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Abstract
Quality assessment of pome fruits (i.e. apples and pears) is used not only crucial for
determining the optimal harvest time, but also the progression of fruit-quality attributes during
storage. Therefore, it is typical to repeatedly evaluate fruits during the course of a postharvest
experiment. This evaluation often includes careful visual assessments of fruit for apparent
defects and physiological symptoms. A general best practice for quality assessment is to rate
fruit using the same individual rater or group of individuals raters to reduce bias. However, such
consistency across labs, facilities, and experiments is often not feasible or attainable. Moreover,
while these visual assessments are critical empirical data, they are often coarse-grained and
lack consistent objective criteria. Granny, is a tool designed for rating fruit using
machine-learning and image-processing to address rater bias and improve resolution.
Additionally, Granny supports backwards compatibility by providing ratings compatible with
long-established standards and references, promoting research program continuity. Current
Granny ratings include starch content assessment, rating levels of peel defects, and peel color
analyses. Integrative analyses enhanced by Granny’s improved resolution and reduced bias,
such as linking fruit outcomes to global scale -omics data, environmental changes, and other
quantitative fruit quality metrics like soluble solids content and flesh firmness, will further enrich
our understanding of fruit quality dynamics. Lastly, Granny is open-source and freely available.
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1 Introduction
The US apple market is worth an estimated $23 billion (USApple, n.d). A large majority (67%) of
the ~11.1 billion pounds of apples produced in the US are intended for the fresh fruit market, yet
it is typical for 25% or more to be culled at packout because fruit failed to meet strict thresholds
for fruit quality, including cosmetic defects (Gallardo & Pedroso-Galinato, 2020, 2023). Around
80% of pome fruit destined for the US fresh fruit is produced in the Pacific Northwest region of
the US (Northwest Horticultural Council, 2023). In order to meet year-round domestic demand
for fresh pome fruit, much of that crop is stored, often for several months. During storage,
apples and European pears can display a wide range of symptoms that reflect a diversity of
physiological disorders and other losses in quality. Therefore, a principle aim of postharvest
research is to understand how pome fruits lose quality throughout the supply chain and develop
strategies to mitigate these losses. This typically involves repeated evaluation of both visual and
physiological characteristics related to fruit quality during the course of experiments. The former
is typically performed by skilled technicians who classify fruit by well-established binning
schema based on symptom severity. In order to reduce rater bias, the standard best practice is
to have the same individual or group of individuals rate fruit throughout an experiment (L. A.
Honaas et al., 2016). However, this is not always practical or feasible due to logistical and
personnel challenges in a laboratory setting, such as small group sizes within individual
research programs, annual employee turnover, variability across locations, etc. The eventuality
that comparisons of ratings performed by different individuals across years and/or experiments
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is high, and the inevitable rater bias across programs and years can confound downstream
analyses. Moreover, an active area of research in pome fruits is to create machine learning
models for fruit postharvest quality traits prediction using as input global scale -omics data and
accurate physiological ratings (Washington Tree Fruit Research Commission, n.d). Thus, having
access to higher resolution physiological ratings will allow for more nuanced predictive models.

Computer vision has been widely adopted for feature detection from imagery and offers
an opportunity to address rater bias in postharvest assessment. Computer vision is already
used in the agriculture sector and specifically the pome fruit industry. Notably, applications
include the development of image based fruit sorting machines (Rehkugler & Throop, 1986;
Wen & Tao, 1999), hyperspectral imaging for fruit quality (Çetin et al., 2022; Nicolaï et al., 2006),
robotic harvesting equipment (Bu et al., 2022; Davidson et al., 2016; Hua et al., 2023), and
more (Lorente et al., 2013; Pu et al., 2015; Zhou et al., 2023). Importantly, early detection of
issues that affect fruit quality is critical for management strategies and minimizing food waste
throughout the pre- and postharvest supply chain. Image based analytics have evolved rapidly
with recent advancements in Machine Learning (ML) and Deep Learning (DL), and their
utilization has gained momentum for image processing in apple fruit analysis (Naranjo-Torres et
al., 2020), with specific focus on early disorder detection (Buyukarikan & Ulker, 2022; Mogollon
et al., 2020), fruit grading (Bhatt & Pant, 2015; Li et al., 2021; Yang et al., 2022), and in-field
yield prediction (Cheng et al., 2017; Datt & Kukreja, 2024). Despite these advances, many fruit
quality assessments (such as starch level, peel color, and disorder incidence) are performed
manually, in real-world situations and at large scales, likely due to challenges in technology
transfer from research and development departments (R&D) to industry, such as workforce
knowledge, user friendly interfaces, communication, industry outreach, and a large enough
training and testing dataset to make reliable management decisions. There is a need and desire
for development of computer vision tools to address rater bias and low resolution for manually
rated quality traits (Dhiman et al., 2022).

To address rater bias and improve data resolution, we developed Granny, a modular
computer vision software that uses deep learning and image processing to detect fruit in
images, and perform rating of disorders or other important fruit-quality traits. We demonstrated
the accuracy of Granny by comparing Granny’s fruit quality trait prediction with expert ratings.
Finally, Granny is open-source and freely available, and modules from Granny can be adapted
beyond pome fruit research, offering potential solutions for various sectors within the agriculture
industry.

