

1                   **A leg model based on anatomical landmarks to study 3D joint**  
2                   **kinematics of walking in *Drosophila melanogaster***

3   **Moritz Haustein<sup>1</sup>, Alexander Blanke<sup>2</sup>, Till Bockemühl<sup>1‡</sup>, Ansgar Büschges<sup>1‡\*</sup>**

4   <sup>1</sup>Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany

5   <sup>2</sup> Bonn Institute for Organismic Biology (BIOB), Section 2: Animal Biodiversity, University of

6   Bonn, Bonn, Germany

7

8   <sup>‡</sup>Shared senior authorship

9   **\* Correspondence:**

10   Ansgar Büschges

11   [ansgar.bueschges@uni-koeln.de](mailto:ansgar.bueschges@uni-koeln.de)

12

13

14   **Abstract**

15   Walking is the most common form of how animals move on land. The model organism *Drosophila*  
16   *melanogaster* has become increasingly popular for studying how the nervous system controls behavior  
17   in general and walking in particular. Despite recent advances in tracking and modeling leg movements  
18   of walking *Drosophila* in 3D, there are still gaps in knowledge about the biomechanics of leg joints  
19   due to the tiny size of fruit flies. For instance, the natural alignment of joint rotational axes was largely  
20   neglected in previous kinematic analyses. In this study we therefore present a detailed kinematic leg  
21   model in which not only the segment lengths but also the main rotational axes of the joints were derived  
22   from anatomical landmarks, namely the joint condyles. Our model with natural oblique joint axes is  
23   able to adapt to the 3D leg postures of straight and forward walking fruit flies with high accuracy.  
24   When we compared our model to an orthogonalized version, we observed that our model showed a  
25   smaller error as well as differences in the used range of motion (ROM), highlighting the advantages of  
26   modeling natural rotational axes alignment for the study of joint kinematics. We further found that the  
27   kinematic profiles of front, middle, and hind legs differed in the number of required degrees of freedom

28 as well as their contributions to stepping, time courses of joint angles, and ROM. Our findings provide  
29 deeper insights into the joint kinematics of walking in *Drosophila*, and, additionally, help to develop  
30 dynamical, musculoskeletal, and neuromechanical simulations.

31

32 **1 Introduction**

33 Animals exhibit a rich repertoire of locomotive behaviors. In the context of legged locomotion, i.e.  
34 walking, animals can change their speed and heading direction, traverse diverse substrates, or can even  
35 compensate for the loss of a leg. This versatility emerges from the fact that biological limbs typically  
36 have more joints and/or more degrees of freedom (DOFs), i.e. independent directions of motions, than  
37 strictly required for any single movement task (Full and Koditschek, 1999; Bernstein and Latash,  
38 2021). Consequently, detailed kinematic analyses are required to understand the demands on the  
39 underlying motor control system.

40 The neurobiology of walking is frequently studied in insects, because on the one hand insects and  
41 vertebrates follow many of the same general principles of locomotion (Pearson, 1993; Duysens et al.,  
42 2000; Büschges, 2005), while on the other hand their relatively simple nervous systems greatly  
43 facilitate the investigation of the underlying neuronal activity (Bidaye et al., 2018). Particularly, the  
44 fruit fly *Drosophila melanogaster* is an outstanding model organism for deciphering the motor control  
45 of walking, as it offers enormous potential for linking anatomy, physiology, and behavior: an ever-  
46 expanding genetic toolbox is available (Venken et al., 2011) for tracking individual neurons and  
47 recording or manipulating their activity in constrained preparations as well as in behaving flies (e.g.  
48 Chen et al., 2018; Mamiya et al., 2018; Azevedo et al., 2020; Bidaye et al., 2020; Feng et al., 2020;  
49 Chockley et al., 2022; Hermans et al., 2022). Furthermore, ongoing work to map the entire connectome  
50 of the brain (Scheffer et al., 2020) and the ventral nerve cord (Phelps et al., 2021; Takemura et al.,  
51 2023) is aiding in unravelling the neuronal circuits involved in various aspects of motor control on the  
52 synaptic and circuit level.

53 However, *Drosophila*'s tiny size and capability for relatively fast movements hampered 3D motion  
54 capture at the level of leg joints until recent advances in deep learning pose estimation algorithms  
55 (Günel et al., 2019; Karashchuk et al., 2021). Although 3D motion capture of the leg joints from  
56 walking fruit flies is already informative and useful in many experimental settings, pose estimation  
57 algorithms can typically provide only one tracked point per joint. Thus, joint angles from ball-and-

58 socket joints with three DOFs, such as the thorax-coxa joint in the insect leg, must be estimated by  
59 using either projections of the coxa onto individual body planes (Lobato-Rios et al., 2022) or Euler  
60 angle sequences obtained by fitting a body coordinate system to the thorax-coxa joint (Bender et al.,  
61 2010; Karashchuk et al., 2021). These methods might, however, reflect only equivalent paths of motion  
62 rather than the true biological movements of limbs around actual joint axes (Woltring, 1991; Crawford  
63 et al., 1999). Another limitation of current pose estimation algorithms is that they are less accurate in  
64 capturing rotations about the longitudinal axis of limb segments (Ceseracciu et al., 2014) and locations  
65 of joint centers (Needham et al., 2021) compared to traditional marker-based motion capture  
66 approaches.

67 These issues can be overcome by using a multibody kinematics optimization strategy, which is widely  
68 used to compensate for soft tissue artefacts or building musculoskeletal models in human motion  
69 studies (Lu and O'Connor, 1999; Begon et al., 2018). For this, a 3D kinematic body model with rigid  
70 segments and well-defined joint DOFs is fitted to motion captured joint positions by applying a global  
71 optimization algorithm. Since in this approach the lengths of the segments and the joint rotational axes  
72 are preserved during movements, the postures resulting from these models can more accurately  
73 represent the actual alignment of body parts, such as legs, than 3D reconstructions based solely on  
74 singular joint positions. In fact, several 3D kinematic leg models have successfully been implemented  
75 in the last decades to study walking in stick insects (Zakotnik et al., 2004; Theunissen and Dürr, 2013;  
76 Dallmann et al., 2016), crickets (Petrou and Webb, 2012), ants (Arroyave-Tobon et al., 2022), and  
77 recently also in *Drosophila* (Goldsmith et al., 2022; Lobato-Rios et al., 2022). A challenge in  
78 developing accurate kinematic models is to define the correct parameters, for instance for segment  
79 lengths, number of DOFs of each joint, and the orientation of their rotational axes, as these design  
80 decisions directly affect the joint angles that will be obtained (Begon et al., 2018). Due to the small  
81 size of insects, most insect leg models had to rely on assumptions from kinematic studies and/or  
82 anatomical descriptions from morphological studies. Nowadays, improved models can be created  
83 based on extremely detailed 3D body reconstructions of insects obtained from nano- and micro-  
84 computed tomography ( $\mu$ CT) data (Blanke et al., 2017; Arroyave-Tobon et al., 2022; Dinges et al.,  
85 2022; Lobato-Rios et al., 2022). However, in most current kinematic leg models of insects, including  
86 *Drosophila*, the joint rotational axes were positioned generically perpendicular to the leg segments, an  
87 assumption that need not be true. Rotational axes of biological joints commonly show oblique  
88 orientations (Krause and Dürr, 2004; Rubenson et al., 2007; Frund et al., 2022), which should

89 consequently affect not only the joint kinematics, but also other biomechanical aspects such as joint  
90 torques, the required muscle activation pattern, and, ultimately, the underlying neuronal control.

91 In this work, we therefore aimed to create a kinematic leg model for *Drosophila* in which the joint axes  
92 were aligned using the positions of the joint condyles as anatomical landmarks. This resulted in an  
93 oblique main axis of rotation of the individual joints. Afterwards, we used an inverse kinematic solver  
94 to fit our model to motion captured leg postures of straight, forward walking fruit flies and analyzed  
95 the resulting joint kinematics. To explore the importance of axis alignment, we compared our model  
96 to an alternative version in which the rotational axes were aligned orthogonally to the leg segments and  
97 found that our model with oblique joint axes showed a smaller error and used different ranges of motion  
98 (ROMs) for many joint DOFs. Moreover, we found that the front, middle, and hind legs have distinct  
99 kinematic profiles in terms of joint angles, ROMs, and contributions of each joint DOF. Our findings  
100 therefore not only provide relevant biomechanical insights into walking in *Drosophila*, but can also  
101 guide the development and improvement of more sophisticated models for dynamical, musculoskeletal  
102 and neuromechanical simulations.

103

## 104 2 Material and methods

### 105 2.1 Experimental animals

106 To robustly induce forward walking, we used Bolt-GAL4>UAS-CsChrimson *Drosophila*  
107 *melanogaster* flies (Bidaye et al., 2020; Bolt-GAL4 kindly provided by Dr. Salil Bidaye, UAS-  
108 CsChrimson BDSC-#55134) for all experiments. Animals were reared on a standard yeast-based  
109 medium (Backhaus et al., 1984) at 25°C and 65% humidity in a 12h:12h day:night cycle. All data were  
110 obtained from experiments with 3-8 days post-eclosion males (N=7) and females (N=5). Prior to  
111 experiments, the animals were kept in the dark for at least three days in fresh vials in which the food  
112 was soaked with 50  $\mu$ L of a 100 mmol L<sup>-1</sup> all-trans-Retinal solution (R2500; Sigma-Aldrich,  
113 RRID:SCR\_008988).

114

### 115 2.2 Motion-capture setup

116 To capture joint movements, tethered flies walked stationarily on a spherical treadmill setup as  
117 described in detail previously (Berendes et al., 2016; Szczecinski et al., 2018). In brief, the animals

118 were cold-anesthetized and a L-shaped copper wire ( $\varnothing$ : 0.15 mm) was attached to the dorsal side of  
119 the thorax with a small drop of light-curing adhesive (ESPE Sinfony, 3M ESPE AG, Seefeld,  
120 Germany), which was cured with a blue laser (460 nm). The tethered flies were positioned on top of a  
121 polypropylene ball ( $\varnothing$ : 6 mm; Spherotech GmbH, Fulda, Germany) using a 3D-micromanipulator. As  
122 the ball was air-suspended, it could be moved freely by the flies around its three axes of rotation. To  
123 promote walking behavior, the flies were centered on the ball so that their lateral and vertical  
124 orientations were straight relative to the ball surface and their ground clearance was adjusted  
125 accordingly. A red laser (658 nm) targeting the animal's head was used to optogenetically activate the  
126 Bolt protocerebral neurons (BPNs) in the brain of the Bolt-GAL4>UAS-CsChrimson flies by opening  
127 the light-gated cation channel CsChrimson (Klapoetke et al., 2014). As BPNs are associated with the  
128 initiation and maintenance of fast forward walking (Bidaye et al., 2020), this allowed us to increase the  
129 number of walking sequences (**supplemental video 1**).

130 Movements of the ball around its three axes of rotation were measured at 50 Hz by two optical sensors  
131 (ADNS-9500; Avago Technologies, San Jose, USA) pointing at the ball's equator and placed  
132 orthogonally to each other (**Figure 1A**). This allowed for the calculation of the global rotation of the  
133 ball and subsequent reconstruction of the virtual walking trajectory and forward speed of the animals  
134 (Seelig et al., 2010; Berendes et al., 2016; Szczecinski et al., 2018). We recorded only straight walking  
135 sequences at a relative constant walking speed (mean:  $14.7 \pm 4.0$  mm per second, n=2250 steps).

136 Leg movements were recorded with six synchronized high-speed cameras (acA1300-200um, Basler  
137 AG, Ahrensburg, Germany) equipped with 50 mm lenses (LM50JC1MS, Kowa Optical Products Co.  
138 Ltd., Nagoya, Japan). For subsequent 3D reconstruction, cameras were placed around the animal such  
139 that multi-view images were obtained from either body side with a front, side, and hind aspect (**Figure**  
140 **1A, supplemental video 1**). A supplementary camera (acA1300-200um) recording the scene from  
141 above was used for proper positioning of the animal on the ball and for camera calibration, but was not  
142 used for data acquisition. Illumination was achieved by a custom-built infrared light-emitting diode  
143 (IR-LED, wavelength 880 nm) ring. The synchronization of cameras, motion sensors, and IR-LED ring  
144 were accomplished by a custom-built controller device. Videos were acquired at 400 Hz, a resolution  
145 of 896 x 540 pixels (width x height, average field of vision: 5.2 mm x 3.2 mm, average spatial resolution  
146 of  $5.9 \pm 0.4$   $\mu$ m per pixel), and an exposure time of 500  $\mu$ s. A custom-written non-linear contrast  
147 enhancement function was applied to the videos to improve visibility of the leg joints and the tarsus tip  
148 for subsequent tracking. Videos were compressed using the FFmpeg library (version N-93252-

149 gf948082e5f). The compression settings used here (codec: libx264, constant rate factor: 12, preset:  
150 ultrafast) resulted in a file size reduction of about 90% while maintaining over 98% of the video quality  
151 as evaluated by structural similarity index measure (SSIM, Wang et al. 2004). Camera control was  
152 implemented based on the Harvester image acquisition library (version 1.3.1, available at:  
153 <https://github.com/genicam/harvesters>). All custom-made devices were built by the Electronics  
154 workshop of the Institute of Zoology, University of Cologne.

155

### 156 **2.3 Automated tracking of leg and body keypoints**

157 Detection of keypoints in the videos was performed with the DeepLabCut toolbox (version 2.2rc3;  
158 Mathis et al. 2018; Nath et al. 2019). For each leg, we tracked six keypoints: the thorax-coxa joint  
159 (ThCx), the coxa-trochanter joint (CxTr), the trochanter-femur joint (TrFe), the femur-tibia joint  
160 (FeTi), the tibia-tarsus joint (TiTar), and the tip of the tarsus (Tar) (**Figure 1B**). In addition, the  
161 posterior scutellum apex on the thorax (ThAp), the wing hinges (left, lWH; right, rWH), and the  
162 antennae (left, lAnt; right, rAnt) were tracked as body reference keypoints. We trained three  
163 independent ResNet-50 networks for videos from cameras having the same viewpoint for both sides of  
164 the body, i.e. a single network was trained for either both front, both side, and both hind camera views.  
165 The training sets for each network were generated by manual annotation of walking sequences of six  
166 flies (three males, three females) and contained a total number of 628, 755, 753 video frames for the  
167 front, side, hind networks, respectively. When keypoint occlusion occurred in a frame, we added  
168 position estimates to the training data to obtain complete positional sets for subsequent 3D  
169 reconstruction. Although this was a potential source of inaccuracies of tracked positions, the resulting  
170 impact was considered minor because occlusions occurred only transiently by movements of the leg  
171 segments in a relatively small area. Furthermore, they were mainly observed in the proximal joints, i.e.  
172 ThCx, CxTr, TrFe, whose positions did not change much during walking compared to the more distal  
173 joints. The training data sets were expanded by data augmentation techniques, i.e. cropping, rotation,  
174 brightness, blurring, and scaling, using the default in-built augmentation algorithm of DeepLabCut. All  
175 resulting keypoint predictions for experimental videos were inspected visually and erroneous keypoint  
176 predictions were corrected manually (5.6 % of all tracked keypoints). These manual annotations of  
177 keypoints and corrections were carried out with a custom-written graphical user interface.

