

1 **Pseudovibriamides from *Pseudovibrio* marine sponge**
2 **bacteria promote swarming motility via transcriptional**
3 **modulation**

4

5 Yitao Dai,¹ Vitor Lourenzon,¹ Laura P. Ióca,^{1,2} Dua Al-Smadi,¹ Lydia Arnold,¹ Ian McIntire,¹
6 Roberto G. S. Berlinck,² Alessandra S. Eustáquio^{1*}

7

8 ¹Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College
9 of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA

10

11 ²Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-
12 970, São Carlos, SP 13565-905, Brazil

13

14

15 *Corresponding author: ase@uic.edu

16

17 **Abstract** [up to 250 words]

18 *Pseudovibrio* α -Proteobacteria have been repeatedly isolated from marine sponges and proposed
19 to be beneficial to the host. Bacterial motility is known to contribute to host colonization. We have
20 previously identified pseudovibriamides A and B, produced in culture by *Pseudovibrio brasiliensis*
21 Ab134, and shown that pseudovibriamide A promotes flagellar motility. Pseudovibriamides are
22 encoded in a hybrid nonribosomal peptide synthetase-polyketide synthase gene cluster that also
23 includes several accessory genes. Pseudovibriamide A is a linear heptapeptide and
24 pseudovibriamide B is a nonadepsipeptide derived from pseudovibriamide A. Here we define the
25 borders of the pseudovibriamides gene cluster, assign function to biosynthetic genes using
26 reverse genetics and test the hypothesis that pseudovibriamides impact motility by modulating
27 gene transcription. RNA-seq transcriptomic analyses of strains having different compositions of
28 pseudovibriamides suggested that both pseudovibriamides A and B affect genes potentially
29 involved in motility, and that a compensatory mechanism is at play in mutants that produce only
30 pseudovibriamide A, resulting in comparable swarming motility as the wild type. The data
31 gathered suggest that pseudovibriamides A and B have opposite roles in modulating a subset of
32 genes, with pseudovibriamide B having a primary effect in gene activation, and pseudovibriamide
33 A on inhibition. Finally, we observed many differentially expressed genes (up to 29% of the total
34 gene number) indicating that pseudovibriamides have a global effect on transcription that goes
35 beyond motility.

36 **Importance** [up to 150 words]

37 Marine sponges are found throughout the oceans from tropical coral reefs to polar sea floors,
38 playing crucial roles in marine ecosystems. *Pseudovibrio* bacteria have been proposed to
39 contribute to sponge health. We have previously shown that pseudovibriamides produced by
40 *Pseudovibrio brasiliensis* promote bacterial motility, a behavior that is beneficial to bacterial
41 survival and to host colonization. The gene cluster that encodes pseudovibriamide biosynthesis

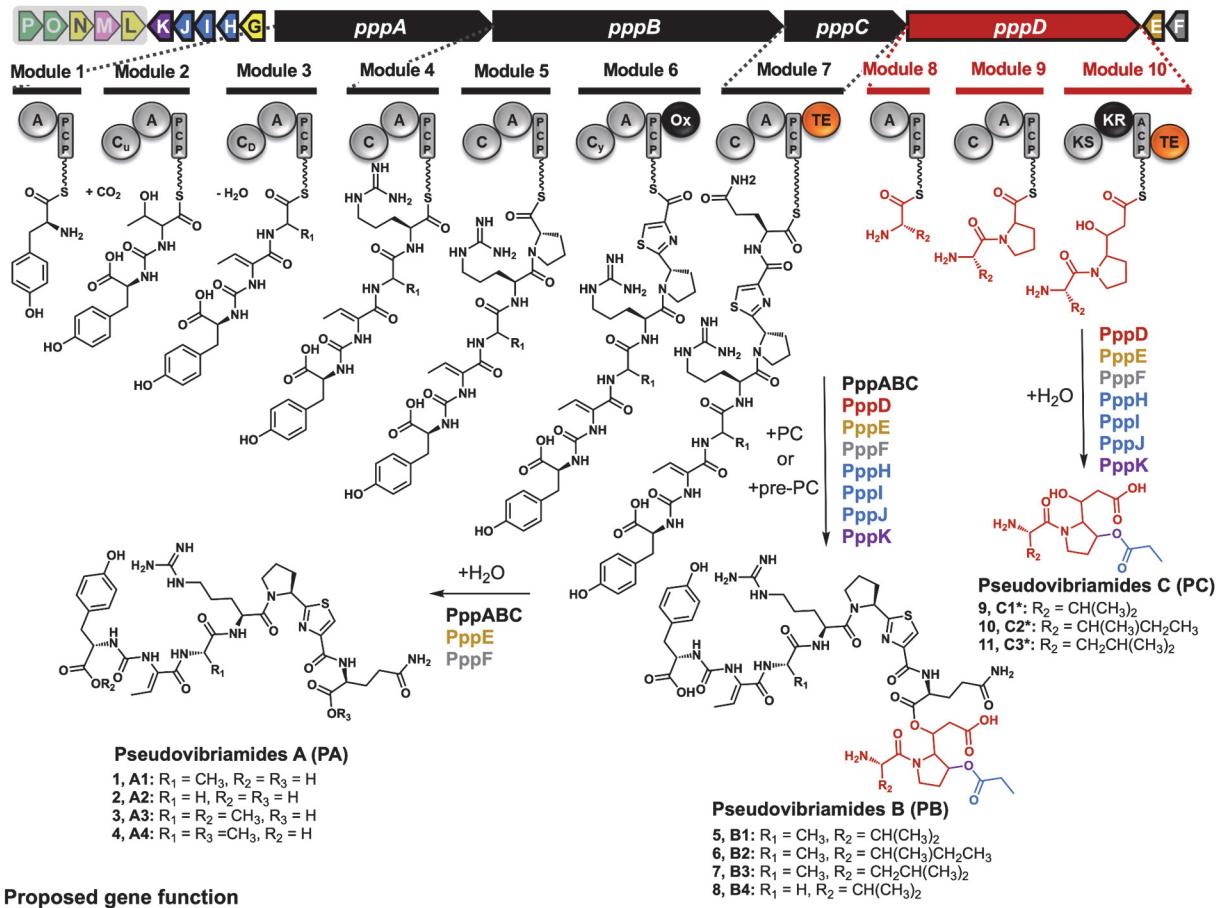
42 is found in two thirds of *Pseudovibrio* genomes. This gene cluster is also present in *Pseudomonas*
43 bacteria that interact with terrestrial plants and animals. Here we first assign function to
44 pseudovibriamide biosynthetic genes using reverse genetics. We then show that
45 pseudovibriamides play a major role in transcriptional regulation, affecting up to 29% of *P.*
46 *brasiliensis* genes, including motility genes. Thus, this work gives insights into pseudovibriamide
47 biosynthesis and provides evidence that they are signaling molecules relevant to bacterial motility
48 and to other yet to be identified phenotypes.

49

50 Introduction

51 Marine sponges are among the oldest animals on Earth (1). Their filter feeding capacity
52 contributes to biogeochemical cycling and they are also involved in habitat formation, properties
53 that are critical to marine ecology (2). In a bulk nutrient-depleted environment like the open ocean,
54 colonization on marine sponges provides microbes greater access to nutritional resources and
55 environmental stability (3). Conversely, sponge-associated microbes have nutritional and
56 protective roles, contributing to the animal's health (4).

57 Marine sponges develop symbiotic relationships with numerous bacterial species (5, 6).
58 Among these, *Pseudovibrio* spp. are Gram-negative α -Proteobacteria with high frequency of
59 association with marine sponges and that have been proposed to contribute to sponge health (7).
60 The presence of *Pseudovibrio* was also confirmed in larvae of a marine sponge suggesting this
61 genus could be a vertically transmitted symbiont (8).


62 Metabolites produced by microbes are important in the establishment and maintenance of
63 host-microbe associations and in holobiont homeostasis. *Pseudovibrio* bacteria, for example,
64 produce antimicrobials which could ward off pathogens (7). Moreover, swarming motility – the
65 collective motion of bacterial cells across a solid surface powered by rotating flagella – has been
66 shown to be important for host colonization (9). Bacterial metabolites such as surfactants are
67 known to facilitate swarming motility (9).

