased *RUNX2* expression in osteogenic conditions, Cyr61 treatment did not alter *SP7* or
119 *ALP* expression, or expression of Cyr61 itself (**Fig. 2D**).

120 Next, we evaluated the effect of exogenous Cyr61 treatment on endothelial tube formation in a 3D in
121 vitro angiogenesis assay featuring co-culture of GFP-labeled human umbilical vein endothelial cells
122 (HUVECs) and hMSCs (**Fig. 2E**). Cyr61 treatment significantly increased GFP+ cell area density at 3 days
123 (**Fig. 2G**). Cyr61-increased tubular network formation coincided with lower relative tube numbers at 3
124 and 5 days (**Fig. 2G**) and with increased tube length (**Fig. 2G**).

125 Together, these data suggest that Cyr61 has only modest effects on chondrogenesis and osteogenesis,
126 under these in vitro conditions, but that Cyr61 stimulated tubular network formation.

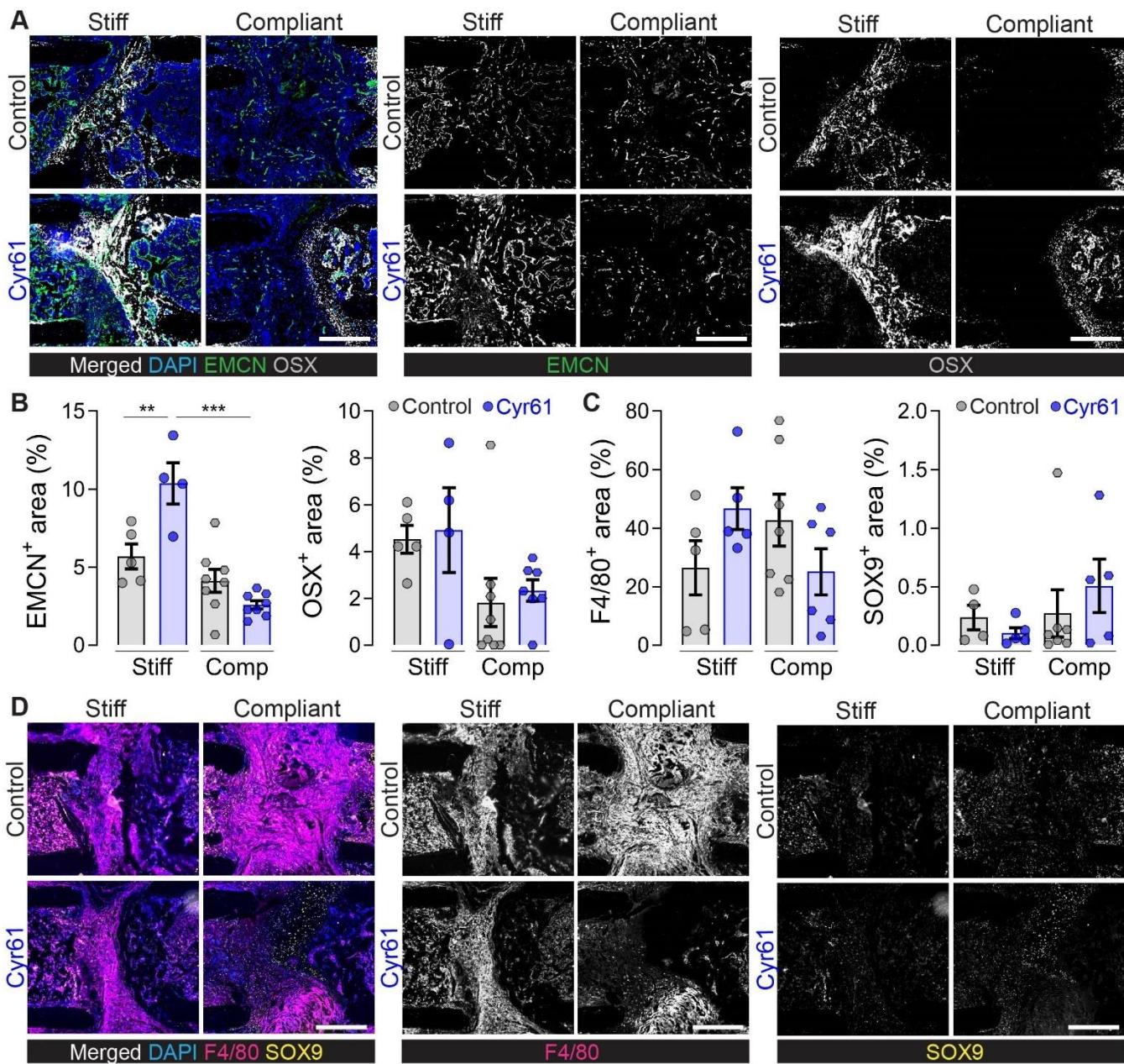

127

128 **Figure 2. Cyr61 accelerates in vitro angiogenesis, but not chondrogenesis or osteogenesis of hMSCs. (A)**
129 Experimental setup. **(B)** Representative images of Safranin-O-staining and **(C)** quantitative measurement of
130 chondrogenic pellet diameter at 2 weeks. **(D)** Relative mRNA expression of *RUNX2*, *SP7*, *COL1A1* and *CYR61* after
131 3 weeks of osteogenic differentiation normalized to housekeeping gene and control. **(E)** 3D in vitro angiogenesis
132 assay combining HUVECs and hMSCs. **(F)** Exemplary images of tube formation at 3 days. **(G)** Quantification of relative
133 *GFP*⁺ cell area, relative tube number and tube length. Mean \pm SEM and individual data points. One-way ANOVA
134 was used to determine the statistical significance; p-values are indicated with * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.
135 Scale bars indicate 500 μ m (B) and 200 μ m (F).

136 **Local Cyr61 delivery had no effect on fracture callus bone or cartilage formation at 14 dpf**

137 Next, to determine the effect of Cyr61 delivery on bone regeneration under varied ambulatory loading,
138 we used a Gelatin methacrylate GelMA/fibrin scaffold to deliver Cyr61 to mouse femoral osteotomies,
139 stabilized by either stiff or compliant fixation (Fig. 3A). The GelMA/fibrin scaffolds exhibited robust and
140 persistent binding of Cyr61 in vitro (Supplementary Fig. S2). Neither fixation stiffness nor Cyr61 delivery
141 significantly altered callus volume or bone volume at 14 dpf (Fig. 3B, C). Movat's Pentachrome staining
142 indicated more pronounced formation of fibrous tissue with Cy61 treatment in the rigid fixation group
143 when compared to the non-treated group (Fig. 3D) with no significant differences in the relative
144 mineralized bone or cartilage area (Fig. 3E).

145 Taken together, we did not observe a significant effect of local Cyr61 delivery on bone or cartilage
146 formation at 14 dpf.


148 **Figure 3. Cyr61 treatment had no effect on fracture callus bone or cartilage formation at 14 dpf.** (A) Experimental
149 setup. (B) 3D Representative reconstruction images of microCT analysis. (C) MicroCT - quantification of bone
150 volume (BV) and bone volume fraction (bone volume/BV; total callus volume/TV). (D) Exemplary images of
151 Movat's Pentachrome staining – yellow = mineralized bone; green = cartilage; magenta = bone marrow; red =
152 muscle tissue. (E) Quantification of mineralized bone and cartilage area in gap. Mean \pm SEM and individual data
153 points. One-way ANOVA was used to determine the statistical significance. Scale bars indicate 500 μ m (D).

154 ***Local Cyr61 delivery strongly promoted vascular formation in callus area 14 dpf***

155 Next, we asked whether Cyr61 delivery would promote neovascularization during fracture repair,
156 depending on the mechanical environment. We analyzed immunofluorescence stainings using EMCN to
157 mark blood vessels, OSX to mark osteoblast-lineage cells, F4/80 to mark macrophages and SOX9 to mark
158 chondrocytes. Cyr61 significantly increased vessel formation under rigid fixation compared to vehicle
159 control, but this effect was abrogated under compliant fixation (**Fig. 4A, B**). Cyr61 delivery did not
160 significantly alter the amount or distribution of OSX+ cells (**Fig. 4A, B**). Macrophage invasion was
161 qualitatively elevated by compliant fixation, and this was suppressed by Cyr61 delivery, though these
162 differences were not statistically significant (**Fig. 4C, D**). No significant differences were observed in SOX9
163 staining (**Fig. 4C, D**).

164 Together, these data suggest that Cyr61 delivery can promote angiogenesis during fracture repair, but
165 this effect can be abrogated by initiation of ambulatory mechanical loading immediately after fracture.

