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Abstract13

Cell-free DNA (cfDNA) is a rich source of biomarkers for various (patho)physiological conditions.14

Recent developments have used Machine Learning on large cfDNA data sets to enhance the detection15

of cancers and immunological diseases. Preanalytical variables, such as the library preparation protocol16

or sequencing platform, are major confounders that influence such data sets and lead to domain shifts17

(i.e., shifts in data distribution as those confounders vary across time or space). Here, we present a18

domain adaptation method that builds on the concept of optimal transport, and explicitly corrects for19

the effect of such preanalytical variables. Our approach can be used to merge cohorts representative of20

the same population but separated by technical biases. Moreover, we also demonstrate that it improves21

cancer detection via Machine Learning by alleviating the sources of variation that are not of biological22

origin. Our method also improves over the widely used GC-content bias correction, both in terms of23

bias removal and cancer signal isolation. These results open perspectives for the downstream analysis of24

larger data sets through the integration of cohorts produced by different sequencing pipelines or collected25

in different centers. Notably, the approach is rather general with the potential for application to many26

other genomic data analysis problems.27
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1 Introduction28

Cell-free DNA (cfDNA) has been identified as a promising source of biomarkers for the detection of fetal29

aneuploidy [1, 2], transplant rejection [3], incipient tumours [4], autoimmune disease [5] or inflammatory30

disease [6]. While cfDNA fragments in healthy individuals primarily originate from the apoptotic release31

of DNA from cells of hematopoietic origin [7], these fragments can also be of tumoural origin in cancer32

patients. While most clinical applications of cfDNA in oncology focus on finding tumour mutations33

(e.g., using a targeted panel of cancer driver variants) [8, 9], a lot of research has been carried out34

around the analysis of coverage and fragmentome profiles. Indeed, the copy number aberrations (CNAs)35

carried by the genome of cancerous cells are detectable by low-coverage whole-genome sequencing and36

downstream analysis of cfDNA from cancer patients [10, 11]. Because cfDNA can be collected in a non-37

or minimally-invasive manner (e.g., blood draw), and thanks to the cost-effectiveness of shallow whole-38

genome sequencing, liquid biopsies are a valuable candidate for population-wide cancer screening [7, 4]39

and diagnosis, and considerable research has been devoted to assessing their clinical utility [12].40

Fragmentomic analysis of cfDNA offers the possibility to improve its use as a sensitive biomarker for41

cancer detection [13, 14], as cfDNA fragments mirror the chromatin accessibility, nucleosome positioning42

and degradation pattern of their tissue of origin [15, 16]. For this reason, CNA calling can be comple-43

mented with fragmentation profile analysis based on fragment length, as well as positional information44

[13, 17, 18, 19]. Indeed, the distribution of cfDNA fragment lengths is shifted downward in circulating45

tumour-derived DNA (ctDNA), supporting signatures of their cellular origin [15, 20].46

Beyond fragmentomics, methylation patterns are indicative of the tissue of origin, and methylation47

signatures have been exploited for sensitive cancer detection and tissue-of-origin identification [21]. Fi-48

nally, recent work has been devoted toward integrating multiple properties of cfDNA within a single49

multimodal analysis approach, including variant calling, CNAs, methylation and fragmentomic profiles,50

as well as other complementary sources of information such as nucleosome-depleted region (NDR) profiles51

[22] or fusion gene detection [23].52

However, the development of reliable models that are predictive of relevant clinical outcomes (for53

example, diagnosis) remains challenging because of the limited number of available cases (especially for54

disorders with smaller incidence rate), the high dimensionality of cfDNA data and the various sources55

of biases related to preanalytical settings. These latter biases mainly arise when protocol changes are56

introduced over time or between different centers. For example, the choice of blood collection tube might57

affect cfDNA concentrations and the prominence of leukocyte DNA [24, 25], which could in turn affect58

the detection of low-frequency variations from cancerous cells. Other preanalytical factors include the59

delay before centrifugation and protocols for plasma separation, and plasma storage conditions [26]. For60

example, two-step centrifugation reduces contamination by genomic DNA thanks to reduced white blood61

cell lysis, compared to one-step centrifugation [27]. Moreover, some DNA extraction platforms, such62

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.04.04.588204doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.04.588204
http://creativecommons.org/licenses/by/4.0/


as Maxwell and QIAsymphony, preferentially isolate short fragments over long ones [28]. The choice of63

library preparation kit directly affects the distribution of read counts, as the polymerase enzymes used64

in these kits have different levels of efficiency in amplifying fragments with low vs. high GC-content [29].65

For instance, some library preparation kits (e.g., Nextera XT) introduce a bias toward low-GC regions66

[30]. Multiplexed sequencing without suitable dual indexing can result in barcode swapping, and the67

swapping rates are platform-dependent (e.g., higher on HiSeqX or 4000 compared to MiSeq) [31]. Index68

swapping mechanism is caused both by multiplex PCR and flow cell chemistry, and is responsible for69

cross-contamination within the same pool [32]. Finally, the choice of sequencing instrument also plays a70

role. For example, different GC-content bias profiles have been reported for Illumina MiSeq and NextSeq71

platforms, compared to PacBio or HiSeq [33].72

In this work, we focus on the bias correction of genome-wide copy-number (i.e., GIPseq [4]) profiles73

based on normalised read counts. The aforementioned preanalytical settings can affect the read counts,74

for example through differential coverage of regions differing by their GC content, thus invalidating direct75

statistical analysis (e.g., using z-scores) of CNA profiles. Moreover, these distributional shifts [34] are not76

properly handled by classical Machine Learning algorithms and are responsible for performance drops77

on test sets. Mitigating these biases is therefore of utmost importance in strengthening biological signals78

and guaranteeing performance on unseen data. Such a task typically falls in the category of domain79

adaptation (DA) [35] problems, where computational methods are needed to compensate for the fact80

that a given model is tested on data drawn from a different distribution than the ones on which it has81

been trained. In this work, we will refer to the samples being corrected as belonging to the source domain,82

while the fixed data lies in the target domain. We restricted ourselves to unsupervised DA, where the83

variable of interest (e.g., whether an individual is affected by a certain condition) is unknown. Such84

annotations are not necessarily available, especially for rarer diseases. Also, already-existing methods85

(GC correction) don’t require such information and are widely applicable, as they can be applied in a86

sample-wise fashion. This is highly relevant due to GC and sequencing biases not only operating at the87

domain-level, but also at the individual level [36]. When multiple source domains coexist, the problem88

is referred to as a domain generalisation problem [37]. Since multiple domain shifts occurred in our data89

sets over time, our own method falls under this category.90

Previous work on the bias correction of copy-number profiles has mostly been directed toward GC-91

content and mappability bias correction. Benjamini and Speed [38] originally categorised these methods92

as single position models, fragmentation models, read models, full-fragment models and global models.93

An example of global model is the widely-used LOESS GC-content bias correction [39, 40], which decor-94

relates the per-bin GC-content percentage from the normalised read counts based on local regressions.95

ichorCNA [41] is a tool for calling CNA from read counts, that internally performs mappability and96

GC-correction in a similar way. BEADS [36] falls into the category of read models, as it re-weights97

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.04.04.588204doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.04.588204
http://creativecommons.org/licenses/by/4.0/


individual reads based on their GC-content before computing their per-bin counts. The single position98

model from Benjamini and Speed [38] relies on the computation of the mean fragment count for each99

GC stratum, by considering all the mappable positions along the genome having similar GC-content.100

Finally, the LIQUORICE algorithm [23] operates at the fragment-level, by computing a coverage weight101

for each position covered by each fragment. More recently, distance learning and k-nearest neighbours102

have been proposed [42] to correct coverage profiles. As opposed to previous work, the latter approach103

exploits information from the whole data set to correct each individual sample.104