2 Methods
Granny is a computer vision software tool that uses machine learning and image processing to
identify individual fruit from photos that contain many (i.e. Figure 1A and 1B), then extract
individual fruit subimages, and remove the background for later fruit-quality rating (Figure 1C).
These ratings include the level of peel disorders such as superficial scald (Figure 1 D1), the
peel color (Figure 1 D3 and 1D4), and starch clearing in fruit cross sections (Figure 1 D2).
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Figure 1. Overview of the automated image analysis workflow. The workflow involves four
major steps and the progression is indicated with a blue arrow. (A) Examples of input images
include trays of apples with superficial scald (top panel), apple cross-sections stained with a
iodine solution (middle panel), and pears (bottom panel). (B) The fruit detection module
identifies individual fruit instances. An enlarged example of the detected instances can be found
in Supplemental Figure 1. (C) Examples of segmented fruit instances. (D) Downstream image
analyses include detection and scoring of: D1) superficial scald; D2) starch content; D3) pear
background (i.e. the shade side) color; and D4) pear blush percentage. For the first three
modules, Granny also provides ratings based on user provided references, such as binning
scheme for superficial scald, starch rating according to a desired starch pattern index (SPI), and
pear color rating according to a pear background color reference card.

2.1 Fruit Detection
To identify individuals from images containing multiple fruit instances, a machine learning model,
Mask Region-based Convolutional Network (Mask R-CNN), is used (Dollár et al., 2017; He et
al., 2020). The Mask R-CNN approach is based on the Feature Pyramid Network (FPN) and a
101-layer Residual Network (ResNet 101) (Lin et al., 2016). Granny employs a publicly available
Mask R-CNN model developed by Matterport, Inc (Abdulla, 2017). Initially, the Mask R-CNN
detects an object in the image using a previously trained model on a combination of Microsoft
Common Objects in Context (COCO) dataset (Lin et al., 2014) and a small balloon dataset
provided by Matterport Inc (r v2.1). The pre-trained models were initially used as it provides two
key benefits:1) it utilizes the similarity between the ‘round’ shape and colorful filling of fruits and
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balloons, and 2) pre-trained models save time and computational resources that would
otherwise be required for manually training a new model on pome fruits.

While the pre-trained models can detect all the whole fruit instances with high confidence
(confidence score >= 0.999), it struggled to identify all the fruit cross-sections on a tray
(Supplemental Figure 2). This was likely due to the iodine spills and the shades of the
cross-sections on the fiber tray diminishing the contrast between the background and the dark
stained fruit tissue, resulting in low-confidence detection and missing instances of
cross-sections. To increase the detection confidence for the iodine stained cross-sections, an
updated model was trained. First, new image masks of fruit cross-sections were created using
the open-source VGG Image Annotator tool (Dutta & Zisserman, 2019). These masks were then
used as input to train the updated Mask R-CNN model to extend the initial model. The training
was performed for a total of 30 epochs, 100 steps per epoch, a learning rate of 0.001, and the
number of proposed classes is 2 (i.e. background versus fruit). During the training process,
detected fruit with a confidence level below 0.9 were excluded. The trained model for each
epoch was saved as a single Hierarchical Data Format (HDF) file, which was later used to
improve the detection of fruit cross-sections. This new model extended the initial models (COCO
and balloon), and it can be used for detecting both cross-section and whole fruit.

2.2 Fruit Image Segmentation
After fruit detection, the input images are segmented into new images of individual fruit utilizing
results provided by the Mask R-CNN, including a bounding box, a binary mask, and a detection
confidence score (Supplemental Figure 1). The bounding box consists of two pairs of
x,y-coordinates (x1, y1, x2, y2). The binary mask is a 2D matrix of ones and zeros, representing
the pixel-wise location of fruit tissue in the original image – one mask per fruit. In the mask, a
pixel of fruit is represented by a one (1), whereas a non-fruit pixel is represented by a zero (0).
The confidence scores are from 0.0 to 1.0, where 0.0 is the least confident in the prediction and
1.0 is the most confident. For confident, positive identification of fruit, Granny’s default
segmentation threshold confidence score is >= 0.999. Using the Python OpenCV (Bradski,
2000) and Numpy package (Harris et al., 2020), with the Mask R-CNN results, individual images
of fruit are extracted. Granny provides options for controlling the number of extracted fruits. The
user can manually specify this number or use the default value (18) to extract the instances with
the highest confidence scores. Images of individual fruit are stored in a user specified directory
for downstream analyses. The segmented sub-images are named after the original image, with
a numeric appendix. For instance, the first sub-images from image A will be named A-1 and the
next sub-image will be named A-2.

