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Abstract
Relative cell type fraction estimates in bulk RNA-sequencing data are important to control for cell composition
differences across heterogenous tissue samples. Current computational tools estimate relative RNA
abundances rather than cell type proportions in tissues with varying cell sizes, leading to biased estimates. We
present lute, a computational tool to accurately deconvolute cell types with varying sizes. Our software wraps
existing deconvolution algorithms in a standardized framework. Using simulated and real datasets, we
demonstrate how lute adjusts for differences in cell sizes to improve the accuracy of cell composition. Software
is available from https://bioconductor.org/packages/lute.
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1 | Background
High-throughput bulk RNA-sequencing (RNA-seq) datasets that profile gene expression across large sample
sizes are increasingly being used to identify biological differences between groups of samples, such as
neurotypical control and Alzheimer's disease cohorts (1,2). However, a major challenge with leveraging these
data when profiling heterogeneous tissue is the intra-sample cell composition differences that are often
observed (3). Recent efforts have been made to develop computational tools incorporating cell type-specific
reference profiles based on single-cell or single-nucleus RNA-seq (sc/snRNA-seq) data to estimate the relative
fractions of different cell types in bulk RNA-seq data. These estimates can be used to control for differences in
cell composition across heterogenous tissue samples, which can also better determine the cell types that drive
differential expression signals (4,5).

While these algorithms have been successfully used to demonstrate how cell composition changes across
sample groups or conditions, an important challenge with these algorithms is that they frequently show
reduced performance in heterogeneous tissues with varying cell sizes including brain (6–8), adipose (9), heart
(10), and solid tumor samples (11–13). One reason for this is that the default in most deconvolution algorithms
is to assume the cell sizes are the same across cell types. In this way, without adjusting for differences in cell
sizes, computational algorithms estimate the relative fraction of RNA attributable to each cell type, rather than
the relative fraction of cell types, leading to potentially biased estimates in cellular composition (5).

As the consequences of cell type-specific size variation started to be recognized, efforts began to incorporate
cell size estimates into existing deconvolution algorithms for more accurate cell composition estimation.
Improved performances after cell size adjustments were found in studies of blood (14,15) and multi-tissue
(4,16) samples. The SimBu algorithm (17) incorporates cell size scale factors to generate bulk samples with
simulated differences in cell sizes. The ABIS algorithm (15) uses experimentally derived and algorithmically
fine-tuned cell size scale factors to improve accuracy for blood cell type predictions. The EPIC algorithm
(12,14) adjusts on cell size prediction outputs. The MuSiC algorithm uses either a library normalization or
user-specified cell size scaling (4). However, each of these tools were built on different frameworks with
non-uniform input data formats while addressing different types of systematic errors or unwanted bias (18–25).
Further, the influence of data normalizations on reference and real bulk RNA-seq is an area of active study
(19). These factors can make it difficult to generate comparable deconvolution results across different
algorithms, and new tools for evaluating the effects of data transformations, normalizations, and bias
corrections on deconvolution outcomes are needed.

Here, we propose, lute, a computational tool (Figure 1) to accurately deconvolute cell types with varying cell
sizes in heterogeneous tissue by adjusting for differences in cell sizes. The software package wraps existing
deconvolution algorithms in a flexible and extensible framework to enable their easy benchmarking and
comparison. For algorithms that currently do not account for variability in cell sizes, we extend these algorithms
by incorporating user-specified cell scale factors that are applied as a scalar product to the cell type reference
and then converted to algorithm-specific input formats. We demonstrate our method with both simulated and
real experiment bulk RNA-seq data, including both heterogeneous blood (15) and brain tissues (26). While
blood has been extensively studied (9,13,15,27), the brain remains mostly lacking from the literature in
benchmark evaluations (26), despite the great interest and importance in determining the relative role of cell
type-specific expression in heterogeneous brain tissue and their subsequent dysregulation in debilitating brain
disorders (18,21). Our software is available within the Bioconductor framework (28) and can be integrated into
workflows using established core Bioconductor infrastructure for bulk RNA-seq and sc/snRNA-seq data (29).
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Figure 1 | Overview of lute framework for deconvolution in Bioconductor. (A) Schematic of a deconvolution
experiment using lute. Inputs include (far left) matrix/flat tabular format, (second from left) SummarizedExperiment (28),
(second from right) SingleCellExperiment (28,29), and (far right) cellScaleFactors. (B) The lute framework showing (top)
terms (defined in Results 2.1) for deconvolution and pseudobulk operation, including (bulk), (proportions), (cell type𝑌 𝑃 𝑆
sizes), and (cell type reference), noting k (number of cell types) and G (marker genes) with arrows indicating applicable𝑍
input classes and scaling factors corresponding to differences in cell sizes across cell types available in the
cellScaleFactors (hexagon) R/Bioconductor package (18), (middle) the typemarkers() function to select marker genes
from the reference and bulk, and (bottom) the deconvolution() generic for calling the user’s choice of the
deconvolution method. (C) Schematic illustrating supported deconvolution algorithms in lute including a parent class
(a.k.a. “deconvoParam”), referencebasedParam, independentbulkParam, nnlsParam, musicParam, epicParam,
deconrnaseqParam, bisqueParam, and music2Param.

2 | Results

2.1 | lute: deconvolution of heterogeneous tissue with varying cell sizes
We begin with a general formulation of cell type deconvolution to demonstrate how to adjust for differences in
cell sizes as introduced previously (18), followed by a summary of the lute software package. Consider a set of
high-dimensional representing a heterogeneous tissue sample from marker genes expressed𝑌

𝐺𝑥𝐽
𝑔 ∈ (1,..., 𝐺)

and bulk RNA-sequencing samples. We assume the heterogeneous tissue is a mixture of cell𝑗 ∈ (1,..., 𝐽) 𝐾
types indexed by . Using a referenced-based sc/snRNA-seq approach, the standard equation to𝑘 ∈ (1,..., 𝐾)
estimate the cell composition of bulk RNA-seq samples is where the goal is to estimate𝐽 𝑌

𝐺𝑥𝐽
 =  𝑍

𝐺𝑥𝐾
* 𝑃

𝐾𝑥𝐽
  

the cell type proportions each of the each of the bulk samples using a cell type-specific reference𝑃
𝐾𝑥𝐽

𝐾 𝐽

matrix containing for marker genes across the cell types.𝑍
𝐺𝑥𝐾

𝐺 𝐾
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Next, consider a vector of scalars representing the cell size for each cell type, which could𝑠
𝐾

