

1 **Mutation of the *P. falciparum* flavokinase confers resistance**
2 **to roseoflavin and 8-aminoriboflavin**

3 Ayman Hemasa¹, Christina Spry¹, Matthias Mack² and Kevin J. Saliba^{1,*}

4

5 ¹ Research School of Biology, The Australian National University, Canberra,
6 ACT, 2601, AUSTRALIA

7 ² Institute for Technical Microbiology, Department of Biotechnology,
8 Mannheim University of Applied Sciences, Mannheim, GERMANY

9

10 * To whom correspondence should be addressed (kevin.saliba@anu.edu.au)

11 **Keywords:** Riboflavin, *Plasmodium falciparum*, mechanism of action, roseoflavin, 8-
12 aminoriboflavin, flavokinase

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

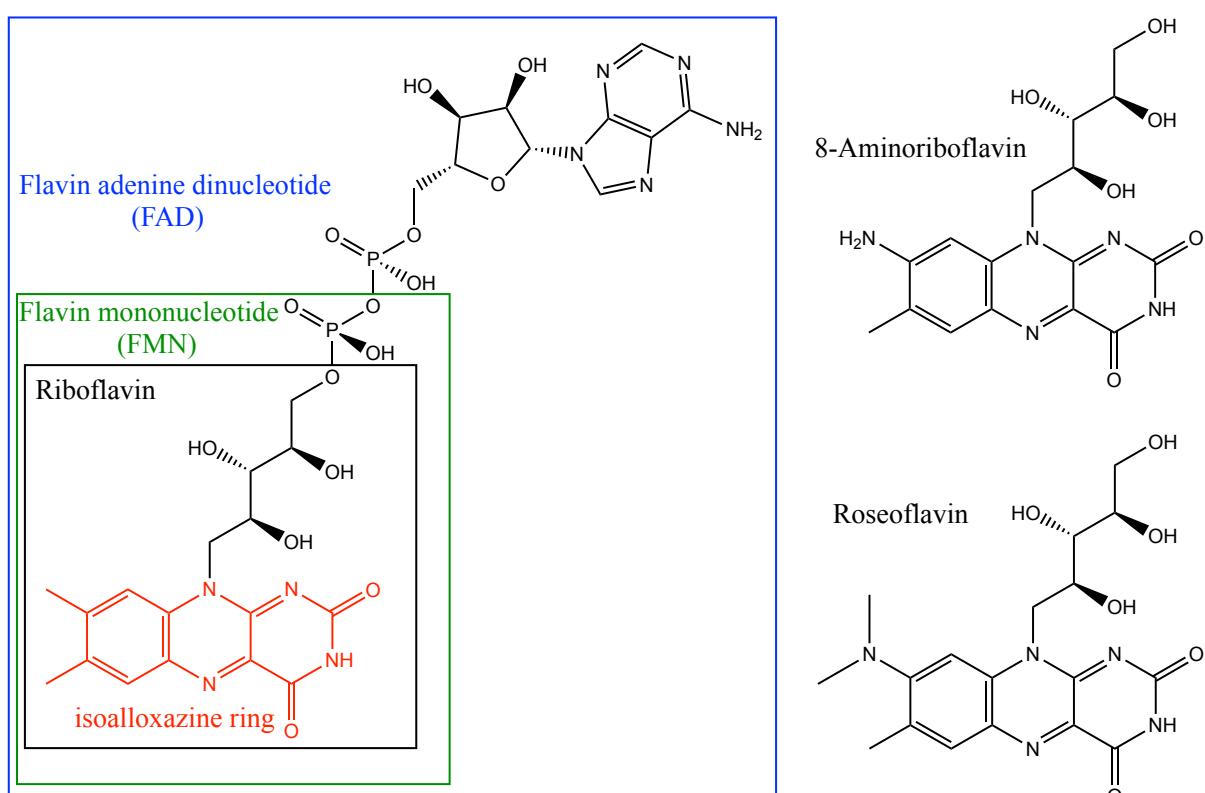
28 Abstract

29 We previously found that two riboflavin analogues, roseoflavin and 8-aminoriboflavin, inhibit
30 malaria parasite proliferation by targeting riboflavin utilisation. To determine the mechanism
31 of action of roseoflavin in *P. falciparum*, we generated roseoflavin-resistant parasites by *in vitro*
32 evolution over 27 weeks. The roseoflavin-resistant parasites were found to be four times more
33 resistant to roseoflavin and cross-resistant to 8-aminoriboflavin. Resistant parasites were
34 subjected to whole genome sequencing and a missense mutation (T2015A), leading to an amino
35 acid exchange (L672H), was detected in the gene coding for a putative flavokinase (*PfFK*), the
36 enzyme responsible for converting riboflavin (vitamin B₂) into the cofactor flavin
37 mononucleotide (FMN). To confirm that the L672H mutation is responsible for the observed
38 phenotype, we generated parasites with the missense mutation incorporated into the *PfFK* gene
39 *via* a single-crossover recombination. The IC₅₀ values for roseoflavin (RoF) and 8-
40 aminoriboflavin against the RoF-resistant parasites created through *in vitro* evolution were
41 indistinguishable from the IC₅₀ values for parasites in which the missense mutation was
42 specifically introduced into the native *PfFK*. To investigate this mutation, we generated two
43 parasite lines episomally-expressing GFP-tagged versions of either the wild type or mutant
44 forms of flavokinase. We found that *PfFK*-GFP localises to the parasite cytosol and that
45 immunopurified *PfFK*-GFP was active and phosphorylated riboflavin into flavin
46 mononucleotide. The L672H mutation caused a reduction of the binding affinity, especially for
47 the substrate RoF, which explains the resistance phenotype. The mutant *PfFK* is no longer
48 capable of phosphorylating 8-aminoriboflavin, but its antiplasmodial activity against resistant
49 parasites can still be antagonised by increasing the extracellular concentration of riboflavin,
50 consistent with the compound also inhibiting parasite growth through competitive inhibition of
51 *PfFK*. Our findings, therefore are consistent with roseoflavin and 8-aminoriboflavin inhibiting

52 parasite growth by inhibiting FMN production, in addition to the generation of toxic flavin
53 cofactor analogues.

54 **Introduction**

55 Malaria is a disease caused by unicellular protozoan parasites of the genus *Plasmodium*. Six
56 species infect humans ¹. The parasite is spread by female *Anopheles* mosquitoes, infecting an
57 estimated 249 million estimated cases in 2022 and resulting in the death of 608,000 people ².
58 To combat the rising incidence of *Plasmodium falciparum* (the most virulent *Plasmodium*
59 species infecting humans) resistant to antimalarials, including artemisinin-based combination
60 therapy, regarded as the frontline treatment for uncomplicated malaria ³, new antimalarial drugs
61 and drug targets are required ⁴.


62 Understanding the nutritional requirements of the intraerythrocytic stage of the malaria parasite
63 could reveal critical mechanisms utilised by the parasites that may be exploited for the
64 development of new antimalarials. Although we have gained some knowledge of the parasite's
65 need for specific vitamins, such as pantothenate ^{5, 6} and thiamine ⁷⁻⁹, we still understand very
66 little about the parasite's need for other vitamins. Riboflavin (vitamin B₂) is the essential
67 precursor of two important enzyme cofactors – flavin mononucleotide (FMN) and flavin-adenine
68 dinucleotide (FAD; **Figure 1**). FMN and FAD are used as cofactors by many enzymes ¹⁰. For
69 example, the *P. falciparum* dihydroorotate dehydrogenase (*PfDHODH*) is an FMN-dependent
70 enzyme that is critical for the parasite's pyrimidine production ¹¹. Yeast, plants, and most
71 prokaryotes can synthesize riboflavin *de novo* ¹², whereas many animals, including humans, lack
72 this ability and rely on the uptake of riboflavin from external sources ¹³. *P. falciparum* parasites are
73 auxotrophic for riboflavin, believed to obtain riboflavin from their host cells ^{14, 15}.

74 The synthesis of FMN and FAD requires two enzymatic steps. First, riboflavin is phosphorylated
75 by flavokinase (riboflavin kinase) to form FMN, a redox-active cofactor. Subsequently, FAD-
76 synthetase adenylylates FMN to produce FAD. Both steps are ATP dependent.

77 We have recently shown that two analogues of riboflavin, namely roseoflavin (RoF, **Figure 1**) and
78 8-aminoriboflavin (8AF, **Figure 1**), inhibit the *in vitro* proliferation of *P. falciparum* by interfering
79 with the utilisation of riboflavin¹⁶. We also found that RoF and 8AF reduce FMN and/or FAD
80 levels within *P. falciparum* parasites, consistent with RoF and 8AF interacting with riboflavin
81 metabolism enzymes, either as substrates or inhibitors¹⁶. However, the exact mechanism of action
82 of these compounds is unknown.

83 In this study, we have used *in vitro* evolution to generate RoF resistant *P. falciparum* parasites
84 with the objective of understanding the mode of action of RoF and 8AF. Our results are
85 consistent with the antiplasmodial activity of the riboflavin analogues being due to both a
86 reduction of FMN levels (by competing with riboflavin for *PfFK* binding) as well as generation
87 of toxic flavin cofactor analogues.

88

89

90 **Figure 1: Structure of riboflavin (black box) FMN (green box) and FAD (blue box) with the oxidized form**
91 **of the 7,8-dimethyl-isoalloxazine moiety (red structure).** The structures of roseoflavin and 8-aminoriboflavin
92 are included (outside of the blue box) for comparison.

93

94

95 **Methods**

96 **Cell Culture and Media**

97 *P. falciparum* (3D7 strain) parasites were maintained in culture within human erythrocytes as
98 previously described ^{17, 18}. RPMI-1640 culture medium was supplemented with 200 µM
99 hypoxanthine, 24 mg/L gentamycin, 11 mM D-glucose and Albumax II (0.6%, w/v).
100 Riboflavin-free RPMI-1640 (R8999-14, USBiological Life Sciences, USA, which is also free
101 of folic acid and L-glutamine) was prepared by dissolving 10.092 g in 1 L water, supplementing
102 with 2.26 µM folic acid, 2.054 mM L-glutamine, adjusting to pH 7.4 and filter sterilising. The
103 riboflavin-free medium was then further supplemented with the same additives as RPMI-1640

104 culture medium. Parasites were maintained at 4% hematocrit (HCT) in O⁺ erythrocytes, flushed
105 with a gas mixture of 3% CO₂, 1% O₂ and 96% N₂, and maintained at 37°C in a horizontal
106 shaker. Every 24 h, the suspension was centrifuged at 500 × g for 5 min. The supernatant was
107 replaced with fresh medium, and the infected erythrocytes diluted 10-20 times with uninfected
108 erythrocytes when the parasites were in the trophozoite stage. The parasitaemia was maintained
109 within the range of 1-6%.

110 ***In vitro* antiplasmodial growth assays**

111 The antiplasmodial activity assays were performed in 96-well plates using the Malstat or
112 SYBR-safe assay, as previously described ¹⁹⁻²¹, with minor modifications ¹⁶. At the end of the
113 compound incubation period, plates were stored at -20 °C for at least 24 hours prior to
114 processing using SYBR-safe lysis or Malstat solutions. A Fluostar OPTIMA multi-detection
115 microplate reader with excitation and emission wavelengths of 490 and 520 nm, respectively,
116 was used to detect the fluorescence in the SYBR-safe assay. For the Malstat assay, the
117 absorbance was measured at 620 nm using the same plate reader. The 50% inhibitory (IC₅₀)
118 values of test compounds were determined by fitting the data to a sigmoidal curve using
119 nonlinear least squares regression.