2.3 Apple Superficial Scald Rating
Superficial scald, recognized as brown, necrotic fruit peel tissue, is rated by Granny using
Python OpenCV and Numpy. A workflow summary is available as Supplemental Figure 3. Each
apple image file (after segmentation) in a given directory is imported into an RGB (red, green,
blue) array, which then undergoes the following steps: 1) conversion from RGB to YCrCb color
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space to remove residual background pixels, 2) smoothing using a 3-by-3 Gaussian kernel to
reduce sharp noise (e.g., discoloration in lenticels or small areas of damage), 3) conversion
from RGB to CIELAB (also known as the L*a*b* color space) for thresholding scald, 4) creating
a binary matrix with 0's representing scald areas (for pixels above the threshold) and 1's
representing non-scald areas, 5) and performing another smoothing operation on the binary
matrix to account for the use of a hard threshold. The threshold in step 3, calculated on the
histogram of the a* channel, is determined by the index of the maximum pixel bin along the pixel
values and the pixel range of the histogram, detailed in Supplemental Figure 4. For each image,
the superficial scald coverage is calculated as the ratio of superficial scald pixels over the total
fruit pixels. Each fruit has two images (one each from rotating the fruit 180 degrees). Granny
uses the position of the fruit in the first image to identify the same fruit in the second image. The
final rating is the average of the two sides of each apple. Outputs include thresholded image
files and a comma separated values (CSV) file containing rating for each fruit. To assess
performance, superficial scald ratings from Granny were compared with technician ratings on
the same batch of 1553 fruits.

2.4 Starch Content Rating
Starch content can be estimated from fruit cross-sections treated with a potassium iodide and
iodine solution (Blanpied & Silsby, 1992; Figure. 1A & C). This reagent, also known as the
Lugol’s solution, is used for the colorimetric detection of starch in organic compounds. The
starch content rating module in Granny takes as input, segmented images of fruit cross-sections
treated with potassium iodide solution in a given directory. Currently, starch content ratings are
provided using an ImageJ (15.3T) macro which automatically quantifies the iodine-stained areas
of fruit cross-sections. A summary workflow is available as Supplemental Figure 5.

To estimate starch content, the macro first reads each image into an RGB format. Next,
a color threshold which controls the sensitivity of the macro is specified. Default thresholds for
apple and pear are provided. Users can perform calibration on a custom dataset to adjust this
threshold as needed. After the color threshold is specified, a line bisecting the apple image must
be drawn for ImageJ's ‘region of interest’ (ROI) to properly identify stained regions (see
Supplemental Methods). The macro then initializes an ImageJ’s ‘Analyze Particles’ function to
find contours from the binary image, where ROIs equal to or larger than 2,000 pixels2 are
identified. Depending on the threshold settings, the intensity of staining, and the picture quality,
small areas of non-stained regions of the fruit may be included in the ROI, resulting in noisy
data. To reduce this noise, identified ROIs smaller than 2,000 pixels2 are excluded from the ROI
measurement. The module then counts the number of ROIs, calculates the sum ROI area, and
divides the sum ROI area by the total cross-section area to calculate percent stained area, thus
providing an estimate of starch content, and thereby a proxy for starch clearing. Besides
calculating starch content, this module rates starch content using established starch pattern
index (SPI) scales including cultivar agnostic charts such as the Cornell Starch Index and the
ENZA/T&G Global Starch Index, as well as cultivar specific indices such as those for ‘Jonagold’
and ‘Granny Smith’ (details of the SPIs can be found in Supplemental Figure 6), for backward
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compatibility. Each image from the chosen SPI was assigned a starch score (0-100%) using
Granny. Samples are assigned the SPI category with the closest starch score.

To calibrate the threshold and evaluate the performance of the starch quantifying macro,
an assessment was created for participants to rate the starch content of iodine-stained
cross-sections from 36 apples of mixed cultivars and 36 ‘Gem’ pears. Participants were asked to
rank their experience in rating iodine stained fruit as limited (18 participants), novice (9
participants), or professional (9 participants) before starting the assessment to help determine
experience based trends. A 15-minute time limit was advised for completion of the assessment
to match timeframes experienced in field starch assessment, with starting and ending times
logged for all participants. All images were rated from a scale of zero to ten, where ten
represented 100% starch coverage (i.e. fully stained). A range of thresholds were tested for
apples and pears separately, and those that generated ratings most closely fit the mean of the
professional starch rating were selected as the default thresholds. After adjusting to the new
thresholds, ratings from all participants were compared to Granny’s new ratings to test for
correlation.

2.5 Pear Color Rating
Pear background color (i.e. the shade side of a pear) is an indicator of pear maturity and is often
manually measured using a color card (Figure 2A). Granny offers an automated pear
background color assessment module using a four-step approach, summarized in Supplemental
Figure 7. The first two steps, 1) sub-image background removal and 2) image smoothing, are
identical to that in the superficial scald rating module (detailed in section 2.3). In step 3, the
processed images are converted from RGB to CIELAB color space where the overall level of
greenness and yellowness for each of the images are calculated as channel a*’s and channel
b*’s mean pixel values, respectively (Figure 2C and 2D).
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Figure 2. Pear background color rating method and examples. (A) A color card widely used
in background color rating. It serves as a reference to estimate the level of ripeness of pears
based on the ‘greenness' or ‘yellowness’. (B) The 10 colors from the color card are plotted in the
CIELAB color space and linear relationship of those colors is demonstrated with the least mean
square (LMS) regression line. Color score for a given sample is determined by the value of the
intercept (marked with a blue ‘x’) of the LMS line and the line that connects the origin
(coordinate: 0.0, 0.0) and the sample point (blue dashed-line). The value of the intercept is
determined by its distance from the two ends of the LMS line intercepting either the horizontal
axis (score of 0.0) or the vertical axis (score of 1.0). x-axis: a* channel value in the CIELAB color
space, representing greenness (green to less green from left to right); y-axis: b* channel value,
representing yellowness (yellow to less yellow from top to bottom). (C) Calculated overall level
of greenness and yellowness of 1,044 samples plotted in the CIELAB color space. Each sample
is represented with a dot and is colored with the average color of the sub-image. Axes: same as
in (B). (D) Same samples (small dots) as the (C) but are colored according to the color bins (big
dots) that the samples are assigned into. Axes: same as in (B).
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The last step (step 4) calculates a color value based on a standard background color
card (Figure 2A). Granny provides two types of color values: 1) a color score ranging from
0.0-1.0, where 0.0 is the greenest color and 1.0 is the yellowest color; 2) a color rating that
assigns a pear into one of the 10 color bins from the color card. In the CIELAB space, the 10
background colors from the color card of Figure 2A follow a linear line, fitted by a least mean
square (LMS) regression (Figure 2B). Each point along the LMS line is normalized with values
between 0.0 and 1.0, where a score of 0.0 corresponds to the location on the LMS line that
intersects the horizontal axis, and a score of 1.0 indicates the intercept of the LMS line with the
vertical axis. The pear color score is calculated as the value of the point where the line passes
through the origin ((0.0, 0.0), lower right corner of Figure 2B) and the pear's average color of the
CIELAB space (blue dashed-line of Figure 2B) intersects the LMS line. Color scores calculated
using this method are continuous data.