= (𝑠
1
,..., 𝑠

𝐾
) 𝑘𝑡ℎ

be computationally derived or, most often, experimentally derived from an external dataset, ideally from an
adjacent tissue slice (18). We can define the matrix where is an identity matrix. Then, in a𝑆

𝐾
= 𝐼

𝐾𝑥𝐾
* 𝑠

𝐾
𝐼

𝐾𝑥𝐾

similar manner as above, if we consider the equation , we can define a new matrix𝑌
𝐺𝑥𝐽

 = 𝑍
𝐺𝑥𝐾

* 𝑆
𝐾𝑥𝐾

* 𝑃
𝐾𝑥𝐽

 

and solve for using an equation similar as above (Methods). In this𝑍'
𝐺𝑥𝐾

= 𝑍
𝐺𝑥𝐾

* 𝑆
𝐾𝑥𝐾

𝑃
𝐾𝑥𝐽

𝑌
𝐺𝑥𝐽

 = 𝑍'
𝐺𝑥𝐾

* 𝑃
𝐾𝑥𝐽

 

way, we estimate the cell composition while also adjusting for differences in cell size. We note that, without𝑃
𝐾𝑥𝐽

scaling by , the assumption is that cell sizes are equal. For example, in lute, the default algorithm is𝑆
𝐾𝑥𝐾

non-negative least squares (NNLS) (30) where for each sample, and and user-specified𝑗𝑡ℎ 𝑝
𝑘𝑗

> 0
𝑘=1

𝐾

∑ 𝑝
𝑘𝑗

= 1

cell scale factors are applied as a scalar product to the cell type reference and mapped to inputs for the𝑠
𝐾

deconvolution algorithm. However, lute supports NNLS (30), MUSiC (4), MuSiC2 (16), EPIC (14),
DeconRNASeq (10), and Bisque (9).

To address the problem of independent deconvolution frameworks with non-uniform input data formats, we
were inspired by the bluster Bioconductor package (31) designed to address a similar problem for
unsupervised clustering algorithms. We take standard Bioconductor S4 classes as input, including
SummarizedExperiment (32), SingleCellExperiment (28,32), and a vector of cell sizes, either user-provided or
loaded from the cellScaleFactors (33) ExperimentData package (Figure 1A). Then, we define a S4 generic
function called deconvolution() and create separate S4 classes in a hierarchy for each algorithm
supported (Figure 1B-C). This facilitates modular support for algorithms available across multiple repositories,
including CRAN (9,30), Bioconductor (10), and GitHub (4,14,16). For example, deconvolution algorithms that
depend on the existence of reference-based sc/snRNA-seq profiles all share a common S4 class (34)
(Methods). In this way, for each algorithm, lute is able to map standard data inputs , , and (also described𝑌 𝑍 𝑆
in Box 1) to the appropriate algorithm-specific synonyms and implementations.

Box 1 | Summary of key terms. Column 1 refers to the terminology introduced in Figure 1 and used throughout the
manuscript. Column 2 gives the definition of the term.

2.2 | Application of lute using simulated pseudobulk data
In the next two sections, we considered two applications of lute using in silico pseudobulk data, where we
simulated bulk RNA-seq profiles by aggregating sc/snRNA-seq data mixed together in various known
proportions or cell compositions. We demonstrate how differences in cell sizes lead to inaccurate estimates of
cell composition, but scaling for differences in cell size leads to improved accuracy for cell composition
estimation. In addition, there is great interest in investigating how cell composition changes in the brain,
particularly the human dorsolateral prefrontal cortex (DLPFC), are associated with neurodegenerative and
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neuropsychiatric disorders including Alzheimer’s Disease (AD) (7), major depressive disorder (35), and
schizophrenia (36,37). Recent evidence in schizophrenia suggested gene expression changes accompany
onset (36,38,39), while other studies showed neuroinflammation, mediated by non-neuronal cells called
microglia, is linked to early stages of neuropsychosis (40). High cellular heterogeneity in DLPFC makes
deconvolution challenging, partially and a known component of this is due to structural and microenvironmental
complexity arising from six distinct cortical layers (41). Similar independent analyses showed there are many
molecularly distinct subpopulations among the 6 previously mentioned fundamental brain cell types of
inhibitory neurons, excitatory neurons, oligodendrocytes, oligodendrocyte precursor cells, astrocytes, and
endothelial cells (42). Specifically, we considered plasmablasts compared to other blood and immune cell types
from peripheral blood mononuclear cells (PBMC) isolated from whole blood, where cell size adjustments
showed improvement in bulk transcriptomics deconvolution accuracy (12,14,15). Plasmablasts, otherwise
known as antibody-secreting cells, have distinct transcriptional activity from other blood cell types and are
studied for their roles in febrile vasculitis (43) and autoimmunity (44,45). For both of these tissues (brain tissue
and blood tissue), we demonstrated how differences in cell sizes lead to inaccurate estimates of cell
composition using in silico pseudobulk and real bulk RNA-seq samples.

2.2.1 | Example from human postmortem DLPFC
We demonstrate the performance of lute by simulating pseudobulk RNA-seq data using a snRNA-seq dataset
(46) from neurotypical postmortem human DLPFC brain tissue with cell types that we aggregate to k=2 cell
types, namely neurons (excitatory and inhibitory) and glia (oligodendrocytes, oligodendrocyte precursor cells,
astrocytes, and microglia). Briefly, we show performance improvement in estimating the cell compositions with
and without adjusting for cell sizes (Figure 2A). In this brain region, it is known that neurons are nearly 3x
larger than glia (47), which makes it an illustrative dataset to demonstrate the performance improvements from
cell size scale factor normalization with lute. In this dataset, we utilized N=17 snRNA-seq libraries generated
from tissue blocks obtained from 10 adult neurotypical donors across three regions of the DLPFC including the
anterior, posterior, and mid regions. The snRNA-seq from each tissue block had a median of 3,004 nuclei per
sample (Table S1) and cells were aggregated to create 17 pseudobulk profiles with neuron-glia ratio ranging
between 80/20% to 25/75% cell composition. Pseudobulks were generated using the product of a specified (or
known) cell type proportions and reference snRNA-seq mean expression profiles. Cell size rescaling was
performed by taking the scalar product of cell type expression and a set of cell size scale factors (Table S2,
Methods). We performed feature selection using the snRNA-seq data to identify the top 40 cell type marker
genes using the mean ratio of the sample-adjusted expression (Methods 4.2 Marker selection) (26). Using
these markers, we used NNLS (30) to estimate the cell composition of the pseudobulk samples for k=2 groups.

