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Abstract

Post-transplant complications reduce allograft and recipient survival. Current approaches
for detecting allograft injury non-invasively are limited and do not differentiate between
cellular mechanisms. Here, we monitor cellular damages after liver transplants from cell-
free DNA (cfDNA) fragments released from dying cells into the circulation. We analyzed
130 blood samples collected from 44 patients at different time points after transplant.
Sequence-based methylation of cfDNA fragments were mapped to patterns established
to identify cell types in different organs. For liver cell types DNA methylation patterns and
multi-omic data integration show distinct enrichment in open chromatin and regulatory
regions functionally important for the respective cell types. We find that multi-tissue
cellular damages post-transplant recover in patients without allograft injury during the first
post-operative week. However, sustained elevation of hepatocyte and biliary epithelial
cfDNA beyond the first week indicates early-onset allograft injury. Further, cfDNA
composition differentiates amongst causes of allograft injury indicating the potential for

non-invasive monitoring and timely intervention.

Introduction

Liver transplant is the standard-of-care for patients with end-stage liver disease and is the
second most common transplant after the kidney (1). Despite improved survival rates,
there is still a high prevalence of complications contributing to perioperative mortality post-
liver transplant, mostly occurring within the first month (2, 3). Unfortunately, current non-
invasive biomarkers have a limited scope and fail to identify cellular causes of allograft

injury (4). Thus, tissue biopsy is still the gold-standard to confirm diagnosis and monitor
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response to treatment. The analysis of cell-free DNA (cfDNA) in the circulation is an
alternative to conventional biomarkers. CfDNA consists of fragments shed by dying cells
throughout the body and its analysis can serve as a non-invasive approach for monitoring
allograft as well as host tissue changes at a cellular level following liver transplant (5—11).

Genetic differences between donor and recipient (SNPs) have been used to
identify donor-derived cfDNA (dd-cfDNA) originating from the transplanted allograft to
serve as a predictive biomarker of allograft injury and rejection (8, 12—18). However, there
are many situations when genetic differences cannot be used to identify allograft-derived
DNA; for example, when the genotype is unknown, multiple genotypes exist in the host,
and when the donor is closely related to the recipient (13). Instead, epigenetic
modifications can be used to identify cfDNA that is recipient or allograft-derived by using
tissue- and cell-type specific marks that are independent of genotype differences between
the donor and recipient (19-29). Allograft injury can thus be detected in an organ specific
fashion, which is of critical importance in recipients of multi-organ transplants and
recipients of hematopoietic cell transplant (HCT) who develop Graft-versus-Host disease
(GvHD) (30-32). Also, the allograft as well as recipient organs are impacted by the
transplant process as well as by subsequent treatments that can lead to tissue damage
and remodeling. Primary injuries or secondary changes stemming from tissue repair can
be quantified from cfDNA to indicate cell-type-specific damage (1—4, 33, 34).

DNA methylation is highly cell-type-specific and has been found to reveal the
origins of tissue damages and altered cell turnover from cfDNA samples in a wide-range
of applications (27, 28, 30, 31, 35-45). DNA methylation patterns are stable epigenetic

marks for cells maintained throughout DNA replication and cell proliferation (46). Cell-
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type-specific DNA methylation established early-on during development has been found
to be highly conserved across individuals, irrespective of age and disease status (21, 22,
46-50). Also, cell-free methylated DNA can reflect intervention-related changes over time
through analyses of serially collected blood samples (38). Fragment-level deconvolution
of methylation sequencing data allows for increased sensitivity and specificity of signal
localization using CpG pattern analysis of individual cfDNA molecules (35, 38, 51-53).
Likewise, hybridization capture to CpG-rich DNA segments maximizes sequencing depth
while still maintaining comprehensive coverage (38).

Here, we utilize circulating, cell-free methylated DNA to monitor cellular damages
after liver transplant, impacting the allograft tissue as well as the recipient's organs. We
expand existing cell-type-specific DNA methylation atlases to include non-parenchymal
cell-types from the liver, including hepatic stellate, endothelial, liver-resident immune, and
biliary epithelial cells. Then, we perform capture-sequencing of cell-free methylated DNA
from serial blood samples and evaluate multi-tissue cellular damages after liver
transplant. We find that sustained elevation of hepatocyte and biliary epithelial cfDNA
beyond the first post-operative week is indicative of allograft injury. In addition, we show
that there are significant changes in cfDNA composition corresponding to different
allograft injury patterns at time of tissue-biopsy-proven diagnosis. Thus, cell-free
methylated DNA can non-invasively indicate cellular sources of allograft injury in liver

transplant patients.

Results
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Cellular damages after liver transplant indicated by cell-free methylated DNA in the
circulation

To monitor cellular damages after liver transplant, we collected serial serum samples from
28 adult liver transplant patients during the peri-transplant time period and profiled cfDNA
methylation from samples at predetermined timepoints up to one month after transplant
(n = 100 samples). We also collected samples from patients experiencing complications
and added phenotype-matched samples from an additional 16 patients at the time of for-
cause liver biopsy (FC-bx) used to identify allograft injury (n = 30 samples). Cell-free DNA
fragments isolated from these 130 serum samples were bisulfite treated, enriched for
sequences of interest by methylome-wide hybridization capture and subjected to
sequence analysis (Fig. 1). The tissue and cell type origins of cfDNA fragments in the
circulation were mapped to an expanded atlas of cell-type-specific DNA methylation to
infer tissue damages and differentiate amongst causes of allograft injury (Methods).
Demographic information and clinical characteristics of patients enrolled in this study are

in Supplemental Table 1.