The color score is then used to approximate the color card rating, which corresponds to
the commonly used color card shown in Figure 2A. Granny provides a color card rating (rank of
1 to 10), for backwards compatibility with current practices in the pome fruit industry. However,
the color score provides higher resolution for future applications. The color card rating seeks to
approximate a similar score as a visual assessment that a trained technician assigns. To do this,
color card bins are projected onto the LMS line as described above and each color card bin is
assigned a color score. Samples are assigned the color card bins with the closest color score.
Figure 2C shows pear colors along the green and yellow axes, and Figure 2D demonstrates
how sectors of pears (shown with different colors) map to individual color card ratings. To
evaluate the performance of the pear color rating module, color scores generated by Granny
were compared to technician ratings from 1,044 pear fruits.

2.6 Blush Detection and Quantification
The blush application implemented in Granny takes a 2-step approach to detect and quantify
peel blush. First, the ‘cal_blush’ function allows users to define a threshold for quantifying blush
color. This is also referred to as the calibration step. This user defined threshold is then used in
the ‘blush_percentage’ function to quantify the blush color over segmented images.

In addition to automated image processing steps, the calibration function requires user
input for decision-making. Unlike the other modules where a predetermined threshold was used
or an automated thresholding method was applied, a manual calibration function was
implemented. Various factors, such as production practices and marketing strategies, have
significant impact on determining blush thresholds, even for the same batch of fruits. To initiate
the calibration, the user first selects a subset of three segmented images from their pool of input
images that represent different blush severity: no blush, light, and intense-colored blush
(Supplemental Figure 8A). These images are then resized to 500 x 300 pixels each and
converted from RGB to CIELAB color space. Next, the three images are concatenated
according to blush intensity, then framed in a Python openCV window, where the images are
ordered from left to right (no blush to intense blush). This window includes a slider-bar at the
bottom of the image, which can be used to manually change the a* channel threshold (min: 0,
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max: 255). A transparent mask created from each original image is used to over color the pixels
where the a* channel detects blush color (Supplemental Figure 8B and 8C). The mask image
overlaps the original image and is refreshed automatically as the user manipulates the a*
channel with the slide bar to achieve the desired mask overlay. The selected a* channel
threshold will be automatically saved upon exit.

After calibrating to the desired a* channel threshold, the ‘blush_percentage’ function is
used to quantify blush percentage in a set of segmented images. The ‘blush_percentage’
function reads through each image in a given working directory and converts the images from
RGB to the CIELAB color space. For each image, the number of fruit pixels is determined by the
number of pixels with a color different from the black background color, and the number of blush
pixels is defined by the sum of pixels with a value higher than the a* channel threshold defined
by the user during the calibration process. The blush percentage is calculated as the ratio
between fruit over blush pixels (number of blush pixels / number of total fruit pixels). The
‘blush_percentage’ function returns an RGB image copy of the segmented image with the blush
pixels overlaid in purple and annotated with the percentage of blush on the fruit (Figure 1 D4). A
table is generated with information of number of fruit pixels, number of pixels with blush, and
blush percentage of each image.

Granny blush scores were compared to technician ratings on a set of 175 pear images
with different blush coverage. Three expert fruit quality technicians ranked the blush percentage
of the original pear images displayed on an HP 24yh monitor (default settings).

3 Results

3.1 Fruit Detection and Segmentation
The initial fruit detection model trained with the Microsoft Common Objects in Context (COCO)
dataset plus a small balloon dataset had a high success rate in detecting fruit instances with
high confidence (Table 1). This initial model detected all 10,314 apple and pear instances (100%
success rate) and 10,274 of those (99.61%) were detected with strict confidence score
threshold (>=0.999). However, the performance of the initial model was unable to detect ~3% of
the tested iodine stained cross-sections and only ~30% of the detected cross-sections passed
the strict threshold. The extended model, which incorporated a custom training dataset of
cross-sections, was able to detect 100% of the cross-sections with high confidence. Although
both models detected non-target objects as targets, none of them passed the confidence score
threshold.