Without accounting for differences in cell sizes in lute between neurons and glia, we observed an
overestimation of the proportion of neurons and an underestimation of the proportion of glia cells (root mean
squared error, RMSE = 0.22) (Figure 2A, Table S3). This overestimation reflects the algorithm estimating the
relative fraction of RNA attributable to each cell type, rather than the relative fraction of cell types, leading to
biased estimates in cell composition (5). However, when adjusting for differences in cell sizes (Table S2,
Methods), we found more accurate estimates of cell composition (RMSE not scaling = 0.22, RMSE scaling =
1.34*10-16) (Figure 2A, Figure S1A-B). We found similar results (RMSE not scaling = 0.17, RMSE scaling =
9.38*10-17) when expanding to k=3 cell types (excitatory neurons, inhibitory neurons, and glia) using the same
dataset (Figure S2A-B, Table S3). In this analysis, expanding from k=2 to k=3 had only a slight impact on
error in glial cell estimates (not scaling, RMSEk2 - RMSEk3 = 0.22 - 0.17 = 0.04), which diverged from prior
findings in brain tissue (48).

To assess the robustness of lute to other reference profiles, we repeated the pseudobulking experiments with a
different snRNA-seq dataset from postmortem human neurotypical DLPFC (49). Here, the snRNA-seq data
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were from N=3 donors with a median of 4,209 nuclei per sample (Table S4), which were aggregated to create
pseudobulk profiles with 19-60% neuron and 12-48% glia cell composition and were adjusted for differences in
cell sizes (Table S5). Using the same feature selection as above, we estimated the cell composition for k=2
(Figure S1C-D) and k=3 (Figure S2C-D) groups of cell types and found similar results to the first DLPFC
dataset (Figure 2A, Table S3).

Figure 2 | Performance improvement when adjusting for differences in cell sizes with lute. Pseudobulk samples
were created using sc/snRNA-seq data and mixing cell types together with a known cell type proportion (x-axis). The
predicted cell type proportions (y-axis) were estimated using NNLS with and without adjusting for differences in cell sizes.
The known (x-axis) and predicted (y-axis) cell type proportions are shown without scaling (left) and with scaling (right). (A)
N=17 pseudobulk profiles were created by mixing neuron and glia cell types at a prespecified ratio ranging between
80/20% to 25/75% cell composition using N=17 snRNA-seq libraries generated from tissue blocks obtained from 10 adult
neurotypical donors in Huuki-Myers et al. (2023) (46) across three regions of the dorsolateral prefrontal cortex (DLPFC).
(B) N=12 pseudobulk profiles created mixing plasmablasts-other cell types ranging between 7.04*10-4 - 1.47*10-3 % to
0.992 - 0.999 % cell composition using bulk RNA-seq based reference profile of peripheral blood mononuclear cells
(PBMC) (15). Diagonal lines indicate y = x and no error.

Finally, we investigated whether the scaling factors used to adjust for differences in cell sizes that were
uniquely derived for each dataset could be generalized to adjust for differences in cell sizes in other datasets.
Specifically, using the snRNA-seq libraries generated from DLPFC tissue blocks obtained from 10 adult
neurotypical donors, we estimated the cell sizes for cell types within each snRNA-seq sample using marker
library expression and paired orthogonal in situ hybridization (smFISH) measurements (Methods, Table S6).
Next, we randomly shuffled the smFISH cell sizes (Table S7) across the N=13 snRNA-seq libraries derived
from unique DLPFC tissue blocks (cell sizes neuron, mean = 37.04, median = 36.09, sd = 4.29; cell sizes glial
mean = 30.51, median = 30.59, sd = 2.33). The purpose of this is to simulate the scenario where we are
interested in estimating the cell composition from a bulk RNA-seq tissue sample, but we have not directly
measured the cell sizes for each cell type. We asked whether cell sizes measured using
smFISH/immunofluorescence (IF) data using RNAScope/IF technology in one snRNA-seq sample can be
generalized to other samples. We found that randomly shuffling the cell size across tissue blocks used as input
to NNLS did not lead to a reduction in performance (Table S7), showing that estimating the cell composition is
robust when using cell sizes calculated from a different source (Figure S3, Table S8). While RMSE reduction
from this experiment was consistent across donors (RMSE noscale = 0.05, withscale = 0.03, Table S3), this
improvement was non-uniform because of differences among cell scale factors used to generate the
pseudobulk (i.e. taken as the matrix product of reference and cell size estimates) and the cell scale factors
used to perform the deconvolution. This demonstrated that analysis with lute facilitates fine tuning of cell scale
factors under differing simulation conditions, including cell scale factor and marker expression magnitudes.
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2.2.2 | Example from human PBMC
Next, we considered a different tissue with cell types that also vary size, namely peripheral blood mononuclear
cells (PBMC). The dataset profiled 29 immune and blood cell types from N=12 healthy young adult donors for
which known (a.k.a. “true”) cell proportion estimates were available, and it was used to calculate the ABsolute
Immune Signal (ABIS) PBMC cell type reference. Reference profiles from these data were based on purified
bulk RNA-seq transcripts per million (TPM) expression, and known estimates of cell composition came from
flow cytometry cell abundances. PBMC features heterogeneity in cell sizes (27), and plasmablasts are known
to be larger than other cell types in this tissue by up to 15.32 fold (15). The reference contained N=4 donors
with a median of 2.0*106 cells per sample (50), which were aggregated to create pseudobulk profiles with
9.00*10-4 - 0.008% plasmablasts and 0.992 - 0.999% other cell composition. Using the same feature selection
as above, we estimated the cell composition for k=2 and found improvement (RMSE unscaled = 5.37*10-02,
scaled = 6.63*10-17 Table S3) for the estimates of cell composition for plasmablasts (Figure 2B, Figure S4).

