

1 Alleviating cell-free DNA sequencing biases with optimal transport

2 Antoine Passemiers¹, Tatjana Jatsenko², Adriaan Vanderstichele^{3,4}, Pieter Busschaert^{3,4},
3 An Coosemans⁷, Dirk Timmerman³, Diether Lambrechts^{5,6}, Daniele Raimondi¹, Joris
4 Robert Vermeesch², and Yves Moreau¹

5 ¹Dynamical Systems, Signal Processing and Data Analytics (STADIUS), KU Leuven, Leuven, Belgium

6 ²Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium

7 ³Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium

8 ⁴Division of Gynaecological Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium

9 ⁵Center for Cancer Biology, VIB, Leuven, Belgium

10 ⁶Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium

11 ⁷Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, Leuven, Belgium

12 March 21, 2024

13 Abstract

14 Cell-free DNA (cfDNA) is a rich source of biomarkers for various (patho)physiological conditions.
15 Recent developments have used Machine Learning on large cfDNA data sets to enhance the detection
16 of cancers and immunological diseases. Preanalytical variables, such as the library preparation protocol
17 or sequencing platform, are major confounders that influence such data sets and lead to domain shifts
18 (i.e., shifts in data distribution as those confounders vary across time or space). Here, we present a
19 domain adaptation method that builds on the concept of optimal transport, and explicitly corrects for
20 the effect of such preanalytical variables. Our approach can be used to merge cohorts representative of
21 the same population but separated by technical biases. Moreover, we also demonstrate that it improves
22 cancer detection via Machine Learning by alleviating the sources of variation that are not of biological
23 origin. Our method also improves over the widely used GC-content bias correction, both in terms of
24 bias removal and cancer signal isolation. These results open perspectives for the downstream analysis of
25 larger data sets through the integration of cohorts produced by different sequencing pipelines or collected
26 in different centers. Notably, the approach is rather general with the potential for application to many
27 other genomic data analysis problems.

28 1 Introduction

29 Cell-free DNA (cfDNA) has been identified as a promising source of biomarkers for the detection of fetal
30 aneuploidy [1, 2], transplant rejection [3], incipient tumours [4], autoimmune disease [5] or inflammatory
31 disease [6]. While cfDNA fragments in healthy individuals primarily originate from the apoptotic release
32 of DNA from cells of hematopoietic origin [7], these fragments can also be of tumoural origin in cancer
33 patients. While most clinical applications of cfDNA in oncology focus on finding tumour mutations
34 (e.g., using a targeted panel of cancer driver variants) [8, 9], a lot of research has been carried out
35 around the analysis of coverage and fragmentome profiles. Indeed, the copy number aberrations (CNAs)
36 carried by the genome of cancerous cells are detectable by low-coverage whole-genome sequencing and
37 downstream analysis of cfDNA from cancer patients [10, 11]. Because cfDNA can be collected in a non-
38 or minimally-invasive manner (e.g., blood draw), and thanks to the cost-effectiveness of shallow whole-
39 genome sequencing, liquid biopsies are a valuable candidate for population-wide cancer screening [7, 4]
40 and diagnosis, and considerable research has been devoted to assessing their clinical utility [12].

41 Fragmentomic analysis of cfDNA offers the possibility to improve its use as a sensitive biomarker for
42 cancer detection [13, 14], as cfDNA fragments mirror the chromatin accessibility, nucleosome positioning
43 and degradation pattern of their tissue of origin [15, 16]. For this reason, CNA calling can be comple-
44 mented with fragmentation profile analysis based on fragment length, as well as positional information
45 [13, 17, 18, 19]. Indeed, the distribution of cfDNA fragment lengths is shifted downward in circulating
46 tumour-derived DNA (ctDNA), supporting signatures of their cellular origin [15, 20].

47 Beyond fragmentomics, methylation patterns are indicative of the tissue of origin, and methylation
48 signatures have been exploited for sensitive cancer detection and tissue-of-origin identification [21]. Fi-
49 nally, recent work has been devoted toward integrating multiple properties of cfDNA within a single
50 multimodal analysis approach, including variant calling, CNAs, methylation and fragmentomic profiles,
51 as well as other complementary sources of information such as nucleosome-depleted region (NDR) profiles
52 [22] or fusion gene detection [23].

53 However, the development of reliable models that are predictive of relevant clinical outcomes (for
54 example, diagnosis) remains challenging because of the limited number of available cases (especially for
55 disorders with smaller incidence rate), the high dimensionality of cfDNA data and the various sources
56 of biases related to preanalytical settings. These latter biases mainly arise when protocol changes are
57 introduced over time or between different centers. For example, the choice of blood collection tube might
58 affect cfDNA concentrations and the prominence of leukocyte DNA [24, 25], which could in turn affect
59 the detection of low-frequency variations from cancerous cells. Other preanalytical factors include the
60 delay before centrifugation and protocols for plasma separation, and plasma storage conditions [26]. For
61 example, two-step centrifugation reduces contamination by genomic DNA thanks to reduced white blood
62 cell lysis, compared to one-step centrifugation [27]. Moreover, some DNA extraction platforms, such

63 as Maxwell and QIAsymphony, preferentially isolate short fragments over long ones [28]. The choice of
64 library preparation kit directly affects the distribution of read counts, as the polymerase enzymes used
65 in these kits have different levels of efficiency in amplifying fragments with low vs. high GC-content [29].
66 For instance, some library preparation kits (e.g., Nextera XT) introduce a bias toward low-GC regions
67 [30]. Multiplexed sequencing without suitable dual indexing can result in barcode swapping, and the
68 swapping rates are platform-dependent (e.g., higher on HiSeqX or 4000 compared to MiSeq) [31]. Index
69 swapping mechanism is caused both by multiplex PCR and flow cell chemistry, and is responsible for
70 cross-contamination within the same pool [32]. Finally, the choice of sequencing instrument also plays a
71 role. For example, different GC-content bias profiles have been reported for Illumina MiSeq and NextSeq
72 platforms, compared to PacBio or HiSeq [33].

73 In this work, we focus on the bias correction of genome-wide copy-number (i.e., GIPseq [4]) profiles
74 based on normalised read counts. The aforementioned preanalytical settings can affect the read counts,
75 for example through differential coverage of regions differing by their GC content, thus invalidating direct
76 statistical analysis (e.g., using z -scores) of CNA profiles. Moreover, these distributional shifts [34] are not
77 properly handled by classical Machine Learning algorithms and are responsible for performance drops
78 on test sets. Mitigating these biases is therefore of utmost importance in strengthening biological signals
79 and guaranteeing performance on unseen data. Such a task typically falls in the category of domain
80 adaptation (DA) [35] problems, where computational methods are needed to compensate for the fact
81 that a given model is tested on data drawn from a different distribution than the ones on which it has
82 been trained. In this work, we will refer to the samples being corrected as belonging to the source domain,
83 while the fixed data lies in the target domain. We restricted ourselves to unsupervised DA, where the
84 variable of interest (e.g., whether an individual is affected by a certain condition) is unknown. Such
85 annotations are not necessarily available, especially for rarer diseases. Also, already-existing methods
86 (GC correction) don't require such information and are widely applicable, as they can be applied in a
87 sample-wise fashion. This is highly relevant due to GC and sequencing biases not only operating at the
88 domain-level, but also at the individual level [36]. When multiple source domains coexist, the problem
89 is referred to as a domain generalisation problem [37]. Since multiple domain shifts occurred in our data
90 sets over time, our own method falls under this category.

91 Previous work on the bias correction of copy-number profiles has mostly been directed toward GC-
92 content and mappability bias correction. Benjamini and Speed [38] originally categorised these methods
93 as single position models, fragmentation models, read models, full-fragment models and global models.
94 An example of global model is the widely-used LOESS GC-content bias correction [39, 40], which decor-
95 relates the per-bin GC-content percentage from the normalised read counts based on local regressions.
96 `ichorCNA` [41] is a tool for calling CNA from read counts, that internally performs mappability and
97 GC-correction in a similar way. BEADS [36] falls into the category of read models, as it re-weights

98 individual reads based on their GC-content before computing their per-bin counts. The single position
99 model from Benjamini and Speed [38] relies on the computation of the mean fragment count for each
100 GC stratum, by considering all the mappable positions along the genome having similar GC-content.
101 Finally, the LIQUORICE algorithm [23] operates at the fragment-level, by computing a coverage weight
102 for each position covered by each fragment. More recently, distance learning and k-nearest neighbours
103 have been proposed [42] to correct coverage profiles. As opposed to previous work, the latter approach
104 exploits information from the whole data set to correct each individual sample.

105 On the Machine Learning side, previous work on unsupervised DA includes the following. Discriminator-
106 free domain adversarial learning [43] uses domain adversarial learning [44] to obtain a common represen-
107 tation space for all domains. Kernel mean matching [45] aims at matching the higher-order moments of
108 the underlying distributions using kernel functions. Multilevel domain adaptive learning matches the dis-
109 tributions at each intermediate layer of the neural network in a hierarchical fashion [46]. Reconstruction-
110 based methods, such as Cycle-Consistent Adversarial Domain Adaptation (CyCADA) [47], reconstruct
111 samples from the target domain using the samples from the source domain as input. It should be noted
112 that most existing methods use a latent space to represent the samples, which means that the debiased
113 representation is not directly interpretable, which runs afoul of ubiquitous need for interpretability and
114 explainability in human genetics [48]. A key motivation for our work is thus to design a domain adap-
115 tation method that adjusts cfDNA profiles in a transparently interpretable manner, by operating at the
116 read count level (i.e., without having recourse to a latent space as domain adversarial methods would)
117 and preserving the z -scores produced by the original data.

118 In this article, we present an advanced data normalisation method for cell-free DNA sequencing data
119 building on optimal transport (OT) theory [49, 50]. OT builds on strong mathematical bases and allows
120 to define a patient-to-patient relationship across domains without the need to build a common latent
121 representation space, as mostly done in the DA field. This enables high interpretability, as samples can
122 be corrected in the original data space (e.g., read counts) directly. Because we originally designed this
123 approach for the correction of normalised read counts within predefined bins, it falls under the category of
124 “global models” according to the Benjamini/Speed classification [38]. In summary, we aim at correcting
125 and mapping the data distribution from a source domain onto the data distribution obtained in a target
126 domain, to enable more robust downstream analysis. As the ultimate goal is to go beyond the classical
127 case-control setting and build models capable of accurately processing data from various sources, we
128 hypothesised that bias removal is a good candidate to increase the effective size of available data sets
129 through their fusion and thus benefit from the scalability of Machine Learning models and enhance their
130 performance. This flexibility would, among other things, reduce the need for laboratories to consistently
131 build new reference sets, as well as enable high reusability of older samples or data collected in unrelated
132 studies. In this article, we report enhanced cancer detection with prior domain adaptation and show that

133 cohorts can be corrected to match the same distribution while preserving the original biological signals
134 (e.g., copy number aberrations) in each patient.

135 2 Results & discussion

136 In each of the following experiments, we compared our domain adaptation approach to the original data
137 (no correction), as well as center-and-scale standardisation and LOWESS GC-content bias correction,
138 when relevant. Center-and-scale standardisation consists in standardising the data points from each
139 domain separately, by subtracting their median and dividing by the average squared deviation from the
140 median. As this method is univariate, it has been performed on each bin and each data set separately.

141 2.1 Preanalytical biases can be accurately removed by optimal trans- 142 port

143 In Fig. 1A, we performed a (Gaussian) kernel principal component analysis on the controls from the
144 HEMA data set to illustrate the impact of the change in library preparation kit on the coverage profiles.
145 The two control sets belong to domains \mathcal{D}_7 and \mathcal{D}_8 from Table 6, respectively. It appears immediately
146 that LOWESS GC-correction is not sufficient for superimposing the two panels of controls. Center-and-
147 scale standardisation and optimal transport both succeed in that respect, which is expected since these
148 two methods have been designed to explicitly correct data sets. Conversely, GC-correction alleviates
149 GC-content biases at the level of individual samples only.

150 For each 1 Mb bin, we ran a Two-sample Kolmogorov-Smirnov test (two-sided) to quantify the
151 differences in normalised read counts between the two panels from domains \mathcal{D}_7 and \mathcal{D}_8 , and reported
152 the distribution of per-bin p -values in Fig. 1B, both in linear and log scales. While center-and-scale
153 standardisation and optimal transport show similar distributions, the latter contains a median p -value
154 close to 0.5 and a more uniform distribution. Such property is desirable since p -values are expected to be
155 uniformly distributed under the null hypothesis and some other conditions [51]. Indeed, a distribution
156 shifted leftward indicates the presence of confounders responsible for some discrepancy between the two
157 distributions, as shown both in the absence of correction or with GC-correction. Inversely, a rightward-
158 shifted distribution illustrates overcorrection, as suggested for center-and-scale standardisation. This
159 shift can however also occur for biological reasons, for example when the samples in the first domain are
160 replicates of the samples from the second domain.