Characterization of liver cell-type-specific epigenomes to expand sequencing-
based DNA methylation atlas of healthy tissues

To identify cellular origins of cfDNA fragments in the circulation, we expanded the existing
cell-type-specific DNA methylation atlas to liver cell-types relevant for injury and repair
and generated methylome-sequencing data for hepatic stellate, liver endothelial, biliary
epithelial, and liver-resident immune cell populations. In addition, we also included

published whole genome bisulfite sequencing (WGBS) data from purified healthy human
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cell-types (35, 38). This resulted in curation of over 450 WGBS datasets encompassing
over 40 cell-types from diverse populations of donors (Supplemental Table 2) generating
a reference methylome atlas as previously described (35, 38). Briefly, we first segmented
the data into homogenously methylated blocks where DNA methylation levels at adjacent
CpG sites were highly correlated across different cell types. Then, we restricted the
analysis to the 364,268 blocks covered by our hybridization capture panel used in the
analysis of cfDNA in human serum (captures 80Mb, ~20% of CpGs). Average methylation
was calculated within blocks of at least three CpG sites and unsupervised clustering
analysis was performed for the top 10% variable blocks across all samples. We found
that with the additional data incorporated, samples still clustered strongly by cell type and
developmental lineage (Supplemental Fig. 1d). Notably, parenchymal and non-
parenchymal liver cell methylomes did not cluster together. Instead, samples clustered
with other cell-types of the same lineage, independent of the germ layer origin of their
tissues of residence. Interestingly, biliary epithelial samples isolated from intrahepatic
ducts and the gallbladder (columnar epithelium) demonstrated distinct methylation
patterns compared to biliary epithelial samples isolated from the larger main hepatic,
common bile and pancreatic ducts (cuboidal epithelium) (Supplemental Figs. 1b and
1c).

Based on the unsupervised clustering analysis, we grouped the reference WGBS
data into 20 groups for downstream analysis (Supplemental Table 2). We identified cell-
type specific differentially methylated blocks (DMBs) within these groups taking a one-vs-
all approach as previously described (38). The co-methylation status of neighboring CpG

sites in each block distinguished amongst all cell types included in the final groups
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(Supplemental Table 3). The heatmap in Fig. 2a depicts the top 50 blocks with the
highest score for each cell-type and the top hepatocyte-specific blocks are emphasized
in Figs. 2b and 2c. The methylation sequencing approach taken here allowed for
assessment of fragment-level methylation patterns rather than the limited single-site
resolution of methylation arrays (Fig. 2d) (6). Whereas bulk tissue analyses average the
methylation status amongst all cell-types, purified cell-specific methylome analysis
allowed for discovery of features critical to the identity of non-parenchymal cell-types that
contribute only few cells to the overall population and therefore would otherwise be

missed (54, 55).

Liver cell-type-specific hypomethylated blocks coincide with cell-type specific
chromatin accessibility and H3K27ac binding

The cell-type-specific DMBs identified using the expanded WGBS reference data
resembled those of previously published methylation atlases, being largely
hypomethylated, intragenic and annotated to genes relevant for cell function and identity
(Supplemental Figs. 1a and 2f; Supplemental Table 4) (35, 38, 41). Notably, cell-type-
specific hypermethylated DMBs were much less frequent (17% on average) and enriched
for CpG islands compared to cell-type-specific hypomethylated DMBs that were located
in relatively CpG-depleted, GC-low regions characteristic of programmed demethylation
occurring at enhancers (Supplemental Fig. 2a) (35, 47, 56). Indeed, the majority of liver
cell-type-specific hypomethylated DMBs were enhancers by chromHMM annotations
(Fig. 3c). In contrast, the majority of liver cell-type-specific hypermethylated DMBs were

annotated to bivalent TSS/enhancers and repressive Polycomb targets (Supplemental
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Fig. 2d). This matches with the function of cell-type-specific hypermethylation in
repressing genes associated with embryonic stem cell pluripotency to stabilize cellular
differentiation during development (Supplemental Fig. 2e) (57-59). To further explore
the liver cell-type-specific DMBs identified, we generated and compiled additional
chromatin accessibility and histone modification data to characterize the integrated
epigenomes of hepatocyte, biliary epithelial, hepatic stellate, liver endothelial and liver-
resident immune cell-types. We were surprised to find that liver cell-type-specific
hypomethylated blocks were also regions with cell-type specific chromatin accessibility
and H3K27ac binding, emphasizing the regulatory importance of these regions in
maintaining cell-type-specific features reflected in the multi-omic datasets (Figs. 3a and

3b).

Pioneer transcription factor binding sites (TFBS) enriched within liver cell-type-
specific DNA methylation blocks

We performed motif analysis to explore association of the identified liver cell-type-specific
DNA methylation with transcription factor binding. We found enriched motifs for several
pioneer transcription factors within hypomethylated DMBs, including FOXA1/2, PAX7,
CUX1, HNR5A2, DUX4, OTX2, GATA, SOX17, ATF4 and PU.1 (Figs. 3d and 3e). We
also found enriched motifs of binding sites for several liver developmental TFs known to
cooperate with pioneer TFs, including HNF4a, HNF6, PDX1, RARa, COUP-TFII, and
RUNX1 (60—62). Pioneer factors are a subclass of TFs that can bind to closed chromatin
and elicit an extended functional capacity of the domain, often through local chromatin

opening and demethylation (60). As such, they act as master regulators of development
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and are known to drive cell fate transitions (60). However, we were surprised to find
binding sites for pioneer TFs also enriched within liver-specific hypermethylated DMBs
(Supplemental Fig. 2c). Interestingly, CpG dinucleotides were also enriched within the
motifs found in hypermethylated DMBs and several methylation-sensitive TFs were
amongst the top hits, including NRF1 where methylation is known to directly repress TF
binding (Supplemental Fig. 2b and Supplemental Table 5) (63). Although less common,
pioneer TFs have been shown to recruit transcriptional repressors and establish a closed
and further silenced chromatin architecture (57, 64, 65). Several TFBS of transcriptional
repressors known to interact with pioneer TFs were also enriched, including TBET,
TRPS1, ZNF669, and E2F7. Annotation of the majority of liver-specific hypermethylated
DMBs to bivalent TSS/enhancer regions coincides with the ability of some pioneer TFs to
simulate PRC2 complex-inducing H3K27me3-marked heterochromatin, often deposited
on lineage-specific enhancers (Supplemental Fig. 2d) (66-68). In composite, these
results match with the role of the liver cell-type-specific methylation blocks identified here

as being critical for cell identity.

