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13 Abstract

14 Cell-free DNA (cfDNA) is a rich source of biomarkers for various (patho)physiological conditions.
15 Recent developments have used Machine Learning on large cfDNA data sets to enhance the detection
16 of cancers and immunological diseases. Preanalytical variables, such as the library preparation protocol
17 or sequencing platform, are major confounders that influence such data sets and lead to domain shifts
18 (i-e., shifts in data distribution as those confounders vary across time or space). Here, we present a
19 domain adaptation method that builds on the concept of optimal transport, and explicitly corrects for
20 the effect of such preanalytical variables. Our approach can be used to merge cohorts representative of
21 the same population but separated by technical biases. Moreover, we also demonstrate that it improves
2 cancer detection via Machine Learning by alleviating the sources of variation that are not of biological
23 origin. Our method also improves over the widely used GC-content bias correction, both in terms of
2% bias removal and cancer signal isolation. These results open perspectives for the downstream analysis of
25 larger data sets through the integration of cohorts produced by different sequencing pipelines or collected
% in different centers. Notably, the approach is rather general with the potential for application to many
27 other genomic data analysis problems.
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2 1 Introduction

29 Cell-free DNA (cfDNA) has been identified as a promising source of biomarkers for the detection of fetal
30 aneuploidy [I}, 2], transplant rejection [3], incipient tumours [4], autoimmune disease [5] or inflammatory
31 disease [6]. While ¢fDNA fragments in healthy individuals primarily originate from the apoptotic release
32 of DNA from cells of hematopoietic origin [7], these fragments can also be of tumoural origin in cancer
33 patients. While most clinical applications of ¢fDNA in oncology focus on finding tumour mutations
3 (e.g., using a targeted panel of cancer driver variants) [8, [9], a lot of research has been carried out
35 around the analysis of coverage and fragmentome profiles. Indeed, the copy number aberrations (CNAs)
36 carried by the genome of cancerous cells are detectable by low-coverage whole-genome sequencing and
37 downstream analysis of ¢cfDNA from cancer patients [I0, II]. Because cfDNA can be collected in a non-
38 or minimally-invasive manner (e.g., blood draw), and thanks to the cost-effectiveness of shallow whole-
39 genome sequencing, liquid biopsies are a valuable candidate for population-wide cancer screening [7, 4]
40 and diagnosis, and considerable research has been devoted to assessing their clinical utility [12].

41 Fragmentomic analysis of cfDNA offers the possibility to improve its use as a sensitive biomarker for
2 cancer detection [I3] [14], as ¢fDNA fragments mirror the chromatin accessibility, nucleosome positioning
43 and degradation pattern of their tissue of origin [I5] [16]. For this reason, CNA calling can be comple-
m mented with fragmentation profile analysis based on fragment length, as well as positional information
45 [13, 17, 18] 19]. Indeed, the distribution of cfDNA fragment lengths is shifted downward in circulating
a6 tumour-derived DNA (ctDNA), supporting signatures of their cellular origin [15] [20].

a7 Beyond fragmentomics, methylation patterns are indicative of the tissue of origin, and methylation
48 signatures have been exploited for sensitive cancer detection and tissue-of-origin identification [21]. Fi-
49 nally, recent work has been devoted toward integrating multiple properties of ¢fDNA within a single
50 multimodal analysis approach, including variant calling, CNAs, methylation and fragmentomic profiles,
51 as well as other complementary sources of information such as nucleosome-depleted region (NDR) profiles
52 [22] or fusion gene detection [23].

53 However, the development of reliable models that are predictive of relevant clinical outcomes (for
54 example, diagnosis) remains challenging because of the limited number of available cases (especially for
55 disorders with smaller incidence rate), the high dimensionality of cfDNA data and the various sources
56 of biases related to preanalytical settings. These latter biases mainly arise when protocol changes are
57 introduced over time or between different centers. For example, the choice of blood collection tube might
58 affect ¢cfDNA concentrations and the prominence of leukocyte DNA [24] [25], which could in turn affect
59 the detection of low-frequency variations from cancerous cells. Other preanalytical factors include the
60 delay before centrifugation and protocols for plasma separation, and plasma storage conditions [26]. For
61 example, two-step centrifugation reduces contamination by genomic DNA thanks to reduced white blood
62 cell lysis, compared to one-step centrifugation [27]. Moreover, some DNA extraction platforms, such
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63 as Maxwell and QIAsymphony, preferentially isolate short fragments over long ones [28]. The choice of
64 library preparation kit directly affects the distribution of read counts, as the polymerase enzymes used
65 in these kits have different levels of efficiency in amplifying fragments with low vs. high GC-content [29].
66 For instance, some library preparation kits (e.g., Nextera XT) introduce a bias toward low-GC regions
67 [30]. Multiplexed sequencing without suitable dual indexing can result in barcode swapping, and the
68 swapping rates are platform-dependent (e.g., higher on HiSegX or 4000 compared to MiSeq) [31]. Index
69 swapping mechanism is caused both by multiplex PCR and flow cell chemistry, and is responsible for
70 cross-contamination within the same pool [32]. Finally, the choice of sequencing instrument also plays a
71 role. For example, different GC-content bias profiles have been reported for Illumina MiSeq and NextSeq
7 platforms, compared to PacBio or HiSeq [33].

73 In this work, we focus on the bias correction of genome-wide copy-number (i.e., GIPseq [4]) profiles
74 based on normalised read counts. The aforementioned preanalytical settings can affect the read counts,
75 for example through differential coverage of regions differing by their GC content, thus invalidating direct
76 statistical analysis (e.g., using z-scores) of CNA profiles. Moreover, these distributional shifts [34] are not
7 properly handled by classical Machine Learning algorithms and are responsible for performance drops
78 on test sets. Mitigating these biases is therefore of utmost importance in strengthening biological signals
79 and guaranteeing performance on unseen data. Such a task typically falls in the category of domain
80 adaptation (DA) [35] problems, where computational methods are needed to compensate for the fact
81 that a given model is tested on data drawn from a different distribution than the ones on which it has
82 been trained. In this work, we will refer to the samples being corrected as belonging to the source domain,
83 while the fixed data lies in the target domain. We restricted ourselves to unsupervised DA, where the
84 variable of interest (e.g., whether an individual is affected by a certain condition) is unknown. Such
85 annotations are not necessarily available, especially for rarer diseases. Also, already-existing methods
86 (GC correction) don’t require such information and are widely applicable, as they can be applied in a
87 sample-wise fashion. This is highly relevant due to GC and sequencing biases not only operating at the
88 domain-level, but also at the individual level [36]. When multiple source domains coexist, the problem
89 is referred to as a domain generalisation problem [37]. Since multiple domain shifts occurred in our data
9% sets over time, our own method falls under this category.

o1 Previous work on the bias correction of copy-number profiles has mostly been directed toward GC-
92 content and mappability bias correction. Benjamini and Speed [38] originally categorised these methods
03 as single position models, fragmentation models, read models, full-fragment models and global models.
94 An example of global model is the widely-used LOESS GC-content bias correction [39] 40], which decor-
95 relates the per-bin GC-content percentage from the normalised read counts based on local regressions.
9% ichorCNA [1] is a tool for calling CNA from read counts, that internally performs mappability and
97 GC-correction in a similar way. BEADS [36] falls into the category of read models, as it re-weights
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98 individual reads based on their GC-content before computing their per-bin counts. The single position
99 model from Benjamini and Speed [38] relies on the computation of the mean fragment count for each
100 GC stratum, by considering all the mappable positions along the genome having similar GC-content.
101 Finally, the LIQUORICE algorithm [23] operates at the fragment-level, by computing a coverage weight
102 for each position covered by each fragment. More recently, distance learning and k-nearest neighbours
103 have been proposed [42] to correct coverage profiles. As opposed to previous work, the latter approach
104 exploits information from the whole data set to correct each individual sample.

