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Abstract

Gene loss can promote phenotypic differences between species, for example, if a gene
constrains phenotypic variation in a trait, its loss allows for the evolution of a greater range of
variation or even new phenotypes. Here, we explore the contribution of gene loss to the
evolution of large bodies and augmented cancer resistance in elephants. We used genomes
from 17 Afrotherian and Xenarthran species to identify lost genes, i.e., genes that have
pseudogenized or been completely lost, and Dollo parsimony to reconstruct the evolutionary
history of gene loss across species. We unexpectedly discovered a burst of gene losses in the
Afrotherian stem lineage and found that the loss of genes with functions in regulated necrotic
cell death modes was pervasive in elephants, hyraxes, and sea cows (Paenungulata). Among
the lost genes are MLKL and RIPK3, which mediate necroptosis, and sensors that activate
inflammasomes to induce pyroptosis, including AIM2, MEFV, NLRC4, NLRP1, and NLRP6.
These data suggest that the mechanisms that regulate necrosis and pyroptosis are either
extremely derived or potentially lost in these lineages, which may contribute to the repeated
evolution of large bodies and cancer resistance in Paenungulates as well as susceptibility to

pathogen infection.
Introduction

Gene duplication has long been known to have a prominent role in generating the
molecular diversity that underlies phenotypic differences between species; for example, by
generating functional redundancy that is beneficial because increased copy number (dosage)
has beneficial effects, or redundancy that can resolve through the origins of proteins with new
functions (neofunctionalization). Gene loss, in contrast, is most often thought to result from
environmental or behavioral changes that lead to the loss of selection to maintain gene
functions, such as the loss of bitter and sweet taste receptors in blood- and insect-eating bats
(Hong and Zhao, 2014; Jiao et al., 2021; LU et al., 2021; Zhao et al., 2010). However, gene loss
itself can directly lead to phenotypic differences between species when a gene constrains the
range of evolutionarily relevant phenotypic variation in a trait; in these cases, gene loss breaks
ancestral constraints on phenotypes, allowing traits to evolve beyond their ancestral ranges or
for entirely new traits to evolve. For example, gene loss in yeast has been shown to increase
evolvability by facilitating the emergence of a more diverse array of phenotypes, including
multicellularity (Montrose et al., 2024a), while the loss of the heat shock protein Hsp90

chaperon reveals hidden phenotypic variation upon which selection can act in both Drosophila
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(Rutherford and Lindquist, 1998) and Arabidopsis (Queitsch et al., 2002). Similarly, the loss of
AMPD3 in sperm whales may have allowed for the evolution of long-diving times, while the loss
of SLC22A12 (URAT1), SLC2A9 (GLUT9), and SLC22A6 (OAT1) may have facilitated the
evolution of fruit-based diet in bats (Sharma et al., 2018). Thus, gene loss can reveal previous
hidden morphological variation and break ancestral developmental constraints, leading to the

evolution of novel phenotypes (Montrose et al., 2024b).

Among the constraints on evolving exceptionally large bodies and long lifespans is an
increased risk of developing cancer. If cells in large and small organisms have a similar risk of
cancerous transformation and equivalent cancer suppression mechanisms, for example,
organisms with many cells should have a higher prevalence of cancer than organisms with
fewer cells (Caulin and Maley, 2011; Nagy et al., 2007; Peto, 2015a). Consistent with these
expectations, there is a positive correlation between cancer prevalence, body size, and lifespan
within species. For example, cancer prevalence increases with increasing adult height in
humans (Benyi et al., 2019; Green et al.,, 2011; Nunney, 2018; Zhou et al., 2022) and with
increasing body size in dogs (Dobson, 2013). However, there is no positive correlation between
body size and cancer risk between mammalian species (Abegglen et al., 2015; Bulls et al.,
2022; Compton et al., 2023); this lack of correlation is called ‘Peto’s Paradox’ (Peto, 2015b,
1975). Furthermore, there is a statistically significant negative correlation between body mass
and cancer prevalence in Eutherian mammals (Bulls et al., 2022), indicating that mammals with

enormous bodies have evolved particularly effective anticancer mechanisms.