2.3 | Application of lute using observed bulk RNA-seq data
In this section, we used real (or observed, not in silico pseudobulk) bulk RNA-sequencing data to evaluate
accuracy of the deconvolution algorithms used to estimate the cell composition of heterogeneous tissue with
varying cell sizes. Using the data described in Section 2.2.1, there were a subset of N=12 DLPFC tissue blocks
that had paired bulk RNA-seq along with the snRNA-seq data along with matched smFISH/IF data (Table S8)
(26). We found that adjusting for differences in cell sizes using NNLS led to an improved performance in terms
of estimating the cell composition (Figure 3). We also compared the performance of NNLS to (i) MuSiC (4), as
it uses gene variance-based scaling to improve across-sample integration in multiple samples, and (ii) Bisque
(9) (Figure S5), as it adjusts for assay-specific biases and was shown to outperformed other algorithms in
recent analyses of human cortex (6). No differences were observed from Bisque with or without rescaling
(Figure S5C-D), reflecting the fact that this algorithm’s linear adjustment method effectively adjusts away the
effect of taking the scalar product of cell size scale factors. With known neuron proportions calculated as
fraction total cells from snRNA-seq, correlations (Figure S6, Pearson’s R coefficient) were highest in either
scaling condition for Bisque (both R = 0.76), followed by NNLS with cell size scaling (R = 0.65), MuSiC with
scaling (R = 0.63), and NNLS (R = 0.33) and MuSiC (R = 0.30) without scaling. One outlier sample (sample id:
Br8667_mid) showed high unscaled RMSE (NNLS = 0.48, Figure 3A-B, MuSiC = 0.48, Figure S5A-B) that
was reduced by similar magnitude after scaling (NNLS R = 0.41, MuSiC R = 0.42) MuSiC and NNLS. This
sample showed the lowest error from Bisque (R = 0.15). In summary, while Bisque showed the best
performance before normalization, NNLS and MuSiC tied for best performance after cell size scale factor
normalization. However, the ideas in lute to adjust for cell sizes can easily be integrated into any deconvolution
algorithm.

3 | Discussion and conclusions
In this paper, we introduce a software package lute that can be used to accurately estimate the proportion of
cell types with varying cell sizes in heterogeneous tissue by adjusting for differences in cell sizes. Our package
lute wraps existing deconvolution algorithms in a flexible and extensible framework to enable easy
benchmarking and comparison of existing deconvolution algorithms. We performed a comparison of three
algorithms, NNLS, Bisque, and MuSiC, and found cell scale factor adjustment improved outcomes for these
algorithms. This indicates cell scale factor adjustment could be more useful in settings where cell type
heterogeneity is of greater concern (i.e. in specific experiments or tissues), or where available samples are not
matched by donor (i.e. where sample sources are discordant).
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Figure 3 | Estimates of the proportion
of neurons in observed bulk RNA-seq
DLPFC samples using NNLS. Analysis
of N=8 observed bulk RNA-seq DLPFC
samples from neurotypical donors from
(26). (A) Scatterplots of (x-axis) known
versus (y-axis) predicted neuron and glial
cell proportions using NNLS without
scaling (left column) or with cell size
factor scaling (right column) for bulk
RNA-seq samples from DLPFC in which
known cell type proportions are estimated
from snRNA-seq data. Text label
indicates Br8667_mid, an outlier sample.
Diagonal lines indicate y = x and no error.
(B) Jittered points and quantile boxplots
showing (y-axis) error either (left) with or
(right) without scaling.

While benchmark evaluations have emerged for deconvolution, large RNA-seq datasets featuring matched
orthogonal measures suitable for systematic deconvolution experiments are lacking for brain and other tissues
because it is difficult to systematically profile all cell types within them (20). Where few samples and nuclei are
available per study, multiple datasets can be used to make the cell type reference for deconvolution (4,7,51),
and our findings showed scaling on cell size scale factors should work in these settings. Furthermore, we
replicated prior findings (5) that cell types having high mRNA size scale factor bias show systematic
over-prediction from deconvolution, and that cell types having very low bias show systematic under-prediction.
Here we fill in the gaps of existing benchmark studies and demonstrate applications of lute to experimental and
simulated bulk RNA-seq data from heterogenous brain and blood tissues.

While we performed normalization as an explicit and discrete step upstream and independent of downstream
algorithmic deconvolution, this opens the door for further experimentation to either fine-tune normalizations or
show algorithm performance either with or without cell size scaling. Importantly, lute supports such
investigations, which flexibly allows a user-defined marker gene identification algorithm and deconvolution
algorithm prior to cell size normalization.

Marker gene quality and efficacy is another open topic for bulk transcriptomics deconvolution of heterogeneous
tissues, likely due to several factors. Recent methods have mapped canonical cell type expression markers
onto private or difficult-to-access datasets (22,23). However, it remains uncertain whether a canonical or
private cell type marker expression reference is preferable for deconvolution. Also, no consensus standard
exists for marker gene selection, and multiple available methods have not been formally tested for
deconvolution of heterogeneous tissues.

In conclusion, lute allows characterization of consistent deconvolution improvements from normalization, and
these improvements are a function of the selected cell type markers and known size in real and simulated
data. Our package is available on Bioconductor and can be used to extend and improve existing deconvolution
algorithms by adjusting for differences in cell sizes. We aim to encourage researchers to embrace cell size
rescaling as a new standard processing step to develop and test bulk transcriptomics deconvolution
techniques, which will expedite further breakthroughs in the transcriptomics field.
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4 | Methods

4.1 | Data

4.1.1 | Overview of paired bulk-RNA-seq, snRNA-seq and smFISH/IF datasets from
adult neurotypical postmortem human DLPFC tissue blocks
As previously described by Huuki-Myers et al. 2023 (46), paired (meaning both types of -omics were measured
on the same N=19 tissue blocks) snRNA-seq measured on the 10x Genomics Chromium platform and
spatially-resolved transcriptomics data measured on the 10x Genomics Visium platform were generated from
tissue blocks collected from 3 different positions across the anterior-posterior axis of the DLPFC (designated
posterior, anterior, and middle) from 10 adult neurotypical control donors (Table S1). In our analyses here, we
only use the snRNA-seq libraries to generate the pseudobulk RNA-seq profiles. In addition to the snRNA-seq
libraries generated from these tissue blocks, there was also paired bulk RNA-sequencing, and single molecule
fluorescent in situ hybridization (smFISH)/immunofluorescence (IF) using RNAScope/IF technology generated
and described in Huuki-Myers et al. 2024 (26) measured in the same tissue blocks. The smFISH/IF data was
used to measure the cell type composition in the same tissue samples serving as a “gold standard” to
compare the estimated cell composition in the bulk RNA-seq predicted by the deconvolution algorithms in (26).
The fact that all three (snRNA-seq, bulk RNA-seq, and smFISH/IF) technologies were measured on the same
tissue blocks helps to minimize potential donor-specific unwanted variation or batch effects.