Origins of cellular damage immediately after liver transplant

To identify the origins of cfDNA fragments in the circulation of liver transplant patients, we
used the top 100 methylation blocks for each cell-type group and generated an expanded
liver cell-type-specific DNA methylation atlas (Methods). We then applied a fragment-level
deconvolution algorithm, previously validated to estimate relative contributions from
cfDNA methylation sequencing data (Supplemental Table 6a) (35). First, to explore the

changing cfDNA makeup after liver transplant, we assessed changes across all patients
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comparing pre-transplant cfDNA origins to post-reperfusion changes in serially collected
blood samples from 28 liver transplant patients on the day of surgery (PODO; Fig. 4a).
We found that there was a significant ~5-fold increase in cfDNA concentration after
transplant across all patients in the cohort, reflecting increased cell turnover from the
surgical procedure itself (p<0.05, Wilcoxon matched-pairs signed rank test) (Fig. 4f).
From the deconvolution analysis we found that liver cell types mainly contributed to this
increase (Fig. 4b) with a significant increase in hepatocyte, hepatic stellate, and
endothelial cfDNA fraction and a corresponding relative decrease in myeloid cfDNA that
constitutes most of the hematopoietic signal at baseline (p<0.05, Wilcoxon matched-pairs
signed rank test) (Fig. 4d, e, g, h). The concentration of hepatocyte cfDNA in genome
equivalents/mL (Geg/mL) correlated with patient AST and ALT liver enzyme values
(Spearman r = 0.81 AST and r = 0.82 ALT, p<0.05) (Fig. 4c). The homogenous cfDNA
changes across all patients show applicability of this approach across a diverse patient
cohort. Beyond damages to the allografted liver cell-types, we found that the transplant
procedure results in multiple tissue cellular damages of the recipient as well. We were
surprised to find a significant increase in neuron-derived cfDNA after transplant (Fig. 4i).
While only representing a small overall fraction of the total cfDNA, there was an average
4-fold increase in this signal indicating neuronal cell death during the procedure. In
addition, there were also significant increases in cardiomyocyte, biliary-ductal and gastric-

epithelial cfDNAs in Geg/mL (Supplemental Fig. 3).

Sustained elevation of hepatocyte and biliary epithelial cfDNA indicate allograft

injury
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We collected additional serum samples in a subset of 20 liver transplant patients to
explore cfDNA changes over time during the first month after transplant, the highest risk
period for post-transplant complications (Fig. 5a). Of these patients, 11 (55%) had liver
biopsies showing allograft injury within the first year. There were no differences in cfDNA
concentration after transplant comparing these two outcome groups (Fig. 5B) though we
noticed changes in cfDNA composition when comparing across the entire cohort
(Supplemental Fig. 4a). Liver-epithelial cellular damage mostly recovered in patients
without allograft injury during the first post-operative week. In contrast, patients diagnosed
with allograft injury during the first year after transplant had sustained elevation of
hepatocyte and biliary epithelial cfDNA from POD7-POD30 (p<0.05, Mann-Whitney test)
(Fig. 5¢ to 5f). Despite these differences in liver epithelial signals, there was no significant
difference in hepatic stellate or endothelial cfDNA associated with different outcomes
(Supplemental Figs. 4b and 4c). These findings were irrespective of the type of allograft
injury diagnosed at the eventual time of for-cause liver biopsy (FC-bx). Of the patients
with allograft injury, 7 (of 20) were diagnosed with hepatocellular, 3 mixed hepatobiliary,
and 1 biliary forms of allograft injury. The majority of patients were diagnosed with allograft
injury beyond the first month, but five patients were diagnosed within the first month (all
within the first-year post-transplant). Despite variation in timing, elevated liver epithelial
cfDNA was detected during the first post-operative month in all 11 patients with allograft
injury, with an elevated signal detected a median of 63 days [range 2-203 days] ahead of
the time of tissue-biopsy based diagnosis. Comparing the trajectory of liver cell-type
damages over time, patients without allograft injury had higher levels of lymphoid and

endothelial cfDNA relative to hepatocyte and biliary epithelial cfDNA at POD30,
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suggesting that the ratio may be useful to monitor and predict injury patterns during the

peri-transplant time period (Fig. 59).

Cell-free methylated DNA indicates the source of allograft injury

We added phenotype-matched samples from additional patients at the time of for-cause
liver biopsy (FC-bx) used to diagnose allograft injury, evaluating 30 serum samples from
24 individuals (Fig. 6a). Samples were classified as having hepatocellular (n=14), biliary
(n=6), or mixed hepatobiliary (n=10) forms of allograft injury from histopathological
analysis of the paired biopsy tissues. Notably, the composition of cfDNA was significantly
different at the time of biopsy-proven phenotypes, comparing hepatocellular and biliary
etiologies of allograft injury (Fig. 6b and Supplemental Table 6b). Hepatocyte cfDNA
was increased in samples with hepatocellular or mixed hepatobiliary injury compared to
pure biliary injury (p<0.05, Mann-Whitney test) (Fig. 6¢). Likewise, biliary cfDNA was
increased in samples with biliary or mixed hepatobiliary injury compared to hepatocellular
injury (p<0.05, Mann-Whitney test) (Fig. 6d). The cfDNA composition changes over time
reflected the trajectory of cellular damages in patients with different injury types (Fig. 6e
to 6h; patient details in the legend). At the time of FC-bx only hepatocyte cfDNA was
detected in a patient with hepatocellular injury (Fig. 6e), only biliary epithelial cfDNA in a
patient with pure biliary injury (Fig. 6f), and both hepatocyte and biliary epithelial cfDNA
in two patients with different etiologies of mixed hepatobiliary injury (Fig. 6g and 6h).
Taken as a whole, distinct cellular damages after liver transplant are detectable by the

analysis of blood samples.
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Discussion

The liver cell-type-specific DNA methylation atlas sheds light onto the epigenomic
characteristics established early during development by identifying genomic regions of
cell identity that are stably maintained in differentiated cells. We find that DNA methylation
coincides with other liver cell-type-specific epigenetic marks, validating the biological
relevance of these regions and enhancing their utility in detecting altered turnover of cells
from DNA fragments shed in the circulation. Similar to other studies, we found the majority
of liver-cell-specific DMBs to be hypomethylated. However, we found enriched TFBS of
pioneer factors within both hypo- and hyper-methylated liver-cell-specific DMBs.
Surprisingly, we also found CpG dinucleotides enriched within TFBS motifs associated
with methylation-sensitive TFs in hypermethylated DMBs. This suggests that cell-type-
specific hypo- and hyper- methylated regions may play a similar function in different
contexts to repress precursor or stem cell transcriptional programs and control terminal
differentiation into distinct cell types. Ultimately, this could serve as a valuable resource
for many applications and shed light on factors needed for cell-reprogramming that may
also play a role in disease pathogenesis and cell-type-specific epigenetic regulation (69).