161 In Fig. 1C, we reported the z -scores of each sample and bin all together in a single scatter plot, before
162 and after correction. We observe a good consistency between the GC-corrected normalised read counts
163 and the OT-adapted ones, supported by a Pearson correlation coefficient of 0.98. This result suggest that
164 our DA method does not appear to be overcorrecting the normalised read counts. We however observe

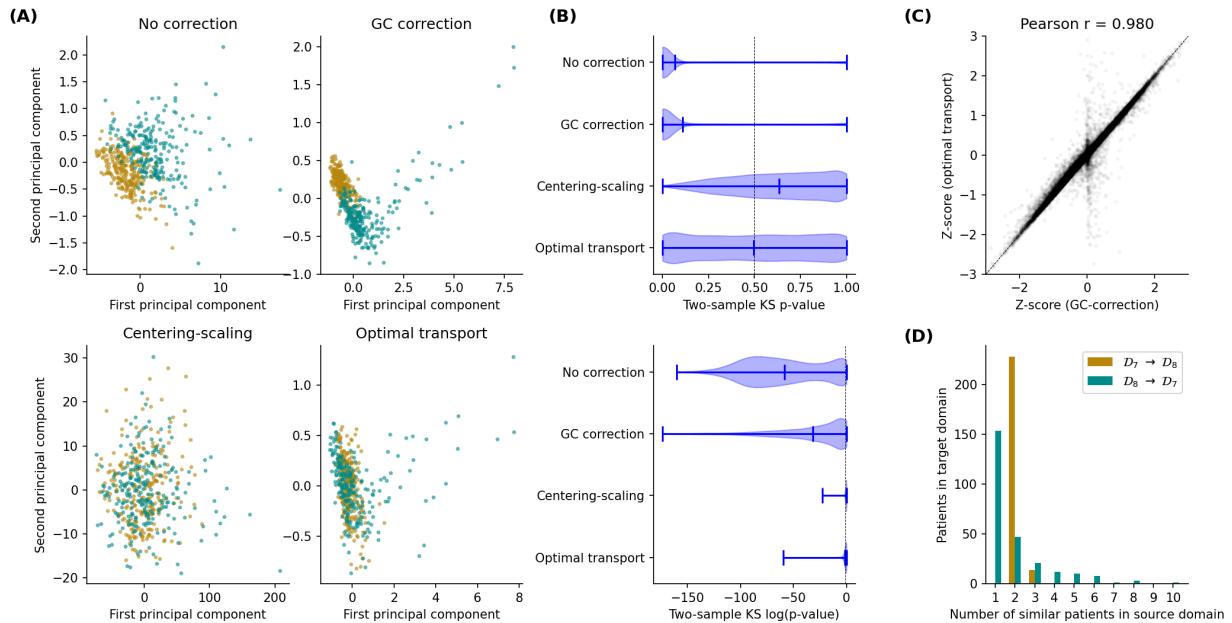


Figure 1: Correction of the healthy samples from the HEMA data set. (A) Kernel principal component analysis of coverage profiles from the two control cohorts (haematological cancer data set). (B) Two-sample Kolmogorov-Smirnov testing, for each bin, of the difference between the two cohorts. p -values are shown in both linear and log scales. (C) z -scores of the coverage profiles before and after GC-correction and domain adaptation. (D) Histogram depicting, for each patient of the target domain, the number of patients in the source domain for which the transport plan shows a relationship.

165 a very small subset of the bins around 0 for which our method seems to overcorrect the normalised read
166 counts. These bins are located in low-mappability regions, and we suggest that our method is correcting
167 in these few regions relatively more due to the lack of information (the z-scores between these bins and
168 the flanking bins are either not consistent, or mostly made of zeroes). These distortions are irrespective to
169 the original sequencing depth, as the coverage profiles have been normalised. Given the lack of reliability
170 of the original data in these bins (mostly zero counts), we suggest that the information loss is residual
171 compared to high-mappability regions. Let's note that it is usually advised in the literature to disregard
172 these bins before performing further analysis.

173 Finally, Fig. 1D reports the number of non-zero entries in the final transport plan Γ inferred by our
174 model, for each patient of domains \mathcal{D}_7 (green bars) and \mathcal{D}_8 (golden bars). Without the use of entropic
175 regularisation on Wasserstein distance, the model naturally assigns each control from the source domain
176 to *multiple* controls from the target domain, thus reflecting the underlying complexity of the biological
177 processes that generate the read counts. These peculiarities are implicitly acknowledged by our model,
178 by not enforcing the patients to be assigned in pairs.

179 We conducted similar analyses on the OV and NIPT data sets and obtained slightly different results
180 due to the smaller numbers of samples. In particular, visualisation based on kernel PCA show that
181 the corrected cohorts are still not centered one onto the other. Indeed, since our convergence criterion
182 builds on statistical tests, our algorithm is designed to halt earlier, due to p -values being higher when the
183 number of samples is low. This mechanism prevents overcorrection when the available data is insufficient
184 for accurate bias estimation. Also, histograms on the entries of the transport plans showed that each
185 patient from the source was mapped on exactly one patient from the target domain, which met our
186 expectations on these two data sets due to the way domains have been defined (samples were paired).
187 Results have been reported in Suppl. Fig. 2-8.

188 2.2 Patient-to-patient mapping is accurate when the cohorts are rep- 189 resentative of the exact same population

190 While our method is effectively capable of superimposing patients cohorts there is no *a priori* guarantee,
191 besides theoretical considerations, that the coverage profiles are being corrected in the right direction.
192 For this purpose, we considered 64 biological samples with ovarian carcinoma that have been processed
193 with both Illumina HiSeq 2500 and HiSeq 4000 sequencing platforms. The two cohorts belong to domains
194 \mathcal{D}_{10} and \mathcal{D}_9 from Table 6, respectively. In this section, we applied our domain adaptation technique on
195 these two cohorts to see whether the bias removal is decreasing the distance between profiles originating
196 from the same biological sample. Indeed, paired profiles are expected to overlap when the biological
197 variation overcomes technical biases. By design, the cohorts consisted of the same patients, therefore
198 we not only tested our algorithm with default hyper-parameters (noted as "default" in the table), but

Table 1: **Performance assessment using paired samples from the OV data set.** Accuracy obtained after data correction, when assigning a sample from target domain to the closest sample in source domain, and using the Euclidean metric. In the first column, samples from domain \mathcal{D}_9 have been corrected toward \mathcal{D}_{10} , and vice versa.

Method	Correctly identified pairs	
	$\mathcal{D}_9 \rightarrow \mathcal{D}_{10}$	$\mathcal{D}_{10} \rightarrow \mathcal{D}_9$
No correction	17 / 64	14 / 64
Center-and-scale	20 / 64	27 / 64
GC-correction	23 / 64	30 / 64
Optimal transport (default)	24 / 64	31 / 64
Optimal transport ($\lambda = 0$)	47 / 64	48 / 64
Optimal transport (Γ)	51 / 64	50 / 64

199 also without regularisation or early stopping criterion (“ $\lambda = 0$ ”), and using the transport plan directly
200 to assign pairs and compute accuracy. The purpose was mostly to test the assignment of patients and
201 assess whether OT can map each sample to its correct counterpart.

202 In Table 1, we compared our correction method with the GC-correction approach, as well as center-
203 and-scale standardisation. Because domain adaptation and estimation of accuracy can be done in two
204 ways (as there are two domains), we reported both settings as separate columns in the table. While
205 center-and-scale standardisation and GC-correction fails at pairing the samples with more than 50%
206 accuracy, we observed a sharp improvement in accuracy with our domain adaptation approach when
207 disabling regularisation. Without correction, only 17 and 14 profiles were correctly assigned to their
208 counterpart in the source domain. GC-correction enabled the correct assignment of 23 and 30 patients,
209 while our domain adaptation approach allowed the correct mapping of 47 and 48 patients when $\lambda = 0$.

210 In Table 2, we report the same metric on the NIPT data set, where 563 patients have been sequenced
211 twice with different protocols. This data set has been divided in 6 validation groups and each group
212 divided in 2 domains (see table 6). Each group was designed to control for exactly one preanalytical
213 variable. As an example, the $\mathcal{D}_{1,a}$ and $\mathcal{D}_{1,b}$ domains differ by their library preparation kits, namely
214 TruSeq Nano and Kapa HyperPrep kits. We repeated the experiment done in previous section on each
215 of these groups and reported accuracy in Table 2. We can observe that our approach drastically
216 improves over standard methods for all groups. In particular, the transport plan Γ inferred by our
217 method perfectly identified the sample pairs for all 6 groups except the TruSeq Nano/Kapa HyperPrep
218 and Kapa/IDT groups, while still improving accuracy by a large margin compared to GC-correction.
219 These results suggest that OT is a suitable framework for estimating patient-to-patient similarities, even
220 in the presence of a limited number of samples (i.e., 45).

Table 2: **Performance assessment using paired samples from the NIPT data set.** Accuracy obtained after data correction, when assigning a sample from target domain to the closest sample in source domain and using the Euclidean metric, on each of the 6 validation groups. Each validation group was designed to control for one preanalytical variable at a time.

Preanalytical variable	Comparison	No correction	Center-and-scale	GC-correction	Optimal transport		
					$\lambda = 0.5$	$\lambda = 0$	Γ
Lib. prep. kit	TruSeq Nano/Kapa HyperPrep ($\mathcal{D}_{1,a}/\mathcal{D}_{1,b}$)	2 / 66	28 / 66	28 / 66	44 / 66	58 / 66	64 / 66
Adapters	Kapa/IDT ($\mathcal{D}_{2,a}/\mathcal{D}_{2,b}$)	15 / 179	32 / 179	96 / 179	98 / 179	151 / 179	157 / 179
Sequencer	HiSeq2000/NovaSeq ($\mathcal{D}_{3,a}/\mathcal{D}_{3,b}$)	1 / 45	38 / 45	19 / 45	29 / 45	45 / 45	45 / 45
Sequencer	HiSeq2500/NovaSeq ($\mathcal{D}_{4,a}/\mathcal{D}_{4,b}$)	2 / 45	43 / 45	40 / 45	43 / 45	45 / 45	45 / 45
Sequencer	HiSeq4000/NovaSeq ($\mathcal{D}_{5,a}/\mathcal{D}_{5,b}$)	5 / 93	86 / 93	75 / 93	78 / 93	93 / 93	93 / 93
NovaSeq Chemistry	V1/V1.5 ($\mathcal{D}_{6,a}/\mathcal{D}_{6,b}$)	12 / 135	60 / 135	82 / 135	89 / 135	135 / 135	135 / 135

Table 3: **Haematological cancer detection using supervised approaches.** Sensitivity, specificity, Matthews correction coefficient (MCC), AUROC and AUPR obtained through validation of 3 supervised models. These models have been successively trained to distinguish Hodgkin lymphoma, DLBCL and multiple myeloma cases from healthy controls. Sensitivity, specificity and MCC were computed using the cutoff that maximises MCC.

Supervised model	Logistic regression					Random forest					Support vector machine				
	Sen.	Spec.	MCC	AUROC	AUPR	Sen.	Spec.	MCC	AUROC	AUPR	Sen.	Spec.	MCC	AUROC	AUPR
Hodgkin lymphoma															
No correction	95.0 %	97.1 %	92.2 %	98.2 %	98.3 %	76.0 %	97.5 %	76.9 %	93.3 %	93.4 %	95.5 %	86.0 %	80.6 %	96.3 %	95.4 %
Center-and-scale	96.1 %	94.6 %	90.4 %	98.3 %	98.3 %	89.9 %	89.3 %	78.8 %	95.0 %	94.1 %	92.7 %	88.8 %	80.9 %	95.1 %	93.8 %
GC correction	92.7 %	99.2 %	92.8 %	98.7 %	98.8 %	87.7 %	97.5 %	86.5 %	97.0 %	97.1 %	96.1 %	95.9 %	91.8 %	98.7 %	98.6 %
Optimal transport	96.6 %	97.1 %	93.7 %	98.9 %	99.0 %	92.2 %	97.1 %	89.8 %	97.8 %	97.9 %	94.4 %	97.5 %	92.2 %	98.6 %	98.3 %
DLBCL															
No correction	75.7 %	99.6 %	83.6 %	92.8 %	86.1 %	32.4 %	99.2 %	49.1 %	84.2 %	56.2 %	78.4 %	97.5 %	77.7 %	95.5 %	83.9 %
Center-and-scale	86.5 %	98.8 %	87.3 %	96.6 %	92.8 %	64.9 %	97.5 %	68.3 %	94.1 %	79.0 %	89.2 %	95.9 %	79.9 %	96.8 %	84.2 %
GC correction	81.1 %	98.3 %	82.3 %	96.4 %	87.7 %	67.6 %	97.9 %	71.7 %	91.5 %	78.6 %	78.4 %	99.2 %	83.7 %	97.4 %	88.0 %
Optimal transport	94.6 %	98.3 %	90.9 %	97.9 %	94.4 %	73.0 %	98.3 %	77.0 %	94.6 %	86.0 %	89.2 %	97.5 %	84.8 %	96.7 %	88.1 %
Multiple myeloma															
No correction	90.9 %	99.6 %	92.4 %	98.0 %	92.1 %	63.6 %	98.8 %	70.3 %	91.0 %	70.6 %	63.6 %	96.7 %	60.3 %	93.7 %	62.4 %
Center-and-scale	72.7 %	99.6 %	81.4 %	97.3 %	89.4 %	63.6 %	98.3 %	68.0 %	93.3 %	64.6 %	59.1 %	97.5 %	60.5 %	93.6 %	63.1 %
GC correction	90.9 %	100.0 %	95.0 %	99.2 %	96.7 %	77.3 %	100.0 %	87.0 %	95.5 %	89.4 %	81.8 %	97.9 %	78.2 %	97.4 %	83.6 %
Optimal transport	95.5 %	100.0 %	97.5 %	99.7 %	98.0 %	86.4 %	99.6 %	89.8 %	96.1 %	91.6 %	95.5 %	95.9 %	78.4 %	98.3 %	85.7 %