166

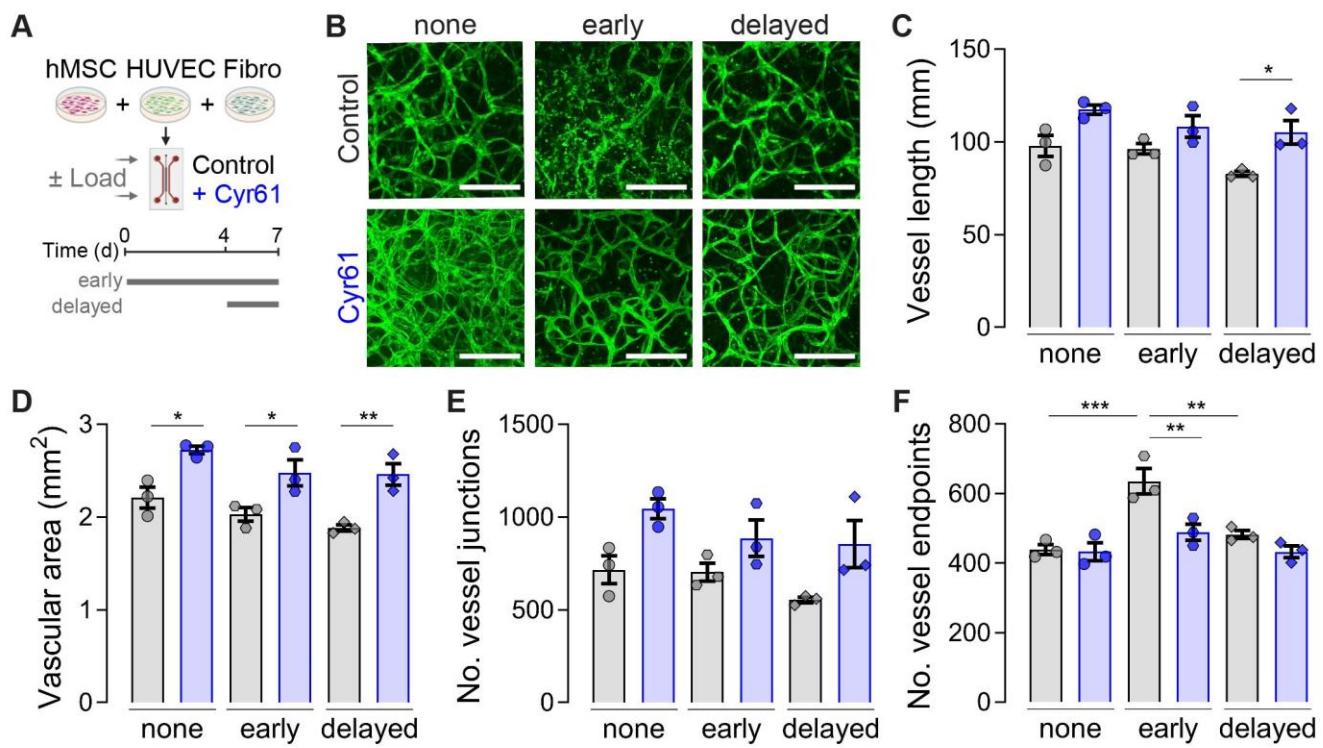
167

Figure 4. Treatment with endogenous Cyr61 promotes revascularization in the fracture gap 14 dpf. (A) Representative images of EMCN and OSX staining and (B) quantifications. (C) Quantifications and (D) representative images of F4/80 and SOX9 staining. Mean \pm SEM and individual data points. One-way ANOVA was used to determine the statistical significance; p -values are indicated with $*p < 0.05$; $***p < 0.001$. Scale bars indicate 200 μ m (A, D).

168

169

170


171

172

173 ***Cyr61 promotes vascular maturation with or without loading in a microphysiological vascularized***
174 ***bone-on-a-chip system***

175 Previously, we found that mechanical loading regulates angiogenesis during bone regeneration,
176 depending on the load magnitude and timing (11, 39). Specifically, we found that early loading disrupted
177 neovascularization while delayed loading enhanced angiogenesis, both *in vivo* and *in vitro*. Since we
178 observed here that early mechanical loading abrogated the angiogenic effect of Cyr61 treatment, we
179 next sought to interrogate the interactions between the pro-angiogenic capacities of Cyr61 and the timing
180 of mechanical load initiation. To this end, we used a vascularized bone-on-a-chip system that combines
181 hMSCs, human fibroblasts and endothelial progenitors embedded in a fibrin hydrogel on a
182 microphysiological platform that allows for continuous perfusion with cell culture medium and dynamic
183 mechanical loading. Compressive loading was applied at 10% compression for 1h per day, applied under
184 two different loading scenarios, compared to a non-loaded static control: early loading (initiated at day
185 0, for 7 days) and delayed loading (initiated at day 4, followed by three days of loading) (**Fig. 5A**). Cyr61,
186 or PBS control, were added to the cell culture medium from day 0. Samples were fixed and images were
187 taken at 7 days (**Fig. 5B**).

188 Cyr61 treatment significantly increased vessel length, only under delayed loading conditions, and
189 increased vascular network area regardless of mechanical loading (**Fig. 5B-D**). Cyr61 treatment did not
190 significantly alter vessel junction number (**Fig. 5E**). To assess network connectivity, we quantified the
191 number of vessel endpoints. Early loading increased the vessel endpoint number, indicative of impaired
192 network connectivity. This was rescued by Cyr61 treatment, indicating that early loading disrupted
193 network formation, which was prevented by Cyr61 stimulation (**Fig. 5F**).

194
195
196
197
198
199

Figure 5. Cyr61 promotes vascular maturation with or without loading in vitro (A) Experimental setup. (B) Representative images. (C-F) Quantifications of (C) vessel length, (D) vascular area, (E) number of vessel junctions and (F) number of vessel endpoints as measure for vascular connectivity. Absolute values are given for the whole chip area. Mean \pm SEM and individual data points. One-way ANOVA was used to determine the statistical significance; p-values are indicated with * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$. Scale bars indicate 500 μ m.

200

Discussion

201

Here, we mapped the distribution of endogenous Cyr61 during bone repair and evaluated the effects of recombinant Cyr61 delivery, under varied ambulatory loading conditions, effected by stiff or compliant fixation. We found that endogenous Cyr61 associates with the vascularized extracellular matrix and cellular YAP abundance in endochondral tissues after fracture. Cyr61 treatment did not induce chondrogenesis or osteogenesis either in the fracture callus or in isolated cell culture *in vitro*. In contrast, Cyr61 treatment enhanced endothelial tube formation and maturation *in vitro* and promoted neovascularization in bone fracture; however, the angiogenic effects of Cyr61 treatment were abrogated by early mechanical loading.

209

Effects of mechanical loading on angiogenesis during bone repair.

210

Mechanical conditions at the fracture site determine the course and outcome of fracture repair, and the timing of mechanical load initiation is critical. Previously, we demonstrated that early ambulatory loading, which causes high interfragmentary strains, disrupts new blood vessel formation in the defect, while delayed loading profoundly enhances neovascularization (11, 39). Here, we found that early mechanical loading disrupts neovascularization, both during fracture repair *in vivo* and in vascularized tissue-on-a-chip experiments *in vitro*. These data are also consistent with our prior studies showing that dynamic matrix strain can directly alter 3D vascular structure formation by stromal vascular fragments cultured *in vitro*. In this prior study, we found that early application of dynamic matrix compression at high strain (30%) inhibited vessel formation, but delayed loading significantly increased both vessel length and branching (12). Further, *in vitro* mechanical strain induced robust Cyr61 expression in the stromal vascular composites and was abrogated by blockade of YAP/TAZ signaling (12). Together, these data support a profound mechanosensitivity of neovascular networks during fracture repair and point to Cyr61 as a potential mechano-responsive regulator of angiogenesis.

223

Roles of YAP/TAZ mechanotransduction in skeletal development and repair.