On the Machine Learning side, previous work on unsupervised DA includes the following. Discriminator-105

free domain adversarial learning [43] uses domain adversarial learning [44] to obtain a common represen-106

tation space for all domains. Kernel mean matching [45] aims at matching the higher-order moments of107

the underlying distributions using kernel functions. Multilevel domain adaptive learning matches the dis-108

tributions at each intermediate layer of the neural network in a hierarchical fashion [46]. Reconstruction-109

based methods, such as Cycle-Consistent Adversarial Domain Adaptation (CyCADA) [47], reconstruct110

samples from the target domain using the samples from the source domain as input. It should be noted111

that most existing methods use a latent space to represent the samples, which means that the debiased112

representation is not directly interpretable, which runs afoul of ubiquitous need for interpretability and113

explainability in human genetics [48]. A key motivation for our work is thus to design a domain adap-114

tation method that adjusts cfDNA profiles in a transparently interpretable manner, by operating at the115

read count level (i.e., without having recourse to a latent space as domain adversarial methods would)116

and preserving the z-scores produced by the original data.117

In this article, we present an advanced data normalisation method for cell-free DNA sequencing data118

building on optimal transport (OT) theory [49, 50]. OT builds on strong mathematical bases and allows119

to define a patient-to-patient relationship across domains without the need to build a common latent120

representation space, as mostly done in the DA field. This enables high interpretability, as samples can121

be corrected in the original data space (e.g., read counts) directly. Because we originally designed this122

approach for the correction of normalised read counts within predefined bins, it falls under the category of123

”global models” according to the Benjamini/Speed classification [38]. In summary, we aim at correcting124

and mapping the data distribution from a source domain onto the data distribution obtained in a target125

domain, to enable more robust downstream analysis. As the ultimate goal is to go beyond the classical126

case–control setting and build models capable of accurately processing data from various sources, we127

hypothesised that bias removal is a good candidate to increase the effective size of available data sets128

through their fusion and thus benefit from the scalability of Machine Learning models and enhance their129

performance. This flexibility would, among other things, reduce the need for laboratories to consistently130

build new reference sets, as well as enable high reusability of older samples or data collected in unrelated131

studies. In this article, we report enhanced cancer detection with prior domain adaptation and show that132
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cohorts can be corrected to match the same distribution while preserving the original biological signals133

(e.g., copy number aberrations) in each patient.134

2 Results & discussion135

In each of the following experiments, we compared our domain adaptation approach to the original data136

(no correction), as well as center-and-scale standardisation and LOWESS GC-content bias correction,137

when relevant. Center-and-scale standardisation consists in standardising the data points from each138

domain separately, by subtracting their median and dividing by the average squared deviation from the139

median. As this method is univariate, it has been performed on each bin and each data set separately.140

2.1 Preanalytical biases can be accurately removed by optimal trans-141

port142

In Fig. 1A, we performed a (Gaussian) kernel principal component analysis on the controls from the143

HEMA data set to illustrate the impact of the change in library preparation kit on the coverage profiles.144

The two control sets belong to domains D7 and D8 from Table 6, respectively. It appears immediately145

that LOWESS GC-correction is not sufficient for superimposing the two panels of controls. Center-and-146

scale standardisation and optimal transport both succeed in that respect, which is expected since these147

two methods have been designed to explicitly correct data sets. Conversely, GC-correction alleviates148

GC-content biases at the level of individual samples only.149

For each 1 Mb bin, we ran a Two-sample Kolmogorov-Smirnov test (two-sided) to quantify the150

differences in normalised read counts between the two panels from domains D7 and D8, and reported151

the distribution of per-bin p-values in Fig. 1B, both in linear and log scales. While center-and-scale152

standardisation and optimal transport show similar distributions, the latter contains a median p-value153

close to 0.5 and a more uniform distribution. Such property is desirable since p-values are expected to be154

uniformly distributed under the null hypothesis and some other conditions [51]. Indeed, a distribution155

shifted leftward indicates the presence of confounders responsible for some discrepancy between the two156

distributions, as shown both in the absence of correction or with GC-correction. Inversely, a rightward-157

shifted distribution illustrates overcorrection, as suggested for center-and-scale standardisation. This158

shift can however also occur for biological reasons, for example when the samples in the first domain are159

replicates of the samples from the second domain.160

In Fig. 1C, we reported the z-scores of each sample and bin all together in a single scatter plot, before161

and after correction. We observe a good consistency between the GC-corrected normalised read counts162

and the OT-adapted ones, supported by a Pearson correlation coefficient of 0.98. This result suggest that163

our DA method does not appear to be overcorrecting the normalised read counts. We however observe164
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Figure 1: Correction of the healthy samples from the HEMA data set. (A) Kernel principal
component analysis of coverage profiles from the two control cohorts (haematological cancer data set). (B)
Two-sample Kolmogorov-Smirnov testing, for each bin, of the difference between the two cohorts. p-values
are shown in both linear and log scales. (C) z-scores of the coverage profiles before and after GC-correction
and domain adaptation. (D) Histogram depicting, for each patient of the target domain, the number of
patients in the source domain for which the transport plan shows a relationship.
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a very small subset of the bins around 0 for which our method seems to overcorrect the normalised read165

counts. These bins are located in low-mappability regions, and we suggest that our method is correcting166

in these few regions relatively more due to the lack of information (the z-scores between these bins and167

the flanking bins are either not consistent, or mostly made of zeroes). These distortions are irrespective to168

the original sequencing depth, as the coverage profiles have been normalised. Given the lack of reliability169

of the original data in these bins (mostly zero counts), we suggest that the information loss is residual170

compared to high-mappability regions. Let’s note that it is usually advised in the literature to disregard171

these bins before performing further analysis.172

Finally, Fig. 1D reports the number of non-zero entries in the final transport plan Γ inferred by our173

model, for each patient of domains D7 (green bars) and D8 (golden bars). Without the use of entropic174

regularisation on Wasserstein distance, the model naturally assigns each control from the source domain175

to multiple controls from the target domain, thus reflecting the underlying complexity of the biological176

processes that generate the read counts. These peculiarities are implicitly acknowledged by our model,177

by not enforcing the patients to be assigned in pairs.178

We conducted similar analyses on the OV and NIPT data sets and obtained slightly different results179

due to the smaller numbers of samples. In particular, visualisation based on kernel PCA show that180

the corrected cohorts are still not centered one onto the other. Indeed, since our convergence criterion181

builds on statistical tests, our algorithm is designed to halt earlier, due to p-values being higher when the182

number of samples is low. This mechanism prevents overcorrection when the available data is insufficient183

for accurate bias estimation. Also, histograms on the entries of the transport plans showed that each184

patient from the source was mapped on exactly one patient from the target domain, which met our185

expectations on these two data sets due to the way domains have been defined (samples were paired).186

Results have been reported in Suppl. Fig. 2-8.187

2.2 Patient-to-patient mapping is accurate when the cohorts are rep-188

resentative of the exact same population189

While our method is effectively capable of superimposing patients cohorts there is no a priori guarantee,190

besides theoretical considerations, that the coverage profiles are being corrected in the right direction.191

For this purpose, we considered 64 biological samples with ovarian carcinoma that have been processed192

with both Illumina HiSeq 2500 and HiSeq 4000 sequencing platforms. The two cohorts belong to domains193

D10 and D9 from Table 6, respectively. In this section, we applied our domain adaptation technique on194

these two cohorts to see whether the bias removal is decreasing the distance between profiles originating195

from the same biological sample. Indeed, paired profiles are expected to overlap when the biological196

variation overcomes technical biases. By design, the cohorts consisted of the same patients, therefore197

we not only tested our algorithm with default hyper-parameters (noted as “default” in the table), but198
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Table 1: Performance assessment using paired samples from the OV data set. Accuracy obtained
after data correction, when assigning a sample from target domain to the closest sample in source domain,
and using the Euclidean metric. In the first column, samples from domain D9 have been corrected toward
D10, and vice versa.