The resolution to Peto’s paradox is simple — species with exceptionally large bodies
have evolved enhanced cancer resistance. Numerous mechanisms have been proposed to
explain the evolution of reduced cancer risk, including the gain of additional tumor suppressor
genes and the loss of oncogenes. We have previously shown, for example, that duplication of
genes with tumor suppressor functions was common in Afrotherians and Xenarthrans,
especially in cancer-resistant species such as elephants and armadillos (Vazquez et al., 2022;
Vazquez and Lynch, 2021). Here, explore whether gene loss in Afrotheria and Xenarthra is also
associated with cancer biology using gene loss data inferred with the Tool to infer Orthologs
from Genome Alignments (TOGA) from 17 species (Kirilenko et al., 2023). Surprisingly, we
found genes that are essential for several regulated cell death modes have been lost in many
Afrotherian lineages, including MLKL and RIPK3, which mediate necroptosis and have been lost
in Paenungulates, and multiple sensor proteins that form inflammasomes to induce pyroptosis
including AIM2 in Afrotheria, MEFV in elephants, NLRC4 in Paenungulates and NLRP6 in
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hyraxes. These data suggest that several Afrotherian lineages have lost genes that directly
mediate regulated necrotic cell death modes, which may contribute to the evolution of cancer

resistance at the cost of susceptibility to microbial and viral infections.
Results
Identification of gene losses in Atlantogenata

We used gene loss data for 17 species (Figure 1), which was inferred with TOGA
(Kirilenko et al., 2023) from 261 mammals in the Zoonomia alignments; lost genes are those
that have been deleted from the genome or that have acquired inactivating mutations. We
coded gene presence/absence data as binary discrete character states such that genes present
in the genome of each species were coded as state 1, whereas genes lost were coded as state
0. As a preliminary analysis, we explored the structure of gene loss data with two
complementary methods: 1) Fuzzy C-Means (FCM) clustering, a “soft” clustering approach that
allows samples to have proportional membership in multiple clusters; and 2) Multidimensional
scaling (MDS), a hard clustering approach in which samples can only belong to one group that
is inferred by k-means clustering. Both approaches grouped species by taxonomic relationships,
with greatest FCM cluster membership grouping Paenungulata, Afroinsectiphilia, and Xenarthra
(Figure 2A), while MDS clustered species by superorder, i.e., Afrotheria and Xenarthra, along
dimension 1 and Afrotherian grandorder, i.e., Afroinsectiphilia and Paenungulata, or Xenarthran
order, i.e., Cingulara and Pilosa, along dimension 2 (Figure 2B). These data indicate that gene
loss events cluster species by phylogenetic relatedness rather than randomly, as would be
expected if there was no phylogenetic signal in gene loss data and they resulted from technical
errors or sequencing artifacts. The Southern three-banded armadillo, however, was inferred to
be its own cluster by both FCM and MDS, suggesting that this species has an unusual pattern
of gene losses that may be artifactual. Thus, we conclude gene loss data may have

phylogenetic signals resulting from patterns of shared derived (synapomorphic) loss events.
Gene loss data has a significant phylogenetic signal

We used the Dolpenny program in Phylip to infer the most parsimonious phylogenetic
tree for the gene loss data under the Dollo criteria and using a "branch and bound" tree search
algorithm; unlike regular parsimony, which minimizes the number of evolutionary events, the
Dollo model allows only one forward change (0—1), but as many reversions (1—0) as

necessary to explain the distribution of character states among extant species. Thus, the criteria
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of Dollo parsimony is to minimize the number of 1—0 reversions, which is the ideal model for
reconstructing the evolution of gene loss events across a phylogeny because, once lost, a
homologous gene can never reevolve (Sharma et al., 2018). Branch support was assessed with
100 bootstrap replicates and a parsimony variant of the Shimodaira-Hasegawa (SH) test that
compared the parsimony score of the inferred most parsimonious tree to one in which each
branch was individually collapsed to a polytomy. The most parsimonious phylogeny had low
bootstrap support at deeper nodes but high SH-test support (P<0.000) for all branch bipartitions
(Figure 3A) and generally recapitulated the species phylogeny with only three discordant
relationships (Figure 3B): 1) Armadillos were not monophyletic and nested within Folivora; 2)
Aardvark is placed as a sibling species to Paenungulata rather than as an outgroup to the
Afroinsectivora; and 3) Tenrecs were not monophyletic. Correcting the phylogenetic placement
of discordant taxa led to significantly worse parsimony scores, with an SH-test P<0.0001. These
data indicate that there is phylogenetic signal in the pattern of gene losses in Atlantogenata and
likely also convergent gene losses or systematic error in gene loss inference driving the
discordant phylogenetic relationships between some species. Thus, we conclude that (the
majority) of gene losses are likely real rather than false positives, i.e., genes erroneously
inferred to be lost because of systematic biases in the TOGA method or genome assembly