224

Previously, we and others have established the mechanoresponsive transcriptional regulators, YAP and TAZ, as critical mediators of mechanobiology (19) of both neovascularization (40-42) and endochondral ossification (43) during bone development (14, 15, 18) and fracture repair (11, 13). For example, conditional deletion of YAP and TAZ from Osx-expressing osteoblast-lineage cells impaired the co-mobilization of osteoprogenitors and blood vessels into the limb primary ossification center, disrupting vessel morphogenesis and vessel-mediated cartilage anlage remodeling (14). Further, using a fracture healing model (intramedullary pin fixation) that allows large interfragmentary strains and heals via endochondral ossification, we found that Osx-conditional YAP/TAZ deletion impaired vascularized fracture healing by regulating periosteal progenitor cell proliferation, osteoblastic differentiation, and osteogenic-angiogenic coupling, coincident with reduced Cyr61 expression (13). Together, these and other data identify YAP/TAZ mechanoactivation as a robust transcriptional mechanism for mechanoregulation of vascularized bone formation. However, due to their oncogenicity, YAP and TAZ themselves are not ideal targets for therapeutic activation (44, 45). Thus, targeting genes downstream of YAP/TAZ mechanosignaling may lead to safer and more efficient therapies for vascularized fracture

238 healing. Here, we evaluated the effects of biomaterial-mediated delivery of recombinant Cyr61 on
239 vascularized bone fracture repair.

240 **Cyr61 induces angiogenesis during bone repair**

241 Our findings support prior studies showing that Cyr61 is upregulated during bone fracture repair and is
242 induced by mechanical loading (34, 35). We found both YAP and Cyr61 to be abundant in the vascularized
243 bone marrow, matrix adjacent to the fracture gap. This is consistent with the prior report from
244 Hadjiaargyrou and colleagues on Cyr61 expression during fracture repair, showing pronounced Cyr61
245 expression in vascularized fibrous tissues and periosteum (34). Likewise, Lineau et al. proposed a
246 relationship between Cyr61 and angiogenesis during the early phase of fracture healing using an ovine
247 model, showing that Cyr61 expression and vessel formation were impaired by early ambulatory
248 mechanical loading (35).

249 Cyr61 promotes angiogenesis by stimulating endothelial cell migration and proliferation (27, 46). Cyr61
250 interacts with integrin receptors on the surface of endothelial cells, fibroblasts, and smooth muscle cells,
251 triggering intracellular signaling pathways that promote cell motility and proliferation (23-26). We found
252 that Cyr61 treatment increased tubular length and vessel maturation in vitro, consistent with a role for
253 Cyr61 in promoting recruitment and assembly of endothelial cells into neovessel structures and
254 facilitating their stabilization and maturation (47). Binding to cell surface receptors including as integrins
255 and heparan sulfate proteoglycans, Cyr61 creates a chemotactic gradient that guides endothelial cells
256 towards areas of tissue remodeling or injury where angiogenesis is required (23-25, 27, 28). Additionally,
257 Cyr61 interacts with various growth factors and cytokines involved in angiogenesis, further enhancing
258 its pro-angiogenic effects. For instance, Cyr61 potentiates the activity of vascular endothelial growth
259 factor (VEGF)(48, 49), and can be activated by Plasminogen (50), to promote fracture repair (51).
260 Consistent with these findings, we show that Cyr61 delivery robustly induces angiogenesis during
261 fracture repair. These new data provide a mechanistic basis for the findings of Frey et al., who found that
262 soluble Cyr61 delivery during distraction osteogenesis increased regenerated bone strength, without
263 affecting callus formation or bone volume (37).

264 **Effects of Cyr61 on chondrogenesis and osteogenesis**

265 Endogenous Cyr61 has been reported to mediate chondrogenesis during development due to its
266 expression in both pre-chondrogenic mesenchyme and developing chondrocytes. (31, 52). Similarly,
267 endogenous Cyr61 has been reported to mediate bone formation during development (32, 33). These
268 studies show roles for Cyr61 in promoting chondrocyte proliferation and regulating key transcription
269 factors involved in chondrogenesis and osteogenesis, such as Sox9 (31) and Runx2 (53). Cyr61 has also
270 been reported to interact with various growth factors and signaling pathways known to regulate
271 chondrogenesis and osteogenesis, including TGF- β , BMPs, and Wnt signaling, thereby orchestrating a
272 complex network of molecular interactions critical for proper cartilage maturation (31, 54, 55). In this
273 study, we did not observe significant effects of exogenous Cyr61 treatment on chondrogenesis or
274 osteogenesis. Cyr61 treatment did not alter hMSC chondrogenic differentiation in vitro or on cartilage
275 formation in the fracture callus in vivo. We observed a significant increase in *RUNX2* expression upon

276 addition of Cyr61 during hMSC osteogenic differentiation in vitro but found with no effects on osteogenic
277 commitment markers (*SP7*, *COL1A1*, *ALP*) or bone formation in the fracture callus at 14 dpf. Our data
278 are consistent with the observations of Frey et al., who delivered soluble Cyr61 for distraction
279 osteogenesis and likewise did not observe effects on bone volume, despite increases in regenerated
280 bone strength (37).

281 Together, we found that Cyr61 delivery promoted angiogenesis during fracture repair, but this effect
282 was abrogated by early mechanical loading. Thus, while potently angiogenic, both in vitro and in vivo,
283 Cyr61 did not enhance vessel formation under mechanical conditions that were mechanically
284 unfavorable for functional vascularization.

285 **Limitations**

286 Cyr61 is a matricellular growth factor, but how its solubility vs. matrix tethering impacts signaling activity
287 in vivo remains an active area of interest (23, 27, 50, 51). Here, we used a biomaterial system for Cyr61
288 delivery that did not completely remodel during the course of the experiment, as indicated by
289 histological imaging. Further, our in vitro release data suggest that, consistent with its matrix-binding
290 role, the amount of exogenous Cyr61 released from the fibrin matrix is modest. Thus, cellular interaction,
291 perhaps through integrin adhesions, or cell-mediated matrix degradation may be necessary for the full
292 beneficial effects of Cyr61 treatment. The degree of matrix entrapment or release may also influence
293 the identity and response of effector cells. Based on our data, we postulate that Cyr61 delivery
294 represents a potential pro-angiogenic therapeutic for vascularized bone healing under conditions of
295 limited blood vessel supply, such as tibial fractures and large bone defects. However, our femoral
296 fracture model is readily vascularized and heals spontaneously, so future studies in more challenging
297 testbeds are warranted to evaluate the efficacy of Cyr61 delivery under stimulatory and vessel-
298 supporting mechanical loading conditions.

299

Materials and Methods

300

Chondrocyte pellet generation and analysis

301

Human mesenchymal stromal cells (hMSCs) were isolated from bone marrow of healthy donors using a protocol approved by the University Hospitals of Cleveland Institutional Review Board (11). hMSCs were cultivated and expanded in growth media containing DMEM-LG (low glucose), 1% v/v penicillin-streptomycin (both Thermo Fisher Scientific, Waltham, MA), 10% v/v fetal bovine serum (Sigma Aldrich, St. Louis, MO) and 10 ng/ml fibroblast growth factor-2 (R&D Systems, Minneapolis, MN). For pellet cultures, hMSCs were detached, mixed with microspheres (0.75 mg/10⁶ cells) and transferred into conical V bottom plates (0.25 x 10⁶ cells/well), centrifuged for 5 min at 500 x g and incubated at 37 °C in a humidified incubator with 5% CO₂ and 5% O₂ (hypoxic conditions). Chondrogenic differentiation medium contained: DMEM-HG (high glucose), 1% v/v penicillin-streptomycin, 1% v/v ITS+ Premix Universal Culture Supplement (Corning, NY), 1 mM sodium pyruvate, 100 µM non-essential amino acids (both Thermo Fisher Scientific, Waltham, MA), 0.13 mM L-ascorbic acid-2-phosphate and 100 nM dexamethasone (both Sigma Aldrich, St. Louis, MO). Different concentrations of endogenous Cyr61 (0-200 ng/ml; Recombinant Human Cyr61/CCN1 Fc Chimera Protein, carrier-free; catalog no.: 4055-CR; R&D Systems, Minneapolis, MN) and TGFβ (0 or 10 ng/ml; rhTGF-beta1; R&D Systems, Minneapolis, MN) were added to the medium. Medium was changed every 3 days. Pellets were cultured for 14 days before being fixed with 4% paraformaldehyde (PFA; Electron Microscopy Sciences, Hatfield, PA) overnight at 4 °C, before switching to 70% ethanol and being paraffin embedded. Sections were stained with Safranin-O, images were taken with a Axio Observer (Carl Zeiss Microscopy, Wetzlar, Germany) and diameter measurement was performed using ImageJ.