We identified sufficient numbers of DNA methylation blocks to discriminate cells of
origin of liver-derived DNA fragments in the circulation, including hepatocyte, biliary-
epithelial, hepatic stellate, and endothelial cells. As one limitation, we were unable to
identify enough DMBs with sufficient specificity to profile liver-resident immune cell
turnover in patient blood samples relative to all other cell-types included in the atlas. Likely
this was due to the purity and extent of peripheral and tissue-resident immune cell

methylome reference data available. Instead, extended liver-resident immune cell
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markers were identified with relaxed specificity thresholds to use for characterization of
liver cell-specific epigenetic data (Supplemental Table 7 and Supplemental Methods).
Generation of additional cell-specific methylation sequencing data to better characterize
immune cell diversity will allow for enhanced ability to detect tissue-resident cell turnover
in the future. In addition, implementation of hierarchical statistical models will allow for a
more fine-tuned assessment of cell-free DNA composition in the face of limited numbers
of highly specific methylation patterns to distinguish rare cell-types (70, 71).

The expanded liver cell-type-specific methylation atlas allowed for detection of
tissue-derived fragments in the circulation to reveal cell types in the recipient impacted by
the transplant procedure, comparing post-reperfusion signals to the pre-transplant
baseline. The donor liver can be damaged in several ways including, cold and warm
ischemia, surgical anastomoses, and reperfusion injuries (1-3, 33, 34). We found that
these tissue effects were reflected by a relative increase in hepatocyte, hepatic stellate,
and endothelial cfDNA compared to the myeloid-derived baseline signal. However, we
were surprised by the increase in neuron and cardiomyocyte cfDNA after the transplant.
The increase in neuron cfDNA could be caused by neurotoxicity from the general
anesthesia; although, neurological complications are more common after liver (30%) than
after heart (4%) or kidney transplants (0.5%) (72). Increased susceptibility or comorbidity
due to the pathophysiology of the underlying hepatic disease may play a role and
contribute to increased neuronal cell death in liver transplant patients.

The large increase in liver-cell-derived cfDNA after transplant can serve as a proof-
of-concept to validate the prediction accuracy of deconvolution results. We used a

complete fragment-level deconvolution model to estimate relative abundance changes to
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cfDNA composition, shown to accurately detect cfDNA from a source at 0.1% resolution
(35). Also, we found significant correlation with hepatocyte cfDNA and AST/ALT liver
enzyme activity (Fig. 4c). However, we did not find biliary cfDNA to correlate significantly
with alkaline phosphatase (ALP) or bilirubin levels (Supplemental Figs. 4d and 4e). The
short half-life of cfDNA (15 mins — 2 hours) relative to commonly monitored liver function
parameters also contributes to some discrepancy between the observed values (73, 74).
Changes in cell-type-specific cfDNAs reflect changes in cell turnover and thus measure
different facets of tissue dysfunction.

We found that sustained elevation of liver epithelial cfDNA during the first month
after transplant was associated with allograft injury, while patients without allograft injury
had significantly reduced levels of liver epithelial cfDNA as early as the first week post-
transplant. Importantly, liver cell-specific methylation patterns appear to be stably
maintained during the ongoing processes of tissue damage, repair, and remodeling after
transplant. We were able to detect elevated liver epithelial signals in all patients with
allograft injury, despite being a diverse cohort with several different types of allograft injury
represented. Our results suggest that cell-free methylated DNA has predictive and
diagnostic value to detect allograft injury earlier than clinical diagnosis by liver biopsy.
Notably, we did not find a significant difference in hepatic stellate or endothelial cfDNA
comparing patients with allograft injury to those without allograft injury during the first
month post-transplant. Interestingly, in liver damage after radiation treatment of patients
with right-sided breast cancers liver endothelial cfDNA showed a >10-fold increase after

radiation and delayed recovery to baseline one month after treatment in comparison to
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hepatocyte cfDNA (38). Thus, cfDNAs reflect distinct cellular responses to different types
of injury and repair in the same organ.

Beyond damage to the allograft, methylated cfDNA is also able to reveal cellular
damages of other recipient organs to indicate extra-hepatic toxicity and immune cell
turnover (23, 30, 31). This is a useful application of methylated cfDNA that can
simultaneously allow for monitoring of common pulmonary, renal, cardiac, and
neurological complications after liver transplants. Acute kidney injury (AKIl) is one of the
most common post-operative complications, occurring in up to 78% of liver transplant
patients (2). We were able to detect elevated kidney epithelial cfDNA in several patients
in our cohort experiencing hepato-renal syndrome (HRS) pre-transplant as well as those
experiencing AKI post-transplant (Fig. 6e-6h). In addition, we noticed divergent
trajectories of lymphoid versus myeloid cfDNA, with lymphoid cfDNA demonstrating more
dynamic changes compared to myeloid cfDNA that remains a constant background signal
(Fig. 6e-6h). We found elevated lymphoid cfDNA corresponding to infection in several
patients, including one patient with a COVID-19 infection (Fig. 6e).