Table 1. Summary of fruit detection performance with three types of input data and two models.
Input data type Apple fruit Pear fruit Cross-section

Detection model Initial Initial Initial Extended

Total # of instances 7884 2430 962 962
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# of detected instancesA 7884 2430 935 962

# of high confidence instancesB 7845 2429 272 962

% of detected instances 100% 100% 97.20% 100%

% of high confidence instances 99.51% 99.96% 29.09% 100%

A. Only target instances were counted. Non-target instances were not included.
B. High confidence: confidence score >= 0.999

3.2 Superficial Scald Rating
The performance of the superficial scald rating module was evaluated by comparing the
predicted scores to a human technician rating (Figure 3). The technician rated fruit into bins (1
to 5), classified by percentage coverage of scalded tissue (0 being no scald and 5 being
complete scald), while Granny provided scores ranging from 0.0 (no scald) to 1.0 (complete
scald). Generally, scores from Granny were comparable with the technician rating, namely fruits
rated with a higher level of superficial scald coverage by technicians are also assigned a higher
scald score by Granny. Notably, scald coverage estimations from Granny were lower than
human ratings. For example, technicians classified fruits with over 75% scald regions into bin 5,
while the same fruits were assigned with a mean score near 61% and upper and lower quartiles
near 50% and 70% respectively. Such a trend was generally true across all the bins.

Figure 3. Distribution of the Granny predicted scores (y-axis) for each technician scald
coverage bin (x-axis). Fruits were rated into bins (1-5 on the x-axis) by technicians based on
the percentage coverage of scalded tissue (1 = 0%, 2= 1-25%, 3=26-50%, 4=51-75%,
5=76-100%). Granny predicted scores (ranging from 0.0-1.0 representing no scald to completely
scalded, respectively) for fruits in each technician rated bins were summarized in box plots. A
total number of 1,553 ‘Granny Smith’ fruits were assessed.
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3.3 Starch Content Rating
Starch rating of fruit cross-sections is a commonly used method to estimate pome fruit maturity,
especially for apples. The performance of the starch rating module was tested by comparing the
percentage of iodine stained cortex tissue estimated by Granny and that by humans. Starch
estimations conducted by participants in different experience groups showed high amounts of
variability in rated starch content (Supplemental Figure 9). However, the average visual
assessment score of all experience groups closely correlated with the starch quantifying module
implemented in Granny (Figure 4).

Figure 4. Starch content estimation from Granny and human participants. Comparison of
automated starch scores generated by Granny (y-axis) with scores from human participants
(x-axis) for apples (A) and pears (B). The Least Mean Square (LMS) fit represents a linear
relationship between starch scores predicted by Granny and human participants. 36 apples from
a variety of cultivars and 36 ‘Gem’ pears were evaluated. RMSE: Root Mean Squared Error.
PCC: Pearson Correlation Coefficient.

3.4 Pear Color Rating
To determine the accuracy of Granny’s pear color rating module, the automated color scores
were compared against expert technician ratings (Figure 5). In summary, the color scores
obtained by Granny corresponded to technician’s ratings. Generally, fruits rated higher by a
technician also tended to receive a higher score from Granny, both indicating a pear with a
deeper yellow color. While Granny’s scores generally align with technician’s ratings, outliers
were observed in the first two technician levels (0.5 and 1.0). Examination of the original pear
images suggested that the discrepancy was caused by human error as shown in Supplemental
Figure 10: the pears classified into the first two bins appear to be more yellow in color than the
categories 0.5 and 1.0.
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Figure 5. Relationship between the expert technician ratings and the machine-calculated
scores. Each dot represents one sample and is colored with the average color of the sub-image
estimated by Granny. A total of 1,044 samples are plotted. The x-axis is divided into bins
matching the categories from the background color card (Figure 2A). The y-axis is color scores
from Granny.

3.5 Blush Detection and Quantification
The pear blush detection algorithm allows users to set custom thresholds to distinguish between
blush and non-blush regions in pear images, and calculate the proportion of blush regions on
each pear (Figure 1D4). Although notable differences are observed in technician ratings on the
same fruit image, the average blush percentage estimated by technicians and predicted by
Granny had a positive linear correlation (Supplemental Figure 11).

4 Discussion
Granny is expected to improve postharvest research by providing automated and reproducible
fruit quality ratings. The three major advantages for Granny are first, removal of rater bias,
second an increase in the granularity of ratings, which will be important for research studies
where higher resolution is necessary, and third, backward compatibility with current standards
via mapping of ratings to commonly used standards (e.g. starch cards and peel color cards).
Currently, Granny provides four rating modules: superficial scald, starch clearing, peel color, and
percent blush. Additional comments about each of these modules, including some limitations,
are provided in the following sections. In general, we note that because human ratings have
bias, we lack "gold standard" ratings by which we can evaluate true performance. Even though
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expert raters do not provide exact ratings, human ratings and Granny ratings show
concordance.