errors.
A burst of gene losses occurred in the Afrotherian stem lineage

Our observations that gene loss data likely has a strong phylogenetic signal suggest we
can use evolutionary methods to reconstruct ancestral gene losses in Atlantogentata. Therefore,
we used the Dollop program in Phylip to infer ancestral gene loss events in each branch of the
species phylogeny under the Dollo model (Figure 4A). While there was no correlation between
branch length, expressed as time since divergence in millions of years, and the number of gene
loss events per branch (Pearson r>=0.10, P=0.61), several branches had more genes losses
than expected, including Talazac's shrew tenrec, Southern three-banded armadillo, and the
Afrotherian stem-lineage (Figure 4B); these data are consistent with our observation that the
southern three-banded armadillo is inferred to be its own cluster by FCM and MDS.
Species-specific gene losses, such as those observed in Talazac's shrew tenrec and Southern
three-banded armadillo, arise from assembly errors. Thus, we conclude that the elevated gene
loss rate in Talazac's shrew tenrec and Southern three-banded armadillo may be an artifact but

that there was a burst of gene losses in the Afrotherian stem lineage.
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Pervasive loss of regulated cell death genes in Paenungulates

Next, we tested if lost genes were enriched in Reactome pathways (Jassal et al., 2020)
and subcellular compartments (Binder et al, 2014) using the hypergeometric
over-representation analyses (ORA) method implemented in WebGestalt (Liao et al., 2019).
Lost genes were enriched in eight pathways and three subcellular compartments with a
hypergeometric P<0.05 and an FDR<0.10. Notably, 50% (4/8) of the enriched pathways were
related to regulated necrotic cell death; however, only four Reactome pathways and two cellular
compartment terms remained after affinity propagation redundancy reduction, including
‘Regulated Necrosis” and “Inflammasome Complex” (Figure 5A). Lost genes were also
enriched in protein-protein interaction network clusters in STRING (Szklarczyk et al., 2022)
related to pyroptosis, TRAIL-activated apoptotic signaling, and the execution phase of
necroptosis (Figure 5B). The lost genes include MLKL and RIPK3, which directly interact with
each other and play critical roles in tumor necrosis factor (TNF)-induced necroptosis and have
been lost in Paenungulates, and multiple sensor proteins that form inflammasomes and induce
pyroptosis, including AIM2 in Afrotheria, MEFV in elephants, NLRC4 in Paenungulates and
NLRP6 in hyraxes (Figure 5C). In addition, FASLG, a transmembrane protein in the tumor
necrosis factor (TNF) family expressed by immune cells, including T-cells and natural killer cells,
which induces apoptosis upon binding its receptor FAS on target cells, has been lost in tenrecs,
and several genes in the tumor necrosis factor receptor complex which inhibit cell death have

been lost in many species but most conspicuously in the Pilosa.
Discussion

Elephants have evolved remarkably large body sizes and a low prevalence of cancer
(Abegglen et al., 2015; Bulls et al., 2022; Compton et al., 2023; Tollis et al., 2021). Among the
anti—cancer cellular phenotypes in elephants are cells that induce apoptosis at low levels of
DNA damage (Abegglen et al., 2015; Sulak et al., 2016a; Vazquez et al., 2018), are resistant to
oxidative stress-induced cell death (Gomes et al., 2011), have faster DNA damage repair rates
than smaller-bodied species (Francis et al., 1981; Hart and Setlow, 1974; Promislow, 1994), are
resistant to experimental immortalization (Fukuda et al., 2016; Gomes et al., 2011), and that
may have a genetic and/or epigenetic barrier to experimental induction of pluripotency (Appleton
et al., 2024). These cellular traits are at least partly mediated by an increase in the number of
tumor suppressors in the elephant lineage (Caulin et al., 2015; Doherty and Magalhaes, 2016;
Sulak et al., 2016b; Tollis et al., 2020; Vazquez et al., 2018; Vazquez and Lynch, 2021). Here,
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we explored whether the loss of oncogenes may also have contributed to cancer resistance and
these anti-cancer cellular phenotypes in elephants. Unexpectedly, we found that rather than the
loss of oncogenes in the elephant lineage, regulated necrotic cell death genes and pathways
have been lost in many Afrotherian lineages, most notably Paenungulates. While elephants are
the largest extant Paenungulate, many recently extinct Paeunungulates also evolved very large
bodies, including Stellar’s sea cows, which are estimated to have weighed 10,000-11,000 kg
(Scheffer, 1972), and giant hyraxes like Titanohyrax, which are estimated to weigh 600-1,300 kg
(Tabuce, 2016). If loss of these cell death pathways protects from cancer, these data suggest
that at least some anti-cancer traits evolved in the Paeunungulate stem lineage and were,

therefore, permissive for the independent evolution of gigantism Paeunungulates.
Loss of necroptosis genes in Paenungulata