4.1.1.1 | Preprocessing of snRNA-seq and smFISH/IF data from DLPFC tissue blocks
Out of the N=19 tissue blocks from Huuki-Myers et al. 2023 (46), N=13 tissue blocks (excluding samples
Br2720_post and Br6471_ant) had matched snRNA-seq and smFISH/IF data at the time of analysis. We used
the N=17 snRNA-seq libraries measured on the 10x Genomics Chromium platform from these 10 adult
neurotypical donors obtained from across three regions of the dorsolateral prefrontal cortex (DLPFC)
(Table S8). These snRNA-seq libraries were used to create the in silico pseudobulk RNA-seq profiles
(Figure 2A), and the subset of N=13 pseudobulk samples with matched smFISH/IF data were used to perform
shuffle experiments (Figure S3).

The preprocessing and initial cell type label assignment of these snRNA-seq data were described previously
(26). Nuclei with outlying high mitochondrial gene expression and low gene expression, consistent with run
failure, were removed. Cell type labels were initially mapped to snRNA-seq data using a multi-step clustering
strategy. We removed cells not labeled as neuronal or glial from this strategy (e.g. immune cells, etc.) prior to
downstream analyses. We identified six distinct cell types (labeled “Inhib” for inhibitory neurons, “Excit” for
excitatory neurons, “Oligo” for oligodendrocytes, “Astro” for astrocytes, and “EndoMural” for Endothelial and
Mural cells), which we resolved into k=3 (Inhib, Excit, glial) and k=2 (neuron and glial) label sets. We combined
these cell types under the broad labels of “glial” (“Oligo”, “Astro”, “EndoMural”) and “neuron” (“Excit” and
“Inhib”. For pseudobulking experiments we implemented two cell type label resolutions of combined as k2
(“neuron” and “glial”) and k3 (“glial”, “Excit”, and “Inhib”, Table S2).

For the smFISH/IF data, fluorescent labels were developed for the RNAScope/IF assay and imaged using the
HALO software. Two RNAScope/IF probe combinations marked 3 cell types each: the first (N=12) included
Excit, Micro, and Oligo/OPC; the second (N=13) included Astro, Endo, and Inhib (see Huuki-Myers et al. 2024
(26) for further details on smFISH/IF preprocessing). In the analyses here, the cell types labels from
smFISH/IF and snRNA-seq were approved by consensus from three image analysis experts.
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4.1.1.2 | Preprocessing of bulk RNA-seq data from DLPFC tissue blocks
From the same 10 DLPFC donors, paired bulk-RNAseq data was collected from 19 tissue blocks using three
different RNA extraction methods: (i) isolated total RNA, (ii) isolated nuclear RNA, and (iii) isolated cytosolic
RNA. Two RNA-seq libraries were prepared from each RNA sample using either RiboZero Gold or PolyA
library preparation techniques. Bulk RNA-seq processing and quality control is described in Huuki et al. 2024
(26), a total of 110 bulk RNA-seq samples were produced by this dataset, with a maximum of 6 per tissue
block. For the purposes of our analyses, we did not distinguish between the different RNA extraction methods
or RNA library types. Of N=19 the DLPFC tissue blocks, our analyses used a subset of N=8 tissue blocks from
N=6 donors that had smFISH data matched with bulk RNA-seq from nuclei prepared using RiboZeroGold
(Results Section 2.3, Figure 3).

In addition to the above, all bulk RNA-seq samples passed further additional minimum quality filters, with a
minimum of 38,750 (median = 704,918) counts marker expression, and a maximum of 30 (median = 1)
zero-expression markers, by sample (Supplementary Materials). Two tissue blocks had two samples of
matched bulk RNA-seq and snRNA-seq data (Br8667 middle and anterior; Br8492 middle and posterior). In
assessments of cell amount accuracy across conditions, we calculated RPKM and applied a log transformation
using pseudocounts with log2 normalization (logNormCounts function from the scuttle (v1.12.0) (52)
R/Bioconductor package).

4.1.1.3 | Estimating cell sizes using RNAScope/IF data
To estimate cell sizes using smFISH/IF, cells were imaged and processed in HALO (Indica Labs). A maximum
nucleus area of 78µm was applied to remove out-of-focus cells. Image expected nuclei count was filtered
according to a maximum nuclei count of 1,362,399, which was determined using a quantile filter of 97%. Cell
sizes were calculated from RNAScope/IF as the median for each of six broad cell type markers detected using
HALO. RNAScope/IF data labeled 6 broad cell types across the DLPFC: excitatory neurons, inhibitory
neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells.

RNAScope confidence filters were defined by expert image analyst review (26). Images were processed as
pairs for each tissue slice, and pairs were graded at three quality levels. After filtering to retain the two highest
quality levels, we used 12 samples with image-based cell sizes from at least 1 slice including 9 samples with
both paired slices in downstream analyses.

4.1.2 | Overview of snRNA-seq from adult neurotypical postmortem human DLPFC
tissue blocks in Tran et al. (2021)
Next, we used N=3 DLPFC snRNA-seq libraries from Tran et al. (2021) generated from DLPFC from 3 adult
neurotypical donors. These snRNA-seq samples were used in the in silico pseudobulk experiments in this
paper. The snRNA-seq libraries were generated using the 10x Genomics Chromium platform. The
preprocessing for the snRNA-seq data was described previously(49).

4.1.3 | Overview of bulk RNA-seq from PBMC samples
Bulk RNA-seq data were processed as described in (15). We further performed simulations using previously
published median transcripts per million (TPM) of bulk RNA-seq data from purified cells (a.k.a. the ABIS
reference) and flow cytometry cell abundances from PBMCs of 12 healthy individuals in total (15). Gene
names were mapped to Ensembl IDs using the biomaRt (v2.58.0) (53) R/Bioconductor package. Cell types
were binarized as either “Plasmablast” or “Non-plasmablast” combining 16 cell types, including, MAIT, NK, and
multiple types of dendritic cells, Monocytes, naive T-cells, and memory T-cells. After removing cell types
absent in the reference, flow cytometry (a.k.a. “known”) proportions ranged from 7.01*10-4 - 0.776 for
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plasmablasts and 0.001-0.276 for non-plasmablasts. In mathematical terms defined previously, was from𝑍
bulk RNA-seq data from 4 donors and was based on flow cytometry data from 12 donors. After𝑃

𝑘𝑛𝑜𝑤𝑛

generating ( 12 pseudobulk samples, NNLS was used to obtain 12 vectors for the𝑌 = 𝑍 * 𝑆 * 𝑃
𝑘𝑛𝑜𝑤𝑛

) 𝑃
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

two (K = 2) cell types of interest (Figure S7).

