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Abstract  

Post-transplant complications reduce allograft and recipient survival. Current approaches 

for detecting allograft injury non-invasively are limited and do not differentiate between 

cellular mechanisms. Here, we monitor cellular damages after liver transplants from cell-

free DNA (cfDNA) fragments released from dying cells into the circulation. We analyzed 

130 blood samples collected from 44 patients at different time points after transplant. 

Sequence-based methylation of cfDNA fragments were mapped to patterns established 

to identify cell types in different organs. For liver cell types DNA methylation patterns and 

multi-omic data integration show distinct enrichment in open chromatin and regulatory 

regions functionally important for the respective cell types. We find that multi-tissue 

cellular damages post-transplant recover in patients without allograft injury during the first 

post-operative week. However, sustained elevation of hepatocyte and biliary epithelial 

cfDNA beyond the first week indicates early-onset allograft injury. Further, cfDNA 

composition differentiates amongst causes of allograft injury indicating the potential for 

non-invasive monitoring and timely intervention.  

 

Introduction 

Liver transplant is the standard-of-care for patients with end-stage liver disease and is the 

second most common transplant after the kidney (1). Despite improved survival rates, 

there is still a high prevalence of complications contributing to perioperative mortality post-

liver transplant, mostly occurring within the first month (2, 3). Unfortunately, current non-

invasive biomarkers have a limited scope and fail to identify cellular causes of allograft 

injury (4). Thus, tissue biopsy is still the gold-standard to confirm diagnosis and monitor 
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response to treatment. The analysis of cell-free DNA (cfDNA) in the circulation is an 

alternative to conventional biomarkers. CfDNA consists of fragments shed by dying cells 

throughout the body and its analysis can serve as a non-invasive approach for monitoring 

allograft as well as host tissue changes at a cellular level following liver transplant (5–11).  

Genetic differences between donor and recipient (SNPs) have been used to 

identify donor-derived cfDNA (dd-cfDNA) originating from the transplanted allograft to 

serve as a predictive biomarker of allograft injury and rejection (8, 12–18). However, there 

are many situations when genetic differences cannot be used to identify allograft-derived 

DNA; for example, when the genotype is unknown, multiple genotypes exist in the host, 

and when the donor is closely related to the recipient (13). Instead, epigenetic 

modifications can be used to identify cfDNA that is recipient or allograft-derived by using 

tissue- and cell-type specific marks that are independent of genotype differences between 

the donor and recipient (19–29). Allograft injury can thus be detected in an organ specific 

fashion, which is of critical importance in recipients of multi-organ transplants and 

recipients of hematopoietic cell transplant (HCT) who develop Graft-versus-Host disease 

(GvHD) (30–32). Also, the allograft as well as recipient organs are impacted by the 

transplant process as well as by subsequent treatments that can lead to tissue damage 

and remodeling. Primary injuries or secondary changes stemming from tissue repair can 

be quantified from cfDNA to indicate cell-type-specific damage (1–4, 33, 34).  

DNA methylation is highly cell-type-specific and has been found to reveal the 

origins of tissue damages and altered cell turnover from cfDNA samples in a wide-range 

of applications (27, 28, 30, 31, 35–45). DNA methylation patterns are stable epigenetic 

marks for cells maintained throughout DNA replication and cell proliferation (46). Cell-
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type-specific DNA methylation established early-on during development has been found 

to be highly conserved across individuals, irrespective of age and disease status (21, 22, 

46–50). Also, cell-free methylated DNA can reflect intervention-related changes over time 

through analyses of serially collected blood samples (38). Fragment-level deconvolution 

of methylation sequencing data allows for increased sensitivity and specificity of signal 

localization using CpG pattern analysis of individual cfDNA molecules (35, 38, 51–53). 

Likewise, hybridization capture to CpG-rich DNA segments maximizes sequencing depth 

while still maintaining comprehensive coverage (38).  

Here, we utilize circulating, cell-free methylated DNA to monitor cellular damages 

after liver transplant, impacting the allograft tissue as well as the recipient's organs. We 

expand existing cell-type-specific DNA methylation atlases to include non-parenchymal 

cell-types from the liver, including hepatic stellate, endothelial, liver-resident immune, and 

biliary epithelial cells. Then, we perform capture-sequencing of cell-free methylated DNA 

from serial blood samples and evaluate multi-tissue cellular damages after liver 

transplant. We find that sustained elevation of hepatocyte and biliary epithelial cfDNA 

beyond the first post-operative week is indicative of allograft injury. In addition, we show 

that there are significant changes in cfDNA composition corresponding to different 

allograft injury patterns at time of tissue-biopsy-proven diagnosis. Thus, cell-free 

methylated DNA can non-invasively indicate cellular sources of allograft injury in liver 

transplant patients.   

 

Results 
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Cellular damages after liver transplant indicated by cell-free methylated DNA in the 

circulation 

To monitor cellular damages after liver transplant, we collected serial serum samples from 

28 adult liver transplant patients during the peri-transplant time period and profiled cfDNA 

methylation from samples at predetermined timepoints up to one month after transplant 

(n = 100 samples). We also collected samples from patients experiencing complications 

and added phenotype-matched samples from an additional 16 patients at the time of for-

cause liver biopsy (FC-bx) used to identify allograft injury (n = 30 samples). Cell-free DNA 

fragments isolated from these 130 serum samples were bisulfite treated, enriched for 

sequences of interest by methylome-wide hybridization capture and subjected to 

sequence analysis (Fig. 1). The tissue and cell type origins of cfDNA fragments in the 

circulation were mapped to an expanded atlas of cell-type-specific DNA methylation to 

infer tissue damages and differentiate amongst causes of allograft injury (Methods). 

Demographic information and clinical characteristics of patients enrolled in this study are 

in Supplemental Table 1. 