105 On the Machine Learning side, previous work on unsupervised DA includes the following. Discriminator-
106 free domain adversarial learning [43] uses domain adversarial learning [44] to obtain a common represen-
107 tation space for all domains. Kernel mean matching [45] aims at matching the higher-order moments of
108 the underlying distributions using kernel functions. Multilevel domain adaptive learning matches the dis-
109 tributions at each intermediate layer of the neural network in a hierarchical fashion [46]. Reconstruction-
110 based methods, such as Cycle-Consistent Adversarial Domain Adaptation (CyCADA) [47], reconstruct
111 samples from the target domain using the samples from the source domain as input. It should be noted
112 that most existing methods use a latent space to represent the samples, which means that the debiased
13 representation is not directly interpretable, which runs afoul of ubiquitous need for interpretability and
114 explainability in human genetics [48]. A key motivation for our work is thus to design a domain adap-
115 tation method that adjusts cfDNA profiles in a transparently interpretable manner, by operating at the
116 read count level (i.e., without having recourse to a latent space as domain adversarial methods would)
17 and preserving the z-scores produced by the original data.

118 In this article, we present an advanced data normalisation method for cell-free DNA sequencing data
119 building on optimal transport (OT) theory [49, 50]. OT builds on strong mathematical bases and allows
120 to define a patient-to-patient relationship across domains without the need to build a common latent
121 representation space, as mostly done in the DA field. This enables high interpretability, as samples can
122 be corrected in the original data space (e.g., read counts) directly. Because we originally designed this
123 approach for the correction of normalised read counts within predefined bins, it falls under the category of
124 ”global models” according to the Benjamini/Speed classification [38]. In summary, we aim at correcting
125 and mapping the data distribution from a source domain onto the data distribution obtained in a target
126 domain, to enable more robust downstream analysis. As the ultimate goal is to go beyond the classical
127 case—control setting and build models capable of accurately processing data from various sources, we
128 hypothesised that bias removal is a good candidate to increase the effective size of available data sets
129 through their fusion and thus benefit from the scalability of Machine Learning models and enhance their
130 performance. This flexibility would, among other things, reduce the need for laboratories to consistently
131 build new reference sets, as well as enable high reusability of older samples or data collected in unrelated
132 studies. In this article, we report enhanced cancer detection with prior domain adaptation and show that
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133 cohorts can be corrected to match the same distribution while preserving the original biological signals
134 (e.g., copy number aberrations) in each patient.

138 2 Results & discussion

136 In each of the following experiments, we compared our domain adaptation approach to the original data
137 (no correction), as well as center-and-scale standardisation and LOWESS GC-content bias correction,
138 when relevant. Center-and-scale standardisation consists in standardising the data points from each
139 domain separately, by subtracting their median and dividing by the average squared deviation from the
140 median. As this method is univariate, it has been performed on each bin and each data set separately.
11 2.1 Preanalytical biases can be accurately removed by optimal trans-
142 pOI’t

143 In Fig. , we performed a (Gaussian) kernel principal component analysis on the controls from the
144 HEMA data set to illustrate the impact of the change in library preparation kit on the coverage profiles.
145 The two control sets belong to domains D7 and Dg from Table @ respectively. It appears immediately
146 that LOWESS GC-correction is not sufficient for superimposing the two panels of controls. Center-and-
147 scale standardisation and optimal transport both succeed in that respect, which is expected since these
148 two methods have been designed to explicitly correct data sets. Conversely, GC-correction alleviates
149 GC-content biases at the level of individual samples only.

150 For each 1 Mb bin, we ran a Two-sample Kolmogorov-Smirnov test (two-sided) to quantify the
151 differences in normalised read counts between the two panels from domains D7 and Dsg, and reported
152 the distribution of per-bin p-values in Fig. [IB, both in linear and log scales. While center-and-scale
153 standardisation and optimal transport show similar distributions, the latter contains a median p-value
154 close to 0.5 and a more uniform distribution. Such property is desirable since p-values are expected to be
155 uniformly distributed under the null hypothesis and some other conditions [51]. Indeed, a distribution
156 shifted leftward indicates the presence of confounders responsible for some discrepancy between the two
157 distributions, as shown both in the absence of correction or with GC-correction. Inversely, a rightward-
158 shifted distribution illustrates overcorrection, as suggested for center-and-scale standardisation. This
159 shift can however also occur for biological reasons, for example when the samples in the first domain are
160 replicates of the samples from the second domain.

161 In Fig. 7 we reported the z-scores of each sample and bin all together in a single scatter plot, before
162 and after correction. We observe a good consistency between the GC-corrected normalised read counts
163 and the OT-adapted ones, supported by a Pearson correlation coefficient of 0.98. This result suggest that
164 our DA method does not appear to be overcorrecting the normalised read counts. We however observe
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Figure 1: Correction of the healthy samples from the HEMA data set.
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(A) Kernel principal

component analysis of coverage profiles from the two control cohorts (haematological cancer data set). (B)
Two-sample Kolmogorov-Smirnov testing, for each bin, of the difference between the two cohorts. p-values
are shown in both linear and log scales. (C) z-scores of the coverage profiles before and after GC-correction
and domain adaptation. (D) Histogram depicting, for each patient of the target domain, the number of
patients in the source domain for which the transport plan shows a relationship.


https://doi.org/10.1101/2024.04.04.588204
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.04.588204; this version posted April 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

165 a very small subset of the bins around 0 for which our method seems to overcorrect the normalised read
166 counts. These bins are located in low-mappability regions, and we suggest that our method is correcting
167 in these few regions relatively more due to the lack of information (the z-scores between these bins and
168 the flanking bins are either not consistent, or mostly made of zeroes). These distortions are irrespective to
169 the original sequencing depth, as the coverage profiles have been normalised. Given the lack of reliability
170 of the original data in these bins (mostly zero counts), we suggest that the information loss is residual
7 compared to high-mappability regions. Let’s note that it is usually advised in the literature to disregard
172 these bins before performing further analysis.

173 Finally, Fig. reports the number of non-zero entries in the final transport plan I' inferred by our
174 model, for each patient of domains D7 (green bars) and Ds (golden bars). Without the use of entropic
175 regularisation on Wasserstein distance, the model naturally assigns each control from the source domain
176 to multiple controls from the target domain, thus reflecting the underlying complexity of the biological
177 processes that generate the read counts. These peculiarities are implicitly acknowledged by our model,
178 by not enforcing the patients to be assigned in pairs.