320

Osteogenic assay and RNA analysis

321

For osteogenic differentiation, hMSC were plated in a 6-well plate (3 x 10⁵ cells/well) and expanded until being confluent. Osteogenic differentiation was induced with growth medium supplemented with 10 mM β-glycerophosphate, 100 µM ascorbic acid and 100 nM dexamethasone (all Sigma Aldrich, St. Louis, MO). Endogenous Cyr61 (100 ng/ml) was added to the medium. Cells were incubated for 3 weeks at 37 °C in a humidified incubator with 5% CO₂ and approx. 18% O₂. Medium was changed every 3 days. RNA was isolated using the Qiagen RNeasy Kit (Qiagen, Hilden, Germany) following the manufacturer's instruction. RNA concentration was determined using Nanodrop (Thermo Fisher Scientific, Waltham, MA) and 0.5 µg was used for cDNA synthesis using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA). qPCR was performed with the SYBR Green PCR Master mix (Applied Biosystems, Waltham, MA) and custom-designed qRT-PCR primers (IDT, Coralville, IA). We used the following primer sequences:

322

RUNX2 – TGGCTGGTAGTGACCTGCGGA (reverse); ACAGAACCAAGTGCAGTGCAA (forward)

323

SP7 – TGGCAGCTGGGGTTCACT (reverse); TGGCTAGGTGGTGGCAGGG (forward)

324

ALP – GCAGTGAAGGGCTTCTGTC (reverse); CCACGTCTCACATTGGTG (forward)

325

CYR61 – GGTTGTATAGGATGCGAGGCT (reverse); GAGTGGGTCTGTGACGAGGAT

336 *GAPDH* – GGCTGGTGGTCCAGGGGTCT (reverse); GGGGCTGGCATTGCCCTCAA (forward)
337 Gene expression was normalized to *GAPDH* and calculated as fold change using the comparative CT
338 method to the control (growth medium and no Cyr61).

339 ***Generation of GelMA/fibrin hydrogel for in vitro angiogenesis assay and in vivo Cyr61 delivery***

340 Gelatin methacrylate (GelMA; 5% w/w) and 5 mg/ml fibrinogen were mixed and dissolved in a 0.2% w/w
341 lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) solution previously dissolved in sterile saline
342 (all products were purchased from Cellink, Gothenburg, Sweden). To ensure proper dissolution, the
343 mixture was incubated overnight at 37 °C on a shaking plate and frozen at -20 °C for storage. Aliquots
344 were thawed in a 37 °C water bath prior to every new experiment. Crosslinking of the hydrogel was
345 conducted in 2-steps - thrombin-induced fibrin formation and UV-initiated photocrosslinking. Thrombin
346 was dissolved in 40 mM calcium chloride (CaCl₂, Sigma Aldrich, St. Louis, MO) solution at a concentration
347 0.7 g/l which was added at a 1:80 dilution to the GelMA/fibrin solution. A UV flashlight was used for
348 photocrosslinking for 2.5 minutes.

349 ***In vitro 3D tube formation assay***

350 GFP⁺ HUVECs were purchased and cultured in human endothelial growth medium (EGM-SF1; cells and
351 medium from Angio-Proteomie, Boston, MA) with 5% v/v FBS (Sigma Aldrich, St. Louis, MO) in cell culture
352 flasks (Corning, Corning, NY) coated with autoclaved 0.2% w/w gelatin (Sigma Aldrich, St. Louis, MO).
353 hMSCs were expanded in RoosterNourish™-MSC-XF (both RoosterBio, Frederick, MD). HUVECs were
354 starved with EGM with 0.1% v/v FBS 12h prior to the begin of the experiment. For 3D construct
355 formation, HUVECs and hMSCs were detached from the culture flasks independently washed with PBS
356 and mixed at a concentration of 4:1 in the liquid GelMA/fibrin hydrogel already containing thrombin (14,
357 56). The hydrogel/cell mixture was immediately transferred into a disc sized, silicone mold with a
358 diameter of 6 mm and a thickness of 2 mm (capacity for 50 microL). UV light was applied subsequently
359 for 2.5 min. The mold was carefully removed, and the construct was transferred into a 12-well culture
360 plate filled with EGM, 0.1% v/v FBS with or without 100 ng/ml Cyr61 (Recombinant Human Cyr61/CCN1
361 Fc Chimera Protein, carrier-free; catalog no.: 4055-CR; R&D Systems, Minneapolis, MN). Medium change
362 was performed at day 3 and images were taken at 3 and 5 days using a Keyence BZ-X800 Fluorescence
363 Microscope (Keyence, Itasca, IL). All images were blinded for group and treatment. The relative tube
364 number, mean tube length and relative GFP⁺ vascular area (normalized to the total area) were analyzed
365 using Fiji ImageJ. The area to be analyzed was defined as the full area of the hydrogel which was visible
366 in the images. To correct for differences in analyzed area (ROI) dimension between the hydrogels, the
367 tube number was normalized to the analyzed area (ROI). We used two different MSC lines combined
368 with two different HUVEC lines with 1-3 replicates per MSC/HUVEC combination and condition
369 (biological replicates n= 4; technical replicates total n= 5-9).

370 ***Local delivery system and Cyr61 release kinetic***

371 A total of 1 µg Cyr61 (Recombinant Human Cyr61/CCN1 Fc Chimera Protein, carrier-free; catalog no.:
372 4055-CR; R&D Systems, Minneapolis, MN) was dissolved in GelMA/fibrin hydrogel containing thrombin

373 and transferred into a cylinder-shaped mold with a liquid capacity of 8.6 μ l and 1 mm diameter with 1
374 mm thickness. UV light was applied for 2.5 min and the solid hydrogels were removed from the mold
375 with a fine forceps. As control, we generated the hydrogel following the same procedure without
376 addition of Cyr61. For release kinetic measurement, hydrogels were produced as described before and
377 cultivated for 14 days in 1 mL PBS at 37 °C. The PBS was completely collected and changed at 1h, 3h, 7h,
378 1d, 3d, 7d and 14d. The experiment was performed in a triplet and samples were frozen at -20 °C until
379 further use. Cyr61 concentration was determined using a human Cyr61 Quantikine ELISA (R&D Systems,
380 Minneapolis, MN) following the manufacturer's instructions.

381 ***Animals and surgical procedure***

382 A total of 32 C57BL/6J female mice (Charles River Laboratories, Wilmington, MA) aged 12-16 weeks
383 underwent surgery. All procedures were conducted in accordance with IACUC regulations (University of
384 Pennsylvania; protocol no: 806482). Veterinary care and animal husbandry was provided by University
385 Laboratory Animal Resources (ULAR) at the University of Pennsylvania in accordance with contemporary
386 best practice.

387 Mice were housed in a semi-barrier facility in cages (Ancare Corp., Bellmore, NY). Housing conditions
388 encompassed a 12/12-h light/dark cycle (light from 7:00 a.m. to 7:00 p.m.), room temperature of 72 \pm
389 2F and a humidity of 50 \pm 10%. Food (Rodent Diet, LabDiet) and tap water were available *ad libitum*.
390 Mice were randomly divided into pairs per cage. Cages contained wooden chips (Bed-o'Cobs 1/4,
391 Laboratory Animal Bedding), Enviro-dri (Shepherd Specialty Papers, Milford, NJ), and a shredded paper
392 towel as bedding and nesting material. Additional enrichment was provided such as a clear mouse
393 transfer tube (Braintree Scientific, Braintree, MA), a mouse double swing (Datesand Group, Bredbury,
394 United Kingdom) and a Shepherd Shack (Shepherd Specialty Papers, Milford, NJ) where the entrance
395 area was enlarged to avoid injuries due to the external fixator (57). Transfer tube and double swing were
396 removed after surgery to reduce the risk of injury. Animals were handled with the transfer tube.