120 ***In vitro* evolution and whole genome sequencing**

121 Two independent 10 mL cultures of synchronised ring-stage *P. falciparum* parasites (from a frozen
122 stock of a previously re-cloned 3D7 line ²²) at 2-3% parasitemia and 2% HCT, were exposed to RoF
123 at 1.6 µM (the IC₅₀ value against the parental line in the presence of the standard concentration of
124 riboflavin present in RPMI-1640). In the experiment, RoF concentrations were increased gradually
125 over 27 weeks until the IC₅₀ of RoF became four times higher than the initial control value. After
126 maintaining the parasites in culture for four weeks without RoF, we confirmed that the sensitivity
127 of RoF-resistant parasites had not changed during the RoF-free culture period. Four random clones
128 (see below) were then selected for further study. These clones along with the parent line were

129 subjected to whole genome sequencing (WGS) using the Illumina MiSeq platform (paired-end
130 reads, 2×250 base pairs) Nextera XT Kit. To detect any mutations, PlaTyPus, an integrated variant
131 pipeline, was used to analyse the WGS data, with minor modifications²³.

132 **Cloning of *P. falciparum* parasites and parasite enrichment**

133 Cloning was performed by either limiting dilution in a 96-well plate at a density of 0.5 parasites
134 *per* well²⁴ or by delivering one infected erythrocyte *per* well, into a 96-well plate using flow
135 cytometry²⁵. For cloning using flow cytometry, infected erythrocytes were enriched to a
136 parasitaemia >95% as described previously²⁶. Erythrocytes infected with parasites expressing
137 a GFP-tagged protein were not enriched, but were instead sorted on the basis of GFP
138 fluorescence. After 3 weeks of incubation, wells were inspected for the presence of parasites
139 using either Giemsa-stained blood smears or Malstat reagent^{20, 21}.

140 **Construction of plasmids and purification of flavokinase**

141 For expression of WT and mutant forms of *P. falciparum* flavokinase (*PfFK*) as a GFP fusion
142 protein, the coding sequence of *PfFK* was amplified from the gDNA of wild-type and RoF-
143 resistant *P. falciparum* parasites, respectively, employing the following forward and the reverse
144 primers, 5'-GGAATTGCTCGAGATGGTTCATGATAAATATCATAAAATAGC-3' and 5'-
145 CACTGGTACTTTATATTCGAGAAAATACCC-3'. The restriction endonuclease
146 sites, XhoI and KpnI, are underlined. The XhoI/KpnI-treated PCR product, of the WT and
147 mutant *PfFK* gene, were ligated to the XhoI/KpnI digested pGlux-1 plasmid (provided by Prof
148 Alexander Maier, Australian National University) which confers ampicillin resistance. The WT
149 and mutant-*PfFK*-pGlux-1 constructs were transformed into RbCl competent *E. coli* (DH5 α).
150 The construct was then purified using a Qiagen HiSpeed Plasmid Maxi Kit and 100 μ g of the
151 purified construct transfected into ring-stage *P. falciparum* parasites. Successfully-transfected
152 parasites were selected with WR99210 (10 nM) for three weeks²⁷. Both WT and mutant *PfFK*-
153 GFP were purified by immunoprecipitation using GFP-Trap^{28, 29} from saponin-isolated⁵,

154 trophozoite-stage parasites. The purified proteins from 1×10^{10} isolated trophozoites were
155 immediately used in enzyme assays and western blots.

156 **Enzyme assays and HPLC analysis of flavins**

157 Enzyme activity of the purified WT and mutant *PfFK* was measured in 1 mL of 50 mM
158 potassium phosphate (pH 7.5), containing 0.5-200 μ M of the test substrates, riboflavin, RoF or
159 8AF, 3 mM ATP, 24 mM sodium dithionite ($\text{Na}_2\text{S}_2\text{O}_4$), 12 mM MgCl_2 , and 50 μ L of the purified
160 *PfFK*-GFP, as previously described for flavokinase enzymes from other organisms, with some
161 modifications³⁰. The reaction was carried out at 37 °C. The samples were agitated at 1500 rpm
162 for the duration of the experiments using an Eppendorf Thermomixer to keep the enzyme
163 (which is attached to the anti-GFP-beads) suspended during the reaction. Reactions were
164 initiated by the addition of *PfFK*-GFP and monitored for up to 3 h. At appropriate time intervals,
165 180 μ L aliquots were removed and 1.8 μ L of trichloroacetic acid (TCA) added to a final
166 concentration of 1% (v/v) to stop the reaction. The aliquots were then filtered using nylon
167 syringe filters (0.45 μ m pore size, 13 mm diameter) into micro-sampling, amber glass HPLC
168 vials (vial volume capacity was 300 μ L), and 45 μ L applied directly to an HPLC column
169 (Kinetex® 2.6 μ m (particle size) Polar C18 100 Å (pore size), 30 mm (length) \times 2.1 mm
170 (internal diameter)). The following solvent system was used at a flow rate of 1.2 mL/min: 20
171 mM potassium phosphate pH 3.5 (mobile phase A), 100% methanol (mobile phase B). The
172 entire duration of the run is 16 minutes, during which the composition consists of 100% phase
173 A and 0% phase B for the initial 12 minutes. Subsequently, a gradient of 40% phase A and 60%
174 methanol is employed from 10 to 12 minutes to eliminate nonpolar impurities. The system is
175 then reverted to 100% phase A from 12 to 16 minutes, concluding the run. Detection of RoF
176 and RoFMN (phosphorylated RoF, an FMN analogue) was carried out using a diode array
177 detector (absorbance at 503 nm), whereas the detection of riboflavin, FMN, 8AF and 8AFMN
178 (phosphorylated 8AF, an FMN analogue) was performed using a Dionex fluorescence detector

179 (excitation at 480 nm and emission at 520 nm). The peak area of the metabolites was quantified
180 using standard curves. Flavokinase activity was expressed as a function of the amount of
181 metabolite generated (in micromolar) from the corresponding substrate *per* 10¹³ cells *per* hour.
182 All K_m and V_{max} values were determined from fitted Michaelis-Menten curves.

183 **Western blots**

184 Denaturing western blots were performed with saponin-isolated parasite lysates and
185 immunoprecipitated *PfFK*-GFP. Protein samples were separated using polyacrylamide gel
186 electrophoresis (PAGE) in NuPAGE (4–12%) gels (Life Technologies), then transferred to
187 nitrocellulose membranes and blocked in 4% w/v skim milk powder in Phosphate Buffered
188 Saline (PBS). Blocked membranes were subjected, for 2 h, to anti-GFP mouse antibody 400
189 µg/mL (primary antibody) and goat anti-rabbit HRP (secondary antibody). Membranes were
190 then incubated in Pierce Enhanced Chemiluminescence (ECL) Plus Substrate (Life
191 Technologies) according to the manufacturer's specifications and protein bands visualised on a
192 ChemiDoc MP Imaging System.

193 **Introduction of L672H mutation into the endogenous *PfFK***

194 To generate a mutant *PfFK*-GFP_glmS construct, a C-terminal homologous region (HR, 774
195 base pairs of the *PfFK* gene including the sequence encoding the L672H mutation) was
196 amplified using the mutant *PfFK* gDNA and the forward primer, 5'-
197 GCACTAGTATATCTCATGCTAAGAGACATGGTA-3' (3 silent mutations included and in
198 bolded letters), and the reverse primer 5'- GGAATTGCTCGAG
199 TTATTTATATTCGAGAAAATACTTACATTGTTGAAAAGTTCATTATTTCAA
200 TTTGTTAAGTACAATTCTGGCTAGTTCACAAATGAATAGCTTGAATATGAT
201 G-3', cloned into eGFP-glmS plasmid (provided by Parichat Prommana, Thailand, ³¹). The
202 restriction endonuclease sites SpeI and XhoI are underlined. The resulting PCR product was
203 ligated into the corresponding SpeI/XhoI- digested eGFP-glmS plasmid. A specific guide RNA

204 sequence was selected 774 bp upstream from the C-terminus of *PfFK* and generated by
205 annealing two overlapping oligonucleotides having overhangs complimentary to the BbsI sites.
206 The sequence of these two oligonucleotides were: 5'-TATTATTCTCACGCTAAAGACAA-
207 3', 5'-AAACTGTCTTTAGCGTGAGAAAT-3' (overhangs are underlined). The annealed
208 gRNA product was inserted into BbsI-digested pDC2-cam-coCas9-U6-hDHFR vector
209 containing a codon-optimised (co) Cas9 driven by the *Pf*-calmodulin promoter, and a U6
210 cassette for gRNA expression (construct provided by Dr Marcus Lee, Hinxton, UK³²). Parasite
211 transfection was carried out simultaneously with these two constructs, *PfFK* (homologous
212 region of 774 base pair, m-HR)_GFP_glmS and gRNA-*PfFK*-pDC2-cam-coCas9-U6-hDHFR.
213 Transfectants were obtained following four weeks of selection with 10 nM WR99210 and 2
214 µg/mL blasticidin. Integration of the mutant HR of *PfFK*-GFP_glmS was confirmed after three
215 blasticidin on/off cycles of three weeks duration each, followed by magnetic parasite
216 enrichment and then parasite cloning using FACS into 96 well plate (one parasite per well)³³.
217 Successful integration of the construct was confirmed by PCR.

218 **Fluorescence microscopy**

219 Fluorescence microscopy was carried out on a Deltavision Deconvolution microscope (100×
220 oil objective with a resolution of 0.066 µm per pixel). Parasite DNA was stained with Hoechst
221 33342 (4 µg/mL for 15 min). Images were collected at ambient temperature, deconvoluted and
222 linearly adjusted for contrast and brightness.

223 **Flow cytometry**

224 Flow cytometry was used to quantify the fraction of GFP-positive parasites (i.e. parasites
225 expressing *PfFK*-GFP). Mid-trophozoite-stage cultures expressing GFP-tagged flavokinase
226 (either episomally or endogenously) were preincubated with 4 µg/mL of Hoechst stain, to
227 distinguish the iRBCs from the uRBCs, for 15 min followed by washing the cells three times
228 with PBS. Aliquots of 10-20 µL from all samples were diluted in 200-300 µL PBS to a

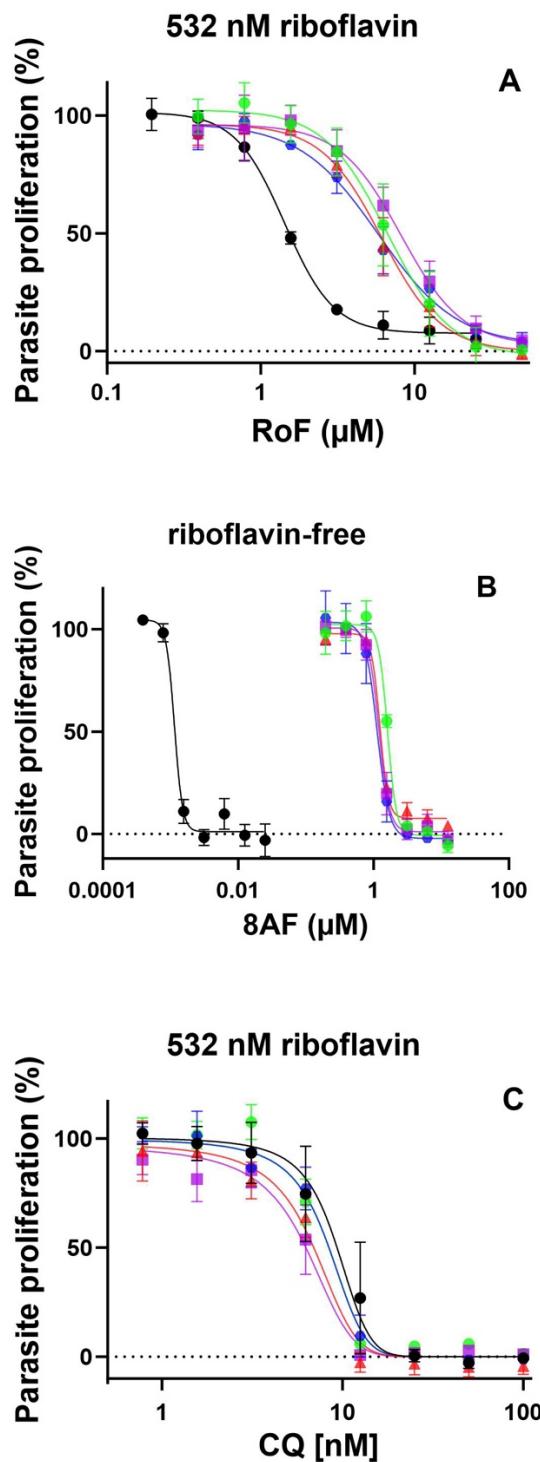
229 concentration of 10^5 - 10^6 cells per mL and applied to 1.2 mL Costar polypropylene cluster tubes
230 (Corning) and subjected to flow cytometry. Non-GFP-expressing 3D7 WT parasites were used
231 to gate non-fluorescent parasites. Data were analysed using BD FACSDiva software © Becton,
232 Dickinson and Company (Forward scatter 450 V, Side scatter 350 V and Alexa Fluor 488 =
233 600 V, Pacific Blue, 450/50 nm).