 

Characterization of liver cell-type-specific epigenomes to expand sequencing-

based DNA methylation atlas of healthy tissues  

To identify cellular origins of cfDNA fragments in the circulation, we expanded the existing 

cell-type-specific DNA methylation atlas to liver cell-types relevant for injury and repair 

and generated methylome-sequencing data for hepatic stellate, liver endothelial, biliary 

epithelial, and liver-resident immune cell populations. In addition, we also included 

published whole genome bisulfite sequencing (WGBS) data from purified healthy human 
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cell-types (35, 38). This resulted in curation of over 450 WGBS datasets encompassing 

over 40 cell-types from diverse populations of donors (Supplemental Table 2) generating 

a reference methylome atlas as previously described (35, 38). Briefly, we first segmented 

the data into homogenously methylated blocks where DNA methylation levels at adjacent 

CpG sites were highly correlated across different cell types. Then, we restricted the 

analysis to the 364,268 blocks covered by our hybridization capture panel used in the 

analysis of cfDNA in human serum (captures 80Mb, ~20% of CpGs). Average methylation 

was calculated within blocks of at least three CpG sites and unsupervised clustering 

analysis was performed for the top 10% variable blocks across all samples. We found 

that with the additional data incorporated, samples still clustered strongly by cell type and 

developmental lineage (Supplemental Fig. 1d). Notably, parenchymal and non-

parenchymal liver cell methylomes did not cluster together. Instead, samples clustered 

with other cell-types of the same lineage, independent of the germ layer origin of their 

tissues of residence. Interestingly, biliary epithelial samples isolated from intrahepatic 

ducts and the gallbladder (columnar epithelium) demonstrated distinct methylation 

patterns compared to biliary epithelial samples isolated from the larger main hepatic, 

common bile and pancreatic ducts (cuboidal epithelium) (Supplemental Figs. 1b and 

1c).  

Based on the unsupervised clustering analysis, we grouped the reference WGBS 

data into 20 groups for downstream analysis (Supplemental Table 2). We identified cell-

type specific differentially methylated blocks (DMBs) within these groups taking a one-vs-

all approach as previously described (38). The co-methylation status of neighboring CpG 

sites in each block distinguished amongst all cell types included in the final groups 
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(Supplemental Table 3). The heatmap in Fig. 2a depicts the top 50 blocks with the 

highest score for each cell-type and the top hepatocyte-specific blocks are emphasized 

in Figs. 2b and 2c. The methylation sequencing approach taken here allowed for 

assessment of fragment-level methylation patterns rather than the limited single-site 

resolution of methylation arrays (Fig. 2d) (6). Whereas bulk tissue analyses average the 

methylation status amongst all cell-types, purified cell-specific methylome analysis 

allowed for discovery of features critical to the identity of non-parenchymal cell-types that 

contribute only few cells to the overall population and therefore would otherwise be 

missed (54, 55). 

 

Liver cell-type-specific hypomethylated blocks coincide with cell-type specific 

chromatin accessibility and H3K27ac binding  

The cell-type-specific DMBs identified using the expanded WGBS reference data 

resembled those of previously published methylation atlases, being largely 

hypomethylated, intragenic and annotated to genes relevant for cell function and identity 

(Supplemental Figs. 1a and 2f; Supplemental Table 4) (35, 38, 41). Notably, cell-type-

specific hypermethylated DMBs were much less frequent (17% on average) and enriched 

for CpG islands compared to cell-type-specific hypomethylated DMBs that were located 

in relatively CpG-depleted, GC-low regions characteristic of programmed demethylation 

occurring at enhancers (Supplemental Fig. 2a) (35, 47, 56). Indeed, the majority of liver 

cell-type-specific hypomethylated DMBs were enhancers by chromHMM annotations 

(Fig. 3c). In contrast, the majority of liver cell-type-specific hypermethylated DMBs were 

annotated to bivalent TSS/enhancers and repressive Polycomb targets (Supplemental 
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Fig. 2d). This matches with the function of cell-type-specific hypermethylation in 

repressing genes associated with embryonic stem cell pluripotency to stabilize cellular 

differentiation during development (Supplemental Fig. 2e) (57–59). To further explore 

the liver cell-type-specific DMBs identified, we generated and compiled additional 

chromatin accessibility and histone modification data to characterize the integrated 

epigenomes of hepatocyte, biliary epithelial, hepatic stellate, liver endothelial and liver-

resident immune cell-types.  We were surprised to find that liver cell-type-specific 

hypomethylated blocks were also regions with cell-type specific chromatin accessibility 

and H3K27ac binding, emphasizing the regulatory importance of these regions in 

maintaining cell-type-specific features reflected in the multi-omic datasets (Figs. 3a and 

3b).  

 

Pioneer transcription factor binding sites (TFBS) enriched within liver cell-type-

specific DNA methylation blocks  

We performed motif analysis to explore association of the identified liver cell-type-specific 

DNA methylation with transcription factor binding. We found enriched motifs for several 

pioneer transcription factors within hypomethylated DMBs, including FOXA1/2, PAX7, 

CUX1, HNR5A2, DUX4, OTX2, GATA, SOX17, ATF4 and PU.1 (Figs. 3d and 3e). We 

also found enriched motifs of binding sites for several liver developmental TFs known to 

cooperate with pioneer TFs, including HNF4a, HNF6, PDX1, RARa, COUP-TFII, and 

RUNX1 (60–62). Pioneer factors are a subclass of TFs that can bind to closed chromatin 

and elicit an extended functional capacity of the domain, often through local chromatin 

opening and demethylation (60). As such, they act as master regulators of development 
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and are known to drive cell fate transitions (60). However, we were surprised to find 

binding sites for pioneer TFs also enriched within liver-specific hypermethylated DMBs 

(Supplemental Fig. 2c). Interestingly, CpG dinucleotides were also enriched within the 

motifs found in hypermethylated DMBs and several methylation-sensitive TFs were 

amongst the top hits, including NRF1 where methylation is known to directly repress TF 

binding (Supplemental Fig. 2b and Supplemental Table 5) (63). Although less common, 

pioneer TFs have been shown to recruit transcriptional repressors and establish a closed 

and further silenced chromatin architecture (57, 64, 65). Several TFBS of transcriptional 

repressors known to interact with pioneer TFs were also enriched, including TBET, 

TRPS1, ZNF669, and E2F7. Annotation of the majority of liver-specific hypermethylated 

DMBs to bivalent TSS/enhancer regions coincides with the ability of some pioneer TFs to 

simulate PRC2 complex-inducing H3K27me3-marked heterochromatin, often deposited 

on lineage-specific enhancers (Supplemental Fig. 2d) (66–68). In composite, these 

results match with the role of the liver cell-type-specific methylation blocks identified here 

as being critical for cell identity.  

