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Coordinated regulation by IncRNAs results in tight IncRNA-target couplings
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SUMMARY

The determination of long non-coding RNA (IncRNA) function is a major challenge in RNA biology with
applications to basic, translational, and medical research [1-7]. Our efforts to improve the accuracy of
IncRNA-target inference identified IncRNAs that coordinately regulate both the transcriptional and post-
transcriptional processing of their targets. Namely, these INcRNAs may regulate the transcription of their
target and chaperone the resulting message until its translation, leading to tightly coupled IncRNA and
target abundance. Our analysis suggested that hundreds of cancer genes are coordinately and tightly
regulated by IncRNAs and that this unexplored regulatory paradigm may propagate the effects of non-
coding alterations to effectively dysregulate gene expression programs. As a proof-of-principle we studied
the regulation of DICER1 [8, 9]—a cancer gene that controls microRNA biogenesis—by the IncRNA
ZFAS1, showing that ZFAS T activates DICER1 transcription and blocks its post-transcriptional repression
to phenomimic and regulate DICER1 and its target microRNAs.

INTRODUCTION

Tens of thousands of INcCRNAs are expressed in human tissues [10], often in a cell-type [11-14] and
disease-specific manner [15-17], with thousands of INCRNAs co-expressed in each context [4]. IncRNAs
regulate key cellular processes, including DNA repair [18], cancer cell proliferation [19], epithelial-
mesenchymal transition [20], stem cell reprogramming [21], and chromatin modification [22, 23]. They
may bind DNA regulatory regions to regulate their target’s accessibility and transcription [24-27], or they
may post-transcriptionally regulate their target’'s RNA processing by altering its stability and degradation
[28-30]. However, despite their abundance, few INcRNAs have been fully characterized [31-33]. Efforts
to determine IncRNA function on a genome-wide scale have largely focused on their context-specific
expression, dysregulation, and predictive power—including their ability to predict patient outcomes [5,
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34-39]. Although these studies have identified INcRNAs associated with specific disease phenotypes,
they have often been unable to provide mechanistic insights into the function of specific INcCRNAs.
Consequently, the mode of action of most IncRNAs remains unknown, including whether they have an
affinity for DNA, RNA, or proteins or whether they regulate chromatin or alter the recruitment and activity
of other regulatory factors. To begin to answer these questions, we developed models for INcRNA
regulation and used these tools to predict, catalog, and classify INcCRNA interactions based on their
observed contexts and inferred functions in over 27,000 normal and disease samples [3, 4, 6, 40]. The
results of these studies have underscored the importance of INncCRNA regulatory modalities and cellular
localization and provided insights into the pathologic consequences of their dysregulation [4, 31, 41, 42].

Most prior efforts to infer IncRNA-DNA interactions were based on the recognition that single-stranded
IncRNAs bind to double-stranded DNA (dsDNA) by forming triple-helical (or triplex) structures [43-46].
These inference methods often evaluate candidate DNA-binding domains in IncRNAs and predict
potential Hoogsteen base pairings in regulatory regions using a set of triplex-binding rules [47-51].
However, because the expression and localization of IncRNAs and their targets are context-specific,
additional information is needed to improve sequence- and structure-based binding inferences [31, 52].
For example, LncMAP [53] integrates sequence patterns, expression correlations, and cross-species
conservation to predict interactions, whereas LongHorn [3, 4, 6, 40] integrates weakly predictive features
with models for INncRNA regulation to infer their transcriptional and post-transcriptional targets. Results
from studies assessing these tools have shown that integrating mechanistic models for IncRNA regulation
with expression, sequence, and structure information—as derived from large-scale molecular-profiling
datasets—can improve the accuracy of IncRNA—target inferences [3], IncRNA discovery [4], and even
co-factor microRNA (miRNA) and transcription factor target predictions [54]. However, although recent
analyses suggest that most IncRNAs are nuclear (Figure 1A) and most IncRNA interactions are
transcriptional, accurate prediction of IncRNA—DNA interactions remains an open challenge [4, 32, 55].

To address this challenge, we developed the IncRNA-DNA interaction-inference method BigHorn.
BigHorn infers INcRNA-DNA interactions by integrating IncRNA-binding-site (IncBS) inferences obtained
using elastic motifs with mechanistic models for INcRNA regulation that are populated with large-scale
RNA-expression profiles of both coding and non-coding RNAs; see Methods. Our results showed that
BigHorn’s IncBS-based discovery method significantly outperformed triplex-binding-based IncBS
discovery, suggesting that elastic IncRNA-DNA-binding motifs can produce more accurate transcriptional
target predictions. These findings are supported by results from clustered regularly interspaced short
palindromic repeat interference (CRISPRI) perturbation assays targeting INcRNAs both in the nucleus
and cytoplasm, RNA interference (RNAIi) assays, and orthogonal computational analyses. Our
conclusions are consistent with observations from LongHorn analyses, which suggested that triplex-
binding-based IncBS inference has low recall rates [3, 4, 54].

Pan-cancer inference of transcriptional and post-transcriptional IncRNA interactions by BigHorn and
LongHorn, respectively, identified IncRNAs that are predicted to regulate their targets at multiple
processing stages. These INcRNAs bind their target’'s proximal promoters to alter their transcriptional
regulation and modulate the regulation of their target's message by miRNAs and RNA-binding proteins.
This coordinated regulation produces tight couplings between INcRNAs and their target genes, resulting
in highly correlated expression profiles. As a proof of concept, we studied the targeting of DICER1, a
well-studied cancer gene with a wide-ranging regulatory impact, by ZFAS1, a highly expressed INcRNA
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that is commonly dysregulated in cancer. Our results suggested that ZFAS1 is a master regulator of
multiple cellular processes and that its dysregulation alters the transcriptional and post-transcriptional
processing of thousands of genes, including through the coordinated regulation of DICER1. Importantly,
DICER1 is just one of dozens of cancer genes predicted to undergo strong coordinated regulation by
ZFAS1, and ZFAS1 is only one of many INcRNAs that are inferred to coordinately regulate key genes in
a multitude of contexts, including cancer, highlighting the potential impact of this phenomenon.

RESULTS

Improved IncRNA target inference with BigHorn

Both the predictive value of INcCRNA regulatory models and the accuracy of IncRNA-target prediction
methods are closely associated with INcRNA localization [3]. Interestingly, a combined analysis of results
from large-scale efforts to catalog and map IncRNA cellular localization indicates that most IncRNA
species are present in both the nucleus and cytoplasm, with nuclear IncRNAs predicted to outnumber
cytoplasmic IncRNAs in all cases (Figure 1A, B; Table S2) [55-58]. To evaluate the benefit of integrating
sequence and expression data for IncRNA-target interaction inference, we studied the dysregulation of
the predicted targets of 95 IncRNAs following their targeting by antisense oligonucleotides (ASOs) in
human primary dermal fibroblast cells by FANTOMG6 [57]; note that ASOs can target noncoding RNAs in
both the nucleus and cytoplasm [59]. Our results confirmed that the integration of sequence and
expression data by LongHorn [3, 4] significantly improved IncRNA-target prediction accuracy (Figures
1C-D and Table S3). Interestingly, when compared with Triplexator, which uses triplex-binding rules based
on sequence information alone, LongHorn integration improved prediction accuracy for both
transcriptional (IncRNA-DNA) and post-transcriptional targets for both FANTOM®6-defined nuclear and
cytoplasmic IncRNAs (Figure 1E) [57]; note that LongHorn does not predict IncBSs for post-transcriptional
interactions and relies on triplex-binding rules to predict IncBSs for IncRNA-DNA interactions.