234 **Alignment of flavokinases**

235 Using PROMALS3D ³⁴, the flavokinase gene from *P. falciparum* was aligned with other
236 flavokinases from various organisms. The following flavokinase homologues were aligned
237 (accession number included in brackets): *P. falciparum* (Q8IDB3); *Homo sapiens* (Q969G6);
238 *Schizosaccharomyces pombe* (O74866); *Bacillus subtilis* (P54575); *Trypanosoma brucei*
239 *brucei* (Q38DG4); *Arabidopsis thaliana* (Q84MD8); *Streptococcus agalactiae* serotype III
240 (Q8E5J7); *Candida albicans* (Q5A015); *Trichophyton rubrum* (F2SJS4); *Saccharomyces*
241 *cerevisiae* (Q03778); *Corynebacterium ammoniagenes* (Q59263).

242 **Statistical analysis**

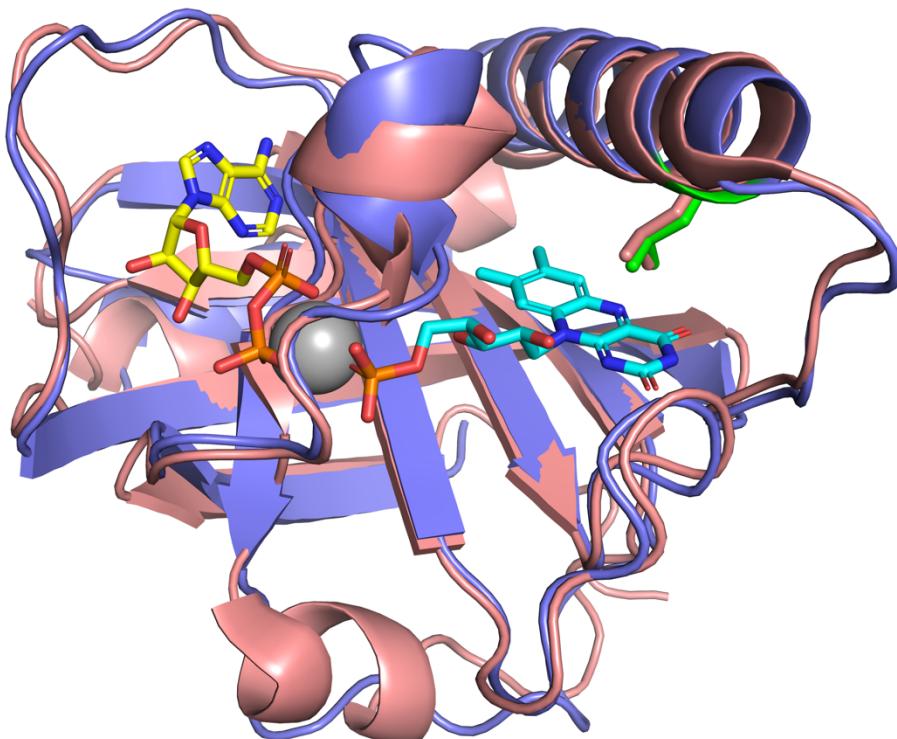
243 Statistical analysis was carried out with unpaired, two-tailed, Student's t-test and ordinary one-
244 way ANOVA using GraphPad Prism 9.3 (GraphPad Software, Inc) from which the 95%
245 confidence interval of the difference between the means (95% CI) was obtained. GraphPad
246 Prism 9.3 version for Windows 11 was used for all regression analysis.


247

248 **Results**

249 ***In vitro* evolution of *P. falciparum* in the presence of RoF resulted in parasites 250 resistant to RoF and 8AF that harboured a mutation in *PfFK*.**

251 Using a cloned 3D7 *P. falciparum* parasite line ²², two independent cultures were exposed to
252 continuous drug pressure with increasing concentrations of RoF, starting with the IC₅₀ value


253 (1.6 μ M). When the sensitivity of the parasites to RoF decreased by approximately 4-fold
254 (following 27 weeks of drug pressuring; $IC_{50} = 5.6 \pm 0.3 \mu$ M), they were maintained in the
255 absence of RoF for 4 weeks. The parasites remained resistant to RoF during this period (**Figure**
256 **2A**). The parasites were then cloned by limiting dilution and four parasite clones established,
257 two from each independent *in vitro* evolution experiment (RoF-A-E8, RoF-A-B6, RoF-B-E11,
258 RoF-B-G2). The IC_{50} values (means \pm SEM) of RoF against RoF-A-E8, RoF-A-B6, RoF-B-
259 E11, RoF-B-G2 were 4.4 ± 0.3 -fold ($6.4 \pm 1.5 \mu$ M, $6.1 \pm 1.6 \mu$ M, $8.1 \pm 2.3 \mu$ M, $7.5 \pm 2.5 \mu$ M,
260 respectively) higher than the IC_{50} against the parent parasites ($IC_{50} = 1.6 \pm 0.1 \mu$ M, $P < 0.05$)
261 (**Figure 2A**). To investigate whether the RoF resistant parasites were cross-resistant to 8AF,
262 we determined the sensitivity of the resistant parasites to 8AF. As the solubility of 8AF only
263 permits testing up to 50 μ M, we assessed the sensitivity in riboflavin-free RPMI where the IC_{50}
264 against WT parasites is 2 ± 0.4 nM rather than complete RPMI where the IC_{50} of 8AF is 7 ± 1
265 μ M¹⁶. The IC_{50} values of 8AF in riboflavin-free medium against the RoF-A-E8, RoF-A-B6,
266 RoF-B-E11, RoF-B-G2 parasite lines ($1.2 \pm 0.1 \mu$ M, $1.1 \pm 0.1 \mu$ M, $1.2 \pm 0.1 \mu$ M, $1.1 \pm 0.1 \mu$ M,
267 respectively) were found to be 1000-fold higher than those of the parent strain (0.0010 ± 0.0002
268 μ M, $P < 0.0001$, unpaired t-test; **Figure 2B**). To eliminate the possibility that these clones have
269 developed a non-specific resistance mechanism, we tested the sensitivity of the clones to
270 chloroquine, an antiplasmodial with a mechanism of action that is unrelated to riboflavin
271 metabolism and/or utilisation³⁵. We found that the chloroquine IC_{50} values against the RoF-
272 resistant parasites were not statistically different from those of the parent strain ($P = 0.44$,
273 unpaired t-test) (**Figure 2C**).

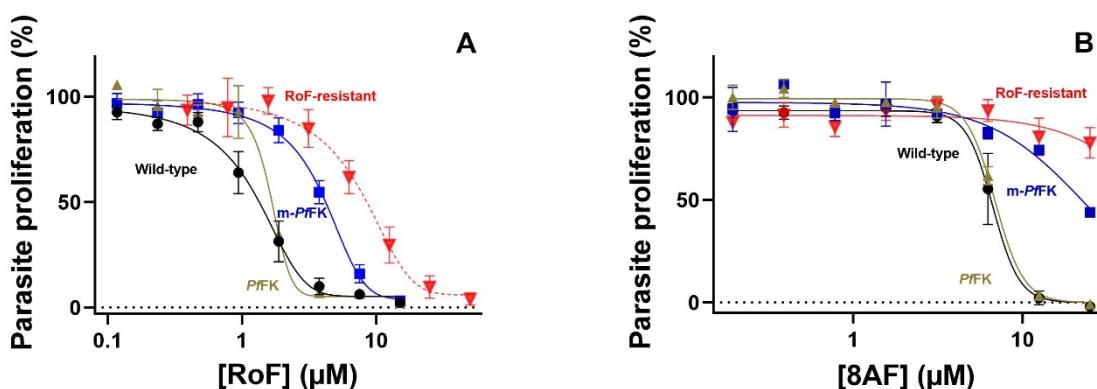
274

275 Figure 2: Percentage parasite proliferation of the parent line (black circles) and the four RoF-resistant
276 clones, RoF-A-E8 (red triangles), RoF-A-B6 (blue hexagon), RoF-B-E11 (purple squares), RoF-B-G2 (green
277 circles) in the presence of (A) RoF in normal RPMI-1640 (containing 532 nM riboflavin), (B) 8AF in
278 riboflavin-free RPMI-1640 or (C) chloroquine in normal RPMI-1640. Data points are averaged from 3-4
279 independent experiments, each carried out in triplicate. Error bars represent SEM and are not visible if smaller
280 than the symbols.
281

282 To determine the mutation/s responsible for the RoF and 8AF resistance phenotype, gDNA
283 from each clone was extracted and subjected to whole genome sequencing. We found that all
284 four clones harbour two non-synonymous mutations, one in a gene coding for a putative
285 riboflavin kinase, *PfFK* (PF3D7_1359100), L672H, and the other in the gene coding for an
286 apicoplast ribosomal protein S5 (*PFC10_API0033*), R118K, **Table S1**). Several other non-
287 synonymous mutations were also detected across the clones, but none of these mutations
288 occurred in all of the clones (**Table S1**). A structure-based alignment of the *PfFK* sequence
289 with that of flavokinases from bacteria (*B. subtilis*, *S. agalactiae*, *C. ammoniagenes*), yeast (*S.*
290 *pombe*, *C. albicans* and *S. cerevisiae*), the fungus *T. rubrum*, the plant *A. thaliana*, the parasite
291 *T. brucei*, and *H. sapiens*, for which crystal structures are available, showed that L672 is a
292 highly conserved residue (100% identity; **Figure S1**). In the absence of 3D structures for *PfFK*,
293 we aligned an AlphaFold-predicted *PfFK* structure (AF-Q8IDB3-F1, ³⁶ with the human
294 flavokinase, for which a crystal structure is available (**Figure 3**). L672 is in a region of *PfFK*
295 that is predicted with high confidence (per-residue Local Distance Difference Test, pLDDT >70
296 but <90). The residue is within an alpha-helix in a position overlapping with the corresponding
297 residue in human flavokinase (L115, **Figure 3**). In the human flavokinase, L115 forms part of
298 the riboflavin or FMN binding site, with the side chain of L115 forming hydrophobic
299 interactions with the isoalloxazine ring (**Figure 3**). Mutation of L672, a nonpolar amino acid,
300 to a polar histidine residue, which can be positively charged at physiological pH, is likely to
301 disrupt the hydrophobic interactions with riboflavin.