 

Origins of cellular damage immediately after liver transplant  

To identify the origins of cfDNA fragments in the circulation of liver transplant patients, we 

used the top 100 methylation blocks for each cell-type group and generated an expanded 

liver cell-type-specific DNA methylation atlas (Methods). We then applied a fragment-level 

deconvolution algorithm, previously validated to estimate relative contributions from 

cfDNA methylation sequencing data (Supplemental Table 6a) (35). First, to explore the 

changing cfDNA makeup after liver transplant, we assessed changes across all patients 
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comparing pre-transplant cfDNA origins to post-reperfusion changes in serially collected 

blood samples from 28 liver transplant patients on the day of surgery (POD0; Fig. 4a). 

We found that there was a significant ~5-fold increase in cfDNA concentration after 

transplant across all patients in the cohort, reflecting increased cell turnover from the 

surgical procedure itself (p<0.05, Wilcoxon matched-pairs signed rank test) (Fig. 4f). 

From the deconvolution analysis we found that liver cell types mainly contributed to this 

increase (Fig. 4b) with a significant increase in hepatocyte, hepatic stellate, and 

endothelial cfDNA fraction and a corresponding relative decrease in myeloid cfDNA that 

constitutes most of the hematopoietic signal at baseline (p<0.05, Wilcoxon matched-pairs 

signed rank test) (Fig. 4d, e, g, h). The concentration of hepatocyte cfDNA in genome 

equivalents/mL (Geq/mL) correlated with patient AST and ALT liver enzyme values 

(Spearman r = 0.81 AST and r = 0.82 ALT, p<0.05) (Fig. 4c). The homogenous cfDNA 

changes across all patients show applicability of this approach across a diverse patient 

cohort. Beyond damages to the allografted liver cell-types, we found that the transplant 

procedure results in multiple tissue cellular damages of the recipient as well. We were 

surprised to find a significant increase in neuron-derived cfDNA after transplant (Fig. 4i). 

While only representing a small overall fraction of the total cfDNA, there was an average 

4-fold increase in this signal indicating neuronal cell death during the procedure. In 

addition, there were also significant increases in cardiomyocyte, biliary-ductal and gastric-

epithelial cfDNAs in Geq/mL (Supplemental Fig. 3).  

 

Sustained elevation of hepatocyte and biliary epithelial cfDNA indicate allograft 

injury 
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We collected additional serum samples in a subset of 20 liver transplant patients to 

explore cfDNA changes over time during the first month after transplant, the highest risk 

period for post-transplant complications (Fig. 5a). Of these patients, 11 (55%) had liver 

biopsies showing allograft injury within the first year. There were no differences in cfDNA 

concentration after transplant comparing these two outcome groups (Fig. 5B) though we 

noticed changes in cfDNA composition when comparing across the entire cohort 

(Supplemental Fig. 4a). Liver-epithelial cellular damage mostly recovered in patients 

without allograft injury during the first post-operative week. In contrast, patients diagnosed 

with allograft injury during the first year after transplant had sustained elevation of 

hepatocyte and biliary epithelial cfDNA from POD7-POD30 (p<0.05, Mann-Whitney test) 

(Fig. 5c to 5f). Despite these differences in liver epithelial signals, there was no significant 

difference in hepatic stellate or endothelial cfDNA associated with different outcomes 

(Supplemental Figs. 4b and 4c). These findings were irrespective of the type of allograft 

injury diagnosed at the eventual time of for-cause liver biopsy (FC-bx). Of the patients 

with allograft injury, 7 (of 20) were diagnosed with hepatocellular, 3 mixed hepatobiliary, 

and 1 biliary forms of allograft injury. The majority of patients were diagnosed with allograft 

injury beyond the first month, but five patients were diagnosed within the first month (all 

within the first-year post-transplant). Despite variation in timing, elevated liver epithelial 

cfDNA was detected during the first post-operative month in all 11 patients with allograft 

injury, with an elevated signal detected a median of 63 days [range 2-203 days] ahead of 

the time of tissue-biopsy based diagnosis. Comparing the trajectory of liver cell-type 

damages over time, patients without allograft injury had higher levels of lymphoid and 

endothelial cfDNA relative to hepatocyte and biliary epithelial cfDNA at POD30, 
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suggesting that the ratio may be useful to monitor and predict injury patterns during the 

peri-transplant time period (Fig. 5g).  

 

Cell-free methylated DNA indicates the source of allograft injury 

We added phenotype-matched samples from additional patients at the time of for-cause 

liver biopsy (FC-bx) used to diagnose allograft injury, evaluating 30 serum samples from 

24 individuals (Fig. 6a). Samples were classified as having hepatocellular (n=14), biliary 

(n=6), or mixed hepatobiliary (n=10)  forms of allograft injury from histopathological 

analysis of the paired biopsy tissues. Notably, the composition of cfDNA was significantly 

different at the time of biopsy-proven phenotypes, comparing hepatocellular and biliary 

etiologies of allograft injury (Fig. 6b and Supplemental Table 6b). Hepatocyte cfDNA 

was increased in samples with hepatocellular or mixed hepatobiliary injury compared to 

pure biliary injury  (p<0.05, Mann-Whitney test) (Fig. 6c). Likewise, biliary cfDNA was 

increased in samples with biliary or mixed hepatobiliary injury compared to hepatocellular 

injury (p<0.05, Mann-Whitney test) (Fig. 6d). The cfDNA composition changes over time 

reflected the trajectory of cellular damages in patients with different injury types (Fig. 6e 

to 6h; patient details in the legend). At the time of FC-bx only hepatocyte cfDNA was 

detected in a patient with hepatocellular injury (Fig. 6e), only biliary epithelial cfDNA in a 

patient with pure biliary injury (Fig. 6f), and both hepatocyte and biliary epithelial cfDNA 

in two patients with different etiologies of mixed hepatobiliary injury (Fig. 6g and 6h). 

Taken as a whole, distinct cellular damages after liver transplant are detectable by the 

analysis of blood samples. 
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Discussion  

The liver cell-type-specific DNA methylation atlas sheds light onto the epigenomic 

characteristics established early during development by identifying genomic regions of 

cell identity that are stably maintained in differentiated cells. We find that DNA methylation 

coincides with other liver cell-type-specific epigenetic marks, validating the biological 

relevance of these regions and enhancing their utility in detecting altered turnover of cells 

from DNA fragments shed in the circulation. Similar to other studies, we found the majority 

of liver-cell-specific DMBs to be hypomethylated. However, we found enriched TFBS of 

pioneer factors within both hypo- and hyper-methylated liver-cell-specific DMBs. 

