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SUMMARY 

The determination of long non-coding RNA (lncRNA) function is a major challenge in RNA biology with 

applications to basic, translational, and medical research [1-7]. Our efforts to improve the accuracy of 

lncRNA-target inference identified lncRNAs that coordinately regulate both the transcriptional and post-

transcriptional processing of their targets. Namely, these lncRNAs may regulate the transcription of their 

target and chaperone the resulting message until its translation, leading to tightly coupled lncRNA and 

target abundance. Our analysis suggested that hundreds of cancer genes are coordinately and tightly 

regulated by lncRNAs and that this unexplored regulatory paradigm may propagate the effects of non-

coding alterations to effectively dysregulate gene expression programs. As a proof-of-principle we studied 

the regulation of DICER1 [8, 9]—a cancer gene that controls microRNA biogenesis—by the lncRNA 

ZFAS1, showing that ZFAS1 activates DICER1 transcription and blocks its post-transcriptional repression 

to phenomimic and regulate DICER1 and its target microRNAs.  

 

INTRODUCTION 

Tens of thousands of lncRNAs are expressed in human tissues [10], often in a cell-type [11-14] and 

disease-specific manner [15-17], with thousands of lncRNAs co-expressed in each context [4]. lncRNAs 

regulate key cellular processes, including DNA repair [18], cancer cell proliferation [19], epithelial-

mesenchymal transition [20], stem cell reprogramming [21], and chromatin modification [22, 23]. They 

may bind DNA regulatory regions to regulate their target’s accessibility and transcription [24-27], or they 

may post-transcriptionally regulate their target’s RNA processing by altering its stability and degradation 

[28-30]. However, despite their abundance, few lncRNAs have been fully characterized [31-33]. Efforts 

to determine lncRNA function on a genome-wide scale have largely focused on their context-specific 

expression, dysregulation, and predictive power—including their ability to predict patient outcomes [5, 
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34-39]. Although these studies have identified lncRNAs associated with specific disease phenotypes, 

they have often been unable to provide mechanistic insights into the function of specific lncRNAs. 

Consequently, the mode of action of most lncRNAs remains unknown, including whether they have an 

affinity for DNA, RNA, or proteins or whether they regulate chromatin or alter the recruitment and activity 

of other regulatory factors. To begin to answer these questions, we developed models for lncRNA 

regulation and used these tools to predict, catalog, and classify lncRNA interactions based on their 

observed contexts and inferred functions in over 27,000 normal and disease samples [3, 4, 6, 40]. The 

results of these studies have underscored the importance of lncRNA regulatory modalities and cellular 

localization and provided insights into the pathologic consequences of their dysregulation [4, 31, 41, 42]. 

 

Most prior efforts to infer lncRNA–DNA interactions were based on the recognition that single-stranded 

lncRNAs bind to double-stranded DNA (dsDNA) by forming triple-helical (or triplex) structures [43-46]. 

These inference methods often evaluate candidate DNA-binding domains in lncRNAs and predict 

potential Hoogsteen base pairings in regulatory regions using a set of triplex-binding rules [47-51]. 

However, because the expression and localization of lncRNAs and their targets are context-specific, 

additional information is needed to improve sequence- and structure-based binding inferences [31, 52]. 

For example, LncMAP [53] integrates sequence patterns, expression correlations, and cross-species 

conservation to predict interactions, whereas LongHorn [3, 4, 6, 40] integrates weakly predictive features 

with models for lncRNA regulation to infer their transcriptional and post-transcriptional targets. Results 

from studies assessing these tools have shown that integrating mechanistic models for lncRNA regulation 

with expression, sequence, and structure information—as derived from large-scale molecular-profiling 

datasets—can improve the accuracy of lncRNA–target inferences [3], lncRNA discovery [4], and even 

co-factor microRNA (miRNA) and transcription factor target predictions [54]. However, although recent 

analyses suggest that most lncRNAs are nuclear (Figure 1A) and most lncRNA interactions are 

transcriptional, accurate prediction of lncRNA–DNA interactions remains an open challenge [4, 32, 55]. 

 

To address this challenge, we developed the lncRNA–DNA interaction-inference method BigHorn. 

BigHorn infers lncRNA–DNA interactions by integrating lncRNA-binding-site (lncBS) inferences obtained 

using elastic motifs with mechanistic models for lncRNA regulation that are populated with large-scale 

RNA-expression profiles of both coding and non-coding RNAs; see Methods. Our results showed that 

BigHorn’s lncBS-based discovery method significantly outperformed triplex-binding-based lncBS 

discovery, suggesting that elastic lncRNA–DNA-binding motifs can produce more accurate transcriptional 

target predictions. These findings are supported by results from clustered regularly interspaced short 

palindromic repeat interference (CRISPRi) perturbation assays targeting lncRNAs both in the nucleus 

and cytoplasm, RNA interference (RNAi) assays, and orthogonal computational analyses. Our 

conclusions are consistent with observations from LongHorn analyses, which suggested that triplex-

binding-based lncBS inference has low recall rates [3, 4, 54]. 

 

Pan-cancer inference of transcriptional and post-transcriptional lncRNA interactions by BigHorn and 

LongHorn, respectively, identified lncRNAs that are predicted to regulate their targets at multiple 

processing stages. These lncRNAs bind their target’s proximal promoters to alter their transcriptional 

regulation and modulate the regulation of their target’s message by miRNAs and RNA-binding proteins. 

This coordinated regulation produces tight couplings between lncRNAs and their target genes, resulting 

in highly correlated expression profiles. As a proof of concept, we studied the targeting of DICER1, a 

well-studied cancer gene with a wide-ranging regulatory impact, by ZFAS1, a highly expressed lncRNA 
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that is commonly dysregulated in cancer. Our results suggested that ZFAS1 is a master regulator of 

multiple cellular processes and that its dysregulation alters the transcriptional and post-transcriptional 

processing of thousands of genes, including through the coordinated regulation of DICER1. Importantly, 

DICER1 is just one of dozens of cancer genes predicted to undergo strong coordinated regulation by 

ZFAS1, and ZFAS1 is only one of many lncRNAs that are inferred to coordinately regulate key genes in 

a multitude of contexts, including cancer, highlighting the potential impact of this phenomenon. 

 

RESULTS 

 

Improved lncRNA target inference with BigHorn 

Both the predictive value of lncRNA regulatory models and the accuracy of lncRNA–target prediction 

methods are closely associated with lncRNA localization [3]. Interestingly, a combined analysis of results 

from large-scale efforts to catalog and map lncRNA cellular localization indicates that most lncRNA 

species are present in both the nucleus and cytoplasm, with nuclear lncRNAs predicted to outnumber 

cytoplasmic lncRNAs in all cases (Figure 1A, B; Table S2) [55-58]. To evaluate the benefit of integrating 

sequence and expression data for lncRNA-target interaction inference, we studied the dysregulation of 

the predicted targets of 95 lncRNAs following their targeting by antisense oligonucleotides (ASOs) in 

human primary dermal fibroblast cells by FANTOM6 [57]; note that ASOs can target noncoding RNAs in 

both the nucleus and cytoplasm [59]. Our results confirmed that the integration of sequence and 

expression data by LongHorn [3, 4] significantly improved lncRNA-target prediction accuracy (Figures 

1C-D and Table S3). Interestingly, when compared with Triplexator, which uses triplex-binding rules based 

on sequence information alone, LongHorn integration improved prediction accuracy for both 

transcriptional (lncRNA–DNA) and post-transcriptional targets for both FANTOM6-defined nuclear and 

cytoplasmic lncRNAs (Figure 1E) [57]; note that LongHorn does not predict lncBSs for post-transcriptional 

interactions and relies on triplex-binding rules to predict lncBSs for lncRNA–DNA interactions.  

 

Detailed evaluations of the precision and recall of lncRNA–DNA interaction inference methods revealed 

that while LongHorn significantly improved the accuracy of post-transcriptional cytoplasmic lncRNA target 

prediction relative to Triplexator, it yielded no significant improvement for nuclear lncRNA–DNA 

interaction inferences (Figure 1F). Moreover, accuracy improvements observed with LongHorn were 

driven by improvements to recall for cytoplasmic lncRNAs, demonstrating the benefit of using expression 

data to guide accurate target prediction, and suggesting that lncRNA–DNA interaction predictions based 

on triplex binding rules have poor recall (Figure 1G, H). To address this challenge, we tested whether 

lncBS inference using elastic binding motifs can be used within an integrated framework to improve the 

accuracy of lncRNA–DNA interaction inference. Our proposed elastic binding-motif-based approach, 

BigHorn, employs machine-learning models to concurrently integrate lncBS inference and expression 

data to predict lncRNA–DNA interactions. BigHorn evaluates and chains [3, 63-65] DNA motifs that are 

predictive of lncRNA–target co-expression and assesses candidate transcriptional interactions using 

models for lncRNA–DNA regulation, including those involving lncRNA co-factors and guides (Figure 3A); 

see Methods for details. Note that Triplexator and BigHorn only predict lncRNA–DNA interactions, 

Triplexator uses triplex binding rules to predict lncBS, and LongHorn integrates expression data analysis 

with triplex-inferred lncBS. To facilitate a comparison of BigHorn, LongHorn, and Triplexator lncRNA-

target predictions in a focused manner using cancer omics we selected a panel of 23 well-studied cancer 

lncRNAs. This panel includes lncRNAs with strong evidence for nuclear localization (Figure 2A) and high 

abundance across diverse tumor and cell types (Figure 2B, Table S4). Panel lncRNAs are differentially 
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expressed and encoded at loci characterized by genomic instability in most tumor types (Figures 2C and 

S1).  

 

We compared BigHorn, LongHorn, and Triplexator interaction predictions using multiple accuracy 

indicators, including regulatory element localization, in vitro perturbations, and orthogonal computational 

analyses. Regulatory elements, including transcription-factor-binding sites and lncBS, are known to be 

enriched in core promoters—within 100 bp from transcription start sites (TSS)—and in open chromatin 

regions [3, 60-62]. We found that BigHorn-predicted lncBSs are significantly more enriched in core 

promoters than those identified by Triplexator and LongHorn (Figure 3B; Table S5). Note that binding-

site distance from the TSS did not inform predictions by any method; random site distributions were based 

on Triplexator lncBS prediction in dinucleotide-preserving randomized promoters. BigHorn-predicted 

lncBSs were also significantly more likely to overlap with open chromatin regions in each tumor context 

than those predicted by the other methods (Figure 3C; Table S6). Finally, we performed CRISPRi-

mediated silencing of six selected lncRNAs in HEK293T cells and found that BigHorn-predicted targets 

were significantly more likely to show dysregulation following silencing than those predicted by LongHorn 

or Triplexator (average silencing efficiency 60%, Figures 3D, E, and S3; Tables S7 and S8). These data 

suggest that BigHorn significantly improves the accuracy of lncRNA-target predictions, and thus, elastic 

representations can facilitate lncBS characterization and discovery. Moreover, consistent with previous 

studies, MSigDB Hallmark Gene Set analysis of their BigHorn-predicted targets suggests that these 

lncRNAs regulate key cancer pathways—including proliferation, DNA damage, and signaling—and may 

be involved in both tumor progression and therapeutic resistance (Figure S2).  