302

303


304 **Figure 3: Overlay of the predicted three-dimensional structure of the C-terminal domain of *PfFK* (Y565-
305 K707, purple, predicted using AlphaFold, AF-Q8IDB3-F1) with the experimentally determined X-ray
306 crystal structure of the entire (151 amino acid) human flavokinase (pink) with FMN (carbons in blue),
307 ADP (carbons in yellow) and Mg²⁺ (grey) bound (PDB ID: 1Q9S). The side chains of L672 (green) and the
308 corresponding residue in the human flavokinase (L115, pink) are shown. *PfFK* shares 40% sequence identity
309 with human flavokinase in this region. For clarity, residues M1-K564 of *PfFK* is not included in the figure.**
310

311

L672H mutation is responsible for the resistance phenotype against RoF and 8AF

312 To determine whether the L672H mutation is responsible for the resistance phenotype, we
313 generated transgenic 3D7 *P. falciparum* parasites that, in addition to expressing the endogenous
314 *PfFK*, also episomally express a GFP-tagged version of the wild-type *PfFK* or a copy of *PfFK*
315 harbouring the L672H mutation. We found that the sensitivity to RoF and 8AF of parasites
316 expressing only the wild-type form of *PfFK* (i.e. the endogenous version in addition to the GFP-
317 tagged episomally-expressed version) did not change when compared to the sensitivity of the
318 parent parasite line ($P = 0.61$ and 0.22 unpaired t-test, $N = 3$, respectively, **Figure 4A and 4B**).
319 In contrast, we found that parasites episomally expressing the mutant form of *PfFK* tagged to
320 GFP (in addition to expressing the endogenous, wild-type version) were 3-times more resistant
321 to RoF ($IC_{50} = 4.2 \pm 0.4 \mu\text{M}$; **Figure 4A**), and 2.7-times more resistant to 8AF ($IC_{50} = 19 \pm 3$

322 μM ; **Figure 4B**), in normal RPMI-1640 medium, when compared to wild-type parasites (IC_{50}
323 = 1.4 ± 0.3 and $7 \pm 1 \mu\text{M}$, $P = 0.005$ and 0.021 , respectively) and parasites additionally
324 expressing the wild-type form of *PfFK* tagged to GFP ($\text{IC}_{50} = 1.6 \pm 0.1$ and $9 \pm 1 \mu\text{M}$, $P = 0.007$
325 and 0.017 , respectively; **Figure 4**). The IC_{50} of RoF against roseoflavin-resistant parasites (8.1
326 $\pm 2.3 \mu\text{M}$) was found to be 2-fold higher than the IC_{50} of RoF against the parasites episomally
327 expressing the mutant form of *PfFK* ($4.2 \pm 0.4 \mu\text{M}$), **Figure 4A**). It is clear that the RoF-
328 resistant parasites are also less sensitive to 8AF than parasites episomally expressing the mutant
329 form of *PfFK* (**Figure 4B**). However, the precise fold difference in sensitivity in normal RPMI
330 medium (where the riboflavin concentration is $0.532 \mu\text{M}$) could not be determined because at
331 $25 \mu\text{M}$ (the highest concentration that can be tested due to limited solubility) there was less than
332 50% inhibition. However, by extrapolating the curve, an IC_{50} value of $70 \mu\text{M}$ was estimated for
333 8AF against these parasites; 3.7-fold higher than the 8AF IC_{50} observed against parasites
334 episomally expressing the mutant form of *PfFK* ($19 \pm 3 \mu\text{M}$).

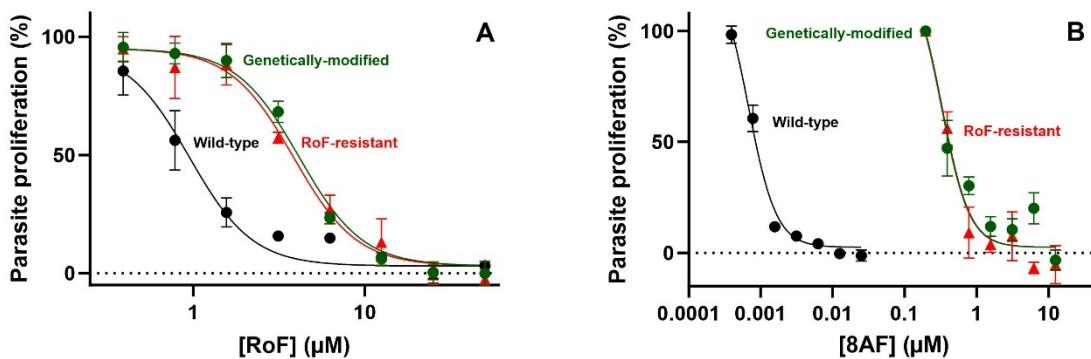
335

336 **Figure 4: Proliferation of wild-type parasites (black circles), parasites episomally expressing the wild-type**
337 **form of *PfFK* tagged to GFP (gold triangles), parasites episomally expressing mutant *PfFK* tagged to GFP**
338 **(blue squares), and RoF-B-E11 (red inverted triangles) in the presence of (A) RoF and (B) 8AF in normal**
339 **RPMI-1640. The RoF-B-E11 data in A (dotted line) is the same data set as that shown in Figure 2B and has been**
340 **included here for comparison. Parasite lines episomally expressing a copy of *PfFK*-GFP (wild-type or mutant) also**
341 **express the endogenous wild-type copy of *PfFK*. Values are averaged from three independent experiments, each**
342 **carried out in triplicate. Error bars represent SEM and are not visible if smaller than the symbols.**

343

344

345


346 These data are consistent with the L672H mutation being associated with the resistance
347 phenotype. It is also evident that the episomal expression of the mutant *PfFK* in transgenic

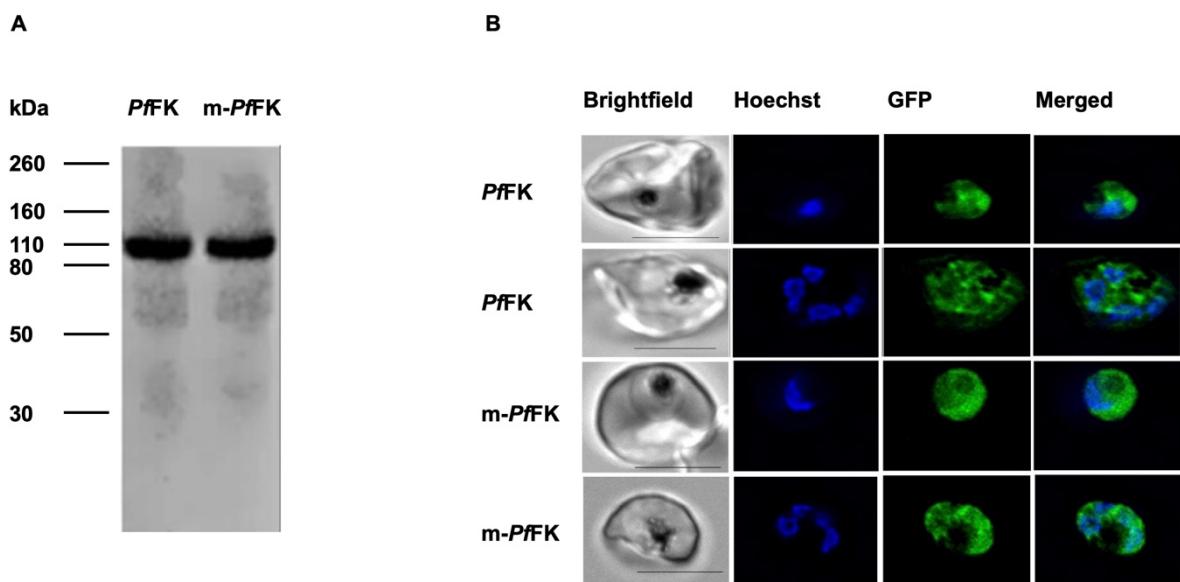
348 parasites, alongside the endogenous, wild-type *PfFK*, is not sufficient to confer resistance to
349 the level observed in RoF-B-E11. To explore more definitively whether the L672H mutation is
350 responsible for the resistance mechanism, we introduced the L672H mutation in the endogenous
351 *PfFK* gene.

352

353 **Single-crossover-mediated integration of the L672H mutation confers resistance to**
354 **RoF and 8AF**

355 We attempted CRISPR/cas9 editing of the *PfFK* gene to introduce the T2015A mutation
356 (resulting in the L672H mutation in the protein) into the endogenous gene. Initially, only a
357 small proportion of parasites appeared to have integrated the mutated *PfFK* gene construct, as
358 judged by PCR. Uniform integration was obtained following three on/off cycles, with each off
359 cycle lasting three weeks, of selection with 2 μ g/mL blasticidin. This was then followed by
360 FACS-mediated cloning. Sequencing of the *PfFK* gene region of three of the clones showed
361 that the integration had occurred *via* a single crossover recombination event rather than
362 CRISPR/cas9. Parasites harbouring the single-crossover-mediated L672H mutation in *PfFK*
363 were then tested for their sensitivity towards RoF and 8AF. We found these parasites to be
364 resistant to RoF by 4.5-fold in normal RPMI-1640 ($IC_{50} = 4.1 \pm 0.1 \mu$ M, $P < 0.0001$, unpaired,
365 two tailed t-test, $N = 5$, **Figure 5A**) and 500-fold resistant to 8AF in riboflavin-free RPMI-1640
366 ($IC_{50} = 0.5 \pm 0.1 \mu$ M, $P = 0.0019$, unpaired, two tailed t-test, $N = 3$, **Figure 5B**), as determined
367 by comparison with the parent parasites in the corresponding RPMI-1640 ($IC_{50} = 0.9 \pm 0.2 \mu$ M
368 for RoF and $0.001 \pm 0.002 \mu$ M for 8AF, **Figure 5A and 5B**). There was no significant
369 difference in the IC_{50} values of RoF and 8AF against RoF-resistant parasites generated *via in*
370 *vitro* evolution (4.0 ± 0.3 and $0.5 \pm 0.1 \mu$ M, respectively), and parasites that had the L672H
371 mutation selectively integrated into the endogenous *PfFK* (4.1 ± 0.1 and $0.5 \pm 0.1 \mu$ M, $P = 0.73$
372 and 0.99, respectively, unpaired, two tailed t-tests, $N = 3$, **Figure 5A and 5B**).

373


374 **Figure 5: Proliferation of parent parasites (black circles), parasites selected to be RoF resistant by *in vitro***
375 **evolution (red triangles), and parasites that have had their endogenous *PfFK* gene selectively modified (to**
376 **generate the L672H mutation in the protein) by single-crossover recombination (green circles), in the**
377 **presence of (A) RoF in normal RPMI-1640, (B) 8AF in riboflavin-free RPMI-1640. Values are averaged from**
378 **3-4 independent experiments, each carried out in triplicate. All error bars represent SEM and are not visible if**
379 **smaller than the symbols.**

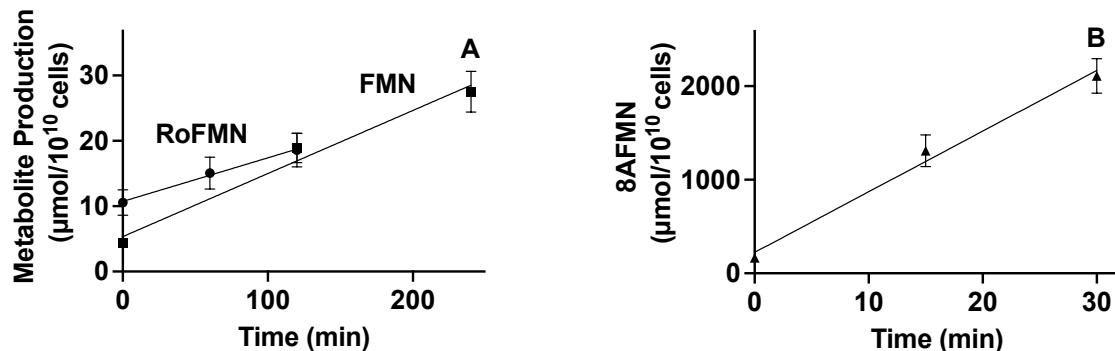
380

381 **Wild-type and mutant *PfFK* localise to the parasite cytosol**

382 To study the localisation of the WT and mutant flavokinase we generated transgenic parasites
383 expressing GFP-tagged versions of either the WT or mutant *PfFK*. Lysates (from parasites that
384 express the GFP-tagged WT and mutant forms of *PfFK*) were analysed for protein expression
385 using western blot. A band corresponding to a protein of the size predicted for the GFP-tagged
386 *PfFK* (110.7 kDa; **Figure 6A**) was observed for both parasite lines. The percentage of GFP-
387 positive infected erythrocytes (Hoechst-positive cells) that express the WT and mutant versions
388 of *PfFK* was found to be approximately 25%, based on flow cytometry analysis of green GFP-
389 fluorescence (**Figure S2**). When the parasites were examined with fluorescence microscopy,
390 we found that both WT and mutant *PfFK* localise to the cytosol of trophozoite and schizont
391 stages of the parasites (**Figure 6B**).