Many studies have demonstrated the utility of donor-derived (dd) cfDNA to detect
allograft injury (12, 14-17). However, dd-cfDNA is unable to discriminate amongst
different causes of allograft injury. Likewise, it remains a challenge to distinguish causes
relying on clinical presentation alone. Therefore, liver biopsy is still the gold standard to
confirm a diagnosis and evaluate for response to treatment (4). Here we found that
methylated cfDNA is able to detect and differentiate hepatocellular versus biliary causes
of allograft injury at the time of biopsy-proven diagnosis (FC-bx). Biliary complications

after liver transplant, such as ascending cholangitis, strictures (both anastomotic and non-
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anastomotic), leaks, and recurrence of primary sclerosing cholangitis, contribute
significantly to post-transplant morbidity and mortality in both living and deceased donor
transplant recipients. Conventional diagnostic and monitoring methods for these
conditions often necessitate cross-sectional imaging techniques, such as MRCP, or
invasive procedures like ERCP or liver biopsy, which pose additional risks to patients (75,
76). Enhanced detection of biliary cell-type-specific damage allows for differentiation from
hepatocellular forms of allograft injury and associated tissue damage. This enables an
earlier and more accurate diagnosis of biliary complications and improved non-invasive
monitoring post-treatment. Incorporating cfDNA as a diagnostic tool into clinical practice
could potentially reduce the need for invasive procedures and facilitate early intervention
with targeted treatment.

In summary, we show that changes in methylated cfDNA released from dying cells
can indicate increased cell death and tissue damage in transplant patients. Expanded
atlases of DNA methylation sequencing data allow for identification of cfDNA fragments
originating from a variety of cell-types in the liver, demonstrating applicability in a wide
range of clinical settings. We correlate our findings from the methylated cfDNA analysis
with clinical data, histopathological results, and outcomes of conventional clinical
monitoring. We conclude that cell-free methylated DNA in the circulation of liver transplant
patients can indicate allograft injury and discriminate amongst causes of allograft injury

matching with tissue biopsy-proven diagnosis.

Methods

Study cohort
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Serial serum samples were collected from 28 liver transplant patients at predetermined
timepoints; pre-transplant (PRE) and post-reperfusion (POST) on post-operative day 0
(PODO), post-operative day 7 (PODO0), and post-operative day 30 (POD30). Beyond this,
we also collected samples in patients experiencing complications at the time of symptom
presentation. Further, we added phenotype-matched samples from an additional 16
patients at the time of for-cause liver biopsy (FC-bx) used to diagnose allograft injury.
Samples were classified as having hepatocellular (n=14), biliary (n=6), or mixed
hepatobiliary (n=10) forms of allograft injury from histopathological analysis of paired liver
biopsy tissues (additional details in Supplemental Methods section). A schematic of the
time series for sample collection can be found in Fig. 1. For serum isolation, peripheral
blood (~6-12 mL) was collected in red-top venous puncture tubes and allowed to clot at
room temperature for 30 minutes before centrifugation at 1200 x g for 10 min at room
temperature to separate the serum fraction. Patient characteristics with samples analyzed

in this study are summarized in Supplemental Table 1.

Isolation of circulating cell-free DNA (cfDNA)

Circulating cell-free DNA was extracted from 2-6 mL human serum, using the QlAamp
Circulating Nucleic Acid kit (Qiagen) according to the manufacturer’s instructions. Cell-
free DNA was quantified via Qubit fluorometer using the dsDNA BR Assay Kit (Thermo
Fisher Scientific). Additional size selection using Beckman Coulter beads was applied to
remove high-molecular weight DNA reflective of cell-lysis and leukocyte contamination as
previously described (38, 77). Paired serum and plasma were processed at serial

timepoints for n=3 patients to serve as a quality control (Supplemental Fig. 5 and
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Supplemental Methods). Fragment size distribution of isolated cfDNA after size selection

was validated on the 2100 Bioanalyzer TapeStation (Agilent Technologies).

Cell isolation to generate reference liver cell-type epigenomes

Reference epigenomes were generated for human liver cell types to expand upon publicly
available datasets (Supplemental Table 2). Human biliary tissues were obtained from
organs not suitable for transplant that were otherwise normal according to surgical
assessment. Tissues were dissected, with samples processed from lobes, common
hepatic duct, gallbladder, and common bile duct. Biliary epithelial cells (EpCAM+) were
isolated from the dissected tissues according to previously established protocols (details
in the Supplemental Methods section; Supplemental Fig. 1b) (78, 79). Cryopreserved
passage 1 human liver sinusoidal endothelial cells (LSEC) were purchased from
ScienCell research laboratories (SKU#5000). Cryopreserved passage O liver-resident
immune cells (Kupffer) and passage 1 human hepatic stellate cells were isolated from
single donor healthy human tissues purchased from Novabiosis Lot: QGJ and JNA (liver-
immune); Lot: ZMC and WAP (hepatic-stellate). Paired RNA-seq data was generated
from the same cell-populations used for DNA methylation profiling to validate the identity
of cell-types obtained from commercial sources through analysis of cell type expression

markers.

Isolation and fragmentation of genomic DNA
Genomic DNA from tissues was extracted with the DNeasy Blood and Tissue Kit (Qiagen)

following the manufacturer’s instructions and quantified via the Qubit fluorometer dsDNA
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BR Assay Kit (Thermo Fisher Scientific). Genomic DNA was fragmented via sonication
using a Covaris M220 instrument to the recommended 150-200 base pairs before library
preparation. Lambda phage DNA (Promega Corporation) was also fragmented and
included as a spike-in to all DNA samples at 0.5%w/w, serving as an internal
unmethylated control. Bisulfite conversion efficiency was calculated through assessing

the number of unconverted C’s on unmethylated lambda phage DNA.