Correctly identified pairs

Method D9 −→ D10 D10 −→ D9

No correction 17 / 64 14 / 64
Center-and-scale 20 / 64 27 / 64
GC-correction 23 / 64 30 / 64
Optimal transport (default) 24 / 64 31 / 64
Optimal transport (λ = 0) 47 / 64 48 / 64
Optimal transport (Γ) 51 / 64 50 / 64

also without regularisation or early stopping criterion (“λ = 0”), and using the transport plan directly199

to assign pairs and compute accuracy. The purpose was mostly to test the assignment of patients and200

assess whether OT can map each sample to its correct counterpart.201

In Table 1, we compared our correction method with the GC-correction approach, as well as center-202

and-scale standardisation. Because domain adaptation and estimation of accuracy can be done in two203

ways (as there are two domains), we reported both settings as separate columns in the table. While204

center-and-scale standardisation and GC-correction fails at pairing the samples with more than 50%205

accuracy, we observed a sharp improvement in accuracy with our domain adaptation approach when206

disabling regularisation. Without correction, only 17 and 14 profiles were correctly assigned to their207

counterpart in the source domain. GC-correction enabled the correct assignment of 23 and 30 patients,208

while our domain adaptation approach allowed the correct mapping of 47 and 48 patients when λ = 0.209

In Table 2, we report the same metric on the NIPT data set, where 563 patients have been sequenced210

twice with different protocols. This data set has been divided in 6 validation groups and each group211

divided in 2 domains (see table 6). Each group was designed to control for exactly one preanalytical212

variable. As an example, the D1,a and D1,b domains differ by their library preparation kits, namely213

TruSeq Nano and Kapa HyperPrep kits. We repeated the experiment done in previous section on each214

of these groups and reported accuracy in In Table 2. We can observe that our approach drastically215

improves over standard methods for all groups. In particular, the transport plan Γ inferred by our216

method perfectly identified the sample pairs for all 6 groups except the TruSeq Nano/Kapa HyperPrep217

and Kapa/IDT groups, while still improving accuracy by a large margin compared to GC-correction.218

These results suggest that OT is a suitable framework for estimating patient-to-patient similarities, even219

in the presence of a limited number of samples (i.e., 45).220
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Table 2: Performance assessment using paired samples from the NIPT data set. Accuracy obtained
after data correction, when assigning a sample from target domain to the closest sample in source domain
and using the Euclidean metric, on each of the 6 validation groups. Each validation group was designed to
control for one preanalytical variable at a time.

Optimal transport

Preanalytical variable Comparison No correction Center-and-scale GC-correction λ = 0.5 λ = 0 Γ

Lib. prep. kit TruSeq Nano/Kapa HyperPrep (D1,a/D1,b) 2 / 66 28 / 66 28 / 66 44 / 66 58 / 66 64 / 66
Adapters Kapa/IDT (D2,a/D2,b) 15 / 179 32 / 179 96 / 179 98 / 179 151 / 179 157 / 179
Sequencer HiSeq2000/NovaSeq (D3,a/D3,b) 1 / 45 38 / 45 19 / 45 29 / 45 45 / 45 45 / 45
Sequencer HiSeq2500/NovaSeq (D4,a/D4,b) 2 / 45 43 / 45 40 / 45 43 / 45 45 / 45 45 / 45
Sequencer HiSeq4000/NovaSeq (D5,a/D5,b) 5 / 93 86 / 93 75 / 93 78 / 93 93 / 93 93 / 93
NovaSeq Chemistry V1/V1.5 (D6,a/D6,b) 12 / 135 60 / 135 82 / 135 89 / 135 135 / 135 135 / 135

Table 3: Haematological cancer detection using supervised approaches. Sensitivity, specificity,
Matthews correction coefficient (MCC), AUROC and AUPR obtained through validation of 3 supervised
models. These models have been successively trained to distinguish Hodgkin lymphoma, DLBCL and mul-
tiple myeloma cases from healthy controls. Sensitivity, specificity and MCC were computed using the cutoff
that maximises MCC.

Supervised model Logistic regression Random forest Support vector machine

Metric Sen. Spec. MCC AUROC AUPR Sen. Spec. MCC AUROC AUPR Sen. Spec. MCC AUROC AUPR

Hodgkin lymphoma

No correction 95.0 % 97.1 % 92.2 % 98.2 % 98.3 % 76.0 % 97.5 % 76.9 % 93.3 % 93.4 % 95.5 % 86.0 % 80.6 % 96.3 % 95.4 %
Center-and-scale 96.1 % 94.6 % 90.4 % 98.3 % 98.3 % 89.9 % 89.3 % 78.8 % 95.0 % 94.1 % 92.7 % 88.8 % 80.9 % 95.1 % 93.8 %
GC correction 92.7 % 99.2 % 92.8 % 98.7 % 98.8 % 87.7 % 97.5 % 86.5 % 97.0 % 97.1 % 96.1 % 95.9 % 91.8 % 98.7 % 98.6 %
Optimal transport 96.6 % 97.1 % 93.7 % 98.9 % 99.0 % 92.2 % 97.1 % 89.8 % 97.8 % 97.9 % 94.4 % 97.5 % 92.2 % 98.6 % 98.3 %

DLBCL

No correction 75.7 % 99.6 % 83.6 % 92.8 % 86.1 % 32.4 % 99.2 % 49.1 % 84.2 % 56.2 % 78.4 % 97.5 % 77.7 % 95.5 % 83.9 %
Center-and-scale 86.5 % 98.8 % 87.3 % 96.6 % 92.8 % 64.9 % 97.5 % 68.3 % 94.1 % 79.0 % 89.2 % 95.9 % 79.9 % 96.8 % 84.2 %
GC correction 81.1 % 98.3 % 82.3 % 96.4 % 87.7 % 67.6 % 97.9 % 71.7 % 91.5 % 78.6 % 78.4 % 99.2 % 83.7 % 97.4 % 88.0 %
Optimal transport 94.6 % 98.3 % 90.9 % 97.9 % 94.4 % 73.0 % 98.3 % 77.0 % 94.6 % 86.0 % 89.2 % 97.5 % 84.8 % 96.7 % 88.1 %

Multiple myeloma

No correction 90.9 % 99.6 % 92.4 % 98.0 % 92.1 % 63.6 % 98.8 % 70.3 % 91.0 % 70.6 % 63.6 % 96.7 % 60.3 % 93.7 % 62.4 %
Center-and-scale 72.7 % 99.6 % 81.4 % 97.3 % 89.4 % 63.6 % 98.3 % 68.0 % 93.3 % 64.6 % 59.1 % 97.5 % 60.5 % 93.6 % 63.1 %
GC correction 90.9 % 100.0 % 95.0 % 99.2 % 96.7 % 77.3 % 100.0 % 87.0 % 95.5 % 89.4 % 81.8 % 97.9 % 78.2 % 97.4 % 83.6 %
Optimal transport 95.5 % 100.0 % 97.5 % 99.7 % 98.0 % 86.4 % 99.6 % 89.8 % 96.1 % 91.6 % 95.5 % 95.9 % 78.4 % 98.3 % 85.7 %

2.3 Optimal transport disentangles cancer signals from non-biological221

sources of variation222

We further tested the applicability of our method to the detection of haematological cancer and investi-223

gated whether data correction preserves the signals of interest (i.e., cancer). For this purpose, we trained224

simple Machine Learning models using the scikit-learn [52] Python library. The HEMA data set is225

composed of 179 cases of Hodgkin lymphoma, 22 of multiple myeloma and 37 of diffuse large B-cell226

lymphoma at different stages, as well as two control sets of size 242 and 257 respectively. The cancer227

samples as well as the healthy cohort from D7 have been processed with the TruSeq ChIP kit (Illumina),228

while the second healthy set from D8 has been prepared with the TruSeq Nano kit (Illumina). TruSeq229

Nano samples have been corrected to match the distribution of the TruSeq ChIP controls and validation230

was performed on the TruSeq ChIP cases and controls. As explained in the Methods section and as231

illustrated in Fig. 6D, corrected samples were used only for training, to avoid overoptimistic estimation232

of sensitivity and specificity resulting from controls being accidentally shifted away from the cancer cases.233
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Table 4: Ovarian carcinoma detection using supervised approaches. Sensitivity, specificity,
Matthews correction coefficient (MCC), AUROC and AUPR obtained through validation of 3 supervised
models. These models have been trained to distinguish ovarian carcinoma cases from healthy individuals.
Sensitivity, specificity and MCC were computed using the cutoff that maximises MCC.