392
393
394
395

396
397 **Figure 6: Western blot analysis (A) and confocal microscopy (B) of parasites episomally expressing wild-**
398 **type and mutant *PfFK* tagged to GFP. (A)** Western blot analysis of protein lysates from *P. falciparum* parasites
399 episomally-expressing wild-type *PfFK*-GFP (left lane) or mutant *PfFK*-GFP (*m-PfFK*, right lane). The predicted
400 size of *PfFK*-GFP is 110.7 kDa. **(B)** Subcellular localization of episomally-expressed, GFP-tagged wild-type (top
401 two rows) and mutant form (bottom two rows) of *PfFK* (*m-PfFK*) within trophozoite-stage and schizont-stage *P.*
402 *falciparum*-infected erythrocytes. Brightfield images are show in the left column followed by Hoechst 33258
403 (DNA) labelling, GFP-fluorescence, and merged Hoechst and GFP images. Scale bars represent 4 μm.

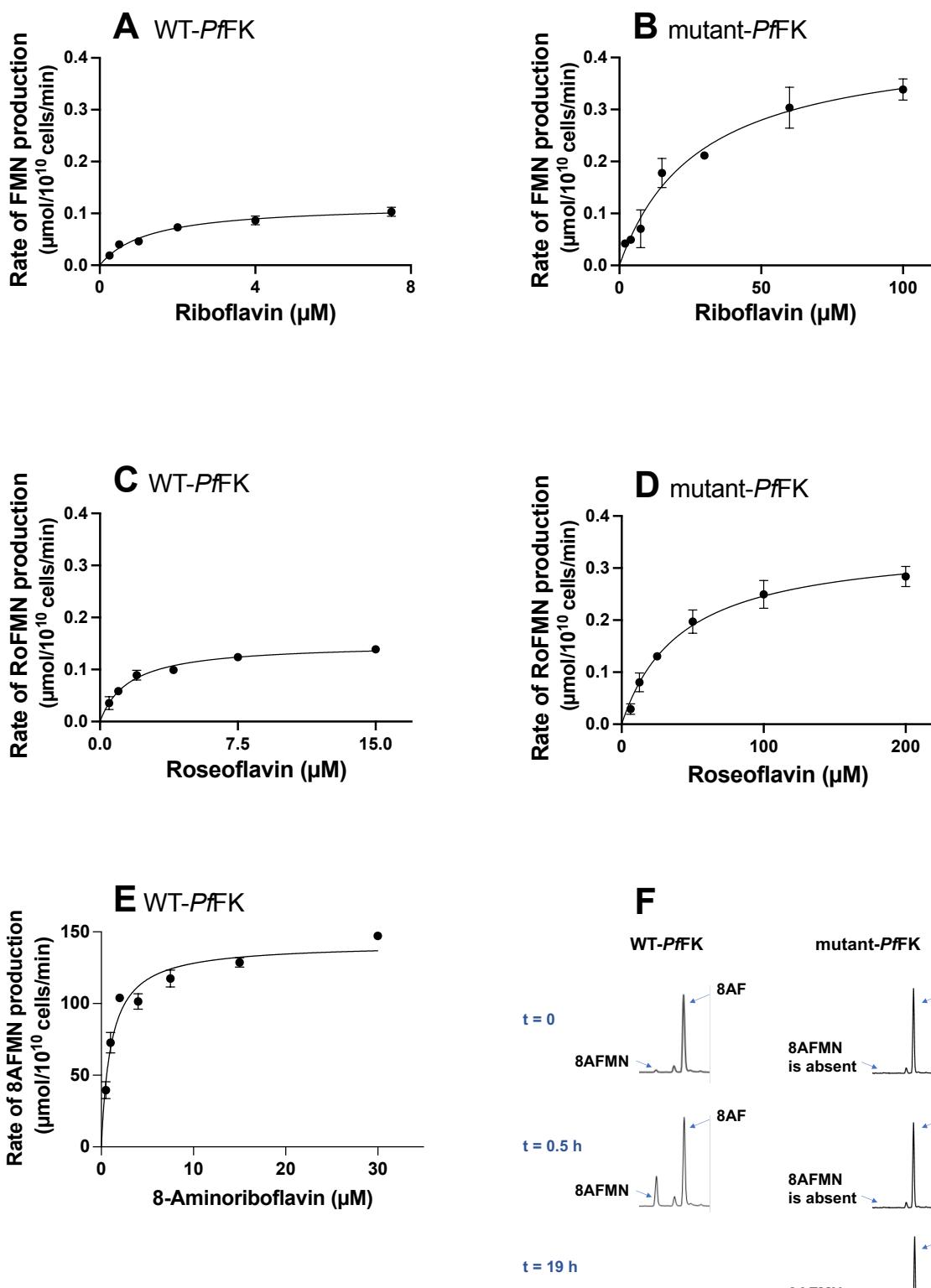

404

405 ***PfFK* is functional and riboflavin, RoF, and 8AF are substrates**

406 To investigate whether *PfFK* is responsible for the synthesis of FMN within the parasite, we
407 purified the wild-type and mutant *PfFK*-GFP proteins *via* immunoprecipitation using GFP-
408 Trap®, carried out enzyme reactions (with the enzyme still attached to the GFP-Trap®, **Figure**
409 **S3**) and used HPLC to detect reaction products. We found that riboflavin, RoF and 8AF are
410 substrates of the wild-type *PfFK*-GFP, generating FMN, roseoflavin mononucleotide (RoFMN)
411 and 8-demethyl-8-amino-riboflavin mononucleotide (8AFMN), respectively (**Figure 7**). There
412 was no significant difference in the initial rate of conversion of riboflavin into FMN ($0.097 \pm$
413 $0.012 \mu\text{mol}/10^{10} \text{ cells}/\text{min}$) and RoF into RoFMN ($0.068 \pm 0.009 \mu\text{mol}/10^{10} \text{ cells}/\text{min}$, $P =$
414 0.1221 , unpaired, two tailed t-test, $N = 3$) when each were individually present at $7.5 \mu\text{M}$. On
415 the other hand, 8AF (also present at $7.5 \mu\text{M}$) was converted into 8AFMN at a significantly
416 higher rate ($62.5 \pm 6.1 \mu\text{mol}/10^{10} \text{ cells}/\text{min}$) than both riboflavin and RoF ($P = 0.0005$ and
417 0.0005 , respectively, unpaired, two tailed t-test, $N = 3$; **Figure 7**). We did not detect production
418 of FAD, consistent with *PfFK* being a monofunctional enzyme, catalysing only the conversion

419 of riboflavin into FMN and not also acting as an FAD synthetase to produce FAD as occurs in
420 some other organisms^{37, 38}.

421
422


423
424 **Figure 7: Riboflavin (A, squares), RoF (A, circles), and 8AF (B, triangles), all at 7.5 μM, are phosphorylated**
425 by the purified wild-type form of *PfFK*-GFP. Values are averaged from three independent experiments, each
426 carried out in triplicate. Error bars represent SEM and, if not visible, are smaller than the symbols.

427

428 **L672H mutation of *PfFK* alters its affinity to its substrates**

429 We carried out full Michaelis-Menten (MM) analysis for the conversion of riboflavin, RoF and
430 8AF by the WT and mutant forms of *PfFK* (Figure 8). The amount of protein used was
431 standardised across the samples using western blotting (Figure S4). The apparent K_M of the
432 wild-type form of *PfFK* for riboflavin was found to be $1.2 \pm 0.1 \mu\text{M}$, and not significantly
433 different from that for RoF ($1.3 \pm 0.2 \mu\text{M}$) and 8AF ($1.1 \pm 0.1 \mu\text{M}$, $P > 0.3$, $N = 3$, unpaired t-
434 test, three comparisons, $N = 3$, Figure 8 and Table 1). We also found that the V_{max} of WT
435 *PfFK* for riboflavin ($0.12 \pm 0.01 \mu\text{mol}/\text{min}/10^{10} \text{ cells}$) was not significantly different from that
436 for RoF ($0.15 \pm 0.01 \mu\text{mol}/\text{min}/10^{10} \text{ cells}$, $P = 0.1231$, $N = 3$, unpaired t-test, Figure 8 and
437 Table 1). However, 8AF is metabolised by the wild-type form of flavokinase at much higher
438 rate than riboflavin and RoF by three orders of magnitude (142 ± 2 , $P < 0.0001$, $N = 3$, unpaired
439 t-test, Figure 8 and Table 1). Moreover, the V_{max}/K_M , a measurement of catalytic efficiency³⁹,
440 of *PfFK* for 8AF is higher than those for riboflavin and RoF by a factor of 10^3 , while *PfFK*
441 has the same catalytic efficiency for riboflavin and RoF (Table 1).

442 When MM curves were generated for *PfFK* harbouring the L672H mutation we found that the
443 K_M for riboflavin increased by a factor of 22, while the K_M for RoF increased by a factor of 41
444 (**Figure 8 and Table 1**). This is consistent with the enzyme's affinity for RoF being reduced
445 by a factor of approximately 2-fold compared to riboflavin. The V_{max} values of the mutant *PfFK*
446 were also found to be significantly increased for riboflavin and RoF, by a factor of 3.7 and 2.3,
447 ($P = 0.002$ and 0.0019 , unpaired t-test, $N = 3$), respectively, (**Figure 8 and Table 1**). The
448 V_{max}/K_M of this mutant enzyme is significantly reduced for riboflavin and RoF by a factor of 6
449 and 14, respectively ($P = 0.007$ and 0.0004 unpaired t-test, $N = 3$, **Table 1**). This means that the
450 mutant *PfFK* has a higher catalytic efficiency (by a factor of 2.3) for riboflavin than RoF. In
451 contrast to the observations with riboflavin and RoF (with mutant *PfFK* still accepting
452 riboflavin and RoF, albeit with reduced affinity), 8AF is no longer a substrate of the mutant
453 *PfFK*, with no 8AFMN production detected even after a 19 h incubation at 37 °C (**Figure 8F**).

454

455 **Figure 8: Michaelis-Menten curves for the phosphorylation of riboflavin (A and B), RoF (C and D) and**
 456 **8AF (E) by the wild-type (A, C, and E) and the mutant (B, and D) flavokinase of *P. falciparum*. Panel F is an**
 457 **HPLC chromatogram showing the synthesis of 8AFMN from 8AF and ATP upon the addition of the wild-type**
 458 ***PfFK*, while no 8AFMN production was detected upon the addition of the mutant flavokinase. Values are averaged**
 459 **from 3 independent experiments, each carried out in triplicate. Traces in F are representative of those obtained in**
 460 **3 independent experiments and are scaled to the tallest peak. All error bars represent SEM. Error bars are not**
 461 **visible if smaller than the symbols.**

462

463 **Table 1: Kinetic constants of the wild-type and mutant *PfFK* for different substrates.**

Enzyme	Substrate	K _M (μM)	V _{max} (μmol/10 ¹⁰ cells/min)	V _{max} / K _M (L/10 ¹⁰ cells/min)
WT <i>PfFK</i>	Riboflavin	1.2 ± 0.1	0.12 ± 0.01	0.10 ± 0.01
	Roseoflavin	1.3 ± 0.2	0.15 ± 0.01	0.12 ± 0.01
Mutant <i>PfFK</i>	8-aminoriboflavin	1.1 ± 0.1	142 ± 2	134 ± 7
	Riboflavin	27 ± 5	0.44 ± 0.06	16 ± 1 × 10 ⁻³
Mutant <i>PfFK</i>	Roseoflavin	53 ± 8	0.35 ± 0.03	7 ± 1 × 10 ⁻³
	8-aminoriboflavin	— *	—	—

464

465 * – not a substrate.