 

Frequent coordinated transcriptional and post-transcriptional targeting by lncRNAs 

We assessed the distribution of predicted interaction types for our panel of lncRNAs with high pan-cancer 

nuclear abundance, together with several lncRNAs known to be relatively more abundant in the 

cytoplasm selected as controls, including NORAD, TUG1, and OIP5-AS1 [3, 66, 67]. The inclusion of 

cytoplasmic lncRNAs allowed us to contrast observations that are either specific or common to nuclear 

and cytoplasmic lncRNA species. Although LongHorn- and BigHorn-predicted targets were 

predominantly transcriptional in each tumor context, BigHorn predicted relatively fewer targets for 

lncRNAs with higher cytoplasmic abundance (Figure 3F). Moreover, on average, hundreds of target 

genes for each lncRNA were predicted to be regulated both transcriptionally and post-transcriptionally 

(coordinated). MALAT1, TUG1, OIP5-AS1, and ZFAS1 were among the lncRNAs predicted to 

coordinately regulate thousands of targets both transcriptionally and post-transcriptionally, with over 20% 

of their targets predicted to be coordinately regulated (Figure 3G; Tables S9 and S10). Note that predicted 

coordinated interactions may be based on combined evidence from multiple cancer types.  

 

To further evaluate lncRNA-target prediction accuracy, we used computational evidence for correlation 

differences between regulators and their target pre-mRNA and mRNA expression profiles [4] (Figure S4). 

This method associates transcriptional regulation with concurrent changes to pre-mRNA and mRNA 

abundance, whereas post-transcriptional regulation is associated with changes to mRNA but not pre-

mRNA abundance [4]; see Methods. Our results indicated that, on average, 31% and 73% of our 

predicted exclusively transcriptional and post-transcriptional lncRNA-target interactions, respectively, 

were significant. In comparison, 85% of predicted coordinated targets showed evidence for lncRNA 

regulation (Figure 3H–J; Table S11). Finally, we measured the expression profiles of predicted 

(exclusively) transcriptional, (exclusively) post-transcriptional, or coordinated targets of FTX, JPX, 
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NEAT1, NORAD, PVT1, and TERC following CRISPRi-mediated silencing of these lncRNAs in HEK293T 

cells. Results indicated that although most predicted targets were transcriptional (Figure S5), coordinated 

targets were significantly more likely to show dysregulation after silencing of their predicted lncRNA 

regulators (Figure 3K).  

 

ZFAS1 is a pan-cancer coordinated regulator  

Our analyses indicated that ZFAS1 is one of the most abundant, dysregulated, and genomically altered 

lncRNAs in tumors, with 23% of its targets predicted to be coordinately regulated (Figures 2 and 3). 

Analysis of expression profiles by RNA sequencing following RNAi-mediated silencing of ZFAS1 in ECC-

1, NCI-H460, and PC-3 cells further identified over 1,000 dysregulated candidate ZFAS1-targeting 

mRNAs (93% ZFAS1 silencing efficiency on average, Figure 4A, Table S12). As predicted, these targets 

are involved in cancer-associated pathways, including proliferation and DNA repair (Figure 4B); the top 

10 up- and downregulated mRNAs present in enriched MSigDB hallmark gene sets are shown in Figure 

4C. Overall, a significant proportion of ZFAS1 target genes predicted by BigHorn (transcriptional) and 

LongHorn (post-transcriptional) exhibited coordinated regulation by ZFAS1 (Figure 4D). Moreover, these 

targets also showed significant overlap with genes found to be dysregulated after RNAi-mediated ZFAS1 

silencing (Figure 4F, G). Notably, DICER1, which regulates the expression of hundreds of coding and 

non-coding genes, was found to be one of the most highly dysregulated by ZFAS1 silencing. 

 

Expression profiles following DICER1 silencing in the same cell types suggested that, although the 

overlap between predicted ZFAS1 targets and dysregulated genes following DICER1 silencing was not 

significant (Figure 4H, I), there was significant overlap between the sets of genes dysregulated following 

silencing of ZFAS1 and DICER1 (Figure 4E). This observation is consistent with the assertion that ZFAS1 

both regulates hundreds of genes independently of DICER1 and indirectly regulates DICER1 targets. 

Further evidence for DICER1 regulation was obtained by assessing ZFAS1-dependent delta distance 

correlations (ΔdCor) between regulators of DICER1 pre-mRNA and mRNA expression profiles (Figure 

4J). Similar to our observations with other tested lncRNAs (Figure 3D, E), we found that when compared 

with other transcriptional target prediction methods, BigHorn-predicted ZFAS1 targets were significantly 

more likely to be dysregulated following ZFAS1 silencing (Figure 4K). Moreover, coordinated ZFAS1 

targets, including DICER1, were significantly more likely to be differentially expressed following ZFAS1 

silencing in ECC-1, NCI-H460, and PC-3 cells (Figure 4L–N). Low-throughout validation by quantitative 

reverse-transcription (RT-qPCR; Figure 4O; Table S17) following ZFAS1 silencing in ECC-1, NCI-H460, 

and PC-3 cells further verified the dysregulation of predicted ZFAS1 targets in lung adenocarcinoma 

(LUAD), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), and uterine corpus 

endometrial carcinoma (UCEC) (PAN4). These genes were selected based on their involvement in 

ZFAS1-targeted pathways, identified through RNA-seq following ZFAS1 knockdown (Figure 4B, black 

triangle). 

 

ZFAS1 regulates DICER1 transcription, mRNA processing, and protein expression 

We next performed RNAi-mediated silencing of ZFAS1 to assess its effect on DICER1 RNA and protein 

expression in a panel of 11 cancer cell lines. To determine whether the effects of ZFAS1 silencing are 

specific to DICER1, we also evaluated the dysregulation of ZNFX1; ZFAS1 and ZNFX1 are co-expressed, 

share a bidirectional promoter, and ZFAS1 was expected to regulate ZNFX1 transcription because of 

their proximity [68], but these genes were not predicted to interact with each other. Our findings in all 

tested cell lines showed that ZFAS1 silencing leads to the downregulation of DICER1 but not ZNFX1 
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mRNA (Figure 5A; Table S17). Coordinated regulation is expected to produce a greater effect on target 

protein expression than mRNA expression, and indeed, ZFAS1 silencing consistently downregulated 

DICER1 protein levels to a greater extent than observed for DICER1 mRNA; p<3E-5 by paired Student’s 

t-test (Figures 5A, B, S6, and S7). 

 

To determine whether ZFAS1 targets both the DICER1 promoter and 3’-untranslated region (UTR), we 

performed promoter and 3’-UTR activity assays in HEK-293T and HeLa cells subjected to RNAi-mediated 

silencing of ZFAS1 and the lncRNA NORAD, which is not predicted to regulate DICER1, as a negative 

control. Our results showed that silencing of ZFAS1 (but not NORAD) led to the downregulation of 

DICER1 (but not ZNFX1) expression in both cell lines (Figure 5C, D). Additionally, ZFAS1 (but not 

NORAD) silencing downregulated both DICER1 promoter and 3’-UTR activity (Figure 5E–H). Note that 

transfection with the DICER1 and GAPDH promoter plasmids did not significantly alter DICER1 

expression, and DICER1 silencing was used as a positive control for reduction of DICER1 3'-UTR 

luciferase reporter activity. To test BigHorn’s DICER1 promoter-binding site prediction for ZFAS1, we 

altered either the putative high-confidence ZFAS1-binding site or an adjacent site in a DICER1 promoter–

luciferase reporter, producing plasmids M1 and M2, respectively (Figure 5I). Consistent with the targeting 

of the predicted region by ZFAS1, M1 activity was significantly lower than that of the original wildtype 

(WT) plasmid and was unaffected by ZFAS1 silencing. In contrast, M2 activity was not lower than that of 

the WT plasmid and was significantly reduced by ZFAS1 silencing (Figure 5J). 

 

ZFAS1 regulates the miRNome through DICER1 

We next measured the miRNome in NCI-H460 and PC-3 cells at early (24 h) and later time points (NCI-

H460: 48 h, PC-3: 72 h) following transfection with ZFAS1-targeting and non-targeting (NT) small-

interfering (si)RNAs. Consistent with our observations in cells subjected to DICER1 silencing, our results 

indicated that ZFAS1 silencing significantly regulates the miRNome at both time points in NCI-H460 cells 

and at the later time point in PC-3 cells (Figure 5K; Table S13). Moreover, comparisons of dysregulated 

miRNAs following ZFAS1 and DICER1 silencing in NCI-H460 and PC-3 cells showed significant 

correlations (ρ=0.60 and ρ=0.58, respectively) at the later time point, with most miRNAs downregulated 

after both ZFAS1 and DICER1 silencing (Figure 5L). Combining observations from the two cell lines, we 

found that 1 and 0 miRNAs were significantly upregulated, and 16 and 17 miRNAs were significantly 

downregulated by ZFAS1 and DICER1 silencing, respectively (Figure 5M). The overlap between 

downregulated miRNAs following ZFAS1 and DICER1 silencing was statistically significant (29/61, 48%, 

p=6E-4; Figure 5N), and it included let-7 family members (Figure 5O). Note that these findings, as 

expected, are inverse to observations of mRNA target dysregulation, wherein most dysregulated mRNAs 

following ZFAS1 silencing were not dysregulated by DICER1 silencing (96%; Figure 4E). 