4.2 | Marker selection on bias-adjusted expression
We used a two-step pipeline to adjust snRNA-seq data for batch effects. Adjustments were performed
separately for each cell type categorization scheme (e.g one adjustment series each for K2 and K3,
respectively). First, we adjusted for sample batch effects using ComBat() from the sva (54) (v3.44.0)
R/Bioconductor package. We ran this function in parametric mode and specified the cell type labels as the
principal covariate. In the second step, we used the scuttle (v1.6.3) (52) R/Bioconductor package to
downsample counts according to minimum library size observed across batches within each cell type.

Cell type gene marker selection from snRNA-seq data was performed on the batch-adjusted normalized
log-transformed expression. We identified the most reliable cell type markers at three resolutions as the
markers with the highest concordance (i.e. occurring as markers for the same cell type consistently across all
slides) and overlap (i.e. occurring in at least 3 of 12 slides) across sample sources. Markers were identified
using the Mean Ratio of cell type expression with the get_mean_ratios2() from the DeconvoBuddies
(v.0.99.0) R package (26). At 80 marker genes per cell type selected using the highest ratio of mean
expression, this resulted in a median of 286 counts per cell, and a median of 1 zero-expression markers, by
cell (Table S1).

4.3 | Deconvolution algorithms with NNLS, MuSiC, and Bisque
We used our lute (v.0.99.30) R/Bioconductor package to perform deconvolution using several algorithms.
NNLS was accessed using a lute-compatible class wrapper to call the nnls() (30) function from the NNLS
(v1.4) R package. MuSiC (4) was accessed using a lute-compatible class wrapper, which called the
music.basic function from the MuSiC (v.1.0.0) (55) R package from GitHub. Bisque (9) was accessed using
the ReferenceBasedDecomposition function from the BisqueRNA (v.1.0.5) (56) R/CRAN package. Class
wrappers for deconvolution algorithms are described in the lute companion vignette on Bioconductor. We
performed experiments with and without rescaling before deconvolution with either NNLS, MuSiC, or Bisque.

4.4 | Cell size scale factors
Cell size scale factors used in rescaling were computationally and experimentally derived (Table S2, Table S5,
Table S6) (26). Experimentally derived factors were calculated based on high-resolution image capture from
RNAScope/IF experiments followed by processing with the HALO (v3.3.2541.383, Indica Labs) image analysis
software. Cells were labeled with DAPI, a nuclear marker, and cell type-specific fluorescence markers, as well
as a fluorescent marker for AKT3, a size-specific marker across cell types (47). We further summed expression
marker counts for each cell type prior to conducting experimental bulk RNA-seq analyses (Table S2). We
selected manual cell size scale factor integers of 10 for neuron and 3 for glial (ratio = 3.33) that fell between
orthogonal scale factor ratios for median marker expression (k=2, neuron/glial = 11.58) and previously
published scale factors for these cell types (5).
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4.5 | Pseudobulking experiments
To better understand bias due to differences in cell sizes, we performed a pseudobulking experiment series
across samples and cells passing quality filters from multiple human DLPFC cohorts (46,49), where cell type
labels were assigned by the same clustering pipeline in each cohort. We used the lute function
ypb_from_sce() to generate pseudobulk samples as the matrix product of the proportions and cell type
reference. For example, in pseudobulking the DLPFC samples, we manually set a large divergence in cell
sizes between all neuron and glial labels, where neurons, including Inhib an Excit, had a manually set scale
factor size of 10 and glial, including Oligo, Astro, Micro, and EndoMural, had a size of 3, and the scalar product
was then taken with the cell reference atlas using lute (Figure S3). Rather than simulate cell proportion
mixtures, we confined study to empirical reference-proportion combinations to demonstrate real snRNA-seq
dataset utility, as samples containing low cell type proportions may have distinct expression patterns at
markers compared to high cell type proportions (48).

Simulations testing the impact of cell size factors on deconvolution outcomes in terms of bias and RMSE used
the following mathematical approach. First, we defined the generative function for a simulated bulk sample
such that the matrix product was computable:

(1) 𝑌 = 𝑍 * 𝑆 * 𝑃

Where is a matrix of markers by samples, is a vector of proportions of length equal to cell types, is𝑌 𝐺 𝐽 𝑃 𝐾 𝑆
a vector of scale factors of length , and is the signature matrix of dimensions markers by cell types.𝑀 𝐾 𝑍 𝐺 𝐾

Next, suppose we compare two formulations for :𝑍

(2a) 𝑍 =  𝑍

(2b) 𝑍' = 𝑍 * 𝑠

The first formulation (2a) is the marker gene expression summarized across cells for each of the types,𝐾
without additional rescaling or adjustment. The second formulation (2b) is equivalent to (2a) after rescaling by
taking the scalar product of the cell size factor vector. Finally, we obtain the following estimates for :𝑆 𝑃

(3a) 𝑃 ⇐  {𝑍,  𝑌}

(3b) 𝑃' ⇐  {𝑍',  𝑌}

In (3a) and (3b), we use the same function “ ” to obtain two sets of estimated cell type proportions. These are⇐
based on the unscaled signature matrix , and based on the rescaled signature matrix .𝑃 𝑍 𝑃' 𝑍'

4.6 | Performance metrics
Error was calculated as the absolute difference between known and predicted proportions.

𝐸𝑟𝑟𝑜𝑟 =  | 𝑃
𝑘𝑛𝑜𝑤𝑛

 −  𝑃
𝑝𝑟𝑒𝑑

 |

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.04.588105doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=14402183,11759316&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=13028835&pre=&suf=&sa=0
https://doi.org/10.1101/2024.04.04.588105
http://creativecommons.org/licenses/by/4.0/


To assess the accuracy, we used root mean squared errors (RMSE) across cell types:

𝑅𝑀𝑆𝐸 =  𝑘

𝐾

∑ ( 𝑃
𝑘𝑛𝑜𝑤𝑛

− 𝑃
𝑝𝑟𝑒𝑑

) 2

𝐾
Where is the total number of cell types, is the th cell type, is the known (a.k.a. “true” ) cell type𝐾 𝑘 𝑘 𝑃

𝑘𝑛𝑜𝑤𝑛

proportion in the th cell type, and is the predicted cell type proportion in the th cell type. RMSE𝑘 𝑃
𝑝𝑟𝑒𝑑

𝑘

calculations were identical in cohorts 1 and 2, and calculations for k=3 included three cell types (inhibitory
neurons, excitatory neurons, and glial), with a further calculation of k=3 neuron as the sum of predictions in
inhibitory and excitatory neurons.