466

467 Discussion

468 Although we have recently shown that the parasite is capable of FMN and FAD synthesis ¹⁶,
469 the putative *P. falciparum* flavokinase gene remained to be experimentally verified and
470 characterised. In this study, present data consistent with the putative *PfFK* gene coding for a
471 monofunctional flavokinase that utilises riboflavin, RoF and 8AF as substrates. Previous studies
472 have shown that the flavokinase of humans and plants localises to the cell cytosol ^{41, 42}. We
473 show here that, similarly, *PfFK* localises to the parasite cytosol. The affinity of *PfFK* for
474 riboflavin (K_M = 1.2 μM) is somewhat intermediate when compared to the reported affinity of
475 FK for riboflavin in other organisms (K_M = 0.0103-180 μM) ^{37, 43-46}. *PfFK* exhibits a lower
476 affinity for riboflavin compared to *Arabidopsis thaliana*, *Neurospora crassa*, and *Nicotiana*
477 *tabacum* (Giancaspero et al., 2009, Sandoval and Roje, 2005, Rajeswari et al., 1999), while it
478 has a higher affinity, to different degrees, when compared to the FK from organisms such as

479 *Corynebacterium ammoniagenes*, *Megasphaera elsdenii*, *Rattus norvegicus*, *Bos taurus*,
480 *Streptomyces davaonensis*, and *Bacillus subtilis*^{37, 38, 44, 45, 47-49}. The K_M of the human
481 flavokinase for riboflavin has recently been reported to be 2.5 μM ⁴⁵), only modestly higher
482 than that we report here for *PfFK* (K_M = 1.2 μM). However, when measured under similar
483 conditions to those applied in our study, the K_M value of the human FK for riboflavin was
484 determined to be 36 μM ³⁰, a 30-fold lower affinity when compared to *PfFK*. The higher affinity
485 for riboflavin by *PfFK*, when compared to the human FK, may allow the parasite to compete
486 effectively for the riboflavin present in human serum. Perhaps a more important difference,
487 however, at least from a therapeutic point of view, is the fact that the K_M values of the human
488 FK for RoF and 8AF (160 μM and 885 μM , respectively³⁰) were substantially higher than those
489 observed in our study for *PfFK* (Table 1). This represent a much bigger difference in affinity
490 between the parasite and host FK (100-800-fold), clearly demonstrating that the active site of
491 *PfFK* can be selectively targeted by riboflavin analogues.

492 The observation that the L672H mutation in *PfFK* confers resistance against RoF and 8AF
493 (**Figure 2**) indicates that this mutation likely affects the ability of *PfFK* to bind to these two
494 riboflavin analogues. Consistent with this is the demonstration that the L672H mutation
495 modulates *PfFK* activity and substrate specificity (**Figure 8**), and with L672's predicted
496 location in the riboflavin binding site (**Figure 3**), which is likely to be shared with the two
497 analogues.

498 We previously found that RoF and 8AF can kill *P. falciparum* parasites at nanomolar
499 concentrations in medium containing riboflavin levels comparable to those found in human
500 plasma¹⁶. The fact that increasing the extracellular riboflavin concentration reduced the
501 antiplasmodial potency of RoF and 8AF, together with our observation that parasite FMN
502 production is compromised by RoF and 8AF, is consistent with these compounds interfering
503 with riboflavin metabolism and/or utilisation, either as inhibitors or substrates of the enzymes

504 involved¹⁶. One possibility, therefore, is that RoF and 8AF kill *P. falciparum* parasites by
505 competing with riboflavin, reducing in the formation of FMN and FAD, inactivating the
506 downstream flavoenzymes that rely on these flavins. In this study, we show that RoF and 8AF
507 are substrates for *PfFK*, generating RoFMN and 8AFMN, respectively. Another possibility is
508 that the metabolites generated from RoF and 8AF, RoFMN and 8AFMN, respectively, are toxic
509 to the parasite via inhibition of FMN-utilising enzymes, such as dihydroorotate dehydrogenase
510^{50,51}. These two possible mechanisms are almost certainly working in tandem to inhibit parasite
511 proliferation.

512 Any generation of FAD antimetabolites from RoFMN and 8AFMN by FAD synthetase would
513 also inactivate FAD-utilising enzymes, such as glutathione reductase, thioredoxin-disulfide
514 reductase and pyridoxine 5-dehydrogenase⁵²⁻⁵⁴. Of course, a highly likely possibility is that
515 both mechanisms (i.e. the reduction of FMN and FAD as well as the generation of their
516 antimetabolites) are contributing to the antiplasmodial effect of these compounds. A decrease
517 in the levels of FMN and FAD would boost the performance of RoFMN and 8AFMN, even
518 though these reduced levels alone may not be adequate to eliminate the parasite on their own.
519 In support of this possibility is our observation that although 8AF is not a substrate of mutant
520 *PfFK* (Fig. 8F), its antiplasmodial activity is antagonised by increasing the extracellular
521 concentration of riboflavin (**Figure 2B**, **Figure 4B**). This is consistent with the activity of 8AF,
522 at least against RoF-resistant parasites, being due to a reduction in FMN synthesis by
523 competitively (with riboflavin) inhibiting m-*PfFK*. Complete characterisation of the other
524 potential enzymes involved in the activity of RoF and 8AF (such as FAD synthetase) of the
525 parasites and human, will allow for the identification of regulatory and kinetic differences,
526 which could facilitate the development of targeted inhibitors.

527

528

529 Acknowledgements

530 We are grateful to The Australian Red Cross Lifeblood Canberra Branch for the provision of
531 red blood cells. AH received funding from the Australian Government's Research Training
532 Program. This work was supported by the Alliance Berlin-Canberra "Crossing Boundaries:
533 Molecular Interactions in Malaria", which is co-funded by the Australian National University
534 and a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research
535 Training Group (IRTG) 2290.

536

537 References

538 (1) Sato, S. *Plasmodium* — a brief introduction to the parasites causing human malaria and
539 their basic biology. *Journal Of Physiological Anthropology* **2021**, *40* (1), 1-13.

540 (2) WHO. *World Malaria Report*; 2023.

541 (3) Mannan, A. A.; Elmardi, K. A.; Idris, Y. A.; Spector, J. M.; Ali, N. A.; Malik, E. M. Do
542 frontline health care providers know enough about artemisinin-based combination therapy to
543 rationally treat malaria? A cross-sectional survey in Gezira State, Sudan. *Malaria Journal*
544 **2015**, *14* (1), 1-7.

545 (4) Chen, I.; Hsiang, M. S. Triple artemisinin-based combination therapies for malaria: a
546 timely solution to counter antimalarial drug resistance. *The Lancet Infectious Diseases* **2022**,
547 *22* (6), 751-753.

548 (5) Saliba, K. J.; Horner, H. A.; Kirk, K. Transport and metabolism of the essential vitamin
549 pantothenic acid in human erythrocytes infected with the malaria parasite *Plasmodium*
550 *falciparum*. *Journal of Biological Chemistry* **1998**, *273* (17), 10190-10195.

551 (6) Spry, C.; Van Schalkwyk, D.; Strauss, E.; Saliba, K. Pantothenate utilization by
552 *Plasmodium* as a target for antimalarial chemotherapy. *Infectious Disorders - Drug Targets*
553 **2010**, *10* (3), 200-216.

554 (7) Chan, A. H.; Ho, T. C.; Fathoni, I.; Pope, R.; Saliba, K. J.; Leeper, F. J. Inhibition of
555 Thiamine Diphosphate-Dependent Enzymes by Triazole-Based Thiamine Analogues. *ACS*
556 *Medicinal Chemistry Letters* **2023**, *14* (5), 621-628.

557 (8) Chan, A. H.; Fathoni, I.; Ho, T. C.; Saliba, K. J.; Leeper, F. J. Thiamine analogues as
558 inhibitors of pyruvate dehydrogenase and discovery of a thiamine analogue with non-thiamine
559 related antiplasmodial activity. *RSC Medicinal Chemistry* **2022**, *13* (7), 817-821.

560 (9) Chan, X. W. A.; Wrenger, C.; Stahl, K.; Bergmann, B.; Winterberg, M.; Müller, I. B.;
561 Saliba, K. J. Chemical and genetic validation of thiamine utilization as an antimalarial drug
562 target. *Nature Communications* **2013**, *4* (1), 2060.

563 (10) Macheroux, P.; Kappes, B.; Ealick, S. E. Flavogenomics—a genomic and structural view
564 of flavin-dependent proteins. *The FEBS Journal* **2011**, *278* (15), 2625-2634.

565 (11) Malmquist, N. A.; Gujjar, R.; Rathod, P. K.; Phillips, M. A. Analysis of flavin oxidation
566 and electron-transfer inhibition in *Plasmodium falciparum* dihydroorotate dehydrogenase.
567 *Biochemistry* **2008**, *47* (8), 2466-2475.

568 (12) Bacher, A.; Eberhardt, S.; Fischer, M.; Kis, K.; Richter, G. Biosynthesis of vitamin B₂
569 (riboflavin). *Annual Review of Nutrition* **2000**, *20* (1), 153-167.

570 (13) Fassbinder, F.; Kist, M.; Bereswill, S. Structural and functional analysis of the riboflavin
571 synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin
572 synthase (ribC), and riboflavin deaminase/reductase (ribD) from *Helicobacter pylori* strain
573 P1. *FEMS Microbiology Letters* **2000**, *191* (2), 191-197.

574 (14) Ginsburg, H. The biochemistry of *Plasmodium falciparum*: An updated overview. In
575 *Advances in Malaria Research*, 2016; pp 219-290.

576 (15) Dutta, P. Enhanced uptake and metabolism of riboflavin in erythrocytes infected with
577 *Plasmodium falciparum*. *The Journal Of Protozoology* **1991**, *38* (5), 479-483.

578 (16) Hemasa, A. L.; Mack, M.; Saliba, K. J. Roseoflavin, a natural riboflavin analogue,
579 possesses *in vitro* and *in vivo* antiplasmodial activity. *Antimicrobial Agents and*
580 *Chemotherapy* **2022**, *66* (10), e00540-00522.

581 (17) Allen, R. J.; Kirk, K. The membrane potential of the intraerythrocytic malaria parasite
582 *Plasmodium falciparum*. *Journal of Biological Chemistry* **2004**, *279* (12), 11264-11272.

583 (18) Allen, R. J.; Kirk, K. *Plasmodium falciparum* culture: the benefits of shaking. *Molecular*
584 *and Biochemical Parasitology* **2010**, *169* (1), 63-65.

585 (19) Smilkstein, M.; Sriwilajaroen, N.; Kelly, J. X.; Wilairat, P.; Riscoe, M. Simple and
586 inexpensive fluorescence-based technique for high-throughput antimalarial drug screening.
587 *Antimicrobial Agents and Chemotherapy* **2004**, *48* (5), 1803-1806.

588 (20) Makler, M. T.; Hinrichs, D. J. Measurement of the lactate dehydrogenase activity of
589 *Plasmodium falciparum* as an assessment of parasitemia. *The American Journal of Tropical*
590 *Medicine and Hygiene* **1993**, *48* (2), 205-210.