Supervised model Logistic regression Random forest Support vector machine

Metric Sen. Spec. MCC AUROC AUPR Sen. Spec. MCC AUROC AUPR Sen. Spec. MCC AUROC AUPR

D9 −→ D10

No correction 59.9 % 80.7 % 33.4 % 67.2 % 92.9 % 50.5 % 81.3 % 26.0 % 59.6 % 90.5 % 57.5 % 87.9 % 34.5 % 68.4 % 93.5 %
Centering-scaling 57.3 % 81.9 % 32.7 % 65.7 % 92.7 % 61.5 % 65.2 % 28.7 % 58.4 % 89.8 % 64.8 % 75.5 % 35.1 % 67.8 % 93.2 %
GC correction 60.1 % 79.4 % 33.0 % 68.0 % 93.2 % 64.7 % 72.0 % 32.1 % 67.0 % 92.7 % 62.1 % 80.4 % 33.3 % 68.8 % 93.5 %
Optimal transport 58.5 % 86.6 % 35.4 % 70.5 % 94.0 % 75.5 % 64.9 % 38.0 % 70.8 % 93.7 % 71.4 % 74.1 % 40.0 % 73.7 % 94.5 %

D10 −→ D9

No correction 77.0 % 70.3 % 43.3 % 77.5 % 93.4 % 78.6 % 77.5 % 51.0 % 83.0 % 95.5 % 75.8 % 81.4 % 50.4 % 82.5 % 95.5 %
Centering-scaling 77.9 % 70.6 % 44.5 % 77.5 % 93.5 % 73.1 % 84.0 % 49.0 % 82.1 % 95.3 % 72.1 % 86.8 % 49.9 % 81.9 % 95.4 %
GC correction 82.2 % 68.0 % 47.3 % 80.3 % 94.4 % 67.4 % 90.6 % 48.4 % 80.0 % 95.0 % 70.7 % 86.7 % 48.4 % 81.0 % 95.2 %
Optimal transport 79.4 % 78.5 % 52.0 % 83.3 % 95.7 % 64.9 % 93.4 % 47.0 % 78.8 % 94.7 % 69.9 % 91.6 % 50.7 % 82.5 % 95.7 %

In Table 3, we reported the performance of binary prediction of haematological cancers, namely234

Hodgkin lymphoma (HL), diffuse large B-cell lymphoma (DLBCL) and multiple myeloma (MM). Eval-235

uation metrics have been estimated using fivefold cross-validation. Only samples from the training set236

have been corrected by our method, so as to avoid any data contamination between the training and237

validation set (see Methods). Sensitivity, specificity and MCC were determined based on the cutoff that238

produced the highest MCCs. As can be observed, data correction with our domain adaptation approach239

almost systematically improves cancer detection in terms of MCC, AUROC and AUPR, either through240

an increase in sensitivity, specificity, or both. In particular, it produced the best MCC in all of the nine241

settings (3 models × 3 pathologies), the best AUPR in 8 settings and the best AUROC in 7 settings.242

Strikingly, it outperformed GC-correction by 8.6% and 5.3% in MCC for DLBCL prediction with logistic243

regression and random forest, respectively.244

Analogous results obtained on the OV data set have been reported in Table 4. Because the ovarian245

data set contains cases and controls from both domains, we could perform our validation in both directions246

(adapting samples from D9 to D10 and assessing performance on remaining samples from D10, and vice247

versa), corresponding to the top and bottom parts of Table 4. The proposed method systematically248

produced an improvement in MCC and AUPR in all three settings and improved AUROC in two out of249

the three settings. In particular, we noticed gains of 2.8%, 6.8% and 8.8% in MCC, respectively. In light250

of these results, we showed the ability of our method to disentangle sources of variation of biological and251

technical origins. Indeed, the supervised Machine Learning approaches for cancer detection benefited252

from the improvement in data quality resulting from domain adaptation, yielding better generalization253

and validation accuracy. Although these AUROC scores are far from being clinically relevant, they must254

be contextualized. First, we evaluated our predictive models in an artificially difficult setting where255

newly-collected samples have been processed with a different technology, while wet-lab protocols should256

be standardised in clinical settings. Second, cancer cohorts include many low-grade and borderline cases,257

which are most likely chromosomally stable and therefore may be overlooked by our CNA-based approach.258
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Table 5: Quantitative assessment of the consistency of CNA calling. ichorCNA results on ovarian
carcinoma cases from D9 using the panel of controls from D9, compared to the same cases corrected (D9 −→
D10) by each method and using the panel of controls from D10. Metrics in the upper part of the table focus
on per-bin metrics, namely the copy number in each bin, the presence of a CNA (copy number ̸= 2) in each
bin, the SOV REFINE [55] score and the log-ratios. We used the SOV REFINE segmentation metric to
measure the overlap between called CNAs. The metrics in the bottom section of the table are the average
absolute errors on different model parameters estimated by ichorCNA.

Metric No correction center-and-scale standardisation OT

Accuracy (copy number) 71.3 % 39.5 % 73.4 %
Accuracy (presence of CNA) 76.8 % 53.2 % 78.7 %
SOV REFINE (copy number) 0.7401 0.5218 0.7552
Error on log-ratios 0.0083 0.1164 0.0070

Error on tumour fraction 0.0045 0.0197 0.0042
Error on tumour ploidy 0.0880 0.2293 0.0836
Error on tumour cellular prevalence 0.0888 0.1209 0.0866
Error on proportion of subclonal CNAs 0.1366 0.1414 0.1268

2.4 Optimal transport preserves copy number aberrations across do-259

mains260

As we are fully aware of the overfitting risks associated with our model, we made sure the adapted261

samples were consistent with the original data by verifying whether the CNAs of each patient were262

conserved. For this purpose, clonal and subclonal CNAs were called using the ichorCNA v0.2.0 R263

package (details in Suppl. Mat. 2) and we benchmarked our method on the entire OV data set. Indeed,264

our domain adaptation method provides adjusted profiles that are transparently interpretable and are265

directly comparable across domains, allowing their comparison in terms of read counts before and after266

correction.267

Let us denote by D9 and D10 the wet labs from which the samples originate (see Table 6), respectively268

[53] and [54]. We first built a panel of controls (reference set) using the 79 controls from domain D9 and269

called CNAs in cancer cases from D9. Then, we built a panel of controls using the 39 controls from D10270

and called CNAs in the same cancer cases from D9, after adapting them with our proposed approach to271

match the distribution of cancer cases in D10. Finally, we quantified the similarity of ichorCNA results272

using different metrics, as shown in Table 5. Because ichorCNA performs GC-correction “under the273

hood”, we did not include GC-correction in the benchmark, as it would produce results highly similar to274

the baseline. Also, in the case of center-and-scale standardisation we enforced positivity by clipping the275

corrected read counts, as negative values cannot be handled by ichorCNA.276

Even in the absence of any correction, the per-bin copy numbers estimated for cancer CNAs are not277

consistent, as we see that the accuracy and SOV REFINE measures are far from being perfect. This can278

be attributed not only to (1) the difference in protocols used to produce the two panels of normals, but279
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also (2) the limited number of controls, (3) the fact that the controls differ between the two domains,280

and (4) the experimental uncertainty (stochastic noise). Overall, both center-and-scale standardisation281

and optimal transport preserved the original normalised read counts sufficiently since they both provided282

results similar to the baseline (“no correction”). However, our method improves over center-and-scale283

standardisation regardless of the evaluation metric. After applying our DA method on the cancer cases,284

73.4% of the bins were assigned the correct copy number and segmentation of CNAs produced an overlap285

score of 0.7552. As illustrated in Fig. 2, the copy numbers called by ichorCNA in D9 (panel A) are mostly286

preserved without (B) or after (D) correction. The least consistent results were produced by center-287

and-scale standardisation, where some disruptions have been introduced at multiple locations (e.g., some288

higher copy numbers in chromosome 3).289

The average absolute error on the estimation of tumour fraction is 0.0042, which is acceptable given290

the error of 0.0045 in the absence of any correction and the standard deviation of the tumour fraction291

estimates (0.0464). Despite the limited size of our reference sets and therefore the potentially overpes-292

simistic assessment of the inconsistencies of ichorCNA’s results, we conclude that most of the CNAs have293

been preserved and that the proposed method does not disrupt the original data, as a more straightfor-294

ward standardisation approach would. Since ichorCNA offers the possibility to call CNAs without panels295

of normals, we ran similar analysis without controls and observed more consistent results between the296

two domains. We reported these results in Suppl. Tab. 1 and Suppl. Fig. 1.297

Estimated tumour fractions before and after correction have been reported in Fig. 3, showing good298

consistency both in the presence (r=0.973, p-value=1.09e-205, two-sided test) or the absence (r=0.980,299

p-value=1.77e-224) of the D10 panel of controls.300

2.5 Preanalytical variables are mostly discrete301

A major limitation of our approach is its inherent restriction to discrete settings, where the technical302