 

ZFAS1 suppresses cancer-cell and tumor proliferation  

DICER1 downregulation is commonly observed in cancer cells and associated with both increased 

proliferation and poor patient outcomes, suggesting that DICER1 is a pan-cancer regulator [69]. We 

therefore performed an in vitro evaluation of cancer cells and detected increased growth of breast (MDA-

MB-231), lung (NCI-H460), prostate (PC-3), sarcoma (HT-1080), and endometrial (ECC-1) cells following 

ZFAS1 silencing compared to controls (Figure 6A–E), possibly through its coordinated regulation of 

DICER1. Notably, the observed effects on cell growth mimicked those observed after silencing of DICER1 

and the known tumor suppressor PTEN in MDA-MB-231, NCI-H460, HT-1080, and ECC-1 (PTEN is not 

expressed in PC-3 cells). In contrast, silencing of the oncogene FOXA1 [70] in PC-3 cells decreased cell 
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growth. To investigate the impact of ZFAS1 silencing on tumor growth in vivo, we established stable 

knockdown of ZFAS1 in PC-3 and ECC-1 cells using validated short-hairpin (sh)RNAs, achieving >90% 

reduction in ZFAS1 expression levels (Figures 6F and S8). Next, we xenografted transfected cells in the 

flanks of NOD-scid-gamma (NSG) mice and evaluated tumor growth and survival relative to xenografts 

of cells transfected with non-targeting shRNA controls. We found that ZFAS1-silenced PC-3 and ECC-1 

xenografts showed significantly faster growth relative to controls (Figures 6G); Figures S9 and S10 show 

detailed images of dissected tumors. We further evaluated the effects of ZFAS1-silencing on tumor weight 

by sacrificing and evaluating all PC-3 xenografts once the first animal showed signs of tumor-induced 

distress and tested the effects of ZFAS1-silencing on xenograft survival by continuing the ECC-1 

xenograft study until all animals had to be sacrificed. Our results showed that ZFAS1-silenced PC-3 

xenografts had significantly greater volumes at 32 and 71 days than controls (Figure 6G) as well as 

significantly increased weight at 32 days (Figure 6H) and had significantly shorter survival rates than 

controls (Figure 6I). All tumor data and associated analyses are provided in Tables S14 (PC-3) and S15 

(ECC-1). 

 

ZFAS1 alters cellular response to X-ray radiation 

Predicted transcriptional targets for ZFAS1 and genes downregulated in response to ZFAS1 silencing in 

ECC-1, NCI-H460, and PC-3 cells were both enriched for DNA-repair genes (Figure 4B). Combined 

analysis of the RNA expression profiles [71] and cell survival following treatment of 517 cancer cells by 

radiotherapy [72] suggested that ZFAS1’s expression across cell lines is highly correlated with resistance 

to radiation (Figure 7A, Table S16) in a cancer-type independent manner and across our tumor types of 

interest (Figure 7B). Indeed, analysis of cell growth and colony formation 96 h after X-ray irradiation at a 

variety of dosages revealed that RNAi-targeting of ZFAS1 and DICER1 significantly reduced cell growth 

(Figure 7C) and survival fractions for both PC-3 and ECC-1 cells (Figure 7D); representative wells are 

shown in Figure 7E, F. We note that the altered radiation response observed in ZFAS1-silenced cells may 

be due to its predicted role in regulating DNA-damage repair genes, as supported by the enrichment of 

ZFAS1 targets in multiple ionizing-radiation (IR)-related DNA repair gene sets (Figure 7G; Table S16). 

Moreover, ZFAS1-binding sites were significantly enriched in double-strand break (DSB) sites [73, 74] 

(Figure 7H; Table S16), and ZFAS1-predicted targets significantly overlapped with genes harboring DSB 

sites in their promoters (Figure 7I) in normal human epidermal keratinocyte (NHEK) cells [73, 74], 

suggesting that ZFAS1 may be recruited to these sites and play a direct role in DNA repair. 

 

DISCUSSION 

Recent findings suggest that thousands of lncRNAs are expressed in each human cell, and these species 

play key roles in regulating gene expression programs that drive the progression of cancer and other 

diseases. Critically, although tens of thousands of lncRNA species have been cataloged, efforts to 

interpret lncRNA function and explore their translational potential have had only limited success  [4, 55-

57, 75, 76]. Prior studies suggest that lncRNAs modulate key regulatory functions in the cell, including 

mRNA transcription, splicing, stability, degradation, translation, and localization [44]; lncRNAs also 

sequester proteins, facilitate protein-protein interactions, alter protein phosphorylation, and influence 

protein stability to regulate function and downstream signaling [77-81]. Consequently, lncRNAs are 

thought to broadly affect cell identity and disease phenotypes. Moreover, their regulatory roles, coupled 

with their tissue and disease-specific expression, suggest that lncRNAs are exceptional therapeutic target 

candidates for a variety of diseases, and efforts to characterize their functions are likely to have wide-

ranging translational significance. 
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In this study, we applied the newly developed method BigHorn to infer transcriptional targets for a panel 

of well-studied lncRNAs with known nuclear abundance and frequent genetic and epigenetic (genomic) 

alterations in cancer. Our results suggested that BigHorn inferences are significantly more accurate than 

predictions by published methods, including LongHorn [3, 4]. Interestingly, investigation of BigHorn-

inferred transcriptional and LongHorn-inferred post-transcriptional targets of lncRNAs that are abundant 

in both the nucleus and cytoplasm revealed an unexpectedly high proportion of inferred coordinated 

interactions, where an mRNA is both transcriptionally and post-transcriptionally regulated by the same 

lncRNA species. Moreover, analysis of molecular profiles from 16 cancer datasets suggested that, on 

average, each lncRNA has hundreds of coordinated targets and that these couplings are associated with 

significantly stronger correlations between lncRNA and target expression. Genes—including master 

regulators of development and disease—that are predicted to be coordinately regulated by lncRNAs are 

significantly more likely to be dysregulated by the silencing of their lncRNA regulators.  

 

Studies directed at mapping the genome-wide lncRNA regulatory landscape often combine diverse 

molecular assays, such as RNA-seq, chromatin immunoprecipitation with sequencing (ChIP-seq), cross-

linking and immunoprecipitation with sequencing (CLIP-seq), and assay for transposase-accessible 

chromatin with sequencing (ATAC-seq), with powerful computational machinery to predict lncRNA 

localization, direct binding, or influence on candidate targets of interest. We aimed to identify lncRNA 

transcriptional targets by evaluating putative lncBSs in proximal promoters that match predictive DNA 

sequence motifs. Our analysis involved the integration of molecular data from thousands of cancer 

patients to populate models for lncRNA interactions. Specifically, we evaluated evidence for co-factor and 

guide lncRNA interactions (Figure 3A), wherein lncRNAs directly bind proximal promoters and regulate 

their targets by either altering the activity of other transcription and chromatin-modification factors that 

regulate these promoters (co-factor) or by recruiting these factors to target promoters (guide). We relied 

on LongHorn [3, 4] to predict post-transcriptional interactions, which, like BigHorn, uses mechanistic 

models for post-transcriptional lncRNA regulation but does not predict lncRNA–RNA- or lncRNA–protein-

binding sites.  

 

A key advantage of the mechanistic regulation models used by BigHorn is the generation of nuanced 

predictions that can be tested in the lab, including predictions about lncBSs, their co-factors, and the 

phenotype expected from their disruption. Bighorn’s core innovation lies in replacing traditional triplex-

binding rules (or RNA–DNA binding rules) with elastic lncRNA–DNA binding motifs for predicting lncBSs. 

Using both large-scale and targeted perturbation assays, we showed that BigHorn significantly improved 

lncRNA-target prediction accuracy compared to methods based on triplex-binding rules. We intended to 

study lncRNAs that were predicted to be predominantly transcription regulators, but, on average, each 

lncRNA in our panel was inferred to coordinately—both transcriptionally and post-transcriptionally—

regulate hundreds of genes. We showed that these coordinated interactions result in stronger couplings 

between lncRNAs and their targets, are more readily observed in large-scale molecular assays, are 

easier to predict due to the strong correlation between expression profiles of lncRNAs and their 

coordinated targets, and are easier to confirm given that they can be disrupted via multiple orthogonal 

strategies that produce observable regulatory footprints. Because lncRNA expression and genomic loci 

are often altered in cancer, we expect that our predicted coordinated interactions will be a valuable 

resource for studying the trans effects of lncRNA dysregulation on cancer genes and pathways.  
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Moreover, as proof of concept, we studied the regulation of DICER1—a cancer gene and a master 

regulator of miRNA biogenesis—by the lncRNA ZFAS1.  Our assays confirmed that ZFAS1 regulated 

DICER1 transcription and mRNA processing, resulting in a strong coupling between this abundant 

lncRNA and crucial miRNA regulator. RNAi-mediated silencing of ZFAS1 led to a >2-fold reduction in 

DICER1 RNA and up to a 4-fold reduction in DICER1 protein expression in multiple cell lines. Results 

from RNA-seq analysis following in vitro ZFAS1 and DICER1 silencing indicated that this lncRNA 

regulates hundreds of genes independently of DICER1 and further regulates the miRNome through 

DICER1. Consequently, our results suggested that ZFAS1 controls the steady-state balance between the 

abundance of DICER1 and the miRNome and that in the absence of ZFAS1, DICER1 is more vulnerable 

to post-transcriptional downregulation. Finally, analysis of cancer phenotypes, including in vitro cancer 

cell proliferation and in vivo tumor growth data, indicated that both DICER1 and ZFAS1 are cancer genes 

that can regulate proliferation and DNA repair, a result that may be attributed to DICER1-mediated effects, 

DICER1-independent ZFAS1 regulation of DNA repair genes, or direct binding to DSB sites. Moreover, 

pan-cancer analysis revealed that ZFAS1 is often dysregulated in cancer, showing altered expression, 

genomic instability (88% of analyzed tumor types), and differential promoter methylation (92% of 

analyzed tumor types) in cancer cells (Figure 2C). These data suggest that ZFAS1 is a cancer gene that 

plays a role in multiple tumor types.  

 

Importantly, we propose that DICER1 is just one of 3,000 predicted coordinated ZFAS1 targets and that—

like ZFAS1—many lncRNAs are enriched for coordinated interactions (Figure 3G). We therefore view the 

evaluation of the ZFAS1–DICER1 axis as a template for future studies of coordinated lncRNA regulation 

and propose the use of our computational models for identification of these interactions. We further posit 

that, as observed for the ZFAS1–DICER1 axis, coordinated interactions produce tighter regulation than 

other interactions and can be readily tested by targeted experiments. Indeed, we do not propose to study 

ZFAS1 as a therapeutic target in cancer, and our interest in this gene is solely to demonstrate the 

physiological effects of coordinated regulation by lncRNAs. As a first step, focusing on a panel of well-

studied lncRNAs, we produced a catalog of coordinated lncRNA interactions that could be further 

investigated to provide insight into the functions of some of the most studied cancer lncRNAs. We hope 

that this resource will facilitate further research into the multimodal nature of lncRNA regulation to improve 

our understanding of lncRNA function and its roles in diverse biological processes and diseases. 

 

METHOD 

Computational methods and biochemical assays are summarized below, with additional details provided 

in the Supplementary Methods. 