591 (21) Makler, M.; Ries, J.; Williams, J.; Bancroft, J.; Piper, R.; Gibbins, B.; Hinrichs, D.
592 Parasite lactate dehydrogenase as an assay for *Plasmodium falciparum* drug sensitivity. *The*
593 *American Journal of Tropical Medicine and Hygiene* **1993**, *48* (6), 739-741.

594 (22) Tjhin, E. T.; Spry, C.; Sewell, A. L.; Hoegl, A.; Barnard, L.; Sexton, A. E.; Siddiqui, G.;
595 Howieson, V. M.; Maier, A. G.; Creek, D. J.; et al. Mutations in the pantothenate kinase of
596 *Plasmodium falciparum* confer diverse sensitivity profiles to antiplasmodial pantothenate
597 analogues. *PLoS Pathogens* **2018**, *14* (4), e1006918.

598 (23) Manary, M. J.; Singhakul, S. S.; Flannery, E. L.; Bopp, S. E.; Corey, V. C.; Bright, A. T.;
599 McNamara, C. W.; Walker, J. R.; Winzeler, E. A. Identification of pathogen genomic variants
600 through an integrated pipeline. *BMC Bioinformatics* **2014**, *15* (1), 1-14.

601 (24) Rosario, V. Cloning of naturally occurring mixed infections of malaria parasites. *Science*
602 **1981**, *212* (4498), 1037-1038.

603 (25) Miao, J.; Li, X.; Cui, L. Cloning of *Plasmodium falciparum* by single-cell sorting.
604 *Experimental Parasitology* **2010**, *126* (2), 198-202.

605 (26) Uhlemann, A.-C.; Staalsoe, T.; Klinkert, M.-Q.; Hviid, L. Analysis of *Plasmodium*
606 *falciparum*-infected red blood cells. *MACS & more* **2000**, *4* (2), 7-8.

607 (27) Tjhin, E. T.; Staines, H. M.; Van Schalkwyk, D. A.; Krishna, S.; Saliba, K. J. Studies
608 with the *Plasmodium falciparum* hexokinase reveal that *PfHT* limits the rate of glucose entry
609 into glycolysis. *FEBS Letters* **2013**, *587* (19), 3182-3187.

610 (28) McHugh, E.; Carmo, O. M.; Blanch, A.; Looker, O.; Liu, B.; Tiash, S.; Andrew, D.;
611 Batinovic, S.; Low, A. J.; Cho, H.-J. Role of *Plasmodium falciparum* protein GEXP07 in
612 Maurer's cleft morphology, knob architecture, and *P. falciparum* EMP1 trafficking. *Mbio*
613 **2020**, *11* (2), e03320-03319.

614 (29) Tjhin, E. T.; Howieson, V. M.; Spry, C.; van Dooren, G. G.; Saliba, K. J. A novel
615 heteromeric pantothenate kinase complex in apicomplexan parasites. *PLoS Pathogens* **2021**,
616 *17* (7), e1009797.

617 (30) Pedrolli, D. B.; Nakanishi, S.; Barile, M.; Mansurova, M.; Carmona, E. C.; Lux, A.;
618 Gärtner, W.; Mack, M. The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from
619 *Streptomyces davawensis* are metabolized by human flavokinase and human FAD synthetase.
620 *Biochemical Pharmacology* **2011**, *82* (12), 1853-1859.

621 (31) Prommanna, P.; Uthaipibull, C.; Wongsombat, C.; Kamchonwongpaisan, S.; Yuthavong,
622 Y.; Knuepfer, E.; Holder, A. A.; Shaw, P. J. Inducible knockdown of *Plasmodium* gene
623 expression using the glmS ribozyme. *PloS One* **2013**, *8* (8), e73783.

624 (32) Adjalley, S.; Lee, M. C. S. CRISPR/Cas9 Editing of the Genome. In *Malaria*
625 *Immunology*, Springer, 2022; pp 221-239.

626 (33) Miao, J.; Cui, L. Rapid isolation of single malaria parasite–infected red blood cells by
627 cell sorting. *Nature Protocols* **2011**, *6* (2), 140-146.

628 (34) Pei, J.; Grishin, N. V. PROMALS3D: multiple protein sequence alignment enhanced
629 with evolutionary and three-dimensional structural information. In *Multiple Sequence*
630 *Alignment Methods*, Springer, 2014; pp 263-271.

631 (35) Egan, T. J.; Ross, D. C.; Adams, P. A. Quinoline anti-malarial drugs inhibit spontaneous
632 formation of β-haematin (malaria pigment). *FEBS Letters* **1994**, *352* (1), 54-57.

633 (36) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.;
634 Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein
635 structure prediction with AlphaFold. *Nature* **2021**, *596* (7873), 583-589.

636 (37) Grill, S.; Busenbender, S.; Pfeiffer, M.; Köhler, U.; Mack, M. The bifunctional
637 flavokinase/riboflavin adenine dinucleotide synthetase from *Streptomyces davawensis* produces
638 inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin. *Journal*
639 *of Bacteriology* **2008**, *190* (5), 1546-1553.

640 (38) Solovieva, I.; Kreneva, R.; Leak, D.; Perumov, D. The ribR gene encodes a
641 monofunctional riboflavin kinase which is involved in regulation of the *Bacillus subtilis*
642 riboflavin operon. *Microbiology* **1999**, *145* (1), 67-73.

643 (39) Ahmed, S. A.; Saleh, S. A.; Abdel-Hameed, S. A.; Fayad, A. M. Catalytic, kinetic and
644 thermodynamic properties of free and immobilized caseinase on mica glass-ceramics. *Helijon*
645 **2019**, *5* (5), e01674.

646 (40) Sandee, D.; Morrissey, K.; Agrawal, V.; Tam, H. K.; Kramer, M. A.; Tracy, T. S.;
647 Giacomini, K. M.; Miller, W. L. Effects of genetic variants of human P450 oxidoreductase on
648 catalysis by CYP2D6 *in vitro*. *Pharmacogenetics and Genomics* **2010**, *20* (11), 677.

649 (41) Mitsuda, H.; Tsuge, H.; Tomozawa, Y.; Kawai, F. Multiplicity of acid phosphatase
650 catalyzing FMN hydrolysis in spinach leaves. *The Journal of Vitaminology* **1970**, *16* (1), 52-
651 57.

652 (42) Park, K.-J.; Lee, C.-H.; Kim, A.; Jeong, K. J.; Kim, C.-H.; Kim, Y.-S. Death receptors 4
653 and 5 activate Nox1 NADPH oxidase through riboflavin kinase to induce reactive oxygen

654 species-mediated apoptotic cell death. *Journal of Biological Chemistry* **2012**, 287 (5), 3313-
655 3325.

656 (43) Solovieva, I.; Tarasov, K.; Perumov, D. Main physicochemical features of
657 monofunctional flavokinase from *Bacillus subtilis*. *Biochemistry (Moscow)* **2003**, 68 (2), 177-
658 181.

659 (44) Serrano, A.; Frago, S.; Herguedas, B.; Martínez-Júlvez, M.; Velázquez-Campoy, A.;
660 Medina, M. Key residues at the riboflavin kinase catalytic site of the bifunctional riboflavin
661 kinase/FMN adenyllyltransferase from *Corynebacterium ammoniagenes*. *Cell Biochemistry
662 and Biophysics* **2013**, 65 (1), 57-68.

663 (45) Anoz-Carbonell, E.; Rivero, M.; Polo, V.; Velázquez-Campoy, A.; Medina, M. Human
664 riboflavin kinase: Species-specific traits in the biosynthesis of the FMN cofactor. *The FASEB
665 Journal* **2020**, 34 (8), 10871-10886.

666 (46) Rajeswari, S. R.; Jonnalagadda, V. S.; Jonnalagadda, S. Purification and characterization
667 of flavokinase from *Neurospora crassa*. **1999**.

668 (47) Mayhew, S. G.; Wassink, J. H. Continuous fluorescence assay, partial purification, and
669 properties of flavokinase from *Megasphaera elsdenii*. In *Methods In Enzymology*, Vol. 66;
670 Elsevier, 1980; pp 323-327.

671 (48) Merrill Jr, A. H.; McCormick, D. Affinity chromatographic purification and properties of
672 flavokinase (ATP: riboflavin 5'-phosphotransferase) from rat liver. *Journal of Biological
673 Chemistry* **1980**, 255 (4), 1335-1338.

674 (49) Cho, K.-W. Bioluminescent Assay of Bovine Liver Riboflavin Kinase Using a Bacterial
675 Luciferase Coupled Reaction. *Journal of Microbiology* **2000**, 38 (2), 74-79.

676 (50) Rowland, P.; Nørager, S.; Jensen, K. F.; Larsen, S. Structure of dihydroorotate
677 dehydrogenase B: electron transfer between two flavin groups bridged by an iron-sulphur
678 cluster. *Structure* **2000**, 8 (12), 1227-1238.

679 (51) Appleby, C.; Morton, R. Lactic dehydrogenase and cytochrome b2 of baker's yeast.
680 Enzymic and chemical properties of the crystalline enzyme. *Biochemical Journal* **1959**, 73
681 (3), 539.

682 (52) Böhme, C. C.; Arscott, L. D.; Becker, K.; Schirmer, R. H.; Williams, C. H. Kinetic
683 characterization of glutathione reductase from the malarial parasite *Plasmodium falciparum*:
684 comparison with the human enzyme. *Journal of Biological Chemistry* **2000**, 275 (48), 37317-
685 37323.

686 (53) Arnér, E. S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin
687 reductase. *European Journal of Biochemistry* **2000**, 267 (20), 6102-6109.

688 (54) Sundaram, T.; Snell, E. The Bacterial Oxidation of Vitamin B₆: V. The Enzymatic
689 Formation of Pyridoxal and Isopyridoxal from Pyridoxine. *Journal of Biological Chemistry*
690 **1969**, 244 (10), 2577-2584.