Detailed evaluations of the precision and recall of IncRNA-DNA interaction inference methods revealed
that while LongHorn significantly improved the accuracy of post-transcriptional cytoplasmic IncRNA target
prediction relative to Triplexator, it yielded no significant improvement for nuclear INncRNA-DNA
interaction inferences (Figure 1F). Moreover, accuracy improvements observed with LongHorn were
driven by improvements to recall for cytoplasmic INcRNAs, demonstrating the benefit of using expression
data to guide accurate target prediction, and suggesting that IncRNA-DNA interaction predictions based
on triplex binding rules have poor recall (Figure 1G, H). To address this challenge, we tested whether
IncBS inference using elastic binding motifs can be used within an integrated framework to improve the
accuracy of IncRNA-DNA interaction inference. Our proposed elastic binding-motif-based approach,
BigHorn, employs machine-learning models to concurrently integrate IncBS inference and expression
data to predict IncRNA-DNA interactions. BigHorn evaluates and chains [3, 63-65] DNA motifs that are
predictive of IncRNA—target co-expression and assesses candidate transcriptional interactions using
models for IncRNA-DNA regulation, including those involving IncRNA co-factors and guides (Figure 3A);
see Methods for details. Note that Triplexator and BigHorn only predict IncRNA-DNA interactions,
Triplexator uses triplex binding rules to predict IncBS, and LongHorn integrates expression data analysis
with triplex-inferred IncBS. To facilitate a comparison of BigHorn, LongHorn, and Triplexator IncRNA-
target predictions in a focused manner using cancer omics we selected a panel of 23 well-studied cancer
IncRNAs. This panel includes IncRNAs with strong evidence for nuclear localization (Figure 2A) and high
abundance across diverse tumor and cell types (Figure 2B, Table S4). Panel IncRNAs are differentially
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expressed and encoded at loci characterized by genomic instability in most tumor types (Figures 2C and
S1).

We compared BigHorn, LongHorn, and Triplexator interaction predictions using multiple accuracy
indicators, including regulatory element localization, in vitro perturbations, and orthogonal computational
analyses. Regulatory elements, including transcription-factor-binding sites and IncBS, are known to be
enriched in core promoters—within 100 bp from transcription start sites (TSS)—and in open chromatin
regions [3, 60-62]. We found that BigHorn-predicted IncBSs are significantly more enriched in core
promoters than those identified by Triplexator and LongHorn (Figure 3B; Table S5). Note that binding-
site distance from the TSS did not inform predictions by any method; random site distributions were based
on Triplexator IncBS prediction in dinucleotide-preserving randomized promoters. BigHorn-predicted
IncBSs were also significantly more likely to overlap with open chromatin regions in each tumor context
than those predicted by the other methods (Figure 3C; Table S6). Finally, we performed CRISPRI-
mediated silencing of six selected IncRNAs in HEK293T cells and found that BigHorn-predicted targets
were significantly more likely to show dysregulation following silencing than those predicted by LongHorn
or Triplexator (average silencing efficiency 60%, Figures 3D, E, and S3; Tables S7 and S8). These data
suggest that BigHorn significantly improves the accuracy of IncRNA-target predictions, and thus, elastic
representations can facilitate IncBS characterization and discovery. Moreover, consistent with previous
studies, MSigDB Hallmark Gene Set analysis of their BigHorn-predicted targets suggests that these
IncRNAs regulate key cancer pathways—including proliferation, DNA damage, and signaling—and may
be involved in both tumor progression and therapeutic resistance (Figure S2).

Frequent coordinated transcriptional and post-transcriptional targeting by IncRNAs

We assessed the distribution of predicted interaction types for our panel of IncRNAs with high pan-cancer
nuclear abundance, together with several IncRNAs known to be relatively more abundant in the
cytoplasm selected as controls, including NORAD, TUG1, and OIP5-AS1 [3, 66, 67]. The inclusion of
cytoplasmic IncRNAs allowed us to contrast observations that are either specific or common to nuclear
and cytoplasmic IncRNA species. Although LongHorn- and BigHorn-predicted targets were
predominantly transcriptional in each tumor context, BigHorn predicted relatively fewer targets for
IncRNAs with higher cytoplasmic abundance (Figure 3F). Moreover, on average, hundreds of target
genes for each IncRNA were predicted to be regulated both transcriptionally and post-transcriptionally
(coordinated). MALAT1, TUG1, OIP5-AS1, and ZFAS1 were among the IncRNAs predicted to
coordinately regulate thousands of targets both transcriptionally and post-transcriptionally, with over 20%
of their targets predicted to be coordinately regulated (Figure 3G; Tables S9 and S10). Note that predicted
coordinated interactions may be based on combined evidence from multiple cancer types.

To further evaluate IncRNA-target prediction accuracy, we used computational evidence for correlation
differences between regulators and their target pre-mRNA and mRNA expression profiles [4] (Figure S4).
This method associates transcriptional regulation with concurrent changes to pre-mRNA and mRNA
abundance, whereas post-transcriptional regulation is associated with changes to mRNA but not pre-
mMmRNA abundance [4]; see Methods. Our results indicated that, on average, 31% and 73% of our
predicted exclusively transcriptional and post-transcriptional IncRNA-target interactions, respectively,
were significant. In comparison, 85% of predicted coordinated targets showed evidence for IncRNA
regulation (Figure 3H-J; Table S11). Finally, we measured the expression profiles of predicted
(exclusively) transcriptional, (exclusively) post-transcriptional, or coordinated targets of FTX, JPX,
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NEAT1, NORAD, PVT1, and TERC following CRISPRi-mediated silencing of these INcRNAs in HEK293T
cells. Results indicated that although most predicted targets were transcriptional (Figure S5), coordinated
targets were significantly more likely to show dysregulation after silencing of their predicted IncRNA
regulators (Figure 3K).

ZFAS1 is a pan-cancer coordinated regulator

Our analyses indicated that ZFAS1 is one of the most abundant, dysregulated, and genomically altered
IncRNAs in tumors, with 23% of its targets predicted to be coordinately regulated (Figures 2 and 3).
Analysis of expression profiles by RNA sequencing following RNAi-mediated silencing of ZFAS7 in ECC-
1, NCI-H460, and PC-3 cells further identified over 1,000 dysregulated candidate ZFAS7-targeting
mMRNAs (93% ZFAS1 silencing efficiency on average, Figure 4A, Table S12). As predicted, these targets
are involved in cancer-associated pathways, including proliferation and DNA repair (Figure 4B); the top
10 up- and downregulated mRNAs present in enriched MSigDB hallmark gene sets are shown in Figure
4C. Overall, a significant proportion of ZFAS1 target genes predicted by BigHorn (transcriptional) and
LongHorn (post-transcriptional) exhibited coordinated regulation by ZFAS1 (Figure 4D). Moreover, these
targets also showed significant overlap with genes found to be dysregulated after RNAi-mediated ZFAS1
silencing (Figure 4F, G). Notably, DICER1, which regulates the expression of hundreds of coding and
non-coding genes, was found to be one of the most highly dysregulated by ZFAS1 silencing.

Expression profiles following DICER1 silencing in the same cell types suggested that, although the
overlap between predicted ZFAST targets and dysregulated genes following DICER1 silencing was not
significant (Figure 4H, 1), there was significant overlap between the sets of genes dysregulated following
silencing of ZFAS1 and DICER1 (Figure 4E). This observation is consistent with the assertion that ZFAS1
both regulates hundreds of genes independently of DICER1 and indirectly regulates DICER1 targets.
Further evidence for DICER1 regulation was obtained by assessing ZFAS7-dependent delta distance
correlations (AdCor) between regulators of DICER1 pre-mRNA and mRNA expression profiles (Figure
4J). Similar to our observations with other tested IncRNAs (Figure 3D, E), we found that when compared
with other transcriptional target prediction methods, BigHorn-predicted ZFAST targets were significantly
more likely to be dysregulated following ZFAST silencing (Figure 4K). Moreover, coordinated ZFAS1
targets, including DICER1, were significantly more likely to be differentially expressed following ZFAS1
silencing in ECC-1, NCI-H460, and PC-3 cells (Figure 4L-N). Low-throughout validation by quantitative
reverse-transcription (RT-qPCR; Figure 40; Table S17) following ZFAS1 silencing in ECC-1, NCI-H460,
and PC-3 cells further verified the dysregulation of predicted ZFAS1T targets in lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), and uterine corpus
endometrial carcinoma (UCEC) (PAN4). These genes were selected based on their involvement in
ZFAS1-targeted pathways, identified through RNA-seq following ZFAS1 knockdown (Figure 4B, black
triangle).