178

179 **2.4 3D reconstruction of tracked keypoints**

180 Because each body keypoint was tracked from three different synchronized camera perspectives, their  
181 corresponding 3D position can be reconstructed by triangulation (**Figure 1C, supplemental video 1**).  
182 For this, we modeled each camera as pinhole camera with lens distortion (Hartley and Zisserman, 2004;  
183 Günel et al., 2019; Karashchuk et al., 2021). To determine the camera parameters, we calibrated the  
184 camera setup with a custom-made checkerboard pattern with 7 x 6 squares (square dimension: 399 x  
185 399  $\mu\text{m}$ ). The checkerboard pattern was developed on a photographic slide (Gerstenberg Atelier für  
186 Visuelle Medien, Templin, Germany), cut out, and clamped in a custom-made metal frame to flatten  
187 the pattern. Images from the checkerboard pattern were acquired at full camera resolution (1280 x 1024  
188 pixels). Camera calibration were performed with the OpenCV software library (Bradski, 2000). The  
189 corners of the pattern were detected on each image at sub-pixel level. Afterwards, the intrinsic  
190 parameters and lens distortion parameters (three and two coefficients for radial and tangential  
191 distortion, respectively; G. R. Bradski and Kaehler 2008) were determined for each camera ( $n > 60$   
192 images per camera, average reprojection error:  $0.37 \pm 0.07$  pixels). The principal point was fixed to the  
193 center of the calibration images ( $x=640$ ,  $y=512$ ). Determination of camera extrinsic parameters based  
194 on an iterative stereo calibration procedure. For this, the checkerboard was positioned in a way that it  
195 was imaged simultaneously by two adjacent cameras ( $n > 20$  per camera pair) and the differences  
196 between the corner positions due to the different viewing angles were used to derived the rotation  
197 matrix and translation vector required to match the reference camera to the other camera (average  
198 reprojection error:  $0.76 \pm 0.19$  pixels). The order of camera pairs for each body side was front-to-side  
199 cameras and side-to-hind cameras. The position and orientation of the camera recording the scene from  
200 above (see **2.2**) served to define the global coordinate system and the results of the pairwise stereo  
201 calibration processes were used to determine the position and orientation for each camera in the global  
202 coordinate system.

203 Reconstruction of 3D positions of leg and body keypoints was achieved by triangulation (Hartley and  
204 Zisserman, 2004; Günel et al., 2019; Karashchuk et al., 2021). For this, a linear system of equations  
205 based on the corresponding image coordinates of the keypoints and the projection matrices of the  
206 cameras was solved by using singular value decomposition (SVD). To compensate for lens distortion,  
207 image coordinates were corrected prior to the SVD procedure by using the inversed distortion function  
208 of the respective camera based on the coefficients obtained during calibration. Code for SVD procedure  
209 was based on ‘Python Projective Camera Model’ module (author: Matej Smid,  
210 <https://github.com/smids/camera.py>)

211 A body coordinate system was created for each fly to describe the 3D positions of keypoints in relation  
212 to the body of the animals and to adjust the kinematic leg model to the fly's legs (**Figure 1D, Eqs. 1**).  
213 The origin of the body coordinate system was defined by the ThAp position. The y-axis was derived  
214 from the positions of the wing hinges (lWH, rWH) and pointed towards the left body side. To obtain  
215 an x-axis pointing towards the anterior direction of the body, the vector between the ThAp and the  
216 midpoint between the wing hinges was calculated at first, but the resulting vector was skewed (**xskewed**)  
217 because the wing hinges were situated ventrally in relation to the ThAp. However, given that **xskewed** is  
218 the hypotenuse of a right triangle, the adjacent leg lies on the desired x-axis. Therefore, we determined  
219 the intersection point of the adjacent and the opposite legs of the triangle by calculating the reflecting  
220 vector **r** from the vector between the midpoint **m** of **xskewed** to the midpoint between the wing hinges.  
221 The plane of reflection was defined by its normal **nr**, which was derived from the cross product between  
222 the y-axis vector **y** and the x-axis of camera coordinate system **c**, i.e. the posterior-anterior axis of the  
223 flies in global camera coordinates. To ensure orthogonality between the x- and y-axis, the vector **y** was  
224 redefined by calculating the cross product between vector **x** and the initial vector **y** based on the wing  
225 hinges. Eventually, the z-axis was derived from the cross product of vectors **y** and **x** to obtain a  
226 complete right-handed coordinate system.

227 **Eqs 1.**

228  $\vec{y} = lWH - rWH$

229  $\overrightarrow{x_{skewed}} = \left( rWH + \frac{\vec{y}}{2} \right) - ThAp$

230  $\widehat{\vec{n}_r} = \frac{\vec{c} \times \vec{y}}{|\vec{c} \times \vec{y}|}$

231  $\vec{r} = \overrightarrow{x_{skewed}} - 2(\overrightarrow{x_{skewed}} \cdot \widehat{\vec{n}_r})\widehat{\vec{n}_r}$

232  $\mathbf{m} = ThAp + \frac{\overrightarrow{x_{skewed}}}{2}$

233  $\vec{x} = \left( \mathbf{m} + \frac{\vec{r}}{2} \right) - ThAp$

234 **2.5 Detection of swing and stance phases**

235 To compare model errors and joint movements between different flies, we normalized the time courses  
236 of the swing and stance phases. For this, we determined the lift-off and touchdown events for each step  
237 of all legs. Since the distance between tarsus tip and the center of the ball of the motion capture setup

238 must be equal to the radius of the ball, i.e. 3 mm, during stance phase, we performed a threshold  
239 operation to evaluate in which phase each leg was for each video frame. The center position of the ball  
240 was obtained by using an optimization function which minimized the distance of all tracked tarsus tips  
241 of all legs to the radius of the ball. A penalty factor of 100 was multiplied to tarsus tip distances smaller  
242 than the radius in the cost function. That prevented that tarsus positions were located inside the  
243 calculated ball. The threshold was set manually for each leg of each fly to ensure correct determination  
244 of lift-off and touchdown events. For data normalization with equal durations ranging from zero to one  
245 for step phases, data sets for each swing and stance phase were linearly interpolated to a sample size  
246 of 100.

247

## 248 **2.6 Kinematic leg model based on anatomical landmarks**

249 To model the motion of all six legs, we defined each leg as a kinematic chain consisting of multiple  
250 joints connected by rigid segments of a specified length. Each kinematic chain comprised the same  
251 joints which we tracked with our motion capture system, i.e. ThCx, CxTr, TrFe, FeTi, TiTar, and Tar  
252 (see 2.3). For this, joint condyles positions and leg segment lengths were extracted from a high-  
253 resolution synchrotron radiation  $\mu$ CT scan carried out at the Paul-Scherrer Institute (PSI, Villigen,  
254 Switzerland). A single adult female wild-type *Drosophila melanogaster* specimen was scanned at the  
255 TOMCAT beamline of the PSI in absorption contrast at 10 keV with 20x magnification. The fly,  
256 including the legs, was segmented as a surface model (**Figure 2A**) from the image stack using ITK-  
257 snap (v.3.6; Yushkevich et al., 2006) with one label for each leg segment and major body part. The  
258 resulting stl-file was exported to Blender (v.2.79b) to identify the centers of each joint condyle of each  
259 leg segment in 3D. The main rotational axis and center position of each joint were derived from the  
260 vector between the joint condyles and its center, respectively, while the leg segments were defined by  
261 the vector between consecutive joint positions or the Tar. Due to bilateral symmetry of the insect  
262 bauplan, the front, middle, and hind leg of the right body side were analyzed and positions were  
263 mirrored to the left side. Since the actual DOF configuration of the leg joints in *Drosophila* is not yet  
264 fully known, each model joint was first defined as ball-and-socket joint equipped with three DOFs,  
265 namely yaw, pitch, and roll (**Figure 2C**). The yaw axis was defined by the main rotational axis of the  
266 joint. The roll axis was specified by the leg segment vector controlled by the joint to allow longitudinal  
267 rotations, while the pitch axis was defined by the cross product of the yaw and roll axes to allow the  
268 full range of motion of a spherical joint. Importantly, each DOF could be set as mobile or fixed in our

269 inverse kinematic solver, so that they either could contribute to leg movements or were arrested in a  
270 constant position. Additionally, the positions of the ThAp, lWH, and rWH were extracted from the  
271  $\mu$ CT data and served to define a body coordinate system for the model.

272 Since alignment of leg segments was predetermined by the leg postures in the  $\mu$ CT scan, we adjusted  
273 the joint and tarsus tip positions to obtain a better interpretable initial model posture (**Figure 2C**). For  
274 this, we adjusted the angles of the yaw DOFs in our kinematic chains until the forward kinematics (see  
275 2.7) resulted in extended leg segments and stored the new positions of the joint condyles for  
276 construction of all subsequent models, i.e. the initial angles were zero in the kinematic chains for these  
277 initial leg postures. We did not perform additional adjustments for the angles of pitch and roll DOFs  
278 because this would have disrupted the anatomical relationship between leg segments and joint  
279 rotational axes.

280 To construct an orthogonalized model version with main rotational axes perpendicular to the leg  
281 segments, the original joint rotational axes were replaced by the body coordinate system axis that best  
282 represented the main rotational direction of the original yaw DOF (**supplemental video 5**). For this,  
283 new joint condyles positions were determined based on the joint center position  $\pm$  the respective body  
284 coordinate system axis. Furthermore, the leg segments were linearized, i.e. pointing straight down from  
285 the ThCx, by displacing the joint positions based on the segment length in the original model.

286

## 287 **2.7 Forward kinematics of the kinematic leg model**

288 To solve the forward kinematics of the leg chains, i.e. determining the position and orientation of each  
289 joint and the tarsus tip by a given set of joint angles, all joint DOFs and the tarsus tip were represented  
290 by local coordinate systems (LCS) which were constructed according to the standard Denavit-  
291 Hartenberg (D-H) convention (Denavit and Hartenberg, 1955; Spong et al., 2020). For this, the z-axis  
292 of the LCS for each DOF was derived from its rotational axis, while the origin and x-axis depended on  
293 the relationship between the z-axis and the rotational axis of the previous DOF:

- 294 a. when both axes were not coplanar, the common normal, i.e. the line that orthogonally intersects  
295 both rotational axes, was used to specify the x-axis and the origin was the point of intersection  
296 on the z-axis.
- 297 b. when both axes intersected, the x-axis was defined by the normal of the plane formed by both  
298 axes and the origin was the point of intersection.

299 c. when both axes were parallel to each other, there were infinitely many common normals. In  
300 this case, the x-axis was derived from the common normal that passes through the joint center  
301 of the respective DOF which also served as origin.

302 The y-axis was derived from the cross product of the z-axis and x-axis to form a right-handed LCS.  
303 There were two LCS in the kinematic leg chain which could not be defined by this approach. Since  
304 there was no previous DOF for the first DOF in the kinematic chain, i.e. the ThCx, the x-axis was  
305 defined by the cross product of its z-axis and the x-axis of the body coordinate system and the ThCx  
306 position served as origin. Additionally, the tarsus tip was the end effector of the kinematic chain and  
307 thus it did not have a rotational axis. Here, the LCS of the TiTar-roll LCS was duplicated and its origin  
308 was translated to the tarsus tip position.

309 Afterwards, the four D-H parameters were calculated for the LCS' of two consecutive DOFs to obtain  
310 a transformation matrix describing their geometrical relationship. The joint angle  $\theta$  and the twist angle  
311  $\alpha$  were calculated by constructing two planes based on the axes of the LCS and determining the angle  
312 between their plane normal (Eqs. 2).

313 **Eqs. 2**

314 
$$\theta = \text{atan2}\left(\frac{|(X_n \times Z_n) \times (X_{n+1} \times Z_n)|}{(X_n \times Z_n) \cdot (X_{n+1} \times Z_n)}\right)$$

315 
$$\theta = \begin{cases} -\theta, & \text{if } ((X_n \times Z_n) \times (X_{n+1} \times Z_n)) \cdot Z_n < 0 \\ \theta, & \text{otherwise} \end{cases}$$

316 
$$\alpha = \text{atan2}\left(\frac{|(Z_n \times X_{n+1}) \times (Z_{n+1} \times X_{n+1})|}{(Z_n \times X_{n+1}) \cdot (Z_{n+1} \times X_{n+1})}\right)$$

317 
$$\alpha = \begin{cases} -\alpha, & \text{if } ((Z_n \times X_{n+1}) \times (Z_{n+1} \times X_{n+1})) \cdot X_{n+1} < 0 \\ \alpha, & \text{otherwise} \end{cases}$$

318 The link offset  $\mathbf{d}$  and the link length  $\mathbf{r}$  were derived from the intersection points  $\mathbf{p}_z$  of the common  
319 normal between the z-axes of the LCS or set to zero when both z-axes intersected (Eqs. 3).

320 **Eqs. 3**

321 
$$d = \begin{cases} 0, & \text{if } Z_n \cap Z_{n+1} \\ |p_{Z_n} - \text{origin}_n|, & \text{otherwise} \end{cases}$$

322 
$$r = \begin{cases} 0, & \text{if } Z_n \cap Z_{n+1} \\ |p_{Z_{n+1}} - p_{Z_n}|, & \text{otherwise} \end{cases}$$

323 The D-H parameters were inserted in the transformation matrix  $\mathbf{T}$  for each DOF. For calculating the  
 324 forward kinematics for a given set of joint angles, the respective angle of a DOF was added to its initial  
 325  $\theta$ . To obtain the final posture of a kinematic leg chain in global coordinates, the initial positions of the  
 326 joint/tarsus tip was multiplied with the product of the transformation matrices from all preceding DOFs  
 327 and the space coordinate transformation matrix  $\mathbf{B}_{ThCx}$  which was derived from the axis vectors and the  
 328 origin of the LCS of the ThCx in global coordinates (Eqs. 4).