397 Mice were anesthetized with isoflurane (~2–3%; provided in 100% oxygen; Dechra Veterinary Products,
398 Overland Park, KS) and moved onto a heating pad (37 °C; Kent Scientific, Torrington, CT). Anesthesia was
399 maintained at ~1.5–2% with an individual a nose cone. Eye ointment (Optixcare eye lube, Aventix,
400 Ontario, Canada), physiological saline (0.9% sodium chloride; 0.5 ml, s.c.; BD, Franklin Lakes, NJ),
401 clindamycin (45 mg/kg, s.c.; Sagent Pharmaceuticals, Schaumburg, IL) and Buprenorphine SR-Lab (1
402 mg/kg, s.c.; Wedgewood Pharmacy, Swedesboro, NJ) were applied. The left femur was shaved and
403 disinfected with alcoholic iodine solution and 70% ethanol. A longitudinal skin incision was made
404 between knee and hip. The *musculus vastus lateralis* and *musculus biceps femoris* were bluntly
405 separated and the femur was exposed. Two different external fixators were used to mimic 2 distinct
406 loading scenarios (stiff: 18.1 N/mm; compliant: 3.2 N/mm, both RISystem, Davos, Switzerland). The
407 external bar of the fixator was positioned parallel to the femur and the pins were screwed into the bone
408 after holes have been pre-drilled. An approximately 0.7 mm fracture/osteotomy gap was created
409 between the second and third pin using a Gigli wire saw (0.66 mm; RISystem, Davos, Switzerland) and
410 the gap was flushed with saline. The GelMa/fibrin scaffold with or without Cyr61 was placed between

411 the bone ends. Muscle and skin were closed with two layers of sutures (muscle: coated Vicryl; skin:
412 Prolene, both Ethicon, Raritan, NJ). The wound was covered with a triple antibiotic cream (B.N.P. Triple
413 Antibiotic Ophthalmic Ointment, Neobacimyx-H, Schering Plough, Kenilworth, NJ). Mice were returned
414 to their home cages placed under an infrared lamp and closely monitored until fully recovered. To ensure
415 food and water uptake after surgery, Diet Gel (ClearH₂O, Westbrook, ME) was provided on the cage
416 floor.

417 Mice were monitored closely and scored during the first 4 days, at day 7 and day 10 before being
418 euthanized at day 14. The scoring sheet was based on a composite score consisting of the mouse grimace
419 score (eyes and ears only), a clinical score and a model specific score including limping and dragging score
420 following previous established systems (58, 59). Humane endpoints were defined before the experiment
421 and included: wound suture completely discreet, no coat care/feces soiling, sunken/glued eyes, hunched
422 back, periprosthetic fracture, gross malposition >20° axial deviation of the fracture ends, no food and
423 water intake and weight loss >25%, bloody feces, significantly increased breathing/wheezing, diarrhea
424 (if debilitating or persistent), seizures/staggering/apathy, paresis of more than two limbs and abscesses.
425 No humane endpoint was reached during the study.

426 Mice were euthanized 14 days after surgery using CO₂ and cervical dislocation. The fractured femora
427 were collected and fixed in 4% PFA at 4 °C for 7h and transferred to PBS until ex vivo microCT was
428 completed.

429 All analyses were performed after samples were blinded for groups (fixation, treatment). De-blinding
430 was performed once all samples were analyzed to avoid any bias.

431 ***Ex vivo microCT***

432 Ex vivo microCT was performed using a µCT 45 desktop scanner (Scanco Medical AG, Brüttisellen,
433 Switzerland) after removal of the external fixator and fixation of the bones in plastic pipettes to avoid
434 destruction of the callus tissue. The area in between the inner two pins was scanned with an isotropic
435 voxel size of 10.4 µm (55 kVp, 72 µA, AL 0.5 mm, 1x400 ms) and the scan axis was aligned along the
436 diaphyseal axis of the femora. 3D reconstruction and analyses were performed using the provided
437 software package (global threshold of 240 mg HA/cm³) analyzing a fixed VOI (200 slices total) starting
438 from the middle of the fracture gap. The fixed VOI was transferred to every sample to allow for a
439 standardized total volume across samples. The original cortical bone was excluded to only analyze newly
440 formed bone.

441 ***Histology and immunofluorescence***

442 Following microCT, femora were then transferred into 10% w/v ethylenediaminetetraacetic acid (EDTA)
443 pH 7.4 for 3 days at 4 °C and transferred to 30% w/v sucrose solution for 2 days before being cryo-
444 embedded using Tissue-Tek OCT (Sakura Finetek USA, Torrance, CA). Consecutive sections of 7 µm were
445 prepared (cyrotome, Leica, Wetzlar, Germany) using cryotape (Sectionlab, Japan). Sections were fixed
446 onto glass slides and stored at -20 °C until staining. Movat's pentachrome staining was performed using
447 a ready to use kit (Morphisto, Offenbach am Main, Germany). The manufacturer's protocol was adapted
448 to cryo-sections based on previously used protocols (58). Imaging was performed on a AxioScan (Carl

449 Zeiss Microscopy, Wetzlar, Germany) and quantitative analyses of the Movat's pentachrome staining
450 were evaluated using an ImageJ.
451 For immunofluorescence, sections were rehydrated in PBS. Blocking solution (10% v/v goat serum/PBS;
452 Sigma Aldrich, St. Louis, MO) was added for 30 min and antibodies were diluted in PBS/0.1% v/v
453 Tween20/5% v/v goat serum (Sigma Aldrich, St. Louis, MO) or PBS/3% v/v Triton/5% v/v goat serum
454 (YAP/Cyr61 only). The following primary antibodies and secondary antibodies were used (staining
455 durations provided): CYR61 (R&D Systems, Minneapolis, MN; catalog number: MAB4864; 1:20; overnight
456 at 4 °C), YAP (Cell Signaling, Danvers, MA; clone D8H1X; catalog number: 14074; 1:100; overnight at 4
457 °C), EMCN (Santa Cruz, Dallas, TX; clone V.5C7; catalog number: sc-65495; 1:100; 2h at RT), OSX (Abcam,
458 Cambridge, United Kingdom; catalog number: ab209484; 1:100; 2h at RT), F4/80 (Novus Biological,
459 Littleton, CO; Cl:A3-1, catalog number: NBP2-81030; 1:400; 2h at RT), Sox9 (Abcam, Cambridge, United
460 Kingdom; catalog number: ab185230; 1:200; 2h at RT); all secondary antibodies were purchased from
461 Thermo Fisher Scientific and used at an 1:500 dilution for 2h at RT if not stated otherwise: goat anti-rat
462 A647 (A-21247), goat anti-rat A488 (A-11006), goat anti-rabbit A647 (A-27040), goat anti-rabbit A488
463 (Abcam; ab150077; 1:1,000). DAPI (NucBlue Fixed Cell ReadyProbes Reagent; Thermo Fisher Scientific,
464 Waltham, MA) was added during the last washing step and sections were covered with Fluoromount-GT
465 (Thermo Fisher Scientific, Waltham, MA). Images were taken with an AxioScan and image quantification
466 was performed using the Fiji/ImageJ software. The area of interest was manually assigned with the built-in
467 ROI-Manager and determined with the thresholding tool.

468 ***Loading experiments with vascularized bone-on-a-chip system***

469 To create the vascularized bone-on-a-chip system, 10 µl of fibrin gel containing fibrinogen at a final
470 concentration of 10 mg/ml (F8630, Sigma Aldrich, St. Louis, MO) mixed with 1 U/ml thrombin (T7513,
471 Sigma) was injected through the inlet access port into the middle lane of the culture chamber. The
472 following cells were dispensed in the fibrin gel before injection into the microdevice: HUVECs (3.5 x 10⁶
473 cells/ml), MSCs (2.5 x 10⁶ cells/ml) and human fibroblasts (2.5 x 10⁶). The microdevice was placed in a
474 cell culture incubator to induce fibrin gelation at 37 °C for 10 minutes. Upon gelation, complete
475 endothelial cell growth media was supplemented to the side channels of the culture chamber through
476 media reservoirs. The side channels were seeded after 24h with endothelial cells (5 x 10⁶ cells/ml) to
477 form endothelial lining on the channel walls and anastomosis of side channel with vasculature in
478 hydrogel. Media (EGM-2; Lonza, Basel, Switzerland) in the reservoirs was changed every other day during
479 the subsequent culture period. To investigate the effect of Cyr61 on vascular formation under
480 mechanical stimuli, we examined 4 groups: without and with Cyr61 and/or no mechanical loading,
481 mechanical loading from the beginning for 7 days and delayed loading starting at day 4. The microdevices
482 were mechanically stimulated with a uniaxial compression load up to 10% strain with a frequency of 1
483 Hz (1 hour of mechanical stimuli each day). Samples were fixed at day 7 of culture and stained with CD31
484 human antibody (Abcam; ab134168; AF488-conjugated; 1:100) and imaged with an Inverted confocal
485 microscope. Images were analyzed with AngioTool software (AngioTool64 0.6a) to quantify changes in

486 vessel length, area, average vessel diameter and junction number. Analyses are performed for the whole
487 chip area (fixed ROI: 7 mm²) and provided as absolute measures.

488 ***Statistical analysis***

489 GraphPad Prism V.9 was used for statistical analysis. Data was tested for Gaussian distribution according
490 to D'Agostino-Pearson omnibus normality test and homoscedasticity. One-way ANOVA was used to
491 determine the statistical significance. A p value <0.05 was considered statistically significant. Sample
492 sizes are indicated in the graph displaying individual data points. Data are displayed with error bars
493 showing mean ± SEM. All analyses were performed on distinct samples. Samples or data were only
494 excluded in justified cases due to e.g. technical errors, or unrecognizable target structures.