ZFAS1 regulates DICER1 transcription, mMRNA processing, and protein expression

We next performed RNAi-mediated silencing of ZFAST to assess its effect on DICER1 RNA and protein
expression in a panel of 11 cancer cell lines. To determine whether the effects of ZFAS1 silencing are
specific to DICER1, we also evaluated the dysregulation of ZNFX1; ZFAS1 and ZNFX1 are co-expressed,
share a bidirectional promoter, and ZFAS1 was expected to regulate ZNFX1 transcription because of
their proximity [68], but these genes were not predicted to interact with each other. Our findings in all
tested cell lines showed that ZFAS1 silencing leads to the downregulation of DICER1 but not ZNFX1
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mRNA (Figure 5A; Table S17). Coordinated regulation is expected to produce a greater effect on target
protein expression than mRNA expression, and indeed, ZFAS1 silencing consistently downregulated
DICERH1 protein levels to a greater extent than observed for DICERT mRNA; p<3E-5 by paired Student’s
t-test (Figures 5A, B, S6, and S7).

To determine whether ZFAS1 targets both the DICER1 promoter and 3’-untranslated region (UTR), we
performed promoter and 3'-UTR activity assays in HEK-293T and HeLa cells subjected to RNAi-mediated
silencing of ZFAS1 and the IncRNA NORAD, which is not predicted to regulate DICER1, as a negative
control. Our results showed that silencing of ZFAS7 (but not NORAD) led to the downregulation of
DICER1 (but not ZNFX1) expression in both cell lines (Figure 5C, D). Additionally, ZFAS1 (but not
NORAD) silencing downregulated both DICERT promoter and 3’-UTR activity (Figure 5E—H). Note that
transfection with the DICER1 and GAPDH promoter plasmids did not significantly alter DICER1
expression, and DICER1 silencing was used as a positive control for reduction of DICER1 3'-UTR
luciferase reporter activity. To test BigHorn’s DICER1 promoter-binding site prediction for ZFAS1, we
altered either the putative high-confidence ZFAS7-binding site or an adjacent site in a DICER1 promoter—
luciferase reporter, producing plasmids M1 and M2, respectively (Figure 51). Consistent with the targeting
of the predicted region by ZFAS1, M1 activity was significantly lower than that of the original wildtype
(WT) plasmid and was unaffected by ZFAS1 silencing. In contrast, M2 activity was not lower than that of
the WT plasmid and was significantly reduced by ZFAS1 silencing (Figure 5J).

ZFAS1 regulates the miRNome through DICER1

We next measured the miRNome in NCI-H460 and PC-3 cells at early (24 h) and later time points (NCI-
H460: 48 h, PC-3: 72 h) following transfection with ZFAS7-targeting and non-targeting (NT) small-
interfering (si)RNAs. Consistent with our observations in cells subjected to DICER1 silencing, our results
indicated that ZFAS1 silencing significantly regulates the miRNome at both time points in NCI-H460 cells
and at the later time point in PC-3 cells (Figure 5K; Table S13). Moreover, comparisons of dysregulated
miRNAs following ZFAS1 and DICER1 silencing in NCI-H460 and PC-3 cells showed significant
correlations (p=0.60 and p=0.58, respectively) at the later time point, with most miRNAs downregulated
after both ZFAS1 and DICER1 silencing (Figure 5L). Combining observations from the two cell lines, we
found that 1 and 0 miRNAs were significantly upregulated, and 16 and 17 miRNAs were significantly
downregulated by ZFAS1 and DICERT1 silencing, respectively (Figure 5M). The overlap between
downregulated miRNAs following ZFAS1 and DICER1 silencing was statistically significant (29/61, 48%,
p=6E-4; Figure 5N), and it included let-7 family members (Figure 50). Note that these findings, as
expected, are inverse to observations of MRNA target dysregulation, wherein most dysregulated mRNAs
following ZFAS1 silencing were not dysregulated by DICER1 silencing (96%; Figure 4E).

ZFAS1 suppresses cancer-cell and tumor proliferation

DICER1 downregulation is commonly observed in cancer cells and associated with both increased
proliferation and poor patient outcomes, suggesting that DICER1 is a pan-cancer regulator [69]. We
therefore performed an in vitro evaluation of cancer cells and detected increased growth of breast (MDA-
MB-231), lung (NCI-H460), prostate (PC-3), sarcoma (HT-1080), and endometrial (ECC-1) cells following
ZFAST1 silencing compared to controls (Figure 6A—E), possibly through its coordinated regulation of
DICER1. Notably, the observed effects on cell growth mimicked those observed after silencing of DICER1
and the known tumor suppressor PTEN in MDA-MB-231, NCI-H460, HT-1080, and ECC-1 (PTEN is not
expressed in PC-3 cells). In contrast, silencing of the oncogene FOXA1 [70] in PC-3 cells decreased cell
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growth. To investigate the impact of ZFAS1 silencing on tumor growth in vivo, we established stable
knockdown of ZFAS7T in PC-3 and ECC-1 cells using validated short-hairpin (sh)RNAs, achieving >90%
reduction in ZFAS1 expression levels (Figures 6F and S8). Next, we xenografted transfected cells in the
flanks of NOD-scid-gamma (NSG) mice and evaluated tumor growth and survival relative to xenografts
of cells transfected with non-targeting shRNA controls. We found that ZFAS7-silenced PC-3 and ECC-1
xenografts showed significantly faster growth relative to controls (Figures 6G); Figures S9 and S10 show
detailed images of dissected tumors. We further evaluated the effects of ZFAS 71-silencing on tumor weight
by sacrificing and evaluating all PC-3 xenografts once the first animal showed signs of tumor-induced
distress and tested the effects of ZFAS7-silencing on xenograft survival by continuing the ECC-1
xenograft study until all animals had to be sacrificed. Our results showed that ZFAS17-silenced PC-3
xenografts had significantly greater volumes at 32 and 71 days than controls (Figure 6G) as well as
significantly increased weight at 32 days (Figure 6H) and had significantly shorter survival rates than
controls (Figure 6l). All tumor data and associated analyses are provided in Tables S14 (PC-3) and S15
(ECC-1).

ZFAS1 alters cellular response to X-ray radiation

Predicted transcriptional targets for ZFAS1 and genes downregulated in response to ZFAS1 silencing in
ECC-1, NCI-H460, and PC-3 cells were both enriched for DNA-repair genes (Figure 4B). Combined
analysis of the RNA expression profiles [71] and cell survival following treatment of 517 cancer cells by
radiotherapy [72] suggested that ZFAS 1’s expression across cell lines is highly correlated with resistance
to radiation (Figure 7A, Table S16) in a cancer-type independent manner and across our tumor types of
interest (Figure 7B). Indeed, analysis of cell growth and colony formation 96 h after X-ray irradiation at a
variety of dosages revealed that RNAi-targeting of ZFAS71 and DICER1 significantly reduced cell growth
(Figure 7C) and survival fractions for both PC-3 and ECC-1 cells (Figure 7D); representative wells are
shown in Figure 7E, F. We note that the altered radiation response observed in ZFAS7-silenced cells may
be due to its predicted role in regulating DNA-damage repair genes, as supported by the enrichment of
ZFAS1 targets in multiple ionizing-radiation (IR)-related DNA repair gene sets (Figure 7G; Table S16).
Moreover, ZFAS1-binding sites were significantly enriched in double-strand break (DSB) sites [73, 74]
(Figure 7H; Table S16), and ZFAS1-predicted targets significantly overlapped with genes harboring DSB
sites in their promoters (Figure 71) in normal human epidermal keratinocyte (NHEK) cells [73, 74],
suggesting that ZFAS1 may be recruited to these sites and play a direct role in DNA repair.