4.1 Scald Rating
Superficial scald ratings of ‘Granny Smith’ fruit were quantified after thresholding "non-scald"
image pixels using a histogram, which is computationally quick. Because this rating module
quantifies the necrotic (i.e. brown) portions of green apple fruit peel, it may incorrectly classify
other darker regions as superficial scald. This can include other necrotic peel disorders, peel
discoloration from mechanical damage, and other parts of the fruit like the pedicle. Until Granny
can be improved to distinguish those aforementioned features, it is recommended that users
exclude from scald rating, images of apples that have higher incidence of other features. For
apple images containing primarily scald, the tool was able to accurately reproduce human
ratings of fruit.

4.2 Starch Rating
Starch clearing is a widely used index for apple fruit maturity (Blanpied & Silsby, 1992). While
the extent of starch clearing is relatable to fruit maturity across apple cultivars generally, there
are cultivar-specific characteristics for the rate of clearing, patterns of clearing (i.e. across
equatorial sections of apple fruit), and the extent of clearing associated with a given fruit
maturity level. Many cultivars have dedicated starch index rating schemes that are used to
estimate harvest dates (Supplemental Figure 6), but where these dedicated schemas are not
available, growers substitute others. A unifying feature of starch iodine indices is that they
consist of ~5-10 discrete categories, but it is not uncommon for users to sort values into
sub-categories. This high degree of variability across cultivars and individual usage compounds
the issues of rater bias and low starch index granularity. The starch rating module of Granny
addresses each of these limitations by quantifying starch clearing in pome fruit cross-sections
with a high degree of accuracy compared to human ratings, and greater granularity than human
ratings. Further, the software sorts fruit images into existing starch indices and we provide a
method to add other starch indices as users desire. This allows backwards compatibility where
existing starch indices have been used in the past and cross compatibility where different
indices have been used, thus enhancing comparisons across experiments. Digital fruit images
can also be reclassified with Granny into a new starch clearing schema as they are developed.

Similar to the superficial scald rating module, other image regions can be misclassified
as ROIs of starch clearing (or conversely staining). Yet the software recapitulates human ratings
with high accuracy, indicating that these misclassifications are a minor issue for our pilot
dataset. Interestingly, human ratings were sometimes consistently high, indicating a minor but
systematic bias between humans and Granny (e.g. most samples are located above the 1:1 line
in Supplemental Figure 9A, C, E, indicating a higher score from human raters). Future work to
understand the cause of differences between humans and Granny ratings could inform ways to
improve both human ratings and the Granny rating algorithm.
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4.3 Pear Color
Assessing pear maturity has been a challenge due to the lack of an easy, reliable, and
measurable trait that reflects maturity, such as starch clearing in apples. One common
measurement taken by scientists and producers that can help estimate pear maturity is the
background color, which usually changes from green to yellow as the fruit ripens. Peel color is
therefore an important trait that is scored visually in postharvest research. Similar to starch
indices where fruit are sorted into a small number of (often commodity or cultivar-specific) color
categories, fruit raters use a visual reference card to score individual fruit. Defining the color
categories for the card used in this study required an orthogonal classification within the
yellow/green colorspace. This revealed narrow and irregularly-spaced categories of peel color
that human raters were required to use. We note that it can be challenging to score European
pear fruit into these categories by hand due to the narrow color categories (see Fig 2A & B).
Granny can assign fruit by an objective color space value with high granularity and accuracy,
potentially offering superior rating performance when compared to hand ratings with the use of a
color card. As shown in Figure 2D, pears do not all appear near the line passing through the
color card levels. Some appear well below the line. The color rating module will also provide a
second metric: the distance of the pear from the line. More work is needed to determine if a
higher distance indicates lower quality color ratings. For now, users can treat pear images with a
high distance as potential outliers that need further exploration.

As is common with many color processing and matching techniques, variations in
lighting conditions and suboptimal image quality can introduce significant fluctuations in the
extracted green-yellow values, potentially leading to deviations from technically accurate color
ratings. Though this is not a limitation per se because human vision where scoring fruit peel
color is easily influenced by the lighting conditions.

4.4 Blush Detection and Quantification
Classification systems for the presence of blush (red peel coloration) in pome cultivars like
'Granny Smith' apples or 'd'Anjou' pears are lacking. Therefore, an approach is needed that can
incorporate blush into the assessment process alongside other fruit quality data. This is
particularly important because blush can significantly impact consumer acceptance. Human
visual blush evaluation can be biased. This bias was confirmed with the observation made by
three experts on the same fruit where standard deviation was as high as ~26% in one case
(Supplemental Figure 11 E and F). In some cases, the human visual evaluation can be biased
based on the blush intensity rather than the total area affected. Granny removes this bias by
allowing users to define blush intensity levels through computer vision controlled with a chosen
threshold. The current version of Granny provides a rater calibration step, where users provide
three images representing extremes. In future versions of Granny we aim to add in an
automated threshold detection option similar to the scald rating module.
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4.6 Limitations and Future Work
Currently, the Granny software is the product of multiple efforts from three different research
groups. We determined that joining our efforts into a single software product would be better for
management of the software and accessibility to others. The side effect is that the current
version of Granny does have a mix of technologies and designs. For example, Granny is written
primarily in Python, but the starch rating is provided by an ImageJ macro. Also, the manual
thresholding step for the blush module is not consistent with the automated thresholding of the
scald module. These differences do result in a non-uniform user experience, however, we are
actively working to address these inconsistencies. Future versions of Granny will follow a
modular design and will provide a common user experience.