221 2.3 Optimal transport disentangles cancer signals from non-biological

222 sources of variation

223 We further tested the applicability of our method to the detection of haematological cancer and investigated 224 whether data correction preserves the signals of interest (i.e., cancer). For this purpose, we trained 225 simple Machine Learning models using the `scikit-learn` [52] Python library. The HEMA data set is 226 composed of 179 cases of Hodgkin lymphoma, 22 of multiple myeloma and 37 of diffuse large B-cell 227 lymphoma at different stages, as well as two control sets of size 242 and 257 respectively. The cancer 228 samples as well as the healthy cohort from \mathcal{D}_7 have been processed with the TruSeq ChIP kit (Illumina), 229 while the second healthy set from \mathcal{D}_8 has been prepared with the TruSeq Nano kit (Illumina). TruSeq 230 Nano samples have been corrected to match the distribution of the TruSeq ChIP controls and validation 231 was performed on the TruSeq ChIP cases and controls. As explained in the Methods section and as 232 illustrated in Fig. 6D, corrected samples were used only for training, to avoid overoptimistic estimation 233 of sensitivity and specificity resulting from controls being accidentally shifted away from the cancer cases.

Table 4: **Ovarian carcinoma detection using supervised approaches.** Sensitivity, specificity, Matthews correction coefficient (MCC), AUROC and AUPR obtained through validation of 3 supervised models. These models have been trained to distinguish ovarian carcinoma cases from healthy individuals. Sensitivity, specificity and MCC were computed using the cutoff that maximises MCC.

Supervised model	Logistic regression					Random forest					Support vector machine				
	Metric	Sen.	Spec.	MCC	AUROC	AUPR	Sen.	Spec.	MCC	AUROC	AUPR	Sen.	Spec.	MCC	AUROC
$\mathcal{D}_9 \rightarrow \mathcal{D}_{10}$															
No correction	59.9 %	80.7 %	33.4 %	67.2 %	92.9 %	50.5 %	81.3 %	26.0 %	59.6 %	90.5 %	57.5 %	87.9 %	34.5 %	68.4 %	93.5 %
Centering-scaling	57.3 %	81.9 %	32.7 %	65.7 %	92.7 %	61.5 %	65.2 %	28.7 %	58.4 %	89.8 %	64.8 %	75.5 %	35.1 %	67.8 %	93.2 %
GC correction	60.1 %	79.4 %	33.0 %	68.0 %	93.2 %	64.7 %	72.0 %	32.1 %	67.0 %	92.7 %	62.1 %	80.4 %	33.3 %	68.8 %	93.5 %
Optimal transport	58.5 %	86.6 %	35.4 %	70.5 %	94.0 %	75.5 %	64.9 %	38.0 %	70.8 %	93.7 %	71.4 %	74.1 %	40.0 %	73.7 %	94.5 %
$\mathcal{D}_{10} \rightarrow \mathcal{D}_9$															
No correction	77.0 %	70.3 %	43.3 %	77.5 %	93.4 %	78.6 %	77.5 %	51.0 %	83.0 %	95.5 %	75.8 %	81.4 %	50.4 %	82.5 %	95.5 %
Centering-scaling	77.9 %	70.6 %	44.5 %	77.5 %	93.5 %	73.1 %	84.0 %	49.0 %	82.1 %	95.3 %	72.1 %	86.8 %	49.9 %	81.9 %	95.4 %
GC correction	82.2 %	68.0 %	47.3 %	80.3 %	94.4 %	67.4 %	90.6 %	48.4 %	80.0 %	95.0 %	70.7 %	86.7 %	48.4 %	81.0 %	95.2 %
Optimal transport	79.4 %	78.5 %	52.0 %	83.3 %	95.7 %	64.9 %	93.4 %	47.0 %	78.8 %	94.7 %	69.9 %	91.6 %	50.7 %	82.5 %	95.7 %

In Table 3, we reported the performance of binary prediction of haematological cancers, namely Hodgkin lymphoma (HL), diffuse large B-cell lymphoma (DLBCL) and multiple myeloma (MM). Evaluation metrics have been estimated using fivefold cross-validation. Only samples from the training set have been corrected by our method, so as to avoid any data contamination between the training and validation set (see Methods). Sensitivity, specificity and MCC were determined based on the cutoff that produced the highest MCCs. As can be observed, data correction with our domain adaptation approach almost systematically improves cancer detection in terms of MCC, AUROC and AUPR, either through an increase in sensitivity, specificity, or both. In particular, it produced the best MCC in all of the nine settings (3 models \times 3 pathologies), the best AUPR in 8 settings and the best AUROC in 7 settings. Strikingly, it outperformed GC-correction by 8.6% and 5.3% in MCC for DLBCL prediction with logistic regression and random forest, respectively.

Analogous results obtained on the OV data set have been reported in Table 4. Because the ovarian data set contains cases and controls from both domains, we could perform our validation in both directions (adapting samples from \mathcal{D}_9 to \mathcal{D}_{10} and assessing performance on remaining samples from \mathcal{D}_{10} , and vice versa), corresponding to the top and bottom parts of Table 4. The proposed method systematically produced an improvement in MCC and AUPR in all three settings and improved AUROC in two out of the three settings. In particular, we noticed gains of 2.8%, 6.8% and 8.8% in MCC, respectively. In light of these results, we showed the ability of our method to disentangle sources of variation of biological and technical origins. Indeed, the supervised Machine Learning approaches for cancer detection benefited from the improvement in data quality resulting from domain adaptation, yielding better generalization and validation accuracy. Although these AUROC scores are far from being clinically relevant, they must be contextualized. First, we evaluated our predictive models in an artificially difficult setting where newly-collected samples have been processed with a different technology, while wet-lab protocols should be standardised in clinical settings. Second, cancer cohorts include many low-grade and borderline cases, which are most likely chromosomally stable and therefore may be overlooked by our CNA-based approach.

Table 5: **Quantitative assessment of the consistency of CNA calling.** `ichorCNA` results on ovarian carcinoma cases from \mathcal{D}_9 using the panel of controls from \mathcal{D}_9 , compared to the same cases corrected ($\mathcal{D}_9 \rightarrow \mathcal{D}_{10}$) by each method and using the panel of controls from \mathcal{D}_{10} . Metrics in the upper part of the table focus on per-bin metrics, namely the copy number in each bin, the presence of a CNA (copy number $\neq 2$) in each bin, the SOV_REFINE [55] score and the log-ratios. We used the SOV_REFINE segmentation metric to measure the overlap between called CNAs. The metrics in the bottom section of the table are the average absolute errors on different model parameters estimated by `ichorCNA`.

Metric	No correction	center-and-scale standardisation	OT
Accuracy (copy number)	71.3 %	39.5 %	73.4 %
Accuracy (presence of CNA)	76.8 %	53.2 %	78.7 %
SOV_REFINE (copy number)	0.7401	0.5218	0.7552
Error on log-ratios	0.0083	0.1164	0.0070
Error on tumour fraction	0.0045	0.0197	0.0042
Error on tumour ploidy	0.0880	0.2293	0.0836
Error on tumour cellular prevalence	0.0888	0.1209	0.0866
Error on proportion of subclonal CNAs	0.1366	0.1414	0.1268

259 **2.4 Optimal transport preserves copy number aberrations across do-**
 260 **mains**

261 As we are fully aware of the overfitting risks associated with our model, we made sure the adapted
 262 samples were consistent with the original data by verifying whether the CNAs of each patient were
 263 conserved. For this purpose, clonal and subclonal CNAs were called using the `ichorCNA` v0.2.0 R
 264 package (details in Suppl. Mat. 2) and we benchmarked our method on the entire OV data set. Indeed,
 265 our domain adaptation method provides adjusted profiles that are transparently interpretable and are
 266 directly comparable across domains, allowing their comparison in terms of read counts before and after
 267 correction.

268 Let us denote by \mathcal{D}_9 and \mathcal{D}_{10} the wet labs from which the samples originate (see Table 6), respectively
 269 [53] and [54]. We first built a panel of controls (reference set) using the 79 controls from domain \mathcal{D}_9 and
 270 called CNAs in cancer cases from \mathcal{D}_9 . Then, we built a panel of controls using the 39 controls from \mathcal{D}_{10}
 271 and called CNAs in the same cancer cases from \mathcal{D}_9 , after adapting them with our proposed approach to
 272 match the distribution of cancer cases in \mathcal{D}_{10} . Finally, we quantified the similarity of `ichorCNA` results
 273 using different metrics, as shown in Table 5. Because `ichorCNA` performs GC-correction “under the
 274 hood”, we did not include GC-correction in the benchmark, as it would produce results highly similar to
 275 the baseline. Also, in the case of center-and-scale standardisation we enforced positivity by clipping the
 276 corrected read counts, as negative values cannot be handled by `ichorCNA`.

277 Even in the absence of any correction, the per-bin copy numbers estimated for cancer CNAs are not
 278 consistent, as we see that the accuracy and SOV_REFINE measures are far from being perfect. This can
 279 be attributed not only to (1) the difference in protocols used to produce the two panels of normals, but

280 also (2) the limited number of controls, (3) the fact that the controls differ between the two domains,
281 and (4) the experimental uncertainty (stochastic noise). Overall, both center-and-scale standardisation
282 and optimal transport preserved the original normalised read counts sufficiently since they both provided
283 results similar to the baseline (“no correction”). However, our method improves over center-and-scale
284 standardisation regardless of the evaluation metric. After applying our DA method on the cancer cases,
285 73.4% of the bins were assigned the correct copy number and segmentation of CNAs produced an overlap
286 score of 0.7552. As illustrated in Fig. 2, the copy numbers called by **ichorCNA** in \mathcal{D}_9 (panel A) are mostly
287 preserved without (B) or after (D) correction. The least consistent results were produced by center-
288 and-scale standardisation, where some disruptions have been introduced at multiple locations (e.g., some
289 higher copy numbers in chromosome 3).

290 The average absolute error on the estimation of tumour fraction is 0.0042, which is acceptable given
291 the error of 0.0045 in the absence of any correction and the standard deviation of the tumour fraction
292 estimates (0.0464). Despite the limited size of our reference sets and therefore the potentially overpes-
293 simistic assessment of the inconsistencies of **ichorCNA**’s results, we conclude that most of the CNAs have
294 been preserved and that the proposed method does not disrupt the original data, as a more straightfor-
295 ward standardisation approach would. Since **ichorCNA** offers the possibility to call CNAs without panels
296 of normals, we ran similar analysis without controls and observed more consistent results between the
297 two domains. We reported these results in Suppl. Tab. 1 and Suppl. Fig. 1.

298 Estimated tumour fractions before and after correction have been reported in Fig. 3, showing good
299 consistency both in the presence ($r=0.973$, $p\text{-value}=1.09\text{e-}205$, two-sided test) or the absence ($r=0.980$,
300 $p\text{-value}=1.77\text{e-}224$) of the \mathcal{D}_{10} panel of controls.

301 2.5 Preanalytical variables are mostly discrete

302 A major limitation of our approach is its inherent restriction to discrete settings, where the technical
303 counfounder is acting as a dummy variable and reflects whether some technology as been used to produce
304 a sample or not. However, to the best of our knowledge there is no continuous preanalytical variable in
305 whole-genome sequencing that induces gradual changes in the normalised read counts and in our data
306 sets. A potential exception is the plasma separation delay, measured as the time elapsing between the
307 blood draw and the separation of the plasma from the buffy coat. We tested Pearson and Spearman
308 correlation for each 1 Mb genome bin on the HEMA data set, using a significance level of 0.01 and
309 applying the Benjamini-Hochberg procedure to account for multiple testing. As shown in Fig. 4B, no bin
310 was found to be significantly correlated with the plasma separation delay. The normalised reads counts
311 of the NIPT samples in the first 1 Mb bin of chromosome 6 (bin showing highest correlation with plasma
312 separation delay) are shown in fig. 4A.