329 **Eqs. 4**

330 
$$T_i^{i-1} = \begin{bmatrix} \cos \theta & -\sin \theta \cos \alpha & \sin \theta \sin \alpha & r \cos \theta \\ \sin \theta & \cos \theta \cos \alpha & -\cos \theta \sin \alpha & r \sin \theta \\ 0 & \sin \alpha & \cos \theta & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

331 
$$T_n^0 = \prod_{i=1}^n T_i^{i-1}$$

332 
$$B_{ThCx} = \begin{bmatrix} \vec{x}_x & \vec{y}_x & \vec{z}_x & \text{origin}_x \\ \vec{x}_y & \vec{y}_y & \vec{z}_y & \text{origin}_y \\ \vec{x}_z & \vec{y}_z & \vec{z}_z & \text{origin}_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

333 
$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = TB_{ThCx} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$$

334

335

336

337 **2.8 Inverse kinematics by global optimization**

338 To determine the joint angle sets of leg postures exhibited by fruit flies during walking, the kinematic  
 339 leg chains were fitted to the motion captured leg postures. For this, the forward kinematics of the leg  
 340 chains were optimized by using an iterative conjugate gradient descent approach that minimized the  
 341 sum of squared distances between the tracked and the modeled positions of the joints and the tarsus.

342 We applied a nonlinear trust-region reflective algorithm (Branch et al., 1999; from SciPy optimization  
343 package version 1.6.2) with a maximum iteration number of 100-times the number of mobile DOFs  
344 and  $10^{-3}$  as termination criteria for changes in the cost function, resulting angles, and the norm of the  
345 gradient. Angle constraints for all DOFs (**supplemental table 1**) were introduced to prevent solutions  
346 that resulted in unnatural leg postures. Since the actual ROMs of joint DOFs in *Drosophila* are not  
347 known, angle constraints were empirically adjusted to ensure an appropriated model fit but minimizing  
348 solutions that reached the range limits. The cost function based on the distances between the CxTr,  
349 TrFe, FeTi, TiTar, and Tar positions of the model and their motion captured counterparts. To improve  
350 fitting, we weighted the distances of TrFe, FeTi, and TiTar positions more strongly than those of the  
351 other leg keypoints for the front (1.5, 2.0, 1.5) and middle (1.25, 1.5, 1.25) legs.

352 For each walking sequence, the size and leg segment lengths of the model were adjusted to the  
353 respective fly. For this, reference triangles were constructed based on the positions of the ThCx, rWH,  
354 and lWH of the model and the fly and a scale transformation matrix derived from these triangles was  
355 applied on the joint condyle positions of the model. The lengths of all leg segments of the model were  
356 then adjusted to the median length of their motion captured counterpart by linearly translating the joint  
357 condyle positions. Afterwards, the kinematic leg chains were constructed as described in **2.7**.

358 An initial set of angles was estimated to prevent that the global optimization process was directed to a  
359 sub-optimal local minimum solution. For this, the angles for each joint were individually optimized to  
360 fit the model joint position to the motion captured position in the first leg posture of a walking sequence.  
361 Afterwards, the optimization algorithm was applied globally, i.e. all model DOF angles were optimized  
362 simultaneously, to fit the model leg to the first leg posture. For all following leg postures of a walking  
363 sequence, the obtained angles from the previous leg posture served as initial estimate for the  
364 optimization process of the current leg posture.

365

## 366 **2.9 Data analysis and statistics**

367 All analysis routines, visualizations, and graphical user interfaces used were implemented in Python  
368 (3.9.5) or MATLAB (R2021a, The Mathworks, Natick, Massachusetts, USA). Data was expressed as  
369 mean  $\pm$  standard deviation (SD), if not stated otherwise. While N denotes the number of experimental  
370 animals, n indicates the number of an analyzed feature. When the median was used, variability of the

371 data set was indicated by the interquartile range (IQR) defined as the difference between the 75<sup>th</sup> and  
372 25<sup>th</sup> percentiles.

373 To evaluate the model error, i.e. how well the kinematic leg model could adapt to the motion captured  
374 leg postures, we calculated the summed Euclidean distance between the CxTr, TrFe, FeTi, TiTar, and  
375 Tar positions of the model and their tracked counterparts. Since the joint and tarsus positions were in  
376 body coordinates at first, we converted them to global camera coordinates to obtain the model error in  
377 metric units, i.e.  $\mu\text{m}$ . We also calculated the area under curve (AUC) of the time courses of the model  
378 error as a measure for the goodness of fit between different DOF configurations. For this, we  
379 approximated the integral of the normalized time courses (see 2.5) of the mean model error during  
380 swing and stance phase by using Simpson's rule.

381 Since we used the joint DOF angles obtained from our inverse kinematic solver, most of the angle  
382 values are reported in relation to the initial posture of the model (**Figure 2C**). To simplify the  
383 interpretation for movements of the two main leg joints, namely the CxTr and the FeTi, we post-  
384 processed the obtained angles of their yaw DOFs. Because the leg segments were fully extended in the  
385 initial leg postures of the model with an angle of 0° for these DOFs (see 2.6), we added 180° to the  
386 angles obtained from the solver. Therefore, a final angle of 0° or 180° described a fully flexed or fully  
387 extended posture, respectively. To combine time courses of joint angles for contralateral legs, the sign  
388 of angles for the yaw and roll DOFs of the left legs were inverted, but not for angles of pitch DOFs.  
389 The ROM of joint DOFs was derived from the maximum and minimum observed angle for each DOF.  
390 For analysis of rotations about the femur-tibia plane, we determined the plane normal by calculating  
391 the cross product between the vectors of the femur and the tibia. The ROM of femur-tibia plane  
392 rotations was the angle between the plane normals of the first and last leg posture of an analysed step  
393 cycle phase.

394

### 395 3 Results

#### 396 3.1 Creation of a kinematic reference leg model for *Drosophila*

397 To test for the DOF requirements to accurately model the kinematics of *Drosophila* legs for straight  
398 walking, we first constructed an initial reference model based on reported DOFs for *Drosophila* and  
399 other insects (Cruse and Bartling, 1995; Soler et al., 2004; Bender et al., 2010; Goldsmith et al., 2022;  
400 Lobato-Rios et al., 2022) (**Figure 2B-C**). The ThCx was implemented as ball-and-socket-like joint

401 with all three DOFs, i.e. yaw, pitch, and roll. Since the CxTr and FeTi are considered to be hinge joints  
402 in insects (Cruse and Bartling, 1995; Full and Ahn, 1995; Frantsevich and Wang, 2009), we only used  
403 the yaw DOF for those in our model. Two previously published models for *Drosophila* legs suggested  
404 that a roll DOF exists in either the TrFe (Goldsmith et al., 2022) or the CxTr (Lobato-Rios et al., 2022).  
405 However, to test if such an additional DOFs or joint was still necessary to model straight walking in  
406 our model with rotational axes based on anatomical landmarks, we chose to omit this DOF and initially  
407 fixed the whole TrFe and the CxTr-roll DOF. Because of their small size and proximity, motion capture  
408 of all individual tarsal joints was not feasible. We therefore had no guidance points for fitting a tarsus  
409 with five individually articulated segments and modelled the tarsus as a single segment. However, in  
410 initial modelling attempts we had difficulty to fit our model to the motion capture data when we  
411 modelled the tarsus with only an active yaw DOF in the TiTar and a constant length of the tarsus. This  
412 was mainly due to the fact that the tarsus is relatively flexible and can bend during the stance phase,  
413 resulting in apparent length changes (**Figure 2D**). Consequently, the model tarsus was commonly too  
414 short or too long for an optimal fit, which also affected the fit of all other model joints. To compensate  
415 for this the length of the tarsus was adjusted to the length of the tracked tarsus of the animals for each  
416 leg posture. We further added the pitch DOF to the TiTar to account for the observed bi-directionality  
417 of tarsus bending. In this way, we were able to model the complexity of tarsal motion with only three  
418 parameters.

419 Equipped with this basic model, we measured how well it could adapt to natural leg postures by  
420 applying inverse kinematics to fit the model to the recorded motion capture data of 12 flies (five  
421 females and seven males). The summed mean model error, i.e. the distance between the model and the  
422 tracked animal leg parts locations, was largest for the front legs (**Figure 3A**). Moreover, the mean  
423 model error was not consistent during the step phases, but showed a minimum of  $342 \pm 61 \mu\text{m}$  at the  
424 middle of the stance phase, increased steadily throughout the remaining stance phase and the swing  
425 phase to a maximum of  $560 \pm 80 \mu\text{m}$ , before it started to decrease at the onset of the stance phase (n,  
426 swing/stance: 232/213). The increase in error was largely due to the inability of the model to accurately  
427 replicate the positions of the TrFe, FeTi, and TiTar, which also resulted in misalignment between the  
428 model and the tracked leg segments. During the swing phase, this was particularly noticeable as the  
429 model's tibia was not properly aligned with its tracked counterpart, causing the two to cross over each  
430 other (**Figure 2E, supplemental video 2**). This also adversely affected the model's ability to reach the  
431 tracked tarsus tip positions, resulting in a 3.5-fold greater distance of the model tarsus tip at the end  
432 swing phase.

433 In contrast, the summed mean model error for the middle and hind legs was not only substantially  
434 smaller, but also relatively constant during both step phases (**Figure 3A**). The error was similar for  
435 middle and hind legs and ranged from  $100 \pm 34 \mu\text{m}$  to  $136 \pm 46 \mu\text{m}$  (n, swing/stance: 238/215) and  
436  $126 \pm 47 \mu\text{m}$  to  $154 \pm 49 \mu\text{m}$  (n, swing/stance: 239/224), respectively. Additionally, a proper alignment  
437 of model and tracked leg segments was achieved throughout the step cycle (**supplemental video 2**).  
438 Taken together, the reference model was already capable of adopting the tracked leg postures of the  
439 middle and hind legs exceedingly well, but was not able to sufficiently match leg postures of the front  
440 legs.

441

442 **3.2 Impact of reducing the number of DOFs in the ThCx or adding DOFs to the TrFe and CxTr  
443 on the model error**

444 Although the ThCx is assumed to have three DOFs in *Drosophila* legs (Lobato-Rios et al., 2022), it  
445 was reported that insects might mainly use only one or two DOFs for straight walking, particularly in  
446 the middle and hind legs (Hughes, 1952; Cruse and Bartling, 1995; Cruse et al., 2009; Bender et al.,  
447 2010). Therefore, we investigated whether our model required all three DOFs in the ThCx to  
448 adequately reproduce natural leg stepping postures. For this, we evaluated the difference in model error  
449 between the reference model and other DOF configurations with fewer DOFs in the ThCx. The  
450 elimination of DOFs in the ThCx generally resulted in a larger model error for all three leg pairs with  
451 a 1.2 to 3.3-fold larger AUC of the absolute model error time course (**supplemental table 2**). When  
452 we analyzed the relative change of the summed mean model error times courses, we found that  
453 individual DOF configurations performed differently in each leg pair throughout the step cycle (**Figure  
454 3B**).

455 For the front legs, fixing the ThCx-pitch DOF led to the largest increase in model error (57% to 384%)  
456 which peaked for all affected DOF configurations at the transition between swing and stance phases.  
457 When only the pitch DOF was mobile in the ThCx, the increase in error was less pronounced but still  
458 substantial (94% to 167%); addition of either the yaw or roll DOF did not considerably reduce the  
459 increase in error over most of the step cycle. Interestingly, the relative increase in error was only 11%  
460 at the stance-to-swing transition for a model configuration with mobile yaw and pitch DOFs,  
461 suggesting that these DOFs were mainly required for modelling postures of the front legs at this stage.

462 For the middle legs, however, the ThCx-yaw DOF was more important for model fitting. The model  
463 error was similar for ThCx configurations with a moveable yaw DOF which was 4% to 66% higher  
464 than the reference leg model error. In contrast, the model error was largest for ThCx configuration with  
465 only the pitch or roll DOF, resulting in an increase in error of 83% to 175% or 43% to 235%,  
466 respectively. However, when the pitch and roll DOFs were moveable, while the yaw DOF was absent,  
467 the increase in model error was slightly smaller with 1% to 49% compared to model configurations  
468 employing the ThCx-yaw DOF.

469 For the hind legs, fixing the roll DOF had the smallest effect on the error, i.e. 11% to 43% larger error,  
470 whereas the increase in error was greatest, i.e. we observed a 124% to 371% larger error, when the roll  
471 DOF was the only moveable joint DOF. Although the model error steadily increased during the swing  
472 phase for all model configurations, the increase in error peaked at different time points when the pitch  
473 DOF was moveable or fixed. While model configurations with a movable pitch DOF showed the largest  
474 increase in error at the transition from swing-to-stance phase, model configurations with a fixed pitch  
475 DOF showed a transient increase in the relative error time course at the middle of the stance phase.  
476 This suggests that the pitch DOF is important for modelling postures of the hind legs at this stage of  
477 the step cycle.

478 Next, we examined if a moveable TrFe could improve the model performance (**Figure 3C**). In addition,  
479 we also tested a DOF configuration in which the CxTr had a roll DOF in addition to its yaw DOF as  
480 this configuration was suggested for *Drosophila* by Lobato-Rios et al. (2022). For the front legs,  
481 addition of an extra DOF resulted in substantial decrease in model error throughout the step cycle with  
482 a 1.6 to 2.2-fold smaller AUC of the absolute model error time course (**supplemental table 2**), except  
483 when only the pitch DOF was added to the TrFe. The largest reduction in model error was achieved  
484 when the TrFe or the CxTr were equipped with a movable roll DOF (relative change in error: TrFe  
485 with roll DOF: -38% to -68%; CxTr with roll DOF: -35% to -61%). Strikingly, the addition of a roll  
486 DOF also eliminated the misalignment between the model and the tracked tibia as observed in the  
487 reference model, which was not the case with the other DOF configurations that lacked such a roll  
488 component. Although we also observed a reduction in error by the addition of an extra DOF in the  
489 middle and hind legs, the amount of relative change was smaller compared to the front legs.

490 For the middle and hind legs, although we observed a reduction of the AUC of the absolute model error  
491 time course by up to 18% or 19%, respectively, for some DOF configurations this reduction might be  
492 rather negligible considering the already relatively small model error of the reference model for these

493 leg pairs (**Figure 3A**). Furthermore, many DOF configurations did not consistently improve the model  
494 fit throughout the step cycle (**Figure 3C**). For the hind legs, however, almost all configurations with  
495 an additional DOF exhibited a reduction in error of more than 15% over a longer period during the step  
496 cycle; the largest reduction was observed in the first half of the stance phase. In contrast, a similar  
497 amount of reduction was only found for the middle legs when the TrFe had a movable pitch and roll  
498 DOF. Interestingly, while addition of a pitch DOF had the smallest effect on the model error for the  
499 front and hind legs, all DOF configurations equipped with a pitch DOF showed the largest reduction  
500 in error with up to 21% for the middle legs.

501 Although these findings suggested that elimination of some DOFs in the ThCx increases the model  
502 error only slightly, at least for the middle and hind legs, and that addition of an extra DOF in the TrFe  
503 can improve model fitting, it was not possible to deduce a unique DOF configuration for all leg pairs  
504 based on our data. Since we already obtained an appropriate model fit for the middle and hind legs  
505 without a mobile TrFe joint, we decided to fix this joint in our model in these legs for further analysis.  
506 In contrast, for the front legs an additional DOF was necessary to achieve an adequate model fit. We  
507 therefore added a mobile roll DOF in the TrFe because this configuration not only improved model  
508 performance the most with the least number of DOFs, but also resulted in a correct alignment between  
509 the model and the tracked tibia (**supplemental video 3**).