DISCUSSION

Recent findings suggest that thousands of IncRNAs are expressed in each human cell, and these species
play key roles in regulating gene expression programs that drive the progression of cancer and other
diseases. Critically, although tens of thousands of INcCRNA species have been cataloged, efforts to
interpret INncRNA function and explore their translational potential have had only limited success [4, 55-
57, 75, 76]. Prior studies suggest that IncRNAs modulate key regulatory functions in the cell, including
mRNA transcription, splicing, stability, degradation, translation, and localization [44]; IncRNAs also
sequester proteins, facilitate protein-protein interactions, alter protein phosphorylation, and influence
protein stability to regulate function and downstream signaling [77-81]. Consequently, INncRNAs are
thought to broadly affect cell identity and disease phenotypes. Moreover, their regulatory roles, coupled
with their tissue and disease-specific expression, suggest that IncRNAs are exceptional therapeutic target
candidates for a variety of diseases, and efforts to characterize their functions are likely to have wide-
ranging translational significance.
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In this study, we applied the newly developed method BigHorn to infer transcriptional targets for a panel
of well-studied IncRNAs with known nuclear abundance and frequent genetic and epigenetic (genomic)
alterations in cancer. Our results suggested that BigHorn inferences are significantly more accurate than
predictions by published methods, including LongHorn [3, 4]. Interestingly, investigation of BigHorn-
inferred transcriptional and LongHorn-inferred post-transcriptional targets of IncRNAs that are abundant
in both the nucleus and cytoplasm revealed an unexpectedly high proportion of inferred coordinated
interactions, where an mRNA is both transcriptionally and post-transcriptionally regulated by the same
IncRNA species. Moreover, analysis of molecular profiles from 16 cancer datasets suggested that, on
average, each IncRNA has hundreds of coordinated targets and that these couplings are associated with
significantly stronger correlations between INcCRNA and target expression. Genes—including master
regulators of development and disease—that are predicted to be coordinately regulated by IncRNAs are
significantly more likely to be dysregulated by the silencing of their IncRNA regulators.

Studies directed at mapping the genome-wide IncCRNA regulatory landscape often combine diverse
molecular assays, such as RNA-seq, chromatin immunoprecipitation with sequencing (ChlP-seq), cross-
linking and immunoprecipitation with sequencing (CLIP-seq), and assay for transposase-accessible
chromatin with sequencing (ATAC-seq), with powerful computational machinery to predict INncRNA
localization, direct binding, or influence on candidate targets of interest. We aimed to identify IncRNA
transcriptional targets by evaluating putative IncBSs in proximal promoters that match predictive DNA
sequence motifs. Our analysis involved the integration of molecular data from thousands of cancer
patients to populate models for IncRNA interactions. Specifically, we evaluated evidence for co-factor and
guide IncRNA interactions (Figure 3A), wherein IncRNAs directly bind proximal promoters and regulate
their targets by either altering the activity of other transcription and chromatin-modification factors that
regulate these promoters (co-factor) or by recruiting these factors to target promoters (guide). We relied
on LongHorn [3, 4] to predict post-transcriptional interactions, which, like BigHorn, uses mechanistic
models for post-transcriptional INcRNA regulation but does not predict IncRNA—-RNA- or IncRNA—protein-
binding sites.

A key advantage of the mechanistic regulation models used by BigHorn is the generation of nuanced
predictions that can be tested in the lab, including predictions about IncBSs, their co-factors, and the
phenotype expected from their disruption. Bighorn’s core innovation lies in replacing traditional triplex-
binding rules (or RNA-DNA binding rules) with elastic IncRNA—-DNA binding motifs for predicting IncBSs.
Using both large-scale and targeted perturbation assays, we showed that BigHorn significantly improved
IncRNA-target prediction accuracy compared to methods based on triplex-binding rules. We intended to
study IncRNAs that were predicted to be predominantly transcription regulators, but, on average, each
IncRNA in our panel was inferred to coordinately—both transcriptionally and post-transcriptionally—
regulate hundreds of genes. We showed that these coordinated interactions result in stronger couplings
between IncRNAs and their targets, are more readily observed in large-scale molecular assays, are
easier to predict due to the strong correlation between expression profiles of INcRNAs and their
coordinated targets, and are easier to confirm given that they can be disrupted via multiple orthogonal
strategies that produce observable regulatory footprints. Because INCRNA expression and genomic loci
are often altered in cancer, we expect that our predicted coordinated interactions will be a valuable
resource for studying the trans effects of IncRNA dysregulation on cancer genes and pathways.
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Moreover, as proof of concept, we studied the regulation of DICER71—a cancer gene and a master
regulator of miRNA biogenesis—by the IncRNA ZFAS1. Our assays confirmed that ZFAS1 regulated
DICERT1 transcription and mRNA processing, resulting in a strong coupling between this abundant
IncRNA and crucial miRNA regulator. RNAi-mediated silencing of ZFAST led to a >2-fold reduction in
DICER1 RNA and up to a 4-fold reduction in DICER1 protein expression in multiple cell lines. Results
from RNA-seq analysis following in vitro ZFAS1 and DICERT1 silencing indicated that this IncRNA
regulates hundreds of genes independently of DICER1 and further regulates the miRNome through
DICER1. Consequently, our results suggested that ZFAS7 controls the steady-state balance between the
abundance of DICER1 and the miRNome and that in the absence of ZFAS7, DICER1 is more vulnerable
to post-transcriptional downregulation. Finally, analysis of cancer phenotypes, including in vitro cancer
cell proliferation and in vivo tumor growth data, indicated that both DICER1 and ZFAS1 are cancer genes
that can regulate proliferation and DNA repair, a result that may be attributed to DICER1-mediated effects,
DICER1-independent ZFAS1 regulation of DNA repair genes, or direct binding to DSB sites. Moreover,
pan-cancer analysis revealed that ZFAS1 is often dysregulated in cancer, showing altered expression,
genomic instability (88% of analyzed tumor types), and differential promoter methylation (92% of
analyzed tumor types) in cancer cells (Figure 2C). These data suggest that ZFAS1 is a cancer gene that
plays a role in multiple tumor types.

Importantly, we propose that DICER1 is just one of 3,000 predicted coordinated ZFAST targets and that—
like ZFAS17—many IncRNAs are enriched for coordinated interactions (Figure 3G). We therefore view the
evaluation of the ZFAS1-DICER1 axis as a template for future studies of coordinated IncRNA regulation
and propose the use of our computational models for identification of these interactions. We further posit
that, as observed for the ZFAS71-DICER1 axis, coordinated interactions produce tighter regulation than
other interactions and can be readily tested by targeted experiments. Indeed, we do not propose to study
ZFAS1 as a therapeutic target in cancer, and our interest in this gene is solely to demonstrate the
physiological effects of coordinated regulation by IncRNAs. As a first step, focusing on a panel of well-
studied IncRNAs, we produced a catalog of coordinated IncRNA interactions that could be further
investigated to provide insight into the functions of some of the most studied cancer IncRNAs. We hope
that this resource will facilitate further research into the multimodal nature of IncRNA regulation to improve
our understanding of IncRNA function and its roles in diverse biological processes and diseases.

METHOD
Computational methods and biochemical assays are summarized below, with additional details provided
in the Supplementary Methods.

Long non-coding RNA (IncRNA) panel and multi-omics datasets

To identify IncRNAs with high nuclear abundance in cancer, we analyzed molecular profiles of 16 cancer
datasets in The Cancer Genome Atlas (TCGA), each including samples from at least 150 patients.
Molecular profiles included RNA expression, microRNA (miRNA) expression, CpG methylation, and gene
copy numbers obtained using deep RNA sequencing (RNA-seq), miRNA-seq, lllumina Infinium Human
DNA Methylation 450 Array, and Affymetrix Genome-Wide Human SNP Array 6.0, respectively. In
addition, each tumor-type-specific dataset included profiles from at least 15 non-tumor samples, which
were required for our analysis of differential expression and differential methylation. Copy number and
methylation data were used to determine whether alterations at INcRNA loci could affect their target gene
expression. When evaluating copy-number changes (Figure 2C), we calculated the fold-change in the
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number of altered samples (|deviation from 2 copies| > 0.3) for each IncRNA relative to the median across
all IncRNAs. TCGA assay for transposase-accessible chromatin with sequencing (ATAC-seq) open
chromatin profiles were compared to predict DNA-binding sites; see Supplementary Methods for details.
We focused on a panel of 23 IncRNAs, including well-studied IncRNAs with high pan-cancer abundance,
diverse RNA classes, such as antisense, long intergenic non-coding RNAs (lincRNAs), processed
transcripts, and IncRNAs with (for 21/23) documented nuclear localization or previously observed high
nuclear abundance, as supported by resources such as RNALocate v2 [76], APEX-seq [55], ENCODE
[56], FANTOMBG [57], and inferred localizations using the PanCanAtlas [3] and RNA Atlas [4]. Pre-mRNA
and mature mRNA abundance were estimated as previously described [4]. We analyzed FANTOMG6 cap-
analysis gene expression (CAGE) sequencing data from antisense oligonucleotide (ASO)-mediated
knockdown assays for 154 IncRNAs with sufficient silencing efficiency in human primary dermal
fibroblasts to quantify transcriptome abundance, measured in transcripts per million (TPM), followed by
differential expression analysis with DESeq2 v1.2 to identify significantly dysregulated genes upon
IncRNA silencing; see Figure 1 and Supplementary Methods.