Bisulfite capture-sequencing library preparation

Bisulfite capture-sequencing libraries were generated as previously described. In brief,
WGBS libraries were generated using the Pico Methyl-Seq Library Prep Kit (Zymo
Research) according to the manufacturer’s instructions. Library quality control was
performed with an Agilent 2100 Bioanalyzer and quantity determined via the KAPA Library
Quantification Kit (KAPA Biosystems). WGBS libraries were then pooled to meet the
required 1ug DNA input necessary for targeted enrichment. However, no more than four
WGBS libraries were pooled in a single hybridization reaction and the 1ug input DNA was
divided evenly between the libraries to be multiplexed. Hybridization capture was carried
out according to the SeqCap Epi Enrichment System protocol (Roche NimbleGen, Inc.)
using SeqCap Epi CpGiant probe pools with xGen Universal Blocker-TS Mix (Integrated
DNA Technologies, USA) as the blocking reagent. Washing and recovering of the
captured library, as well as PCR amplification and final purification, were carried out as
recommended by the manufacturer. The capture library products were assessed by
Agilent Bioanalyzer DNA 1000 assays (Agilent Technologies, Inc.). Bisulfite capture-

sequencing libraries with inclusion of 15-20% spike-in PhiX Control v3 library (lllumina)
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were clustered on an lllumina Novaseq 6000 S4 flow cell followed by 150bp paired-end

sequencing.

Bisulfite sequencing data alignment and preprocessing

Paired-end FASTQ files were trimmed using TrimGalore (V 0.6.6) (80) with parameters “-
-paired -q 20 --clip_R1 10 --clip_R2 10 --three_prime_clip_R1 10 --three_prime_clip_R2
10”. Trimmed paired-end FASTQ reads were mapped to the human genome
(GRCh37/hg19 build) using Bismark (V 0.22.3) (81) with parameters “--non-directional”,
then converted to BAM files using Samtools (V 1.12) (82). BAM files were sorted and
indexed using Samtools (V1.12). Reads were stripped from non-CpG nucleotides and
converted to BETA and PAT  files  using wgbstools (V. 0.1.0)
(https://github.com/nloyfer/wgbs_tools), a tool suite for working with WGBS data while
preserving read-specific intrinsic dependencies (83). The BETA files (a wgbstools-
compatible binary format) contain position and average methylation information for single
CpG sites. The PAT files contain fragment-level information (including CpG starting index,
methylation pattern of all covered CpGs and number of fragments with exact multiCpG

pattern).

Reference DNA methylation data from healthy tissues and cells

Availability of previously published and publicly available WGBS data from healthy cell-
types and tissues used in this paper are described in Supplemental Table 2. Controlled
access to reference WGBS data from normal human tissues and cell types were

requested from public consortia participating in the International Human Epigenome
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Consortium (IHEC) (84) and upon approval downloaded from the European Genome-
Phenome Archive (EGA), Japanese Genotype-phenotype Archive (JGA), database of
Genotypes and Phenotypes (dbGAP), and ENCODE portal data repositories (85).
Reference WGBS data were also downloaded from selected GEO and SRA datasets.

Reference WGBS data were analyzed as previously described (38).

Generation of expanded cell-type-specific DNA methylation atlas

Previously established atlases of cell-type-specific DNA methylation were refined to
include expanded data generated from liver cell-types and curated from recently
published WGBS dataset of purified healthy human cell-types (Supplemental Table 2).
Tissue and cell-type specific methylation blocks were identified from reference WGBS as
previously described (additional details in Supplemental Methods section) (38). In brief,
data was first segmented into blocks of homogenous methylation and then analysis was
restricted to blocks covered by the hybridization capture panel used in the analysis of
cfDNA (probed regions span 80Mb (~20% of CpGs) on the capture panel) (35). We also
restricted analysis to blocks containing a minimum of three CpG sites, with lengths less
than 2kb and at least 10 observations. Samples were divided into 20 groups by cell-type
and we performed a one-vs-all comparison to identify differentially methylated blocks
unique for each group. For this we used the find_markers Rscript (with parameters “--
tg.quant 0.2 --bg.quant 0.1 --margin 0.4”) to calculate the average methylation per
block/sample and rank the blocks according to the difference in average methylation
between any sample from the target group and all other samples (38) (Supplemental

Code). Blocks with a (-) direction are hypomethylated and (+) direction are
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hypermethylated, defined as a as a direction of methylation in the target cell-type relative
to all other tissues and cell-types included in the atlas. Identified liver cell-type-specific
DMBs meeting these specified requirements can be found in Supplemental Table 3.
Extended cell-type-specific blocks for liver-resident immune cells can be found in

Supplemental Table 7 (additional details in Supplemental Methods section).

UXM fragment-level deconvolution

An expanded atlas was generated using the top 100 methylation blocks per cell-type
group using the ‘uxm build’ function with parameters “--rlen 3" from the UXM_deconv
repository (https://github.com/nloyfer/UXM_deconv) (35). From this, each fragment is
annotated as U (mostly unmethylated), M (mostly methylated) or X (mixed) depending on
the number of methylated and unmethylated CpG sites. For each DMB, the proportion of
U/X/M fragments is calculated across all reference WGBS cell-types and the U/M
proportion reported for hypomethylated and hypermethylated DMBs, respectively. Then,
the cell-type origins of cell-free DNA fragments isolated from serum of liver transplant
patients are estimated using the ‘uxm deconv’ function with parameters “--rlen 3”. Briefly,
a non-negative least squares (NNLS) algorithm is used to fit each cell-free DNA sample
and estimate its relative contributions. Predicted cell-type proportions were converted to
genome equivalents and reported as Geg/mL through multiplying the relative fraction of
cell-type specific cfDNA times the concentration of cfDNA (ng/mL) by the mass of the

human haploid genome 3.3 x 10-'? grams.