510

### 511 **3.3 Angle time courses and movement directions of joint DOFs in the kinematic model**

512 To examine the joint kinematics of our model in more detail, we analysed the angle time courses of  
513 each DOF and their relevance for the motion of the associated leg segment (**Figure 4**). However, we  
514 omitted the TiTar joint in our analysis because our modelling approach for tarsal movements allows  
515 only limited conclusions about the natural contribution of TiTar motion to leg stepping. To specify  
516 movement directions, we used the following anatomical terms of motion (Hughes 1952): for the coxa,  
517 promotion and remotion describe the anterior and posterior movement in relation to the body, while  
518 adduction and abduction refer to lateral movement either towards or away from the body midline.  
519 Rotations of segments are specified by the main anatomical direction in which the following segments  
520 were moved, i.e. medial or lateral rotations move the subsequent segments towards or away from the  
521 body midline, while anterior or posterior rotations moved the subsequent segments towards the head  
522 or abdomen of the animal, respectively. The relationship between two adjacent leg segments was  
523 described by flexion and extension which results in a decrease or increase, respectively, of the inner

524 angle between the segments. Additionally, leg levation and depression describes movements in which  
525 the leg is lifted off the ground or lowered to the ground.

526 Generally, the movement patterns of forward stepping showed distinct leg pair-specific kinematics.  
527 Forward stepping of the front and hind legs was primarily executed in the anterior-posterior plane, i.e.  
528 the legs were mainly extended or flexed by combined actions of the ThCx, CxTr, and FeTi in addition  
529 to leg levation and depression. However, the respective leg movements occurred in opposite step cycle  
530 phases. For instance, extension and contraction of the leg was performed during swing and stance  
531 phase, respectively, in the front legs. In contrast, in the hind legs, contraction of the leg was performed  
532 in the swing phase, while extension of the leg was observed in the stance phase. The middle legs, on  
533 the other hand, showed an idiosyncratic movement pattern. Here, protraction and retraction of the leg  
534 were achieved by promotion and remotion of the coxa as well as a rotation of the femur-tibia plane that  
535 resulted in an anteriorly or posteriorly pointing of the tarsus tip at the end of the swing or stance phase,  
536 respectively (see also 3.4.). Additionally, levation and depression of the leg was mainly governed by  
537 the CxTr and flexion and extension of the tibia was less pronounced compared to the other leg pairs.

538 In the front and hind legs, promotion and remotion of the coxa was mainly driven by the ThCx-pitch  
539 DOF, while the ThCx-yaw DOF performed that movement in the middle legs. As found in other  
540 insects, promotion and remotion occurred in all leg pairs during the swing and stance phase,  
541 respectively. Although the shape of angle time courses was similar, the ROM observed for the  
542 individual leg pairs differed with  $40.87^\circ \pm 5.21^\circ$ ,  $26.48^\circ \pm 4.58^\circ$ , and  $18.60^\circ \pm 3.85^\circ$  for the front,  
543 middle, and hind legs, respectively. In contrast, adduction and abduction was governed by the yaw  
544 DOF in the front and hind legs and by the pitch DOF in the middle legs. While the ROM was  
545 comparable for all leg pairs (front legs:  $8.24^\circ \pm 2.74^\circ$ , middle legs:  $7.63^\circ \pm 2.85^\circ$ , hind legs:  $8.85^\circ \pm$   
546  $2.98^\circ$ ), we found some variations in the course of adduction and abduction between the leg pairs. For  
547 the front legs, adduction occurred relatively rapidly at the middle of the swing phase and at the end of  
548 the stance phase, whereas gradual abduction was mainly observable from the end of the swing phase  
549 to the end of stance phase. In contrast, the hind legs exhibited adduction from the middle of the swing  
550 phase to the first quarter of the stance phase, followed by gradual abduction to the end of the stance  
551 phase and faster abduction in the first half of the swing phase. Interestingly, a complete cycle of  
552 adduction and abduction occurred in each of swing and stance phases for the middle legs, but was more  
553 pronounced in the swing phase than in the stance phase. Although the ThCx-roll DOF was used by all  
554 three leg pairs, it was most extensively used by the front legs (ROM:  $40.87^\circ \pm 5.21^\circ$ ) and only to a

555 lesser amount by the hind (ROM:  $11.27^\circ \pm 3.01^\circ$ ) and middle (ROM:  $4.91^\circ \pm 2.67^\circ$ ) legs. Additionally,  
556 while the ThCx-roll DOF governed medial and lateral rotations for the front and the hind legs, it drove  
557 posterior and anterior rotations in the middle legs.

558 In the front legs, the additional TrFe-roll DOF was used for lateral rotation of the femur-tibia plane  
559 during the first half of the swing phase. This lateral rotation was continued during the first half of the  
560 stance phase before it switched to medial rotation for the remaining stance phase. The CxTr-yaw and  
561 the FeTi-yaw DOFs were used for flexion and extension of the trochanter and the tibia, respectively.  
562 These movements were generally more pronounced in the front and hind legs than in the middle legs  
563 (ROM of CxTr/FeTi for front, middle, and hind legs:  $91.24^\circ \pm 9.54^\circ$  /  $96.55^\circ \pm 7.65^\circ$ ,  $22.51^\circ \pm 3.38^\circ$  /  
564  $21.52^\circ \pm 5.43^\circ$ ,  $56.34^\circ \pm 9.00^\circ$  /  $84.11^\circ \pm 9.94^\circ$ ). Furthermore, while the front legs showed extension  
565 and flexion during the swing and stance phase, respectively, these movements were performed in the  
566 opposite phase for the hind legs. For the middle legs, however, flexion and extension of the trochanter  
567 occurred in swing and stance phase, but flexion of the tibia was observable almost during the entire  
568 swing phase and continued in the first half of the stance phase, while extension of the tibia occurred  
569 mainly in the second half of the stance phase. Additionally, flexion of the tibia in the middle legs was  
570 not gradual as compared to the front and hind legs, but it was more prominent at the early stance phase.

571

### 572 **3.4 Rotations of the femur-tibia plane in the middle legs were driven by two yaw DOFs**

573 Remarkably, although femur-tibia plane of the middle legs in *Drosophila* showed pronounced  
574 rotational movements during forward walking (Karashchuk et al. 2021; **supplemental video 4**), our  
575 model did not require any additional roll DOF in the TrFe for the adoption of the postures resulting  
576 from that rotational movement, unlike the front legs. To identify the kinematic origin of these femur-  
577 tibia plane rotations, we performed an *in silico* experiment in which we tested the ability of single as  
578 well as combinations of DOFs proximal to the femur to rotate the plane (**Figure 5**). For this, we set the  
579 middle legs of the model to their initial posture of each analysed swing (n=238) or stance phase (n=215)  
580 by using all available DOF angles and subsequently updated only the angles of selected DOFs for the  
581 remaining leg postures of the respective phase.

582 When we updated all present model DOFs, i.e. we used the full established model, the median  
583 rotational range of the femur-tibia plane was  $42.6^\circ$  (IQR:  $10.7^\circ$ ) and  $40.7^\circ$  (IQR:  $6.5^\circ$ ) for the swing  
584 and stance phase, respectively (**Figure 5B**). Interestingly, almost all other tested DOF configurations

585 resulted in a largely reduced rotational range (**Figure 5A+C**). We observed the largest reduction when  
586 only the pitch or roll DOF of the ThCx were updated (mean difference  $\pm$  95% CI for swing / stance:  
587 pitch DOF only:  $-35.1^\circ \pm 0.9^\circ$  /  $-32.9^\circ \pm 1.0^\circ$ ; roll DOF only:  $-33.0^\circ \pm 0.9^\circ$  /  $-31.1^\circ \pm 1.1^\circ$ ). In contrast,  
588 the rotational range was larger when the ThCx-yaw was the only moveable DOF, but it was still  
589 reduced by  $17.9^\circ \pm 0.4^\circ$  and  $16.2^\circ \pm 0.4^\circ$  for the swing and stance phase, respectively. Updating either  
590 the ThCx-pitch, or the ThCx-roll, or both DOFs in addition to the ThCx-yaw DOF did not enhance the  
591 rotational range (**Figure 5C**). Additionally, the reduction of the rotational range was  $24.2^\circ \pm 0.8^\circ$  for  
592 swing phases and  $26.3^\circ \pm 0.6^\circ$  for stance phases when only the CxTr-yaw DOF was updated in the  
593 model. Strikingly, combining the ThCx-yaw and the CxTr-yaw DOFs resulted in an almost complete  
594 recovery of the rotational range (mean differences  $\pm$  95% CI for swing / stance:  $-0.8^\circ \pm 1.1^\circ$  /  $-1.4^\circ \pm$   
595  $0.9^\circ$ ) (**Figure 5C**), showing that these two DOFs were the main contributors to the rotation of the  
596 femur-tibia plane of the middle legs in our kinematic model.

597

598 **3.5 Effects of oblique joint rotational axes based on anatomical landmarks on kinematic  
599 modeling**

600 Since a unique feature of our kinematic leg model was that yaw DOF rotational axes were derived from  
601 the positions of the joint condyles, we asked how their anatomical orientation improved fitting to the  
602 motion captured leg movements. For this, we selected three different DOF configurations of our model:  
603 the reference configuration, one with an additional TrFe-roll DOF, and one with an additional CxTr-  
604 roll DOF. We then compared these to alternative versions in which the rotational axes were orientated  
605 orthogonally to the leg segments (**supplemental video 5**). We found that the orientation of most yaw  
606 DOF rotational axes of our model deviated, sometimes substantially, from their orthogonalized version.  
607 This consequently affected the direction of their rotational motion (**Figure 6A**).

608 For models with the reference DOF configuration, the orthogonalized model showed a larger error for  
609 all three leg pairs during almost the complete step cycle (**Figure 6B**). The maximum increase in relative  
610 mean error was 102%, 83%, and 56% for the front, middle, and hind legs, respectively. However, the  
611 orthogonalized model version performed better for the front and hind legs at the transition between  
612 swing and stance. For the front legs, the relative error decreased up to 29% at the end of the swing  
613 phase before increasing again at the begin of the stance phase, while for the hind legs the relative error  
614 was similar to our model at the end of the stance phase, but decreased up to 13% at the begin of the

stance phase. Additionally, the orthogonalized versions of models with either a TrFe-roll or CxTr-roll DOF in the kinematic leg chains also displayed a larger model error compared to our model with these additional DOFs which was, however, less pronounced than we found for the reference DOF configuration (maximum increase in relative mean error for front, middle, and hind legs: with TrFe-roll: 19%, 40%, and 35%; with CxTr-roll: 7%, 44%, and 22%).

We further found differences in the ROM of several joint DOFs between our final model with an additional TrFe-roll DOF in the front legs and the respective orthogonalized model (**Figure 6C**). Although we observed reductions in the ROM for DOFs in the orthogonalized model in the front legs (mean differences  $\pm$  95% CI:  $-10.3^\circ \pm 0.7^\circ$ ,  $-10.7^\circ \pm 2.3^\circ$ , and  $-25.8^\circ \pm 3.4^\circ$  for CxTr-yaw, FeTi-yaw, and TiTar-pitch DOFs) and the middle legs (mean differences  $\pm$  95% CI:  $-6.1^\circ \pm 0.15^\circ$ ,  $-5.8^\circ \pm 2.5^\circ$ , and  $-5.2^\circ \pm 1.3^\circ$  for ThCx-pitch, CxTr-yaw and TiTar-pitch DOFs), we observed larger increases of the ROM in the available roll DOF in both leg pairs which was  $26.8^\circ \pm 3.7^\circ$  and  $16.7^\circ \pm 3.9$  for ThCx-roll and TrFe-roll DOFs in the front legs and  $20.6^\circ \pm 1.4^\circ$  for the ThCx-roll DOF in the middle legs. For the hind legs, changes in ROM were subtler in the hind legs, but the ROM for the ThCx-roll DOF was also increased by  $7.1^\circ \pm 2.7^\circ$ . Additionally, the ROM of the ThCx-yaw DOF in the middle legs showed also an increase of  $9.5^\circ \pm 1.6^\circ$ .

631

## 632 4 Discussion

633 In the present study, we introduced a kinematic 3D leg model for *Drosophila* with oblique joint  
634 rotational axes derived from anatomical landmarks. Our model was able to adopt natural leg postures  
635 occurring during forward stepping with high accuracy and, at the same time, revealed differences in  
636 the joint kinematics between the leg pairs. Thereby, our model further provides insights into  
637 biomechanical aspects of walking in *Drosophila*.

638 To the best of our knowledge, our model is the first 3D kinematic leg model of *Drosophila* in which  
639 the alignment of the main joint rotational axes was informed by the position of the joint condyles. The  
640 resulting rotational axes of the yaw DOF in all joints were therefore slanted and not aligned in an  
641 orthogonal orientation with regard to the leg segments (**Figure 6A**). By comparing our model with  
642 such oblique joint axes to a version with orthogonalized axes, which is a widespread modeling  
643 approach for kinematic leg chains in insects (Zakotnik et al., 2004; Petrou and Webb, 2012; Theunissen  
644 and Dürr, 2013; Goldsmith et al., 2022; Lobato-Rios et al., 2022), we found that our model had a

645 smaller error in all three leg pairs most of the time. Additionally, the ROM for many DOFs, particularly  
646 for roll DOFs, differed substantially. One reason for the smaller required ROM of roll DOFs in our  
647 model might be that rotations around this type of DOF have a direct influence on the orientation of all  
648 subsequent rotational axes in the kinematic leg chain, suggesting that our model had to use these DOFs  
649 to a lesser extent to adapt the motion captured leg postures due to its more natural alignment of  
650 rotational axes. These findings also show that the resulting kinematics, such as joint angles, are strongly  
651 affected by the orientation of the rotational axes of the used DOFs, even when a kinematic model  
652 reproduces natural leg postures very well. This has further critical implications for the development of  
653 more sophisticated models of leg movements in *Drosophila*, such as dynamic, musculoskeletal, and  
654 full neuromechanical models, as deviations from the naturally occurring joint DOFs and their rotational  
655 axes could strongly affect the results (Stagni et al., 2000; Smith et al., 2012; Fohanno et al., 2013;  
656 Zuppke et al., 2023).