Regulatory region and interaction curation and inference

We used BigHorn to predict IncRNA-binding sites (IncBSs) in proximal promoters, £1kb from each RefSeq
hg19 transcription start site (TSS). BigHorn and LongHorn use IncRNA-interaction models to infer IncRNA
targets, incorporating transcription- and chromatin-factor-binding information curated or derived from
HumanTFs v1.01 [77] and selected datasets [78-81]. Transcription-factor-binding sites with a significant
position-weight-matrix-binding (P<1E-6) score by CREAD [65] were compared to IncBSs to identify
overlap enrichment in core promoters and open chromatin regions. Paired pre-mRNA and mRNA
expression profiles for each gene were used to evaluate candidate IncRNA targets, as previously
described [4, 89]. Double-strand break (DSB) hotspots in normal human epidermal keratinocytes were
derived from DSBCapture [73], as previously described [74]. Non-DSB sites matching the sequence
characteristics of DSB sites (i.e., in length, GC content, and number of repeats) were randomly selected
from the human genome [74]. Radiation-sensitivity data for cancer cell lines were downloaded from Yard
et al. [72], and expression profiles were obtained from the Cancer Cell Line Encyclopedia (CCLE) [90];
see Supplementary Methods. Proximal promoters, transcriptional and post-transcriptional regulators, and
cancer genes are listed in Table S1. To identify key biological pathways targeted by IncRNAs, we
evaluated the enrichment of Hallmark Gene Sets and ionizing radiation (IR) gene sets [91] among
BigHorn-inferred INcRNA targets or dysregulated genes following siRNA-mediated IncRNA knockdown.

BigHorn IncRNA-target inference

BigHorn infers IncRNA transcriptional targets using a combination of evidence for DNA-binding
preference and the influence of the INcCRNA on target expression. Inference follows a model wherein a
IncRNA preferentially binds its target's regulatory region (e.g., proximal promoter) and either
synergistically interacts or recruits other factors to regulate its transcription. Consequently, Bighorn
identifies sequence motifs with enriched sites in transcriptional regulatory regions of possible IncRNA
targets and evaluates transcription-based evidence that motif sites are predictive of INcCRNA regulation
based on the correlation between IncRNA and target expression profiles. We describe this inference in
two steps: (1) enriched motif discovery and (2) evidence for effector modulation by the IncRNA (described
in detail below). This sequential approach combines sequence evidence to produce sites with evidence
for IncRNA regulation with data suggesting modulation of effector activities by IncRNA. In the present
study, the resulting predictions included tumor-type-specific IncRNA-target and effector-target
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interactomes for each of the 16 TCGA tumor types, as well as the sequence features predictive of pan-
cancer correlations between IncRNA and their inferred targets. Studied TCGA tumor types include
bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), head and neck
squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous adenocarcinomas
(OV), prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), thyroid carcinoma (THCA),
and uterine corpus endometrial carcinoma (UCEC).

Enriched motif discovery. BigHorn uses an iterative approach to identify sequence motifs whose presence
in transcriptional regulatory regions of a candidate target for a IncRNA is predictive of their co-expression.
First, BigHorn accounts for the number of sites for each gapped k-mer [92, 93] in proximal promoters. A
gapped k-mer is a short k-length DNA sequence and it is used to identify DNA sequences that match it
with a bounded number of mismatches. Here, we set k=12 bases to facilitate direct comparisons with
Triplexator [82], which was used for inference of RNA—DNA triplex structure and required sites to match
at least 6 bases of a gapped 12-mer. For each gapped k-mer and gene pairing, the maximum number of
sites for the gapped k-mer across all proximal promoters associated with the gene’s transcripts was
determined. BigHorn then uses a Random Forest algorithm for least absolute shrinkage and selection
operator (LASSO) regression (Random LASSO) [94] to prioritize candidate gapped k-mers based on the
association between their occurrences in proximal promoters and the significance of pan-cancer distance
correlations between each IncRNA and expressed gene in the 16 TCGA datasets—requiring IncRNA and
candidate-target expression in at least three datasets, as described in Supplementary Methods. In short,
BigHorn regression was used to compare gapped k-mers within randomly-assembled motif sets, and the
most predictive gapped k-mers according to LASSO regression in each motif set were re-assigned a
score proportional to their retention rate and re-evaluated at the subsequent iteration. Notably, gapped
k-mers with higher scores are more likely to be included in the randomly-assembled motif sets for the
next iteration. This process produces a set of predictive but not independent gapped k-mer motifs,
highlighting predictive motifs while permitting the inclusion of dependent motifs. After pruning sites that
better match the dinucleotide-preserving summary of all proximal promoters, BigHorn compares motif
sites to join motifs with frequently overlapping sites and identifies synergistic motifs [65], in which motif
combinations improve predictive ability. Consequently, BigHorn identifies targets with sites of variable
lengths and co-occurring gapped k-mers located at variable distances; we represent motif collections for
each IncRNA as undirected graphs with multiple connected components, where nodes depict strings
(gapped k-mers) and edges indicate potentially synergistic relationships. To generalize motif
presentation, BigHorn employes MEME [88] to describe sites that match gapped k-mers in the same
connected components using position-weight-matrix motifs, including within co-occurring motif modules
[65]; see Supplementary Methods.

Evidence for effector modulation. BigHorn evaluates the evidence for effector modulation by IncRNAs of
each of their candidate targets with sites containing predictive motifs. First, each candidate target is
associated with a set of previously identified transcriptional and chromatin regulators (effectors). Bighorn
then assesses whether the expression of the INncCRNA is predictive of the correlation between the
candidate target and its effectors. That is, the delta distance correlation (AdCor) between each effector
and possible target is evaluated in each expression profile dataset, where AdCor is the difference
between the distance correlation of the effector and target in samples with high vs. low IncRNA expression
(i.e., samples where INcCRNA expression is at the top and bottom 25%) in each dataset. The significance
of the resulting AdCor estimate is evaluated using permutation testing wherein complete target and
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effector profiles are permuted. Finally, significance estimates across effectors and datasets are combined
using Fisher’s method for each IncRNA—target pair. Here, significant IncRNA—target pairs (Bonferroni-
corrected p<0.01) were identified and assembled into tumor-type-specific interactomes; see
Supplementary Methods for details.

Evidence for mRNA and pre-mRNA regulation by IncRNAs

Transcriptional regulation by IncRNAs is expected to affect both pre-mRNA and mRNA expression
profiles, whereas post-transcriptional regulation is expected to affect only mRNA expression, leading to
deviations in pre-mRNA and mRNA profiles. Thus, a gene’s estimated mRNA and pre-mRNA expression
profiles are expected to be correlated with changes in the gene’s post-transcriptional (PTR) and
transcriptional (TR) regulation, respectively [4]. We evaluated correlation evidence to predict exclusively
TR, PTR, and coordinated IncRNA targets. Correlations between effectors and both pre-mRNA and
MRNA expression profiles for INcRNA targets were assessed, where effectors included transcriptional
and chromatin factors for TR targets and miRNAs for PTR targets. Thus, for each IncRNA, we calculated
tumor-type-specific AdCors between effectors and their target’s expression profiles in tumor samples
within the top and bottom quartiles of INncRNA expression, where the dCors compared correlations of
effectors and those of their target's pre-mRNA vs. mRNA profiles. Significant AdCor values
(nonparametric p<0.05) across tumor types were pooled for one-sided p-value determination using the
paired Student’s t-test. Targets with both pre-mRNA and mRNA profiles and significant AdCors involving
at least three effectors for either profile were tested for each INcCRNA in the panel. A coordinated target
was classified as significant if the AdCor values with effectors calculated using the target’s pre-mRNA or
mMRNA profile were significantly larger in one profile than the other. Detailed methods for mMRNA and pre-
MRNA expression estimation, along with other relevant information, are provided in the Supplementary
Methods.