68 We have previously reported a link between a biosynthetic gene cluster (BGC) in
69 *Pseudovibrio brasiliensis* Ab134 and its swarming motility (10). Strain Ab134 was isolated from
70 marine sponge *Arenosclera brasiliensis* (11). The BGC, which we termed *Pseudovibrio* and
71 *Pseudomonas* non-ribosomal peptide (ppp), is present in 2/3 of sequenced *Pseudovibrio*
72 genomes, and sporadically found in *Pseudomonas* γ -Proteobacteria known to interact with
73 terrestrial plants and insects (10). Moreover, a ppp-like BGC was recently reported from
74 *Microbulbifer* γ -Proteobacteria likewise isolated from marine sponges (12).

75 The *ppp* BGC consists of genes *pppABC* encoding nonribosomal peptide synthetases
76 (*NRPS*), *pppD* encoding a hybrid *NRPS*-polyketide synthase (*NRPS-PKS*), and multiple flanking
77 genes *pppE* to *pppP* (Fig. 1; Table S1). *NRPS* *pppA::neo* mutants helped us identify the products
78 of the *ppp* BGC, which we termed pseudovibriamides A, and B (PA and PB) (10). *P. brasiliensis*
79 Ab134 also accumulates a third product, pseudovibriamide C (PC), detected here by mass
80 spectrometry analysis. Impaired swarming motility was reported for *pppA::neo* mutants, but not
81 for *pppD::neo* mutants, indicating that only PA is required for wild-type level motility (10).

82 However, an understanding of how pseudovibriamides affect swarming motility is lacking.
83 Swarming is a complex behavior that involves many factors, including signal transduction
84 cascades like chemotaxis and quorum sensing, flagella which are driven by the proton motive
85 force, and metabolites like surfactants (9). Most nonribosomal peptides that are known to mediate
86 swarming are lipopeptide surfactants (13). Surfactants facilitate swarming by lowering the surface
87 tension and easing cell spreading. Pseudovibriamides have no surfactant activity, as expected
88 from their chemical structures (10). Alternatively, nonribosomal peptides, including those with a
89 surfactant nature, can function as signaling molecules, exerting an effect on transcription and
90 regulating various phenotypes (14–17).

91 Herein we report and discuss the results of a study aiming to gain insight into
92 pseudovibriamide biosynthesis using reverse genetics, while obtaining mutants with different
93 compositions of pseudovibriamides to ultimately test the hypothesis that pseudovibriamides act
94 as signaling molecules, regulating genes affecting swarming motility.

Proposed gene function

■ NRPS ■ NRPS-PKS ■ Phosphopantetheinyl transferase ■ Type II thioesterase ■ SGNH hydrolase/acyltransferase
 □ Transporter ■ Dioxygenase ■ GCN5-related N-acetyltransferase ■ Regulation (two-component system)

95

96 **Figure 1. Organization of the ppp gene cluster from *Pseudovibrio brasiliensis* Ab134, and proposed**
 97 **biosynthesis of pseudovibriamides A, B, and C.** Biosynthetic proposal based on gene knockout results
 98 reported in this study. Structural components are color-coded according to genes that encode them.
 99 Enzymes proposed to be involved in the biosynthesis of each pseudovibriamide are listed next to the arrows.
 100 NRPS, nonribosomal peptide synthetase. PKS, polyketide synthase. See **Table S1** for further details on
 101 the Ppp proteins. Domain key: A, adenylation; ACP/PCP, acyl/peptidyl carrier protein; C, condensation; C_U,
 102 ureido-linkage formation condensation domain; C_D, dehydration condensation domain; C_Y, condensation
 103 and heterocyclization; KR, ketoreductase; KS, ketosynthase; Ox, oxidase; TE, thioesterase. Figure adapted
 104 from ref. (10). The structures of PA and PB have been previously reported (10). PC structures (*) are
 105 proposed based on mass spectrometry analyses performed in this study. Genes proposed to be outside
 106 the ppp gene cluster are shaded.

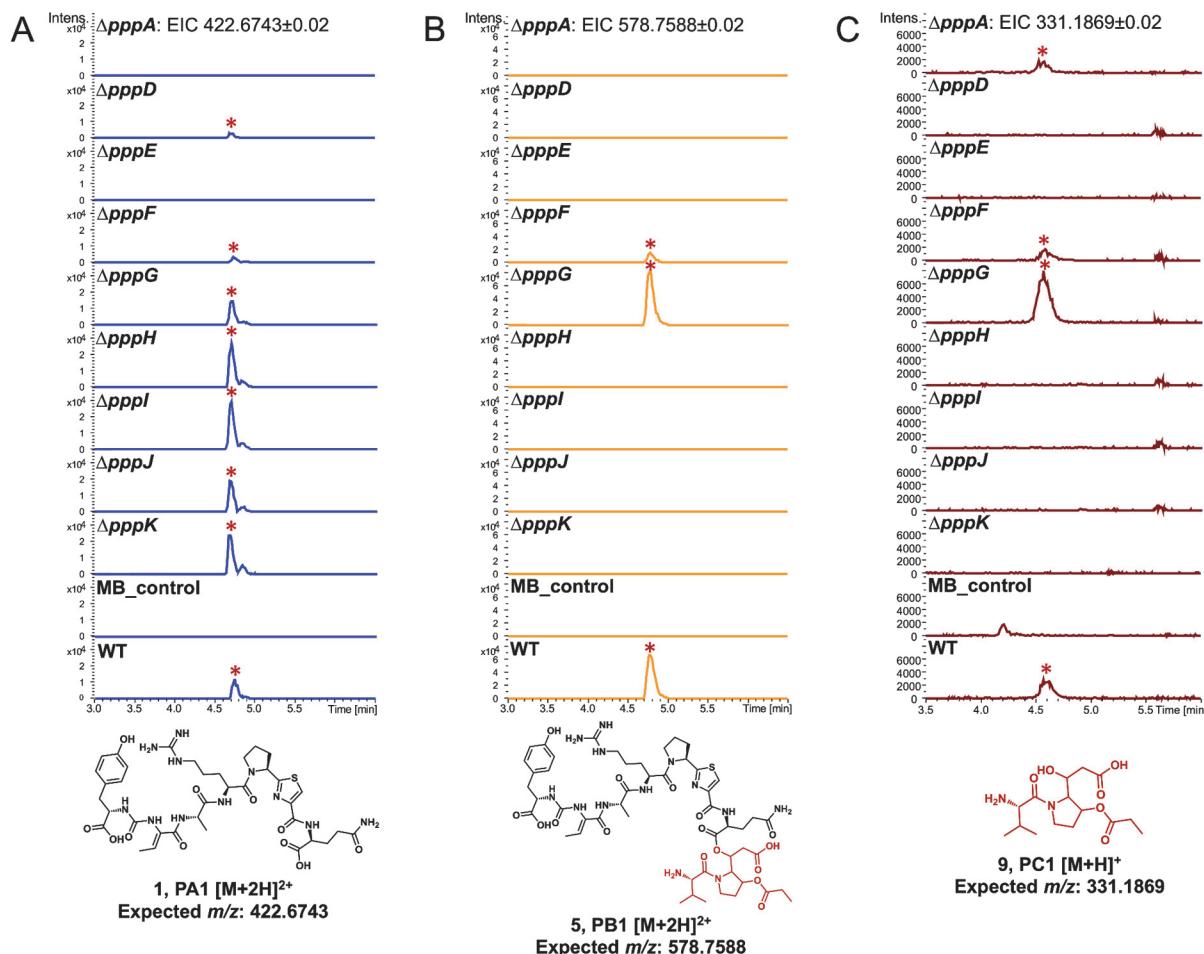
107 **Results**

108 **Biosynthetic insights from mutagenesis studies and access to strains with different**
109 **compositions of pseudovibriamides.** Having mutants that produce only one of the
110 pseudovibriamide congeners would facilitate probing their individual roles. According to the
111 scheme presented in **Fig. 1**, PB is the full-length product. PA and PC could conceivably either
112 represent hydrolysis products of PB catalyzed by an accessory hydrolase or be directly released
113 from the assembly lines using water as the nucleophile in reactions catalyzed by thioesterase (TE)
114 domains present in modules 7 and 10, respectively. To probe these two hypotheses and to assign
115 functions to accessory genes, we employed reverse genetics. The only genes that had been
116 previously inactivated were *pppA* and *pppD* (10). However, mutants had been generated by
117 replacement with a selectable marker. To avoid polar effects, we generated markerless, in-frame
118 deletion mutants of *pppA* and *pppD*, in addition to each of nine predicted accessory genes, i.e.,
119 *pppE* to *pppM* (**Fig. 1**). Prediction of the borders of the BGC was based on MultiGeneBlast results
120 from our previous investigation (10), that showed *pppA-pppD* and *pppG-pppK* to be conserved in
121 *Pseudovibrio* and *Pseudomonas*, *pppEF* to be conserved in *Pseudovibrio* and *pppL-pppP* to be
122 present in some *Pseudovibrio* strains.