179 We conducted similar analyses on the OV and NIPT data sets and obtained slightly different results
180 due to the smaller numbers of samples. In particular, visualisation based on kernel PCA show that
181 the corrected cohorts are still not centered one onto the other. Indeed, since our convergence criterion
182 builds on statistical tests, our algorithm is designed to halt earlier, due to p-values being higher when the
183 number of samples is low. This mechanism prevents overcorrection when the available data is insufficient
184 for accurate bias estimation. Also, histograms on the entries of the transport plans showed that each
185 patient from the source was mapped on exactly one patient from the target domain, which met our
186 expectations on these two data sets due to the way domains have been defined (samples were paired).
187 Results have been reported in Suppl. Fig. 2-8.

128 2.2 Patient-to-patient mapping is accurate when the cohorts are rep-
169 resentative of the exact same population

190 While our method is effectively capable of superimposing patients cohorts there is no a priori guarantee,
191 besides theoretical considerations, that the coverage profiles are being corrected in the right direction.
192 For this purpose, we considered 64 biological samples with ovarian carcinoma that have been processed
193 with both Illumina HiSeq 2500 and HiSeq 4000 sequencing platforms. The two cohorts belong to domains
194 Do and Dy from Table[6] respectively. In this section, we applied our domain adaptation technique on
195 these two cohorts to see whether the bias removal is decreasing the distance between profiles originating
196 from the same biological sample. Indeed, paired profiles are expected to overlap when the biological
197 variation overcomes technical biases. By design, the cohorts consisted of the same patients, therefore
198 we not only tested our algorithm with default hyper-parameters (noted as “default” in the table), but
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Table 1: Performance assessment using paired samples from the OV data set. Accuracy obtained
after data correction, when assigning a sample from target domain to the closest sample in source domain,
and using the Euclidean metric. In the first column, samples from domain Dy have been corrected toward
D1g, and vice versa.

Correctly identified pairs

Method Dy — Do D1o — Dy

No correction 17 / 64 14 / 64

Center-and-scale 20 / 64 27 / 64

GC-correction 23 / 64 30 / 64

Optimal transport (default) 24 / 64 31 /64

Optimal transport (A = 0) 47 / 64 48 / 64

Optimal transport (T') 51 / 64 50 / 64
199 also without regularisation or early stopping criterion (“A = 0”), and using the transport plan directly
200 to assign pairs and compute accuracy. The purpose was mostly to test the assignment of patients and
201 assess whether OT can map each sample to its correct counterpart.
202 In Table[I} we compared our correction method with the GC-correction approach, as well as center-
203 and-scale standardisation. Because domain adaptation and estimation of accuracy can be done in two
204 ways (as there are two domains), we reported both settings as separate columns in the table. While
205 center-and-scale standardisation and GC-correction fails at pairing the samples with more than 50%
206 accuracy, we observed a sharp improvement in accuracy with our domain adaptation approach when
207 disabling regularisation. Without correction, only 17 and 14 profiles were correctly assigned to their
208 counterpart in the source domain. GC-correction enabled the correct assignment of 23 and 30 patients,
200 while our domain adaptation approach allowed the correct mapping of 47 and 48 patients when \ = 0.
210 In Table|2] we report the same metric on the NIPT data set, where 563 patients have been sequenced
211 twice with different protocols. This data set has been divided in 6 validation groups and each group
212 divided in 2 domains (see table @ Each group was designed to control for exactly one preanalytical
213 variable. As an example, the Di,, and D;; domains differ by their library preparation kits, namely
214 TruSeq Nano and Kapa HyperPrep kits. We repeated the experiment done in previous section on each
215 of these groups and reported accuracy in In Table 2] We can observe that our approach drastically
216 improves over standard methods for all groups. In particular, the transport plan I' inferred by our
217 method perfectly identified the sample pairs for all 6 groups except the TruSeq Nano/Kapa HyperPrep
218 and Kapa/IDT groups, while still improving accuracy by a large margin compared to GC-correction.
219 These results suggest that OT is a suitable framework for estimating patient-to-patient similarities, even
220 in the presence of a limited number of samples (i.e., 45).
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Table 2: Performance assessment using paired samples from the NIPT data set. Accuracy obtained
after data correction, when assigning a sample from target domain to the closest sample in source domain
and using the Euclidean metric, on each of the 6 validation groups. Each validation group was designed to
control for one preanalytical variable at a time.

Optimal transport

Preanalytical variable ~Comparison No correction  Center-and-scale ~GC-correction A = 0.5 A=0 T
Lib. prep. kit TruSeq Nano/Kapa HyperPrep (D1,,/D1 ) 2 /66 28 / 66 28 / 66 44 / 66 58 / 66 64 / 66
Adapters Kapa/IDT (Ds,4/Da2) 15 /179 32 /179 96 / 179 98 /179 151 /179 157 / 179
Sequencer HiSeq2000/NovaSeq (D3,q/D3,) 1/45 38 /45 19 / 45 29 /45 45 / 45 45 / 45
Sequencer HiSeq2500/NovaSeq (Dy,q/Dap) 2 /45 43 / 45 40 / 45 43 /45 45 /45 45 / 45
Sequencer HiSeq4000/NovaSeq (Ds,q/Ds ) 5/93 86 / 93 75 /93 78 /93 93 /93 93 /93
NovaSeq Chemistry ~ V1/V1.5 (Dg./De.) 12 /135 60 / 135 82/135  89/135 135/135 135 /135

Table 3: Haematological cancer detection using supervised approaches. Sensitivity, specificity,
Matthews correction coefficient (MCC), AUROC and AUPR obtained through validation of 3 supervised
models. These models have been successively trained to distinguish Hodgkin lymphoma, DLBCL and mul-
tiple myeloma cases from healthy controls. Sensitivity, specificity and MCC were computed using the cutoff
that maximises MCC.

Supervised model Logistic regression Random forest Support vector machine

Metric Sen. Spec. MCC AUROC AUPR Sen. Spec. MCC AUROC AUPR Sen. Spec. MCC AUROC AUPR
Hodgkin lymphoma

No correction 95.0 % 97.1 % 922 % 98.2 % 98.3 % 76.0 % 97.5 % 76.9 % 93.3 % 93.4 % 95.5 % 86.0 % 80.6 % 96.3 % 95.4 %
Center-and-scale 96.1 % 94.6 % 904 %  983%  983% 89.9% 89.3 % 88%  95.0% 941% 927% 888% 809% 95.1% 938 %
GC correction 92.7%  99.2%  928%  987% 988% 8T7T% 97.5% 8.5% 97.0% 971% 961 % 95.9% 91.8% 98.7% 98.6%
Optimal transport ~ 96.6 %  97.1% 93.7% 98.9% 99.0% 922% 97.1% 89.8% 97.8% 979% 944% 97.5% 92.2% 986% 983 %
DLBCL

No correction 7% 996 % 836% 928% 86.1% 324% 99.2% 491% 842% 562% 784% 97T5% TTT%  955% 8.9%
Center-and-scale 86.5 % 98.8 % 873% 96.6% 928% 649% 97.5 % 683% 941% 790% 89.2% 959% T99% 968 % 842 %
GC correction 81.1 % 98.3 % 823% 964 % 81.T% 676 % 97.9 % 7% 915%  786% 184% 99.2% 83.7% 974 % 8.0%

Optimal transport 946 % 983% 909 % 979 % 944 % T3.0% 983% TT.0% 946 % 86.0% 89.2% 975% 848 % 96.7% 881 %