657 In our model, however, we could only align the yaw DOFs based on anatomical landmarks and used  
658 simplified assumptions to model pitch and roll DOFs. This means that the axes for roll DOFs were  
659 placed along the associated leg segment and axes for pitch DOFs were orientated orthogonally to both  
660 other DOF axes. However, these rotational axes might also be skewed in the fruit fly and thereby affect  
661 the model error and the range of motion used in our model. This notion is supported by the finding that  
662 the slanted and therefore non-orthogonal axes orientation between the two hinge joints that allow  
663 movements of the antennae in stick insects improves the efficiency of active tactile sensing (Krause  
664 and Dürr, 2004). For instance, our model achieved the best fit when all three DOFs were moveable in  
665 the ThCx for all leg pairs. Although the front legs in *Drosophila* likely use all three DOFs, as the coxa  
666 showed pronounced movements including extensive lateral rotations which is comparable to findings  
667 for the front legs of the cockroach (Kram et al., 1997; Tryba and Ritzmann, 2000; Ritzmann et al.,  
668 2004), many insects use only two or one DOFs of the ThCx in the middle and hind legs during forward  
669 walking (Hughes, 1952; Cruse and Bartling, 1995; Bender et al., 2010). It is therefore desirable to  
670 conduct future morphological and biomechanical studies to reveal the anatomical rotational axes of the  
671 other DOFs in joints with more than one DOF in *Drosophila*.

672 Another limitation of our model is the simplification of tarsal movements. The tarsus in *Drosophila*  
673 consists of five segments linked by ball-and-socket joints (Tajiri et al., 2010). Since it was not possible  
674 to track all tarsal segments with the motion capture system used here, we modeled the tarsus with two  
675 DOFs in the TiTar and adjusted its length for each leg posture, i.e. we effectively reduced 12 to 15

676 DOFs to three parameters. However, from a biomechanical perspective, the tarsus comprises a large  
677 percentage of the total leg length, serves as attachment structure, and has a passive spring effect which  
678 contributes to ground force transmission (Manoonpong et al., 2021). This suggests that a more detailed  
679 kinematic model of the tarsus is needed, for instance for dynamic simulations. On the other hand, tarsal  
680 segments do not have muscles that allow independent control by the nervous system, but are moved  
681 together by muscle tension on the long tendon (Soler et al., 2004). Consequently, our model with a  
682 simplified tarsus incorporates already the majority of joints which are under active control by the  
683 nervous system.

684 Although the TrFe is moveable in many insects (Frantsevich and Wang, 2009), its functional role in  
685 *Drosophila* is debated controversially, with opinions ranging from it being fused and immobile (Sink,  
686 2006; Lobato-Rios et al., 2022) to at least limited mobility (Feng et al., 2020). We found that a roll  
687 DOF in the TrFe drastically improved fitting of our model to leg postures of the front legs, while it had  
688 much smaller impact on fitting of the middle and hind legs. This is in line with a kinematic model for  
689 crickets in which a mobile TrFe was required to model walking in the front legs, but not in the other  
690 leg pairs (Petrou and Webb, 2012). However, we observed the same improvement when we used a roll  
691 DOF in the CxTr as proposed by Lobato-Rios et al. (2022). Nevertheless, we favoured a mobile TrFe  
692 in our model, because the CxTr has commonly been characterized as hinge joint with only one DOF  
693 for leg levation/depression in insects (Cruse and Bartling, 1995; Kram et al., 1997; Tryba and  
694 Ritzmann, 2000; Büschges et al., 2008; Cruse et al., 2009) and the trochanter has muscles that are  
695 innervated by the nervous system in *Drosophila* (Soler et al., 2004; Enriquez et al., 2015). Their  
696 presence in this segment suggests at least some functional relevance in the context of leg movements.

697 Interestingly, the front and middle legs exhibited a rotation of the femur-tibia plane during forward  
698 stepping. While this rotation was very prominent in the middle legs and contributed to protraction and  
699 retraction of the leg, it was subtler in the front legs, though still necessary for adequate modeling of the  
700 leg kinematics. Femur-tibia plane rotations were previously reported for the middle legs in the  
701 cockroach (Bender et al., 2010) and *Drosophila* (Karashchuk et al., 2021). In contrast to the cockroach  
702 in which this rotation is proposed to emerge from actions of the TrFe (Bender et al., 2010), we found  
703 such a putative role for the TrFe only for the front legs in our model. In the middle legs, however, these  
704 rotations were exerted by the combined actions of the yaw DOFs of the ThCx and the CxTr, which can  
705 be most likely attributed to the alignment of their rotational axes.

706 One important finding from our model is that each leg pair showed distinct kinematics in terms of joint  
707 angles, ROM, and the necessity of individual DOFs for accurate fit of specific postures at different  
708 times throughout the step cycle. These observations have some implications for the demands of the  
709 underlying motor control system in *Drosophila* in terms of required muscle activation patterns and  
710 sensory feedback from proprioceptors. For instance, it is well-established that the femoral chordotonal  
711 organ (fCO) in insects encodes position, velocity, acceleration, and vibration of tibial movements  
712 (Hofmann and Koch, 1985; Hofmann et al., 1985; Matheson, 1990; Büschges, 1994; Stein and Sauer,  
713 1999; Mamiya et al., 2018). However, although we found that the extent of angular changes of the FeTi  
714 was similar, tibial flexion occurred during the stance or swing phase for the front and hind legs,  
715 respectively, and vice versa during the opposite step phase. Additionally, tibial flexion and extension  
716 was much less pronounced in the middle legs. This suggests that the sensory signals originating in  
717 fCOs are leg-specific and this specificity must be accounted for when these signals are processed by  
718 the nervous system. This notion is supported by the findings of Chockley et al. (2022) who showed  
719 that inhibition of the fCO during walking in *Drosophila* strongly elongated the stance phase and  
720 trajectories of the front legs and the swing phase of the hind legs.

721 Another open question is to what extent the neuronal circuits underlying walking are conserved in  
722 insects. Since the nervous system and the morphology of legs evolved together, this issue is crucial for  
723 assessing the generalizability of findings between species. For example, the middle legs in stick insects  
724 do not show a prominent plane rotation as we observed here for *Drosophila*. However,  
725 protraction/retraction and levation/depression during stepping are performed by the ThCx and the  
726 CxTr, respectively (Büschges et al., 2008; Cruse et al., 2009) and the very same movements emerged  
727 from rotations about the ThCx-yaw and CxTr-yaw DOFs in our model. Hence, it is possible that  
728 morphological differences such as the orientation of joint rotational axes are the main cause for the  
729 dissimilarity in the movements of the middle legs in both species.

730

731

## 732 5 Conflict of Interest

733 The authors declare that the research was conducted in the absence of any commercial or financial  
734 relationships that could be construed as a potential conflict of interest.

735 **6 Author Contributions**

736 Conceptualization: M.H., A.B., T.B; Data curation: M.H.; Formal Analysis: M.H.; Funding  
737 acquisition: A.B.; Investigation: M.H., A.B.; Methodology: M.H., A.B., T.B.; Project administration:  
738 A.B.; Resources: A.B.; Software: M.H., T.B.; Supervision: A.B., T.B.; Validation: M.H.;  
739 Visualization: M.H.; Writing – original draft: M.H., T.B.; Writing – review & editing: M.H., A.B.,  
740 T.B, A.B.

741

742 **7 Funding**

743 M.H. and A.B. are members of the "iBehave" network funded by the Ministry of Culture and Science  
744 of the State of North Rhine-Westphalia. T.B., A.B., and A.B. were supported by research grant C3NS  
745 in the international NeuroNex Program and herein funded by the Deutsche Forschungsgemeinschaft  
746 (DFG Bu857/15 and BL1355/6-1 [436258345]). The study additionally received funding from the PSI  
747 (ID: 20171469) for the beamline experiment.

748

749 **8 Acknowledgements**

750 We would like to Dr. Gesa Dinges for providing the specimen for the generation of the  $\mu$ CT data.  
751 Additional thanks go to Michael Dübbert and Mehrdad Ghanbari of the Electronics workshop of the  
752 Institute of Zoology, University of Cologne for their help with the motion capture setup. We also thank  
753 Fabian Jakobs for help in generating the training set for DeepLabCut and correcting tracking  
754 misdetections in the motion capture data. Parts of the text and the figures in this paper are reproduced  
755 from the doctoral dissertation of M.H. (Haustein, 2023). The here used motion capture data was partly  
756 published in two other studies (Goldsmith et al., 2022; Saltin et al., 2023).

757

758 **9 References**

759 Arroyave-Tobon, S., Drapin, J., Kaniewski, A., Linares, J.-M., and Moretto, P. (2022). Kinematic Modeling at  
760 the Ant Scale: Propagation of Model Parameter Uncertainties. *Front. Bioeng. Biotechnol.* 10, 767914.  
761 doi: 10.3389/fbioe.2022.767914.

762 Azevedo, A. W., Dickinson, E. S., Gurung, P., Venkatasubramanian, L., Mann, R. S., and Tuthill, J. C. (2020). A  
763 size principle for recruitment of *Drosophila* leg motor neurons. *eLife* 9, e56754. doi:  
764 10.7554/eLife.56754.

765 Backhaus, B. S. E., Sulkowski, E., and Schlote, F. W. (1984). A semi-synthetic, general-purpose medium for  
766 *Drosophila melanogaster*. *Drosophila Information Service* 60, 210–212.

767 Begon, M., Andersen, M. S., and Dumas, R. (2018). Multibody Kinematics Optimization for the Estimation of  
768 Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review. *J Biomech*  
769 *Eng* 140. doi: 10.1111/j.14038741.

770 Bender, J. A., Simpson, E. M., and Ritzmann, R. E. (2010). Computer-Assisted 3D Kinematic Analysis of All Leg  
771 Joints in Walking Insects. *PLOS ONE* 5, e13617. doi: 10.1371/journal.pone.0013617.

772 Berendes, V., Zill, S. N., Büschges, A., and Bockemühl, T. (2016). Speed-dependent interplay between local  
773 pattern-generating activity and sensory signals during walking in *Drosophila*. *Journal of Experimental*  
774 *Biology* 219, 3781–3793. doi: 10.1242/jeb.146720.

775 Bernstein, N. A., and Latash, M. L. (2021). *Bernstein's construction of movements: the original text and*  
776 *commentaries*. New York, NY: Routledge.

777 Bidaye, S. S., Bockemühl, T., and Büschges, A. (2018). Six-legged walking in insects: how CPGs, peripheral  
778 feedback, and descending signals generate coordinated and adaptive motor rhythms. *Journal of*  
779 *Neurophysiology* 119, 459–475. doi: 10.1152/jn.00658.2017.

780 Bidaye, S. S., Latsbury, M., Chang, A. K., Liu, Y., Bockemühl, T., Büschges, A., et al. (2020). Two Brain  
781 Pathways Initiate Distinct Forward Walking Programs in *Drosophila*. *Neuron* 108, 469–485.e8. doi:  
782 10.1016/j.neuron.2020.07.032.

783 Blanke, A., Watson, P. J., Holbrey, R., and Fagan, M. J. (2017). Computational biomechanics changes our view  
784 on insect head evolution. *Proceedings of the Royal Society B: Biological Sciences* 284, 20162412. doi:  
785 10.1098/rspb.2016.2412.

786 Bradski, G. (2000). The OpenCV Library. *Dr. Dobb's Journal of Software Tools*.

787 Bradski, G. R., and Kaehler, A. (2008). *Learning OpenCV: computer vision with the OpenCV library*. 1. ed.  
788 Beijing: O'Reilly.

789 Branch, M. A., Coleman, T. F., and Li, Y. (1999). A Subspace, Interior, and Conjugate Gradient Method for  
790 Large-Scale Bound-Constrained Minimization Problems. *SIAM J. Sci. Comput.* 21, 1–23. doi:  
791 10.1137/S1064827595289108.

792 Büschges, A. (1994). The physiology of sensory cells in the ventral scoloparium of the stick insect femoral  
793 chordotonal organ. *J. Exp. Biol.* 189, 285–292.

794 Büschges, A. (2005). Sensory Control and Organization of Neural Networks Mediating Coordination of  
795 Multisegmental Organs for Locomotion. *Journal of Neurophysiology* 93, 1127–1135. doi:  
796 10.1152/jn.00615.2004.

797 Büschges, A., Akay, T., Gabriel, J. P., and Schmidt, J. (2008). Organizing network action for locomotion:  
798 Insights from studying insect walking. *Brain Research Reviews* 57, 162–171. doi:  
799 10.1016/j.brainresrev.2007.06.028.

800 Ceseracciu, E., Sawacha, Z., and Cobelli, C. (2014). Comparison of Markerless and Marker-Based Motion  
801 Capture Technologies through Simultaneous Data Collection during Gait: Proof of Concept. *PLoS ONE*  
802 9, e87640. doi: 10.1371/journal.pone.0087640.

803 Chen, C.-L., Hermans, L., Viswanathan, M. C., Fortun, D., Aymanns, F., Unser, M., et al. (2018). Imaging neural  
804 activity in the ventral nerve cord of behaving adult *Drosophila*. *Nat Commun* 9, 4390. doi:  
805 10.1038/s41467-018-06857-z.

806 Chockley, A. S., Dinges, G. F., Di Cristina, G., Ratican, S., Bockemühl, T., and Büschges, A. (2022). Subsets of  
807 leg proprioceptors influence leg kinematics but not interleg coordination in *Drosophila melanogaster*  
808 walking. *Journal of Experimental Biology* 225, jeb244245. doi: 10.1242/jeb.244245.

809 Crawford, N. R., Yamaguchi, G. T., and Dickman, C. A. (1999). A new technique for determining 3-D joint  
810 angles: the tilt/twist method. *Clinical Biomechanics* 14, 153–165. doi: 10.1016/S0268-  
811 0033(98)00080-1.

812 Cruse, H., and Bartling, Ch. (1995). Movement of joint angles in the legs of a walking insect, *Carausius*  
813 *morosus*. *Journal of Insect Physiology* 41, 761–771. doi: 10.1016/0022-1910(95)00032-P.

814 Cruse, H., Dürr, V., Schilling, M., and Schmitz, J. (2009). “Principles of Insect Locomotion,” in *Spatial Temporal*  
815 *Patterns for Action-Oriented Perception in Roving Robots*, eds. P. Arena and L. Patanè (Berlin,  
816 Heidelberg: Springer Berlin Heidelberg), 43–96. doi: 10.1007/978-3-540-88464-4\_2.

817 Dallmann, C. J., Dürr, V., and Schmitz, J. (2016). Joint torques in a freely walking insect reveal distinct  
818 functions of leg joints in propulsion and posture control. *Proc Biol Sci* 283, 20151708. doi:  
819 10.1098/rspb.2015.1708.

820 Denavit, J., and Hartenberg, R. S. (1955). A kinematic notation for lower-pair mechanisms based on matrices.  
821 *Trans. ASME E, Journal of Applied Mechanics* 22, 215–221.

822 Dinges, G. F., Bockemühl, T., Iacoviello, F., Shearing, P. R., Büschges, A., and Blanke, A. (2022). Ultra high-  
823 resolution biomechanics suggest that substructures within insect mechanosensors decisively affect  
824 their sensitivity. *J. R. Soc. Interface*. 19, 20220102. doi: 10.1098/rsif.2022.0102.