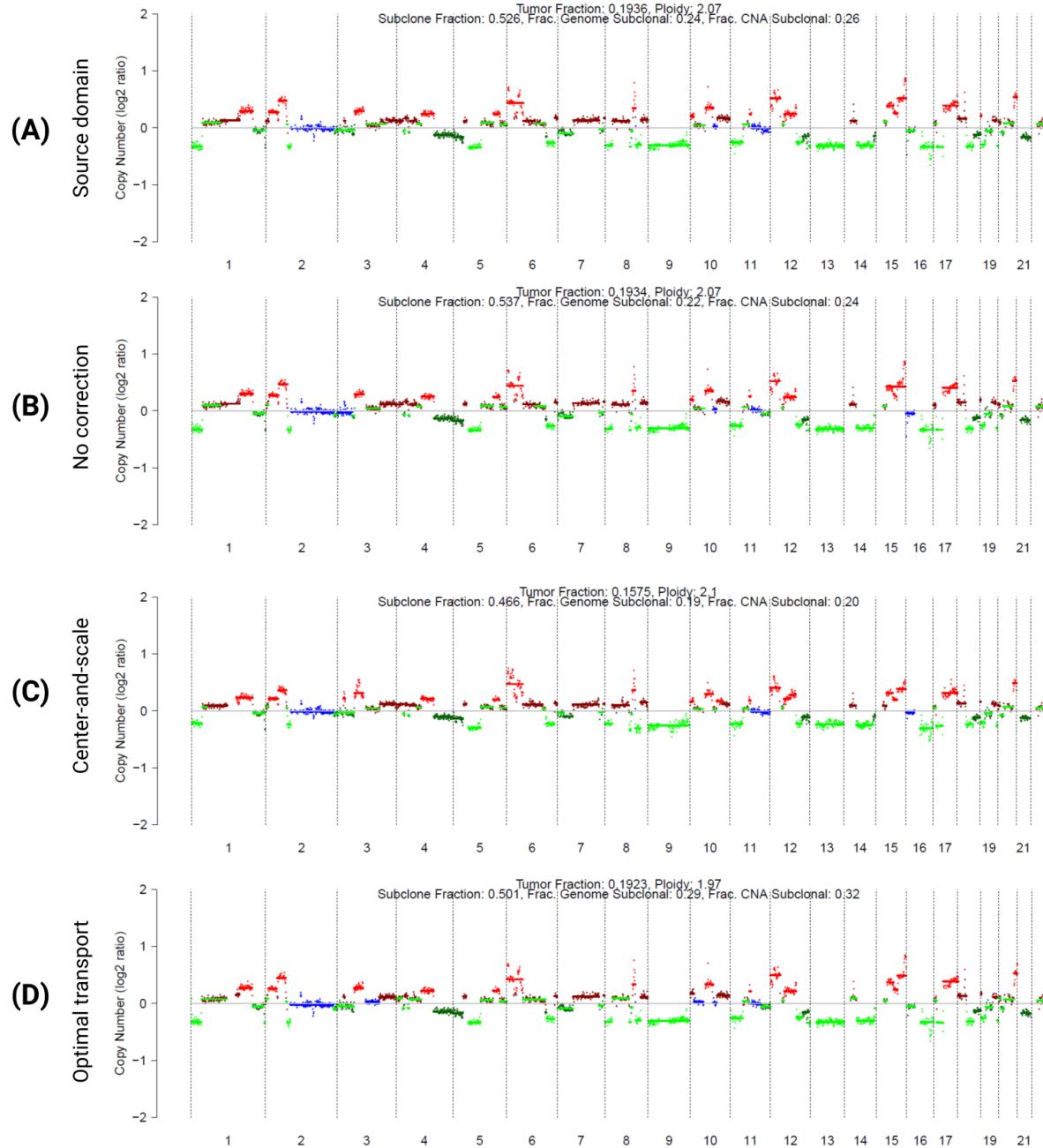


Figure 2: **Qualitative assessment of the consistency of CNA calling.** Comparison of the CNAs called by `ichorCNA` on a late stage ovarian carcinoma case from \mathcal{D}_9 , before and after domain adaptation. Green and red colouring correspond to deletions and gains, respectively. (A) Using \mathcal{D}_9 controls. (B) Using \mathcal{D}_{10} controls. (C) \mathcal{D}_9 cancer cases (including the case shown) centered-and-scaled toward \mathcal{D}_{10} and analysed with \mathcal{D}_{10} controls. (D) \mathcal{D}_9 cancer cases OT-corrected toward \mathcal{D}_{10} , analysed with \mathcal{D}_{10} controls.

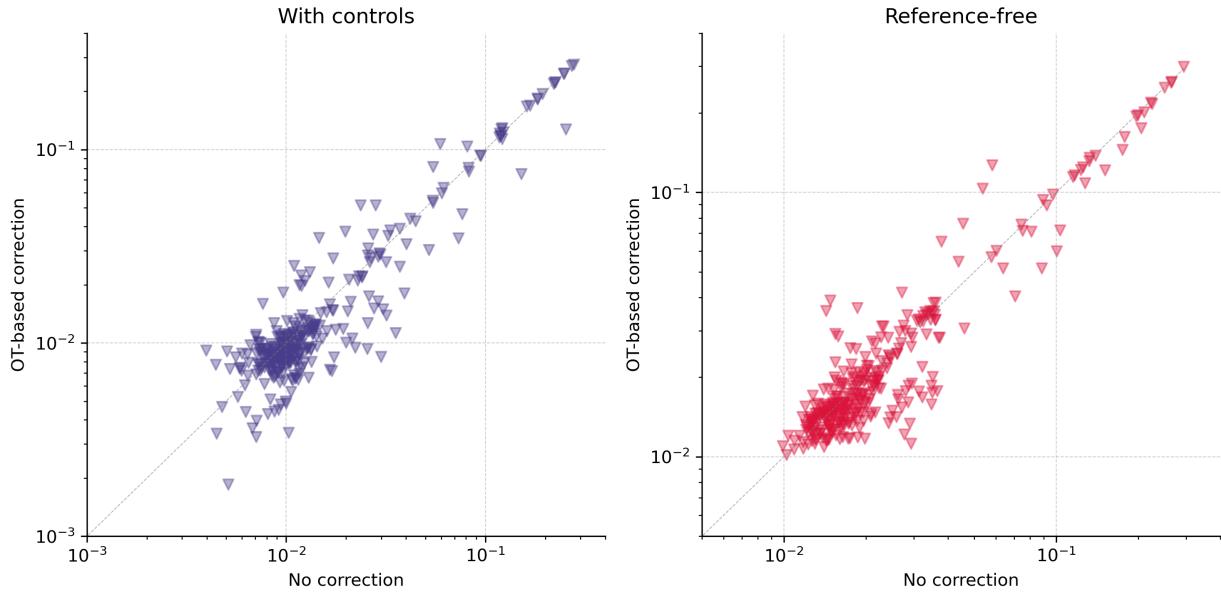


Figure 3: **Tumour fractions before and after domain adaptation.** Fractions have been estimated with *ichorCNA* before and after adapting the \mathcal{D}_9 ovarian carcinoma cases toward the \mathcal{D}_{10} cases. Results have been produced both with (Left) and without (Right) the panel of controls from domain \mathcal{D}_{10} . Fractions are shown in log-scale.

313 **2.6 GC-correction is not sufficient to decorrelate read counts from GC-
314 content**

315 In Figure 1, we showed that GC-correction did not help in reducing the dissimilarity between the two
316 control sets from the HEMA data set. We also reported similar results on the two other data sets in
317 Suppl. Mat. 3. While GC-correction succeeds at reducing the individual variability (experimental vari-
318 ance) of samples as shown by the improved accuracy in Tables 1 and 2, it fails at alleviating the biases
319 introduced by changes in sequencer or library preparation method. Indeed, while this approach improves
320 cancer detection on average by removing technical variations based on GC-content, it does not system-
321 atically produce performance gains, does not efficiently capture similarities between profiles originating
322 from the same biological sample and does not completely remove the clustering effects introduced by the
323 changes in the sequencing methodology. By contrast, our method showed that these expectations can
324 be met through the modelling of patient-to-patient similarities and explicit constraining of the samples
325 based on quantiles. Indeed, these latter constraints drastically lower the risks of overfitting and ensure
326 that the mapping between the cohorts is performed in a biologically meaningful manner.

327 In Figure 5, we reported the two-sample Kolmogorov-Smirnov p -values from Figure 1b as a function
328 of the GC-content, as well as the median p -value per 0.5% GC stratum. Normalised read counts (top
329 left panel) exhibited strong relationship between median p -values and GC-content, demonstrating that
330 regions with low and high GC-content are the most biased by the change from the KAPA HyperPrep to the

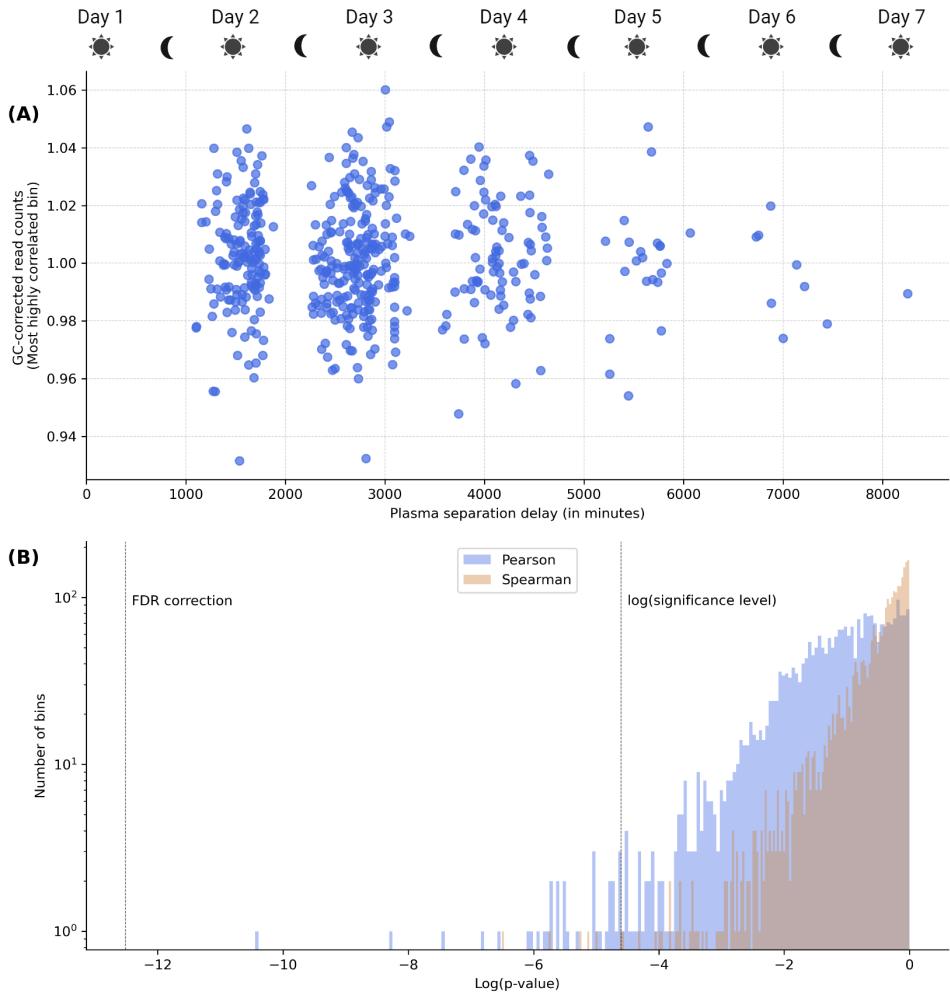


Figure 4: **Effect of plasma separation delay on coverage profiles.** (A) GC-corrected normalised read counts of all samples from the NIPT data set for a specific bin (first 1 Mb bin from chromosome 6), namely the one giving the strongest linear correlation with the plasma separation delay (Pearson's $r=0.1838$, p -value=1.38e-5, two-sided test). (B) Distribution of the p -values computed likewise for each 1 Mb bin, and reported as a histogram. Histogram is shown in log-scale.