Surprisingly, we also found CpG dinucleotides enriched within TFBS motifs associated 

with methylation-sensitive TFs in hypermethylated DMBs. This suggests that cell-type-

specific hypo- and hyper- methylated regions may play a similar function in different 

contexts to repress precursor or stem cell transcriptional programs and control terminal 

differentiation into distinct cell types. Ultimately, this could serve as a valuable resource 

for many applications and shed light on factors needed for cell-reprogramming that may 

also play a role in disease pathogenesis and cell-type-specific epigenetic regulation (69).  

 We identified sufficient numbers of DNA methylation blocks to discriminate cells of 

origin of liver-derived DNA fragments in the circulation, including hepatocyte, biliary-

epithelial, hepatic stellate, and endothelial cells. As one limitation, we were unable to 

identify enough DMBs with sufficient specificity to profile liver-resident immune cell 

turnover in patient blood samples relative to all other cell-types included in the atlas. Likely 

this was due to the purity and extent of peripheral and tissue-resident immune cell 

methylome reference data available. Instead, extended liver-resident immune cell 
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markers were identified with relaxed specificity thresholds to use for characterization of 

liver cell-specific epigenetic data (Supplemental Table 7 and Supplemental Methods). 

Generation of additional cell-specific methylation sequencing data to better characterize 

immune cell diversity will allow for enhanced ability to detect tissue-resident cell turnover 

in the future. In addition, implementation of hierarchical statistical models will allow for a 

more fine-tuned assessment of cell-free DNA composition in the face of limited numbers 

of highly specific methylation patterns to distinguish rare cell-types (70, 71).  

 The expanded liver cell-type-specific methylation atlas allowed for detection of 

tissue-derived fragments in the circulation to reveal cell types in the recipient impacted by 

the transplant procedure, comparing post-reperfusion signals to the pre-transplant 

baseline. The donor liver can be damaged in several ways including, cold and warm 

ischemia, surgical anastomoses, and reperfusion injuries (1–3, 33, 34). We found that 

these tissue effects were reflected by a relative increase in hepatocyte, hepatic stellate, 

and endothelial cfDNA compared to the myeloid-derived baseline signal. However, we 

were surprised by the increase in neuron and cardiomyocyte cfDNA after the transplant. 

The increase in neuron cfDNA could be caused by neurotoxicity from the general 

anesthesia; although, neurological complications are more common after liver (30%) than 

after heart (4%) or kidney transplants (0.5%) (72). Increased susceptibility or comorbidity 

due to the pathophysiology of the underlying hepatic disease may play a role and 

contribute to increased neuronal cell death in liver transplant patients. 

 The large increase in liver-cell-derived cfDNA after transplant can serve as a proof-

of-concept to validate the prediction accuracy of deconvolution results. We used a 

complete fragment-level deconvolution model to estimate relative abundance changes to 
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cfDNA composition, shown to accurately detect cfDNA from a source at 0.1% resolution 

(35). Also, we found significant correlation with hepatocyte cfDNA and AST/ALT liver 

enzyme activity (Fig. 4c). However, we did not find biliary cfDNA to correlate significantly 

with alkaline phosphatase (ALP) or bilirubin levels (Supplemental Figs. 4d and 4e). The 

short half-life of cfDNA (15 mins – 2 hours) relative to commonly monitored liver function 

parameters also contributes to some discrepancy between the observed values (73, 74). 

Changes in cell-type-specific cfDNAs reflect changes in cell turnover and thus measure 

different facets of tissue dysfunction.  

 We found that sustained elevation of liver epithelial cfDNA during the first month 

after transplant was associated with allograft injury, while patients without allograft injury 

had significantly reduced levels of liver epithelial cfDNA as early as the first week post-

transplant. Importantly, liver cell-specific methylation patterns appear to be stably 

maintained during the ongoing processes of tissue damage, repair, and remodeling after 

transplant. We were able to detect elevated liver epithelial signals in all patients with 

allograft injury, despite being a diverse cohort with several different types of allograft injury 

represented. Our results suggest that cell-free methylated DNA has predictive and 

diagnostic value to detect allograft injury earlier than clinical diagnosis by liver biopsy. 

Notably, we did not find a significant difference in hepatic stellate or endothelial cfDNA 

comparing patients with allograft injury to those without allograft injury during the first 

month post-transplant. Interestingly, in liver damage after radiation treatment of patients 

with right-sided breast cancers liver endothelial cfDNA showed a >10-fold increase after 

radiation and delayed recovery to baseline one month after treatment in comparison to 
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hepatocyte cfDNA (38). Thus, cfDNAs reflect distinct cellular responses to different types 

of injury and repair in the same organ.  

 Beyond damage to the allograft, methylated cfDNA is also able to reveal cellular 

damages of other recipient organs to indicate extra-hepatic toxicity and immune cell 

turnover (23, 30, 31). This is a useful application of methylated cfDNA that can 

simultaneously allow for monitoring of common pulmonary, renal, cardiac, and 

neurological complications after liver transplants. Acute kidney injury (AKI) is one of the 

most common post-operative complications, occurring in up to 78% of liver transplant 

patients (2). We were able to detect elevated kidney epithelial cfDNA in several patients 

in our cohort experiencing hepato-renal syndrome (HRS) pre-transplant as well as those 

experiencing AKI post-transplant (Fig. 6e-6h). In addition, we noticed divergent 

trajectories of lymphoid versus myeloid cfDNA, with lymphoid cfDNA demonstrating more 

dynamic changes compared to myeloid cfDNA that remains a constant background signal 

(Fig. 6e-6h). We found elevated lymphoid cfDNA corresponding to infection in several 

patients, including one patient with a COVID-19 infection (Fig. 6e).  