 

Long non-coding RNA (lncRNA) panel and multi-omics datasets 

To identify lncRNAs with high nuclear abundance in cancer, we analyzed molecular profiles of 16 cancer 

datasets in The Cancer Genome Atlas (TCGA), each including samples from at least 150 patients. 

Molecular profiles included RNA expression, microRNA (miRNA) expression, CpG methylation, and gene 

copy numbers obtained using deep RNA sequencing (RNA-seq), miRNA-seq, Illumina Infinium Human 

DNA Methylation 450 Array, and Affymetrix Genome-Wide Human SNP Array 6.0, respectively. In 

addition, each tumor-type-specific dataset included profiles from at least 15 non-tumor samples, which 

were required for our analysis of differential expression and differential methylation. Copy number and 

methylation data were used to determine whether alterations at lncRNA loci could affect their target gene 

expression. When evaluating copy-number changes (Figure 2C), we calculated the fold-change in the 
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number of altered samples (|deviation from 2 copies| > 0.3) for each lncRNA relative to the median across 

all lncRNAs. TCGA assay for transposase-accessible chromatin with sequencing (ATAC-seq) open 

chromatin profiles were compared to predict DNA-binding sites; see Supplementary Methods for details. 

We focused on a panel of 23 lncRNAs, including well-studied lncRNAs with high pan-cancer abundance, 

diverse RNA classes, such as antisense, long intergenic non-coding RNAs (lincRNAs), processed 

transcripts, and lncRNAs with (for 21/23) documented nuclear localization or previously observed high 

nuclear abundance, as supported by resources such as RNALocate v2 [76],  APEX-seq [55], ENCODE 

[56], FANTOM6 [57], and inferred localizations using the PanCanAtlas [3] and RNA Atlas [4]. Pre-mRNA 

and mature mRNA abundance were estimated as previously described [4]. We analyzed FANTOM6 cap-

analysis gene expression (CAGE) sequencing data from antisense oligonucleotide (ASO)-mediated 

knockdown assays for 154 lncRNAs with sufficient silencing efficiency in human primary dermal 

fibroblasts to quantify transcriptome abundance, measured in transcripts per million (TPM), followed by 

differential expression analysis with DESeq2 v1.2 to identify significantly dysregulated genes upon 

lncRNA silencing; see Figure 1 and Supplementary Methods. 

 

Regulatory region and interaction curation and inference 

We used BigHorn to predict lncRNA-binding sites (lncBSs) in proximal promoters, ±1kb from each RefSeq 

hg19 transcription start site (TSS). BigHorn and LongHorn use lncRNA-interaction models to infer lncRNA 

targets, incorporating transcription- and chromatin-factor-binding information curated or derived from 

HumanTFs v1.01 [77] and selected datasets [78-81]. Transcription-factor-binding sites with a significant 

position-weight-matrix-binding (P<1E-6) score by CREAD [65] were compared to lncBSs to identify 

overlap enrichment in core promoters and open chromatin regions. Paired pre-mRNA and mRNA 

expression profiles for each gene were used to evaluate candidate lncRNA targets, as previously 

described [4, 89]. Double-strand break (DSB) hotspots in normal human epidermal keratinocytes were 

derived from DSBCapture [73], as previously described [74]. Non-DSB sites matching the sequence 

characteristics of DSB sites (i.e., in length, GC content, and number of repeats) were randomly selected 

from the human genome [74]. Radiation-sensitivity data for cancer cell lines were downloaded from Yard 

et al. [72], and expression profiles were obtained from the Cancer Cell Line Encyclopedia (CCLE) [90]; 

see Supplementary Methods. Proximal promoters, transcriptional and post-transcriptional regulators, and 

cancer genes are listed in Table S1. To identify key biological pathways targeted by lncRNAs, we 

evaluated the enrichment of Hallmark Gene Sets and ionizing radiation (IR) gene sets [91] among 

BigHorn-inferred lncRNA targets or dysregulated genes following siRNA-mediated lncRNA knockdown.  

 

BigHorn lncRNA–target inference 

BigHorn infers lncRNA transcriptional targets using a combination of evidence for DNA-binding 

preference and the influence of the lncRNA on target expression. Inference follows a model wherein a 

lncRNA preferentially binds its target’s regulatory region (e.g., proximal promoter) and either 

synergistically interacts or recruits other factors to regulate its transcription. Consequently, Bighorn 

identifies sequence motifs with enriched sites in transcriptional regulatory regions of possible lncRNA 

targets and evaluates transcription-based evidence that motif sites are predictive of lncRNA regulation 

based on the correlation between lncRNA and target expression profiles. We describe this inference in 

two steps: (1) enriched motif discovery and (2) evidence for effector modulation by the lncRNA (described 

in detail below). This sequential approach combines sequence evidence to produce sites with evidence 

for lncRNA regulation with data suggesting modulation of effector activities by lncRNA. In the present 

study, the resulting predictions included tumor-type-specific lncRNA-target and effector-target 
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interactomes for each of the 16 TCGA tumor types, as well as the sequence features predictive of pan-

cancer correlations between lncRNA and their inferred targets. Studied TCGA tumor types include 

bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell 

carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), head and neck 

squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell 

carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous adenocarcinomas 

(OV), prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), thyroid carcinoma (THCA), 

and uterine corpus endometrial carcinoma (UCEC). 

 

Enriched motif discovery. BigHorn uses an iterative approach to identify sequence motifs whose presence 

in transcriptional regulatory regions of a candidate target for a lncRNA is predictive of their co-expression. 

First, BigHorn accounts for the number of sites for each gapped k-mer [92, 93] in proximal promoters. A 

gapped k-mer is a short k-length DNA sequence and it is used to identify DNA sequences that match it 

with a bounded number of mismatches. Here, we set k=12 bases to facilitate direct comparisons with 

Triplexator [82], which was used for inference of RNA–DNA triplex structure and required sites to match 

at least 6 bases of a gapped 12-mer. For each gapped k-mer and gene pairing, the maximum number of 

sites for the gapped k-mer across all proximal promoters associated with the gene’s transcripts was 

determined. BigHorn then uses a Random Forest algorithm for least absolute shrinkage and selection 

operator (LASSO) regression (Random LASSO) [94] to prioritize candidate gapped k-mers based on the 

association between their occurrences in proximal promoters and the significance of pan-cancer distance 

correlations between each lncRNA and expressed gene in the 16 TCGA datasets—requiring lncRNA and 

candidate-target expression in at least three datasets, as described in Supplementary Methods. In short, 

BigHorn regression was used to compare gapped k-mers within randomly-assembled motif sets, and the 

most predictive gapped k-mers according to LASSO regression in each motif set were re-assigned a 

score proportional to their retention rate and re-evaluated at the subsequent iteration. Notably, gapped 

k-mers with higher scores are more likely to be included in the randomly-assembled motif sets for the 

next iteration. This process produces a set of predictive but not independent gapped k-mer motifs, 

highlighting predictive motifs while permitting the inclusion of dependent motifs. After pruning sites that 

better match the dinucleotide-preserving summary of all proximal promoters, BigHorn compares motif 

sites to join motifs with frequently overlapping sites and identifies synergistic motifs [65], in which motif 

combinations improve predictive ability. Consequently, BigHorn identifies targets with sites of variable 

lengths and co-occurring gapped k-mers located at variable distances; we represent motif collections for 

each lncRNA as undirected graphs with multiple connected components, where nodes depict strings 

(gapped k-mers) and edges indicate potentially synergistic relationships. To generalize motif 

presentation, BigHorn employes MEME [88] to describe sites that match gapped k-mers in the same 

connected components using position-weight-matrix motifs, including within co-occurring motif modules  

[65]; see Supplementary Methods. 

 

Evidence for effector modulation. BigHorn evaluates the evidence for effector modulation by lncRNAs of 

each of their candidate targets with sites containing predictive motifs. First, each candidate target is 

associated with a set of previously identified transcriptional and chromatin regulators (effectors). Bighorn 

then assesses whether the expression of the lncRNA is predictive of the correlation between the 

candidate target and its effectors. That is, the delta distance correlation (ΔdCor) between each effector 

and possible target is evaluated in each expression profile dataset, where ΔdCor is the difference 

between the distance correlation of the effector and target in samples with high vs. low lncRNA expression 

(i.e., samples where lncRNA expression is at the top and bottom 25%) in each dataset. The significance 

of the resulting ΔdCor estimate is evaluated using permutation testing wherein complete target and 
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effector profiles are permuted. Finally, significance estimates across effectors and datasets are combined 

using Fisher’s method for each lncRNA–target pair. Here, significant lncRNA–target pairs (Bonferroni-

corrected p<0.01) were identified and assembled into tumor-type-specific interactomes; see 

Supplementary Methods for details. 

 

Evidence for mRNA and pre-mRNA regulation by lncRNAs 

Transcriptional regulation by lncRNAs is expected to affect both pre-mRNA and mRNA expression 

profiles, whereas post-transcriptional regulation is expected to affect only mRNA expression, leading to 

deviations in pre-mRNA and mRNA profiles. Thus, a gene’s estimated mRNA and pre-mRNA expression 

profiles are expected to be correlated with changes in the gene’s post-transcriptional (PTR) and 

transcriptional (TR) regulation, respectively [4]. We evaluated correlation evidence to predict exclusively 

TR, PTR, and coordinated lncRNA targets. Correlations between effectors and both pre-mRNA and 

mRNA expression profiles for lncRNA targets were assessed, where effectors included transcriptional 

and chromatin factors for TR targets and miRNAs for PTR targets. Thus, for each lncRNA, we calculated 

tumor-type-specific ΔdCors between effectors and their target’s expression profiles in tumor samples 

within the top and bottom quartiles of lncRNA expression, where the dCors compared correlations of 

effectors and those of their target’s pre-mRNA vs. mRNA profiles. Significant ΔdCor values 

(nonparametric p<0.05) across tumor types were pooled for one-sided p-value determination using the 

paired Student’s t-test.  Targets with both pre-mRNA and mRNA profiles and significant ΔdCors involving 

at least three effectors for either profile were tested for each lncRNA in the panel. A coordinated target 

was classified as significant if the ΔdCor values with effectors calculated using the target’s pre-mRNA or 

mRNA profile were significantly larger in one profile than the other. Detailed methods for mRNA and pre-

mRNA expression estimation, along with other relevant information, are provided in the Supplementary 

Methods. 