Necroptosis is a lytic and inflammatory mode of regulated cell death regulated by RIPK3
and the MLKL (Ye et al., 2023). We found that RIPK3 and MLKL have become pseudogenes in
Paenungulates and that RIPK3 is independently pseudogenized in aardvark. Our results are
similar to a previous study, which found that RIPK3 and MLKL have been lost in African
elephants and manatees (Agueda-Pinto et al., 2021); however, Agueda-Pinto et al. only
included five Afrotherians and no Xenarthrans. Thus, the extent and lineage specificity of the
gene losses were unclear; our results revise and extend these observations. Remarkably,
RIPK3 and MLKL were also lost in other famously cancer-resistant species, including naked and
blind mole rats and Cetaceans (Agueda-Pinto et al., 2021), while MLKL has been lost in
Carnivores (Dondelinger et al., 2016; Newton and Manning, 2015).
MLKL-dependent/RIPK3-independent and MLKL-independent/RIPK3-dependent necroptosis
pathways have been identified (Gunther et al., 2016; Zhang et al., 2016), suggesting the loss of
both MLKL and RIPK3 in Paenungulates and other cancer-resistant species has lead to the

complete loss of this inflammatory cell death mode.

What might be the consequences of losing necroptosis? Mice with constitutively active
MIikl have normal embryonic development but develop lethal neonatal inflammation and
hematopoietic dysfunction (Hildebrand et al., 2020). In contrast, MlkI knockout mice cannot
induce necroptosis and are protected from low-grade, sterile inflammation late in life (Crutchfield
et al., 2023), chronic inflammation of the central nervous system (neuroinflammation) during
normal aging (Thadathil et al., 2021), neuroinflammation and motor deficits in the a-synuclein

transgenic mouse model of Parkinson’s disease (Geng et al., 2023), an age-related reduction of
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hematopoietic stem cells and ineffective hematopoiesis in myelodysplastic syndrome (Yamada
et al.,, 2022), and inflammatory acute pancreatitis (Peng et al., 2023). The male reproductive
tract of Ripk3 and MIkl knockout mice also retain a more ‘youthful’ morphology and function into
advanced age compared to wild-type males (Li et al., 2017). These data suggest that loss of
MLKL and/or RIPK3 may reduce aging-associated inflammatory disease, supporting a model of
aging in which inflammation contributes to the pathogenesis of age-related diseases, i.e,

inflammaging (Franceschi and Campisi, 2014) as well as extend male reproductive lifespan.

Loss of necroptosis may also directly protect against cancer and metastasis. Necroptosis
of tumor cells, for example, promotes metastasis (Chen et al., 2021; Yamamoto et al., 2023; Yan
et al., 2022; Yang et al., 2019), and blocking necroptosis inhibits metastasis in mouse breast
cancer models (Baik et al., 2021; Jiao et al., 2018; Liu et al., 2023). Similarly, inhibiting
necroptosis reduced tumor-cell-induced endothelial necroptosis, tumor cell extravasation, and
metastasis (Strilic et al., 2016). Loss of MLKL may also protect against immune evasion in
hepatocellular carcinoma by suppressing parthanatos (Jiang et al., 2023), a cell death mode
that occurs following the overactivation of the DNA repair enzyme poly(ADP-ribose) polymerase
1 (PARP1) (David et al., 2009; Yu et al., 2006). Unexpectedly, the deletion of RIPK3 in mouse
embryonic fibroblasts dramatically suppressed reprogramming into induced pluripotent stem
cells (iPSCs), likely by reducing the expression of cell cycle progression genes (Al-Moujahed et
al., 2019). Necroptosis likely functions as a backup in case of apoptotic failure (Ye et al., 2023);
the loss of RIPK3 and MLKL may direct cells away from inflammatory necroptotic cell death to
apoptosis. Thus, loss of MLKL and the likely necroptosis may have multiple cancer-protective

effects, while loss of RIPK3 might act as a barrier to the induction of pluripotency.
Loss of NET formation genes in Paenungulata

Neutrophils (and other granulocytes) can induce a form of inflammatory regulated cell
death called NETosis, in which necrosis is accompanied by the release of neutrophil
extracellular traps (NETs), characterized by intracellular degranulation and the release of
decondensed chromatin and granular contents into the extracellular space (Metzler et al., 2011;
Papayannopoulos et al., 2010; Vorobjeva and Chernyak, 2020). In addition to executing
necroptosis, RIPK3 and MLKL mediate NET formation in necroptotic neutrophils, which release
NETs at membrane locations surrounded by MLKL (D’Cruz et al.,, 2018); however, while
knockout of RIPK3 and MLKL prevents NET formation it does not prevent cell death because of