825 Duysens, J., Clarac, F., and Cruse, H. (2000). Load-Regulating Mechanisms in Gait and Posture: Comparative  
826 Aspects. *Physiological Reviews* 80, 83–133. doi: 10.1152/physrev.2000.80.1.83.

827 Enriquez, J., Venkatasubramanian, L., Baek, M., Peterson, M., Aghayeva, U., and Mann, R. S. (2015).  
828 Specification of Individual Adult Motor Neuron Morphologies by Combinatorial Transcription Factor  
829 Codes. *Neuron* 86, 955–970. doi: 10.1016/j.neuron.2015.04.011.

830 Feng, K., Sen, R., Minegishi, R., Dübbert, M., Bockemühl, T., Büschges, A., et al. (2020). Distributed control of  
831 motor circuits for backward walking in *Drosophila*. *Nat Commun* 11, 6166. doi: 10.1038/s41467-020-  
832 19936-x.

833 Fohanno, V., Lacouture, P., and Colloud, F. (2013). Improvement of upper extremity kinematics estimation  
834 using a subject-specific forearm model implemented in a kinematic chain. *Journal of Biomechanics*  
835 46, 1053–1059. doi: 10.1016/j.jbiomech.2013.01.029.

836 Frantsevich, L., and Wang, W. (2009). Gimbals in the insect leg. *Arthropod Structure & Development* 38, 16–  
837 30. doi: 10.1016/j.asd.2008.06.002.

838 Frund, K., Shu, A. L., Loeffl, F. C., and Ott, C. (2022). A Guideline for Humanoid Leg Design with Oblique Axes  
839 for Bipedal Locomotion. in 2022 IEEE-RAS 21st International Conference on Humanoid Robots  
840 (Humanoids) (Ginowan, Japan: IEEE), 60–66. doi: 10.1109/Humanoids53995.2022.10000126.

841 Full, R., and Ahn, A. (1995). Static forces and moments generated in the insect leg: comparison of a three-  
842 dimensional musculo-skeletal computer model with experimental measurements. *Journal of  
843 Experimental Biology* 198, 1285–1298.

844 Full, R. J., and Koditschek, D. E. (1999). Templates and anchors: neuromechanical hypotheses of legged  
845 locomotion on land. *Journal of Experimental Biology* 202, 3325–3332.

846 Goldsmith, C. A., Haustein, M., Bockemühl, T., Büschges, A., and Szczechinski, N. S. (2022). “Analyzing 3D Limb  
847 Kinematics of Drosophila Melanogaster for Robotic Platform Development,” in *Biomimetic and  
848 Biohybrid Systems* Lecture Notes in Computer Science., eds. A. Hunt, V. Vouloutsi, K. Moses, R.  
849 Quinn, A. Mura, T. Prescott, et al. (Cham: Springer International Publishing), 111–122. doi:  
850 10.1007/978-3-031-20470-8\_12.

851 Günel, S., Rhodin, H., Morales, D., Compagnolo, J., Ramdy, P., and Fua, P. (2019). DeepFly3D: A deep  
852 learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila. *bioRxiv*,  
853 640375. doi: 10.1101/640375.

854 Hartley, R., and Zisserman, A. (2004). *Multiple View Geometry in Computer Vision*. 2nd ed. Cambridge:  
855 Cambridge University Press doi: 10.1017/CBO9780511811685.

856 Haustein, M. (2023). Decomposition of 3D joint kinematics of walking in Drosophila melanogaster. Available  
857 at: <https://kups.ub.uni-koeln.de/65299/>.

858 Hermans, L., Kaynak, M., Braun, J., Ríos, V. L., Chen, C.-L., Friedberg, A., et al. (2022). Microengineered  
859 devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila. *Nat  
860 Commun* 13, 5006. doi: 10.1038/s41467-022-32571-y.

861 Hofmann, T., and Koch, U. T. (1985). Acceleration Receptors in the Femoral Chordotonal Organ of the Stick  
862 Insect, *Cuniculina Impigra*. *Journal of Experimental Biology* 114, 225–237. doi:  
863 10.1242/jeb.114.1.225.

864 Hofmann, T., Koch, U. T., and Bässler, U. (1985). Physiology of the Femoral Chordotonal Organ in the Stick  
865 Insect, *Cuniculina Impigra*. *Journal of Experimental Biology* 114, 207–223. doi:  
866 10.1242/jeb.114.1.207.

867 Hughes, G. M. (1952). The Co-Ordination of Insect Movements. *J. Exp. Biol.* 29, 267–285.

868 Karashchuk, P., Rupp, K. L., Dickinson, E. S., Walling-Bell, S., Sanders, E., Azim, E., et al. (2021). Anipose: A  
869 toolkit for robust markerless 3D pose estimation. *Cell Reports* 36, 109730. doi:  
870 10.1016/j.celrep.2021.109730.

871 Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., Cho, Y. K., et al. (2014). Independent  
872 optical excitation of distinct neural populations. *Nature Methods* 11, 338–346.

873 Kram, R., Wong, B., and Full, R. J. (1997). Three-dimensional kinematics and limb kinetic energy of running  
874 cockroaches. *Journal of Experimental Biology* 200, 1919–1929. doi: 10.1242/jeb.200.13.1919.

875 Krause, A. F., and Dürr, V. (2004). Tactile efficiency of insect antennae with two hinge joints. *Biol. Cybern.* 91,  
876 168–181. doi: 10.1007/s00422-004-0490-6.

877 Lobato-Rios, V., Ramalingasetty, S. T., Özdiç, P. G., Arreguit, J., Ijspeert, A. J., and Ramdya, P. (2022).  
878 NeuroMechFly, a neuromechanical model of adult *Drosophila melanogaster*. *Nat Methods* 19, 620–  
879 627. doi: 10.1038/s41592-022-01466-7.

880 Lu, T.-W., and O'Connor, J. J. (1999). Bone position estimation from skin marker co-ordinates using global  
881 optimisation with joint constraints. *Journal of Biomechanics* 32, 129–134. doi: 10.1016/S0021-  
882 9290(98)00158-4.

883 Mamiya, A., Gurung, P., and Tuthill, J. C. (2018). Neural Coding of Leg Proprioception in *Drosophila*. *Neuron*  
884 100, 636-650.e6. doi: 10.1016/j.neuron.2018.09.009.

885 Manoonpong, P., Patanè, L., Xiong, X., Brodoline, I., Dupeyroux, J., Viollet, S., et al. (2021). Insect-Inspired  
886 Robots: Bridging Biological and Artificial Systems. *Sensors* 21, 7609. doi: 10.3390/s21227609.

887 Matheson, T. (1990). Responses and locations of neurones in the locust metathoracic femoral chordotonal  
888 organ. *J Comp Physiol A* 166. doi: 10.1007/BF00187338.

889 Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., et al. (2018). DeepLabCut:  
890 markerless pose estimation of user-defined body parts with deep learning. *Nat Neurosci* 21, 1281–  
891 1289. doi: 10.1038/s41593-018-0209-y.

892 Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., and Mathis, M. W. (2019). Using DeepLabCut for 3D  
893 markerless pose estimation across species and behaviors. *Nat Protoc* 14, 2152–2176. doi:  
894 10.1038/s41596-019-0176-0.

895 Needham, L., Evans, M., Cosker, D. P., Wade, L., McGuigan, P. M., Bilzon, J. L., et al. (2021). The accuracy of  
896 several pose estimation methods for 3D joint centre localisation. *Sci Rep* 11, 20673. doi:  
897 10.1038/s41598-021-00212-x.

898 Pearson, K. G. (1993). Common Principles of Motor Control in Vertebrates and Invertebrates. *Annual Review*  
899 of *Neuroscience* 16, 265–297. doi: 10.1146/annurev.ne.16.030193.001405.

900 Petrou, G., and Webb, B. (2012). Detailed tracking of body and leg movements of a freely walking female  
901 cricket during phonotaxis. *Journal of Neuroscience Methods* 203, 56–68. doi:  
902 10.1016/j.jneumeth.2011.09.011.

903 Phelps, J. S., Hildebrand, D. G. C., Graham, B. J., Kuan, A. T., Thomas, L. A., Nguyen, T. M., et al. (2021).  
904 Reconstruction of motor control circuits in adult *Drosophila* using automated transmission electron  
905 microscopy. *Cell* 184, 759-774.e18. doi: 10.1016/j.cell.2020.12.013.

906 Ritzmann, R. E., Quinn, R. D., and Fischer, M. S. (2004). Convergent evolution and locomotion through  
907 complex terrain by insects, vertebrates and robots. *Arthropod Structure & Development* 33, 361–379.  
908 doi: 10.1016/j.asd.2004.05.001.

909 Rubenson, J., Lloyd, D. G., Besier, T. F., Heliams, D. B., and Fournier, P. A. (2007). Running in ostriches ( *910 Struthio camelus* ): three-dimensional joint axes alignment and joint kinematics. *Journal of 911 Experimental Biology* 210, 2548–2562. doi: 10.1242/jeb.02792.

912 Saltin, B. D., Haustein, M., Büschges, A., and Blanke, A. (2023). A parametric finite element model of leg  
913 campaniform sensilla in *Drosophila* to study CS location and arrangement. doi:  
914 10.1101/2023.07.24.550300.

915 Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S., Hayworth, K. J., et al. (2020). A connectome  
916 and analysis of the adult *Drosophila* central brain. *eLife* 9, e57443. doi: 10.7554/eLife.57443.

917 Seelig, J. D., Chiappe, M. E., Lott, G. K., Dutta, A., Osborne, J. E., Reiser, M. B., et al. (2010). Two-photon  
918 calcium imaging from head-fixed *Drosophila* during optomotor walking behavior. *Nature Methods* 7,  
919 535–540.

920 Sink, H. (2006). “An Introduction to Muscle Development in *Drosophila*,” in *Muscle Development in 921 Drosophila* Molecular Biology Intelligence Unit., ed. H. Sink (New York, NY: Springer), 1–7. doi:  
922 10.1007/0-387-32963-3\_1.

923 Smith, G., Lake, M., Lees, A., and Worsfold, P. (2012). Measurement procedures affect the interpretation of  
924 metatarsophalangeal joint function during accelerated sprinting. *Journal of Sports Sciences* 30, 1521–  
925 1527. doi: 10.1080/02640414.2012.713501.

926 Soler, C., Daczewska, M., Ponte, J. P. D., Dastugue, B., and Jagla, K. (2004). Coordinated development of  
927 muscles and tendons of the *Drosophila* leg. *Development* 131, 6041–6051. doi: 10.1242/dev.01527.

928 Spong, M. W., Hutchinson, S., and Vidyasagar, M. (2020). “Forward Kinematics: The Denavit-Hartenberg  
929 Convention,” in *Robot Modeling and Control* (Hoboken, NJ: John Wiley & Sons, Ltd), 75–100.

930 Stagni, R., Leardini, A., Cappozzo, A., Grazia Benedetti, M., and Cappello, A. (2000). Effects of hip joint centre  
931 mislocation on gait analysis results. *Journal of Biomechanics* 33, 1479–1487. doi: 10.1016/S0021-  
932 9290(00)0093-2.

933 Stein, W., and Sauer, A. E. (1999). Physiology of vibration-sensitive afferents in the femoral chordotonal  
934 organ of the stick insect. *Journal of Comparative Physiology A* 184, 253–263. doi:  
935 10.1007/s003590050323.

936 Szczechinski, N. S., Bockemühl, T., Chockley, A. S., and Büschges, A. (2018). Static stability predicts the  
937 continuum of interleg coordination patterns in *Drosophila*. *Journal of Experimental Biology*,  
938 jeb.189142. doi: 10.1242/jeb.189142.

939 Tajiri, R., Misaki, K., Yonemura, S., and Hayashi, S. (2010). Dynamic shape changes of ECM-producing cells  
940 drive morphogenesis of ball-and-socket joints in the fly leg. *Development* 137, 2055–2063. doi:  
941 10.1242/dev.047175.

942 Takemura, S., Hayworth, K. J., Huang, G. B., Januszewski, M., Lu, Z., Marin, E. C., et al. (2023). A Connectome  
943 of the Male *Drosophila* Ventral Nerve Cord. *Neuroscience* doi: 10.1101/2023.06.05.543757.

944 Theunissen, L. M., and Dürr, V. (2013). Insects Use Two Distinct Classes of Steps during Unrestrained  
945 Locomotion. *PLOS ONE* 8, e85321. doi: 10.1371/journal.pone.0085321.

946 Tryba, A. K., and Ritzmann, R. E. (2000). Multi-Joint Coordination During Walking and Foothold Searching in  
947 the *Blaberus* Cockroach. I. Kinematics and Electromyograms. *Journal of Neurophysiology* 83, 3323–  
948 3336. doi: 10.1152/jn.2000.83.6.3323.

949 Venken, K. J. T., Simpson, J. H., and Bellen, H. J. (2011). Genetic Manipulation of Genes and Cells in the  
950 Nervous System of the Fruit Fly. *Neuron* 72, 202–230. doi: 10.1016/j.neuron.2011.09.021.

951 Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image Quality Assessment: From Error  
952 Visibility to Structural Similarity. *IEEE Trans. on Image Process.* 13, 600–612. doi:  
953 10.1109/TIP.2003.819861.

954 Woltring, H. J. (1991). Representation and calculation of 3-D joint movement. *Human Movement Science* 10,  
955 603–616. doi: 10.1016/0167-9457(91)90048-3.

956 Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., et al. (2006). User-guided 3D active  
957 contour segmentation of anatomical structures: Significantly improved efficiency and reliability.  
958 *NeuroImage* 31, 1116–1128. doi: 10.1016/j.neuroimage.2006.01.015.

959 Zakotnik, J., Matheson, T., and Dürr, V. (2004). A posture optimization algorithm for model-based motion  
960 capture of movement sequences. *Journal of Neuroscience Methods* 135, 43–54. doi:  
961 10.1016/j.jneumeth.2003.11.013.

962 Zuppke, J. N., Bennett, H. J., and Ringleb, S. I. (2023). The effect of subtalar joint axis location on muscle  
963 moment arms. *Journal of Biomechanics* 147, 111451. doi: 10.1016/j.jbiomech.2023.111451.