counfounder is acting as a dummy variable and reflects whether some technology as been used to produce303

a sample or not. However, to the best of our knowledge there is no continuous preanalytical variable in304

whole-genome sequencing that induces gradual changes in the normalised read counts and in our data305

sets. A potential exception is the plasma separation delay, measured as the time elapsing between the306

blood draw and the separation of the plasma from the buffy coat. We tested Pearson and Spearman307

correlation for each 1 Mb genome bin on the HEMA data set, using a significance level of 0.01 and308

applying the Benjamini-Hochberg procedure to account for multiple testing. As shown in Fig. 4B, no bin309

was found to be significantly correlated with the plasma separation delay. The normalised reads counts310

of the NIPT samples in the first 1 Mb bin of chromosome 6 (bin showing highest correlation with plasma311

separation delay) are shown in fig. 4A.312
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Figure 2: Qualitative assessment of the consistency of CNA calling. Comparison of the CNAs called
by ichorCNA on a late stage ovarian carcinoma case from D9, before and after domain adaptation. Green
and red colouring correspond to deletions and gains, respectively. (A) Using D9 controls. (B) Using D10

controls. (C) D9 cancer cases (including the case shown) centered-and-scaled toward D10 and analysed with
D10 controls. (D) D9 cancer cases OT-corrected toward D10, analysed with D10 controls.
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Figure 3: Tumour fractions before and after domain adaptation. Fractions have been estimated with
ichorCNA before and after adapting the D9 ovarian carcinoma cases toward the D10 cases. Results have been
produced both with (Left) and without (Right) the panel of controls from domain D10. Fractions are shown
in log-scale.

2.6 GC-correction is not sufficient to decorrelate read counts from GC-313

content314

In Figure 1, we showed that GC-correction did not help in reducing the dissimilarity between the two315

control sets from the HEMA data set. We also reported similar results on the two other data sets in316

Suppl. Mat. 3. While GC-correction succeeds at reducing the individual variability (experimental vari-317

ance) of samples as shown by the improved accuracy in Tables 1 and 2, it fails at alleviating the biases318

introduced by changes in sequencer or library preparation method. Indeed, while this approach improves319

cancer detection on average by removing technical variations based on GC-content, it does not system-320

atically produces performance gains, does not efficiently capture similarities between profiles originating321

from the same biological sample and does not completely remove the clustering effects introduced by the322

changes in the sequencing methodology. By contrast, our method showed that these expectations can323

be met through the modelling of patient-to-patient similarities and explicit constraining of the samples324

based on quantiles. Indeed, these latter constraints drastically lower the risks of overfitting and ensure325

that the mapping between the cohorts is performed in a biologically meaningful manner.326

In Figure 5, we reported the two-sample Kolmogorov-Smirnov p-values from Figure 1b as a function327

of the GC-content, as well as the median p-value per 0.5% GC stratum. Normalised read counts (top328

left panel) exhibited strong relationship between median p-values and GC-content, demonstrating that329

regions with low and high GC-content are the most biased by the change from the KAPA HyperPrep to the330
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Figure 4: Effect of plasma separation delay on coverage profiles. (A) GC-corrected normalised read
counts of all samples from the NIPT data set for a specific bin (first 1 Mb bin from chromosome 6), namely
the one giving the strongest linear correlation with the plasma separation delay (Pearson’s r=0.1838, p-
value=1.38e-5, two-sided test). (B) Distribution of the p-values computed likewise for each 1 Mb bin, and
reported as a histogram. Histogram is shown in log-scale.
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Figure 5: Coverage difference between domains as a function of GC-content. Two-sample
Kolmogorov-Smirnov testing, for each 1 Mb bin, of the difference between the two control sets from the
HEMA data set processed with different library preparation kits. p-values are shown in log-scale, as a func-
tion of the GC-content of each bin. Dashed line corresponds to a 0.5 p-value and black markers to the median
p-values per 0.5% GC stratum.

TruSeq ChIP library preparation kit. While center-and-scale standardisation is capable of centering these331

p-values around 0.5 (which is expected under the null hypothesis since p-values are uniformly distributed332

in the [0, 1] interval), we observed the same trend. GC-correction drastically improved in that respect, as333

no clear correlation can be observed. However, the median p-value still varies from stratum to stratum,334

suggesting that some subtle and nonlinear GC biases remained. Finally, our proposed approach produced335

the most consistent results across the GC-content values, showing that it more effectively alleviated these336

residual biases.337

2.7 Domain expertise is the best regularisation338

There are multiple mechanisms put in place within our model to constrain it to infer a matrix X that is339

as meaningful as possible, namely the quantile-based regularisation function, the positivity constraint on340

the read counts, the median normalisation and GC correction. While these constraints are not guarantees341

of performance per se, they restrict the size of the search space drastically, eliminating a large proportion342

of irrelevant solutions. While our method was originally designed for correcting normalised read counts343

with the detection of CNAs in mind, it remains sufficiently generic to be applied to any (whole-)genome344

sequencing or array-based data set. Indeed, the only requirement is the representativeness of the cohorts345

in all domains. However, the requirements imposed on the data are problem-dependent and heavily346
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depend on the nature of the data sets. Therefore, from a general perspective, extra care should be given347

to the assumptions underlying the model. For instance, preserving the quantiles (e.g., z-scores) might not348

necessarily be desirable, as read counts are heavily subject to noisy fluctuations that should preferably349

not be transferred from domain to domain.350

Beyond aforementioned limitations, our findings open new perspectives for the analysis of high-351

dimensional whole-genome sequencing data and suggest that appropriate modelling of technical con-352

founders enables the joint analysis of cohorts sequenced at different points in time (changes of sequencing353

platform, library preparation kit, DNA extraction method) and space (team, hospital, country). Finally,354

the analysis of larger data sets is expected to strengthen the detection power of statistical models based355

on cfDNA data and enable the presymptomatic detection of more subtle cancer signals.356

3 Methods357

Throughout the paper, we referred to cohort as a set of samples sharing similar high-level characteristics358

(e.g., a set of healthy controls, a set of pregnant women, a set of ovarian cancer patients) and processed359

using similar protocols. A domain is a set that can include multiple cohorts, with no regard for the360

biological state as only the protocol is considered. Finally, a data set can itself include multiple domains,361

as each data set has been used to assess our method’s ability to correct for biases between the domains362

contained in this data set.363

3.1 Clinical data364

We benchmarked our method on three data sets produced in-house, each used for a different purpose. The365

peculiarities of each data set have been summarised in Table 6. All data sets have a median sequencing366

coverage between 0.1x and 0.2x.367

The data sets used in the present work have been collected during studies previously approved by368

the ethical committee of the University Hospitals Leuven under S/57999, S/62285, S/62795, S/50623,369

S/56534, S/63240, S/51375, S/55904, S/57144, S/59207, S/64205 and S/64035. Blood samples were370

collected either into Streck cfDNA BCT or Roche Cell-Free DNA Collection Tubes. cfDNA was extracted371

using either the QIAamp Circulating Nucleic Acid Kit or the Maxwell automated protocol. Samples were372

pooled by batches of 20 for multiplex sequencing using all lanes of Illumina flow cells. Each pool was373

sequenced either on the Illumina HiSeq 2000, HiSeq 2500, HiSeq 4000 or NovaSeq 6000 platform, single-374

end 1x36bp, 1x50bp or paired-end 2x50bp.375

The first data set consists of 563 validation samples collected in the context of Non-Invasive Prenatal376

Testing (NIPT) [56] and processed within the standard NIPT routine twice. These paired samples are377

divided in 6 validation groups (2× 6 domains), each used to quantify the distributional shift introduced378
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by the change of one preanalytical variable. The libraries of 66 biological samples have been prepared379

with either the TruSeq Nano DNA Sample Preparation Kit (Illumina) or the KAPA HyperPrep Kit380

(Roche) with Kapa Dual indexed adapters. 179 samples have been used with either IDT indexes or381