residual caspase-8 activity (D'Cruz et al., 2018), which is the molecular switch that governs
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regulated cell death by either apoptosis, necroptosis, or pyroptosis (Fritsch et al., 2019).
Remarkably, we previously found that genes related to neutrophil biology were positively
selected or rapidly evolving in elephants, including genes that mediate neutrophil extracellular
trap formation (Bowman and Lynch, 2024). While neutrophils have well-characterized roles in
the innate immune system, they also play an important role in cancer biology, where they can
both promote and inhibit tumor initiation, growth, and metastasis (Coffelt et al., 2016). These
data suggest neutrophil phenotypes related to cancer biology may be derived in Paenungulates.
Unfortunately, few studies have functionally characterized Paenungulate neutrophils, but some
data indicate that neutrophil biology is different in elephants than in other species; elephants
have higher concentrations of neutrophils in their blood than expected from their body mass
(Downs et al., 2019), neutrophils that are activated and produce oxygen radicals at much lower
stimuli than other species (Smith et al., 1998; Tell et al., 1999). Further studies are needed to
determine if these phenotypes are unique to elephants or common for Paenungulates, if NET
formation is different in Paenungulates than other species, and if Paenungulates cells are

resistant to NETosis.
Loss of multiple inflammasome sensor genes in Afrotheria

Pyroptosis is a highly inflammatory mode of regulated cell death that occurs in response
to infection with intracellular pathogens such as bacteria, viruses, and other
pathogen-associated and non-biological danger/damage-associated molecular patterns (Wei et
al.,, 2022). There are multiple sensor proteins involved in canonical pyroptosis, each of which
recognizes distinct molecules (Martinon et al., 2002; Rathinam et al., 2012; Wei et al., 2022): 1)
NLRP3, which forms an inflammasome in response to endogenous danger signals, such as
pore-forming toxins, crystalline structures, and extracellular ATP or RNA (Elliott and Sutterwala,
2015; Lamkanfi and Dixit, 2014); 2) AIM2, which forms an inflammasome in response to directly
binding to cytosolic double-stranded DNA (dsDNA) from DNA viruses or self DNA
(Fernandes-Alnemri et al., 2010; Hornung et al., 2009); 3) NLRP1, which forms an
inflammasome in response multiple triggers, including anthrax LeTx toxin, muramyl dipeptide (a
component of bacterial peptidoglycan), dsRNA, and enteroviral 3 C protease (Bauernfried et al.,
2021; Fink et al., 2008; Rathinam et al., 2012); 4) PYRIN (encoded by MEFV) which forms an
inflammasome in response to pathogenic toxins such as cytotoxic TcdB (Xu et al., 2014); 5)
NLRC4, which forms an inflammasome in response to bacterial type Ill secretion system
apparatus components flagellin or Prgd (Miao et al., 2010); and 6) NLRP6, which forms an

inflammasome in response to lipoteichoic acid, a major component of gram-positive bacterial
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cell walls (Shen et al., 2021). When these sensors are stimulated, they induce inflammasomes
to produce mature caspase-1, which cleaves GSDMD, leading to pore formation, and IL-1f3 and
IL-18 cytokine release, and an inflammatory response (Wei et al., 2022). Our observations that
AIM2 has been lost in Afrotheria, NLRP1 and NLRC4 have been lost in Paenungulates, MEFV
has been lost in elephants, and NLRP6 has been lost in hyraxes suggest two scenarios: 1)
these lineages evolved alternative ways of activating pyroptosis in response to dsDNA, bacterial
toxins and peptidoglycan, bacterial type Il secretion systems, and pathogenic toxins,
respectively, that rendered these sensors redundant; or 2) major canonical pyroptosis pathways

have been lost in these lineages.

What may be the consequences of losing these inflammasomes? Impairment of the
default CASP1/GSDMD-dependent pyroptosis pathway induced by activation of the NLRC4
inflammasome initiates an alternative ASC-mediated caspase—8—dependent apoptosis pathway
while blocking both triggers intrinsic apoptosis (Zhang et al., 2021). Thus, loss of the AIM2-,
NLRP1-, NLRC4-, PYRIN-, and NLRP6-inflammasomes may shift cells from pyroptosis, a highly
inflammatory cell death mode, towards anti-inflammatory apoptotic cell death. Loss of NLRP1,
for example, may contribute to reduced cancer risk by limiting inflammasome activation and
prompting apoptosis, as has been observed in human metastatic melanoma (Zhai et al., 2017)
and several small molecule inhibitors of the NLRP3 inflammasome are in clinical trials to block
pyroptosis and suppress chronic inflammation (Coll et al., 2022). Other species have also lost
these genes, including carnivores that independently pseudogenized or completely lost NLRP1
and NLRC4 (Ahn et al., 2016; Digby et al., 2021) and bats that have independently lost AIM2
(Ahn et al., 2016) and evolved dampened ASC2-mediated inflammatory responses (Ahn et al.,
2023). These data suggest that the loss of some inflammasomes can be tolerated and may

have adaptive benefits, such as reduced inflammation.
Caveats and limitations

Our observation that genes important for mediating necroptosis, NET formation during
NETosis, and different kinds of inflammasome-induced pyroptosis suggest that these cell death
pathways have been lost in several Afrotherian lineages, most notably in Paenungulates, which
have independently evolved large bodied lineages. While we have interpreted these gene loss
data within the context of cancer biology and the evolution of large bodies, the loss of these
genes may have had other effects or no effect on the evolution of cancer resistance or body size

evolution. It is possible that species that have lost these genes have evolved alternative ways to