Multiple myeloma

No correction 90.9 % 99.6 % 924 % 98.0 % 921 % 63.6 % 98.8 % 70.3 % 91.0 % 706 % 63.6% 96.7% 60.3% 93.7 % 62.4 %
Center-and-scale 72.7 % 99.6 % 81.4 % 97.3 % 89.4%  63.6% 98.3 % 68.0 % 93.3 % 64.6 % 591 % 975 %  60.5% 93.6 % 63.1 %
GC correction 90.9 % 100.0 %  95.0 % 99.2 % 96.7% 77.3% 100.0 % 87.0 % 95.5 % 894% 81.8% 97.9% T782% 97.4 % 83.6 %

Optimal transport 95.5 % 100.0 % 97.5% 99.7% 98.0% 86.4% 996% 89.8% 96.1% 91.6% 95.5% 959% 784 % 983% 85.7T%

2 2.3 Optimal transport disentangles cancer signals from non-biological
2 sources of variation

223 We further tested the applicability of our method to the detection of haematological cancer and investi-
224 gated whether data correction preserves the signals of interest (i.e., cancer). For this purpose, we trained
225 simple Machine Learning models using the scikit-learn [52] Python library. The HEMA data set is
226 composed of 179 cases of Hodgkin lymphoma, 22 of multiple myeloma and 37 of diffuse large B-cell
227 lymphoma at different stages, as well as two control sets of size 242 and 257 respectively. The cancer
228 samples as well as the healthy cohort from D7 have been processed with the TruSeq ChIP kit (Illumina),
229 while the second healthy set from Ds has been prepared with the TruSeq Nano kit (Illumina). TruSeq
230 Nano samples have been corrected to match the distribution of the TruSeq ChIP controls and validation
231 was performed on the TruSeq ChIP cases and controls. As explained in the Methods section and as
232 illustrated in Fig. [6D, corrected samples were used only for training, to avoid overoptimistic estimation
233 of sensitivity and specificity resulting from controls being accidentally shifted away from the cancer cases.
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Table 4: Ovarian carcinoma detection using supervised approaches. Sensitivity, specificity,
Matthews correction coefficient (MCC), AUROC and AUPR obtained through validation of 3 supervised
models. These models have been trained to distinguish ovarian carcinoma cases from healthy individuals.
Sensitivity, specificity and MCC were computed using the cutoff that maximises MCC.

Supervised model Logistic regression Random forest, Support vector machine

Metric Sen. Spec. MCC AUROC AUPR Sen. Spec. MCC AUROC AUPR Sen. Spec. MCC  AUROC AUPR
Dy — Dig

No correction 59.9 % 80.7 % 334 % 67.2 % 92.9 % 505 % 81.3% 26.0% 59.6 % 90.5 % 575% 879 % 345% 68.4 % 93.5 %
Centering-scaling 573% 819% 32.7% 65.7 % 92.7% 61.5% 652% 287 % 58.4 % 89.8%  64.8% 5.5% 351 % 67.8 % 93.2 %
GC correction 60.1 % 794% 33.0% 68.0 % 932 % 64.7% T120% 321 % 67.0 % 927% 621% 804% 333% 68.8 % 93.5 %
Optimal transport 585 % 86.6 % 354 % 705% 94.0% 755% 649% 380% 708% 93.7% 71.4% 741% 40.0% 73.7% 945 %
Dio — Dy

No correction 77.0%  703% 433 % 775 % 934 % 786% T175% 51.0% 83.0% 95.5% 758% 814% 504% 825% 955%
Centering-scaling 7.9 % 70.6 % 44.5 % 775 % 93.5 % 731 % 84.0 % 49.0 % 82.1 % 95.3 % 721 % 86.8 % 49.9 % 81.9 % 95.4 %
GC correction 82.2% 68.0% 473 % 80.3 % 944 % 674% 90.6% 484 % 80.0 % 95.0% 70.7% 86.7% 484 % 81.0 % 95.2 %

Optimal transport  79.4 % 78.5 % 52.0% 833 % 95.7% 649% 93.4% 47.0% 788% 947% 699% 91.6 % 50.7% 825 % 95.7%

234 In Table we reported the performance of binary prediction of haematological cancers, namely
235 Hodgkin lymphoma (HL), diffuse large B-cell lymphoma (DLBCL) and multiple myeloma (MM). Eval-
236 uation metrics have been estimated using fivefold cross-validation. Only samples from the training set
237 have been corrected by our method, so as to avoid any data contamination between the training and
238 validation set (see Methods). Sensitivity, specificity and MCC were determined based on the cutoff that
239 produced the highest MCCs. As can be observed, data correction with our domain adaptation approach
240 almost systematically improves cancer detection in terms of MCC, AUROC and AUPR, either through
241 an increase in sensitivity, specificity, or both. In particular, it produced the best MCC in all of the nine
242 settings (3 models x 3 pathologies), the best AUPR in 8 settings and the best AUROC in 7 settings.
243 Strikingly, it outperformed GC-correction by 8.6% and 5.3% in MCC for DLBCL prediction with logistic
244 regression and random forest, respectively.

25 Analogous results obtained on the OV data set have been reported in Table [l Because the ovarian
26 data set contains cases and controls from both domains, we could perform our validation in both directions
247 (adapting samples from Dy to D1o and assessing performance on remaining samples from D1, and vice
248 versa), corresponding to the top and bottom parts of Table The proposed method systematically
249 produced an improvement in MCC and AUPR in all three settings and improved AUROC in two out of
250 the three settings. In particular, we noticed gains of 2.8%, 6.8% and 8.8% in MCC, respectively. In light
251 of these results, we showed the ability of our method to disentangle sources of variation of biological and
252 technical origins. Indeed, the supervised Machine Learning approaches for cancer detection benefited
253 from the improvement in data quality resulting from domain adaptation, yielding better generalization
254 and validation accuracy. Although these AUROC scores are far from being clinically relevant, they must
255 be contextualized. First, we evaluated our predictive models in an artificially difficult setting where
256 newly-collected samples have been processed with a different technology, while wet-lab protocols should
257 be standardised in clinical settings. Second, cancer cohorts include many low-grade and borderline cases,
258 which are most likely chromosomally stable and therefore may be overlooked by our CNA-based approach.
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Table 5: Quantitative assessment of the consistency of CNA calling. ichorCNA results on ovarian
carcinoma cases from Dy using the panel of controls from Dy, compared to the same cases corrected (Dg —
D1o) by each method and using the panel of controls from D;g. Metrics in the upper part of the table focus
on per-bin metrics, namely the copy number in each bin, the presence of a CNA (copy number # 2) in each
bin, the SOV_REFINE [55] score and the log-ratios. We used the SOV_REFINE segmentation metric to
measure the overlap between called CNAs. The metrics in the bottom section of the table are the average
absolute errors on different model parameters estimated by ichorCNA.

Metric No correction center-and-scale standardisation oT
Accuracy (copy number) 71.3 % 395% 73.4%
Accuracy (presence of CNA) 76.8 % 532 % 78.7 %
SOV_REFINE (copy number) 0.7401 0.5218  0.7552
Error on log-ratios 0.0083 0.1164 0.0070
Error on tumour fraction 0.0045 0.0197  0.0042
Error on tumour ploidy 0.0880 0.2293 0.0836
Error on tumour cellular prevalence 0.0888 0.1209 0.0866
Error on proportion of subclonal CNAs 0.1366 0.1414 0.1268

2.4 Optimal transport preserves copy number aberrations across do-
mains

As we are fully aware of the overfitting risks associated with our model, we made sure the adapted
samples were consistent with the original data by verifying whether the CNAs of each patient were
conserved. For this purpose, clonal and subclonal CNAs were called using the ichorCNA v0.2.0 R
package (details in Suppl. Mat. 2) and we benchmarked our method on the entire OV data set. Indeed,
our domain adaptation method provides adjusted profiles that are transparently interpretable and are
directly comparable across domains, allowing their comparison in terms of read counts before and after
correction.