 

Cell culture 

Immortalized human cell lines, including MCF-7, MDA-MB-231, MDA-MB-468, HepG2, NCI-H460, 

OVCAR-3, SK-OV-3, LNCaP, PC-3, 143B, ECC-1, HT-1080, HEK-293T, and HeLa cells were purchased 

from Baylor College of Medicine’s Molecular and Cellular Biology Tissue Culture Core Laboratory and 

cultured according to mammalian tissue culture protocols; see Supplementary Methods for details. Cell 

lines were evaluated, validated, and grown to match specifications provided by their suppliers. Cells were 

passaged every 2 weeks and weaned off Matrigel after 20 passages, as previously described [95]. 

Mycoplasma contamination testing was performed at regular intervals. 

 

Promoter and 3’-untranslated region (UTR) activity assays 

All wild-type plasmid promoters and 3’-UTR pLightSwitch expression vectors were purchased from Active 

Motif (Carlsbad, CA). Synthesis and cloning of DICER1 (ENST00000343455) promoter mutants into the 

pcDNA3.1(+)-C-eGFP vector were outsourced to GenScript, with M1 and M2 containing alterations at 

positions [‒40 to ‒29] and [+82 to +93] relative to the transcription start site, respectively (Figure 5I). Each 

experimental condition was replicated five times; see Supplementary Methods for details. 

 

RNA interference (RNAi) assays and expression profiling 

Small-interfering (si)RNA SMART pools targeting ZFAS1, DICER1, PTEN, FOXA1, and NORAD and non-

targeting (NT) controls were purchased from Dharmacon (Lafayette, CO), and short-hairpin (sh)RNAs 

targeting ZFAS1 and the scrambled control expressed from a psi-LVRU6Mp vector backbone were 

obtained from GeneCopoeia (Rockville, MD). RNAi DharmaFECT transfections were performed with ON-
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TARGETplus SMARTpools containing four distinct siRNAs targeting the same gene with NT Pool controls 

(NT); see Supplementary Methods.  

When evaluating gene expression fold-changes determined by RNA-seq (Figure 4A), we compared 

expression levels measured following transfection with siRNA targeting ZFAS1 (siZFAS1) to those 

measured after NT siRNA control transfections; see Supplementary Methods. The significance of RNA 

dysregulation was estimated by one-tailed Student’s t-test in each cell line, and values were combined 

by Fisher’s method across cell lines using two biological replicates per siRNA. Only protein-coding genes 

with Transcript Per Million (TPM) expression >0.1 across all cell lines and in all replicates were included 

in the analysis. When comparing dysregulated genes following ZFAS1 silencing and predicted ZFAS1 

targets (Figure 4B), we used only the top 1,200 targets—similar to the number of differentially expressed 

genes—ranked by their total number of ZFAS1 lncBSs. RNA expression (Figures 4O, 5A, C, D, and 6F) 

was estimated by quantitative reverse transcription PCR (RT-qPCR; Table S17).  

ImageJ was used to quantify the results of western blot analysis (Figure 5B), with expression values 

normalized to vinculin and averaged over two technical replicates; see Supplementary Methods. For each 

siRNA treatment, miRNA expression levels (Figure 5K–O) were measured in duplicate using the 

NanoString nCounter Human miRNA Expression Array performed by the Genomic and RNA Profiling 

Core at Baylor College of Medicine, according to the manufacturer's instructions; miRNA abundance was 

normalized and evaluated relative to the averaged expression of negative control probes across all siRNA 

transfections. Cell proliferation was measured by the SpectraMax i3/i3x Multi-Mode Detection Platform. 

Proliferation fold-changes (Figure 6A–E) were quantified as cell counts relative to Day 0, with the size 

and pattern of data points along the curves indicating the significance of differences, calculated using a 

two-tailed Student’s t-test across five technical replicates compared NT control; p-values were 

aggregated across days using Fisher’s method. See Supplementary Methods for details.  

Clustered regularly interspaced short palindromic repeat interference (CRISPRi) screen 

We used a high-throughput parallel CRISPRi screening platform that combines live-cell imaging with a 

scalable RNA-seq workflow to generate unbiased analyses of lncRNA regulation. For each lncRNA target 

of interest, a pool of up to 10 single-guide RNAs (sgRNAs) was produced by high-throughput in vitro 

transcription of sgRNA templates generated by multiplex PCR [96]. In brief, NT and sgRNAs targeting a 

window of 300-bp upstream and downstream of the TSS of each lncRNA were then selected from the 

CRISPR non-coding library (CRINCL) sgRNA [97]. The crRNA sequences were amended with 5′ and 3′ 

appendixes, as specified by the Guide-it sgRNA In Vitro Transcription Kit (Takara Bio, cat. nos. 632638, 

632639, 632635, 632636, and 632637), and single-stranded DNA oligos were purchased from Integrated 

DNA Technologies. The dsDNA in vitro transcription template was generated with the Guide-it sgRNA In 

Vitro Transcription Kit according to the manufacturer’s instructions, and in vitro transcription was 

performed at 37°C for 4 h. The resulting sgRNA pools were delivered by electroporation to HEK293T cells 

with stable dCAS9-KRAB expression. These cells were generated by stably introducing the nuclease-

deficient dCas9-KRAB-MeCP21 (Addgene plasmid no. 110821) in HEK293T cells with the piggyBac-

transposon system (System Biosciences, cat. no. PB210PA-1), according to the manufacturer’s 

instructions. HEC293T cells positive for dCas9-KRAB-MeCP2 were selected using 10-µg ml–1 blasticidin, 

and 12,000 cells per well were then seeded in 96-well plates (Corning, cat. no. 3596) in 180-µl Roswell 

Park Memorial Institute Medium (RPMI) cell culture medium. At 24 h after seeding, sgRNAs were 

transfected with Lipofectamine reagent CRISPRMAX (Invitrogen, cat. no. CMAX00003) to a final 
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concentration of 0.5 ng µl–1 in 200 µl; 72 h after transfection, cells were lysed with SingleShot lysis buffer 

(Bio-Rad, cat. no. 172-5081).  

 

QuantSeq RNA-seq library preparation (Lexogen) was performed according to the manufacturer’s 

protocol using 5 µl of cell lysate as input. Libraries were quantified by qPCR, pooled, and sequenced on 

a NextSeq 500 System (Illumina). FASTQ files were processed using an in-house RNA-seq analysis 

pipeline. FastQC (v0.11.8) was first used for data quality control, after which adapter sequences, polyA 

readthrough, and low-quality reads were removed by BBMap v38.26. Reads were then mapped against 

the hg38 reference genome with STAR v2.6.0c [98], and gene counts were determined by HTSeq  

v.0.11.0 [99]. The number of reads for each gene was adjusted to account for differences in sequencing 

depth and presented as counts per million (CPM). The sgRNA-transfected cells were subsequently 

monitored in real time to quantify cell growth, proliferation, and apoptosis. We applied a modified version 

of the recently published Digital RNA with pertUrbation of Genes (DRUG)-seq approach using 384 

barcoded RT primers to enable single-tube library preparation [100]. This strategy allowed us to 

accurately quantify the expression of 7,000–8,000 genes per sample at ultra-low cost and high throughput 

(De Bony et al., in preparation). Comparisons were made to plate-specific pooled negative-control NT 

sgRNAs. The full list of sgRNA sequences is provided in Table S7. 

 

Radiation response and colony-formation assays  

We evaluated features predictive for cell-line-specific responses to X-ray radiation using CCLE molecular 

profiles of 517 cancer cell lines. Gene expression profiles in the endometrium (n=23; matched with ECC-

1), squamous cell of lung (n=19; matched with NCI-H460), prostate (n=4; matched with PC-3), and urinary 

tract (n=19; matched with PC-3) were compared with post-irradiation cell survival, computed as the area 

under the curve of the radiation-dose-dependent survival function using the Yard et al. trapezoidal 

approximation approach [72]—the bigger the area, the higher the radioresistance. We focused our 

analysis in Figure 7A on 178 radiation-response genes curated from a combination of sources: the DNA 

damage repair MSigDB gene set, published literature, and our panel. When evaluating response to 

radiation, cells were irradiated by an Rs-2000 X-Ray irradiator in six-well plates using single radiation 

bursts of 0–10 Gy, and colonies were evaluated 10–14 days following radiation using a FluorChem™ R 

system after fixing and staining. Proliferation fold-changes were measured at 96 h post-irradiation for 

both PC-3 and ECC-1 cells, and survival fractions were determined 11- and 14-days post-irradiation for 

PC-3 and ECC-1 cells, respectively. Colony numbers were counted by AlphaView software. Values were 

normalized to those of non-irradiated cells (Gy 0). Four replicates (two biological, two technical) were 

performed for each siRNA–radiation dose combination. A complete list of genes and additional 

experimental details are provided in the Supplementary Methods.  

 

Tumor growth assays 

To evaluate the effect of RNAi-mediated ZFAS1 silencing on tumor growth, we transfected PC-3 and 

ECC-1 cells with shRNAs targeting ZFAS1 (shZFAS1) or the scrambled control (shCtrl) and implanted 2 

million cells knockdown or control cells subcutaneously into the right flanks of male (PC-3) and female 

(ECC-1) mice. Tumor volume was estimated by calipers, with measurements taken at increasing 

intervals, three times per week on average. Daily volume was imputed from the time of cell inoculation 

(for PC-3) or when the tumor volume of the first mouse reached 500 mm³ (for ECC-1) until euthanasia of 

the last mouse in the shZFAS1 group for tumor harvest. PC-3 xenografts were culled at Day 32, and any 
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missing values in both xenografts were imputed; see Supplementary Methods for details, including 

volume imputation method and primer and shRNA sequences. 

 

RESOURCE AVAILABILITY 

 

Materials availability 

This study did not generate new unique reagents. 

 

Data and code availability 

All data are deposited in Gene Expression Omnibus (GEO) under accession number GSE263343. The 

freely available BigHorn R package is on the OpenRNA website (https://OpenRNA.org). 
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FIGURES 

Figure 1. Overview of long non-coding RNA (lncRNA) localization and regulation. (A) Inferred 

lncRNA subcellular localization based on studies including cell fractionation assays, literature curation 

efforts, and computational predictions, suggests that, on average, >33% of lncRNAs are abundant in both 

the nucleus and cytoplasm. However, nuclear lncRNAs outnumber cytoplasmic lncRNAs. (B) In contrast, 

circular RNAs (circRNAs) and microRNAs (miRNAs) are predominantly cytoplasmic [69, 76, 101]. RNA 

counts are in parentheses, and bar charts display the frequency of predicted localization in the nucleus 

(red), cytoplasm (green), or both (mixed, in black). (C, D) Transcriptome dysregulation following 

transduction with 81 and 74 antisense oligonucleotides (ASOs) that target nuclear and cytoplasmic 

lncRNAs, respectively, analyzed by FANTOM6. Localization did not significantly alter silencing efficiency, 

and the number of ASO-dysregulated protein-coding targets at p<0.01 are shown. (E–H) The significance 

of the overlap between dysregulated genes and inferred lncRNA targets by pFET, F-score, Precision 

correlation, and Recall for lncRNAs with >100 inferred targets; LongHorn transcriptional (TR) and post-

transcriptional (PTR) and Triplexator (RNA–dsDNA triplex) inferences across 14 tumor datasets profiled 

in the Cancer Genome Atlas (TCGA) are shown. Median values are displayed, p-values were calculated 

by the U-test, and ASO count is listed in parentheses; n.s., not significant. 