123 All *P. brasiliensis* mutants were generated using homologous recombination and
124 confirmed by PCR (**Figs. S1-S2**). Different congeners of PA, PB and PC are produced by *P.*
125 *brasiliensis* (**Fig. 1**). Here we will refer only to the major congeners PA1, PB1/2/3 (**Fig. S3**) and
126 PC1/2/3 (**Figs. S4-S5**) as identified by Matrix-Assisted Laser Desorption/Ionization Time of Flight
127 (MALDI-ToF) mass spectrometry (MS) and liquid chromatography MS (LC-MS), respectively,
128 since minor congeners are not always detected.

129 Deletion of flanking genes *pppL* and *pppM* showed no effect on the pseudovibriamides
130 produced by *P. brasiliensis* (**Figs. S6-S8**). Genes *pppLMNOP* appear to be part of the same
131 operon (**Fig. 1**), and they are not conserved in all *Pseudovibrio* strains (10) which agrees with a

132 non-requirement for pseudovibriamide biosynthesis. They were thus assigned as not part of the
133 *ppp* BGC and we did not generate deletion mutants of *pppN*, *pppO*, and *pppP*. In contrast, we
134 observed changes in pseudovibriamide production for most other *P. brasiliensis* mutants (**Fig. 2**)
135 as described below.

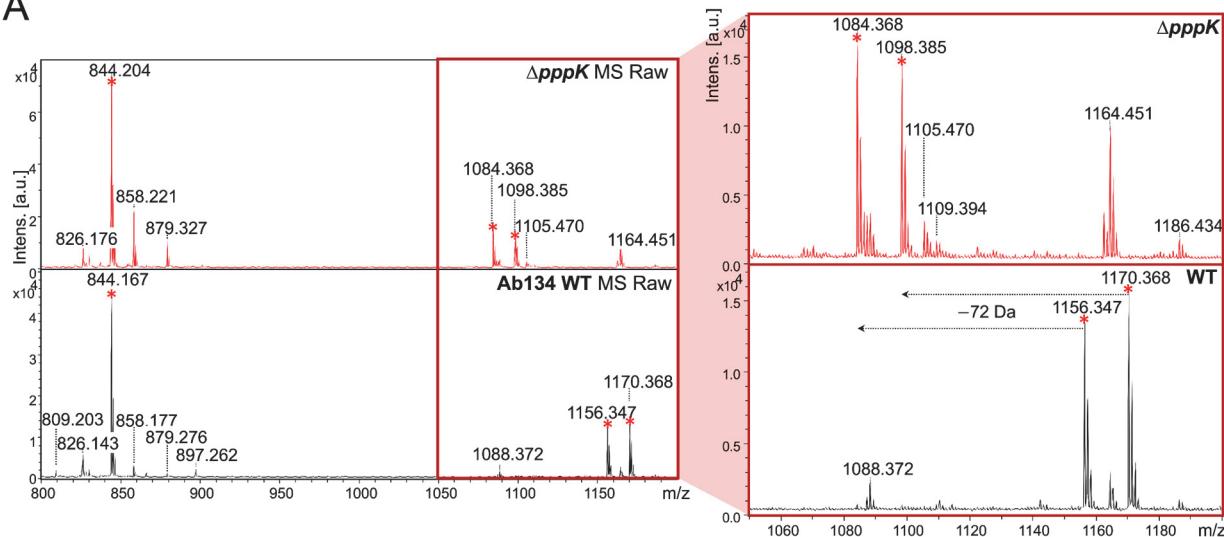

136 The $\Delta pppA$ mutant did not produce PA or PB, matching the result of our previous study
137 using *pppA::neo* mutants (**Figs. 2AB, S9-S11**) (10). However, we observed the production of a
138 metabolite we tentatively identify here as PC by MS analyses, consistent with PppD being still
139 intact in the $\Delta pppA$ mutant (**Figs. 2C, S4-S5**). In contrast, the $\Delta pppD$ mutant produced only PA in
140 agreement with previous results with *pppD::neo* (**Figs. 2, S9-S11**) (10).

141 The $\Delta pppE$ mutant produced no pseudovibriamides consistent with PppE's crucial role as
142 a 4'-phosphopantetheinyl transferase to activate NRPS and NRPS-PKS enzymes (**Figs. 2, S4-**
143 **S5, S9-S11**) (18). Genetic complementation using pYDcompE (**Table S2**) successfully recovered
144 the production of pseudovibriamides (**Fig. S12**). The $\Delta pppF$ mutant showed a reduction in overall
145 pseudovibriamide abundance, whereas genetic complementation using pYDcompF improved
146 pseudovibriamide production (**Fig. S13**), consistent with a role for PppF as a type II, proofreading
147 thioesterase that regenerates mis-acylated ACPs (19, 20).

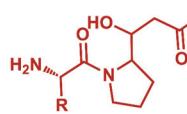
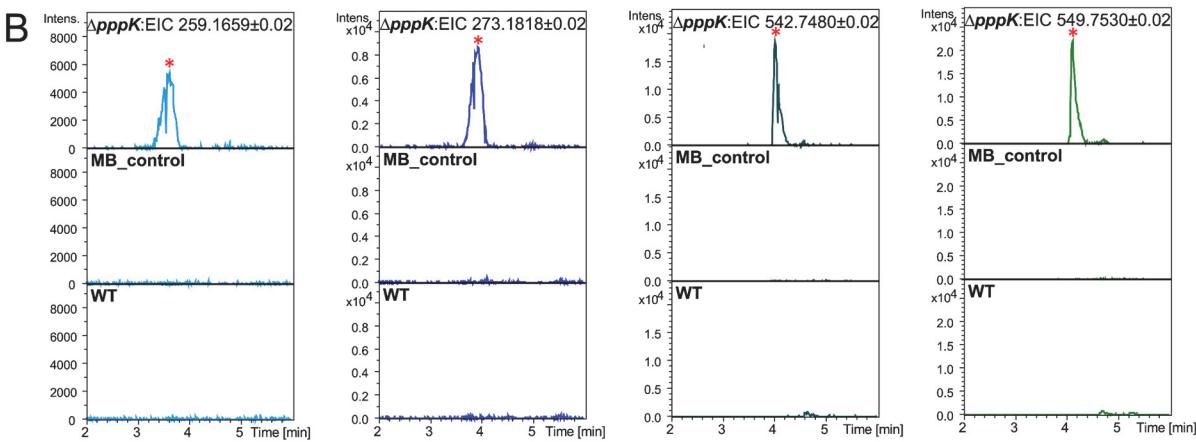
148 Mutants $\Delta pppH$, $\Delta pppI$, and $\Delta pppJ$ produced only PA (**Fig. 2**). Blast analyses revealed
149 sequence similarity to unknown proteins, except for PppH which showed sequence similarity to
150 SGNH hydrolases (**Table S1**). Additionally, protein structure prediction using Phyre2 (21)
151 suggested PppH, PppI and PppJ belong to hydrolase or acyltransferase families of proteins
152 whereas analysis using CLEAN (22) predicted all three to be transferases. To test for polar effects,
153 we performed genetic complementation using plasmids pDS00H, pDS00I and pDS00J,
154 respectively (**Table S2**). The production of all pseudovibriamides was recovered in each of the *P.*
155 *brasiliensis* mutants, ruling out polar effects (**Figs. S14-S18**). We hypothesize that PppHIJ are
156 involved in propionylation of the hydroxyproline residue and/or function as a *trans*-acyltransferase
157 to load the PKS module of PppD. If PppHIJ are involved in propionylation, we expected to observe

158 a pseudovibriamide analog lacking this modification, however, none was detected. The data
 159 suggests that PppHIJ may act together as a complex and that they are each crucial for PB and
 160 PC biosynthesis. Another hypothesis we investigated was that PppM, predicted to be a GCN5-
 161 related *N*-acetyltransferase, could catalyze propionyl transfer or function as the acyltransferase
 162 that is missing in module 10. However, as stated above, Δ pppM mutants had the same metabolite
 163 profile as the wild type (Figs. S7-S8), indicating that *pppM* is not required for pseudovibriamide
 164 biosynthesis.