Many studies have demonstrated the utility of donor-derived (dd) cfDNA to detect 

allograft injury (12, 14–17). However, dd-cfDNA is unable to discriminate amongst 

different causes of allograft injury. Likewise, it remains a challenge to distinguish causes 

relying on clinical presentation alone. Therefore, liver biopsy is still the gold standard to 

confirm a diagnosis and evaluate for response to treatment (4). Here we found that 

methylated cfDNA is able to detect and differentiate hepatocellular versus biliary causes 

of allograft injury at the time of biopsy-proven diagnosis (FC-bx). Biliary complications 

after liver transplant, such as ascending cholangitis, strictures (both anastomotic and non-
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anastomotic), leaks, and recurrence of primary sclerosing cholangitis, contribute 

significantly to post-transplant morbidity and mortality in both living and deceased donor 

transplant recipients. Conventional diagnostic and monitoring methods for these 

conditions often necessitate cross-sectional imaging techniques, such as MRCP, or 

invasive procedures like ERCP or liver biopsy, which pose additional risks to patients (75, 

76). Enhanced detection of biliary cell-type-specific damage allows for differentiation from 

hepatocellular forms of allograft injury and associated tissue damage. This enables an 

earlier and more accurate diagnosis of biliary complications and improved non-invasive 

monitoring post-treatment. Incorporating cfDNA as a diagnostic tool into clinical practice 

could potentially reduce the need for invasive procedures and facilitate early intervention 

with targeted treatment. 

In summary, we show that changes in methylated cfDNA released from dying cells 

can indicate increased cell death and tissue damage in transplant patients. Expanded 

atlases of DNA methylation sequencing data allow for identification of cfDNA fragments 

originating from a variety of cell-types in the liver, demonstrating applicability in a wide 

range of clinical settings. We correlate our findings from the methylated cfDNA analysis 

with clinical data, histopathological results, and outcomes of conventional clinical 

monitoring. We conclude that cell-free methylated DNA in the circulation of liver transplant 

patients can indicate allograft injury and discriminate amongst causes of allograft injury 

matching with tissue biopsy-proven diagnosis.  

 

Methods 

Study cohort 
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Serial serum samples were collected from 28 liver transplant patients at predetermined 

timepoints; pre-transplant (PRE) and post-reperfusion (POST) on post-operative day 0 

(POD0), post-operative day 7 (POD0), and post-operative day 30 (POD30). Beyond this, 

we also collected samples in patients experiencing complications at the time of symptom 

presentation. Further, we added phenotype-matched samples from an additional 16 

patients at the time of for-cause liver biopsy (FC-bx) used to diagnose allograft injury. 

Samples were classified as having hepatocellular (n=14), biliary (n=6), or mixed 

hepatobiliary (n=10)  forms of allograft injury from histopathological analysis of paired liver 

biopsy tissues (additional details in Supplemental Methods section). A schematic of the 

time series for sample collection can be found in Fig. 1. For serum isolation, peripheral 

blood (~6-12 mL) was collected in red-top venous puncture tubes and allowed to clot at 

room temperature for 30 minutes before centrifugation at 1200 x g for 10 min at room 

temperature to separate the serum fraction. Patient characteristics with samples analyzed 

in this study are summarized in Supplemental Table 1. 

 

Isolation of circulating cell-free DNA (cfDNA)  

Circulating cell-free DNA was extracted from 2-6 mL human serum, using the QIAamp 

Circulating Nucleic Acid kit (Qiagen) according to the manufacturer’s instructions. Cell-

free DNA was quantified via Qubit fluorometer using the dsDNA BR Assay Kit (Thermo 

Fisher Scientific). Additional size selection using Beckman Coulter beads was applied to 

remove high-molecular weight DNA reflective of cell-lysis and leukocyte contamination as 

previously described (38, 77). Paired serum and plasma were processed at serial 

timepoints for n=3 patients to serve as a quality control (Supplemental Fig. 5 and 
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Supplemental Methods). Fragment size distribution of isolated cfDNA after size selection 

was validated on the 2100 Bioanalyzer TapeStation (Agilent Technologies).   

 

Cell isolation to generate reference liver cell-type epigenomes   

Reference epigenomes were generated for human liver cell types to expand upon publicly 

available datasets (Supplemental Table 2). Human biliary tissues were obtained from 

organs not suitable for transplant that were otherwise normal according to surgical 

assessment. Tissues were dissected, with samples processed from lobes, common 

hepatic duct, gallbladder, and common bile duct. Biliary epithelial cells (EpCAM+) were 

isolated from the dissected tissues according to previously established protocols (details 

in the Supplemental Methods section; Supplemental Fig. 1b) (78, 79). Cryopreserved 

passage 1 human liver sinusoidal endothelial cells (LSEC) were purchased from 

ScienCell research laboratories (SKU#5000). Cryopreserved passage 0 liver-resident 

immune cells (Kupffer) and passage 1 human hepatic stellate cells were isolated from 

single donor healthy human tissues purchased from Novabiosis Lot: QGJ and JNA (liver-

immune); Lot: ZMC and WAP (hepatic-stellate). Paired RNA-seq data was generated 

from the same cell-populations used for DNA methylation profiling to validate the identity 

of cell-types obtained from commercial sources through analysis of cell type expression 

markers. 

 

Isolation and fragmentation of genomic DNA  

Genomic DNA from tissues was extracted with the DNeasy Blood and Tissue Kit (Qiagen) 

following the manufacturer’s instructions and quantified via the Qubit fluorometer dsDNA 
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BR Assay Kit (Thermo Fisher Scientific). Genomic DNA was fragmented via sonication 

using a Covaris M220 instrument to the recommended 150-200 base pairs before library 

preparation. Lambda phage DNA (Promega Corporation) was also fragmented and 

included as a spike-in to all DNA samples at 0.5%w/w, serving as an internal 

unmethylated control. Bisulfite conversion efficiency was calculated through assessing 

the number of unconverted C’s on unmethylated lambda phage DNA.  