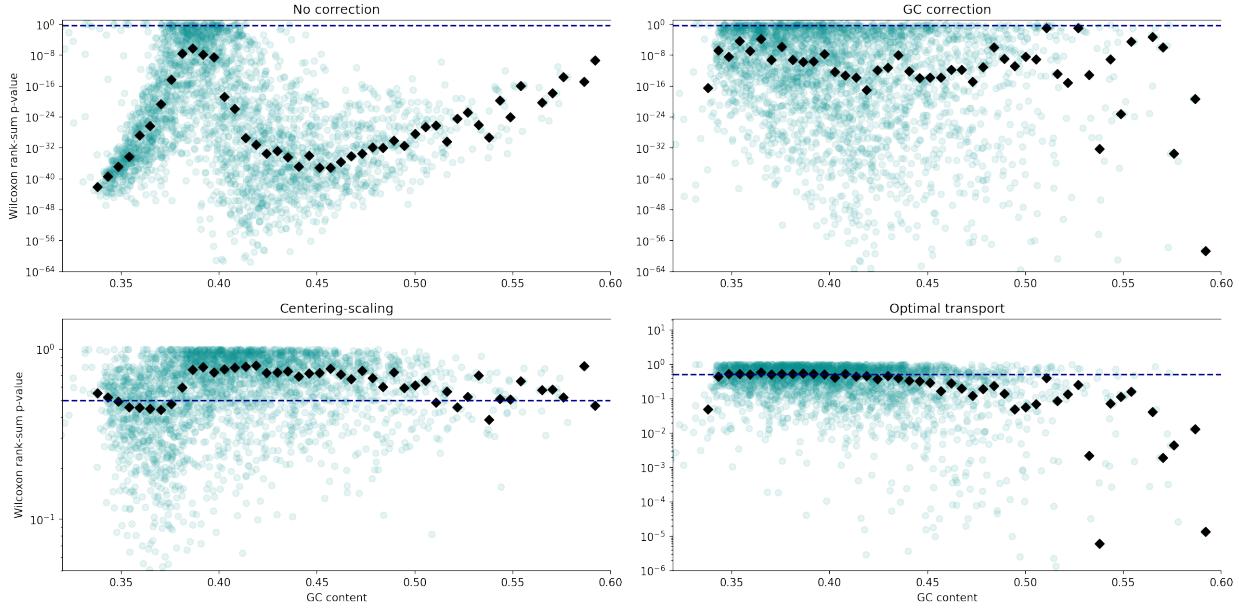


Figure 5: Coverage difference between domains as a function of GC-content. Two-sample Kolmogorov-Smirnov testing, for each 1 Mb bin, of the difference between the two control sets from the HEMA data set processed with different library preparation kits. p -values are shown in log-scale, as a function of the GC-content of each bin. Dashed line corresponds to a 0.5 p -value and black markers to the median p -values per 0.5% GC stratum.

331 TruSeq ChIP library preparation kit. While center-and-scale standardisation is capable of centering these
 332 p -values around 0.5 (which is expected under the null hypothesis since p -values are uniformly distributed
 333 in the $[0, 1]$ interval), we observed the same trend. GC-correction drastically improved in that respect, as
 334 no clear correlation can be observed. However, the median p -value still varies from stratum to stratum,
 335 suggesting that some subtle and nonlinear GC biases remained. Finally, our proposed approach produced
 336 the most consistent results across the GC-content values, showing that it more effectively alleviated these
 337 residual biases.

338 2.7 Domain expertise is the best regularisation

339 There are multiple mechanisms put in place within our model to constrain it to infer a matrix \mathcal{X} that is
 340 as meaningful as possible, namely the quantile-based regularisation function, the positivity constraint on
 341 the read counts, the median normalisation and GC correction. While these constraints are not guarantees
 342 of performance *per se*, they restrict the size of the search space drastically, eliminating a large proportion
 343 of irrelevant solutions. While our method was originally designed for correcting normalised read counts
 344 with the detection of CNAs in mind, it remains sufficiently generic to be applied to any (whole-)genome
 345 sequencing or array-based data set. Indeed, the only requirement is the representativeness of the cohorts
 346 in all domains. However, the requirements imposed on the data are problem-dependent and heavily

347 depend on the nature of the data sets. Therefore, from a general perspective, extra care should be given
348 to the assumptions underlying the model. For instance, preserving the quantiles (e.g., z -scores) might not
349 necessarily be desirable, as read counts are heavily subject to noisy fluctuations that should preferably
350 not be transferred from domain to domain.

351 Beyond aforementioned limitations, our findings open new perspectives for the analysis of high-
352 dimensional whole-genome sequencing data and suggest that appropriate modelling of technical con-
353 founders enables the joint analysis of cohorts sequenced at different points in time (changes of sequencing
354 platform, library preparation kit, DNA extraction method) and space (team, hospital, country). Finally,
355 the analysis of larger data sets is expected to strengthen the detection power of statistical models based
356 on cfDNA data and enable the presymptomatic detection of more subtle cancer signals.

357 3 Methods

358 Throughout the paper, we referred to *cohort* as a set of samples sharing similar high-level characteristics
359 (e.g., a set of healthy controls, a set of pregnant women, a set of ovarian cancer patients) *and* processed
360 using similar protocols. A *domain* is a set that can include multiple cohorts, with no regard for the
361 biological state as only the protocol is considered. Finally, a *data set* can itself include multiple domains,
362 as each data set has been used to assess our method's ability to correct for biases between the domains
363 contained in this data set.

364 3.1 Clinical data

365 We benchmarked our method on three data sets produced in-house, each used for a different purpose. The
366 peculiarities of each data set have been summarised in Table 6. All data sets have a median sequencing
367 coverage between 0.1x and 0.2x.

368 The data sets used in the present work have been collected during studies previously approved by
369 the ethical committee of the University Hospitals Leuven under S/57999, S/62285, S/62795, S/50623,
370 S/56534, S/63240, S/51375, S/55904, S/57144, S/59207, S/64205 and S/64035. Blood samples were
371 collected either into Streck cfDNA BCT or Roche Cell-Free DNA Collection Tubes. cfDNA was extracted
372 using either the QIAamp Circulating Nucleic Acid Kit or the Maxwell automated protocol. Samples were
373 pooled by batches of 20 for multiplex sequencing using all lanes of Illumina flow cells. Each pool was
374 sequenced either on the Illumina HiSeq 2000, HiSeq 2500, HiSeq 4000 or NovaSeq 6000 platform, single-
375 end 1x36bp, 1x50bp or paired-end 2x50bp.

376 The first data set consists of 563 validation samples collected in the context of Non-Invasive Prenatal
377 Testing (NIPT) [56] and processed within the standard NIPT routine twice. These paired samples are
378 divided in 6 validation groups (2×6 domains), each used to quantify the distributional shift introduced

379 by the change of *one* preanalytical variable. The libraries of 66 biological samples have been prepared
380 with either the TruSeq Nano DNA Sample Preparation Kit (Illumina) or the KAPA HyperPrep Kit
381 (Roche) with Kapa Dual indexed adapters. 179 samples have been used with either IDT indexes or
382 KAPA Dual indexed adapters. 45 samples have been processed either by the HiSeq 2000 or NovaSeq
383 platform. 45 samples have been processed either by the HiSeq 2500 or NovaSeq platform. 93 samples
384 have been processed either by the HiSeq 4000 or NovaSeq platform. Finally, 135 samples have been
385 processed by a NovaSeq platform, with either V1 or V1.5 chemistry. In total, this results in 2×563
386 paired samples. We refer to this first data set as NIPT for short.

387 Our second data set (HEMA) focuses on haematological malignancies and is composed of 179 cases
388 of Hodgkin lymphoma (HL), 37 of diffuse large B-cell lymphoma (DLBCL) and 22 of multiple myeloma,
389 as well as 498 controls. Among those, 177 HL cases and 260 controls have been published in a previous
390 study [57] and the entirety of the haematological cancer cases have been included in one of our studies
391 (GipXplore [53]). The libraries of 242 out of the 499 controls have been prepared with the same kit as
392 the haematological cancer cases, namely the TruSeq ChIP Library Preparation Kit (Illumina) [4]. The
393 remaining ones have been prepared with the TruSeq Nano kit.

394 Finally, we further validated our OT-based bias removal approach with controls and ovarian carcinoma
395 cases sequenced by two different teams [54] including ours. These samples were not derived from cancer
396 patients with overt clinical disease, but rather the presence of a suspicious malignancy based on imaging.
397 We refer to this last data set simply as OV. Protocols vary in multiple ways. As an example, all of the
398 samples in \mathcal{D}_9 (see Table 6) have been processed with HiSeq 2500, while all samples in domain \mathcal{D}_{10} have
399 been sequenced by an instrument that differed from HiSeq 2500. Samples from \mathcal{D}_9 and \mathcal{D}_{10} have been
400 prepared with the KAPA HyperPrep and KAPA DNA library preparation kits, respectively. Ovarian
401 carcinoma samples from \mathcal{D}_{10} have been manually extracted with the QIAamp CAN kit. Let's note that
402 \mathcal{D}_9 does not strictly stick to our definition of domain. Despite the heterogeneity caused by the presence
403 of multiple sequencers, we artificially grouped the samples in order to simplify the comparison between
404 laboratories but also better reflect the heterogeneity expected to be encountered in Big Data settings.

405 3.2 Data preprocessing

406 Reads were first aligned to the reference genome hg38 using the Burrows-Wheeler aligner [58], only
407 considering the 22 autosomes. Then, read duplicates were removed with Picard tools [59] and remaining
408 ones were recalibrated with the Genome Analysis Toolkit [60]. Finally, reads were counted in predefined
409 bins of size 1 Mb. Such size offers a good tradeoff between noise reduction and the granularity of
410 achievable chromosomal aberration detection. Finally, counts were normalised by dividing by the median
411 count per Mb of the whole profile to correct for the effective sequencing depth.

Table 6: **Summary of the data sets used in this study.** Samples in sets marked with a '*' have been processed twice, allowing quantitative assessment of the different biases caused by the changes of sequencing protocols. Domains have been defined based on our experiments, as well as the protocol differences shown in the table. For clarity purposes, we systematically refer to these domains in the results section.

Data set	Condition/Setting	Domain	Size	Library preparation kit	Index type	Sequencer	
NIPT	Pregnancy (kit validation)	$\mathcal{D}_{1,a}$	2 × 66*	66	TruSeq Nano	TruSeq Nano	HiSeq 4000
		$\mathcal{D}_{1,b}$	2 × 66*	66	Kapa HyperPrep	Kapa dual	HiSeq 4000
	Pregnancy (adapter validation)	$\mathcal{D}_{2,a}$	2 × 179*	179	Kapa HyperPrep	IDT	HiSeq 4000
		$\mathcal{D}_{2,b}$	2 × 179*	179	Kapa HyperPrep	Kapa dual	HiSeq 4000
	Pregnancy (sequencer validation)	$\mathcal{D}_{3,a}$	2 × 45*	45	Kapa HyperPrep	Kapa dual	HiSeq 2000
		$\mathcal{D}_{3,b}$	2 × 45*	45	Kapa HyperPrep	Kapa dual	NovaSeq
		$\mathcal{D}_{4,a}$	2 × 45*	45	Kapa HyperPrep	Kapa dual	HiSeq 2500
		$\mathcal{D}_{4,b}$	2 × 45*	45	Kapa HyperPrep	Kapa dual	NovaSeq
		$\mathcal{D}_{5,a}$	2 × 93*	93	Kapa HyperPrep	Kapa dual	HiSeq 4000
		$\mathcal{D}_{5,b}$	2 × 93*	93	Kapa HyperPrep	IDT	NovaSeq
Pregnancy (chemistry validation)		$\mathcal{D}_{6,a}$	2 × 135*	135	Kapa HyperPrep	IDT	NovaSeq (V1)
		$\mathcal{D}_{6,b}$	2 × 135*	135	Kapa HyperPrep	IDT	NovaSeq (V1.5)
HEMA	Hodgkin lymphoma	\mathcal{D}_7	179	TruSeq ChIP	-	HiSeq 2000/2500	
	Diffuse large B-cell lymphoma	\mathcal{D}_7	37	TruSeq ChIP	-	HiSeq 2000/2500	
	Multiple myeloma	\mathcal{D}_7	22	TruSeq ChIP	-	HiSeq 2000/2500	
	Healthy	\mathcal{D}_7	242	TruSeq ChIP	-	HiSeq 2000/2500	
	Healthy	\mathcal{D}_8	257	TruSeq Nano	-	HiSeq 2000/2500	
OV	Ovarian carcinoma	\mathcal{D}_9	223	KAPA HyperPrep	IDT	HiSeq 4000	
			32	KAPA HyperPrep	-	HiSeq 4000	
			1	KAPA HyperPrep	-	HiSeq 2000	
			64*	61	KAPA HyperPrep	-	HiSeq 4000
			64*	2	KAPA HyperPrep	-	NovaSeq V1
			64*	1	KAPA HyperPrep	-	HiSeq 2000
	Ovarian carcinoma	\mathcal{D}_{10}	64*	64	KAPA DNA lib. prep.	-	HiSeq 2500
			156	KAPA DNA lib. prep.	-	HiSeq 2500	
Healthy		\mathcal{D}_9	79	KAPA HyperPrep	IDT	HiSeq 4000	
		\mathcal{D}_{10}	39	KAPA DNA lib. prep.	-	HiSeq 2500	

412 3.3 GC-content bias correction

413 We performed GC-correction by dividing normalised read counts by their estimate according to a Lo-
414 cally Weighted Scatterplot Smoothing (LOWESS) model [61], where the exogenous variable is the GC-
415 content of the bin, and the endogenous variable is the corresponding normalised read count. 30% of
416 the data points (bins) have been used to predict the endogenous variable. We used the Python package
417 `statsmodels` v0.12.2 [62] to implement the LOWESS correction. We also designed a differential version
418 of GC-correction that is PyTorch-compliant and used by our DA method to ensure that the reads counts
419 of adapted cohorts do not correlate with GC-content. More details are provided in Suppl. Mat. 1.