4.7 | Shuffling pseudobulk experiment factors
Suppose we adapt the pseudobulk equation from (1) as follows:

(4a) 𝑌 = 𝑍
𝑝𝑠𝑒𝑢𝑑𝑜𝑏𝑢𝑙𝑘

*  𝑆
𝑝𝑠𝑒𝑢𝑑𝑜𝑏𝑢𝑙𝑘

* 𝑃
𝑝𝑠𝑒𝑢𝑑𝑜𝑏𝑢𝑙𝑘

 

Then from (3a) we have

(4b) 𝑃
𝑑𝑒𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 ⇐  {𝑍
𝑑𝑒𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 *  𝑆
𝑑𝑒𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

,  𝑍
𝑝𝑠𝑒𝑢𝑑𝑜𝑏𝑢𝑙𝑘

*  𝑆
𝑝𝑠𝑒𝑢𝑑𝑜𝑏𝑢𝑙𝑘

* 𝑃
𝑝𝑠𝑒𝑢𝑑𝑜𝑏𝑢𝑙𝑘

}

Where has dimensions identical to . We designate terms separately for pseudobulk and𝑆
𝑑𝑒𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑍
𝑑𝑒𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

deconvolution with subscripts. We performed shuffling experiments for each of the five terms in (4b), in which
one term was held constant while the others were either matched or from one of the remaining samples in (46),
and we repeated this experiment for a low- and high-neuron sample.

4.8 | Statistical analyses
Statistical analyses used base R (v4.2.2) packages and functions. Simulations and random sampling were
performed using the base R functions rnbinom() for the negative binomial distribution, rnorm() for the
normal distribution, rpois() for the poisson distribution, and sample() for random vector selection. All
operations incorporating randomizations were initiated using set.seed() for computational reproducibility.
Plots were generated using ggplot2 (v3.3.6) and GGally (v2.1.2).
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Supplemental figures

Figure S1 | Pseudobulk simulation results from two DLPFC datasets with k=2 cell types. (A-B)
Pseudobulk results from Huuki-Myers et al. (2023) (46). (A) We estimated the cell composition for k=2 (neuron
and glia) resolution using NNLS without (top row) and with (bottom row) scaling for differences in cell sizes,
where the known cell composition is on the x-axis and the estimated cell composition is on the y-axis. The
figure is faceted by cell types (neuron and glia) along the columns. (B) Boxplots of the absolute error
(magnitude difference between the known and predicted cell composition) for the N=12 pseudobulk samples,
for (top) glia and (bottom) neuron. (C-D) Pseudobulk results from Tran et al. (2021) (49). (C) We estimated the
cell composition using k=2 (neuron and glia) using NNLS without (top) and with (bottom) scaling for differences
in cell sizes where the known cell composition is on the x-axis and the estimated cell composition is on the
y-axis. The figure is faceted by cell types (neuron and glia) along the columns. (D) Boxplot of the error
(difference between the known and predicted cell composition) for the N=3 pseudobulk samples, for (top) glia
and (bottom) neuron. Diagonal lines indicate y = x and no error.
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Figure S2 | Pseudobulk simulation results from DLPFC datasets with k=3 cell types. (A-B) Pseudobulk
results from Huuki-Myers et al. (46). (A) Scatterplots of estimated the cell composition using k=3 (excitatory
neuron, inhibitory neuron, and glia) using NNLS without (left) and with (right) scaling for differences in cell
sizes; the known cell composition is on the x-axis and the estimated cell composition is on the y-axis. The
figure is faceted by cell types (neuron and glia) along the rows. (B) Boxplots of the error (difference between
the known and predicted cell composition) for the N=12 pseudobulk samples. (C-D) Pseudobulk results from
Tran et al. (2021) (49). (C) Scatterplots of the cell composition using k=3 (excitatory neuron, inhibitory neuron,
and glia) using NNLS without (left) and with (right) scaling for differences in cell sizes where the known cell
composition is on the x-axis and the estimated cell composition is on the y-axis. The figure is faceted by cell
types (neuron and glia) along the rows. (D) Boxplots of the error (difference between the known and predicted
cell composition) for the N=12 pseudobulk samples. Diagonal lines indicate y = x and no error.
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Figure S3 | Impact of randomly shuffling RNAScope cell scale factors in pseudobulk simulations.
(A) Scatterplots of either (left panel) with or (right panel) without adjusting by cell sizes from sample with low
neuron proportions (plot title, Br2743_ant). (B) Scatterplots of either (left panel) with or (right panel) without
adjusting by cell sizes from sample with high neuron proportions (plot title, Br3942_mid, Table S7). Points
correspond to if the cell sizes were matched (triangle) or unmatched (circle), where references and cell scale
factor arrays were calculated from DLPFC dataset (47). Diagonal lines indicate y = x and no error.
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Figure S4 | Deconvolution results before and after rescaling in an independent PBMC experiment.
Results are shown for N=12 samples from (15) with known proportions from flow cytometry (Methods) at two
zoom levels, either (A) axis maximum = 0.15 or (B) axis maximum = 1. Scatterplots show the (x-axis) known
flow cytometry proportions versus the (y-axis) predicted proportions of Plasmablasts either (right panel) before
or (left panel) after rescaling on cell size scale factors. Diagonal lines indicate y = x and no error.
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Figure S5 | Results of neuron predictions across deconvolution algorithms in experimental DLPFC
RNA-seq samples from (46). (A) Scatterplots show results from MuSiC in (points) experimental DLPFC bulk
RNA-seq samples (top row) glial and (bottom row) neurons either (left column, “noscale”) without scaling or
(right column, “withscale”) with scaling, with text label indicating outlying sample. Diagonal lines indicate y = x
and no error. (B) Jittered points and quantile boxplots of (y-axis) errors by (x-axis) scaling. (C) Scatterplots
show results from Bisque in (points) real bulk RNA-seq samples (top row) glial and (bottom row) neurons either
(left column, “noscale”) without scaling or (right column, “withscale”) with scaling. Diagonal lines indicate y = x
and no error. (D) Jittered points and quantile boxplots of (y-axis) errors by (x-axis) scaling.
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Figure S6 | Correlations of predicted and known neurons in experimental DLPFC bulk RNA-seq, from
(47), for NNLS, MuSiC, and Bisque. Pairs plots generated using GGally of known and predicted neuron
proportions from multiple algorithms in real bulk RNA-seq samples from multiple preparation conditions, for
neuron. Row and column labels indicate the cell type, algorithm (either “nnls” for NNLS (30), “music” for MuSiC
(55), or “bisque” for Bisque (9), or known), and condition (either scale or noscale). Text panels contain the
Pearson R correlation magnitude, with asterisks indicating significance (none : 0.10 <= p; . : 0.05 < p < 0.10; *
: 0.01 < p < 0.05; ** : 1.0*10-3 < p < 0.01; *** : p < 1.0*10-3).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.04.588105doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=15527580&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15497684&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15993176&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8798196&pre=&suf=&sa=0
https://doi.org/10.1101/2024.04.04.588105
http://creativecommons.org/licenses/by/4.0/