KAPA Dual indexed adapters. 45 samples have been processed either by the HiSeq 2000 or NovaSeq382

platform. 45 samples have been processed either by the HiSeq 2500 or NovaSeq platform. 93 samples383

have been processed either by the HiSeq 4000 or NovaSeq platform. Finally, 135 samples have been384

processed by a NovaSeq platform, with either V1 or V1.5 chemistry. In total, this results in 2 × 563385

paired samples. We refer to this first data set as NIPT for short.386

Our second data set (HEMA) focuses on haematological malignancies and is composed of 179 cases387

of Hodgkin lymphoma (HL), 37 of diffuse large B-cell lymphoma (DLBCL) and 22 of multiple myeloma,388

as well as 498 controls. Among those, 177 HL cases and 260 controls have been published in a previous389

study [57] and the entirety of the haematological cancer cases have been included in one of our studies390

(GipXplore [53]). The libraries of 242 out of the 499 controls have been prepared with the same kit as391

the haematological cancer cases, namely the TruSeq ChIP Library Preparation Kit (Illumina) [4]. The392

remaining ones have been prepared with the TruSeq Nano kit.393

Finally, we further validated our OT-based bias removal approach with controls and ovarian carcinoma394

cases sequenced by two different teams [54] including ours. These samples were not derived from cancer395

patients with overt clinical disease, but rather the presence of a suspicious malignancy based on imaging.396

We refer to this last data set simply as OV. Protocols vary in multiple ways. As an example, all of the397

samples in D9 (see Table 6) have been processed with HiSeq 2500, while all samples in domain D10 have398

been sequenced by an instrument that differed from HiSeq 2500. Samples from D9 and D10 have been399

prepared with the KAPA HyperPrep and KAPA DNA library preparation kits, respectively. Ovarian400

carcinoma samples from D10 have been manually extracted with the QIAamp CAN kit. Let’s note that401

D9 does not strictly stick to our definition of domain. Despite the heterogeneity caused by the presence402

of multiple sequencers, we artificially grouped the samples in order to simplify the comparison between403

laboratories but also better reflect the heterogeneity expected to be encountered in Big Data settings.404

3.2 Data preprocessing405

Reads were first aligned to the reference genome hg38 using the Burrows-Wheeler aligner [58], only406

considering the 22 autosomes. Then, read duplicates were removed with Picard tools [59] and remaining407

ones were recalibrated with the Genome Analysis Toolkit [60]. Finally, reads were counted in predefined408

bins of size 1 Mb. Such size offers a good tradeoff between noise reduction and the granularity of409

achievable chromosomal aberration detection. Finally, counts were normalised by dividing by the median410

count per Mb of the whole profile to correct for the effective sequencing depth.411
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Table 6: Summary of the data sets used in this study. Samples in sets marked with a ’∗’ have been
processed twice, allowing quantitative assessment of the different biases caused by the changes of sequencing
protocols. Domains have been defined based on our experiments, as well as the protocol differences shown
in the table. For clarity purposes, we systematically refer to these domains in the results section.

Data set Condition/Setting Domain Size Library preparation kit Index type Sequencer

NIPT Pregnancy (kit validation) D1,a 2× 66∗
{

66 TruSeq Nano TruSeq Nano HiSeq 4000
D1,b 66 Kapa HyperPrep Kapa dual HiSeq 4000

Pregnancy (adapter validation) D2,a 2× 179∗
{

179 Kapa HyperPrep IDT HiSeq 4000
D2,b 179 Kapa HyperPrep Kapa dual HiSeq 4000

Pregnancy (sequencer validation) D3,a 2× 45∗
{

45 Kapa HyperPrep Kapa dual HiSeq 2000
D3,b 45 Kapa HyperPrep Kapa dual NovaSeq
D4,a 2× 45∗

{
45 Kapa HyperPrep Kapa dual HiSeq 2500

D4,b 45 Kapa HyperPrep Kapa dual NovaSeq
D5,a 2× 93∗

{
93 Kapa HyperPrep Kapa dual HiSeq 4000

D5,b 93 Kapa HyperPrep IDT NovaSeq
Pregnancy (chemistry validation) D6,a 2× 135∗

{
135 Kapa HyperPrep IDT NovaSeq (V1)

D6,b 135 Kapa HyperPrep IDT NovaSeq (V1.5)

HEMA Hodgkin lymphoma D7 179 TruSeq ChIP - HiSeq 2000/2500
Diffuse large B-cell lymphoma D7 37 TruSeq ChIP - HiSeq 2000/2500
Multiple myeloma D7 22 TruSeq ChIP - HiSeq 2000/2500
Healthy D7 242 TruSeq ChIP - HiSeq 2000/2500
Healthy D8 257 TruSeq Nano - HiSeq 2000/2500

OV Ovarian carcinoma D9 223 KAPA HyperPrep IDT HiSeq 4000
32 KAPA HyperPrep - HiSeq 4000
1 KAPA HyperPrep - HiSeq 2000

64∗

 61 KAPA HyperPrep - HiSeq 4000
2 KAPA HyperPrep - NovaSeq V1
1 KAPA HyperPrep - HiSeq 2000

Ovarian carcinoma D10 64∗
{
64 KAPA DNA lib. prep. - HiSeq 2500

156 KAPA DNA lib. prep. - HiSeq 2500
Healthy D9 79 KAPA HyperPrep IDT HiSeq 4000
Healthy D10 39 KAPA DNA lib. prep. - HiSeq 2500
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3.3 GC-content bias correction412

We performed GC-correction by dividing normalised read counts by their estimate according to a Lo-413

cally Weighted Scatterplot Smoothing (LOWESS) model [61], where the exogenous variable is the GC-414

content of the bin, and the endogenous variable is the corresponding normalised read count. 30% of415

the data points (bins) have been used to predict the endogenous variable. We used the Python package416

statsmodels v0.12.2 [62] to implement the LOWESS correction. We also designed a differential version417

of GC-correction that is PyTorch-compliant and used by our DA method to ensure that the reads counts418

of adapted cohorts do not correlate with GC-content. More details are provided in Suppl. Mat. 1.419

3.4 Center-and-scale standardisation420

We benchmarked our method against a more straightforward approach, consisting in the standardisation

of each cohort or data set separately. This approach ensures that the z-scores are centered in all domains

and allows comparability as long as each cohort is representative of the population. For each 1Mb bin,

we centered and scaled the normalised read counts as follows:

X̃ik ←−
Xik − µ(X·k)

σ(X·k)
, (1)

where µ(X·k) is the median of normalised read counts within bin k across all samples from the same421

cohort and σ(X·k) the square root of the average squared deviation from this median. The median has422

been used in place of the mean for robustness against outliers, such as profiles with aberrant CNAs. We423

refer to this method as center-and-scale standardisation throughout the manuscript.424

3.5 Domain adaptation using optimal transport425

We defined the best correction function as the one that minimises statistical dissimilarity metric between426

two cohorts. Given the multivariate nature of the problem and the strong mathematical foundations427

behind optimal transport, we propose to use the Wasserstein distance to quantify the discrepancy between428

data sets.429

The general principle of OT is to match two probability distributions by transporting the probability430

mass of one distribution into the other with minimal effort (hence the name optimal transport). Dis-431

tributions that can be transported into each other at a low cost are considered highly similar. In the432

case of discrete samples, OT amounts to finding a discrete probabilistic mapping (called the transport433

plan) of the source samples onto the target samples where the mapping of a source sample to a target434

sample bears some associated cost. We consider thus two data matrices X ∈ Rn×q
+ and Y ∈ Rm×q

+ , as435

illustrated by the normalised read counts matrices in Fig. 6A, where n and m are the sample sizes of436

the each domain and q is the number of predefined bins. As samples are all assumed to be of equal im-437
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Figure 6: Illustrative summary of our methods. (A) Given two cohorts of cfDNA samples differing by
the sequencing pipeline that processed them, the model corrects the second cohort to match the distribution
of the first one. After correction, the cost matrix for our OT problem is given by the pairwise Euclidean
distances. (B) The solution of the OT problem, named transport plan, assigns patients from Domain 2 to
similar patients in Domain 1. The model parameters are found by minimising the Wasserstein distance, as
defined by the cost matrix and transport plan. (C) After inference, the two cohorts are merged and ready
for downstream analysis. (D) Depiction of the validation procedure used for the purpose of this study.
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portance, we choose uniform probabilistic weights νi = 1/n,∀i and µj = 1/m,∀j to define a probability438

distribution on these discrete samples (assuming no two samples can be identical). We also consider the439

associated pairwise Euclidean distance matrix C ∈ Rn×m
+ . For normalised read counts, the matrix Y440

is first GC-corrected. The matrix X will be GC-corrected during OT, as part of a joint optimisation441

process. The reason for not correcting X upfront is that OT might artificially introduce correlations442

with GC-content a posteriori. Instead, we implemented median-normalisation and GC-correction as a443

differentiable function f (see Suppl. Mat. 1).444

The Wasserstein distance is defined, in its discrete form, by

Wp(C) = min Γ

(
n∑

i=1

m∑
j=1

Cp
ijΓij

)1/p

s.t.

m∑
j=1

Γij = νi, ∀i,

n∑
i=1

Γij = µj , ∀j,

Γij ≥ 0, ∀i, j.