10


https://app.readcube.com/library/5a481176-fd0e-48f3-af3c-c7fa68e76aae/all?uuid=6433576880785561&item_ids=5a481176-fd0e-48f3-af3c-c7fa68e76aae:84197123-c339-463d-b4dd-da509d8ae757
https://app.readcube.com/library/5a481176-fd0e-48f3-af3c-c7fa68e76aae/all?uuid=063627401103864&item_ids=5a481176-fd0e-48f3-af3c-c7fa68e76aae:4064f2dd-66c0-405c-97a0-f6ea33736fbf
https://app.readcube.com/library/5a481176-fd0e-48f3-af3c-c7fa68e76aae/all?uuid=3332500011957633&item_ids=5a481176-fd0e-48f3-af3c-c7fa68e76aae:f5218c89-b666-4cbd-854a-930fd994ad16
https://app.readcube.com/library/5a481176-fd0e-48f3-af3c-c7fa68e76aae/all?uuid=31474744407137767&item_ids=5a481176-fd0e-48f3-af3c-c7fa68e76aae:261ffbb1-702a-44c6-9966-75254206428f
https://app.readcube.com/library/5a481176-fd0e-48f3-af3c-c7fa68e76aae/all?uuid=41767602125932357&item_ids=5a481176-fd0e-48f3-af3c-c7fa68e76aae:24c817c9-83b6-464e-9047-1fbf2db9e2f5
https://app.readcube.com/library/5a481176-fd0e-48f3-af3c-c7fa68e76aae/all?uuid=7996906872941797&item_ids=5a481176-fd0e-48f3-af3c-c7fa68e76aae:3b17a279-acac-435f-87bc-22eac2f09c2f,5a481176-fd0e-48f3-af3c-c7fa68e76aae:ac139a18-1e59-486f-94e0-8f041d4efe46
https://app.readcube.com/library/5a481176-fd0e-48f3-af3c-c7fa68e76aae/all?uuid=6685122367017442&item_ids=5a481176-fd0e-48f3-af3c-c7fa68e76aae:ac139a18-1e59-486f-94e0-8f041d4efe46
https://app.readcube.com/library/5a481176-fd0e-48f3-af3c-c7fa68e76aae/all?uuid=2730174268401072&item_ids=5a481176-fd0e-48f3-af3c-c7fa68e76aae:e0300340-9932-4327-a343-4247b8ea5100
https://app.readcube.com/library/5a481176-fd0e-48f3-af3c-c7fa68e76aae/all?uuid=2730174268401072&item_ids=5a481176-fd0e-48f3-af3c-c7fa68e76aae:e0300340-9932-4327-a343-4247b8ea5100
https://doi.org/10.1101/2024.04.04.588129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.04.588129; this version posted April 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

induce necroptosis, NET formation, and inflammasome activation and that developmental
systems drift has changed the roles these genes play in normal development, minimizing the
effects of their loss through developmental systems drift (Lynch, 2009; True and Haag, 2001).
We also cannot infer that the direction of causation, for example, was loss of these genes
adaptive or was their loss a consequence of relaxed selection on these cell death pathways,
relaxed selection on the functions of these genes, and their loss was a non-adaptive process?
Finally, functional studies are required to determine if cells from Paenungulates are resistant to
necroptotic cell death, if neutrophils have impaired NET formation, and if immune cells are
resistant to the signals that induce pyroptosis in response to AIM2, pyrin, NLRC4, NLRP1, and
NLRPG6 activation.