 

Bisulfite capture-sequencing library preparation  

Bisulfite capture-sequencing libraries were generated as previously described. In brief, 

WGBS libraries were generated using the Pico Methyl-Seq Library Prep Kit (Zymo 

Research) according to the manufacturer’s instructions. Library quality control was 

performed with an Agilent 2100 Bioanalyzer and quantity determined via the KAPA Library 

Quantification Kit (KAPA Biosystems). WGBS libraries were then pooled to meet the 

required 1µg DNA input necessary for targeted enrichment. However, no more than four 

WGBS libraries were pooled in a single hybridization reaction and the 1ug input DNA was 

divided evenly between the libraries to be multiplexed. Hybridization capture was carried 

out according to the SeqCap Epi Enrichment System protocol (Roche NimbleGen, Inc.) 

using SeqCap Epi CpGiant probe pools with xGen Universal Blocker-TS Mix (Integrated 

DNA Technologies, USA) as the blocking reagent. Washing and recovering of the 

captured library, as well as PCR amplification and final purification, were carried out as 

recommended by the manufacturer. The capture library products were assessed by 

Agilent Bioanalyzer DNA 1000 assays (Agilent Technologies, Inc.). Bisulfite capture-

sequencing libraries with inclusion of 15-20% spike-in PhiX Control v3 library (Illumina) 
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were clustered on an Illumina Novaseq 6000 S4 flow cell followed by 150bp paired-end 

sequencing.  

 

Bisulfite sequencing data alignment and preprocessing  

Paired-end FASTQ files were trimmed using TrimGalore (V 0.6.6) (80) with parameters “-

-paired -q 20 --clip_R1 10 --clip_R2 10 --three_prime_clip_R1 10 --three_prime_clip_R2 

10”. Trimmed paired-end FASTQ reads were mapped to the human genome 

(GRCh37/hg19 build) using Bismark (V 0.22.3) (81) with parameters “--non-directional”, 

then converted to BAM files using Samtools (V 1.12) (82).  BAM files were sorted and 

indexed using Samtools (V1.12). Reads were stripped from non-CpG nucleotides and 

converted to BETA and PAT files using wgbstools (V 0.1.0) 

(https://github.com/nloyfer/wgbs_tools), a tool suite for working with WGBS data while 

preserving read-specific intrinsic dependencies (83). The BETA files (a wgbstools-

compatible binary format) contain position and average methylation information for single 

CpG sites. The PAT files contain fragment-level information (including CpG starting index, 

methylation pattern of all covered CpGs and number of fragments with exact multiCpG 

pattern).  

 

Reference DNA methylation data from healthy tissues and cells   

Availability of previously published and publicly available WGBS data from healthy cell-

types and tissues used in this paper are described in Supplemental Table 2. Controlled 

access to reference WGBS data from normal human tissues and cell types were 

requested from public consortia participating in the International Human Epigenome 
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Consortium (IHEC) (84) and upon approval downloaded from the European Genome-

Phenome Archive (EGA), Japanese Genotype-phenotype Archive (JGA), database of 

Genotypes and Phenotypes (dbGAP), and ENCODE portal data repositories (85). 

Reference WGBS data were also downloaded from selected GEO and SRA datasets. 

Reference WGBS data were analyzed as previously described (38).  

 

Generation of expanded cell-type-specific DNA methylation atlas 

Previously established atlases of cell-type-specific DNA methylation were refined to 

include expanded data generated from liver cell-types and curated from recently 

published WGBS dataset of purified healthy human cell-types (Supplemental Table 2). 

Tissue and cell-type specific methylation blocks were identified from reference WGBS as 

previously described (additional details in Supplemental Methods section) (38). In brief, 

data was first segmented into blocks of homogenous methylation and then analysis was 

restricted to blocks covered by the hybridization capture panel used in the analysis of 

cfDNA (probed regions span 80Mb (~20% of CpGs) on the capture panel) (35). We also 

restricted analysis to blocks containing a minimum of three CpG sites, with lengths less 

than 2kb and at least 10 observations. Samples were divided into 20 groups by cell-type 

and we performed a one-vs-all comparison to identify differentially methylated blocks 

unique for each group. For this we used the find_markers Rscript (with parameters “--

tg.quant 0.2 --bg.quant 0.1 --margin 0.4”) to calculate the average methylation per 

block/sample and rank the blocks according to the difference in average methylation 

between any sample from the target group and all other samples (38) (Supplemental 

Code). Blocks with a (-) direction are hypomethylated and (+) direction are 
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hypermethylated, defined as a as a direction of methylation in the target cell-type relative 

to all other tissues and cell-types included in the atlas. Identified liver cell-type-specific 

DMBs meeting these specified requirements can be found in Supplemental Table 3. 

Extended cell-type-specific blocks for liver-resident immune cells can be found in 

Supplemental Table 7 (additional details in Supplemental Methods section). 

 

UXM fragment-level deconvolution  

An expanded atlas was generated using the top 100 methylation blocks per cell-type 

group using the ‘uxm build’ function with parameters “--rlen 3” from the UXM_deconv 

repository (https://github.com/nloyfer/UXM_deconv) (35). From this, each fragment is 

annotated as U (mostly unmethylated), M (mostly methylated) or X (mixed) depending on 

the number of methylated and unmethylated CpG sites. For each DMB, the proportion of 

U/X/M fragments is calculated across all reference WGBS cell-types and the U/M 

proportion reported for hypomethylated and hypermethylated DMBs, respectively. Then, 

the cell-type origins of cell-free DNA fragments isolated from serum of liver transplant 

patients are estimated using the ‘uxm deconv’ function with parameters “--rlen 3”. Briefly, 

a non-negative least squares (NNLS) algorithm is used to fit each cell-free DNA sample 

and estimate its relative contributions. Predicted cell-type proportions were converted to 

genome equivalents and reported as Geq/mL through multiplying the relative fraction of 

cell-type specific cfDNA times the concentration of cfDNA (ng/mL) by the mass of the 

human haploid genome 3.3 x 10-12 grams.  

 

Chromatin accessibility and histone modification data generation and analysis 
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ATAC-seq libraries were generated from liver sinusoidal endothelial (LSEC) and liver-

resident immune cryopreserved cells using the ATAC-seq kit (Active Motif). H3K27ac 

histone modification data was generated from liver sinusoidal endothelial (LSEC) and 

liver-resident immune cryopreserved cells using the Cut&Tag-IT Assay kit (Active Motif, 

H3K27ac antibody cat#39133). Library products were assessed by Agilent Bioanalyzer 

HS DNA assays (Agilent Technologies, Inc.) and clustered on an Illumina Novaseq 6000 

S4 flow cell followed by 150bp paired-end sequencing with inclusion of 10-15% spike-in 

PhiX Control v3 library (Illumina). Controlled access to DNase-seq, H3K4me1 and 

H3K27ac ChIP-seq data from hepatocytes was obtained from the German Epigenomme 

Program (DEEP) (EGAD00001002527) and publicly available ATAC-seq data from biliary 

tissue (gallbladder) was downloaded from the ENCODE project (ENCSR695FLC). 