(2)

Matrix Γ, usually referred to as the transport plan and depicted in Fig. 6B, can be interpreted as the

amount of probability mass transferred from points of the source domain to the target domain through

optimal transport. In particular, Γij is the probability mass transferred from point i in the source domain

to point j in the target domain. Such interpretation allows us to use Γ as a pairwise similarity matrix

and express the domain adaptation problem as a multivariate regression problem. By choosing p = 2

and the Euclidean metric as function d, as well as by accounting for the reduction of variance caused by

Gamma, and attaching equal importance to the bins (see details in Suppl. Mat. 1.2), the optimisation

problem becomes

min Γ,X
1

nq

n∑
i=1

q∑
k=1

1

σ(Y·k)

(
f(X )ik − n

m∑
j=1

ΓijY
′
jk

)2

+ λR(X ),

s.t. α(Γ) =

∑q
k=1 σ(Y·k)∑q

k=1 σ(
∑m

j=1 Γ·jYjk)
,

Y ′
jk = α(Γ)(Yjk − µ(Y·k)) + µ(Y·k),

Γ ∈ F ,

(3)

where α(Γ) is the variance correction factor, R(X ) is a regularisation term, and λ is the associated445

regularisation hyper-parameter.446

The output of our algorithm is matrix X , which we interpret as the surrogate of X in the target447

domain.448
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3.5.1 Regularisation function449

While the Wasserstein distance is often supplemented with a regularisation term based on the entropy450

of Γ [63], we noticed that entropic regularisation tends to reduce the variance of the adapted samples,451

ultimately collapsing them onto their centroid. This is not a desirable property because in actual high-452

dimensional data the curse of dimensionality will naturally keep data points distant from each other in453

the presence of noise. This creates an obstacle to the idea of mapping a source sample to the “closest”454

target samples. Therefore, we do not regularise the Wasserstein distance based on entropy. Instead,455

we propose a more informative approach where the deviations (e.g., chromosome gains or deletions) of456

samples X from some reference should be preserved throughout the whole adaptation process.457

The regularisation function is defined as a mean squared error function:

R(X ) = 1

2nq

n∑
i=1

q∑
k=1

1

σ2
k

(
Sik − Ŝik

)2
+

1

2nq

n∑
i=1

q∑
k=1

1

σ2
k

(
Tik − T̂ik

)2
,

Sik = f(X)ik − µ(f(X)·k),

Ŝik = f(X )ik − µ([Y ; f(X )]·k),

Tik = Yik − µ(Y·k),

T̂ik = Yik − µ([Y ; f(X )]·k),

(4)

where f(X ) is our differentiable GC-correction function, applied independently on each row of X . For a458

more robust estimation, we computed µ(X·k) as the median over bin k (rather than the mean). We used459

the MATLAB notation [Y ; f(X )] to denote the vertical concatenation of matrices Y and f(X ) (resulting460

in a matrix of dimension (n + m) × q). This regularisation function is meant to preserve the quantiles461

(akin to the z-scores) across the two domains. In particular, the first term enforces the consistency of462

the samples from the source domain, while the second term operates similarly on the samples from the463

target domain.464

3.5.2 Overfitting and stopping criterion465

Since our inference process is iterative, a convergence criterion is required in order to end it and limit466

overcorrection risks. Since our goal is to merge cohorts in such a way that they appear to be drawn from467

the same distribution, we performed per-bin statistical tests. At each iteration, a p-value is computed468

based on the two-sample Kolmogorov-Smirnov test for each 1 Mb genome bin. Because p-values are469

randomly and possibly uniformly distributed under the null hypothesis [51] (that the two cohorts are470

representative of the same population), we assumed that the median of these p-values should be close to471

0.5. In practice, we interrupt the optimisation process as soon as the median p-value exceeds this cutoff.472
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The convergence and its speed are to a large extent impacted by the regularisation rate λ, which473

needs to be picked carefully. When picking p = 1 and choosing the squared Euclidean distance as474

function d, then Wp(C) and R(X ) are both average squared error functions and expected to have similar475

orders of magnitude after convergence. For this reason, a reasonable a priori choice for λ would be 1.476

However, we observed that this default value results in many situations where the model never satisfies477

the convergence criterion and ends up with a low median p-value (e.g., 0.25), despite a large number of478

iterations (> 1000). In many other situations, the model rapidly converges but introduces disruptions in479

the data, resulting in drastic information loss. Therefore, we chose to make λ adaptive and lower it every480

e iterations until the convergence criterion is met. Our motivation is to use the largest value for λ (to481

preserve the original data to the best extent possible) while ensuring that the two data distributions are482

no longer distinguishable. We arbitrarily chose an initial value λ0 = 1000 and reduced λ by half every483

h = 20 iterations. Minimal value of λ was set to 1 in order to prevent overfitting risks in case where the484

model fails at reaching the convergence threshold.485

3.6 Model validation and performance assessment486

3.6.1 Downstream supervised learning487

Domain adaptation aims at superimposing the data distributions originating from different domains.488

While this superimposition can be quantified through clustering metrics or visually assessed using kernel489

principal component analysis or t-SNE for example, additional validation is required to ensure that the490

predictive signal for the malignancies of interest has not been removed during the adaptation process. For491

this purpose, we trained widely used Machine Learning models for the detection of these malignancies492

before and after adaptation, using default hyperparameters. We trained logistic regressions, random493

forests and kernel support vector machines using the scikit-learn [52] Python package.494

However, regular validation approaches, such as k-fold or leave-one-out cross-validation do not suit495

our setting, as they may show overoptimistic performance because of contamination between the training496

and the validation set. Indeed, the domain adaptation model should not be exposed to the validation set,497

since in the presence of overfitting some corrected samples from the training set will resemble samples498

from the validation set. Therefore, we propose a problem-specific validation method that excludes from499

the validation set any sample that does not belong to the target domain, as well as any sample that has500

been seen by the DA algorithm. During validation, adapted samples are only used to train the model and501

are not allowed to be left out, therefore not contributing to the estimation of performance. The aim is502

to prevent the supervised models to correctly assign a label (healthy/cancer) to the left-out sample just503

because the latter has been shifted arbitrarily far away from the real data distribution by the domain504

adaptation model. Such procedure can be repeated multiple times on random subsets, similarly to k-fold505

and leave-one-out cross-validation. The subsets generated during our validation procedure are illustrated506
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in Fig. 6D.507

Since the HEMA data set contains controls and cases in both domains, the validation has been508

performed in both directions: mapping samples from first domain to the second one before validating in509

the second one, and vice versa.510

Performance of the supervised models for cancer detection was quantified using widely used metrics511

such as sensitivity, specificity, Area Under the Receiver Operating Characteristic curve (AUROC), Area512

Under the Precision-Recall curve (AUPR) and the Matthews Correlation Coefficient (MCC).513

3.6.2 Evaluation of sample-to-sample mapping using paired samples514

For the cohorts in which biological samples have been sequenced twice, we applied OT and assessed515

whether the distance between paired samples was indeed lowered by the adaptation process. More516

specifically we computed accuracy, measured as the percentage of profiles from the target domain correctly517

assigned to the corresponding profile in the source domain, using the closest profile (according to the518

Euclidean metric) as predictor. By construction, random counterpart assignment would result in a 1/n519

accuracy.520

3.6.3 Downstream copy number aberration analysis521

Finally, we assessed the ability of the different methods to preserve the copy number aberrations present522

in the original data. For this purpose, we built a reference set made of the 79 controls from domain D9523