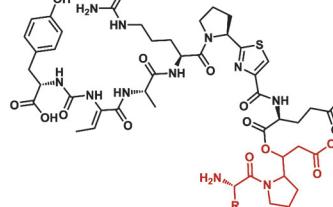
165 Thus, no PB hydrolase was identified. Instead, it is conceivable that the TE in module 7
 166 can accept either water as the nucleophile leading to PA or products of the PppD enzyme (PC or
 167 pre-PC) leading to PB.



168



169 **Figure 2. Comparison of the production of PA, PB, and PC representatives between the wild type**
170 **and mutants.** Extracted Ion Chromatograms (EIC) from LC-MS analyses of wild type (WT) and mutants.
171 **(A) PA1. (B) PB1. (C) PC1.** Pseudovibriamides-related EIC peaks are marked with red asterisks. MB control
172 is the extract of marine broth as negative control. The same mass filter (the expected $m/z \pm 0.02$) was
173 applied to all extracts. The same intensity scale was applied in-between strains for each pseudovibriamide.
174 All analyses were performed in at least triplicates.

175
176 **PppK is a hydroxylase.** PppK shows sequence similarity to Fe(II)/ α -ketoglutarate dependent
177 dioxygenases (23) and we predicted it would be responsible for the hydroxyl group in the proline
178 residue of PB and PC. Accordingly, the $\Delta pppK$ mutant produced PA as in the wild type (**Fig. 2**)
179 but PB and PC analogs that showed a $\Delta 72$ Da mass loss, indicating that they lacked the hydroxyl
180 group on the proline and consequently also lacked propionylation (**Figs. 3, S19-S20**).
181 Fragmentation patterns from MS^2 spectra further verified the assignment (**Figs. S21-S22**).
182 Genetic complementation using plasmid pVL00K recovered the production of PB and PC (**Fig.**
183 **S23**). The timing of hydroxylation remains unknown. Three scenarios are conceivable. PppK
184 could be either a proline hydroxylase acting on free proline, or it could act on-line while the proline-
185 containing substrate is attached to PppD, or after pre-pseudovibriamides are released from PppD,
186 either on pre-PC or pre-PB.


A

B

12, dPC1: R = $\text{CH}(\text{CH}_3)_2$, Val
Expected m/z $[\text{M}+\text{H}]^+$: 259.1659
13, dPC2: R = $\text{CH}_2\text{CH}(\text{CH}_3)_2$, Leu
14, dPC3: R = $\text{CH}_2(\text{CH}_3)\text{CH}_2\text{CH}_3$, Ile
Expected m/z $[\text{M}+\text{H}]^+$: 273.1818

15, dPB1: R = $\text{CH}(\text{CH}_3)_2$, Val
Expected m/z $[\text{M}+2\text{H}]^{2+}$: 542.7480
16, dPB2: R = $\text{CH}_2\text{CH}(\text{CH}_3)_2$, Leu
17, dPB3: R = $\text{CH}_2(\text{CH}_3)\text{CH}_2\text{CH}_3$, Ile
Expected m/z $[\text{M}+2\text{H}]^{2+}$: 549.7530

187

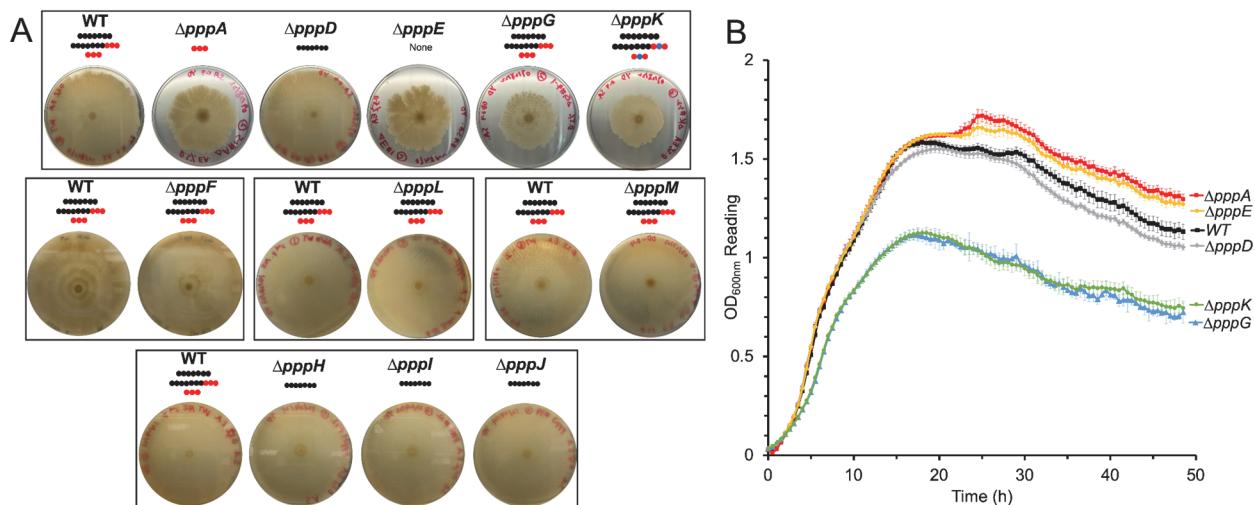
188 **Figure 3. Comparison of PB and PC production between the wild type and the ΔpppK mutant. (A)**

189 MALDI-ToF MS analyses. Molecular features for pseudovibriamides are indicated with red asterisks. The
190 peak at m/z 844.2 represents PA1 ($[\text{M}+\text{H}]^+$); m/z 1156.3, PB1 (Val, $[\text{M}+\text{H}]^+$); m/z 1170.4, PB2 or PB3 (Ile
191 or Leu, $[\text{M}+\text{H}]^+$); m/z 1084.4, depropionylated PB1 (dPB1 Val, $[\text{M}+\text{H}]^+$); and m/z 1098.4, depropionylated
192 PB2 or PB3 (dPB2, Leu, $[\text{M}+\text{H}]^+$ or dPB3, Ile, $[\text{M}+\text{H}]^+$). The range from m/z 1050 to 1200 was zoomed in
193 (red box) to show the m/z change of PBs. (B) LC-MS analyses. dPC, depropionylated PC; dPB,
194 depropionylated PB. Extracted Ion Chromatogram (EIC) from left to right: dPCs (Val, $[\text{M}+\text{H}]^+$, m/z 259.1659;

195 and Leu or Ile, $[M+H]^+$, *m/z* 273.1818), dPBs (Val, $[M+2H]^{2+}$, *m/z* 542.748; and Leu or Ile, $[M+2H]^{2+}$, *m/z* 549.753). The same mass filter (the expected *m/z* \pm 0.02) was applied to all samples. The predicted structure is listed below each chromatogram. All analyses were performed in at least triplicates.

198

199 **The amount of pseudovibriamides exported is not significantly affected in $\Delta pppG$ and**
200 **$\Delta pppL$ mutants.** According to previous imaging mass spectrometry studies, PA and PB are
201 excreted (10). Both *pppG* and *pppL* genes are predicted to encode transporters that could be
202 responsible for pseudovibriamide export (**Table S1**). Both $\Delta pppG$ and $\Delta pppL$ mutants produce all
203 pseudovibriamides (**Figs. 2, S4-S6, S9-S11**). To check for export, we extracted
204 pseudovibriamides from cell pellets and supernatant separately (**Fig. S24**). The export ratio –
205 defined as the amount of pseudovibriamides in the supernatant by the amount in the cell pellet –
206 of PB1, PB2, and PB3 was slightly higher for the wild type and genetically complemented $\Delta pppG$
207 strain using pYDcompG compared to $\Delta pppG$ cultures, but not statistically significant (**Fig. S25A**).
208 Likewise, no statistically significant difference was observed between the wild type and the $\Delta pppL$
209 mutants (**Figs. S25B, S26-S38**). Thus, the protein involved in pseudovibriamide export remains
210 to be identified.