420 3.4 Center-and-scale standardisation

We benchmarked our method against a more straightforward approach, consisting in the standardisation of each cohort or data set separately. This approach ensures that the z -scores are centered in all domains and allows comparability as long as each cohort is representative of the population. For each 1Mb bin, we centered and scaled the normalised read counts as follows:

$$\tilde{X}_{ik} \leftarrow \frac{X_{ik} - \mu(X_{\cdot k})}{\sigma(X_{\cdot k})}, \quad (1)$$

421 where $\mu(X_{\cdot k})$ is the median of normalised read counts within bin k across all samples from the same
422 cohort and $\sigma(X_{\cdot k})$ the square root of the average squared deviation from this median. The median has
423 been used in place of the mean for robustness against outliers, such as profiles with aberrant CNAs. We
424 refer to this method as center-and-scale standardisation throughout the manuscript.

425 3.5 Domain adaptation using optimal transport

426 We defined the best correction function as the one that minimises statistical dissimilarity metric between
427 two cohorts. Given the multivariate nature of the problem and the strong mathematical foundations
428 behind optimal transport, we propose to use the Wasserstein distance to quantify the discrepancy between
429 data sets.

430 The general principle of OT is to match two probability distributions by transporting the probability
431 mass of one distribution into the other with minimal effort (hence the name *optimal transport*). Dis-
432 tributions that can be transported into each other at a low cost are considered highly similar. In the
433 case of discrete samples, OT amounts to finding a discrete probabilistic mapping (called the *transport*
434 *plan*) of the source samples onto the target samples where the mapping of a source sample to a target
435 sample bears some associated cost. We consider thus two data matrices $X \in \mathbb{R}_+^{n \times q}$ and $Y \in \mathbb{R}_+^{m \times q}$, as
436 illustrated by the normalised read counts matrices in Fig. 6A, where n and m are the sample sizes of
437 the each domain and q is the number of predefined bins. As samples are all assumed to be of equal im-

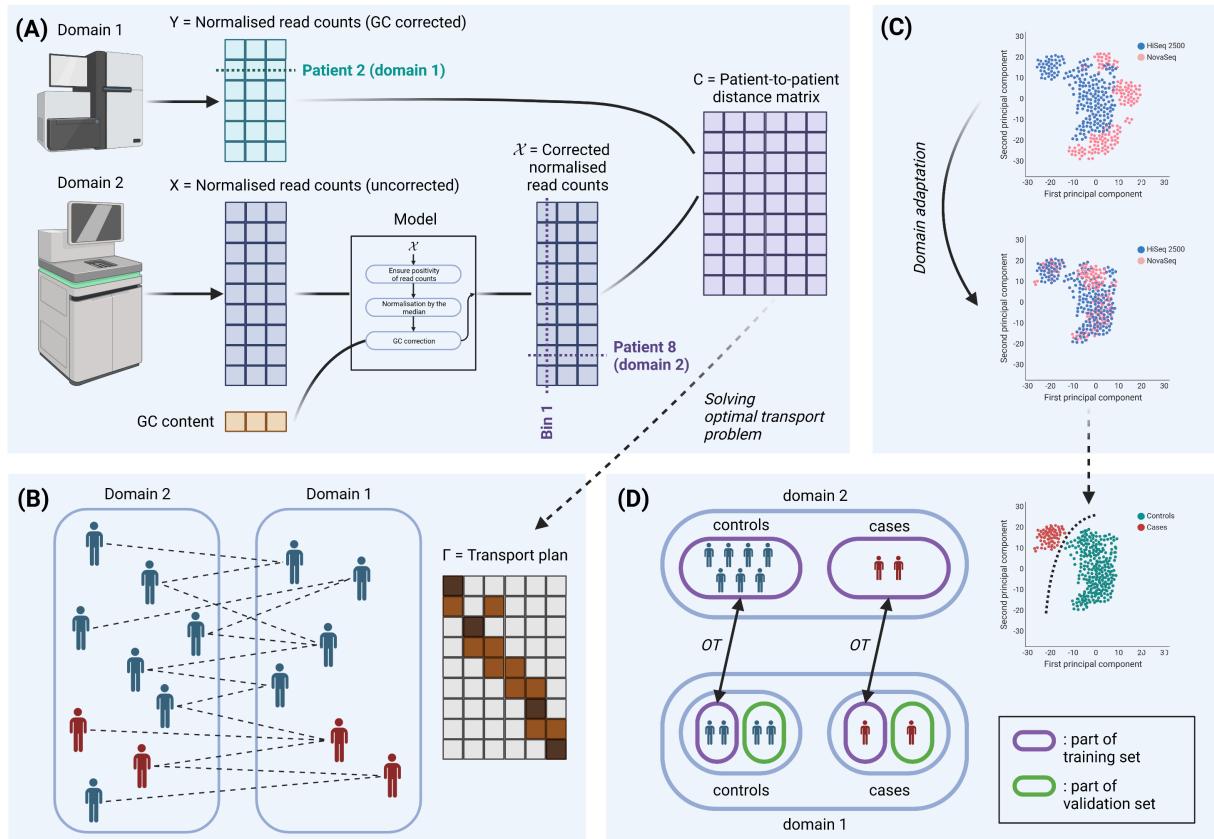


Figure 6: Illustrative summary of our methods. (A) Given two cohorts of cfDNA samples differing by the sequencing pipeline that processed them, the model corrects the second cohort to match the distribution of the first one. After correction, the cost matrix for our OT problem is given by the pairwise Euclidean distances. (B) The solution of the OT problem, named transport plan, assigns patients from Domain 2 to similar patients in Domain 1. The model parameters are found by minimising the Wasserstein distance, as defined by the cost matrix and transport plan. (C) After inference, the two cohorts are merged and ready for downstream analysis. (D) Depiction of the validation procedure used for the purpose of this study.

438 portance, we choose uniform probabilistic weights $\nu_i = 1/n, \forall i$ and $\mu_j = 1/m, \forall j$ to define a probability
 439 distribution on these discrete samples (assuming no two samples can be identical). We also consider the
 440 associated pairwise Euclidean distance matrix $C \in \mathbb{R}_+^{n \times m}$. For normalised read counts, the matrix Y
 441 is first GC-corrected. The matrix X will be GC-corrected during OT, as part of a joint optimisation
 442 process. The reason for not correcting X upfront is that OT might artificially introduce correlations
 443 with GC-content *a posteriori*. Instead, we implemented median-normalisation and GC-correction as a
 444 differentiable function f (see Suppl. Mat. 1).

The Wasserstein distance is defined, in its discrete form, by

$$\begin{aligned} W_p(C) = \min_{\Gamma} & \left(\sum_{i=1}^n \sum_{j=1}^m C_{ij}^p \Gamma_{ij} \right)^{1/p} \\ \text{s.t. } & \sum_{j=1}^m \Gamma_{ij} = \nu_i, & \forall i, \\ & \sum_{i=1}^n \Gamma_{ij} = \mu_j, & \forall j, \\ & \Gamma_{ij} \geq 0, & \forall i, j. \end{aligned} \tag{2}$$

Matrix Γ , usually referred to as the transport plan and depicted in Fig. 6B, can be interpreted as the amount of probability mass transferred from points of the source domain to the target domain through optimal transport. In particular, Γ_{ij} is the probability mass transferred from point i in the source domain to point j in the target domain. Such interpretation allows us to use Γ as a pairwise similarity matrix and express the domain adaptation problem as a multivariate regression problem. By choosing $p = 2$ and the Euclidean metric as function d , as well as by accounting for the reduction of variance caused by *Gamma*, and attaching equal importance to the bins (see details in Suppl. Mat. 1.2), the optimisation problem becomes

$$\begin{aligned} \min_{\Gamma, \mathcal{X}} & \frac{1}{nq} \sum_{i=1}^n \sum_{k=1}^q \frac{1}{\sigma(Y_{.k})} \left(f(\mathcal{X})_{ik} - n \sum_{j=1}^m \Gamma_{ij} Y'_{jk} \right)^2 \\ & + \lambda R(\mathcal{X}), \\ \text{s.t. } & \alpha(\Gamma) = \frac{\sum_{k=1}^q \sigma(Y_{.k})}{\sum_{k=1}^q \sigma(\sum_{j=1}^m \Gamma_{.j} Y_{jk})}, \\ & Y'_{jk} = \alpha(\Gamma)(Y_{jk} - \mu(Y_{.k})) + \mu(Y_{.k}), \\ & \Gamma \in \mathcal{F}, \end{aligned} \tag{3}$$

445 where $\alpha(\Gamma)$ is the variance correction factor, $R(\mathcal{X})$ is a regularisation term, and λ is the associated
 446 regularisation hyper-parameter.

447 The output of our algorithm is matrix \mathcal{X} , which we interpret as the surrogate of X in the target
 448 domain.

449 **3.5.1 Regularisation function**

450 While the Wasserstein distance is often supplemented with a regularisation term based on the entropy
451 of Γ [63], we noticed that entropic regularisation tends to reduce the variance of the adapted samples,
452 ultimately collapsing them onto their centroid. This is not a desirable property because in actual high-
453 dimensional data the curse of dimensionality will naturally keep data points distant from each other in
454 the presence of noise. This creates an obstacle to the idea of mapping a source sample to the “closest”
455 target samples. Therefore, we do not regularise the Wasserstein distance based on entropy. Instead,
456 we propose a more informative approach where the deviations (e.g., chromosome gains or deletions) of
457 samples X from some reference should be preserved throughout the whole adaptation process.

The regularisation function is defined as a mean squared error function:

$$R(\mathcal{X}) = \frac{1}{2nq} \sum_{i=1}^n \sum_{k=1}^q \frac{1}{\sigma_k^2} (S_{ik} - \hat{S}_{ik})^2 + \frac{1}{2nq} \sum_{i=1}^n \sum_{k=1}^q \frac{1}{\sigma_k^2} (T_{ik} - \hat{T}_{ik})^2, \quad (4)$$
$$S_{ik} = f(X)_{ik} - \mu(f(X)_{\cdot k}),$$
$$\hat{S}_{ik} = f(\mathcal{X})_{ik} - \mu([Y; f(\mathcal{X})]_{\cdot k}),$$
$$T_{ik} = Y_{ik} - \mu(Y_{\cdot k}),$$
$$\hat{T}_{ik} = Y_{ik} - \mu([Y; f(\mathcal{X})]_{\cdot k}),$$

458 where $f(\mathcal{X})$ is our differentiable GC-correction function, applied independently on each row of \mathcal{X} . For a
459 more robust estimation, we computed $\mu(X_{\cdot k})$ as the median over bin k (rather than the mean). We used
460 the MATLAB notation $[Y; f(\mathcal{X})]$ to denote the vertical concatenation of matrices Y and $f(\mathcal{X})$ (resulting
461 in a matrix of dimension $(n + m) \times q$). This regularisation function is meant to preserve the quantiles
462 (akin to the z -scores) across the two domains. In particular, the first term enforces the consistency of
463 the samples from the source domain, while the second term operates similarly on the samples from the
464 target domain.

465 **3.5.2 Overfitting and stopping criterion**

466 Since our inference process is iterative, a convergence criterion is required in order to end it and limit
467 overcorrection risks. Since our goal is to merge cohorts in such a way that they appear to be drawn from
468 the same distribution, we performed per-bin statistical tests. At each iteration, a p -value is computed
469 based on the two-sample Kolmogorov-Smirnov test for each 1 Mb genome bin. Because p -values are
470 randomly and possibly uniformly distributed under the null hypothesis [51] (that the two cohorts are
471 representative of the same population), we assumed that the median of these p -values should be close to
472 0.5. In practice, we interrupt the optimisation process as soon as the median p -value exceeds this cutoff.

473 The convergence and its speed are to a large extent impacted by the regularisation rate λ , which
474 needs to be picked carefully. When picking $p = 1$ and choosing the squared Euclidean distance as
475 function d , then $W_p(C)$ and $R(\mathcal{X})$ are both average squared error functions and expected to have similar
476 orders of magnitude after convergence. For this reason, a reasonable *a priori* choice for λ would be 1.
477 However, we observed that this default value results in many situations where the model never satisfies
478 the convergence criterion and ends up with a low median p -value (e.g., 0.25), despite a large number of
479 iterations (> 1000). In many other situations, the model rapidly converges but introduces disruptions in
480 the data, resulting in drastic information loss. Therefore, we chose to make λ adaptive and lower it every
481 e iterations until the convergence criterion is met. Our motivation is to use the largest value for λ (to
482 preserve the original data to the best extent possible) while ensuring that the two data distributions are
483 no longer distinguishable. We arbitrarily chose an initial value $\lambda_0 = 1000$ and reduced λ by half every
484 $h = 20$ iterations. Minimal value of λ was set to 1 in order to prevent overfitting risks in case where the
485 model fails at reaching the convergence threshold.