(OV data set, see Table 6) and called CNAs in the cancer cohort from D9, same data set. Next, we built a524

reference set based on the 39 controls from D10 and called CNAs in the same cancer cohort from D9, after525

applying our tool to adapt them towards D10. CNA calling was performed with ichorCNA, which would526

be theoretically expected to produce similar results in the two settings. Therefore, we quantified the527

agreement between ichorCNA results using accuracy and SOV REFINE score [55] between the estimated528

per-bin copy numbers. Also, we computed the average absolute deviations in the parameters inferred by529

ichorCNA, including tumour fraction or tumour cellular prevalence. Since the tool also proposes to call530

CNAs in a reference-free fashion, we also conducted the same analysis without the two panels of normals.531

Data availability532

Haematological cancer cases and healthy controls constituting the HEMA data set are available from533

ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-10934 as part of534

the GIPXplore study.535

Ovarian carcinoma and healthy controls (OV data set) from domain D10 of have been previously536

deposited at the European Genome-phenome Archive (EGA) under study no. EGAS00001005361.537
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The remaining samples (domain D9 + NIPT dataset) are in-house cohorts.538

Coverage profiles for all the samples have been compiled and uploaded to FigShare (DOI: 10.6084/m9.figshare.24459304).539

Code availability540

Our tool is available as an open source package at https://github.com/AntoinePassemiers/DAGIP.541
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of cell-free dna whole-genome sequencing for pediatric cancers with low mutational burden. Nature643

communications, 12(1):3230, 2021.644

[24] Safia El Messaoudi, Fanny Rolet, Florent Mouliere, and Alain R Thierry. Circulating cell free dna:645

preanalytical considerations. Clinica chimica acta, 424:222–230, 2013.646

[25] Abel Jacobus Bronkhorst, Janine Aucamp, and Piet J Pretorius. Cell-free dna: preanalytical vari-647

ables. Clinica Chimica Acta, 450:243–253, 2015.648

[26] Romain Meddeb, Ekaterina Pisareva, and Alain R Thierry. Guidelines for the preanalytical condi-649

tions for analyzing circulating cell-free dna. Clinical chemistry, 65(5):623–633, 2019.650

[27] Jacob E Till, Taylor A Black, Caren Gentile, Aseel Abdalla, Zhuoyang Wang, Hareena K Sangha,651

Jacquelyn J Roth, Robyn Sussman, Stephanie S Yee, Mark H O’Hara, et al. Optimization of sources652

of circulating cell-free dna variability for downstream molecular analysis. The Journal of Molecular653

Diagnostics, 23(11):1545–1552, 2021.654

[28] Lisanne F van Dessel, Silvia R Vitale, Jean CA Helmijr, Saskia M Wilting, Michelle van der Vlugt-655

Daane, Esther Oomen-de Hoop, Stefan Sleijfer, John WM Martens, Maurice PHM Jansen, and656

Martijn P Lolkema. High-throughput isolation of circulating tumor dna: a comparison of automated657

platforms. Molecular oncology, 13(2):392–402, 2019.658

[29] Michael G Ross, Carsten Russ, Maura Costello, Andrew Hollinger, Niall J Lennon, Ryan Hegarty,659

Chad Nusbaum, and David B Jaffe. Characterizing and measuring bias in sequence data. Genome660

biology, 14(5):1–20, 2013.661

[30] Mitsuhiko P Sato, Yoshitoshi Ogura, Keiji Nakamura, Ruriko Nishida, Yasuhiro Gotoh, Masahiro662

Hayashi, Junzo Hisatsune, Motoyuki Sugai, Itoh Takehiko, and Tetsuya Hayashi. Comparison of the663

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.04.04.588204doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.04.588204
http://creativecommons.org/licenses/by/4.0/


sequencing bias of currently available library preparation kits for illumina sequencing of bacterial664

genomes and metagenomes. DNA Research, 26(5):391–398, 2019.665

[31] Maura Costello, Mark Fleharty, Justin Abreu, Yossi Farjoun, Steven Ferriera, Laurie Holmes, Brian666

Granger, Lisa Green, Tom Howd, Tamara Mason, et al. Characterization and remediation of sample667

index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC668

genomics, 19(1):1–10, 2018.669

[32] Rahul Sinha, Geoff Stanley, Gunsagar S Gulati, Camille Ezran, Kyle J Travaglini, Eric Wei,670

Charles KF Chan, Ahmad N Nabhan, Tianying Su, Rachel M Morganti, et al. Index switching671

causes “spreading-of-signal” among multiplexed samples in illumina hiseq 4000 dna sequencing.672

BioRxiv, page 125724, 2017.673

[33] Patrick Denis Browne, Tue Kjærgaard Nielsen, Witold Kot, Anni Aggerholm, M Thomas P Gilbert,674

Lara Puetz, Morten Rasmussen, Athanasios Zervas, and Lars Hestbjerg Hansen. Gc bias affects675

genomic and metagenomic reconstructions, underrepresenting gc-poor organisms. GigaScience,676

9(2):giaa008, 2020.677

[34] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In678

Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.679

[35] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-680

man Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010.681

[36] Ming-Sin Cheung, Thomas A Down, Isabel Latorre, and Julie Ahringer. Systematic bias in high-682

throughput sequencing data and its correction by beads. Nucleic acids research, 39(15):e103–e103,683

2011.684

[37] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci. Best sources forward:685

domain generalization through source-specific nets. In 2018 25th IEEE international conference on686

image processing (ICIP), pages 1353–1357. IEEE, 2018.687

[38] Yuval Benjamini and Terence P Speed. Summarizing and correcting the gc content bias in high-688

throughput sequencing. Nucleic acids research, 40(10):e72–e72, 2012.689

[39] Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca Antonacci, Ferey-690

doun Hormozdiari, Jacob O Kitzman, Carl Baker, Maika Malig, Onur Mutlu, et al. Personalized691

copy number and segmental duplication maps using next-generation sequencing. Nature genetics,692

41(10):1061–1067, 2009.693

[40] Dineika Chandrananda, Natalie P Thorne, Devika Ganesamoorthy, Damien L Bruno, Yuval Ben-694

jamini, Terence P Speed, Howard R Slater, and Melanie Bahlo. Investigating and correcting plasma695

dna sequencing coverage bias to enhance aneuploidy discovery. PLoS One, 9(1):e86993, 2014.696

30

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.04.04.588204doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.04.588204
http://creativecommons.org/licenses/by/4.0/


[41] Viktor A Adalsteinsson, Gavin Ha, Samuel S Freeman, Atish D Choudhury, Daniel G Stover,697

Heather A Parsons, Gregory Gydush, Sarah C Reed, Denisse Rotem, Justin Rhoades, et al. Scalable698

whole-exome sequencing of cell-free dna reveals high concordance with metastatic tumors. Nature699

communications, 8(1):1–13, 2017.700

[42] Nicholas B Larson, Melissa C Larson, Jie Na, Carlos P Sosa, Chen Wang, Jean-Pierre Kocher, and701

Ross Rowsey. Coverage profile correction of shallow-depth circulating cell-free dna sequencing via702

multidistance learning. In PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020, pages 599–610.703

World Scientific, 2019.704

[43] Lin Chen, Huaian Chen, Zhixiang Wei, Xin Jin, Xiao Tan, Yi Jin, and Enhong Chen. Reusing705

the task-specific classifier as a discriminator: Discriminator-free adversarial domain adaptation.706

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages707

7181–7190, 2022.708

[44] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Lavi-709

olette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.710

The journal of machine learning research, 17(1):2096–2030, 2016.711

[45] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex Smola. Cor-712

recting sample selection bias by unlabeled data. Advances in neural information processing systems,713

19, 2006.714

[46] Rongchang Xie, Fei Yu, Jiachao Wang, Yizhou Wang, and Li Zhang. Multi-level domain adaptive715

learning for cross-domain detection. In Proceedings of the IEEE/CVF international conference on716

computer vision workshops, pages 0–0, 2019.717

[47] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,718

and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International719

conference on machine learning, pages 1989–1998. Pmlr, 2018.720

[48] Christina B Azodi, Jiliang Tang, and Shin-Han Shiu. Opening the black box: interpretable machine721

learning for geneticists. Trends in genetics, 36(6):442–455, 2020.722

[49] Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement inter-723

polation using lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH Asia conference,724

pages 1–12, 2011.725
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