Cell culture

Immortalized human cell lines, including MCF-7, MDA-MB-231, MDA-MB-468, HepG2, NCI-H460,
OVCAR-3, SK-OV-3, LNCaP, PC-3, 143B, ECC-1, HT-1080, HEK-293T, and HelLa cells were purchased
from Baylor College of Medicine’s Molecular and Cellular Biology Tissue Culture Core Laboratory and
cultured according to mammalian tissue culture protocols; see Supplementary Methods for details. Cell
lines were evaluated, validated, and grown to match specifications provided by their suppliers. Cells were
passaged every 2 weeks and weaned off Matrigel after 20 passages, as previously described [95].
Mycoplasma contamination testing was performed at regular intervals.

Promoter and 3’-untranslated region (UTR) activity assays

All wild-type plasmid promoters and 3’-UTR pLightSwitch expression vectors were purchased from Active
Motif (Carlsbad, CA). Synthesis and cloning of DICER1 (ENST00000343455) promoter mutants into the
pcDNA3.1(+)-C-eGFP vector were outsourced to GenScript, with M1 and M2 containing alterations at
positions [-40 to —29] and [+82 to +93] relative to the transcription start site, respectively (Figure 5l). Each
experimental condition was replicated five times; see Supplementary Methods for details.

RNA interference (RNAI) assays and expression profiling

Small-interfering (si)RNA SMART pools targeting ZFAS1, DICER1, PTEN, FOXA1, and NORAD and non-

targeting (NT) controls were purchased from Dharmacon (Lafayette, CO), and short-hairpin (sh)RNAs

targeting ZFAS1 and the scrambled control expressed from a psi-LVRU6Mp vector backbone were

obtained from GeneCopoeia (Rockville, MD). RNAi DharmaFECT transfections were performed with ON-
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TARGETplus SMARTpools containing four distinct siRNAs targeting the same gene with NT Pool controls
(NT); see Supplementary Methods.

When evaluating gene expression fold-changes determined by RNA-seq (Figure 4A), we compared
expression levels measured following transfection with siRNA targeting ZFAS71 (siZFAS1) to those
measured after NT siRNA control transfections; see Supplementary Methods. The significance of RNA
dysregulation was estimated by one-tailed Student’s f-test in each cell line, and values were combined
by Fisher’'s method across cell lines using two biological replicates per siRNA. Only protein-coding genes
with Transcript Per Million (TPM) expression >0.1 across all cell lines and in all replicates were included
in the analysis. When comparing dysregulated genes following ZFAS1 silencing and predicted ZFAS1
targets (Figure 4B), we used only the top 1,200 targets—similar to the number of differentially expressed
genes—ranked by their total number of ZFAS7 IncBSs. RNA expression (Figures 40, 5A, C, D, and 6F)
was estimated by quantitative reverse transcription PCR (RT-qPCR; Table S17).

Imaged was used to quantify the results of western blot analysis (Figure 5B), with expression values
normalized to vinculin and averaged over two technical replicates; see Supplementary Methods. For each
siRNA treatment, miRNA expression levels (Figure 5K—0) were measured in duplicate using the
NanoString nCounter Human miRNA Expression Array performed by the Genomic and RNA Profiling
Core at Baylor College of Medicine, according to the manufacturer's instructions; miRNA abundance was
normalized and evaluated relative to the averaged expression of negative control probes across all sSiRNA
transfections. Cell proliferation was measured by the SpectraMax i3/i3x Multi-Mode Detection Platform.
Proliferation fold-changes (Figure 6A—E) were quantified as cell counts relative to Day 0, with the size
and pattern of data points along the curves indicating the significance of differences, calculated using a
two-tailed Student’s f-test across five technical replicates compared NT control; p-values were
aggregated across days using Fisher’'s method. See Supplementary Methods for details.

Clustered regularly interspaced short palindromic repeat interference (CRISPRi) screen

We used a high-throughput parallel CRISPRi screening platform that combines live-cell imaging with a
scalable RNA-seq workflow to generate unbiased analyses of IncRNA regulation. For each IncRNA target
of interest, a pool of up to 10 single-guide RNAs (sgRNAs) was produced by high-throughput in vitro
transcription of sgRNA templates generated by multiplex PCR [96]. In brief, NT and sgRNAs targeting a
window of 300-bp upstream and downstream of the TSS of each IncRNA were then selected from the
CRISPR non-coding library (CRINCL) sgRNA [97]. The crRNA sequences were amended with 5" and 3’
appendixes, as specified by the Guide-it sgRNA In Vitro Transcription Kit (Takara Bio, cat. nos. 632638,
632639, 632635, 632636, and 632637), and single-stranded DNA oligos were purchased from Integrated
DNA Technologies. The dsDNA in vitro transcription template was generated with the Guide-it sgRNA In
Vitro Transcription Kit according to the manufacturer’s instructions, and in vitro transcription was
performed at 37°C for 4 h. The resulting sgRNA pools were delivered by electroporation to HEK293T cells
with stable dCAS9-KRAB expression. These cells were generated by stably introducing the nuclease-
deficient dCas9-KRAB-MeCP21 (Addgene plasmid no. 110821) in HEK293T cells with the piggyBac-
transposon system (System Biosciences, cat. no. PB210PA-1), according to the manufacturer’s
instructions. HEC293T cells positive for dCas9-KRAB-MeCP2 were selected using 10-ug ml~" blasticidin,
and 12,000 cells per well were then seeded in 96-well plates (Corning, cat. no. 3596) in 180-ul Roswell
Park Memorial Institute Medium (RPMI) cell culture medium. At 24 h after seeding, sgRNAs were
transfected with Lipofectamine reagent CRISPRMAX (Invitrogen, cat. no. CMAX00003) to a final
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concentration of 0.5 ng pl~" in 200 ul; 72 h after transfection, cells were lysed with SingleShot lysis buffer
(Bio-Rad, cat. no. 172-5081).

QuantSeq RNA-seq library preparation (Lexogen) was performed according to the manufacturer’s
protocol using 5 pl of cell lysate as input. Libraries were quantified by gPCR, pooled, and sequenced on
a NextSeq 500 System (lllumina). FASTQ files were processed using an in-house RNA-seq analysis
pipeline. FastQC (v0.11.8) was first used for data quality control, after which adapter sequences, polyA
readthrough, and low-quality reads were removed by BBMap v38.26. Reads were then mapped against
the hg38 reference genome with STAR v2.6.0c [98], and gene counts were determined by HTSeq
v.0.11.0 [99]. The number of reads for each gene was adjusted to account for differences in sequencing
depth and presented as counts per million (CPM). The sgRNA-transfected cells were subsequently
monitored in real time to quantify cell growth, proliferation, and apoptosis. We applied a modified version
of the recently published Digital RNA with pertUrbation of Genes (DRUG)-seq approach using 384
barcoded RT primers to enable single-tube library preparation [100]. This strategy allowed us to
accurately quantify the expression of 7,000—8,000 genes per sample at ultra-low cost and high throughput
(De Bony et al., in preparation). Comparisons were made to plate-specific pooled negative-control NT
sgRNAs. The full list of sgRNA sequences is provided in Table S7.

Radiation response and colony-formation assays

We evaluated features predictive for cell-line-specific responses to X-ray radiation using CCLE molecular
profiles of 517 cancer cell lines. Gene expression profiles in the endometrium (n=23; matched with ECC-
1), squamous cell of lung (n=19; matched with NCI-H460), prostate (n=4; matched with PC-3), and urinary
tract (n=19; matched with PC-3) were compared with post-irradiation cell survival, computed as the area
under the curve of the radiation-dose-dependent survival function using the Yard et al. trapezoidal
approximation approach [72]—the bigger the area, the higher the radioresistance. We focused our
analysis in Figure 7A on 178 radiation-response genes curated from a combination of sources: the DNA
damage repair MSigDB gene set, published literature, and our panel. When evaluating response to
radiation, cells were irradiated by an Rs-2000 X-Ray irradiator in six-well plates using single radiation
bursts of 0—-10 Gy, and colonies were evaluated 10-14 days following radiation using a FluorChem™ R
system after fixing and staining. Proliferation fold-changes were measured at 96 h post-irradiation for
both PC-3 and ECC-1 cells, and survival fractions were determined 11- and 14-days post-irradiation for
PC-3 and ECC-1 cells, respectively. Colony numbers were counted by AlphaView software. Values were
normalized to those of non-irradiated cells (Gy 0). Four replicates (two biological, two technical) were
performed for each siRNA-radiation dose combination. A complete list of genes and additional
experimental details are provided in the Supplementary Methods.