486 3.6 Model validation and performance assessment

487 3.6.1 Downstream supervised learning

488 Domain adaptation aims at superimposing the data distributions originating from different domains.
489 While this superimposition can be quantified through clustering metrics or visually assessed using kernel
490 principal component analysis or *t*-SNE for example, additional validation is required to ensure that the
491 predictive signal for the malignancies of interest has not been removed during the adaptation process. For
492 this purpose, we trained widely used Machine Learning models for the detection of these malignancies
493 before and after adaptation, using default hyperparameters. We trained logistic regressions, random
494 forests and kernel support vector machines using the **scikit-learn** [52] Python package.

495 However, regular validation approaches, such as k -fold or leave-one-out cross-validation do not suit
496 our setting, as they may show overoptimistic performance because of contamination between the training
497 and the validation set. Indeed, the domain adaptation model should not be exposed to the validation set,
498 since in the presence of overfitting some corrected samples from the training set will resemble samples
499 from the validation set. Therefore, we propose a problem-specific validation method that excludes from
500 the validation set any sample that does not belong to the target domain, as well as any sample that has
501 been seen by the DA algorithm. During validation, adapted samples are only used to train the model and
502 are not allowed to be left out, therefore not contributing to the estimation of performance. The aim is
503 to prevent the supervised models to correctly assign a label (healthy/cancer) to the left-out sample just
504 because the latter has been shifted arbitrarily far away from the real data distribution by the domain
505 adaptation model. Such procedure can be repeated multiple times on random subsets, similarly to k -fold
506 and leave-one-out cross-validation. The subsets generated during our validation procedure are illustrated

507 in Fig. 6D.

508 Since the HEMA data set contains controls and cases in both domains, the validation has been
509 performed in both directions: mapping samples from first domain to the second one before validating in
510 the second one, and vice versa.

511 Performance of the supervised models for cancer detection was quantified using widely used metrics
512 such as sensitivity, specificity, Area Under the Receiver Operating Characteristic curve (AUROC), Area
513 Under the Precision-Recall curve (AUPR) and the Matthews Correlation Coefficient (MCC).

514 **3.6.2 Evaluation of sample-to-sample mapping using paired samples**

515 For the cohorts in which biological samples have been sequenced twice, we applied OT and assessed
516 whether the distance between paired samples was indeed lowered by the adaptation process. More
517 specifically we computed accuracy, measured as the percentage of profiles from the target domain correctly
518 assigned to the corresponding profile in the source domain, using the closest profile (according to the
519 Euclidean metric) as predictor. By construction, random counterpart assignment would result in a $1/n$
520 accuracy.

521 **3.6.3 Downstream copy number aberration analysis**

522 Finally, we assessed the ability of the different methods to preserve the copy number aberrations present
523 in the original data. For this purpose, we built a reference set made of the 79 controls from domain \mathcal{D}_9
524 (OV data set, see Table 6) and called CNAs in the cancer cohort from \mathcal{D}_9 , same data set. Next, we built a
525 reference set based on the 39 controls from \mathcal{D}_{10} and called CNAs in the same cancer cohort from \mathcal{D}_9 , after
526 applying our tool to adapt them towards \mathcal{D}_{10} . CNA calling was performed with `ichorCNA`, which would
527 be theoretically expected to produce similar results in the two settings. Therefore, we quantified the
528 agreement between `ichorCNA` results using accuracy and SOV_REFINE score [55] between the estimated
529 per-bin copy numbers. Also, we computed the average absolute deviations in the parameters inferred by
530 `ichorCNA`, including tumour fraction or tumour cellular prevalence. Since the tool also proposes to call
531 CNAs in a reference-free fashion, we also conducted the same analysis without the two panels of normals.

532 **Data availability**

533 Haematological cancer cases and healthy controls constituting the HEMA data set are available from
534 ArrayExpress (<https://www.ebi.ac.uk/arrayexpress/>) under accession number E-MTAB-10934 as part of
535 the GIPXplore study.

536 Ovarian carcinoma and healthy controls (OV data set) from domain \mathcal{D}_{10} of have been previously
537 deposited at the European Genome-phenome Archive (EGA) under study no. EGAS00001005361.

538 The remaining samples (domain \mathcal{D}_9 + NIPT dataset) are in-house cohorts.

539 Coverage profiles for all the samples have been compiled and uploaded to FigShare (DOI: 10.6084/m9.figshare.24459304).

540 Code availability

541 Our tool is available as an open source package at <https://github.com/AntoinePassemiers/DAGIP>.

542 Acknowledgments

543 Antoine Passemiers is funded by a Research Foundation – Flanders (FWO) doctoral fellowship (1SB2721N).

544 Tatjana Jatsenko is funded by Agentschap Innoveren en Ondernemen (VLAIO; Flanders Innovation
545 & Entrepreneurship grant HBC.2018.2108). Joris Robert Vermeesch is funded by FWO (G080217N,
546 S003422N) and KU Leuven (no. C1/018). Daniele Raimondi is funded by a FWO post-doctoral
547 fellowship (12Y5623N). Yves Moreau is funded by (1) Research Council KU Leuven: Symbiosis 4
548 (C14/22/125); CELSA Active Learning, (2) Innovative Medicines Initiative: MELLODY, (3) Flemish
549 Government (ELIXIR Belgium, IWT, FWO 06260, FWO SBO MICADO S003422N, VLAIO ATHENA
550 HBC.2019.2528) and (4) Impulsfonds AI: VR 2019 2203 DOC.0318/1QUATER Kenniscentrum Data en
551 Maatschappij. An Coosemans is funded by the Flemish Cancer Society (2016/10728/2603). ctDNA
552 samples within the Trans-IOTA study were financed by Kom Op Tegen Kanker (Stand Up to Cancer).

553 The resources and services used in this work were provided by the VSC (Flemish Supercomputer
554 Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government. Figure 6
555 has been created with [BioRender.com](https://biorender.com).

556 Author contributions

557 Designed experiments: A.P, T.J, J.R.V, P.B, A.C, D.T, D.L. Designed computational methods: A.P,
558 Y.M, D.R. Data collection and analysis: A.P, A.V, T.J. Performed computational experiments: A.P.
559 Wrote the first draft of the manuscript: A.P, T.J, D.R, Y.M, J.R.V Revised and approved manuscript:
560 all authors.

561 Competing interests

562 A.C is a contracted researcher for Oncoinvent AS and Novocure and a consultant for Sotio AS and Epics
563 Therapeutics SA.

564 References

565 [1] Diana W Bianchi and Louise Wilkins-Haug. Integration of noninvasive dna testing for aneuploidy
566 into prenatal care: what has happened since the rubber met the road? *Clinical chemistry*, 60(1):78–
567 87, 2014.

568 [2] Dardour Leila, Nathalie Brison, Kris Van den Bogaert, Luc Dehaspe, Katrien Janssens, Bettina
569 Blaumeiser, Sonia Van Dooren, Ann Van Den Bogaert, Kathelijn Keymolen, Julie Désir, et al.
570 Incidence of uncommon fetal aneuploidies detected by non-invasive prenatal testing. In *17th annual*
571 *Belgian Society of Human Genetics meeting: Human genetics goes somatic*, pages 100–100. Belgian
572 Society of Human Genetics, 2017.

573 [3] Iwijn De Vlaminck, Hannah A Valentine, Thomas M Snyder, Calvin Strehl, Garrett Cohen, Helen
574 Luikart, Norma F Neff, Jennifer Okamoto, Daniel Bernstein, Dana Weisshaar, et al. Circulating cell-
575 free dna enables noninvasive diagnosis of heart transplant rejection. *Science translational medicine*,
576 6(241):241ra77–241ra77, 2014.

577 [4] L Lenaerts, P Vandenberghe, N Brison, H Che, M Neofytou, M Verheecke, L Leemans, C Maggen,
578 B Dewaele, L Dehaspe, et al. Genomewide copy number alteration screening of circulating plasma
579 dna: potential for the detection of incipient tumors. *Annals of Oncology*, 30(1):85–95, 2019.

580 [5] EM Tan, PH Schur, RI Carr, HG292857 Kunkel, et al. Deoxybonucleic acid (dna) and antibodies to
581 dna in the serum of patients with systemic lupus erythematosus. *The Journal of clinical investigation*,
582 45(11):1732–1740, 1966.

583 [6] David Koffler, Vincent Agnello, Robert Winchester, Henry G Kunkel, et al. The occurrence of
584 single-stranded dna in the serum of patients with systemic lupus erythematosus and other diseases.
585 *The Journal of clinical investigation*, 52(1):198–204, 1973.

586 [7] Peiyong Jiang and YM Dennis Lo. The long and short of circulating cell-free dna and the ins and
587 outs of molecular diagnostics. *Trends in Genetics*, 32(6):360–371, 2016.

588 [8] Aaron M Newman, Scott V Bratman, Jacqueline To, Jacob F Wynne, Neville CW Eclov, Leslie A
589 Modlin, Chih Long Liu, Joel W Neal, Heather A Wakelee, Robert E Merritt, et al. An ultrasensitive
590 method for quantitating circulating tumor dna with broad patient coverage. *Nature medicine*,
591 20(5):548–554, 2014.

592 [9] Jillian Phallen, Mark Sausen, Vilmos Adleff, Alessandro Leal, Carolyn Hruban, James White, Val-
593 samo Anagnostou, Jacob Fiksel, Stephen Cristiano, Eniko Papp, et al. Direct detection of early-stage
594 cancers using circulating tumor dna. *Science translational medicine*, 9(403):eaan2415, 2017.

595 [10] Peter Vandenberghe, Iwona Włodarska, Thomas Tousseyen, Luc Dehaspe, Daan Dierickx, Magali
596 Verheecke, Anne Uyttebroeck, Oliver Bechter, Michel Delforge, Vincent Vandecaveye, et al. Non-
597 invasive detection of genomic imbalances in hodgkin/reed-sternberg cells in early and advanced stage

598 hodgkin's lymphoma by sequencing of circulating cell-free dna: a technical proof-of-principle study.
599 *The Lancet Haematology*, 2(2):e55–e65, 2015.

600 [11] Liesbeth Lenaerts, Huiwen Che, Nathalie Brison, Maria Neofytou, Tatjana Jatsenko, Hanne Lefrere,
601 Charlotte Maggen, Darine Villela, Magali Verheecke, Luc Dehaspe, et al. Breast cancer detection
602 and treatment monitoring using a noninvasive prenatal testing platform: utility in pregnant and
603 nonpregnant populations. *Clinical Chemistry*, 66(11):1414–1423, 2020.

604 [12] Luis A Diaz Jr and Alberto Bardelli. Liquid biopsies: genotyping circulating tumor dna. *Journal
605 of clinical oncology*, 32(6):579, 2014.

606 [13] Stephen Cristiano, Alessandro Leal, Jillian Phallen, Jacob Fiksel, Vilmos Adleff, Daniel C Bruhm,
607 Sarah Østrup Jensen, Jamie E Medina, Carolyn Hruban, James R White, et al. Genome-wide
608 cell-free dna fragmentation in patients with cancer. *Nature*, 570(7761):385–389, 2019.

609 [14] Florent Mouliere, Dineika Chandrananda, Anna M Piskorz, Elizabeth K Moore, James Morris,
610 Lise Barlebo Ahlbom, Richard Mair, Teodora Goranova, Francesco Marass, Katrin Heider, et al. En-
611 hanced detection of circulating tumor dna by fragment size analysis. *Science translational medicine*,
612 10(466):eaat4921, 2018.

613 [15] Florent Mouliere, Bruno Robert, Erika Arnau Peyrotte, Maguy Del Rio, Marc Ychou, Franck Molina,
614 Celine Gongora, and Alain R Thierry. High fragmentation characterizes tumour-derived circulating
615 dna. *PloS one*, 6(9):e23418, 2011.

616 [16] Matthew W Snyder, Martin Kircher, Andrew J Hill, Riza M Daza, and Jay Shendure. Cell-free dna
617 comprises an in vivo nucleosome footprint that informs its tissues-of-origin. *Cell*, 164(1-2):57–68,
618 2016.

619 [17] YM Dennis Lo, Diana SC Han, Peiyong Jiang, and Rossa WK Chiu. Epigenetics, fragmentomics,
620 and topology of cell-free dna in liquid biopsies. *Science*, 372(6538):eaaw3616, 2021.

621 [18] Peiyong Jiang, Kun Sun, Yu K Tong, Suk Hang Cheng, Timothy HT Cheng, Macy MS Heung, John
622 Wong, Vincent WS Wong, Henry LY Chan, KC Allen Chan, et al. Preferred end coordinates and
623 somatic variants as signatures of circulating tumor dna associated with hepatocellular carcinoma.
624 *Proceedings of the National Academy of Sciences*, 115(46):E10925–E10933, 2018.