Chromatin accessibility and histone modification data generation and analysis
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ATAC-seq libraries were generated from liver sinusoidal endothelial (LSEC) and liver-
resident immune cryopreserved cells using the ATAC-seq kit (Active Motif). H3K27ac
histone modification data was generated from liver sinusoidal endothelial (LSEC) and
liver-resident immune cryopreserved cells using the Cut&Tag-IT Assay kit (Active Motif,
H3K27ac antibody cat#39133). Library products were assessed by Agilent Bioanalyzer
HS DNA assays (Agilent Technologies, Inc.) and clustered on an lllumina Novaseq 6000
S4 flow cell followed by 150bp paired-end sequencing with inclusion of 10-15% spike-in
PhiX Control v3 library (lllumina). Controlled access to DNase-seq, H3K4me1 and
H3K27ac ChIP-seq data from hepatocytes was obtained from the German Epigenomme
Program (DEEP) (EGAD00001002527) and publicly available ATAC-seq data from biliary
tissue (gallbladder) was downloaded from the ENCODE project (ENCSRG695FLC).
Imputed data on H3K27ac binding in hepatic stellate cells was downloaded from the
ENCODE project in bigWig format (ENCSR225UAF). ChromHMM annotations (18-state
version) were downloaded from the ENCODE project (hepatocyte: ENCSRO75JST,
hepatic stellate: ENCSR593ZNP, and endothelial: ENCSR227ZSK) and genomic regions
associated with H3K4me1 enhancer mark were extracted and reformatted in bigWig
format. Paired-end FASTQ files were trimmed using TrimGalore (V 0.6.6) with parameters
“--paired -q 20”. Trimmed paired-end FASTQ reads were mapped to the human genome
(GRCh37/hg19 build) using Bowtie2-align (V 2.3.5.1) (86) with parameters “-X 1000 --
local --very-sensitive --no-mixed --dovetail --phred33”. Duplicated reads were marked
with Picard (V 2.18.14) and reads with low mapping quality, duplicated or not mapped in
proper pair were excluded using Samtools view (V 1.12) (82) with parameters “-F 1796 -

q 30”. BAM files were sorted and indexed using Samtools. Chromatin accessibility data
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was normalized to the same depth and then bigWig files were created using deepTools
(V 3.5.1) (87) with the functions ‘multiBamSummary ‘ and ‘bamCoverage’ using
parameters “--normalizeUsing RPKM --binSize 25”. Detection q-values were
calculated for histone modification data relative to Input control using the macs3
(V3.0.0a6) (88) bdgcmp function (-m gpois). This method uses the BH process for poisson
p-values to calculate the score in any bin using control(Input) as lambda and treatment
(IP sample) as observation. BigWig files were then generated using bedGraphToBigWig.
Summary plots were prepared using deepTools (V 3.5.1) with functions ‘computeMatrix’
and ‘plotProfile’ using default parameters, except for ‘referencePoint=center’ and 5Kb

margins.

Functional annotation, transcription factor binding site and pathway analysis

Cell-type specific methylation blocks were annotated and transcription factor binding site
analysis was performed using HOMER (V4.11.1) (89) and the annotatePeaks.pl and
findMotifsGenome.pl functions (details in the Supplemental Methods section). Pathway
analysis of genes adjacent to identified tissue and cell-type specific methylation blocks

was performed using Ingenuity Pathway Analysis (IPA) (Qiagen) (90).

Genome Browser and fragment-level visualizations

Reference WGBS samples were uploaded as custom tracks for visualization on the
UCSC genome browser (91). Methylomes were converted to bigWig format using the
wgbstools beta2bw function. Fragment-level visualization of methylation sequencing

reads was performed with the wgbstools vis function with parameters “—min 3 —yebl --
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strict”. Chromatin accessibility, histone modification, and RNA expression data were
downloaded from the IHEC data portal as bigWig files (hg19). FOXA1 ChlP-seq data in
liver was downloaded from the ENCODE project (ENCSR735KEY). Samples of the same

cell type were averaged using multiBigwigSummary (v.3.5.1).

Statistics

Statistical analyses for group comparisons and correlations were performed using Prism
(GraphPad Software, Inc., United States) and R (V 4.1.3). A correlation analysis was
performed to assess relationship between changing cell-free methylated DNAs and LFTs
using Spearman’s Rank Correlation Coefficient. Statistically significant comparisons are
shown, with significance defined as p<0.05. Correction for multiple hypothesis
comparisons was performed using the Benjamini-Hochberg (B-H) method corrected p-
value to control the false discovery rate (FDR) from multiple pathways being tested
against each gene-set. A two-stage linear step-up procedure of Benjamini, Krieger and

Yekutieli was performed for p-value adjustment from multiple outcome measures.

Study Approval
Liver transplant patients were enrolled and provided signed informed consent in this
Georgetown University Medical Center and MedStar Georgetown University Hospital

IRB-approved study (IRB protocols # IRB 2017-0690 and # 2017-0365).
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Figure 1. Study overview using cell-free methylated DNA in blood to monitor
cellular damages after liver transplant. Serial serum samples were collected from 28
patients before and after liver transplant at predetermined time points (n=100 samples)
during the first month with additional timepoints in patients experiencing complications as
they arose. We also collected phenotype-matched samples from an additional 16 patients
with allograft injury at the time of liver-biopsy proven diagnosis (n=30 samples). Cell-free
DNA (cfDNA) methylome profiling of serum samples was performed using hybridization
capture-sequencing of bisulfite-treated cfDNA. Then, cell-type-specific DNA methylation
blocks identified from reference data of healthy tissues were used to trace the origins of
patient cfDNA fragments. Cellular damages of the transplanted organ as well as other

recipient organs were quantified to monitor systemic impact.
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Figure 2. Liver cell-type DNA methylation atlas relative to other healthy tissues. a,
Heatmap of differentially methylated, cell-type-specific blocks (DMBs) identified from
reference WGBS data of healthy human cell-types. Each cell in the plot marks the
methylation score of one genomic region (rows) at each of 20 cell-types (columns), with
up to 50 blocks shown per cell type. The methylation score represents the number of fully
unmethylated or methylated read-pairs divided by total coverage for hypo- and hyper-
methylated blocks, respectively. b, Heatmap highlighting the top 25 hepatocyte-specific
DMBs. ¢, Example of one hepatocyte-specific hypomethylated block (highlighted in blue),
upstream of ECHS1 highly expressed in hepatocytes (green track). The alignment from
the UCSC genome browser depicts the average DNA methylation (DNAm, purple tracks)
across WGBS samples from five different liver cell-types as well as PBMC samples.
Chromatin organization marks in hepatocytes are displayed (blue tracks) to show
accessibility (DNAse | hypersensitivity, DHS) and regulatory function (H3K27ac binding).
d, Fragment-level visualization of methylation sequencing reads at hepatocyte-specific