964

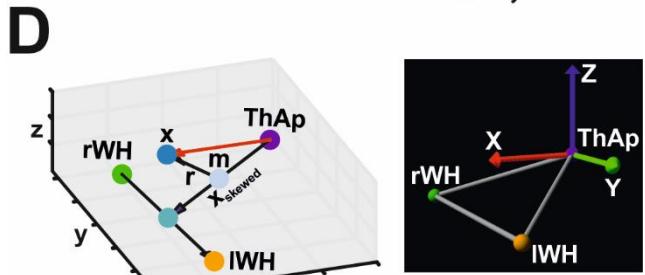
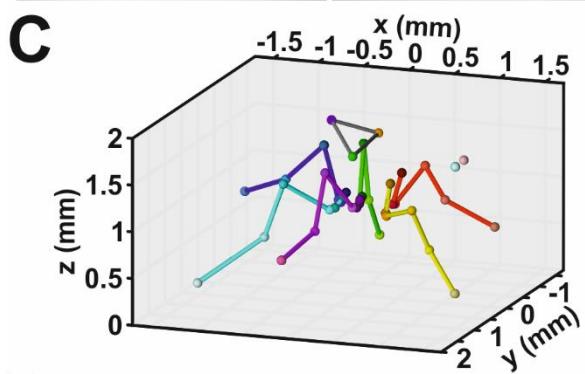
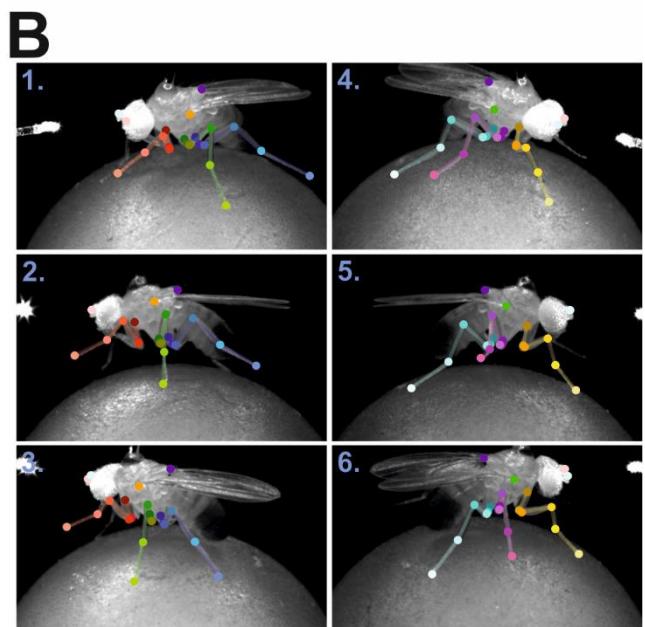
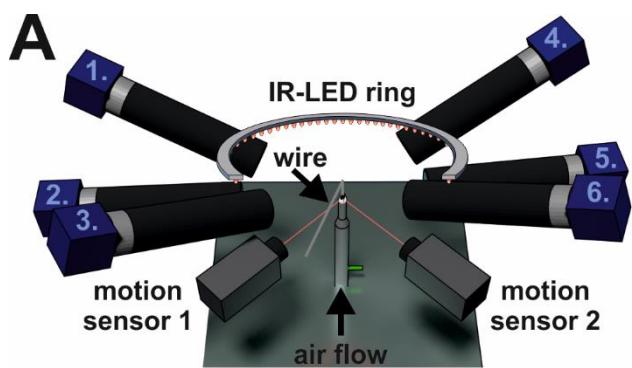
965

966

967

968

969

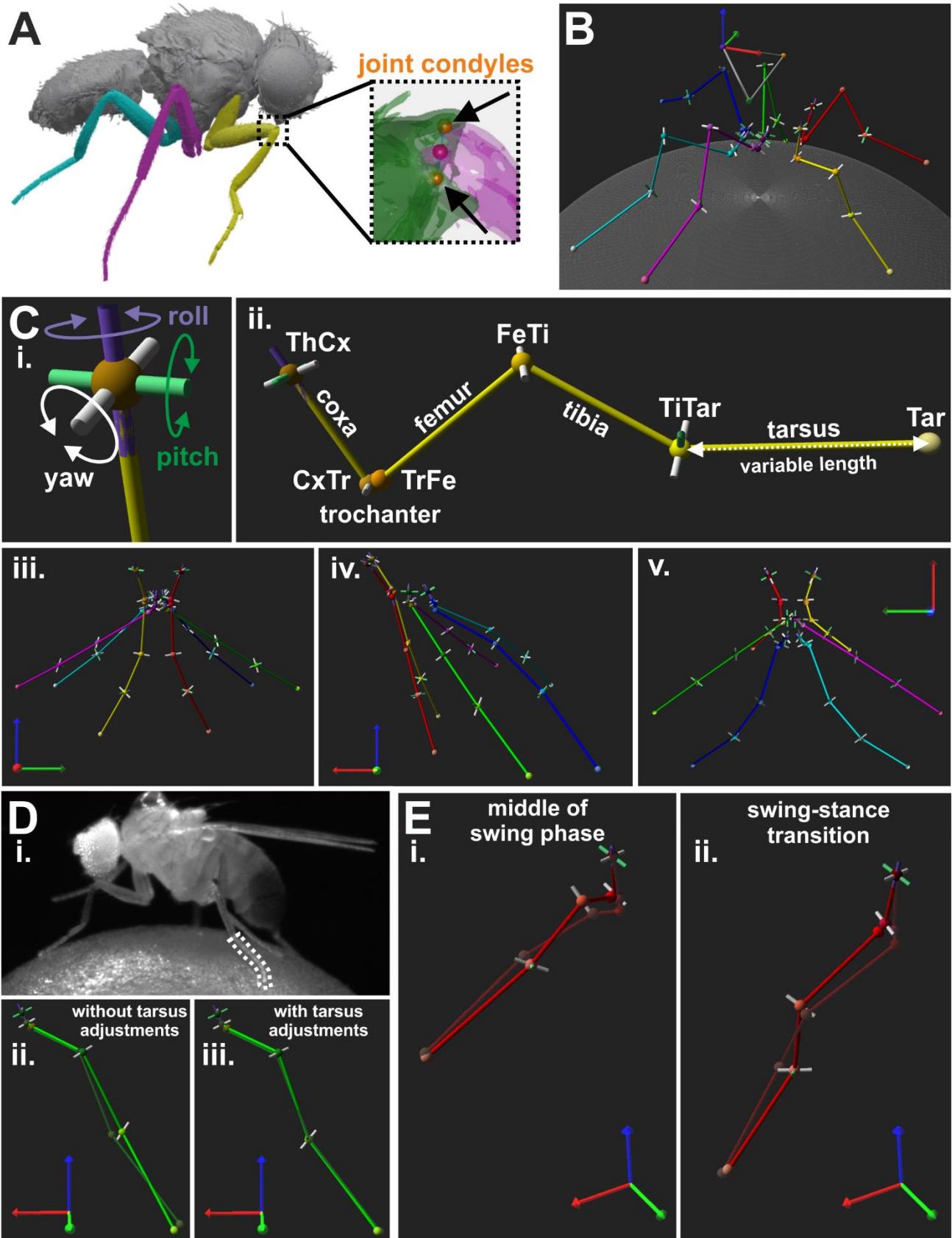




970

971

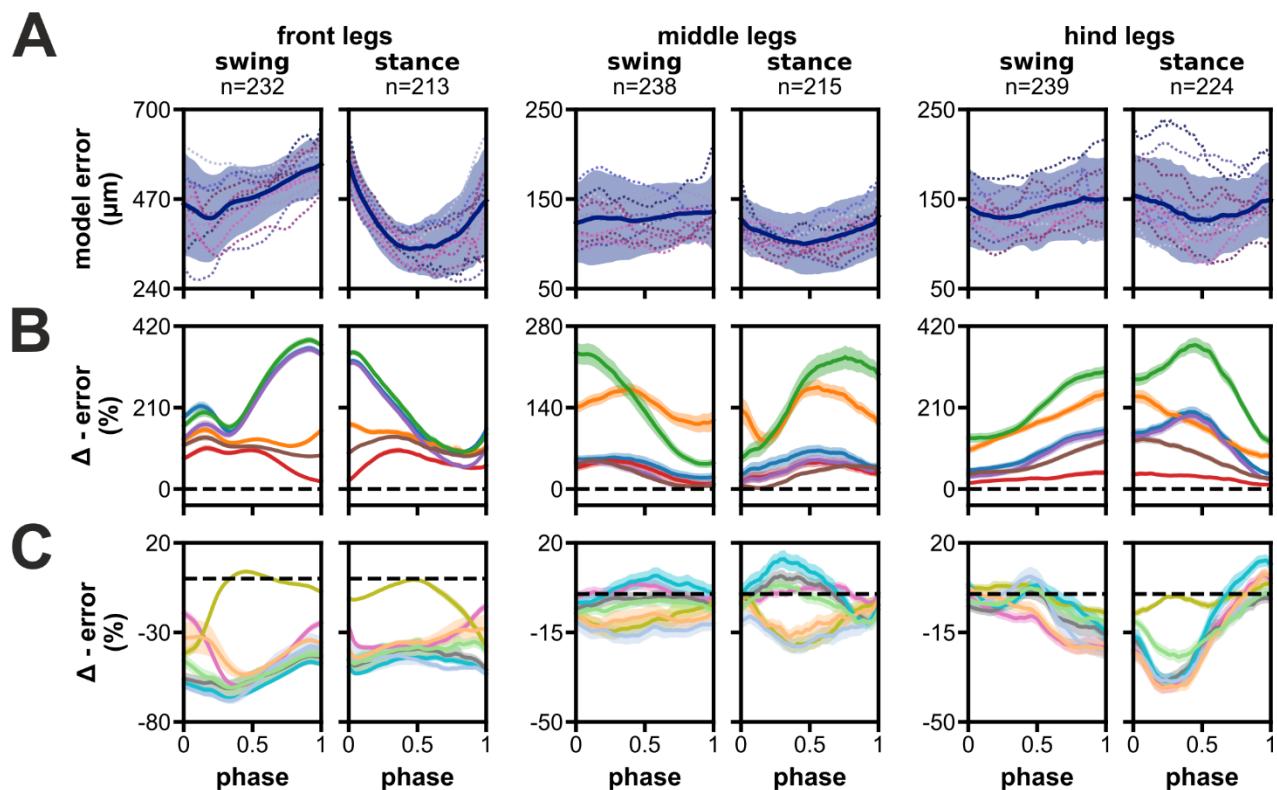
972

973

974 10 Figures




975


976 **Figure 1. Motion Capture Setup.** **(A)** Schematic illustration of the motion capture system. **(B)**  
977 Annotated video frames for all six camera views at the same time point. Numbers indicate the camera  
978 in A. **(C)** Corresponding 3D reconstruction derived from annotations in B. **(D)** Calculation of body  
979 coordinate system. Left panel: graph displays the vectors used to calculate the body coordinate system.  
980 Right panel: example image of a body coordinate system and the body reference keypoints used in the  
981 model visualizations.

982

983



985 **Figure 2. Creation of a kinematic reference leg model for *Drosophila*.** **(A)** Image of  $\mu$ CT scan used  
986 to extract positions of joint condyles. Magnified view on the femur-tibia joint (FeTi) with highlighted  
987 joint condyles are displayed in the dashed box. **(B)** An exemplary walking posture of the reference leg  
988 model. **(C)** DOF configuration and initial posture of the leg model. **i.:** Directions of motion for a model  
989 joint with all three DOFs, i.e. yaw (white), pitch (green), and roll (purple). **ii.:** Kinematic leg chain of  
990 the right front leg of the reference model. **iii.-v.:** Initial posture of the model as seen from the front  
991 (**iii.**), side (**iv.**), and top (**v.**) view. **(D)** Example for bending of the tarsus during the stance phase and  
992 its influence on the model. **i.:** Video frame showing a walking fly with a bent middle leg tarsus. **ii.-iii.:**  
993 The resulting model leg postures without (**ii.**) and with adjustments for tarsus fitting (**iii.**), i.e. additional  
994 pitch DOF in the tibia-tarsus joint (TiTar) and adjustment of the tarsus lengths for each leg posture.  
995 Solid light green and transparent dark green legs chain represents the joint and segment positions for  
996 the model and the motion captured legs, respectively. **(E)** Two examples for front leg misalignment of  
997 the model's tibia with its motion captured counterpart at the middle of the stance phase (**i.**) and the  
998 transition from swing to stance (**ii.**).



model DOF configurations

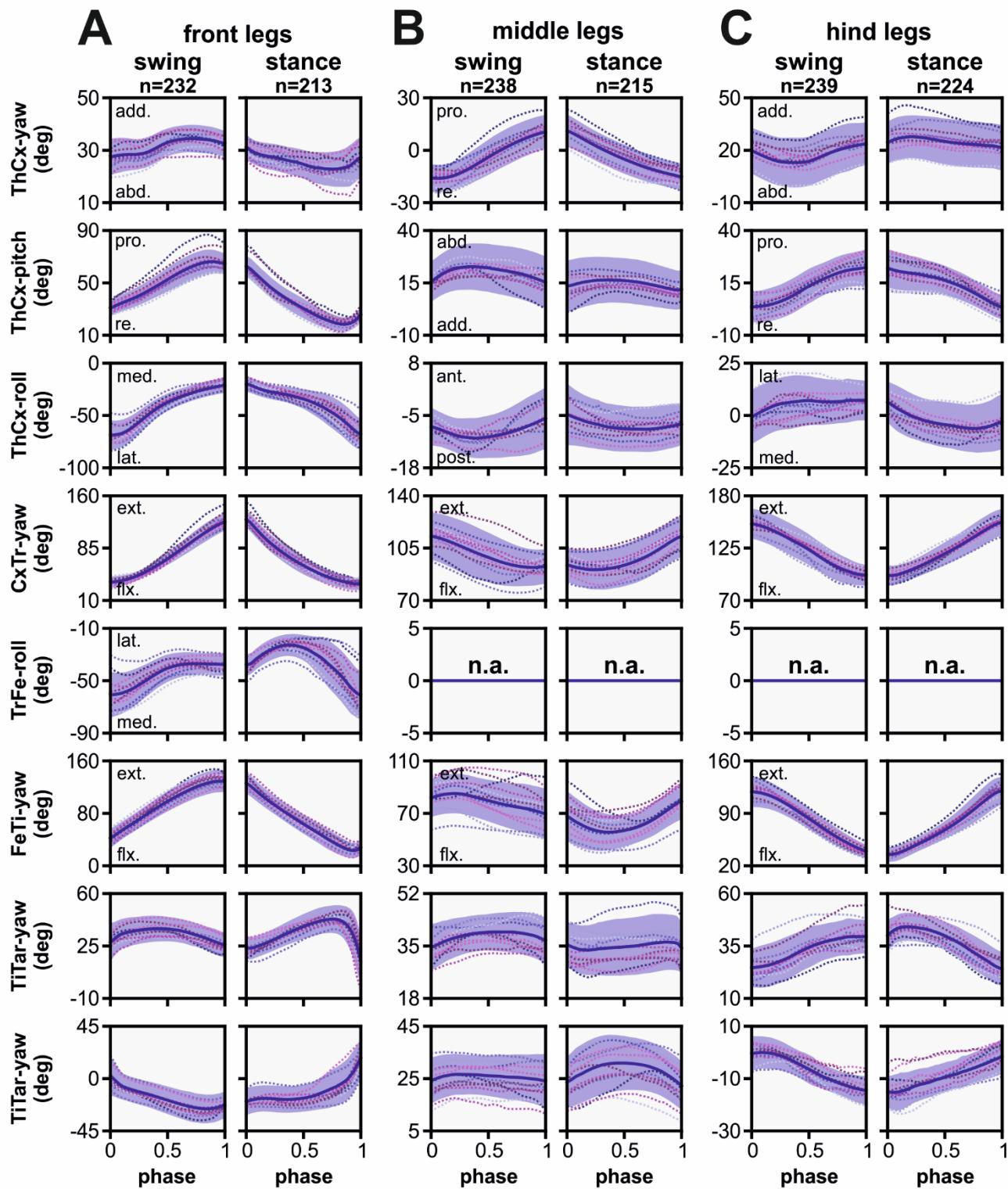
|   | ThCx |       |      | CxTr |      |     | TrFe  |      |     | FeTi  |      |     | TiTar |      |     | ThCx  |      |     | CxTr |     |       | TrFe |     |       | FeTi |     |       | TiTar |  |  |
|---|------|-------|------|------|------|-----|-------|------|-----|-------|------|-----|-------|------|-----|-------|------|-----|------|-----|-------|------|-----|-------|------|-----|-------|-------|--|--|
|   | yaw  | pitch | roll | yaw  | roll | yaw | pitch | roll | yaw | roll | yaw | pitch | roll | yaw | pitch | roll | yaw | pitch | roll  |  |  |
| 1 | +    | -     | -    | +    | -    | -   | -     | -    | +   | +     | +    | +   | +     | +    | +   | +     | +    | +   | -    | +   | -     | -    | +   | +     | +    | +   | +     | +     |  |  |
| 2 | -    | +     | -    | +    | -    | -   | -     | -    | +   | +     | +    | +   | +     | +    | +   | +     | +    | +   | -    | +   | -     | -    | +   | +     | +    | +   | +     | +     |  |  |
| 3 | -    | -     | +    | +    | +    | -   | -     | -    | +   | +     | +    | +   | +     | +    | +   | +     | +    | +   | -    | -   | -     | -    | +   | +     | +    | +   | +     | +     |  |  |
| 4 | +    | +     | -    | +    | -    | -   | -     | -    | +   | +     | +    | +   | +     | +    | +   | +     | +    | +   | -    | +   | -     | -    | +   | +     | +    | +   | +     | +     |  |  |
| 5 | +    | -     | +    | +    | +    | -   | -     | -    | +   | +     | +    | +   | +     | +    | +   | +     | +    | +   | -    | -   | -     | -    | +   | +     | +    | +   | +     | +     |  |  |
| 6 | -    | +     | +    | +    | +    | -   | -     | -    | +   | +     | +    | +   | +     | +    | +   | +     | +    | +   | -    | +   | -     | -    | +   | +     | +    | +   | +     | +     |  |  |