211

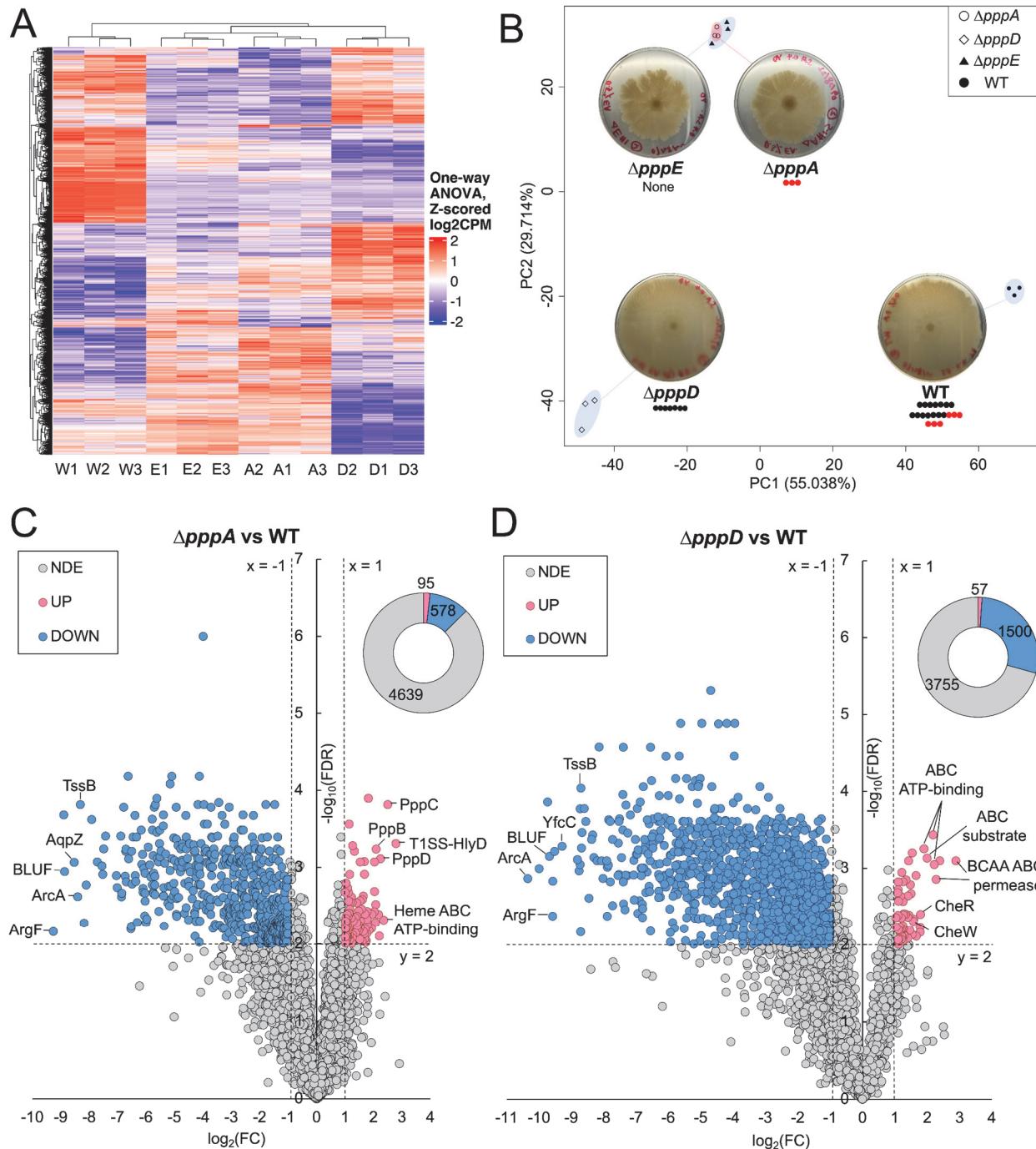
212 **Effect of gene deletion on swarming motility.** We performed swarming assays for the 11 in-
213 frame deletion mutants generated here. Both $\Delta pppA$ and $\Delta pppD$ mutants showed consistent
214 swarming phenotypes as reported previously (**Figs. 4, S39-S40**) (10). Moreover, wild-type level
215 swarming motility was observed for $\Delta pppH$, $\Delta pppI$, and $\Delta pppJ$ mutants, which have the same
216 metabolite profile as the $\Delta pppD$ mutant, that is, production of PA only (**Fig. S41**). In contrast, the
217 $\Delta pppE$ mutant that produces no pseudovibriamides showed decreased swarming motility like the
218 $\Delta pppA$ mutant that produces only PC (**Figs. 4, S42**). The *pppA::neo* mutant had been previously
219 genetically complemented showing restoration of swarming proficiency (10). Likewise, the

220 swarming motility of the $\Delta pppE$ mutant was successfully recovered by genetic complementation
221 (**Fig. S43**).

222 The combined results of $\Delta pppD$, $\Delta pppH$, $\Delta pppI$, and $\Delta pppJ$ mutants suggest that only PA
223 is required for wild-type level swarming motility. However, both $\Delta pppK$ and $\Delta pppG$ mutants
224 showed impaired swarming, even though PA was produced in these mutants (**Fig. 4A**). Moreover,
225 pseudovibriamide production was restored by genetic complementation using pVL00K and
226 pYDcompG, respectively (**Fig. S23**); however, swarming was not, suggesting factors other than
227 pseudovibriamides were involved in the phenotype of $\Delta pppK$ and $\Delta pppG$ mutants (**Fig. S44**). It
228 turns out both $\Delta pppG$ and $\Delta pppK$ mutants showed decreased growth, suggesting the cause of
229 apparently reduced swarming motility is in fact related to reduced growth (**Fig. 4B**). Whole
230 genome sequencing of both $\Delta pppG$ and $\Delta pppK$ mutants showed several potential mutations
231 (**Table S3-S4**). It remains to be shown which mutations are responsible for the reduced growth
232 phenotype.

233 Other mutants ($\Delta pppF$, $\Delta pppH$, $\Delta pppI$, $\Delta pppJ$, $\Delta pppL$, and $\Delta pppM$) showed no observable
234 defect in swarming motility (**Figs. 4A, S41, S45-S47**).

235
236 **Figure 4. Effect of ppp gene inactivation on flagellar motility.** (A) Swarming assays performed on
237 marine broth with 0.5 % Eiken agar. Pictures shown were taken 72 hours after inoculation. The assay was
238 performed multiple times, each time in at least triplicates with the wild type (WT) as the control, and similar


239 results were obtained each time (see **Figs. S39-S47**). Representative results are shown. Plates are
240 grouped and boxed based on assays that were run together the same day. Pseudovibriamides are
241 represented by beads: PA, seven black beads; PB, seven black beads and three red beads; PC, three red
242 beads; depropionylated PB, seven black beads, two red beads, and one blue bead; depropionylated PC,
243 two red beads and one blue bead. **(B)** Growth of strains from top box in panel A as measured by OD₆₀₀.
244 N=6. Error bars indicate standard deviation. Note that the apparent reduced swarming of $\Delta pppG$ and $\Delta pppK$
245 mutants is in fact due to reduced growth.