Imputed data on H3K27ac binding in hepatic stellate cells was downloaded from the 

ENCODE project in bigWig format (ENCSR225UAF). ChromHMM annotations (18-state 

version) were downloaded from the ENCODE project (hepatocyte: ENCSR075JST, 

hepatic stellate: ENCSR593ZNP, and endothelial: ENCSR227ZSK) and genomic regions 

associated with H3K4me1 enhancer mark were extracted and reformatted in bigWig 

format. Paired-end FASTQ files were trimmed using TrimGalore (V 0.6.6) with parameters 

“--paired -q 20”. Trimmed paired-end FASTQ reads were mapped to the human genome 

(GRCh37/hg19 build) using Bowtie2-align (V 2.3.5.1) (86) with parameters “-X 1000 --

local --very-sensitive --no-mixed --dovetail --phred33”. Duplicated reads were marked 

with Picard (V 2.18.14) and reads with low mapping quality, duplicated or not mapped in 

proper pair were excluded using Samtools view (V 1.12) (82) with parameters “-F 1796 -

q 30”. BAM files were sorted and indexed using Samtools. Chromatin accessibility data 
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was normalized to the same depth and then bigWig files were created using deepTools 

(V 3.5.1) (87) with the functions ‘multiBamSummary ‘ and ‘bamCoverage’ using 

parameters “--normalizeUsing RPKM --binSize 25”. Detection q-values were 

calculated for histone modification data relative to Input control using the macs3 

(V3.0.0a6) (88) bdgcmp function (-m qpois). This method uses the BH process for poisson 

p-values to calculate the score in any bin using control(Input) as lambda and treatment 

(IP sample) as observation. BigWig files were then generated using bedGraphToBigWig. 

Summary plots were prepared using deepTools (V 3.5.1) with functions ‘computeMatrix’ 

and ‘plotProfile’ using default parameters, except for ‘referencePoint=center’ and 5Kb 

margins.   

 

Functional annotation, transcription factor binding site and pathway analysis  

Cell-type specific methylation blocks were annotated and transcription factor binding site 

analysis was performed using HOMER (V4.11.1) (89) and the annotatePeaks.pl and 

findMotifsGenome.pl functions (details in the Supplemental Methods section). Pathway 

analysis of genes adjacent to identified tissue and cell-type specific methylation blocks 

was performed using Ingenuity Pathway Analysis (IPA) (Qiagen) (90).  

 

Genome Browser and fragment-level visualizations  

Reference WGBS samples were uploaded as custom tracks for visualization on the 

UCSC genome browser (91). Methylomes were converted to bigWig format using the 

wgbstools beta2bw function. Fragment-level visualization of methylation sequencing 

reads was performed with the wgbstools vis function with parameters “—min 3 –yebl --
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strict”. Chromatin accessibility, histone modification, and RNA expression data were 

downloaded from the IHEC data portal as bigWig files (hg19). FOXA1 ChIP-seq data in 

liver was downloaded from the ENCODE project (ENCSR735KEY). Samples of the same 

cell type were averaged using multiBigwigSummary (v.3.5.1).  

 

Statistics  

Statistical analyses for group comparisons and correlations were performed using Prism 

(GraphPad Software, Inc., United States) and R (V 4.1.3). A correlation analysis was 

performed to assess relationship between changing cell-free methylated DNAs and LFTs 

using Spearman’s Rank Correlation Coefficient. Statistically significant comparisons are 

shown, with significance defined as p<0.05. Correction for multiple hypothesis 

comparisons was performed using the Benjamini-Hochberg (B-H) method corrected p-

value to control the false discovery rate (FDR) from multiple pathways being tested 

against each gene-set. A two-stage linear step-up procedure of Benjamini, Krieger and 

Yekutieli was performed for p-value adjustment from multiple outcome measures.  

 

Study Approval  

Liver transplant patients were enrolled and provided signed informed consent in this 

Georgetown University Medical Center and MedStar Georgetown University Hospital 

IRB-approved study (IRB protocols # IRB 2017-0690 and # 2017-0365).  
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Figure 1. Study overview using cell-free methylated DNA in blood to monitor 

cellular damages after liver transplant. Serial serum samples were collected from 28 

patients before and after liver transplant at predetermined time points (n=100 samples) 

during the first month with additional timepoints in patients experiencing complications as 

they arose. We also collected phenotype-matched samples from an additional 16 patients 

with allograft injury at the time of liver-biopsy proven diagnosis (n=30 samples). Cell-free 

DNA (cfDNA) methylome profiling of serum samples was performed using hybridization 

capture-sequencing of bisulfite-treated cfDNA. Then, cell-type-specific DNA methylation 

blocks identified from reference data of healthy tissues were used to trace the origins of 

patient cfDNA fragments. Cellular damages of the transplanted organ as well as other 

recipient organs were quantified to monitor systemic impact. 
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Figure 2. Liver cell-type DNA methylation atlas relative to other healthy tissues. a, 

Heatmap of differentially methylated, cell-type-specific blocks (DMBs) identified from 

reference WGBS data of healthy human cell-types. Each cell in the plot marks the 

methylation score of one genomic region (rows) at each of 20 cell-types (columns), with 

up to 50 blocks shown per cell type. The methylation score represents the number of fully 

unmethylated or methylated read-pairs divided by total coverage for hypo- and hyper-

methylated blocks, respectively. b, Heatmap highlighting the top 25 hepatocyte-specific 

DMBs. c, Example of one hepatocyte-specific hypomethylated block (highlighted in blue), 

upstream of ECHS1 highly expressed in hepatocytes (green track). The alignment from 

the UCSC genome browser depicts the average DNA methylation (DNAm, purple tracks) 

across WGBS samples from five different liver cell-types as well as PBMC samples. 