Let us denote by Dy and D1 the wet labs from which the samples originate (see Table@, respectively
[63] and [54]. We first built a panel of controls (reference set) using the 79 controls from domain Dy and
called CNAs in cancer cases from Dg. Then, we built a panel of controls using the 39 controls from Dio
and called CNAs in the same cancer cases from Dy, after adapting them with our proposed approach to
match the distribution of cancer cases in Dig. Finally, we quantified the similarity of ichorCNA results
using different metrics, as shown in Table Because ichorCNA performs GC-correction “under the
hood”, we did not include GC-correction in the benchmark, as it would produce results highly similar to
the baseline. Also, in the case of center-and-scale standardisation we enforced positivity by clipping the
corrected read counts, as negative values cannot be handled by ichorCNA.

Even in the absence of any correction, the per-bin copy numbers estimated for cancer CNAs are not
consistent, as we see that the accuracy and SOV_REFINE measures are far from being perfect. This can

be attributed not only to (1) the difference in protocols used to produce the two panels of normals, but
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280 also (2) the limited number of controls, (3) the fact that the controls differ between the two domains,
281 and (4) the experimental uncertainty (stochastic noise). Overall, both center-and-scale standardisation
282 and optimal transport preserved the original normalised read counts sufficiently since they both provided
283 results similar to the baseline (“no correction”). However, our method improves over center-and-scale
284 standardisation regardless of the evaluation metric. After applying our DA method on the cancer cases,
285 73.4% of the bins were assigned the correct copy number and segmentation of CNAs produced an overlap
286 score of 0.7552. As illustrated in Fig.[2] the copy numbers called by ichorCNA in Dy (panel A) are mostly
287 preserved without (B) or after (D) correction. The least consistent results were produced by center-
288 and-scale standardisation, where some disruptions have been introduced at multiple locations (e.g., some
289 higher copy numbers in chromosome 3).

200 The average absolute error on the estimation of tumour fraction is 0.0042, which is acceptable given
201 the error of 0.0045 in the absence of any correction and the standard deviation of the tumour fraction
202 estimates (0.0464). Despite the limited size of our reference sets and therefore the potentially overpes-
203 simistic assessment of the inconsistencies of ichorCNA’s results, we conclude that most of the CNAs have
204 been preserved and that the proposed method does not disrupt the original data, as a more straightfor-
205 ward standardisation approach would. Since ichorCNA offers the possibility to call CNAs without panels
296 of normals, we ran similar analysis without controls and observed more consistent results between the
207 two domains. We reported these results in Suppl. Tab. 1 and Suppl. Fig. 1.

208 Estimated tumour fractions before and after correction have been reported in Fig. [3] showing good
299 consistency both in the presence (r=0.973, p-value=1.09e-205, two-sided test) or the absence (r=0.980,
300 p-value=1.77e-224) of the D1¢ panel of controls.

301 2.5 Preanalytical variables are mostly discrete

302 A major limitation of our approach is its inherent restriction to discrete settings, where the technical
303 counfounder is acting as a dummy variable and reflects whether some technology as been used to produce
304 a sample or not. However, to the best of our knowledge there is no continuous preanalytical variable in
305 whole-genome sequencing that induces gradual changes in the normalised read counts and in our data
306 sets. A potential exception is the plasma separation delay, measured as the time elapsing between the
307 blood draw and the separation of the plasma from the buffy coat. We tested Pearson and Spearman
308 correlation for each 1 Mb genome bin on the HEMA data set, using a significance level of 0.01 and
300 applying the Benjamini-Hochberg procedure to account for multiple testing. As shown in Fig. @B, no bin
310 was found to be significantly correlated with the plasma separation delay. The normalised reads counts
311 of the NIPT samples in the first 1 Mb bin of chromosome 6 (bin showing highest correlation with plasma
312 separation delay) are shown in fig. .
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Figure 2: Qualitative assessment of the consistency of CNA calling. Comparison of the CNAs called
by ichorCNA on a late stage ovarian carcinoma case from Dy, before and after domain adaptation. Green
and red colouring correspond to deletions and gains, respectively. (A) Using Dy controls. (B) Using Dig
controls. (C) Dy cancer cases (including the case shown) centered-and-scaled toward Dj¢ and analysed with
Do controls. (D) Dy cancer cases OT-corrected toward D, analysed with Dpg controls.
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Figure 3: Tumour fractions before and after domain adaptation. Fractions have been estimated with
ichorCNA before and after adapting the Dg ovarian carcinoma cases toward the Dy cases. Results have been
produced both with (Left) and without (Right) the panel of controls from domain D;g. Fractions are shown
in log-scale.
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2.6 GC-correction is not sufficient to decorrelate read counts from GC-
content

In Figure [l we showed that GC-correction did not help in reducing the dissimilarity between the two
control sets from the HEMA data set. We also reported similar results on the two other data sets in
Suppl. Mat. 3. While GC-correction succeeds at reducing the individual variability (experimental vari-
ance) of samples as shown by the improved accuracy in Tables 1| and [2] it fails at alleviating the biases
introduced by changes in sequencer or library preparation method. Indeed, while this approach improves
cancer detection on average by removing technical variations based on GC-content, it does not system-
atically produces performance gains, does not efficiently capture similarities between profiles originating
from the same biological sample and does not completely remove the clustering effects introduced by the
changes in the sequencing methodology. By contrast, our method showed that these expectations can
be met through the modelling of patient-to-patient similarities and explicit constraining of the samples
based on quantiles. Indeed, these latter constraints drastically lower the risks of overfitting and ensure
that the mapping between the cohorts is performed in a biologically meaningful manner.

In Figure [5] we reported the two-sample Kolmogorov-Smirnov p-values from Figure as a function
of the GC-content, as well as the median p-value per 0.5% GC stratum. Normalised read counts (top
left panel) exhibited strong relationship between median p-values and GC-content, demonstrating that

regions with low and high GC-content are the most biased by the change from the KAPA HyperPrep to the
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Figure 4: Effect of plasma separation delay on coverage profiles. (A) GC-corrected normalised read
counts of all samples from the NIPT data set for a specific bin (first 1 Mb bin from chromosome 6), namely
the one giving the strongest linear correlation with the plasma separation delay (Pearson’s r=0.1838, p-
value=1.38e-5, two-sided test). (B) Distribution of the p-values computed likewise for each 1 Mb bin, and
reported as a histogram. Histogram is shown in log-scale.
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Figure 5: Coverage difference between domains as a function of GC-content. Two-sample
Kolmogorov-Smirnov testing, for each 1 Mb bin, of the difference between the two control sets from the
HEMA data set processed with different library preparation kits. p-values are shown in log-scale, as a func-
tion of the GC-content of each bin. Dashed line corresponds to a 0.5 p-value and black markers to the median
p-values per 0.5% GC stratum.