691

693

Supplementary Figures

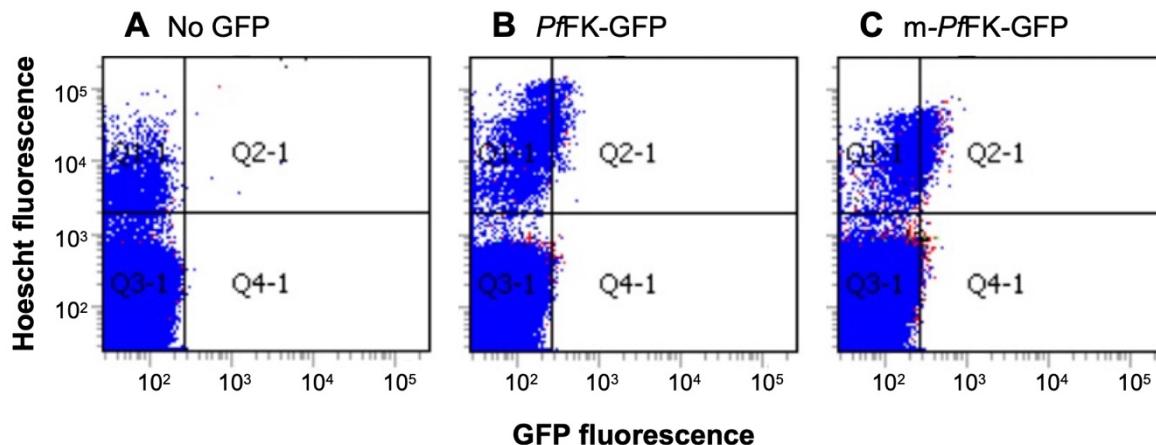
694

Conservation:		5596	5	69	7	7	9	6	9	7	5													
CamFK	271	VLD-----	RDADLYGH	D VKVEFVDHV	RAMEKFDS	V EQL	LEVMAKDV	Q KTR	T LLA		319													
SaFK	257	IFD-----	FDGDIYGET	I FLWLKR	I	REMVKFNG	I DDLV	KQLKKDKE	I	ALNWKK		305												
TbFK	95	FLHE-----	FGWDFYGA	AVVKI	I	VLGEIRSMGSFHSI	L QAL	VDTIKSDVQ	F TRDML	Q		144												
BsFK	264	LFD-----	FNQEYVGAAIK	I	IEWYKR	I	RSERKFNG	I KEL	TEQIEKD	K QEAIRYFS		312												
ScFK	158	IIHD-----	FKNDFYGARV	KFN	I	LGHIRELN	TTK	EA	LEDINID	DIRTAQ	T	207												
TrFK	118	ILPHLSMESSP	ISADTSGQRPLF	H	HFPDFYGT	A LNLL	I	LGY	I	RPEYDYVS	R EA	187												
AtFK	315	LLHD-----	FTEDFYGE	ELRL	I	IVGY	I	RPEANFSS	L ESL	IAKI	HEDREVAE	KA	364											
HsFK	82	IMHT-----	FKEDFYGE	I	LNVA	I	VGY	I	RPEKNFDS	L ESL	ISAI	QGDIEEAK	KR	131										
CaFK	115	IIHK-----	FQKNFYGS	KIEY	VVL	G	Y	I	RPELNFDS	I DE	LI	DTINS	IEFAKS	KL	164									
SpFK	99	LIER-----	QGEDFYEE	IMRV	V	VL	G	I	RPELN	Y AGLDKL	I	EDIHT	DIRVAL	N	148									
PfFK	639	LYYK-----	TDDIFYDENI	H	HLII	I	IGII	I	RSESNF	Y FSHL	I	QAI	QFD	CLEARIV	LN	688								
<u>Consensus_aa:</u>		<i>lhc</i>	.	<i>h</i>	.	<i>-hyG</i>	.	<i>lcl</i>	<i>hl</i>	.	<i>IR</i>	<i>sb</i>	<i>p@st</i>	<i>hp</i>	<i>L</i>	<i>lp</i>	<i>lp</i>	<i>D</i>	<i>p</i>	<i>h</i>	<i>p</i>	<i>hp</i>		
<u>Consensus_ss:</u>		<i>ee</i>							<i>eeeeeeee</i>														<i>hhhhhhhhhhhhhhhhhhhh</i>	

695

696

697


698

699 **Figure S1: The alignment of residues 639-688 of PfFK with the relevant sections of the flavokinase proteins**
700 **from other organisms.** The flavokinase (FK) homologues (accession numbers in brackets) from the following
701 species were aligned: Pf: *P. falciparum* (Q8IDB3); Hs: *Homo sapiens* (Q969G6); Sp: *Schizosaccharomyces pombe*
702 (O74866); Bs: *Bacillus subtilis* (P54575); Tb: *Trypanosoma brucei* (Q38DG4); At: *Arabidopsis thaliana*
703 (Q84MD8); Sa: *Streptococcus agalactiae* serotype III (Q8E5J7); Ca: *Candida albicans* (Q5A015); Tr:
704 *Trichophyton rubrum* (F2SJS4); Sc: *Saccharomyces cerevisiae* (Q03778); Cam: *Corynebacterium ammoniagenes*
705 (Q59263). L672 of PfFK and the corresponding leucine in the flavokinase homologues of other organisms is marked
706 with a grey rectangle and is conserved in all of the 10 sequences. Values at and above the conservation index cut-
707 off (5) are displayed above the amino acid. Consensus aa refers to the consensus level alignment parameters for
708 the consensus amino acid sequence. This is displayed if the weighted frequency of a certain class of residues in a
709 position is above 0.8. Consensus symbols are as follows: conserved amino acids: bold and uppercase letters;
710 aliphatic (I, V, L): l; aromatic (Y, H, W, F): @; hydrophobic (W, F, Y, M, L, I, V, A, C, T, H): h; alcohol (S, T):
711 o; polar residues (D, E, H, K, N, Q, R, S, T): p; tiny (A, G, C, S): t; small (A, G, C, S, V, N, D, T, P): s; bulky
712 residues (E, F, I, K, L, M, Q, R, W, Y): b; positively charged (K, R, H): +; negatively charged (D, E): -; charged
713 (D, E, K, R, H): c. Elements of secondary structure (ss) are indicated: h = alpha helix, e = beta strand.

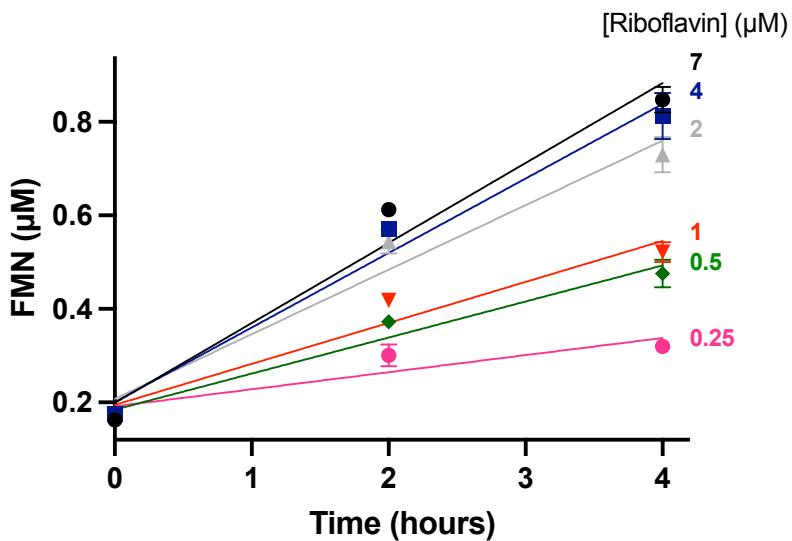
714

715

716

717

718


719

720 **Figure S2: Determination of the proportion of trophozoite-stage parasites expressing the WT-*PfFK-GFP* and mutant-*PfFK-GFP*.** The forward scatter intensity on each x-axis corresponds to GFP fluorescence and the y-axis corresponds to the intensity of Hoescht fluorescence (to identify infected erythrocytes). Using 3D7 trophozoites to create a gating threshold below which parasites were considered as auto-fluorescent, the proportion 721 of GFP-positive cells were estimated in each transgenic line (B: WT-*PfFK-GFP* (27 ± 6% n = 3) and C: mutant- 722 723 724 725 *PfFK-GFP* (27 ± 7% n = 3)). Data is representative of those obtained from three independent experiments.

726

727

728

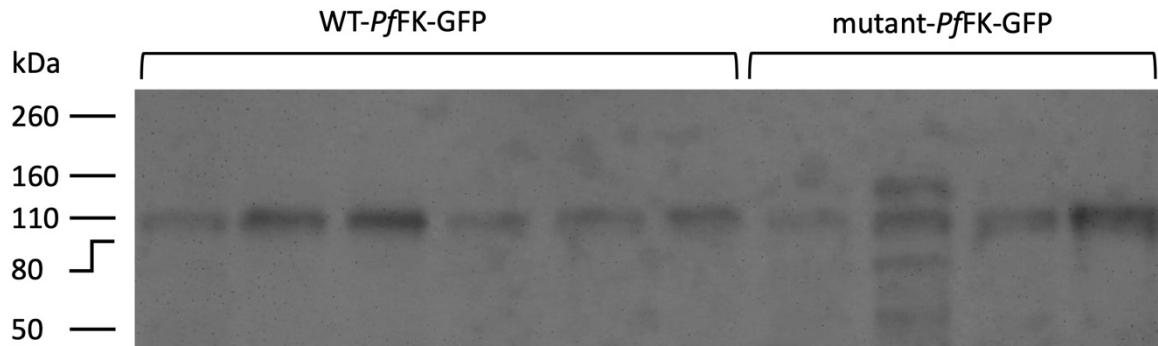
729

730

731 **Figure S3: Formation of FMN from riboflavin and ATP by purified *PfFK-GFP*.** The rate of FMN production
732 increased as the concentration of riboflavin was increased from 0.25 to 7 μM. Values are averaged from three
733 independent experiments, each carried out in triplicate. Error bars represent SEM and are not visible if smaller
734 than the symbols.

735

736


737

738

739

740

741

742

743

744

745 **Figure S4: Western blot analysis of WT-*PfFK*-GFP, and mutant-*PfFK*-GFP in GFP-Trap-
746 immunoprecipitated preparations.** Purified *PfFK* samples, each prepared from 1×10^{10} isolated *P. falciparum*
747 trophozoites expressing WT-*PfFK*-GFP (Lane 1 to 6; riboflavin was tested using the first three samples (lanes 1-
748 3) while RoF and 8AF were tested, in the same experiment using the next three samples (lanes 4-6)) or mutant-
749 *PfFK*-GFP (Lane 7-10; each sample used to test riboflavin, RoF and 8AF) were analysed by western blotting.
750 Image J software was used to quantify the band intensity and were then standardized to the lowest value in
751 preparation for the enzyme activity assays.

752

753 **Table S1:** Key sequencing results from whole genome sequencing of WT and RoF-resistant parasites

Gene Name	Gene Description	Effect	Codon Change	Amino Acid Change
RoF-A-Clone-E8				
PF3D7_0614200	Conserved <i>Plasmodium</i> protein unknown function	Non-synonymous	Gat/Aat	D859N
PF3D7_1359100	Riboflavin kinase FAD synthase family protein putative	Non-synonymous	cTt/cAt	L672H
PF3D7_1038400	Gametocyte-specific protein	Non-synonymous	Ata/Gta	I8312V
PF3D7_1038400	Gametocyte-specific protein	Non-synonymous	gaA/gaC	E8342D
PFC10_API0033	Apicoplast ribosomal protein S5	Non-synonymous	aGa/aAa	R118K
RoF-A-Clone-B6				
PF3D7_1410300	Conserved <i>Plasmodium</i> protein unknown function	Non-synonymous	Gaa/Aaa	E4170K
PF3D7_1471900	Conserved <i>Plasmodium</i> protein unknown function	Non-synonymous	aaT/aaA	N907K
PF3D7_1303800	Conserved <i>Plasmodium</i> protein unknown function	Non-synonymous	Caa/Aaa	Q418K
PF3D7_1359100	Riboflavin kinase FAD synthase family protein putative	Non-synonymous	cTt/cAt	L672H
PFC10_API0033	Apicoplast ribosomal protein S5	Non-synonymous	aGa/aAa	R118K
RoF-B-Clone-E11				
PF3D7_1420000	Splicing factor subunit putative	Non-synonymous	tCa/tTa	S227L
PF3D7_0728100	Conserved <i>Plasmodium</i> membrane protein unknown function	Non-synonymous	aaT/aaA	N5064K
PF3D7_1359100	Riboflavin kinase FAD synthase family protein putative	Non-synonymous	cTt/cAt	L672H
PFC10_API0022	Probably protein unknown function	Non-synonymous	tCa/tTa	S4L
PFC10_API0033	Apicoplast ribosomal protein S5	Non-synonymous	aGa/aAa	R118K
RoF-B-Clone-G2				
PF3D7_0406500	Conserved <i>Plasmodium</i> protein unknown function	Non-synonymous	Ctt/Att	L1137I
PF3D7_1316400	Conserved <i>Plasmodium</i> protein unknown function	Non-synonymous	aaC/aaA	N2K
PF3D7_1359100	Riboflavin kinase FAD synthase family protein putative	Non-synonymous	cTt/cAt	L672H
PFC10_API0022	Probably protein unknown function	Non-synonymous	Caa/Aaa	Q15K
PFC10_API0022	Probably protein unknown function	Non-synonymous	tCa/tTa	S4L
PFC10_API0033	Apicoplast ribosomal protein S5	Non-synonymous	aGa/aAa	R118K
PFC10_API0055	Apicoplast ribosomal protein S4	Non-synonymous	tGt/tAt	C31Y
PFC10_API0055	Apicoplast ribosomal protein S4	Non-synonymous	Ggt/Agt	G25S

754

755