246

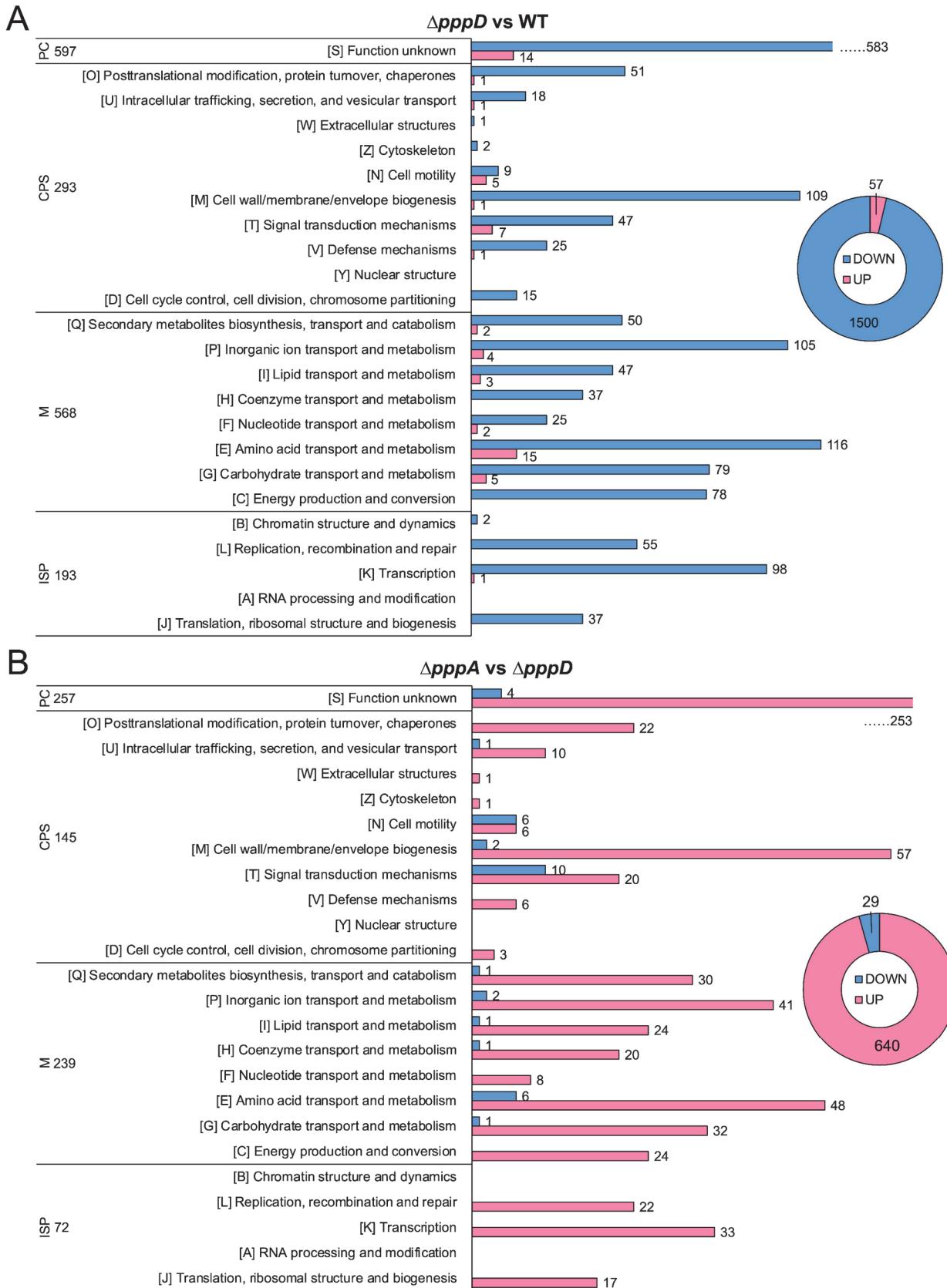
247 **Transmission electron microscopy identifies no apparent changes in flagella.** We used
248 transmission electron microscopy (TEM) to visualize cells of strains with different compositions of
249 pseudovibriamides, that is, $\Delta pppA$, $\Delta pppD$, $\Delta pppE$ mutants and the wild type. No apparent
250 differences in flagella were observed between the strains, although there seemed to be more cell
251 aggregation for $\Delta pppA$ and $\Delta pppE$ mutants which is consistent with decreased swarming motility
252 (**Fig. S48**).

253

254 **PA and PB modulate gene transcription whereas PC does not.** To test the hypothesis that
255 pseudovibriamides affect motility by modulating gene transcription, RNA-seq data sets were
256 obtained for the wild type and $\Delta pppA$, $\Delta pppD$, and $\Delta pppE$ mutants having different compositions
257 of pseudovibriamides (**Fig. 5**). Triplicate samples of each strain are similar in terms of gene
258 expression pattern, which is more apparent in the principal component analysis (PCA) plot where
259 triplicate samples from each strain cluster together, supporting the quality of the data (**Fig. 5B**).
260 The highly similar transcriptomic profiles of $\Delta pppA$ and $\Delta pppE$ mutants indicates that PC has none
261 or only minimal effect on gene transcription (**Fig. 5B**). In contrast, the large differences in principal
262 components 1 and 2 observed between the wild-type and either the $\Delta pppD$ mutant or the
263 $\Delta pppA/\Delta pppE$ mutants indicates that PA and PB have major effects on gene transcription (**Fig.**
264 **5B**).

271 analysis (PCA) of gene expression based on normalized CPM of triplicate samples. Corresponding
272 swarming images at 72 h are shown and pseudovibriamide composition is indicated for each strain. Seven
273 black beads represent PA; Seven black beads plus three red beads represent PB; three red beads
274 represent PC. **(C)** and **(D)** Volcano plots of differentially expressed (DE) genes identified between the wild
275 type and $\Delta pppA$ and $\Delta pppD$ mutants, respectively, using transcripts per million (TPM). FDR, false discovery
276 rate or *q*-value; FC, fold-change; NDE, non-differential expressed; UP, upregulated; DOWN, downregulated;
277 Blue dots or blue donut portion, downregulated genes; Pink dots or pink donut portion, upregulated genes;
278 and grey dots or grey donut portion, non-differentially expressed genes. The same threshold (dotted lines)
279 was applied to all differential expression analyses, that is, $FC \leq -2$ ($x = -1$) or $FC \geq 2$ ($x = 1$), and $FDR \leq$
280 0.01 ($y = 2$). The total number of UP, DOWN, and NDE genes are listed in the donut chart. Labeled genes
281 are TssB, type VI secretion system contractile sheath small subunit; YfcC, Arginine/ornithine antiporter;
282 AqpZ, aquaporin Z; ArcA, arginine deiminase; ArgF, ornithine carbamoyltransferase; BLUF, blue light using
283 flavin domain; T1SS-HlyD, HlyD family type I secretion periplasmic adaptor subunit; BCAA ABC permease,
284 branched-chain amino acid ATP-binding cassette transporter permease; ABC ATP-binding, ATP-binding
285 cassette transporter ATP-binding protein; ABC substrate, ATP-binding cassette transporter substrate
286 binding protein; Heme ABC ATP-binding, heme ATP-binding cassette transporter ATP-binding protein;
287 CheW, chemotaxis protein; and CheR, protein-glutamate O-methyltransferase. Some outstanding dots left
288 unlabeled are hypothetical proteins.

289


290 **Pairwise differential expression analyses methods and parameters.** To ensure the identified
291 differentially expressed (DE) genes would have physiological relevance, we started by testing
292 distinct analysis methods and performing follow up experiments for validation. We first used
293 DESeq2, which is based on negative binomial distribution (**Fig. S49**). An upregulation of *ppp* core
294 biosynthetic genes was observed in both $\Delta pppA$ and $\Delta pppD$ mutants in which *pppBCD* and
295 *pppABC* appeared upregulated compared to the wild type, respectively (**Fig. S49**). According to
296 the RNA-seq data, a promoter is located upstream of the *pppA* gene (P_{pppA}) (**Fig. S50**).
297 Upregulation of *ppp* genes in the mutants is suggestive of negative autoregulation by

298 pseudovibriamides as reported for other products (24). To test this hypothesis, we cloned P_{pppA}
299 directly upstream of *GFP* in the promoterless pSEVA227M-based vector (**Table S2**). In the case
300 of negative autoregulation, we expected to observe increased GFP production in the mutants.
301 However, this was not the case (**Fig. S51**). Instead, the promoter probe studies suggested that
302 DESeq2 resulted in the identification of false positives.

303 We next tested transcripts per million (TPM) for data normalization and DE calls (**Figs.**
304 **5C-5D**). Genes *pppBCD* are still upregulated but only in the $\Delta pppA$ mutant, which is likely an
305 artifact of bringing P_{pppA} closer to the other genes in the operon by deleting ~8,000 bp of the *pppA*
306 gene. Thus, the results indicate that TPM is more accurate for comparing gene expression levels
307 across our samples. Therefore, TPM values were chosen for further analyses. The total number
308 of DE genes was reduced from 1,298 to 673 in the $\Delta pppA$ mutant, and from 1,616 to 1,557 in the
309 $\Delta pppD$ mutant when using TPM (**Figs. 5C-5D, S49**). There was only one gene, *pppC*, upregulated,
310 and no downregulated gene in the $\Delta pppA$ mutant when compared to $\Delta pppE$ mutant using $FDR \leq$
311 0.01 as the cutoff. Because the PCA plots overlap, we considered $\Delta pppA$ and $\Delta pppE$ mutants to
312 be indistinguishable, and the FDR cutoff of ≤ 0.01 as appropriate for further analyses.