TruSeq ChIP library preparation kit. While center-and-scale standardisation is capable of centering these
p-values around 0.5 (which is expected under the null hypothesis since p-values are uniformly distributed
in the [0, 1] interval), we observed the same trend. GC-correction drastically improved in that respect, as
no clear correlation can be observed. However, the median p-value still varies from stratum to stratum,
suggesting that some subtle and nonlinear GC biases remained. Finally, our proposed approach produced
the most consistent results across the GC-content values, showing that it more effectively alleviated these

residual biases.

2.7 Domain expertise is the best regularisation

There are multiple mechanisms put in place within our model to constrain it to infer a matrix X that is
as meaningful as possible, namely the quantile-based regularisation function, the positivity constraint on
the read counts, the median normalisation and GC correction. While these constraints are not guarantees
of performance per se, they restrict the size of the search space drastically, eliminating a large proportion
of irrelevant solutions. While our method was originally designed for correcting normalised read counts
with the detection of CNAs in mind, it remains sufficiently generic to be applied to any (whole-)genome
sequencing or array-based data set. Indeed, the only requirement is the representativeness of the cohorts

in all domains. However, the requirements imposed on the data are problem-dependent and heavily
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347 depend on the nature of the data sets. Therefore, from a general perspective, extra care should be given
348 to the assumptions underlying the model. For instance, preserving the quantiles (e.g., z-scores) might not
349 necessarily be desirable, as read counts are heavily subject to noisy fluctuations that should preferably
350 not be transferred from domain to domain.

351 Beyond aforementioned limitations, our findings open new perspectives for the analysis of high-
352 dimensional whole-genome sequencing data and suggest that appropriate modelling of technical con-
353 founders enables the joint analysis of cohorts sequenced at different points in time (changes of sequencing
354 platform, library preparation kit, DNA extraction method) and space (team, hospital, country). Finally,
355 the analysis of larger data sets is expected to strengthen the detection power of statistical models based
356 on cfDNA data and enable the presymptomatic detection of more subtle cancer signals.

357 3 Methods

358 Throughout the paper, we referred to cohort as a set of samples sharing similar high-level characteristics
350 (e.g., a set of healthy controls, a set of pregnant women, a set of ovarian cancer patients) and processed
360 using similar protocols. A domain is a set that can include multiple cohorts, with no regard for the
361 biological state as only the protocol is considered. Finally, a data set can itself include multiple domains,
362 as each data set has been used to assess our method’s ability to correct for biases between the domains
363 contained in this data set.

364 3.1 Clinical data

365 ‘We benchmarked our method on three data sets produced in-house, each used for a different purpose. The
366 peculiarities of each data set have been summarised in Table @ All data sets have a median sequencing
367 coverage between 0.1x and 0.2x.

368 The data sets used in the present work have been collected during studies previously approved by
360 the ethical committee of the University Hospitals Leuven under S/57999, S/62285, S/62795, S/50623,
370 S/56534, S/63240, S/51375, S/55904, S/57144, S/59207, S/64205 and S/64035. Blood samples were
371 collected either into Streck cfDNA BCT or Roche Cell-Free DNA Collection Tubes. cfDNA was extracted
372 using either the QIAamp Circulating Nucleic Acid Kit or the Maxwell automated protocol. Samples were
373 pooled by batches of 20 for multiplex sequencing using all lanes of Illumina flow cells. Each pool was
374 sequenced either on the Illumina HiSeq 2000, HiSeq 2500, HiSeq 4000 or NovaSeq 6000 platform, single-
375 end 1x36bp, 1x50bp or paired-end 2x50bp.

376 The first data set consists of 563 validation samples collected in the context of Non-Invasive Prenatal
377 Testing (NIPT) [56] and processed within the standard NIPT routine twice. These paired samples are
378 divided in 6 validation groups (2 x 6 domains), each used to quantify the distributional shift introduced
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379 by the change of one preanalytical variable. The libraries of 66 biological samples have been prepared
380 with either the TruSeq Nano DNA Sample Preparation Kit (Illumina) or the KAPA HyperPrep Kit
381 (Roche) with Kapa Dual indexed adapters. 179 samples have been used with either IDT indexes or
382 KAPA Dual indexed adapters. 45 samples have been processed either by the HiSeq 2000 or NovaSeq
383 platform. 45 samples have been processed either by the HiSeq 2500 or NovaSeq platform. 93 samples
384 have been processed either by the HiSeq 4000 or NovaSeq platform. Finally, 135 samples have been
385 processed by a NovaSeq platform, with either V1 or V1.5 chemistry. In total, this results in 2 x 563
386 paired samples. We refer to this first data set as NIPT for short.

387 Our second data set (HEMA) focuses on haematological malignancies and is composed of 179 cases
388 of Hodgkin lymphoma (HL), 37 of diffuse large B-cell lymphoma (DLBCL) and 22 of multiple myeloma,
389 as well as 498 controls. Among those, 177 HL cases and 260 controls have been published in a previous
390 study [57] and the entirety of the haematological cancer cases have been included in one of our studies
301 (GipXplore [53]). The libraries of 242 out of the 499 controls have been prepared with the same kit as
302 the haematological cancer cases, namely the TruSeq ChIP Library Preparation Kit (Illumina) [4]. The
303 remaining ones have been prepared with the TruSeq Nano kit.

304 Finally, we further validated our OT-based bias removal approach with controls and ovarian carcinoma
395 cases sequenced by two different teams [54] including ours. These samples were not derived from cancer
396 patients with overt clinical disease, but rather the presence of a suspicious malignancy based on imaging.
397 We refer to this last data set simply as OV. Protocols vary in multiple ways. As an example, all of the
308 samples in Dy (see Table @ have been processed with HiSeq 2500, while all samples in domain Dig have
399 been sequenced by an instrument that differed from HiSeq 2500. Samples from Dy and Dip have been
400 prepared with the KAPA HyperPrep and KAPA DNA library preparation kits, respectively. Ovarian
401 carcinoma samples from Do have been manually extracted with the QIAamp CAN kit. Let’s note that
402 Dy does not strictly stick to our definition of domain. Despite the heterogeneity caused by the presence
403 of multiple sequencers, we artificially grouped the samples in order to simplify the comparison between
404 laboratories but also better reflect the heterogeneity expected to be encountered in Big Data settings.
205 3.2 Data preprocessing

406 Reads were first aligned to the reference genome hg38 using the Burrows-Wheeler aligner [58], only
407 considering the 22 autosomes. Then, read duplicates were removed with Picard tools [59] and remaining
408 ones were recalibrated with the Genome Analysis Toolkit [60]. Finally, reads were counted in predefined
409 bins of size 1 Mb. Such size offers a good tradeoff between noise reduction and the granularity of
410 achievable chromosomal aberration detection. Finally, counts were normalised by dividing by the median
411 count per Mb of the whole profile to correct for the effective sequencing depth.
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Table 6: Summary of the data sets used in this study. Samples in sets marked with a '+’ have been
processed twice, allowing quantitative assessment of the different biases caused by the changes of sequencing
protocols. Domains have been defined based on our experiments, as well as the protocol differences shown

in the table. For clarity purposes, we systematically refer to these domains in the results section.