Figure S7 | Availability of samples by cohort for pseudobulk experiments in two cohorts and two
tissues. (A) Availability of samples for pseudobulk experiments in Huuki-Myers et al. (46), with columns
indicating (left to right) donor identifier, donor index, pseudobulk index, , , and . (B) Availability of𝑍 𝑆 𝑃_𝑘𝑛𝑜𝑤𝑛
samples for pseudobulk experiments in Monaco et. al. 2019 (50), with columns indicating (left to right) donor
identifier, donor index, pseudobulk index, , , and . Details about pseudobulk data types provided in𝑍 𝑆 𝑃_𝑘𝑛𝑜𝑤𝑛
Methods. Cell colors for , , and indicate data was either (blue) available or (yellow) unavailable for𝑍 𝑆 𝑃_𝑘𝑛𝑜𝑤𝑛
analysis.
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Supplemental tables
Table S1 | Tissue block-level summary of Huuki-Myers et al. (2023) (46) DLPFC N=17 snRNA-seq
libraries generated from tissue blocks obtained from 10 adult neurotypical donors across three
position across the dorsolateral prefrontal cortex (DLPFC). These snRNA-seq samples were used in the in
silico pseudobulk experiments in this paper. Columns summarize information about the snRNA-seq libraries
including the number of donors the tissue blocks originated from, the percent of samples that are female,
DLPFC anterior to posterior position (position), percent of DLPFC samples stratified by position (posterior,
middle, anterior), and the number of nuclei per sample (mean, median, sd, total).

Table S2 | Cell type-level summary of Huuki-Myers et al. (2023) (46) DLPFC N=17 snRNA-seq libraries
generated from tissue blocks obtained from 10 adult neurotypical donors across three regions of the
dorsolateral prefrontal cortex (DLPFC). Summaries are aggregated to k=2 (first two rows) or k=3 (last two
rows) cell types. Columns include k dimensions (total cell types), cell type label, nuclei summaries by tissue
block (median, mean, sd), proportion summaries (median, mean, sd), library summaries (mean, sd), and
pseudobulk cell type scale factor.

Table S3 | Results from estimating the cell composition using the pseudobulk tissue samples from
three different sources of snRNA-seq. Three sources of data include snRNA-seq libraries from Huuki-Myers
et al. 2023, Tran et al. 2021, and Monaco et al. 2019. Columns include condition (“withscale” if cell size
adjustment was used, “noscale” if no adjustment was used, “all” if both adjustment conditions were combined,
and an algorithm name where NNLS was used if no algorithm name was specified), root mean squared error
(RMSE), dataset (represents the source of where the data came from), k_total (total cell types considered in
pseudobulk experiment), k_rmse (total cell types used in RMSE calculation), cell type labels in the calculation
(separated by “;”), and experiment (type of experiment performed, either “pseudobulk” where pseudobulks
were tested, “shuffle” where cell sizes were shuffled across references, or “bulk” where real bulk RNA-seq
samples were used).

Table S4 | Sample-level summary of Tran et al. (2021) (49) DLPFC N=3 snRNA-seq libraries generated
from all posterior tissue blocks in DLPFC obtained from 3 adult neurotypical donors. These snRNA-seq
samples were used in the in silico pseudobulk experiments in this paper. Columns summarize information
about the snRNA-seq libraries including the number of donors the tissue blocks originated from, the percent of
samples that are female, DLPFC orientation (region), percent by DLPFC samples stratified by subregion
(posterior, middle, anterior), and the number of nuclei per sample (mean, median, sd, total).

Table S5 | Cell type-level summary of Tran et al. (2021) (49) DLPFC N=3 snRNA-seq libraries generated
from 3 adult neurotypical donors across the posterior region of the dorsolateral prefrontal cortex
(DLPFC). Summaries are aggregated to k=2 (first two rows) or k=3 (last two rows) cell types. Columns include
k dimensions (total cell types), cell type label, nuclei summaries by tissue block (median, mean, sd), proportion
summaries (median, mean, sd), library summaries (mean, sd), and pseudobulk cell type scale factor.

Table S6 | Summary of cell sizes estimated from Huuki-Myers et al. 2024 (26). Columns include sample id,
DLPFC region, subject identifier (corresponding to first part of sample id), library-based cell size scale factors
and their ratios from snRNA-seq (“sn”) and RNAScope (“rn”) for neuron and glial.

Table S7 | Results of shuffle analyses of Huuki-Myers et al. (2023) (46) DLPFC N=13 snRNA-seq
libraries for neuron and glial cell types. (left to right) Columns include known proportions, predictions, cell
type label, sample id (id of sample with cell sizes for shuffle experiment), error, index sample id (id of source for
pseudobulk), shuffle term (location in deconvolution function), and sizes of neuron and glial cells (from

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.04.588105doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=14402183&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14402183&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11759316&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11759316&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16031588&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14402183&pre=&suf=&sa=0
https://doi.org/10.1101/2024.04.04.588105
http://creativecommons.org/licenses/by/4.0/


pseudobulk source or index sample id), and panel indicating the corresponding to Figure S3 panels. Rows 2
and 3 correspond to the concordant sample (sample id equals index sample id column, Br3942_mid) featured
in shuffle experiment in Figure S3B, and rows 21 and 22 correspond to concordant sample in Figure S3A
(Br2743_ant).

Table S8 | Platform-level data summaries of Overview of paired bulk-RNA-seq, snRNA-seq and smFISH
datasets from adult neurotypical postmortem human DLPFC tissue blocks. Columns include platform
name and sample preparation, and quantities of samples and sample sources (“donors”).
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