625 [19] KC Allen Chan, Peiyong Jiang, Kun Sun, Yvonne KY Cheng, Yu K Tong, Suk Hang Cheng, Ada IC
626 Wong, Irena Hudecova, Tak Y Leung, Rossa WK Chiu, et al. Second generation noninvasive fetal
627 genome analysis reveals de novo mutations, single-base parental inheritance, and preferred dna ends.
628 *Proceedings of the National Academy of Sciences*, 113(50):E8159–E8168, 2016.

629 [20] Peiyong Jiang, Carol WM Chan, KC Allen Chan, Suk Hang Cheng, John Wong, Vincent Wai-Sun
630 Wong, Grace LH Wong, Stephen L Chan, Tony SK Mok, Henry LY Chan, et al. Lengthening and

631 shortening of plasma dna in hepatocellular carcinoma patients. *Proceedings of the National Academy*
632 *of Sciences*, 112(11):E1317–E1325, 2015.

633 [21] Minetta C Liu, GR Oxnard, EA Klein, CSMCC Swanton, MV Seiden, Minetta C Liu, Geoffrey R
634 Oxnard, Eric A Klein, David Smith, Donald Richards, et al. Sensitive and specific multi-cancer de-
635 tection and localization using methylation signatures in cell-free dna. *Annals of Oncology*, 31(6):745–
636 759, 2020.

637 [22] Mingyun Bae, Gyuhee Kim, Tae-Rim Lee, Jin Mo Ahn, Hyunwook Park, Sook Ryun Park, Ki Byung
638 Song, Eunsung Jun, Dongryul Oh, Jeong-Won Lee, et al. Integrative modeling of tumor genomes
639 and epigenomes for enhanced cancer diagnosis by cell-free dna. *Nature Communications*, 14(1):2017,
640 2023.

641 [23] Peter Peneder, Adrian M Stütz, Didier Surdez, Manuela Krumbholz, Sabine Semper, Mathieu Chi-
642 card, Nathan C Sheffield, Gaelle Pierron, Eve Lapouble, Marcus Tötzl, et al. Multimodal analysis
643 of cell-free dna whole-genome sequencing for pediatric cancers with low mutational burden. *Nature*
644 *communications*, 12(1):3230, 2021.

645 [24] Safia El Messaoudi, Fanny Rolet, Florent Mouliere, and Alain R Thierry. Circulating cell free dna:
646 preanalytical considerations. *Clinica chimica acta*, 424:222–230, 2013.

647 [25] Abel Jacobus Bronkhorst, Janine Aucamp, and Piet J Pretorius. Cell-free dna: preanalytical vari-
648 ables. *Clinica Chimica Acta*, 450:243–253, 2015.

649 [26] Romain Meddeb, Ekaterina Pisareva, and Alain R Thierry. Guidelines for the preanalytical condi-
650 tions for analyzing circulating cell-free dna. *Clinical chemistry*, 65(5):623–633, 2019.

651 [27] Jacob E Till, Taylor A Black, Caren Gentile, Aseel Abdalla, Zhuoyang Wang, Hareena K Sangha,
652 Jacquelyn J Roth, Robyn Sussman, Stephanie S Yee, Mark H O’Hara, et al. Optimization of sources
653 of circulating cell-free dna variability for downstream molecular analysis. *The Journal of Molecular*
654 *Diagnostics*, 23(11):1545–1552, 2021.

655 [28] Lisanne F van Dessel, Silvia R Vitale, Jean CA Helmijr, Saskia M Wilting, Michelle van der Vlugt-
656 Daane, Esther Oomen-de Hoop, Stefan Sleijfer, John WM Martens, Maurice PHM Jansen, and
657 Martijn P Lolkema. High-throughput isolation of circulating tumor dna: a comparison of automated
658 platforms. *Molecular oncology*, 13(2):392–402, 2019.

659 [29] Michael G Ross, Carsten Russ, Maura Costello, Andrew Hollinger, Niall J Lennon, Ryan Hegarty,
660 Chad Nusbaum, and David B Jaffe. Characterizing and measuring bias in sequence data. *Genome*
661 *biology*, 14(5):1–20, 2013.

662 [30] Mitsuhiro P Sato, Yoshitoshi Ogura, Keiji Nakamura, Ruriko Nishida, Yasuhiro Gotoh, Masahiro
663 Hayashi, Junzo Hisatsune, Motoyuki Sugai, Itoh Takehiko, and Tetsuya Hayashi. Comparison of the

664 sequencing bias of currently available library preparation kits for illumina sequencing of bacterial
665 genomes and metagenomes. *DNA Research*, 26(5):391–398, 2019.

666 [31] Maura Costello, Mark Fleharty, Justin Abreu, Yossi Farjoun, Steven Ferriera, Laurie Holmes, Brian
667 Granger, Lisa Green, Tom Howd, Tamara Mason, et al. Characterization and remediation of sample
668 index swaps by non-redundant dual indexing on massively parallel sequencing platforms. *BMC
669 genomics*, 19(1):1–10, 2018.

670 [32] Rahul Sinha, Geoff Stanley, Gunsagar S Gulati, Camille Ezran, Kyle J Travaglini, Eric Wei,
671 Charles KF Chan, Ahmad N Nabhan, Tianying Su, Rachel M Morganti, et al. Index switching
672 causes “spreading-of-signal” among multiplexed samples in illumina hiseq 4000 dna sequencing.
673 *BioRxiv*, page 125724, 2017.

674 [33] Patrick Denis Browne, Tue Kjærgaard Nielsen, Witold Kot, Anni Aggerholm, M Thomas P Gilbert,
675 Lara Puetz, Morten Rasmussen, Athanasios Zervas, and Lars Hestbjerg Hansen. Gc bias affects
676 genomic and metagenomic reconstructions, underrepresenting gc-poor organisms. *GigaScience*,
677 9(2):giaa008, 2020.

678 [34] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In
679 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 30, 2016.

680 [35] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
681 man Vaughan. A theory of learning from different domains. *Machine learning*, 79(1):151–175, 2010.

682 [36] Ming-Sin Cheung, Thomas A Down, Isabel Latorre, and Julie Ahringer. Systematic bias in high-
683 throughput sequencing data and its correction by beads. *Nucleic acids research*, 39(15):e103–e103,
684 2011.

685 [37] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci. Best sources forward:
686 domain generalization through source-specific nets. In *2018 25th IEEE international conference on
687 image processing (ICIP)*, pages 1353–1357. IEEE, 2018.

688 [38] Yuval Benjamini and Terence P Speed. Summarizing and correcting the gc content bias in high-
689 throughput sequencing. *Nucleic acids research*, 40(10):e72–e72, 2012.

690 [39] Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca Antonacci, Ferey-
691 doun Hormozdiari, Jacob O Kitzman, Carl Baker, Maika Malig, Onur Mutlu, et al. Personalized
692 copy number and segmental duplication maps using next-generation sequencing. *Nature genetics*,
693 41(10):1061–1067, 2009.

694 [40] Dineika Chandrananda, Natalie P Thorne, Devika Ganesamoorthy, Damien L Bruno, Yuval Ben-
695 jamini, Terence P Speed, Howard R Slater, and Melanie Bahlo. Investigating and correcting plasma
696 dna sequencing coverage bias to enhance aneuploidy discovery. *PLoS One*, 9(1):e86993, 2014.

697 [41] Viktor A Adalsteinsson, Gavin Ha, Samuel S Freeman, Atish D Choudhury, Daniel G Stover,
698 Heather A Parsons, Gregory Gydush, Sarah C Reed, Denisse Rotem, Justin Rhoades, et al. Scalable
699 whole-exome sequencing of cell-free dna reveals high concordance with metastatic tumors. *Nature
700 communications*, 8(1):1–13, 2017.

701 [42] Nicholas B Larson, Melissa C Larson, Jie Na, Carlos P Sosa, Chen Wang, Jean-Pierre Kocher, and
702 Ross Rowsey. Coverage profile correction of shallow-depth circulating cell-free dna sequencing via
703 multidistance learning. In *PACIFIC SYMPOSIUM ON BIOCOPUTING 2020*, pages 599–610.
704 World Scientific, 2019.

705 [43] Lin Chen, Huaian Chen, Zhixiang Wei, Xin Jin, Xiao Tan, Yi Jin, and Enhong Chen. Reusing
706 the task-specific classifier as a discriminator: Discriminator-free adversarial domain adaptation.
707 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
708 7181–7190, 2022.

709 [44] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Lavi-
710 olette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
711 *The journal of machine learning research*, 17(1):2096–2030, 2016.

712 [45] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex Smola. Cor-
713 recting sample selection bias by unlabeled data. *Advances in neural information processing systems*,
714 19, 2006.

715 [46] Rongchang Xie, Fei Yu, Jiachao Wang, Yizhou Wang, and Li Zhang. Multi-level domain adaptive
716 learning for cross-domain detection. In *Proceedings of the IEEE/CVF international conference on
717 computer vision workshops*, pages 0–0, 2019.

718 [47] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,
719 and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In *International
720 conference on machine learning*, pages 1989–1998. Pmlr, 2018.

721 [48] Christina B Azodi, Jiliang Tang, and Shin-Han Shiu. Opening the black box: interpretable machine
722 learning for geneticists. *Trends in genetics*, 36(6):442–455, 2020.

723 [49] Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement inter-
724 polation using lagrangian mass transport. In *Proceedings of the 2011 SIGGRAPH Asia conference*,
725 pages 1–12, 2011.

726 [50] Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution
727 optimal transportation for domain adaptation. *Advances in Neural Information Processing Systems*,
728 30, 2017.

729 [51] Duncan J Murdoch, Yu-Ling Tsai, and James Adcock. P-values are random variables. *The American
730 Statistician*, 62(3):242–245, 2008.

731 [52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
732 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
733 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
734 12:2825–2830, 2011.

735 [53] Huiwen Che, Tatjana Jatsenko, Liesbeth Lenaerts, Luc Dehaspe, Leen Vancoillie, Nathalie Brison,
736 Ilse Parijs, Kris Van Den Bogaert, Daniela Fischerova, Ruben Heremans, et al. Pan-cancer detection
737 and typing by mining patterns in large genome-wide cell-free dna sequencing datasets. *Clinical
738 Chemistry*, 68(9):1164–1176, 2022.

739 [54] Adriaan Vanderstichele, Pieter Busschaert, Dominiek Smeets, Chiara Landolfo, Els Van Nieuwen-
740 huysen, Karin Leunen, Patrick Neven, Frédéric Amant, Sven Mahner, Elena Ioana Braicu, et al.
741 Chromosomal instability in cell-free dna as a highly specific biomarker for detection of ovarian cancer
742 in women with adnexal masses. *Clinical Cancer Research*, 23(9):2223–2231, 2017.

743 [55] Tong Liu and Zheng Wang. Sov_refine: a further refined definition of segment overlap score and its
744 significance for protein structure similarity. *Source code for biology and medicine*, 13(1):1–10, 2018.

745 [56] Liesbeth Lenaerts, Nathalie Brison, Charlotte Maggen, Leen Vancoillie, Huiwen Che, Peter Vanden-
746 berghe, Daan Dierickx, Lucienne Michaux, Barbara Dewaele, Patrick Neven, et al. Comprehensive
747 genome-wide analysis of routine non-invasive test data allows cancer prediction: A single-center
748 retrospective analysis of over 85,000 pregnancies. *EClinicalMedicine*, 35:100856, 2021.

749 [57] Lieselot Buedts, Iwona Wlodarska, Julio Finalet-Ferreiro, Olivier Gheysens, Luc Dehaspe, Thomas
750 Tousseyn, Luc-Matthieu Fornecker, Julien Lazarovici, René-Olivier Casasnovas, Anne-Claire Gac,
751 et al. The landscape of copy number variations in classical hodgkin lymphoma: a joint ku leuven
752 and lysa study on cell-free dna. *Blood advances*, 5(7):1991–2002, 2021.

753 [58] Heng Li and Richard Durbin. Fast and accurate short read alignment with burrows–wheeler trans-
754 form. *bioinformatics*, 25(14):1754–1760, 2009.

755 [59] Picard toolkit. <https://broadinstitute.github.io/picard/>, 2019.

756 [60] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibulskis, Andrew
757 Kurnytsky, Kiran Garimella, David Altshuler, Stacey Gabriel, Mark Daly, et al. The genome anal-
758 ysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing data. *Genome
759 research*, 20(9):1297–1303, 2010.

760 [61] William S Cleveland. Robust locally weighted regression and smoothing scatterplots. *Journal of the
761 American statistical association*, 74(368):829–836, 1979.

762 [62] Skipper Seabold and Josef Perktold. Statsmodels: Econometric and statistical modeling with
763 python. In *Proceedings of the 9th Python in Science Conference*, volume 57, pages 10–25080. Austin,
764 TX, 2010.

765 [63] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-
766 scale optimal transport. *Advances in neural information processing systems*, 29, 2016.