Tumor growth assays

To evaluate the effect of RNAi-mediated ZFAS1 silencing on tumor growth, we transfected PC-3 and
ECC-1 cells with shRNAs targeting ZFAS1 (shZFAS1) or the scrambled control (shCtrl) and implanted 2
million cells knockdown or control cells subcutaneously into the right flanks of male (PC-3) and female
(ECC-1) mice. Tumor volume was estimated by calipers, with measurements taken at increasing
intervals, three times per week on average. Daily volume was imputed from the time of cell inoculation
(for PC-3) or when the tumor volume of the first mouse reached 500 mm? (for ECC-1) until euthanasia of
the last mouse in the shZFAS1 group for tumor harvest. PC-3 xenografts were culled at Day 32, and any

14| Chiu et al.


https://doi.org/10.1101/2024.04.05.588182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.05.588182; this version posted April 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

missing values in both xenografts were imputed; see Supplementary Methods for details, including
volume imputation method and primer and shRNA sequences.

RESOURCE AVAILABILITY

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data are deposited in Gene Expression Omnibus (GEO) under accession number GSE263343. The
freely available BigHorn R package is on the OpenRNA website (https://OpenRNA.org).
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FIGURES

Figure 1. Overview of long non-coding RNA (IncRNA) localization and regulation. (A) Inferred
IncRNA subcellular localization based on studies including cell fractionation assays, literature curation
efforts, and computational predictions, suggests that, on average, >33% of IncRNAs are abundant in both
the nucleus and cytoplasm. However, nuclear INcRNAs outnumber cytoplasmic INcRNAs. (B) In contrast,
circular RNAs (circRNAs) and microRNAs (miRNAs) are predominantly cytoplasmic [69, 76, 101]. RNA
counts are in parentheses, and bar charts display the frequency of predicted localization in the nucleus
(red), cytoplasm (green), or both (mixed, in black). (C, D) Transcriptome dysregulation following
transduction with 81 and 74 antisense oligonucleotides (ASOs) that target nuclear and cytoplasmic
IncRNAs, respectively, analyzed by FANTOMSG. Localization did not significantly alter silencing efficiency,
and the number of ASO-dysregulated protein-coding targets at p<0.01 are shown. (E—-H) The significance
of the overlap between dysregulated genes and inferred IncRNA targets by pFET, F-score, Precision
correlation, and Recall for IncRNAs with >100 inferred targets; LongHorn transcriptional (TR) and post-
transcriptional (PTR) and Triplexator (RNA—dsDNA triplex) inferences across 14 tumor datasets profiled
in the Cancer Genome Atlas (TCGA) are shown. Median values are displayed, p-values were calculated
by the U-test, and ASO count is listed in parentheses; n.s., not significant.

Figure 2. A pan-cancer IncRNA panel. (A) A panel of 23 cancer-associated IncRNAs with evidence for
nuclear localization [75]. (B) The IncRNAs are upregulated in tumors [102] and cell lines [103]; average
expression levels are shown; averages across all IncRNAs and mRNAs are indicated by red bars at the
bottom. ZFAS1 (yellow) was identified as the most abundant IncRNA in solid tumors; bars indicate the
standard error of the mean (SEM). (C) The IncRNAs loci are commonly subject to genomic alteration and
frequently dysregulated in cancer; the proportions of tumor types exhibiting the indicated features for
each IncRNA are shown; adjusted p-values were calculated by the U-test with Bonferroni correction.

Figure 3. Improved IncRNA transcriptional target predictions by BigHorn reveal frequent
coordinated regulation. (A) BigHorn infers IncRNA-binding sites (IncBSs) as well as IncRNA co-factor
and guide interactions; co-factor IncRNAs alter the activity of target effectors, whereas guides recruit
effectors to target promoters. (B, C) BigHorn-predicted transcription-factor-binding sites (TFBS) and
IncBS are enriched in core promoters (B) and open chromatin regions (C) across TCGA-profiled tumors.
Proximal promoters were binned into 50-bp windows, and binding sites were assigned to their respective
bins based on their midpoint; IncBS predicted by BigHorn were significantly more enriched than those
predicted by LongHorn, which was significantly more enriched than IncBS predicted by triplex rules; n=14
because data was unavailable for COAD and LUSC in (C), and n=15 in (D) because data was not
available for OV. Significance for (B) and (C) was determined by the U-test and paired t-test, respectively.
(D, E) BigHorn-predicted targets of six INcRNAs—FTX, JPX, NEAT1, NORAD, PVT1, TERC—in renal
carcinomas were more likely to be dysregulated following CRISPRi-mediated silencing of these INcRNAs
in HEK293T cells than targets predicted by LongHorn or Triplexator (p<0.01). pFET (D) and F-scores (E)
were calculated as a function of the top K predicted targets ranked by proximal-promoter IncBS count,
and IncRNA-target predictions were based on TCGA KIRC and KIRP profiles; p-values for (D, E) were
calculated by paired Student’s t-test comparing BigHorn and random predictions generated by Triplexator
in di-nucleotide-preserving shuffled promoters. (F) Distribution of inferred transcriptional (TR, BigHorn)
and post-transcriptional (PTR, LongHorn) targets for a cancer-associated INcRNA panel across 16 cancer
types; n is the total number of interactions independently inferred in each tumor type. (G) Significance of
the overlap (coordinated targets, counts in parentheses) between the TR and PTR target sets per
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IncRNA,; totals across all interactions are shown. (H-J) The proportion of inferred exclusively TR, PTR,
and coordinated interactions with evidence for regulation based on delta distance correlation (AdCor);
the percentages of significant interactions are noted, and totals represent the sums of all interactions
across the IncRNA panel. (K) The cumulative evidence for dysregulation of TR, PTR, and coordinated
targets following CRISPRi-mediated silencing of the six IncRNAs in (D, E) in HEK293T cells as a function
of the confidence for IncRNA—target interaction inference in renal carcinomas. Results suggest
significantly stronger dysregulation for coordinated interactions, independent of inference confidence;
targets were ranked by promoter IncBS counts (TR) or by combining p-values across targeting miRNAs
(PTR). Median fold-change p-values and SEM are shown, and comparisons between regulatory
modalities were estimated using the Kolmogorov—Smirnov Test; ****p<1E-4.

Figure 4. Coordinated DICER1 regulation by ZFAS1. (A) RNA sequencing following small-interfering
(si)RNA-mediated silencing of ZFAS7 in ECC-1 (endometrial), NCI-H460 (lung), and PC-3 (prostate) cells
revealed consistent dysregulation of 100s of genes; p-values were combined across assays. (B) MSigDB
hallmark gene set enrichment analysis of dysregulated genes in ZFAS7-knockdown cells (blue circles),
BigHorn-predicted targets in LUAD, LUSC, PRAD, and UCEC (PAN4, red circles), or both (black
triangles). (C) The top 10 significantly up- and downregulated genes in black-triangle-marked gene sets
in (B); DICER1 was inferred as a coordinated ZFAS1 target that influences multiple pathways. (D-I) The
size and significance of the overlap between inferred targets and dysregulated genes following ZFAS1
and DICERT1 silencing; note the size discrepancy between the number of dysregulated genes in each
group. (J) Effector correlation-based evidence for DICER1 mRNA and pre-mRNA regulation by IncRNAs
across tumor types suggests that ZFAS1 upregulation is associated with significant deviations in both the
transcriptional and post-transcriptional processing of DICERT; control effectors were selected with
correlation p>0.5, median AdCor values are shown, and p-values were calculated by the one-tailed paired
Student’s t-test. (K) BigHorn-predicted targets for ZFAS 1 were more enriched among genes dysregulated
by ZFAS1 silencing; p-values for the difference between BigHorn and random predictions were calculated
by paired Student’s t-test. (L-N) Coordinated targets (PAN4) were more likely to be dysregulated
following ZFAS1 silencing than TR- or PTR-exclusive targets; we required at least 10 coordinated targets
and K=900; median fold-change p-values and SEM are shown, and p-values for the differences between
curves were calculated by the Kolmogorov—Smirnov test. (O) Low-throughput verification of six BigHorn-
inferred targets (from panel C) by RT-gPCR; the graph shows the mean+SEM for expression fold-change
following ZFAS1 silencing, determined from three biological and technical replicates; p-values were
calculated using the two-tailed Student’s t-test; *p<0.05, **p<0.01, ***p<1E-3, and ****p<1E-4.