Availability Statement
Project name: Granny
Project home page: https://github.com/SystemsGenetics/granny
Operating systems: Platform independent
Programming language: Python and ImageJ macro
Any restrictions to use by non-academics: GPL v3.0 license
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Supplemental Figures

Supplemental Figure 1. The fruit detection module creates a segmentation mask (colored
overlay with solid outline), a bound box (correspondingly colored rectangle with dotted outline),
and a confidence score (number shown on the up-left corner of the bound box) for each
detected instance. These data will be used for segmentation of the instance.
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Supplemental Figure 2. Examples of fruits detected with the initial model (A) and the extended
model (B). One piece of cross-section was missed in the initial model (indicated with a black
arrow in (A)), but is detected with high confidence with the extended model. Although the same
false positive region (indicated with yellow stars) was detected in both models, the confidence
score is lower in the extended model (0.990) than that in the initial model (0.996)
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Supplemental Figure 3. Superficial scald rating workflow
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Supplemental Figure 4. Histogram along the a* channel in the CIELAB space of an apple
image for demonstrating the scald thresholding method. (A) shows the 0-255 range of the a*
channel. Pixel bins increment by 1 from 0 to a maximum of 255. The region in the black box in
(A) is expanded as (B). The lower limit is defined as the pixel bin with the lowest pixel values in
the image, whereas the upper limit is the pixel bin with the highest pixel value. The maximum
pixel bin is defined as the bin with the most pixels. X-axis shows the range of pixel bins, y-axis
is the relative abundance of pixels in each bin.
The definitions of histogram, range, and pixel bin are adopted from:
https://docs.opencv.org/3.4/d8/dbc/tutorial_histogram_calculation.html
Below shows the methods for threshold determination:
Apple pixel range = upper limit - lower limit
Threshold = maximum histogram pixel bin - 1/3 apple pixel range
For the example shown in here, the threshold is calculated as below:
Threshold = 127 - 1/3 (145-99) = 111.67
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Supplemental Figure 5. Starch rating workflow
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Supplemental Figure 6. Starch pattern indices (SPI) commonly used for starch content
assessment. From top to bottom, the SPIs are: The generic starch index card developed by
Cornell University (as known as the Cornell Chart); The generic starch index card developed by
ENZA Fruit; The starch index card designed for ‘Jonagold’ by O. L. Lau and R. Y. Yastremski;
and the ‘Granny Smith’ starch scale developed by UC. Davis.
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Supplemental Figure 7. Pear background color rating workflow
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Supplemental Figure 8. Example of the calibration step of the pear blush module visualization
in an OpenCV window. (A) shows the three selected pear images representing no blush,
light-colored blush, and intense-colored blush, from left to right. The trackbar, located on the
bottom of the interface, can be used to adjust the threshold of the a* channel. The current a*
channel reading and the max reading is shown to the left of the trackbar. (B) and (C) show the
masks overlaying the pear images after adjusting the threshold using the trackbar. The mask in
(B) covers only the blush region, but also green peel regions. The mask in (C) fails to cover all
the blush regions. An ideal threshold would be between (B) and (C).
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Supplemental Figure 9. Starch content estimation from Granny and human participants with
different levels of skills. (A), (C), (E) are score comparisons for apple cross-sections, while (B),
(D), (F) are for pears. Participant skill levels are limited in (A) and (B), novice in (C) and (D), and
experienced in (E) and (F). 36 apples from a variety of cultivars and 36 ‘Gem’ pears were
evaluated. Numbers of participants in each skill group are: 18 participants have limited
experience, 9 consider themselves novice technicians, and 9 are experts. LMS: Least Mean
Square; RMSE: Root Mean Squared Error. PCC: Pearson Correlation Coefficient.
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A. Pear rated as 0.5 by technician:

Pear No.: 6
Granny: 4.5

Pear No.: 15
Granny: 4.5

Pear No.: 9
Granny: 5

Pear No.: 1
Granny: 2.5

Pear No.: 16
Granny: 2.5
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B. Pear rated as 1.0 by technician:

Pear No.: 2
Granny: 5.0

Pear No.: 11
Granny: 3

Pear No.: 14
Granny: 3.0

Pear No.: 4
Granny: 2.0

Pear No.: 13
Granny: 5.0

Pear No.: 12
Granny: 2.5

Pear No.: 10
Granny: 2.5

C. Examples of Granny’s predictions for 1.0 groups:

Supplemental Figure 10. Examples of pears rated as 0.5 or 1 by technicians are shown in (A)
and (B); examples of pears rated as 1 by Granny are shown in (C). (A) and (B): The top row
contains images of the full try where the pears in question were extracted from. Pear are
numbered from 1-18, starting from the top right corner. Second and third row are extracted
pears from the corresponding tray, their location on the tray, and Granny’s color rating.
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Supplemental Figure 11. Pear blush rating from technicians compared to blush estimation
from Granny. Granny predicted blush scores (y-axis) are compared to (A) the average rating
from three technicians, (B) ratings from technician 1, (C) ratings from technician 2, and (D)
ratings from technician 3. LMS: Least Mean Square; RMSE: Root Mean Squared Error. PCC:
Pearson Correlation Coefficient. (E) and (F) are examples of the 4 pear images with the highest
standard deviations from the three technician ratings.
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Supplemental Method - Starch Rating
The code of the ImageJ macro for starch rating is composed of six key regions: (1) a “fresh
start” region where appropriate settings are applied and fields are reset for proper operation of
the macro, (2) code which allows the user to choose input and output directories, (3) enabling of
batch mode to fetch all images found in the input folder, (4) calculation of starch present in
cross-sections, (5) calculation of total cross section area, and (6) saving data as a
comma-separated file (CSV) to the output folder, where percent starch content is calculated per
image.