313
314 **Global effects of PA and PB.** The large number of DE genes identified (**Figs. 5C-5D**) suggests
315 that PA and PB have a global effect on transcription that goes beyond motility. To obtain a broader
316 view of the role of PB, DE genes of $\Delta pppD$ mutant (missing PB but having PA) when compared
317 to the wild type were classified based on clusters of orthologous genes (COG) (**Fig. 6A**,
318 **Supplemental file 1**). Except for the poorly characterized (PC) group, the metabolism (M) group
319 is the largest, followed by the cell processes and signaling (CPS) group (**Fig. 6A**). Regarding
320 specific categories within these groups, cell wall biogenesis [M], inorganic ion transport and
321 metabolism [P], amino acid transport and metabolism [E], and transcription [K] dominate (**Fig. 6A**,
322 **Supplemental file 1**). Strikingly, downregulated genes outnumber upregulated genes by roughly
323 30 to 1, indicating that PB may have a primary effect on gene activation.

324 Regarding genes potentially affected by PA, the $\Delta pppA$ mutant (missing PA) was
325 compared to the $\Delta pppD$ mutant (produces only PA) (**Fig. 6B, Supplemental file 1**). Contrary to
326 what was observed in the previous comparison, upregulated genes outnumber downregulated
327 genes by roughly 20 to 1 in the $\Delta pppA$ mutant, indicating that PA may have an inhibitory effect on
328 gene transcription. Metabolism is still the largest group followed by cell processes and signaling.
329 The categories most affected are also the same (**Fig. 6B**). Thus, the results suggest that PB and
330 PA may have opposite roles in modulating gene transcription. Indeed, 446 DE genes overlap
331 between the two pairwise analyses and are inversely regulated (**Supplemental file 1**).



333 **Figure 6. COG classification of DE genes potentially affected by PA and PB.** (A) DE genes of $\Delta pppD$
334 mutant compared to the wild type. (B) DE genes of $\Delta pppA$ mutant compared to the $\Delta pppD$ mutant. Blue,
335 downregulated; Pink, upregulated. PC, poorly characterized; CPS, cellular processes and signaling; M,
336 metabolism; and ISP, information storage and processing. The total number of genes in each category is
337 listed.

338

339 **Identifying DE genes potentially involved with reduced swarming motility.** We considered
340 two assumptions for narrowing down potential candidate genes related to swarming motility. On
341 one hand, the $\Delta pppD$ mutant may possess the same set of genes unaffected compared to the
342 wild type, which are DE in $\Delta pppA$ and $\Delta pppE$ mutants, resulting in reduced swarming motility. On
343 the other hand, the $\Delta pppD$ mutant might harness different pathways than the wild type for
344 promoting swarming motility, resulting in the same observable phenotype.

345 Assuming the first scenario, genes were compiled that were DE in both $\Delta pppA$ and $\Delta pppE$
346 mutants but also non-differentially expressed (NDE) in the $\Delta pppD$ mutant, each compared to the
347 wild type (**Fig. 7A**). As a result, 12 upregulated genes and 5 downregulated genes in $\Delta pppA/E$
348 mutants were identified (**Figs. 7A, S52A; Table S5**). According to COG, most upregulated genes,
349 except those encoding hypothetical proteins, are ATP-binding cassette (ABC) transporters
350 belonging to the metabolism category. This pattern generally matches observations from a study
351 in *Pseudomonas aeruginosa* where the authors found that genes related to the transport of small
352 molecules were upregulated in non-swarming cells (25).

353

354 **Figure 7. DE genes potentially involved in differential swarming motility.** (A) Assumption 1: the ΔpppD mutant may possess the same set of genes unaffected compared to the wild type, which are DE in $\Delta\text{pppA}/\Delta\text{pppE}$ mutants compared to the wild type. Filters used for selecting such genes. $|\Delta\log_2\text{FC}|$, the absolute difference of $\log_2\text{FC}$ between ΔpppA , or ΔpppE and ΔpppD mutants was set to be larger than or equal to 0.5 to exclude genes with minor variation in differential expression. See **Fig. S52A** for COG categories. Examples of DE operons are shown, that is, a five-gene operon that is upregulated in the $\Delta\text{pppA}/\text{E}$ mutants (subunit, the small subunit of the sodium/solute symporter), and a two-gene operon that

361 is downregulated in the $\Delta pppA/E$ mutants including MutT CDS (KGB56_20150) and Flp family type IVb pilin
362 CDS (KGB56_20145). Pink, upregulated; blue, downregulated. The darker the pink, the higher the relative
363 expression level. The darker the blue, the lower the relative expression level. TPM values are indicated
364 below genes. (B) Assumption 2: the $\Delta pppD$ harnesses different pathways than the wild type for promoting
365 swarming motility, resulting in the same observable phenotype. Selected motility genes that are up or
366 downregulated in the $\Delta pppD$ mutant are shown. Upregulated chemotaxis genes (FDR ≤ 0.01) are denoted
367 with pink asterisks. *cheA*, chemotaxis histidine protein kinase; *cheW*, linker protein; *cheY*, chemotaxis
368 response regulator; *cheB*, chemotaxis response regulator protein-glutamate methyltransferase; *cheR*,
369 chemotaxis glutamate O-methyltransferase; *fliT*, flagellar biosynthesis repressor; *fliA*, flagellar basal body
370 P-ring formation protein; *fliI*, flagellar biosynthesis type III secretory pathway ATPase; *fliB* and *fliQ*, flagellar
371 biosynthesis protein. (C) Filters used for selecting DE genes in $\Delta pppA/\Delta pppE$ mutants that are reversely
372 regulated in the $\Delta pppD$ mutant compared to the wild type. See **Fig. S53** for COG categories. The expression
373 levels (in TPM) of a LuxR family transcriptional regulator CDS (KGB56_18890) are indicated for mutants
374 and the wild type. The darker the pink, the higher the expression level.

375

376 There are no genes in the cell motility [N] category. We next investigated signal
377 transduction [T], which could include genes regulating the swarming motility phenotype directly
378 or indirectly. Of the two genes upregulated in the T category (**Table S5, Supplementary Results**),
379 one is predicted to encode a nucleotidyltransferase and is located within a five-gene operon (**Fig.**
380 **7A**). The other four genes were not hits due to the stringent cut off we set, but they still show
381 considerable \log_2FC of 0.73 - 1.78. ORF2 encodes a sodium/solute symporter, and ORF1
382 encodes its small subunit. These genes are highly expressed in the $\Delta pppA$ mutant, e.g., the TPM
383 value of 3411 for ORF2 ranks as the 25th most highly transcribed gene. An overexpression of this
384 symporter (26) will not only increase the uptake of nutrients, but also of sodium. Sodium influx is
385 used to power flagellar rotation (27, 28). It is possible that an imbalance in the sodium gradient in
386 $\Delta pppA/E$ mutants slows down the flagellar motor, leading to reduced but not abolished motility.

387 The remaining one gene upregulated in the signal transduction [T] category is described under
388 **Supplementary Results.**

389 There are only five downregulated genes in $\Delta pppA/E$ mutants but NDE in the $\Delta pppD$
390 mutant (**Figs. 7A, S52A, Table S5**). One of them is predicted to encode a Nudix hyrdolase (29),
391 (30) (**Fig. S52B**). Inactivation of Nudix hydrolase genes *mutT* from *E. coli* and *PA4400* from *P.*
392 *aeruginosa* results in a higher mutation rate, and *PA4400* can complement an *E. coli* *mutT*
393 deficient strain (31, 32). A recent study showed that *P. aeruginosa* $\Delta PA4400$ possessed severely
394 impaired swarming motility (33). Thus, the downregulation of this gene could help explain the
395 reduced swarming motility of $\Delta pppA/E$ mutants. In addition, the gene downstream of the *mutT*
396 homolog is predicted to encode a type IV pilin subunit (34). A previous study showed that a *P.*
397 *aeruginosa* type IV pilin mutant was unable to swarm (35). Thus, downregulation of the type IV
398 pilin gene in $\Delta pppA/E$ mutants may contribute to the attenuated swarming motility as well.