Figure 5. Evidence for ZFAS1 targeting of the DICER1 promoter and 3’-UTR to indirectly regulate
miRNA biogenesis. (A) RT-qPCR analysis in a panel of 11 cancer cell lines shows that siRNA-mediated
ZFAS1 silencing (siZFAST) leads to downregulation of ZFAS71 and DICERT but not ZNFX1 RNA
expression; normalized to GAPDH. (B) Results from quantitative western blot analysis show
downregulation of DICER1 protein expression 48 and 72 h after transfection of siZFAS7 and siRNA
targeting DICER1 (siDICER1) transfection in cancer cell lines; normalized to GAPDH (A) or VINCULIN
(B), bars indicate SEM, and p-values were calculated by the unpaired Student’s t-test. (C, D) Transfection
of siZFAS1 but not sSiINORAD (negative control) leads to downregulation of DICER1 but not ZNFX1 RNA
expression in HEK-293T and Hela cells irrespective of DICER1 and GAPDH promoter transfection. (E,
F) Transfection with siZFAS7 but not non-targeting control (NT) or siNORAD downregulated DICER1
promoter activity; results are normalized to GAPDH promoter-transfected HEK-293T and Hela cells. (G,
H) Transfection with siZFAS1 and siDICER1 (positive control) but not NT or siNORAD downregulated
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DICER1 3-UTR activity; results are normalized to GAPDH 3-UTR-transfected HEK-293T and HelLa
cells. (I) M1 plasmid contains a mutant DICER1 promoter lacking the predicted ZFAS7-binding site,
whereas the ZFAST site is preserved in the control M2, which lacks an adjacent site; the positions shown
are relative to the DICER1 transcription start site. (J) Baseline luciferase activity of M1 but not M2 was
significantly reduced vs. wild-type promoter, and M1 response to ZFAS1 silencing was abrogated in HeLa
cells. (K) NanoString nCounter miRNA expression analysis showing mature miRNAs downregulated after
ZFAS1 and DICER1 silencing in NCI-H460 and PC-3 cells; miRNA dysregulation was more pronounced
at the later time point (NCI-H460, 48 h, PC-3, 72 h). The number of miRNA species with expressions
significantly higher than the negative control probes (p<0.05) is marked. (L) Graphs show miRNA
expression fold changes in NCI-H460 (left) and PC-3 (right) cells transfected with siZFAS1 and siDICER1
at the later time point. Correlation p-values were below the machine-recognition threshold, and the
number of miRNA species in each quadrant is indicated; DN, downregulated; UP, upregulated. (M) In
total, 16 and 17 miRNAs were significantly downregulated (combined p<0.01 and >15% fold-change in
NCI-H460 and PC-3 cells) at the later time point after ZFAS7 and DICER1 silencing, respectively; p-
values were calculated using Fisher’'s method, and combined fold-changes were based on the geometric
mean. (N) Overlap between downregulated miRNAs (>15%) across the datasets profiled at the later time
points was significant. (O) Of these common miRNAs, nine were significantly downregulated; mean+tSEM
from two replicates, p-values were calculated by the Student’s t-test, *p<0.05, **p<0.01, ***p<1E-3,
****p<1E-4.

Figure 6. ZFAS1 silencing alters cell growth, tumor formation, and xenograft survival rates. (A-E)
ZFAS1 and DICERT1 silencing increased cell growth in multiple cancer cell lines and phenocopied the
silencing of the tumor suppressor PTEN in (A) MDA-MB-231 (BRCA,; breast invasive carcinoma), (B)
NCI-H460 (LUSC; lung squamous cell carcinoma), (D) HT-1080 (SARC; soft tissue sarcoma), and (E)
ECC-1 (UCEC,; uterine corpus endometrial carcinoma) cells. (C) The effects of ZFAS1 and DICER1
silencing were opposite of those observed following silencing of the oncogene FOXA17 in PC-3 (PRAD;
prostate adenocarcinoma, PTEN—/-) cells; n.s., not significant; representative samples are shown. (F)
ZFAS1 was downregulated by stable transfection with short-hairpin (sh)RNA targeting ZFAS1 (shZFAST)
in PC-3 and ECC-1 cells; ***p<1E-3 and ****p<1E-4. (G) Volumes of PC-3 and ECC-1 xenograft tumors
increased significantly faster than those of controls (shCtrl); p-values were calculated by Student’s t-test,
and n=xenograft count. (H) Tumor weights of PC3-shZFAS1 xenografts at Day 32 were 2.6x that of
controls (390 mg vs. 150 mg, averaged across replicates); p-value was calculated by Student’s t-test. (1)
Kaplan—Meier survival plots showing mice with ECC1-shZFAS1 xenografts had significantly lower
survival than controls; the p-value was calculated by the log-rank test and mean+SEM is shown.

Figure 7. ZFAS1 regulates cancer cell response to ionizing radiation (IR). (A) Analysis of the
expression profiles of DNA damage response (DDR) genes and our IncRNA panel identified four genes
that were positively correlated and one that was negatively correlated with radiation resistance
(radioresistance) across 517 cell lines; the four significantly correlated genes included INcRNAs ZFAST,
NORAD, and TP53TG1, with ZFAS1 representing the most abundant of these genes; PCG: protein-
coding gene (B) ZFAS1 expression was significantly correlated with radioresistance in our experimental
models of the endometrium (ECC-1), lung (NCI-H460), prostate (PC-3), and urinary tract (PC-3). (C—F)
ZFAS1 and DICER1 silencing reduced proliferation (C) and colony formation (D) relative to non-targeting
(NT) controls in irradiated PC-3 and ECC-1 cells. Representative colony images with survival fraction are
shown in (E, F); p-values were calculated by two-tailed Student’s t-test at each radiation dose and
combined across radiation doses by Fisher's method, graphs show mean+SEM, and trendlines are
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second-order polynomials (D). (G) BigHorn-inferred PAN4 ZFAS1 targets (Figure 4B) were significantly
enriched for radiation-related genes (pFET<0.01); the superset is a non-redundant union of all 40
radiation-related gene sets used. (H) ZFAS7-inferred IncRNA-binding sites were enriched for double-
strand DNA-break (DSB) sites, and (l) BigHorn-inferred PAN4 ZFAS1 targets (Figure 4B) were enriched
for genes with DSB-site-occupied proximal promoters.
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Changes in the correlation between the expression
profiles of DICER1 pre-mRNA and mRNA and its

effectors as a function of ZFAS1 expression

BigHorn-inferred targets were more enriched in

dysregulated mRNAs after silencing of ZFAS1

RNA expression fold change

(relative to GAPDH)
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similar up- or down-regulation by RT-gPCR
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siRNA-mediated silencing of ZFAS1 downregulates DICER1 RNA and protein expressions
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Differential promoter activity was abrogated by site-directed mutagenesis
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siRNA-mediated silencing of ZFAS1 impairs the biogenesis of mature miRNAs
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siRNA-mediated silencing of ZFAS1 promotes human cancer cell growth rates
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Response to shRNA-mediated silencing of ZFAS1 in mouse xenografts
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lonizing radiation dose in X-ray (Gy)

ZFAS1 enhances resistance to ionizing radiation (IR) in selected CCLE cells
through regulating its targets and key pathways
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ZFASL1 targets significantly overlapped with IR-related ZFAS1 IncBSs and targets are enriched for
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