When first initialized, appropriate settings are first applied to ImageJ ensuring accurate
measurement of starch content. This includes (1) closing of any windows open in ImageJ, (2)
resetting of the Region of Interest Manager (roiManager), (3) clearing data from the log file and
subsequently closing the window, (4) setting the option “Black Background” to true, (5) enabling
the display of file names for measurements, (6) setting the foreground color to white and
background color to black, and (7) setting the width of drawn lines to one pixel. These settings
must be changed for processes of the macro to run correctly.

Input and output directories are next designated by the user. The input folder should contain
isolated cross-section images stained with iodine saved as a JPEG (.jpg), PNG (.png), or TIFF
(.tif) format, with no limit on the number of images stored in the folder; all images of the input
folder will be processed by the macro. The output folder is where threshold images of (a) starch
area, (b) total cross-section area, and (c) the final comma-separated “Results.csv” file is saved.
Threshold images of starch area and cross-section area are saved as a JPEG with the line
“starch.jpg” or “totalarea.jpg” respectively added to the end of the original file name. After the
input and output directories are chosen by the user, the macro will create a log in ImageJ with
column titles which will be present in the final results file in comma-delimited format: data is
added to this log following image analysis.

Batch mode is then enabled by the macro to fetch and process all images found in the input
folder. Following this step all code is applied on a per-image basis; the script will repeat code
until all images of the input folder have been processed. The macro will repeat code on
subsequent images in the input folder until the last image is processed, where the log file is
saved as “Results.csv” in the output folder.

Depending on the number of ROIs, the area of each region is identified by ImageJ as an
alphabetical variable (C-L), which are later used by the macro to calculate starch content. The
script is currently limited to ten identifiable ROIs, though could be modified to incorporate a
higher number of regions. Based on our data set with apple and pear, ImageJ identifying more
than six ROIs is uncommon.

Due to ImageJ’s region of interest (ROI) identification process, a thin line must be drawn by the
macro to divide the image into two halves. If this step does not occur any images where starch
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runs the full circumference of the cross-section (similar in shape to a donut) the area calculated
by ImageJ will be that of the inner non-iodine-stained area (Figure 6). Otherwise ImageJ
identifies the inner region of such cross-sections as the primary region-of-interest (ROI), instead
of the actual iodine-stained region. With the image divided into two halves, the iodine-stained
area of the image is correctly identified since no single ROI can run the full circumference of the
cross-section.

Figure S1. Starch analysis images thresholded with (a) and without (c) a division line, and
identified ROIs of the above threshold images with (b) and without (d) a division line. Without a
division line one incorrect ROI was identified (b), while with a division line (d) two correct ROIs
were identified. Iodine-stained regions were correctly identified in thresholds with a division line
(c, d).

A starch threshold image is saved to the output folder as a JPEG with “starch.jpg” appended to
the image’s original file name. The macro will then pause for 100 milliseconds permitting file
saving on slower systems. After another 100 millisecond pause, a second threshold is then
applied to the image to calculate the total area of the cross-section. Using the “Analyze
Particles” function, the total area of the cross-section threshold is calculated, and the threshold
is saved to the output folder with “total_area.jpg” appended to the image’s original file name.
The total area of the cross section is saved by ImageJ as variable “B”.

The code then assesses the number of ROIs, calculates the sum ROI area, and divides the sum
ROI area by the total cross-section area to calculate percent starch area of the cross-section,
saving this data to the macro’s log file. Using percent starch content best-fit polynomial lines of
established rating scales, the starch rating for each image is also calculated and rounded to the
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nearest integer by the macro. Established rating scales calculated include: the Cornell Chart
(Blanpied and Silsby 1992), Jonagold (REF), Purdue (REF), and University of California - Davis’
‘Granny Smith’ starch rating scales (Mitcham et al 1996). These values are found in the
designated output folder “Results.csv” file.

Figure S2. Average percent starch rating of the limited rating experience rating (blue, N = 18),
novice rating experience (yellow, N = 9), professional rating experience (orange, N = 9), and
macro starch rating output (black). Images 1-36 iodine-stained ‘Granny Smith cross-sections.
Images 37-72 iodine-stained ‘Gem’ pear cross-sections.
(https://drive.google.com/drive/u/0/folders/1PD_WQrnZfrZYaZVfgNmpeVp0a_Bdx5o5)
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Figure S3. Average percent starch rating of all participants of the visual starch rating
assessment (black, N = 36) compared to macro starch rating output (orange). Images 1-36
iodine-stained ‘Granny Smith’ apple cross-sections. Images 37-72 iodine-stained ‘Gem’ pear
cross-sections.
(https://drive.google.com/drive/u/0/folders/1PD_WQrnZfrZYaZVfgNmpeVp0a_Bdx5o5)
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