495 **Acknowledgments:**

496 **General:** The authors would like to thank all members of the Boerckel lab for constructive discussions
497 on the research presented in this study.

498

499 **Funding:** Research was supported by German Research Foundation (DFG) Fellowship Project LA 4007/2-
500 1 (to A.L.), by the National Institutes of Health (NIH) R01AR073809, R01 AR074948, P30 AR069619 (to
501 J.D.B.), P2 CHD086843 (to J.D.B. and N.W.), T32 AR007132 (to E.A.E.), by the Alternatives Research and
502 Development Foundation (to J.D.B., A.L., R.G.), and by the National Science Foundation Center for
503 Engineering Mechanobiology, CMMI 1548571 (to J.D.B.).

504

505 **Author contributions:** A.L. and J.D.B. conceived and supervised the research. A.L., J.D.B., E.A.E., M.N.,
506 A.P.H., C.J.P., E.S. designed and performed animal experiments. A.L., E.A.E. and C.S. performed analysis.
507 R.T. and E.A. provided materials and methods for in vitro chondrogenesis and osteogenesis assays. A.L.
508 and R.G conceived and supervised in vitro angiogenesis assay. M.Y. and D.H. conceived and supervised
509 experiments with the vascularized bone-on-a-chip system. A.L. and J. D.B. wrote the paper. All authors
510 discussed data and revised the manuscript.

511

512 **Competing interests:** Authors declare that they have no competing interests.

513

514 **Data and materials availability:** All data are available in the main text or the supplementary materials.

515

516 **References**

1. E. A. Phelps, A. J. García, Engineering more than a cell: vascularization strategies in tissue engineering. *Curr Opin Biotechnol* **21**, 704-709 (2010).
2. N. van Gastel, S. Stegen, G. Eelen, S. Schoors, A. Carlier, V. W. Daniëls, N. Baryawno, D. Przybylski, M. Depypere, P. J. Stiers, D. Lambrechts, R. Van Looveren, S. Torrekens, A. Sharda, P. Agostinis, D. Lambrechts, F. Maes, J. V. Swinnen, L. Geris, H. Van Oosterwyck, B. Thienpont, P. Carmeliet, D. T. Scadden, G. Carmeliet, Lipid availability determines fate of skeletal progenitor cells via SOX9. *Nature* **579**, 111-117 (2020).
3. C. Maes, T. Kobayashi, M. K. Selig, S. Torrekens, S. I. Roth, S. Mackem, G. Carmeliet, H. M. Kronenberg, Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. *Dev Cell* **19**, 329-344 (2010).
4. J. Street, M. Bao, L. deGuzman, S. Bunting, F. V. Peale, Jr., N. Ferrara, H. Steinmetz, J. Hoeffel, J. L. Cleland, A. Daugherty, N. van Bruggen, H. P. Redmond, R. A. Carano, E. H. Filvaroff, Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. *Proc Natl Acad Sci U S A* **99**, 9656-9661 (2002).
5. H. C. Fayaz, P. V. Giannoudis, M. S. Vrahas, R. M. Smith, C. Moran, H. C. Pape, C. Krettek, J. B. Jupiter, The role of stem cells in fracture healing and nonunion. *International Orthopaedics* **35**, 1587-1597 (2011).
6. S. Stegen, N. van Gastel, G. Carmeliet, Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. *Bone* **70**, 19-27 (2015).
7. L. Claes, K. Eckert-Hübner, P. Augat, The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. *J Orthop Res* **20**, 1099-1105 (2002).
8. A. E. Goodship, J. Kenwright, The influence of induced micromovement upon the healing of experimental tibial fractures. *J Bone Joint Surg Br* **67**, 650-655 (1985).
9. G. Matziolis, J. Tuischer, G. Kasper, M. Thompson, B. Bartmeyer, D. Krock, C. Perka, G. Duda, Simulation of cell differentiation in fracture healing: mechanically loaded composite scaffolds in a novel bioreactor system. *Tissue Eng* **12**, 201-208 (2006).

542 10. S. Herberg, A. M. McDermott, P. N. Dang, D. S. Alt, R. Tang, J. H. Dawahare, D. Varghai, J. Y. Shin, A.
543 McMillan, A. D. Dikina, F. He, Y. B. Lee, Y. Cheng, K. Umemori, P. C. Wong, H. Park, J. D. Boerckel, E.
544 Alsberg, Combinatorial morphogenetic and mechanical cues to mimic bone development for defect repair.
545 *Sci Adv* **5**, eaax2476 (2019).

546 11. A. M. McDermott, S. Herberg, D. E. Mason, J. M. Collins, H. B. Pearson, J. H. Dawahare, R. Tang, A. N.
547 Patwa, M. W. Grinstaff, D. J. Kelly, E. Alsberg, J. D. Boerckel, Recapitulating bone development through
548 engineered mesenchymal condensations and mechanical cues for tissue regeneration. *Sci Transl Med* **11**,
549 (2019).

550 12. M. A. Ruehle, E. A. Eastburn, S. A. LaBelle, L. Krishnan, J. A. Weiss, J. D. Boerckel, L. B. Wood, R. E.
551 Guldberg, N. J. Willett, Extracellular matrix compression temporally regulates microvascular angiogenesis.
552 *Sci Adv* **6**, (2020).

553 13. C. D. Kegelman, M. P. Nijsure, Y. Moharrer, H. B. Pearson, J. H. Dawahare, K. M. Jordan, L. Qin, J. D.
554 Boerckel, YAP and TAZ Promote Periosteal Osteoblast Precursor Expansion and Differentiation for
555 Fracture Repair. *J Bone Miner Res* **36**, 143-157 (2021).

556 14. J. M. Collins, A. Lang, C. Parisi, Y. Moharrer, M. P. Nijsure, J. H. Thomas Kim, S. Ahmed, G. L. Szeto, L.
557 Qin, R. Gottardi, N. A. Dymant, N. C. Nowlan, J. D. Boerckel, YAP and TAZ couple osteoblast precursor
558 mobilization to angiogenesis and mechanoregulation in murine bone development. *Dev Cell*, (2023).

559 15. C. D. Kegelman, D. E. Mason, J. H. Dawahare, D. J. Horan, G. D. Vigil, S. S. Howard, A. G. Robling, T. M.
560 Bellido, J. D. Boerckel, Skeletal cell YAP and TAZ combinatorially promote bone development. *Faseb J* **32**,
561 2706-2721 (2018).

562 16. D. E. Mason, J. M. Collins, J. H. Dawahare, T. D. Nguyen, Y. Lin, S. L. Voytik-Harbin, P. Zorlutuna, M. C.
563 Yoder, J. D. Boerckel, YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent
564 cell motility. *J Cell Biol* **218**, 1369-1389 (2019).

565 17. J. M. Franklin, Z. Wu, K. L. Guan, Insights into recent findings and clinical application of YAP and TAZ in
566 cancer. *Nat Rev Cancer* **23**, 512-525 (2023).

567 18. C. D. Kegelman, J. C. Coulombe, K. M. Jordan, D. J. Horan, L. Qin, A. G. Robling, V. L. Ferguson, T. M.
568 Bellido, J. D. Boerckel, YAP and TAZ Mediate Osteocyte Perilacunar/Canalicular Remodeling. *J Bone
569 Miner Res* **35**, 196-210 (2020).

570 19. S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M.
571 Forcato, S. Bicciato, N. Elvassore, S. Piccolo, Role of YAP/TAZ in mechanotransduction. *Nature* **474**, 179-
572 183 (2011).

573 20. M. Hanna, H. Liu, J. Amir, Y. Sun, S. W. Morris, M. A. Siddiqui, L. F. Lau, B. Chaqour, Mechanical regulation
574 of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-
575 binding protein histone acetyltransferase. *J Biol Chem* **284**, 23125-23136 (2009).

576 21. H. K. Vanyai, F. Prin, O. Guillermin, B. Marzook, S. Boeing, A. Howson, R. E. Saunders, T. Snoeks, M.
577 Howell, T. J. Mohun, B. Thompson, Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway.
578 *Development* **147**, (2020).

579 22. H. Zhang, H. A. Pasolli, E. Fuchs, Yes-associated protein (YAP) transcriptional coactivator functions in
580 balancing growth and differentiation in skin. *Proc Natl Acad Sci U S A* **108**, 2270-2275 (2011).