Conclusions

Our observations that genes essential for inducing different modes of regulated necrotic
cell death have been lost in Afrotherians (AIM2), particularly the Paenungulate stem lineage
(RIPK3, MLKL, NLRC4, NLRP6), suggest that these lineages have lost necroptosis, NET
formation during NETosis, and some forms of pyroptosis. Remarkably, necrotic cell death modes
have repeatedly been lost across the mammalian tree, including the loss of RIPK3 and MLKL in
naked and blind mole rats, lagomorphs, and Cetaceans (Agueda-Pinto et al., 2021), the loss
MLKL in Carnivores (Dondelinger et al., 2016; Newton and Manning, 2015), and the loss of
NLRP1 and NLRC4 inflammasomes in carnivores (Ahn et al., 2016; Digby et al., 2021), and
AIMZ2 inflammasomes in bats (Ahn et al., 2016). These data suggest that the loss of these
genes may contribute to the evolution of large bodies, long lifespans, and cancer resistance in
many mammalian lineages, which may have come at a cost of increased susceptibility to viral,
bacterial, and other pathogens. Finally, our data indicate that there is significant turnover of
regulated cell death modes in mammals, and important insights into the basic biology of cell

death and immunology can be gained from studies of non-model organisms (Minton, 2023).
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Methods
Phylogenetic analyses of gene loss data

We downloaded TOGA loss_summ_data.tsv files, which used the human hg38 reference
for each species, from https://genome.senckenberg.de/download/TOGA/. Gene losses in each
species were identified as genes (GENE) annotated as “clearly lost” or “L” and were coded as
state 0, while all other TOGA categories were collapsed into a likely present category and coded
as state 1; we note that this coding is conservative, as genes annotated with an “uncertain loss”
and “partially intact” may be true losses. However, this coding scheme ensures we only infer
losses with the highest confidence of true loss and may miss recent pseudogenization events
when there are only one or a few inactivating mutations. We manually confirmed the
presence/absence of functional RIPK3, MLKL, FASLG, AIM2, MEFV, NLRC4, NLRP1, and
NLRP6 genes using BLAT search to the genome of each species in which TOGA inferred a

loss.
Exploratory data analyses

We used Multi-Dimensional Scaling (MDS) and Fuzzy C-Means (FCM) clustering to
explore if species clustered by phylogenetic relationships, as expected if gene loss data had
phylogenetic signal, or randomly, as expected if gene loss data was mostly noisy and TOGA
had a high rate of false positive and/or losses were the result of poor genome quality. MDS was
performed using the vegan R package (Oksanen et al., 2008) with four reduced dimensions.
Unlike MDS, FCM allows each sample to have membership in multiple clusters; FCM
membership coefficients can account for multiple sources of similarity, including noise,
phylogenetic signal, and convergence of gene losses. FCM was performed in R using the fanny
in the cluster package, using Manhattan distances (cluster membership was not altered by
using other distance metrics), and an estimated fuzzifier (m=1.0). FCM clustering requires a
priori knowledge of the number of clusters (K) to include; therefore, we evaluated FCM with
K=2-10. First, we used the “elbow” method, in which the sum of squares of each cluster number
is calculated and graphed and the optimal number of clusters is estimated by a change of slope
from steep to shallow (the elbow). We also assessed the optimal number of clusters using the
clustree R package, which assesses the optimal number of clusters by considering how
samples change groupings as the number of clusters increases; clustree is useful for estimating
which clusters are distinct and which are unstable but cannot determine the optimal number of

clusters (K).
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Phylogenetic analyses of gene loss data

We used the dollopenny program in Phylip (version 3.695) to infer the maximum
parsimony phylogeny from gene loss data under the Dollo model. Branch support was assessed
with 100 bootstrap replicates (generated from seqboot in Phylip) using the dollopenny program
and a parsimony variant of the Shimodaira-Hasegawa test implemented in dollop to assess the
support for each branch by comparing the inferred most parsimonious tree to one in which each
branch is iteratively collapsed to a polytomy. Ancestral states were inferred with the dollop
program in Phylip, using the species phylogeny (with Paenungulate lineages as a polytomy) and

enforcing all genes as present in the common ancestor.
Over-Representation Analyses (ORA)

We used WebGestalt v. 2019 (Liao et al., 2019) to identify enriched Reactome pathway
terms (Jassal et al., 2020) and protein subcellular localizations (Binder et al., 2014) using
over-representation analysis (ORA). We excluded gene families for which orthology
assignments are particularly problematic (black list), including uncharacterized open reading
frames (cCORFs), beta-defensins (DEFBs), members of the FAM gene family, histones, keratins
(KRTs) and keratin-associated proteins (KRTAPs), nuclear pore complex interacting protein
family members A and B (NPIPA and NPIPB), PRAME genes, SLCs, and SPATA, USPs, and
zinc finger protein family genes (ZFPs and ZSCANSs), and UDP glucuronosyltransferase family
members. Statistical significance of over-representation was assessed using the set of genes
lost in any internal branch combined into a single gene set as the foreground, the set of all
genes in the human (hg38) reference as the background gene set (n=22,073), and a
hypergeometric test. Because the number of lost genes in the foreground is large (n=548), we
set the minimum number of genes for a category to 10, and the maximum to 200, and the
number of categories expected from the set cover was 10; this reduces the pathways we test
with ORA to those with more than 20 but less than 200 genes, which reduces the likelihood of a
false positive enrichment because our foreground gene set is large and covers 2.6% of the
background gene set. False discovery was controlled with the Benjamini-Hochberg false
discovery rate (FDR g-value), reporting only those terms with an FDR g-value < 0.10. We used
STRING to identify if lost genes were enriched in protein-protein interaction networks, and
sub-networks with MCL clustering with an inflation parameter of 2 and false discovery controlled
with the Benjamini-Hochberg false discovery rate (FDR g-value), reporting only those terms with
an FDR g-value < 0.10.
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Figure 1. Eutherian mammal phylogenetic relationships.