Data set  Condition/Setting Domain Size Library preparation kit Index type Sequencer
NIPT Pregnancy (kit validation) Di,a 9 % 66* 66 TruSeq Nano TruSeq Nano HiSeq 4000
D1y 66 Kapa HyperPrep Kapa dual HiSeq 4000
Pregnancy (adapter validation) Dia 9% 179*{ 179 Kapa HyperPrep IDT HiSeq 4000
Doy 179 Kapa HyperPrep Kapa dual HiSeq 4000
Pregnancy (sequencer validation) Ds, 9 % 45" 45 Kapa HyperPrep Kapa dual HiSeq 2000
D3y 45 Kapa HyperPrep Kapa dual NovaSeq
Diq 9 % 45" 45 Kapa HyperPrep Kapa dual HiSeq 2500
Dayp 45  Kapa HyperPrep Kapa dual NovaSeq
Ds.q 9 % 93* 93 Kapa HyperPrep Kapa dual HiSeq 4000
D5y 93 Kapa HyperPrep IDT NovaSeq
Pregnancy (chemistry validation) Dg g, 9 x 135*{ 135 Kapa HyperPrep DT NovaSeq (V1)
Do 135 Kapa HyperPrep DT NovaSeq (V1.5)
HEMA  Hodgkin lymphoma Dy 179  TruSeq ChIP - HiSeq 2000/2500
Diffuse large B-cell lymphoma D7 37 TruSeq ChIP - HiSeq 2000/2500
Multiple myeloma Dy 22 TruSeq ChIP - HiSeq 2000/2500
Healthy Dy 242 TruSeq ChIP - HiSeq 2000/2500
Healthy Dg 257 TruSeq Nano - HiSeq 2000/2500
oV Ovarian carcinoma Dy 223 KAPA HyperPrep IDT HiSeq 4000
32  KAPA HyperPrep - HiSeq 4000
1 KAPA HyperPrep - HiSeq 2000
61 KAPA HyperPrep - HiSeq 4000
64* 2 KAPA HyperPrep - NovaSeq V1
1 KAPA HyperPrep - HiSeq 2000
Ovarian carcinoma Do 64*4 64 KAPA DNA lib. prep. - HiSeq 2500
156 KAPA DNA lib. prep. - HiSeq 2500
Healthy Dy 79 KAPA HyperPrep IDT HiSeq 4000
Healthy Dio 39 KAPA DNA lib. prep. - HiSeq 2500
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a2 3.3 GC-content bias correction

413 We performed GC-correction by dividing normalised read counts by their estimate according to a Lo-
414 cally Weighted Scatterplot Smoothing (LOWESS) model [61], where the exogenous variable is the GC-
415 content of the bin, and the endogenous variable is the corresponding normalised read count. 30% of
416 the data points (bins) have been used to predict the endogenous variable. We used the Python package
a7 statsmodels v0.12.2 [62] to implement the LOWESS correction. We also designed a differential version
418 of GC-correction that is PyTorch-compliant and used by our DA method to ensure that the reads counts
419 of adapted cohorts do not correlate with GC-content. More details are provided in Suppl. Mat. 1.

20 3.4 Center-and-scale standardisation

We benchmarked our method against a more straightforward approach, consisting in the standardisation
of each cohort or data set separately. This approach ensures that the z-scores are centered in all domains
and allows comparability as long as each cohort is representative of the population. For each 1Mb bin,

we centered and scaled the normalised read counts as follows:

5 Xir — (X ok

K- T, M)
a1 where p(X.;) is the median of normalised read counts within bin k across all samples from the same
22 cohort and o(X.;) the square root of the average squared deviation from this median. The median has
423 been used in place of the mean for robustness against outliers, such as profiles with aberrant CNAs. We
424 refer to this method as center-and-scale standardisation throughout the manuscript.
a5 3.5 Domain adaptation using optimal transport
426 We defined the best correction function as the one that minimises statistical dissimilarity metric between
427 two cohorts. Given the multivariate nature of the problem and the strong mathematical foundations
428 behind optimal transport, we propose to use the Wasserstein distance to quantify the discrepancy between
429 data sets.
430 The general principle of OT is to match two probability distributions by transporting the probability
431 mass of one distribution into the other with minimal effort (hence the name optimal transport). Dis-
432 tributions that can be transported into each other at a low cost are considered highly similar. In the
433 case of discrete samples, OT amounts to finding a discrete probabilistic mapping (called the transport
434 plan) of the source samples onto the target samples where the mapping of a source sample to a target
435 sample bears some associated cost. We consider thus two data matrices X € R}*? and Y € R"™?, as
436 illustrated by the normalised read counts matrices in Fig. [JA, where n and m are the sample sizes of
437 the each domain and ¢ is the number of predefined bins. As samples are all assumed to be of equal im-
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Figure 6: Illustrative summary of our methods. (A) Given two cohorts of ¢fDNA samples differing by
the sequencing pipeline that processed them, the model corrects the second cohort to match the distribution
of the first one. After correction, the cost matrix for our OT problem is given by the pairwise Euclidean
distances. (B) The solution of the OT problem, named transport plan, assigns patients from Domain 2 to
similar patients in Domain 1. The model parameters are found by minimising the Wasserstein distance, as
defined by the cost matrix and transport plan. (C) After inference, the two cohorts are merged and ready
for downstream analysis. (D) Depiction of the validation procedure used for the purpose of this study.
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portance, we choose uniform probabilistic weights v; = 1/n,Vi and u; = 1/m,Vj to define a probability
distribution on these discrete samples (assuming no two samples can be identical). We also consider the
associated pairwise Euclidean distance matrix C € Rixm. For normalised read counts, the matrix Y
is first GC-corrected. The matrix X will be GC-corrected during OT, as part of a joint optimisation
process. The reason for not correcting X upfront is that OT might artificially introduce correlations
with GC-content a posteriori. Instead, we implemented median-normalisation and GC-correction as a
differentiable function f (see Suppl. Mat. 1).

The Wasserstein distance is defined, in its discrete form, by

n

m 1/p

i=1 j=1
s.t. Z Iij = v, Vi,
i=1 (2)
Z FZ] = Mj, Vj7
i=1
Ii; >0, Vi, 7.

Matrix T, usually referred to as the transport plan and depicted in Fig. [(B, can be interpreted as the
amount of probability mass transferred from points of the source domain to the target domain through
optimal transport. In particular, I';; is the probability mass transferred from point ¢ in the source domain
to point j in the target domain. Such interpretation allows us to use I' as a pairwise similarity matrix
and express the domain adaptation problem as a multivariate regression problem. By choosing p = 2
and the Euclidean metric as function d, as well as by accounting for the reduction of variance caused by
Gamma, and attaching equal importance to the bins (see details in Suppl. Mat. 1.2), the optimisation

problem becomes

2
. I e=- 1 o ,
i 23730 (@ zy)

i=1 k=1

+ AR(X),

k=1 0(Yk) ®3)
iy U(Z;‘n:1 L5Yjk)’

Vi = a@) (Ve — n(Yir) + p(Yr),

st. o) =

I'e F,
where «(T") is the variance correction factor, R(X) is a regularisation term, and X is the associated
regularisation hyper-parameter.
The output of our algorithm is matrix X', which we interpret as the surrogate of X in the target

domain.
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419 3.5.1 Regularisation function

450 While the Wasserstein distance is often supplemented with a regularisation term based on the entropy
451 of ' [63], we noticed that entropic regularisation tends to reduce the variance of the adapted samples,
452 ultimately collapsing them onto their centroid. This is not a desirable property because in actual high-
453 dimensional data the curse of dimensionality will naturally keep data points distant from each other in
454 the presence of noise. This creates an obstacle to the idea of mapping a source sample to the “closest”
455 target samples. Therefore, we do not regularise the Wasserstein distance based on entropy. Instead,
456 we propose a more informative approach where the deviations (e.g., chromosome gains or deletions) of
457 samples X from some reference should be preserved throughout the whole adaptation process.