hypomethylated block in reference WGBS samples from five different liver cell-types.
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Figure 3. Liver cell-specific hypomethylated DNA blocks coincide with other cell-
specific epigenetic marks. a-b, Relationship of liver cell-type-specific hypomethylated
blocks to chromatin accessibility and H3K27ac binding. Summary plots show the intensity
of DHS/ATAC-seq or H3K27ac marks in a +5-kb regions surrounding each hepatocyte-,
biliary columnar epithelial-, hepatic stellate-, liver endothelial-, and liver-immune cell-
specific hypomethylated block, respectively. Solid lines represent plot summary with
standard error depicted by semi-transparent colored region. ¢, Fraction of cell-type
specific hypomethylated blocks labeled as enhancers, associated with H3K4me1 mark,
in chromHMM annotations for the same cell-type. d, UCSC genome browser alignment
at one example hepatocyte-specific hypomethylated block containing the FOXA1 binding
sequence. Average methylation across WGBS samples shown in purple tracks. e,
Pioneer and developmental TF binding sites enriched within liver cell-type specific
hypomethylated blocks, from HOMER motif analysis. Captured blocks without liver cell-
type-specific methylation were used as background. Hepatocyte DHS, H3K27ac, and
H3K4me1 data were obtained from the German Epigenome programme (DEEP).
Hepatocyte FOXA1 Chip-seq data was obtained from the ENCODE project. Biliary
epithelial ATAC-seq data and Hepatic stellate H3K27ac histone modification data were

obtained from the ENCODE project.
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Figure 4. Origins of cellular damage after liver transplant derived from methylated
cfDNA fragments. a, Serial serum samples from 28 liver transplant patients collected
pre-transplant and post-reperfusion on post-operative day 0 (PODO). b, Average cellular
origins of cfDNA estimates. ¢, Correlation of AST and ALT enzyme activity with
hepatocyte-derived cfDNA (p<0.05, Spearman r=0.81 AST; r=0.82 ALT). d, e, g-i, Pre-
transplant (PRE) and post-reperfusion (POST) fraction of cfDNAs from myeloid (d),
hepatocyte (e), endothelial (g), hepatic stellate (h), and neuronal cells (i) of individual
patients. The mean + SEM of the cohort is shown in bold. Right axes: Fold change relative
to pre-transplant. f, Concentration of cfDNA isolated from patient serum. Individual patient
and median values are shown. Wilcoxon matched-pairs signed rank test was used for
comparison amongst groups (d-i; n=28). *p<0.05; myeloid p=0.0001, hepatocyte
p=0.0001, endothelial p=0.0025, hepatic stellate p=0.0001, neuron p=0.029,

concentration p=0.001.
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Figure 5. Time course of cell-type-specific damages after liver transplant. a, Serial
serum samples from 20 liver transplant patients collected pre-transplant, post-reperfusion
(PODO), post-operative day 7 and 30 (POD7, POD30). By 1 year after transplant, 11 of
20 patients were diagnosed with allograft injury by for-cause biopsy. b, Concentration of
cfDNA isolated from patient serum. Individual values and mean + SD at each timepoint,
grouped by outcome. (Mann-Whitney test, ns p>0.05). ¢, Hepatocyte cfDNA time course
in patients with allograft injury (right) or no allograft injury (left). Mean + SEM of each
cohort is shown in bold. d, Average hepatocyte cfDNA on POD7 and POD30, grouped by
outcome (Mann-Whitney test, p<0.05). e, Biliary cfDNA time course in patients with
allograft injury (right) or no allograft injury (left). Mean + SEM of each cohort is shown in
bold. f, Average biliary cfDNA on POD7 and POD30, grouped by outcome (Mann-Whitney
test, p<0.05). g, Time course of five liver cell type cfDNAs in patients with allograft injury
(right) or no allograft injury (left). Mean + SD. (b,d,f) NS p>0.05, *p<0.05; concentration
PODO p=0.516; concentration POD7 p=0.237; concentration POD30 p=0.503; biliary

p=0.009; hepatocyte p=0.002.
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Figure 6. Cell-free methylated DNA indicates cellular sources of allograft injury. a,
Serum samples collected at the time of for-cause liver biopsies (FC-bx) to diagnose
allograft injury. All biopsies were taken within 1 year of liver transplant and samples are
representative of 24 patients (n=30 samples). b, Cellular origins of cfDNAs classified by
injury patterns observed in biopsies. Top, Average fractions of different cellular sources
detected for each type of allograft injury. Bottom, Amount of cfDNAs (in Gegs) in individual
patients. ¢, Hepatocyte cfDNA in serum samples with hepatocellular or mixed
hepatobiliary injury compared to biliary injury alone (Mann-Whitney test, p<0.05). d,
Biliary cfDNA in serum samples with biliary or mixed hepatobiliary injury compared to
hepatocellular injury alone (Mann-Whitney test, p<0.05). b-d, Serum samples classified
as n=14 hepatocellular, n=10 mixed hepatobiliary, and n=6 biliary etiologies of allograft
injury. e-h, Time courses of cellular damage during the peri-transplant time period in
patients with hepatocellular, biliary, and mixed hepatobiliary forms of allograft injury.
Timepoints corresponding to complications and liver-biopsy proven diagnoses are
marked by an asterix. e, Patient with COVID-19 infection at POD15 and FC-bx diagnosis
of acute cellular rejection (ACR) with hyperbilirubinemia at POD120 (mixed injury
classification). Elevated kidney epithelial cfDNA detected on PODO, POD15, and POD30
match with the hepato-renal syndrome (HRS) diagnosis pre-transplant and acute kidney
injury (AKI) after transplant. f, Patient with FC-bx diagnosis of hepatic ischemia with
hyperbilirubinemia at POD1 (mixed injury classification). AKI was indicated by elevated
creatinine levels POD9 and elevated kidney epithelial cfDNA on POD30. g, Patient with
FC-bx diagnosis of Acute Cellular Rejection (ACR) at POD9 and POD15 (hepatocellular

injury classification). AKI was indicated by elevated creatinine levels on POD8 and
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elevated kidney epithelial cfDNA POD7, POD9, and POD30. h, Patient with diagnosis of

biloma at POD43 (biliary injury classification).
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