581 23. N. Chen, C. C. Chen, L. F. Lau, Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin
582 alpha 6beta 1 and cell surface heparan sulfate proteoglycans. *J Biol Chem* **275**, 24953-24961 (2000).

583 24. N. Chen, S. J. Leu, V. Todorovic, S. C. Lam, L. F. Lau, Identification of a novel integrin alphavbeta3 binding
584 site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. *J Biol Chem* **279**,
585 44166-44176 (2004).

586 25. S. J. Leu, Y. Liu, N. Chen, C. C. Chen, S. C. Lam, L. F. Lau, Identification of a novel integrin alpha 6 beta
587 1 binding site in the angiogenic inducer CCN1 (CYR61). *J Biol Chem* **278**, 33801-33808 (2003).

588 26. J. M. Schober, L. F. Lau, T. P. Ugarova, S. C. Lam, Identification of a novel integrin alphaMbeta2 binding
589 site in CCN1 (CYR61), a matricellular protein expressed in healing wounds and atherosclerotic lesions. *J
590 Biol Chem* **278**, 25808-25815 (2003).

591 27. A. M. Babic, M. L. Kireeva, T. V. Kolesnikova, L. F. Lau, CYR61, a product of a growth factor-inducible
592 immediate early gene, promotes angiogenesis and tumor growth. *Proc Natl Acad Sci U S A* **95**, 6355-6360
593 (1998).

594 28. L. F. Lau, CCN1/CYR61: the very model of a modern matricellular protein. *Cell Mol Life Sci* **68**, 3149-3163
595 (2011).

596 29. T. M. Grzeszkiewicz, V. Lindner, N. Chen, S. C. Lam, L. F. Lau, The angiogenic factor cysteine-rich 61
597 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through

598 integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. *Endocrinology* **143**, 1441-1450
599 (2002).

600 30. T. P. O'Brien, L. F. Lau, Expression of the growth factor-inducible immediate early gene *cyr61* correlates
601 with chondrogenesis during mouse embryonic development. *Cell Growth Differ* **3**, 645-654 (1992).

602 31. Y. Zhang, T. J. Sheu, D. Hoak, J. Shen, M. J. Hilton, M. J. Zuscik, J. H. Jonason, R. J. O'Keefe, CCN1
603 Regulates Chondrocyte Maturation and Cartilage Development. *J Bone Miner Res* **31**, 549-559 (2016).

604 32. G. Zhao, B. L. Huang, D. Rigueur, W. Wang, C. Bhoot, K. R. Charles, J. Baek, S. Mohan, J. Jiang, K. M.
605 Lyons, CYR61/CCN1 Regulates Sclerostin Levels and Bone Maintenance. *J Bone Miner Res* **33**, 1076-
606 1089 (2018).

607 33. G. Zhao, E. W. Kim, J. Jiang, C. Bhoot, K. R. Charles, J. Baek, S. Mohan, J. S. Adams, S. Tetradiis, K. M.
608 Lyons, CCN1/Cyr61 Is Required in Osteoblasts for Responsiveness to the Anabolic Activity of PTH. *J Bone*
609 *Miner Res* **35**, 2289-2300 (2020).

610 34. M. Hadjiafragiou, W. Ahrens, C. T. Rubin, Temporal expression of the chondrogenic and angiogenic growth
611 factor CYR61 during fracture repair. *J Bone Miner Res* **15**, 1014-1023 (2000).

612 35. J. Lienau, H. Schell, D. R. Epari, N. Schütze, F. Jakob, G. N. Duda, H. J. Bail, CYR61 (CCN1) protein
613 expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability.
614 *J Orthop Res* **24**, 254-262 (2006).

615 36. S. Ali, S. R. Hussain, A. Singh, V. Kumar, S. Walliullah, N. Rizvi, M. Yadav, M. K. Ahmad, A. A. Mahdi,
616 Study of Cysteine-Rich Protein 61 Genetic Polymorphism in Predisposition to Fracture Nonunion: A Case
617 Control. *Genet Res Int* **2015**, 754872 (2015).

618 37. S. P. Frey, S. Doht, L. Eden, S. Dannigkeit, N. Schuetze, R. H. Meffert, H. Jansen, Cysteine-rich
619 matricellular protein improves callus regenerate in a rabbit trauma model. *Int Orthop* **36**, 2387-2393 (2012).

620 38. V. Röntgen, R. Blakytny, R. Matthys, M. Landauer, T. Wehner, M. Göckelmann, P. Jermendy, M. Amling,
621 T. Schinke, L. Claes, A. Ignatius, Fracture healing in mice under controlled rigid and flexible conditions
622 using an adjustable external fixator. *Journal of Orthopaedic Research* **28**, 1456-1462 (2010).

623 39. J. D. Boerckel, B. A. Uhrig, N. J. Willett, N. Huebsch, R. E. Guldberg, Mechanical regulation of vascular
624 growth and tissue regeneration in vivo. *Proc Natl Acad Sci U S A* **108**, E674-680 (2011).

625 40. H.-J. Choi, H. Zhang, H. Park, K.-S. Choi, H.-W. Lee, V. Agrawal, Y.-M. Kim, Y.-G. Kwon, Yes-associated
626 protein regulates endothelial cell contact-mediated expression of angiopoietin-2. *Nature Communications*
627 **6**, 6943 (2015).

628 41. J. Kim, Y. H. Kim, J. Kim, D. Y. Park, H. Bae, D. H. Lee, K. H. Kim, S. P. Hong, S. P. Jang, Y. Kubota, Y.
629 G. Kwon, D. S. Lim, G. Y. Koh, YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation.
630 *J Clin Invest* **127**, 3441-3461 (2017).

631 42. X. Wang, A. Freire Valls, G. Schermann, Y. Shen, I. M. Moya, L. Castro, S. Urban, G. M. Solecki, F. Winkler,
632 L. Riedemann, R. K. Jain, M. Mazzone, T. Schmidt, T. Fischer, G. Halder, C. Ruiz de Almodóvar, YAP/TAZ
633 Orchestrate VEGF Signaling during Developmental Angiogenesis. *Developmental Cell* **42**, 462-478.e467
634 (2017).

635 43. Q. Cong, Y. Liu, T. Zhou, Y. Zhou, R. Xu, C. Cheng, H. S. Chung, M. Yan, H. Zhou, Z. Liao, B. Gao, G. A.
636 Bocobo, T. A. Covington, H. J. Song, P. Su, P. B. Yu, Y. Yang, A self-amplifying loop of YAP and SHH
637 drives formation and expansion of heterotopic ossification. *Science Translational Medicine* **13**, eabb2233
638 (2021).

639 44. C. A. Fullenkamp, S. L. Hall, O. I. Jaber, B. L. Pakalniskis, E. C. Savage, J. M. Savage, G. K. Ofori-Amanfo,
640 A. M. Lambertz, S. D. Ivins, C. S. Stipp, B. J. Miller, M. M. Milhem, M. R. Tanas, TAZ and YAP are frequently
641 activated oncoproteins in sarcomas. *Oncotarget* **7**, 30094-30108 (2016).

642 45. M. R. Tanas, A. Sboner, A. M. Oliveira, M. R. Erickson-Johnson, J. Hespelt, P. J. Hanwright, J. Flanagan,
643 Y. Luo, K. Fenwick, R. Natrajan, C. Mitsopoulos, M. Zvelebil, B. L. Hoch, S. W. Weiss, M. Debiec-Rychter,
644 R. Sciot, R. B. West, A. J. Lazar, A. Ashworth, J. S. Reis-Filho, C. J. Lord, M. B. Gerstein, M. A. Rubin, B.
645 P. Rubin, Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. *Sci Transl
646 Med* **3**, 98ra82 (2011).

647 46. M. L. Kireeva, F. E. Mo, G. P. Yang, L. F. Lau, Cyr61, a product of a growth factor-inducible immediate-
648 early gene, promotes cell proliferation, migration, and adhesion. *Mol Cell Biol* **16**, 1326-1334 (1996).

649 47. A. Hasan, N. Pokeza, L. Shaw, H. S. Lee, D. Lazzaro, H. Chintala, D. Rosenbaum, M. B. Grant, B. Chaqour,
650 The matricellular protein cysteine-rich protein 61 (CCN1/Cyr61) enhances physiological adaptation of
651 retinal vessels and reduces pathological neovascularization associated with ischemic retinopathy. *J Biol
652 Chem* **286**, 9542-9554 (2011).