Figure 2. A pan-cancer lncRNA panel. (A) A panel of 23 cancer-associated lncRNAs with evidence for 

nuclear localization [75]. (B) The lncRNAs are upregulated in tumors [102] and cell lines [103]; average 

expression levels are shown; averages across all lncRNAs and mRNAs are indicated by red bars at the 

bottom. ZFAS1 (yellow) was identified as the most abundant lncRNA in solid tumors; bars indicate the 

standard error of the mean (SEM). (C) The lncRNAs loci are commonly subject to genomic alteration and 

frequently dysregulated in cancer; the proportions of tumor types exhibiting the indicated features for 

each lncRNA are shown; adjusted p-values were calculated by the U-test with Bonferroni correction. 

Figure 3. Improved lncRNA transcriptional target predictions by BigHorn reveal frequent 

coordinated regulation. (A) BigHorn infers lncRNA-binding sites (lncBSs) as well as lncRNA co-factor 

and guide interactions; co-factor lncRNAs alter the activity of target effectors, whereas guides recruit 

effectors to target promoters. (B, C) BigHorn-predicted transcription-factor-binding sites (TFBS) and 

lncBS are enriched in core promoters (B) and open chromatin regions (C) across TCGA-profiled tumors. 

Proximal promoters were binned into 50-bp windows, and binding sites were assigned to their respective 

bins based on their midpoint; lncBS predicted by BigHorn were significantly more enriched than those 

predicted by LongHorn, which was significantly more enriched than lncBS predicted by triplex rules; n=14 

because data was unavailable for COAD and LUSC in (C), and n=15 in (D) because data was not 

available for OV. Significance for (B) and (C) was determined by the U-test and paired t-test, respectively. 

(D, E) BigHorn-predicted targets of six lncRNAs—FTX, JPX, NEAT1, NORAD, PVT1, TERC—in renal 

carcinomas were more likely to be dysregulated following CRISPRi-mediated silencing of these lncRNAs 

in HEK293T cells than targets predicted by LongHorn or Triplexator (p<0.01). pFET (D) and F-scores (E) 

were calculated as a function of the top K predicted targets ranked by proximal-promoter lncBS count, 

and lncRNA–target predictions were based on TCGA KIRC and KIRP profiles; p-values for (D, E) were 

calculated by paired Student’s t-test comparing BigHorn and random predictions generated by Triplexator 

in di-nucleotide-preserving shuffled promoters. (F) Distribution of inferred transcriptional (TR, BigHorn) 

and post-transcriptional (PTR, LongHorn) targets for a cancer-associated lncRNA panel across 16 cancer 

types; n is the total number of interactions independently inferred in each tumor type. (G) Significance of 

the overlap (coordinated targets, counts in parentheses) between the TR and PTR target sets per 
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lncRNA; totals across all interactions are shown. (H–J) The proportion of inferred exclusively TR, PTR, 

and coordinated interactions with evidence for regulation based on delta distance correlation (ΔdCor); 

the percentages of significant interactions are noted, and totals represent the sums of all interactions 

across the lncRNA panel. (K) The cumulative evidence for dysregulation of TR, PTR, and coordinated 

targets following CRISPRi-mediated silencing of the six lncRNAs in (D, E) in HEK293T cells as a function 

of the confidence for lncRNA–target interaction inference in renal carcinomas. Results suggest 

significantly stronger dysregulation for coordinated interactions, independent of inference confidence; 

targets were ranked by promoter lncBS counts (TR) or by combining p-values across targeting miRNAs 

(PTR). Median fold-change p-values and SEM are shown, and comparisons between regulatory 

modalities were estimated using the Kolmogorov–Smirnov Test; ****p<1E-4. 

Figure 4. Coordinated DICER1 regulation by ZFAS1. (A) RNA sequencing following small-interfering 

(si)RNA-mediated silencing of ZFAS1 in ECC-1 (endometrial), NCI-H460 (lung), and PC-3 (prostate) cells 

revealed consistent dysregulation of 100s of genes; p-values were combined across assays. (B) MSigDB 

hallmark gene set enrichment analysis of dysregulated genes in ZFAS1-knockdown cells (blue circles), 

BigHorn-predicted targets in LUAD, LUSC, PRAD, and UCEC (PAN4, red circles), or both (black 

triangles). (C) The top 10 significantly up- and downregulated genes in black-triangle-marked gene sets 

in (B); DICER1 was inferred as a coordinated ZFAS1 target that influences multiple pathways. (D–I) The 

size and significance of the overlap between inferred targets and dysregulated genes following ZFAS1 

and DICER1 silencing; note the size discrepancy between the number of dysregulated genes in each 

group. (J) Effector correlation-based evidence for DICER1 mRNA and pre-mRNA regulation by lncRNAs 

across tumor types suggests that ZFAS1 upregulation is associated with significant deviations in both the 

transcriptional and post-transcriptional processing of DICER1; control effectors were selected with 

correlation p>0.5, median ΔdCor values are shown, and p-values were calculated by the one-tailed paired 

Student’s t-test. (K) BigHorn-predicted targets for ZFAS1 were more enriched among genes dysregulated 

by ZFAS1 silencing; p-values for the difference between BigHorn and random predictions were calculated 

by paired Student’s t-test. (L–N) Coordinated targets (PAN4) were more likely to be dysregulated 

following ZFAS1 silencing than TR- or PTR-exclusive targets; we required at least 10 coordinated targets 

and K≥900; median fold-change p-values and SEM are shown, and p-values for the differences between 

curves were calculated by the Kolmogorov–Smirnov test. (O) Low-throughput verification of six BigHorn-

inferred targets (from panel C) by RT-qPCR; the graph shows the mean±SEM for expression fold-change 

following ZFAS1 silencing, determined from three biological and technical replicates; p-values were 

calculated using the two-tailed Student’s t-test; *p<0.05, **p<0.01, ***p<1E-3, and ****p<1E-4.  

Figure 5. Evidence for ZFAS1 targeting of the DICER1 promoter and 3’-UTR to indirectly regulate 

miRNA biogenesis. (A) RT-qPCR analysis in a panel of 11 cancer cell lines shows that siRNA-mediated 

ZFAS1 silencing (siZFAS1) leads to downregulation of ZFAS1 and DICER1 but not ZNFX1 RNA 

expression; normalized to GAPDH. (B) Results from quantitative western blot analysis show 

downregulation of DICER1 protein expression 48 and 72 h after transfection of siZFAS1 and siRNA 

targeting DICER1 (siDICER1) transfection in cancer cell lines; normalized to GAPDH (A) or VINCULIN 

(B), bars indicate SEM, and p-values were calculated by the unpaired Student’s t-test. (C, D) Transfection 

of siZFAS1 but not siNORAD (negative control) leads to downregulation of DICER1 but not ZNFX1 RNA 

expression in HEK-293T and HeLa cells irrespective of DICER1 and GAPDH promoter transfection. (E, 

F) Transfection with siZFAS1 but not non-targeting control (NT) or siNORAD downregulated DICER1 

promoter activity; results are normalized to GAPDH promoter-transfected HEK-293T and HeLa cells. (G, 

H) Transfection with siZFAS1 and siDICER1 (positive control) but not NT or siNORAD downregulated 
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DICER1 3’-UTR activity; results are normalized to GAPDH 3’-UTR–transfected HEK-293T and HeLa 

cells. (I) M1 plasmid contains a mutant DICER1 promoter lacking the predicted ZFAS1-binding site, 

whereas the ZFAS1 site is preserved in the control M2, which lacks an adjacent site; the positions shown 

are relative to the DICER1 transcription start site. (J) Baseline luciferase activity of M1 but not M2 was 

significantly reduced vs. wild-type promoter, and M1 response to ZFAS1 silencing was abrogated in HeLa 

cells. (K) NanoString nCounter miRNA expression analysis showing mature miRNAs downregulated after 

ZFAS1 and DICER1 silencing in NCI-H460 and PC-3 cells; miRNA dysregulation was more pronounced 

at the later time point (NCI-H460, 48 h, PC-3, 72 h). The number of miRNA species with expressions 

significantly higher than the negative control probes (p<0.05) is marked. (L) Graphs show miRNA 

expression fold changes in NCI-H460 (left) and PC-3 (right) cells transfected with siZFAS1 and siDICER1 

at the later time point. Correlation p-values were below the machine-recognition threshold, and the 

number of miRNA species in each quadrant is indicated; DN, downregulated; UP, upregulated. (M) In 

total, 16 and 17 miRNAs were significantly downregulated (combined p<0.01 and >15% fold-change in 

NCI-H460 and PC-3 cells) at the later time point after ZFAS1 and DICER1 silencing, respectively; p-

values were calculated using Fisher’s method, and combined fold-changes were based on the geometric 

mean. (N) Overlap between downregulated miRNAs (>15%) across the datasets profiled at the later time 

points was significant. (O) Of these common miRNAs, nine were significantly downregulated; mean±SEM 

from two replicates, p-values were calculated by the Student’s t-test, *p<0.05, **p<0.01, ***p<1E-3, 

****p<1E-4. 

Figure 6. ZFAS1 silencing alters cell growth, tumor formation, and xenograft survival rates. (A–E) 

ZFAS1 and DICER1 silencing increased cell growth in multiple cancer cell lines and phenocopied the 

silencing of the tumor suppressor PTEN in (A) MDA-MB-231 (BRCA; breast invasive carcinoma), (B) 

NCI-H460 (LUSC; lung squamous cell carcinoma), (D) HT-1080 (SARC; soft tissue sarcoma), and (E) 

ECC-1 (UCEC; uterine corpus endometrial carcinoma) cells. (C) The effects of ZFAS1 and DICER1 

silencing were opposite of those observed following silencing of the oncogene FOXA1 in PC-3 (PRAD; 

prostate adenocarcinoma, PTEN‒/‒) cells; n.s., not significant; representative samples are shown. (F) 

ZFAS1 was downregulated by stable transfection with short-hairpin (sh)RNA targeting ZFAS1 (shZFAS1) 

in PC-3 and ECC-1 cells; ***p<1E-3 and ****p<1E-4. (G) Volumes of PC-3 and ECC-1 xenograft tumors 

increased significantly faster than those of controls (shCtrl); p-values were calculated by Student’s t-test, 

and n=xenograft count. (H) Tumor weights of PC3-shZFAS1 xenografts at Day 32 were 2.6× that of 

controls (390 mg vs. 150 mg, averaged across replicates); p-value was calculated by Student’s t-test. (I) 

Kaplan–Meier survival plots showing mice with ECC1-shZFAS1 xenografts had significantly lower 

survival than controls; the p-value was calculated by the log-rank test and mean±SEM is shown. 