Chromatin organization marks in hepatocytes are displayed (blue tracks) to show 

accessibility (DNAse I hypersensitivity, DHS) and regulatory function (H3K27ac binding). 

d, Fragment-level visualization of methylation sequencing reads at hepatocyte-specific 

hypomethylated block in reference WGBS samples from five different liver cell-types. 
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Figure 3. Liver cell-specific hypomethylated DNA blocks coincide with other cell-

specific epigenetic marks. a-b, Relationship of liver cell-type-specific hypomethylated 

blocks to chromatin accessibility and H3K27ac binding. Summary plots show the intensity 

of DHS/ATAC-seq or H3K27ac marks in a ±5-kb regions surrounding each hepatocyte-, 

biliary columnar epithelial-, hepatic stellate-, liver endothelial-, and liver-immune cell-

specific hypomethylated block, respectively. Solid lines represent plot summary with 

standard error depicted by semi-transparent colored region. c, Fraction of cell-type 

specific hypomethylated blocks labeled as enhancers, associated with H3K4me1 mark, 

in chromHMM annotations for the same cell-type. d, UCSC genome browser alignment 

at one example hepatocyte-specific hypomethylated block containing the FOXA1 binding 

sequence. Average methylation across WGBS samples shown in purple tracks. e, 

Pioneer and developmental TF binding sites enriched within liver cell-type specific 

hypomethylated blocks, from HOMER motif analysis. Captured blocks without liver cell-

type-specific methylation were used as background. Hepatocyte DHS, H3K27ac, and 

H3K4me1 data were obtained from the German Epigenome programme (DEEP). 

Hepatocyte FOXA1 Chip-seq data was obtained from the ENCODE project. Biliary 

epithelial ATAC-seq data and Hepatic stellate H3K27ac histone modification data were 

obtained from the ENCODE project. 
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Figure 4. Origins of cellular damage after liver transplant derived from methylated 

cfDNA fragments. a, Serial serum samples from 28 liver transplant patients collected 

pre-transplant and post-reperfusion on post-operative day 0 (POD0). b, Average cellular 

origins of cfDNA estimates. c, Correlation of AST and ALT enzyme activity with 

hepatocyte-derived cfDNA  (p<0.05, Spearman r = 0.81 AST; r = 0.82 ALT). d, e, g-i, Pre-

transplant (PRE) and post-reperfusion (POST) fraction of cfDNAs from myeloid (d), 

hepatocyte (e), endothelial (g), hepatic stellate (h), and neuronal cells (i) of individual 

patients. The mean ± SEM of the cohort is shown in bold. Right axes: Fold change relative 

to pre-transplant. f, Concentration of cfDNA isolated from patient serum. Individual patient 

and median values are shown. Wilcoxon matched-pairs signed rank test was used for 

comparison amongst groups (d-i; n=28). *p<0.05; myeloid p=0.0001, hepatocyte 

p=0.0001, endothelial p=0.0025, hepatic stellate p=0.0001, neuron p=0.029, 

concentration p=0.001.  
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Figure 5. Time course of cell-type-specific damages after liver transplant. a, Serial 

serum samples from 20 liver transplant patients collected pre-transplant, post-reperfusion 

(POD0), post-operative day 7 and 30 (POD7, POD30). By 1 year after transplant, 11 of 

20 patients were diagnosed with allograft injury by for-cause biopsy.  b, Concentration of 

cfDNA isolated from patient serum. Individual values and mean ± SD at each timepoint, 

grouped by outcome. (Mann-Whitney test, ns p>0.05). c, Hepatocyte cfDNA time course 

in patients with allograft injury (right) or no allograft injury (left). Mean ± SEM of each 

cohort is shown in bold. d, Average hepatocyte cfDNA on POD7 and POD30, grouped by 

outcome (Mann-Whitney test, p<0.05). e, Biliary cfDNA time course in patients with 

allograft injury (right) or no allograft injury (left). Mean ± SEM of each cohort is shown in 

bold. f, Average biliary cfDNA on POD7 and POD30, grouped by outcome (Mann-Whitney 

test, p<0.05). g, Time course of five liver cell type cfDNAs in patients with allograft injury 

(right) or no allograft injury (left). Mean + SD. (b,d,f) NS p³0.05, *p<0.05; concentration 

POD0 p=0.516; concentration POD7 p=0.237; concentration POD30 p=0.503; biliary 

p=0.009; hepatocyte p=0.002. 
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Figure 6. Cell-free methylated DNA indicates cellular sources of allograft injury. a, 

Serum samples collected at the time of for-cause liver biopsies (FC-bx) to diagnose 

allograft injury. All biopsies were taken within 1 year of liver transplant and samples are 

representative of 24 patients (n=30 samples). b, Cellular origins of cfDNAs classified by 

injury patterns observed in biopsies. Top, Average fractions of different cellular sources 

detected for each type of allograft injury. Bottom, Amount of cfDNAs (in Geqs) in individual 

patients. c, Hepatocyte cfDNA in serum samples with hepatocellular or mixed 

hepatobiliary injury compared to biliary injury alone (Mann-Whitney test, p<0.05). d, 

Biliary cfDNA in serum samples with biliary or mixed hepatobiliary injury compared to 

hepatocellular injury alone (Mann-Whitney test, p<0.05). b-d, Serum samples classified 

as n=14 hepatocellular, n=10 mixed hepatobiliary, and n=6 biliary etiologies of allograft 

injury. e-h, Time courses of cellular damage during the peri-transplant time period in 

patients with hepatocellular, biliary, and mixed hepatobiliary forms of allograft injury. 

Timepoints corresponding to complications and liver-biopsy proven diagnoses are 

marked by an asterix. e, Patient with COVID-19 infection at POD15 and FC-bx diagnosis 

of acute cellular rejection (ACR) with hyperbilirubinemia at POD120 (mixed injury 

classification). Elevated kidney epithelial cfDNA detected on POD0, POD15, and POD30 

match with the hepato-renal syndrome (HRS) diagnosis pre-transplant and acute kidney 

injury (AKI) after transplant. f, Patient with FC-bx diagnosis of hepatic ischemia with 

hyperbilirubinemia at POD1 (mixed injury classification). AKI was indicated by elevated 

creatinine levels POD9 and elevated kidney epithelial cfDNA on POD30. g, Patient with 

FC-bx diagnosis of Acute Cellular Rejection (ACR) at POD9 and POD15 (hepatocellular 

injury classification). AKI was indicated by elevated creatinine levels on POD8 and 
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elevated kidney epithelial cfDNA POD7, POD9, and POD30. h, Patient with diagnosis of 

biloma at POD43 (biliary injury classification).  
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