653 48. C. C. Chen, F. E. Mo, L. F. Lau, The angiogenic factor Cyr61 activates a genetic program for wound healing
654 in human skin fibroblasts. *J Biol Chem* **276**, 47329-47337 (2001).

655 49. D. Zhou, D. J. Herrick, J. Rosenbloom, B. Chaqour, Cyr61 mediates the expression of VEGF, alphav-
656 integrin, and alpha-actin genes through cytoskeletally based mechanotransduction mechanisms in bladder
657 smooth muscle cells. *J Appl Physiol* (1985) **98**, 2344-2354 (2005).

658 50. H. Duan, Z. He, M. Lin, Y. Wang, F. Yang, R. A. Mitteer, H. J. Kim, E. Yeo, H. Han, L. Qin, Y. Fan, Y. Gong,
659 Plasminogen regulates mesenchymal stem cell-mediated tissue repair after ischemia through Cyr61
660 activation. *JCI Insight* **5**, (2020).

661 51. L. Wang, L. Yao, H. Duan, F. Yang, M. Lin, R. Zhang, Z. He, J. Ahn, Y. Fan, L. Qin, Y. Gong, Plasminogen
662 Regulates Fracture Repair by Promoting the Functions of Periosteal Mesenchymal Progenitors. *J Bone*
663 *Miner Res* **36**, 2229-2242 (2021).

664 52. M. Wong, M. L. Kireeva, T. V. Kolesnikova, L. F. Lau, Cyr61, product of a growth factor-inducible immediate-
665 early gene, regulates chondrogenesis in mouse limb bud mesenchymal cells. *Dev Biol* **192**, 492-508 (1997).

666 53. H. Liu, F. Peng, Z. Liu, F. Jiang, L. Li, S. Gao, G. Wang, J. Song, E. Ruan, Z. Shao, R. Fu, CYR61/CCN1
667 stimulates proliferation and differentiation of osteoblasts in vitro and contributes to bone remodeling in vivo
668 in myeloma bone disease. *Int J Oncol* **50**, 631-639 (2017).

669 54. W. Si, Q. Kang, H. H. Luu, J. K. Park, Q. Luo, W. X. Song, W. Jiang, X. Luo, X. Li, H. Yin, A. G. Montag, R.
670 C. Haydon, T. C. He, CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in
671 Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. *Mol Cell Biol* **26**, 2955-2964 (2006).

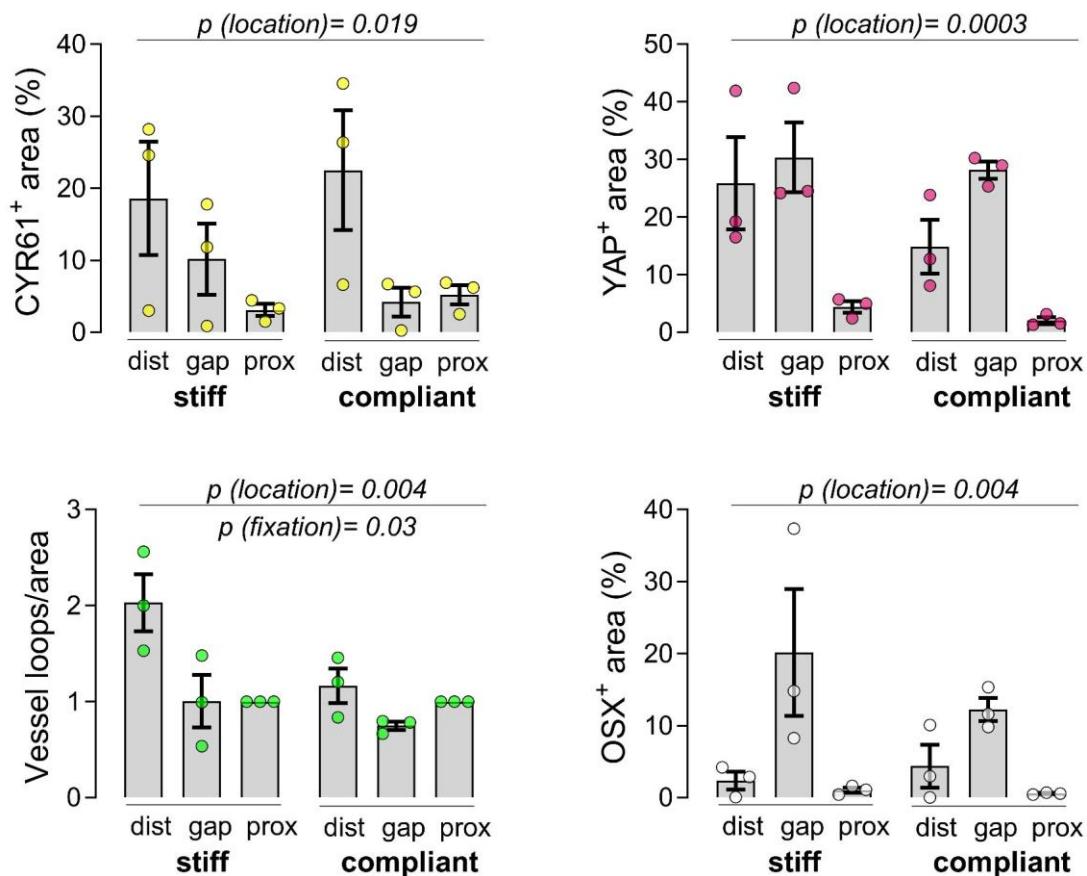
672 55. J.-L. Su, J. Chiou, C.-H. Tang, M. Zhao, C.-H. Tsai, P.-S. Chen, Y.-W. Chang, M.-H. Chien, C.-Y. Peng, M.
673 Hsiao, M.-L. Kuo, M.-L. Yen, CYR61 Regulates BMP-2-dependent Osteoblast Differentiation through the
674 $\alpha\beta 3$ Integrin/Integrin-linked Kinase/ERK Pathway*. *Journal of Biological Chemistry* **285**, 31325-31336
675 (2010).

676 56. I. Chiesa, C. De Maria, A. Lapomarda, G. M. Fortunato, F. Montemurro, R. Di Gesù, R. S. Tuan, G. Vozzi,
677 R. Gottardi, Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D
678 bioprinting. *Biofabrication* **12**, 025013 (2020).

679 57. A. Anup, S. Dieterich, R. O. C. Orefeo, H. L. Dailey, A. Lang, M. Haffner-Luntzer, K. R. Hixon, Embracing
680 ethical research: Implementing the 3R principles into fracture healing research for sustainable scientific
681 progress. *Journal of Orthopaedic Research* **n/a**, (2023).

682 58. P. Jirkof, M. Durst, R. Klopfleisch, R. Palme, C. Thöne-Reineke, F. Buttgereit, K. Schmidt-Bleek, A. Lang,
683 Administration of Tramadol or Buprenorphine via the drinking water for post-operative analgesia in a
684 mouse-osteotomy model. *Scientific Reports* **9**, 10749 (2019).

685 59. A. Lang, A. Schulz, A. Ellinghaus, K. Schmidt-Bleek, Osteotomy models - the current status on pain scoring
686 and management in small rodents. *Lab Anim* **50**, 433-441 (2016).


687

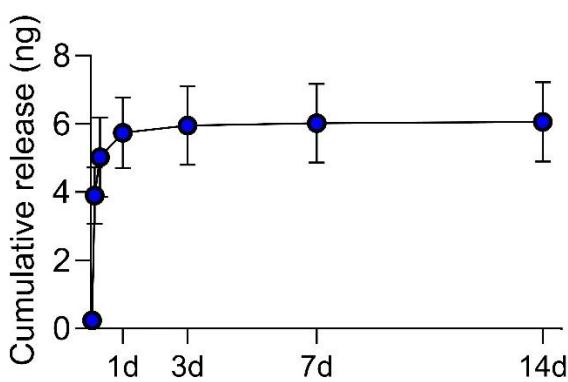
688

689

Supplementary Materials

690

691


692

693

694

695

Figure S1. Spatial expression of YAP, CCN1/CYR61, EMCN and OSX stiff vs. compliant fixation. Separated quantifications. Ordinary two-way ANOVA was performed to determine main effects of location (distal, gap, proximal) and fixation (stiff vs. compliant). Statistical significances are provided in graphs.

696

697

698

699

Figure S2. Cyr61 release kinetics from GelMA/fibrin scaffolds determined over 14d. 1 μ g rhCyr61 was loaded into GelMA-fibrin scaffolds and release into 1 mL PBS was measured by ELISA over 14 days. Cumulative measured release averaged 6 ng (0.6% of total loaded protein).