Figure 7. ZFAS1 regulates cancer cell response to ionizing radiation (IR). (A) Analysis of the 

expression profiles of DNA damage response (DDR) genes and our lncRNA panel identified four genes 

that were positively correlated and one that was negatively correlated with radiation resistance 

(radioresistance) across 517 cell lines; the four significantly correlated genes included lncRNAs ZFAS1, 

NORAD, and TP53TG1, with ZFAS1 representing the most abundant of these genes; PCG: protein-

coding gene (B) ZFAS1 expression was significantly correlated with radioresistance in our experimental 

models of the endometrium (ECC-1), lung (NCI-H460), prostate (PC-3), and urinary tract (PC-3). (C–F) 

ZFAS1 and DICER1 silencing reduced proliferation (C) and colony formation (D) relative to non-targeting 

(NT) controls in irradiated PC-3 and ECC-1 cells. Representative colony images with survival fraction are 

shown in (E, F); p-values were calculated by two-tailed Student’s t-test at each radiation dose and 

combined across radiation doses by Fisher’s method, graphs show mean±SEM, and trendlines are 
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second-order polynomials (D). (G) BigHorn-inferred PAN4 ZFAS1 targets (Figure 4B) were significantly 

enriched for radiation-related genes (pFET<0.01); the superset is a non-redundant union of all 40 

radiation-related gene sets used. (H) ZFAS1-inferred lncRNA-binding sites were enriched for double-

strand DNA-break (DSB) sites, and (I) BigHorn-inferred PAN4 ZFAS1 targets (Figure 4B) were enriched 

for genes with DSB-site-occupied proximal promoters. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.05.588182doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588182
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

20 | C h i u  e t  a l .  
 

REFERENCES 

1. Goff, L.A. and J.L. Rinn, Linking RNA biology to lncRNAs. Genome research, 2015. 25(10): p. 1456-1465. 
2. Mattick, J.S., et al., Long non-coding RNAs: definitions, functions, challenges and recommendations. 

Nature Reviews Molecular Cell Biology, 2023: p. 1-17. 
3. Chiu, H.-S., et al., Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in 

each tumor context. Cell reports, 2018. 23: p. 297-312. 
4. Lorenzi, L., et al., The RNA Atlas expands the catalog of human non-coding RNAs. Nature biotechnology, 

2021. 39(11): p. 1453-1465. 
5. Esposito, R., et al., Hacking the cancer genome: profiling therapeutically actionable long non-coding 

RNAs using CRISPR-Cas9 screening. Cancer cell, 2019. 35(4): p. 545-557. 
6. Berger, A.C., et al., A comprehensive pan-cancer molecular study of gynecologic and breast cancers. 

Cancer cell, 2018. 33(4): p. 690-705. e9. 
7. Richart, L., et al., XIST loss impairs mammary stem cell differentiation and increases tumorigenicity 

through Mediator hyperactivation. Cell, 2022. 185(12): p. 2164-2183.e25. 
8. Foulkes, W.D., J.R. Priest, and T.F. Duchaine, DICER1: mutations, microRNAs and mechanisms. Nature 

Reviews Cancer, 2014. 14(10): p. 662-672. 
9. Heravi-Moussavi, A., et al., Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. New 

England Journal of Medicine, 2012. 366(3): p. 234-242. 
10. Hon, C.-C., et al., An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 2017. 

543(7644): p. 199-204. 
11. Mattioli, K., et al., High-throughput functional analysis of lncRNA core promoters elucidates rules 

governing tissue specificity. Genome research, 2019. 29(3): p. 344-355. 
12. Iyer, M.K., et al., The landscape of long noncoding RNAs in the human transcriptome. Nat Genet, 2015. 

47(3): p. 199-208. 
13. Hon, C.C., et al., An atlas of human long non-coding RNAs with accurate 5' ends. Nature, 2017. 

543(7644): p. 199-204. 
14. Cabili, M.N., et al., Integrative annotation of human large intergenic noncoding RNAs reveals global 

properties and specific subclasses. Genes & development, 2011. 25(18): p. 1915-1927. 
15. Schmitt, A.M. and H.Y. Chang, Long noncoding RNAs in cancer pathways. Cancer cell, 2016. 29(4): p. 452-

463. 
16. Martens-Uzunova, E.S., et al., Long noncoding RNA in prostate, bladder, and kidney cancer. European 

urology, 2014. 65(6): p. 1140-1151. 
17. Lv, D., et al., LncSpA: LncRNA spatial atlas of expression across normal and cancer tissues. Cancer 

research, 2020. 80(10): p. 2067-2071. 
18. Dianatpour, A. and S. Ghafouri-Fard, The Role of Long Non Coding RNAs in the Repair of DNA Double 

Strand Breaks. Int J Mol Cell Med, 2017. 6(1): p. 1-12. 
19. Chen, J., S. Liu, and X. Hu, Long non-coding RNAs: crucial regulators of gastrointestinal cancer cell 

proliferation. Cell Death Discov, 2018. 4: p. 50. 
20. Wang, L., et al., Missing Links in Epithelial-Mesenchymal Transition: Long Non-Coding RNAs Enter the 

Arena. Cell Physiol Biochem, 2017. 44(4): p. 1665-1680. 
21. Loewer, S., et al., Large intergenic non-coding RNA-RoR modulates reprogramming of human induced 

pluripotent stem cells. Nat Genet, 2010. 42(12): p. 1113-7. 
22. Kanduri, C., Kcnq1ot1: a chromatin regulatory RNA. Semin Cell Dev Biol, 2011. 22(4): p. 343-50. 
23. Wang, Z., et al., lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that 

Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell, 2018. 33(4): p. 706-720 
e9. 

24. Chu, C., et al., Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin 
interactions. Mol Cell, 2011. 44(4): p. 667-78. 

25. Chu, C., J. Quinn, and H.Y. Chang, Chromatin isolation by RNA purification (ChIRP). J Vis Exp, 2012(61). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.05.588182doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588182
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

21 | C h i u  e t  a l .  
 

26. Simon, M.D., et al., The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci U S A, 2011. 
108(51): p. 20497-502. 

27. Bell, J.C., et al., Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA 
contacts. Elife, 2018. 7. 

28. Tay, Y., J. Rinn, and P.P. Pandolfi, The multilayered complexity of ceRNA crosstalk and competition. Nature, 
2014. 505(7483): p. 344-52. 

29. Bosson, A.D., J.R. Zamudio, and P.A. Sharp, Endogenous miRNA and target concentrations determine 
susceptibility to potential ceRNA competition. Mol Cell, 2014. 56(3): p. 347-59. 

30. Ebert, M.S. and P.A. Sharp, Roles for microRNAs in conferring robustness to biological processes. Cell, 
2012. 149(3): p. 515-24. 

31. Herman, A.B., D. Tsitsipatis, and M. Gorospe, Integrated lncRNA function upon genomic and epigenomic 
regulation. Molecular Cell, 2022. 82(12): p. 2252-2266. 

32. Bridges, M.C., A.C. Daulagala, and A. Kourtidis, LNCcation: lncRNA localization and function. Journal of 
Cell Biology, 2021. 220(2): p. e202009045. 

33. Graf, J. and M. Kretz, From structure to function: Route to understanding lncRNA mechanism. BioEssays, 
2020. 42(12): p. 2000027. 

34. Huarte, M., The emerging role of lncRNAs in cancer. Nature medicine, 2015. 21(11): p. 1253-1261. 
35. Yip, C.W., et al., Antisense-oligonucleotide-mediated perturbation of long non-coding RNA reveals 

functional features in stem cells and across cell types. Cell reports, 2022. 41(13). 
36. Bester, A.C., et al., An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug 

resistance. Cell, 2018. 173(3): p. 649-664. e20. 
37. Wang, T., et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science, 2014. 343(6166): 

p. 80-84. 
38. Konermann, S., et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. 

Nature, 2015. 517(7536): p. 583-588. 
39. Joung, J., et al., Genome-scale activation screen identifies a lncRNA locus regulating a gene 

neighbourhood. Nature, 2017. 548(7667): p. 343-346. 
40. Campbell, J.D., et al., Genomic, pathway network, and immunologic features distinguishing squamous 

carcinomas. Cell reports, 2018. 23(1): p. 194-212. e6. 
41. Chen, L.-L., Linking long noncoding RNA localization and function. Trends in biochemical sciences, 2016. 

41(9): p. 761-772. 
42. Statello, L., et al., Gene regulation by long non-coding RNAs and its biological functions. Nature reviews 

Molecular cell biology, 2021. 22(2): p. 96-118. 
43. Li, Y., J. Syed, and H. Sugiyama, RNA-DNA Triplex Formation by Long Noncoding RNAs. Cell Chem Biol, 

2016. 23(11): p. 1325-1333. 
44. Geisler, S. and J. Coller, RNA in unexpected places: long non-coding RNA functions in diverse cellular 

contexts. Nat Rev Mol Cell Biol, 2013. 14(11): p. 699-712. 
45. Buske, F.A., J.S. Mattick, and T.L. Bailey, Potential in vivo roles of nucleic acid triple-helices. RNA Biol, 

2011. 8(3): p. 427-39. 
46. Vance, K.W. and C.P. Ponting, Transcriptional regulatory functions of nuclear long noncoding RNAs. 

Trends Genet, 2014. 30(8): p. 348-55. 
47. Senturk Cetin, N., et al., Isolation and genome-wide characterization of cellular DNA:RNA triplex 

structures. Nucleic Acids Res, 2019. 47(5): p. 2306-2321. 
48. Mondal, T., et al., MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation 

of RNA-DNA triplex structures. Nat Commun, 2015. 6: p. 7743. 
49. Grote, P. and B.G. Herrmann, The long non-coding RNA Fendrr links epigenetic control mechanisms to 

gene regulatory networks in mammalian embryogenesis. RNA Biol, 2013. 10(10): p. 1579-85. 
50. Liu, H., et al., TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids 

Res, 2019. 47(15): p. 8084-8095. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.05.588182doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588182
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

22 | C h i u  e t  a l .  
 