A. Phylogenetic relationships between Eutherian orders; examples of each order are given
in parenthesis. Horizontal branch lengths are proportional to the time since divergence
between lineages. Major clade names are shown; Atlantogenta are shown in pink.

B. Phylogenetic relationships between Atlantogenatans. Note that horizontal branch lengths
are arbitrary; the order Xenarthra is colored grey, Paenungulata is colored blue, and

Afroinsectiphilia is colored red.
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Figure 2. Gene loss data cluster species by phylogenetic relationships.

A. Fuzzy C-Means cluster membership proportions of each species based on gene loss
data. The degree of cluster membership is shown as a 100% stacked bar and colored
according to the proportion of membership in each cluster (K=4).

B. Multidimensional scaling (MDS) plot of species based on gene loss data. Cluster

membership was inferred with K-means clustering (K=4).
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Figure 3. Parsimony tree inferred from gene loss data under the Dollo model reflects

phylogenetic relationships.

A. The most parsimonious phylogenetic tree for the gene loss data was inferred under the
Dollo model using a "branch and bound" search. Branch support was assessed with 100
bootstrap replicates and a parsimony variant of the Shimodaira-Hasegawa (SH) test that
compared the parsimony score of the inferred most parsimonious tree to one in which
each branch was individually collapsed to a polytomy. Bootstrap support values are

shown for each internal branch; all nodes ahd high SH-test support (P<0.000).

B. The Parsimony tree reflects the species phylogeny with only three discordant
relationships (red lines): 1) Armadillos were not monophyletic and nested within Folivora;
2) Aardvark is placed as a sibling species to Paenungulata rather than as an outgroup to

the Afroinsectivora; and 3) Tenrecs were not monophyletic.

Figure 3 — source data 1. Nexus file with gene loss matrix and phylogenetic trees used in
the SH-test. Nexus file can be opened in Mesquite and gene losses visualised with the “trace

character” option.
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Figure 4. A burst of gene losses occurred in the Afrotherian stem lineage.

A. Phylogenetic tree of Atlantogenata shows the number of gene losses inferred from the
species tree and the Dollo model. Horizontal branch lengths are proportional to the rate
of gene loss. The number of genes lost in each lineage is shown above each branch.
Note that the relationships between elephants, hyraxes, and sea cows was collapsed to
a polytomy to reflect nearly perfect uncertainty of the branching order of these lineages
(Bowman 2023).

B. Regression of the number of gene losses against branch length. Pearson's correlation is
shown as a blue line; 95%, 99%, and 99.9% confidence intervals (Cl) are shown in grey.
There is a weak (r2=0.10) but not statistically significant (P=0.61) correlation. Outlier

lineages are shown in pink.

Figure 4 — source data 1. Matrix of gene losses by branch.
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Figure 5. Pervasive loss of regulated cell death genes in Afrotheria, particularly

Paenungulates.

A. Lost genes are statistically enriched in subcellular compartments (Binder et al., 2014)
and Reactome pathways (Jassal et al., 2020) related to regulated cell death modes;
bubbleplot shows the enrichment ratio and —log,, hypergeometric P-value of enriched
terms (FDR<0.10).

B. Lost genes are enriched in protein-protein interaction network clusters in STRING
related to pyroptosis, TRAIL-activated apoptotic signaling, and the execution phase of
necroptosis (FDR<0.10). STRING interaction networks show protein-protein interactions

with a line, and lost genes are shown with filled circles.

C. Gene losses in Afritheria. Phylogenetic relationships between species are shown on the
right. Genes are grouped into those that function in necroptosis (blue), the tumor
necrosis factor receptor (TNFR) complex (grey), and pyroptosis (yellow). Proteins that
promote cell death are indicated with arrowheads, and those that inhibit cell death are
shown with blunt arrows (L). Bubbleplot is colored by TOGA annotation and manual

verification.
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Figure 5 — source data 1. Subcellular compartment enrichment results.

Figure 5 — source data 1. Reactome pathway enrichment results.
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