999

1000

1001

1002


1003

1004

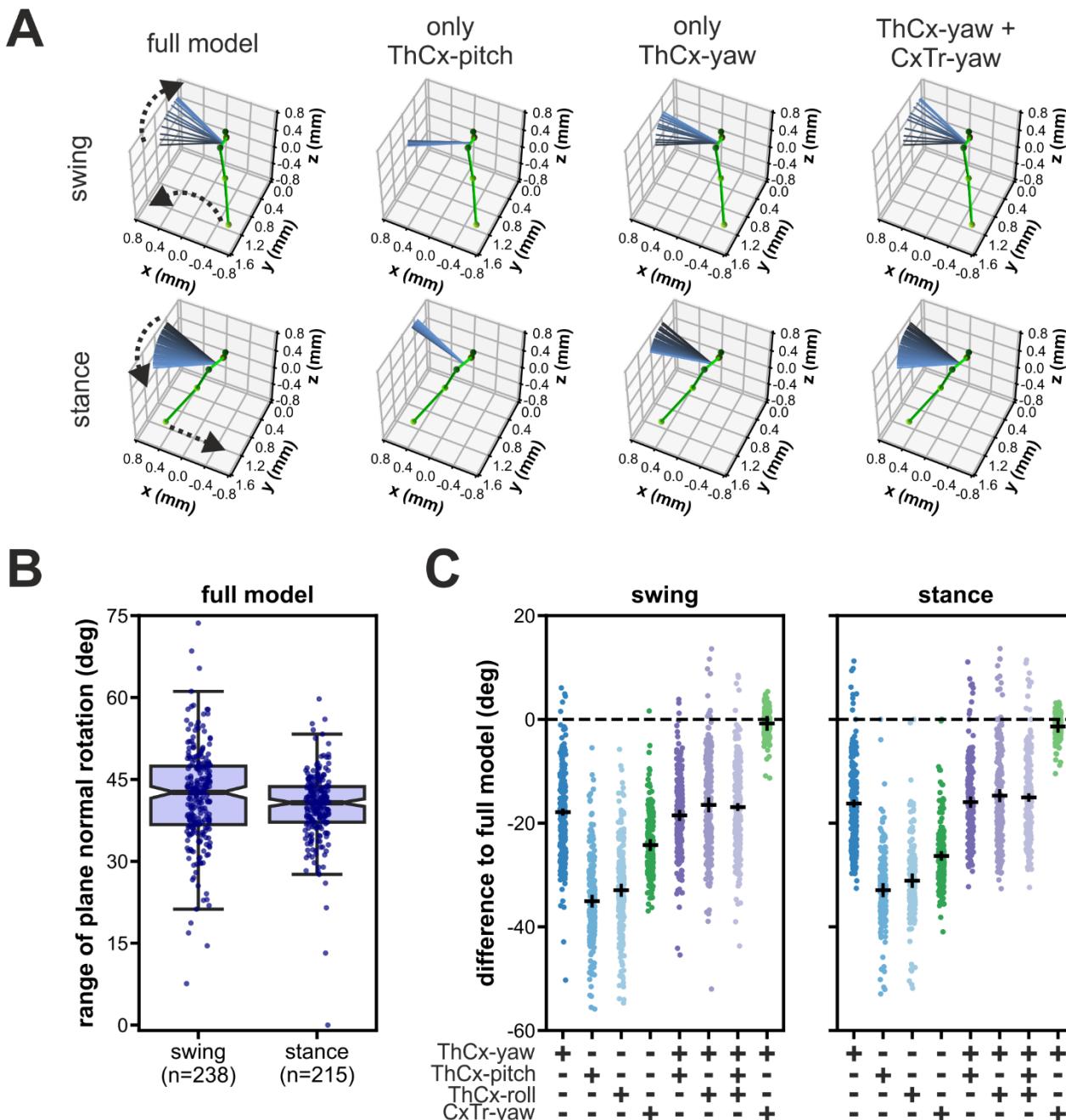
1005

1006

1007 **Figure 3. Model error and the impact of reducing the number of DOFs in the ThCx or adding**  
1008 **DOFs to the TrFe and CxTr.** **(A)** The time course of the summed mean error for front, middle, and  
1009 hind legs during swing and stance phases. Blue line and area represent the mean  $\pm$  SD, while dashed  
1010 colored lines display the mean time course of individual flies (N=12). **(B-C)** Relative change of model  
1011 error by removal of DOFs in ThCx **(B)** or addition of DOFs in the TrFe/CxTr **(C)** compared to the  
1012 reference model. Colored lines and area display the mean change  $\pm$  95% CI. Dashed black lines indicate  
1013 zero change, i.e. no difference to the error of the reference model.



1014


1015

1016

1017 **Figure 4. Angle time courses and movement directions of joint DOFs in the kinematic model.** The  
1018 angle time courses are shown in relation to the normalized swing and stance phase for front (**A**), middle  
1019 (**B**), and hind (**C**) legs. Angles were calculated in relation to the initial posture of the model, except for  
1020 CxTr-yaw and FeTI-yaw DOFs. These were post-processed to show the relationship between the linked  
1021 segments: 0° indicates a complete overlap of both segments, i.e. maximally flexed, while 180° indicates  
1022 that both segments are co-linear, i.e. maximally extended. Blue line and area represent the mean  $\pm$  SD,  
1023 while dashed colored lines display the mean time course of individual flies (N=12). Abbreviations:  
1024 abd., abduction; add., adduction; pro., promotion; re., remotion; ext., extension; flx, flexion; med.,  
1025 medial rotation; lat., lateral rotation; ant., anterior rotation; post., posterior rotation.

1026

1027



1028

1029

1030

1031

1032

1033 **Figure 5. Rotations of the femur-tibia plane in the middle legs were driven by two yaw-DOFs.**

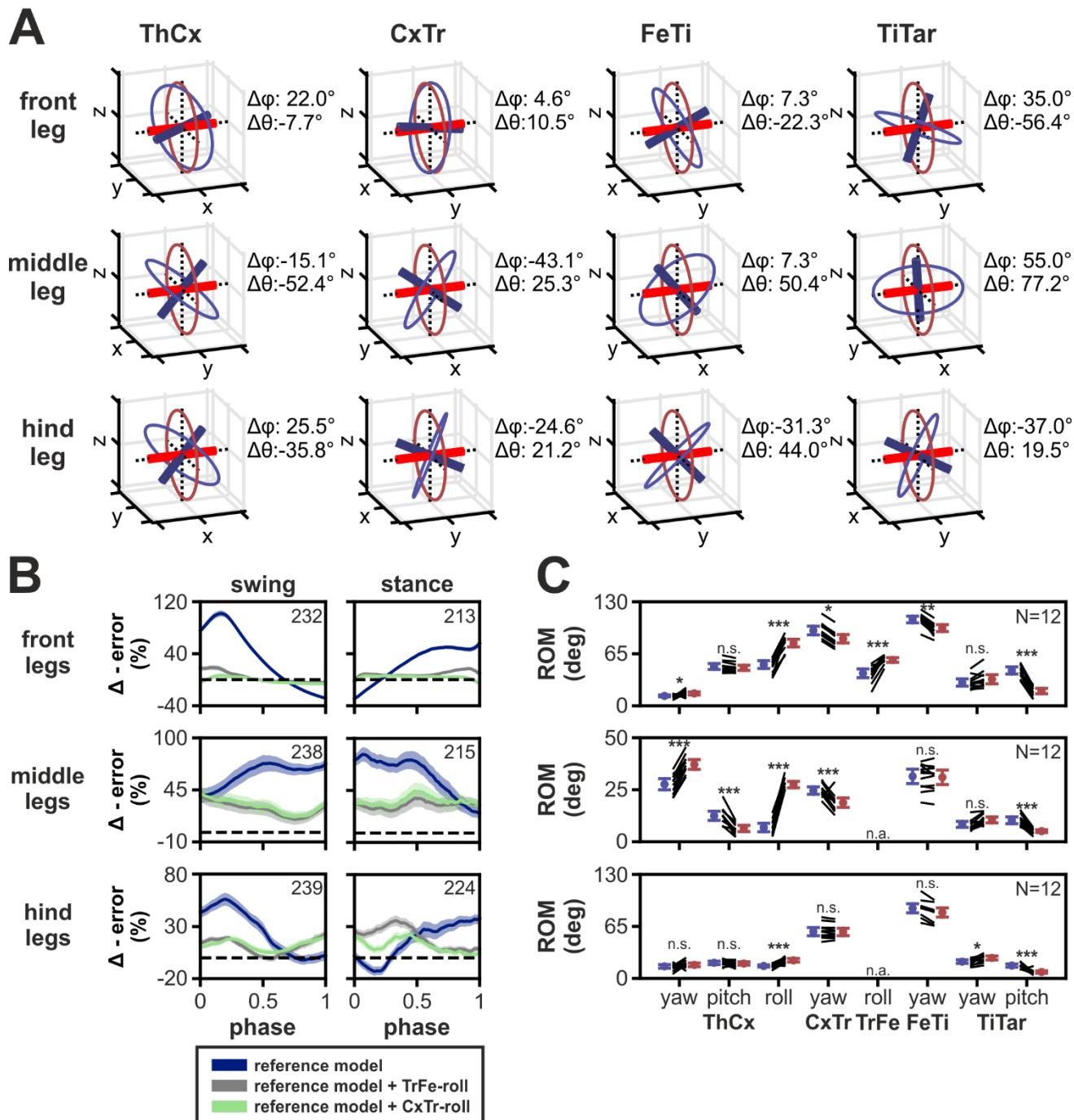
1034 (A) Representative examples of a modelled left middle leg showing the effects on the femur-tibia plane

1035 rotations when only different combinations of joint DOFs proximal to the femur were updated after the

1036 model leg posture was initiated with all DOFs for a swing phase (upper panels) and a stance phase

1037 (lower panels). The initial leg posture is represented as ball-and-stick model in green. The orientation

1038 of the femur-tibia plane normal for all leg postures during the respective phase is displayed as colored-


1039 coded lines from black (initial posture) to light blue (final posture). Dashed arrows indicate the

1040 direction of the tarsus tip and the plane normal rotations during the respective phase. (B) Range of

1041 rotation of the femur-tibia plane normal in the full model, i.e. all DOFs were updated. (C) Absolute

1042 differences to the rotational range of the full model for all tested DOF configurations. Black solid lines

1043 represent the mean  $\pm$  95 CI.



1044

1045

1046

1047

1048

1049 **Figure 6. Effects of using oblique joint rotational axes based on anatomical landmarks on**  
1050 **kinematic modeling. (A)** 3D representations of the orientation for rotational axes based on positions  
1051 of joint condyles (blue) compared to the model with axes orientated orthogonally to the leg segments  
1052 (red). Colored circles represent the rotational motion the axes. Note that TrFe was omitted because  
1053 only the TrFe-roll DOF axis was used in our final model which is the trochanter in both models. The  
1054 differences in orientation between the axes are indicated by  $\Delta\phi$  and  $\Delta\theta$  which based on azimuthal and  
1055 inclination angles from the polar coordinates of the axes, respectively. **(B)** Relative change of model  
1056 error of three different DOF configurations of the orthogonalized model compared to the model based  
1057 on joint condyles positions for all three leg pairs. Colored lines and area display the mean change  $\pm$   
1058 95% CI and the same color code is used as in Figure 3. Numbers of analyzed step phases are indicated  
1059 as numbers in the boxes. Dashed black lines indicate zero change, i.e. no difference in error. **(C)**  
1060 Comparison of range of motion (ROM) of joint DOFs from our final model with a TrFe-roll DOF  
1061 (blue) compared to the orthogonalized model version (red) for all three leg pairs. Colored lines  
1062 represent the mean  $\pm$  95% CI, while black lines show the change in ROM for individual animals  
1063 (N=12). Independent t-test results are displayed as: n.s. (not significant):  $p > 0.05$ ; \*:  $p < 0.05$ ; \*\*:  $p <$   
1064 0.01; \*\*\*:  $p < 0.001$ . Abbreviation: n.a., not available.