51. Kalwa, M., et al., The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. 
Nucleic Acids Res, 2016. 44(22): p. 10631-10643. 

52. Chen, L.-L., Towards higher-resolution and in vivo understanding of lncRNA biogenesis and function. 
Nature Methods, 2022. 19(10): p. 1152-1155. 

53. Székely, G.J., M.L. Rizzo, and N.K. Bakirov, Measuring and Testing Dependence by Correlation of 
Distances. The Annals of Statistics, 2007. 35(6): p. 2769-2794. 

54. Chiu, H.-S., et al., Illuminating lncRNA Function Through Target Prediction. Long Non-Coding RNAs: 
Methods and Protocols, 2021: p. 263-295. 

55. Fazal, F.M., et al., Atlas of subcellular RNA localization revealed by APEX-Seq. Cell, 2019. 178(2): p. 473-
490. e26. 

56. Consortium, E.P., An integrated encyclopedia of DNA elements in the human genome. Nature, 2012. 
489(7414): p. 57. 

57. Ramilowski, J.A., et al., Functional annotation of human long noncoding RNAs via molecular phenotyping. 
Genome research, 2020. 30(7): p. 1060-1072. 

58. Cui, T., et al., RNALocate v2. 0: an updated resource for RNA subcellular localization with increased 
coverage and annotation. Nucleic acids research, 2022. 50(D1): p. D333-D339. 

59. Liang, X.-h., et al., Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in 
mice. Nucleic acids research, 2011. 39(3): p. e13-e13. 

60. Koudritsky, M. and E. Domany, Positional distribution of human transcription factor binding sites. Nucleic 
acids research, 2008. 36(21): p. 6795-6805. 

61. Gotea, V., et al., Homotypic clusters of transcription factor binding sites are a key component of human 
promoters and enhancers. Genome research, 2010. 20(5): p. 565-577. 

62. Neph, S., et al., An expansive human regulatory lexicon encoded in transcription factor footprints. 
Nature, 2012. 489(7414): p. 83-90. 

63. Kent, W.J., et al., Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human 
genomes. Proceedings of the National Academy of Sciences, 2003. 100(20): p. 11484-11489. 

64. Sumazin, P., et al., DWE: discriminating word enumerator. Bioinformatics, 2005. 21(1): p. 31-38. 
65. Smith, A.D., P. Sumazin, and M.Q. Zhang, Tissue-specific regulatory elements in mammalian promoters. 

Molecular systems biology, 2007. 3(1): p. 73. 
66. Lee, S., et al., Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. 

Cell, 2016. 164(1-2): p. 69-80. 
67. Katsushima, K., et al., Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nature 

communications, 2016. 7(1): p. 13616. 
68. Gil, N. and I. Ulitsky, Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet, 

2020. 21(2): p. 102-117. 
69. Lin, S. and R.I. Gregory, MicroRNA biogenesis pathways in cancer. Nature reviews cancer, 2015. 15(6): p. 

321-333. 
70. Lorente, D. and J. De Bono, Molecular alterations and emerging targets in castration resistant prostate 

cancer. European journal of cancer, 2014. 50(4): p. 753-764. 
71. Barretina, J., et al., The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug 

sensitivity. Nature, 2012. 483(7391): p. 603-607. 
72. Yard, B.D., et al., A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nature 

communications, 2016. 7(1): p. 11428. 
73. Lensing, S.V., et al., DSBCapture: in situ capture and sequencing of DNA breaks. Nature methods, 2016. 

13(10): p. 855-857. 
74. Mourad, R., et al., Predicting double-strand DNA breaks using epigenome marks or DNA at kilobase 

resolution. Genome biology, 2018. 19(1): p. 1-14. 
75. Mas-Ponte, D., et al., LncATLAS database for subcellular localization of long noncoding RNAs. Rna, 2017. 

23(7): p. 1080-1087. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.05.588182doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588182
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

23 | C h i u  e t  a l .  
 

76. Cui, T., et al., RNALocate v2.0: an updated resource for RNA subcellular localization with increased 
coverage and annotation. Nucleic Acids Res, 2022. 50(D1): p. D333-d339. 

77. Lambert, S.A., et al., The Human Transcription Factors. Cell, 2018. 172(4): p. 650-665. 
78. Huang, H.T., et al., A network of epigenetic regulators guides developmental haematopoiesis in vivo. Nat 

Cell Biol, 2013. 15(12): p. 1516-25. 
79. Dawson, M.A. and T. Kouzarides, Cancer epigenetics: from mechanism to therapy. Cell, 2012. 150(1): p. 

12-27. 
80. Gonzalez-Perez, A., A. Jene-Sanz, and N. Lopez-Bigas, The mutational landscape of chromatin regulatory 

factors across 4,623 tumor samples. Genome Biol, 2013. 14(9): p. r106. 
81. Allis, C.D., et al., New nomenclature for chromatin-modifying enzymes. Cell, 2007. 131(4): p. 633-6. 
82. Buske, F.A., et al., Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. 

Genome Res, 2012. 22(7): p. 1372-81. 
83. Jiang, M., et al., uShuffle: a useful tool for shuffling biological sequences while preserving the k-let counts. 

BMC Bioinformatics, 2008. 9: p. 192. 
84. Liao, Y., G.K. Smyth, and W. Shi, featureCounts: an efficient general purpose program for assigning 

sequence reads to genomic features. Bioinformatics, 2014. 30(7): p. 923-30. 
85. Liao, Y., G.K. Smyth, and W. Shi, The Subread aligner: fast, accurate and scalable read mapping by seed-

and-vote. Nucleic Acids Res, 2013. 41(10): p. e108. 
86. Yard, B.D., et al., A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat 

Commun, 2016. 7: p. 11428. 
87. Lensing, S.V., et al., DSBCapture: in situ capture and sequencing of DNA breaks. Nat Methods, 2016. 

13(10): p. 855-7. 
88. Bailey, T.L. and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in 

biopolymers. Proc Int Conf Intell Syst Mol Biol, 1994. 2: p. 28-36. 
89. Gaidatzis, D., et al., Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional 

and post-transcriptional regulation. Nat Biotechnol, 2015. 33(7): p. 722-9. 
90. Ghandi, M., et al., Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 2019. 

569(7757): p. 503-508. 
91. Liberzon, A., et al., The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 

2015; 1 (6): 417–25. 
92. Ghandi, M., M. Mohammad-Noori, and M.A. Beer, Robust k-mer frequency estimation using gapped k-

mers. J Math Biol, 2014. 69(2): p. 469-500. 
93. Ghandi, M., et al., Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput 

Biol, 2014. 10(7): p. e1003711. 
94. Wang, S., et al., RANDOM LASSO. Ann Appl Stat, 2011. 5(1): p. 468-485. 
95. Espinoza, A.F., et al., A Novel Treatment Strategy Utilizing Panobinostat for High-Risk and Treatment- 

Refractory Hepatoblastoma. Journal of Hepatology, 2024: p. To appear. 
96. de Bony, E., et al., A 3'-end capture sequencing method for high-throughput targeted gene expression 

profiling. Biotechnol J, 2022. 17(9): p. e2100660. 
97. Liu, S.J., et al., CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human 

cells. Science, 2017. 355(6320). 
98. Dobin, A., et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013. 29(1): p. 15-21. 
99. Anders, S., P.T. Pyl, and W. Huber, HTSeq--a Python framework to work with high-throughput sequencing 

data. Bioinformatics, 2015. 31(2): p. 166-9. 
100. Ye, C., et al., DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat 

Commun, 2018. 9(1): p. 4307. 
101. Salzman, J., et al., Circular RNAs are the predominant transcript isoform from hundreds of human genes 

in diverse cell types. PLoS One, 2012. 7(2): p. e30733. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.05.588182doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588182
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

24 | C h i u  e t  a l .  
 

102. Li, J., et al., TANRIC: An Interactive Open Platform to Explore the Function of lncRNAs in Cancer. Cancer 
Res, 2015. 75(18): p. 3728-37. 

103. Aksoy, B.A., et al., CTD2 Dashboard: a searchable web interface to connect validated results from the 
Cancer Target Discovery and Development Network. Database (Oxford), 2017. 2017. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.05.588182doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588182
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

ASO-mediated lncRNA silencing by FANTOM6

Evaluation of target prediction using FANTOM6-profiled lncRNAs
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Figure 2
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Bighorn LongHorn-TR RNA-dsDNA triplex Random (10 replicates)
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Figure 3 (cont’d)
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Figure 3 (cont’d)
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Figure 4 (cont’d)
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Figure 5
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Figure 5 (cont’d)

Differential promoter activity was abrogated by site-directed mutagenesis
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siRNA-mediated silencing of ZFAS1 impairs the biogenesis of mature miRNAs
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siRNA-mediated silencing of ZFAS1 promotes human cancer cell growth rates
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Response to shRNA-mediated silencing of ZFAS1 in mouse xenografts

Figure 6 (cont’d)

shCtrl (n=8)

shZFAS1 (n=8)

T
u

m
o

r 
w

e
ig

h
t 

(m
g
)

PC-3

H I

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

shCtrl (n=6)

shZFAS1 (n=7)

ECC-1

S
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

 (
%

)

Survival time in days

P<2E-2

F G

0
.1
.2
.3
.4
.5
.6
.7
.8
.9

1.0
1.1
1.2

s
h

C
tr

l

s
h

Z
F

A
S

1
**

**

0.09

Z
F

A
S

1
 e

x
p

re
s
s
io

n
 f
o

ld
 c

h
a

n
g
e

 

(r
e

la
ti
v
e

 t
o

 s
h

C
tr

l)

PC-3

0
.1
.2
.3
.4
.5
.6
.7
.8
.9

1.0
1.1
1.2

s
h

C
tr

l

s
h

Z
F

A
S

1
**

*

0.06

ECC-1

P<6E-3

PC-3 ECC-1

0

200

400

600

800

1000

1200

1400

0 3 6 9 1215182124273033

shCtrl (n=8)

shZFAS1 (n=8)

T
u

m
o

r 
v
o

lu
m

e
 (

m
m

3
)

Days after cell inoculation

0

2000

4000

6000

8000

10000

12000

0 6 12182430364248546066

shCtrl (n=6)

shZFAS1 (n=7)

Days after cell inoculation

P
<

5
E

-5

P
<

2
E

-3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.05.588182doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588182
http://creativecommons.org/licenses/by-nc-nd/4.0/


ZFAS1 enhances resistance to ionizing radiation (IR) in selected CCLE cells 

through regulating its targets and key pathways

Figure 7
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Figure 7 (cont’d)
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