The regularisation function is defined as a mean squared error function:

1 1 A\ 2
R(X) = an;;afz (Szk Szk)
I e 1 L\ 2
+ % ;I; ;2 (Tzk le) )
Site = [(X)ir — p(f(X)x)s (4)

gik = f(X)zk - N([Y§ f(X)]k)v
Tik = Yl - :U'(Yk‘)7

Tire = Yir = p([Y5 f(X)]8),

458 where f(X) is our differentiable GC-correction function, applied independently on each row of X. For a
459 more robust estimation, we computed ©(X.x) as the median over bin k (rather than the mean). We used
460 the MATLAB notation [Y; f(X)] to denote the vertical concatenation of matrices Y and f(X) (resulting
461 in a matrix of dimension (n + m) X ¢). This regularisation function is meant to preserve the quantiles
462 (akin to the z-scores) across the two domains. In particular, the first term enforces the consistency of
163 the samples from the source domain, while the second term operates similarly on the samples from the
464 target domain.

265 3.5.2 Overfitting and stopping criterion

466 Since our inference process is iterative, a convergence criterion is required in order to end it and limit
467 overcorrection risks. Since our goal is to merge cohorts in such a way that they appear to be drawn from
468 the same distribution, we performed per-bin statistical tests. At each iteration, a p-value is computed
469 based on the two-sample Kolmogorov-Smirnov test for each 1 Mb genome bin. Because p-values are
470 randomly and possibly uniformly distributed under the null hypothesis [5I] (that the two cohorts are
a7 representative of the same population), we assumed that the median of these p-values should be close to
a2 0.5. In practice, we interrupt the optimisation process as soon as the median p-value exceeds this cutoff.
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473 The convergence and its speed are to a large extent impacted by the regularisation rate A, which
474 needs to be picked carefully. When picking p = 1 and choosing the squared Euclidean distance as
a7 function d, then W, (C) and R(X') are both average squared error functions and expected to have similar
476 orders of magnitude after convergence. For this reason, a reasonable a priori choice for A would be 1.
477 However, we observed that this default value results in many situations where the model never satisfies
478 the convergence criterion and ends up with a low median p-value (e.g., 0.25), despite a large number of
479 iterations (> 1000). In many other situations, the model rapidly converges but introduces disruptions in
480 the data, resulting in drastic information loss. Therefore, we chose to make A adaptive and lower it every
481 e iterations until the convergence criterion is met. Our motivation is to use the largest value for A (to
482 preserve the original data to the best extent possible) while ensuring that the two data distributions are
483 no longer distinguishable. We arbitrarily chose an initial value Ag = 1000 and reduced A by half every
484 h = 20 iterations. Minimal value of A was set to 1 in order to prevent overfitting risks in case where the
485 model fails at reaching the convergence threshold.

486 3.6 Model validation and performance assessment

287 3.6.1 Downstream supervised learning

488 Domain adaptation aims at superimposing the data distributions originating from different domains.
480 While this superimposition can be quantified through clustering metrics or visually assessed using kernel
490 principal component analysis or t-SNE for example, additional validation is required to ensure that the
491 predictive signal for the malignancies of interest has not been removed during the adaptation process. For
492 this purpose, we trained widely used Machine Learning models for the detection of these malignancies
403 before and after adaptation, using default hyperparameters. We trained logistic regressions, random
494 forests and kernel support vector machines using the scikit-learn [52] Python package.

495 However, regular validation approaches, such as k-fold or leave-one-out cross-validation do not suit
496 our setting, as they may show overoptimistic performance because of contamination between the training
497 and the validation set. Indeed, the domain adaptation model should not be exposed to the validation set,
498 since in the presence of overfitting some corrected samples from the training set will resemble samples
499 from the validation set. Therefore, we propose a problem-specific validation method that excludes from
500 the validation set any sample that does not belong to the target domain, as well as any sample that has
501 been seen by the DA algorithm. During validation, adapted samples are only used to train the model and
502 are not allowed to be left out, therefore not contributing to the estimation of performance. The aim is
503 to prevent the supervised models to correctly assign a label (healthy/cancer) to the left-out sample just
504 because the latter has been shifted arbitrarily far away from the real data distribution by the domain
505 adaptation model. Such procedure can be repeated multiple times on random subsets, similarly to k-fold
506 and leave-one-out cross-validation. The subsets generated during our validation procedure are illustrated
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507 in Fig. [6D.

508 Since the HEMA data set contains controls and cases in both domains, the validation has been
500 performed in both directions: mapping samples from first domain to the second one before validating in
510 the second one, and vice versa.

511 Performance of the supervised models for cancer detection was quantified using widely used metrics
512 such as sensitivity, specificity, Area Under the Receiver Operating Characteristic curve (AUROC), Area
513 Under the Precision-Recall curve (AUPR) and the Matthews Correlation Coefficient (MCC).

514 3.6.2 Evaluation of sample-to-sample mapping using paired samples

515 For the cohorts in which biological samples have been sequenced twice, we applied OT and assessed
516 whether the distance between paired samples was indeed lowered by the adaptation process. More
517 specifically we computed accuracy, measured as the percentage of profiles from the target domain correctly
518 assigned to the corresponding profile in the source domain, using the closest profile (according to the
519 Euclidean metric) as predictor. By construction, random counterpart assignment would result in a 1/n
520 accuracy.

521 3.6.3 Downstream copy number aberration analysis

522 Finally, we assessed the ability of the different methods to preserve the copy number aberrations present
523 in the original data. For this purpose, we built a reference set made of the 79 controls from domain Dy
524 (OV data set, see Table@ and called CNAs in the cancer cohort from Dy, same data set. Next, we built a
525 reference set based on the 39 controls from D;¢ and called CNAs in the same cancer cohort from Dy, after
526 applying our tool to adapt them towards Dig. CNA calling was performed with ichorCNA, which would
527 be theoretically expected to produce similar results in the two settings. Therefore, we quantified the
528 agreement between ichorCNA results using accuracy and SOV_REFINE score [55] between the estimated
520 per-bin copy numbers. Also, we computed the average absolute deviations in the parameters inferred by
530 ichorCNA, including tumour fraction or tumour cellular prevalence. Since the tool also proposes to call
531 CNAs in a reference-free fashion, we also conducted the same analysis without the two panels of normals.

= Data availability

533 Haematological cancer cases and healthy controls constituting the HEMA data set are available from
534 ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-10934 as part of
535 the GIPXplore study.

536 Ovarian carcinoma and healthy controls (OV data set) from domain Do of have been previously
537 deposited at the European Genome-phenome Archive (EGA) under study no. EGAS00001005361.
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538 The remaining samples (domain Dy + NIPT dataset) are in-house cohorts.

539 Coverage profiles for all the samples have been compiled and uploaded to FigShare (DOI: 10.6084/m9.figshare.24459304).

500 Code availability

541 Our tool is available as an open source package at https://github.com/AntoinePassemiers/ DAGIP.
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