399 To probe the second scenario that the $\Delta pppD$ mutant might harness different pathways
400 than the wild type for promoting swarming motility, the direct pairwise differential expression
401 analysis between $\Delta pppD$ mutant and the wild type was analyzed (**Fig. 6A**). In the most obvious
402 category, cell motility [N], there are five genes upregulated in the $\Delta pppD$ mutant (encoding one
403 flagellin protein, one flagellar biosynthesis repressor FlbT, and three chemotaxis proteins *cheW*,
404 *cheB* and *cheR* that are part of a five-gene operon), and nine genes downregulated (encoding
405 five flagella-related proteins; three L,D-transpeptidases, and one type IV secretion system protein)
406 (**Figs. 6A, 7B, Supplemental file 1**). The downregulation of genes encoding components of
407 flagella and the upregulation of a flagella biosynthesis repressor gene suggests the $\Delta pppD$ mutant
408 should have reduced swarming motility unless there was a compensatory mechanism, which
409 seems to be the case with the upregulation of chemotaxis genes. Downregulation of chemotaxis
410 genes was observed in a swarming-deficient mutant of *Vibrio parahaemolyticus* (36); conversely,
411 upregulation might promote swarming motility in the $\Delta pppD$ mutant as a compensatory
412 mechanism.

413 To identify genes that may be implicated in the opposing effects of PA and PB, we
414 searched for genes that were DE in opposite directions in the $\Delta pppD$ and $\Delta pppA/E$ mutants when
415 compared to the wild type, respectively, and identified 12 genes (**Figs. 7C, S53, Table S6**). One
416 gene caught our attention because it is predicted to encode a LuxR-type transcriptional regulator
417 (**Fig. 7C, Supplemental file 1**). The original LuxR is a well known cell-density-dependent
418 transcriptional regulator involved in quorum sensing in *Vibrio fischeri* (37). Many LuxR variants
419 exist, including QscR and VjbR (38, 39) which show sequence identity to the DE LuxR we
420 identified albeit low (26%). Analogously to what we observed with $\Delta pppA/E$ mutants, upregulation
421 of QscR from *P. aeruginosa* PAO1 resulted in reduced swarming motility (38). Conversely,
422 downregulation in the $\Delta pppD$ mutant may improve motility potentially as a compensatory
423 mechanism. Another gene in the signal transduction [T] category is described under
424 **Supplementary Results.**

425 Taken together, compensatory mechanisms seem to be at play, resulting in the same
426 observable swarming phenotype between the wild type and the $\Delta pppD$ mutant. Moreover, LuxR
427 family regulators can influence many genes, such as 14% of *Brucella melitensis* genes by VjbR
428 (39). Thus, the identified LuxR family regulator is a candidate gene that could explain the large
429 differences in transcription between mutants and the wild type (**Fig. 5**), but future studies are
430 necessary to test this hypothesis.

431

432

433 Discussion

434 The term 'holobiont' has been coined to express the crucial relationship between plants
435 and animals and their associated microbes (4). Microbial metabolites are important in establishing
436 and maintaining microbe-host associations. For instance, motility, mediated by bacterial
437 metabolites, is known to be important for host colonization (9). We previously identified a link
438 between swarming motility and pseudovibriamides (10). The *ppp* gene cluster that encodes
439 pseudovibriamides (**Fig. 1**) is found not only in bacteria that interact with marine sponges but also
440 in terrestrial bacteria that interact with plants and animals (10).

441 The main goal of the present work was to reveal how pseudovibriamides affect swarming
442 motility. We started by obtaining mutant strains with different compositions of pseudovibriamides
443 while gaining insight into pseudovibriamide biosynthesis. We considered two hypotheses to
444 explain the presence of PA, PB and PC in *P. brasiliensis*. Either PA and PC represent hydrolysis
445 products of PB catalyzed by an accessory hydrolase, or PA is directly released from PppC
446 catalyzed by the thioesterase domain using water as the nucleophile (**Fig. 1**). We considered
447 PppH as a PB hydrolase because it shows sequence similarity to the hydrolase family of enzymes.
448 If true, we would expect the hydrolase-inactive mutant to produce only PB. However, the Δ *pppH*
449 mutant produced only PA (**Fig. 2**). None of the accessory genes was identified as encoding a PB
450 hydrolase. Instead, the second hypothesis seems plausible that the TE domain in PppC can
451 accept either water as nucleophile resulting in PA or it can accept PC (or pre-PC) resulting in PB.
452 *In vitro* studies are necessary to further test this hypothesis.

453 Swarming motility assays suggested that only PA is required for wild-type level swarming
454 motility. Mutants that produced only PA (Δ *pppD*, Δ *pppH*, Δ *pppI*, and Δ *pppJ*) displayed swarming
455 motility comparable to the wild type (**Figs. 4, S41**), whereas mutants that produced only PC
456 (Δ *pppA*) or no pseudovibriamides (Δ *pppE*) showed reduced swarming motility (**Fig. 4**).

457 We next performed transcriptomic studies of the wild-type and of mutant strains that
458 produce either only PA ($\Delta pppD$), only PC ($\Delta pppA$) or no pseudovibriamides ($\Delta pppE$) to test
459 whether pseudovibriamides influence gene transcription. Since several RNA-seq normalization
460 methods are available and errors in normalization can result in false positives (41), we first
461 compared normalization methods and performed follow up experiments for validation using a GFP
462 reporter assay to ensure the identified DE genes would have physiological relevance. From the
463 two methods tested – DESeq2 and TPM, representing normalization by distribution and library
464 size, respectively (41) – TPM seemed to eliminate false positives (**Figs. 5CD, S49**). A recent
465 study to evaluate RNA-seq normalization methods also concluded that TPM performed best in
466 preserving biological signal (42).

467 From the transcriptomic data, we concluded that PC plays no role in modulating
468 transcription since the transcriptomes of $\Delta pppA$ and $\Delta pppE$ mutants were equivalent (**Fig. 5B**). In
469 contrast, PA and PB play major roles as 13% of the total number of genes are differentially
470 expressed when PA and PB are missing ($\Delta pppA$ vs. wild type, **Fig. 5C**) and 29% of the total
471 number of genes are differentially expressed when PB is missing but PA is present ($\Delta pppD$ vs.
472 wild type, **Fig. 5D**). The results also suggested that PA and PB have opposite effects on a subset
473 of 446 DE genes, with PB having a primary role in gene upregulation and PA in downregulation
474 (**Fig. 6, Supplemental file 1**).

475 Accordingly, a compensatory mechanism appears to be at play in the $\Delta pppD$ mutant that
476 results in the same observable swarming phenotype as the wild type. This is plausible based on
477 the upregulation of chemotaxis genes while flagella component genes are downregulated. In
478 addition, 12 genes are inversely regulated between the $\Delta pppD$ mutant and $\Delta pppA/\Delta pppE$ mutants
479 when compared to the wild type. For instance, the drastic difference in the transcription level of a
480 LuxR-type regulator may help explain not only the swarming motility phenotypes but also the large
481 differences in transcription between mutants and the wild type (**Fig. 7C**).

482 In conclusion, motility enables bacteria to reach new habitats and to colonize host tissue.

483 Many questions remain to be answered regarding bacterial motility, including identifying which

484 chemical signals mediate motility and how they do so. Here we showed that pseudovibriamides

485 affect motility by modulating transcription, ultimately revealing new signaling molecules.

486 Importantly, the effects of pseudovibriamides appear to extend beyond motility to affect yet-to-be

487 identified phenotypes. Future studies should focus on more detailed biosynthetic investigations

488 such as the timing of hydroxylation by PppK, and the joint role of PppHIJ in propionylation –

489 literature precedence for multi-protein complexes catalyzing acylation does exist (40). Future

490 studies should also elucidate the exact mechanisms by which pseudovibriamides modulate gene

491 transcription.

492 Materials and Methods

493 **General cultivation conditions.** *P. brasiliensis* Ab134 was cultivated at 30°C on BD Difco™
494 Marine Agar 2216 (MA) or in BD Difco™ Marine Broth 2216 (MB) for 18-20 hours unless otherwise
495 noted. Chloramphenicol (8 µg/mL) and kanamycin (200 µg/mL) were used for mutant selection
496 as appropriate. *E. coli* strains were cultured in BD Difco™ Luria Broth (LB) or on LB agar for 18-
497 20 hours. Chloramphenicol (25 µg/mL) and kanamycin (50 µg/mL) were used for mutant selection
498 as appropriate. *E. coli* DH5α(λpir) was used for propagation of pDS132-based vectors and *E. coli*
499 SM10(λpir) for conjugation with Ab134. *E. coli* DH5α was used for propagation of pSEVA227M-
500 based or pAM4891-based vectors and *E. coli* S17-1 for conjugation. All strains were cryo-
501 preserved in 20% glycerol [v/v] at -80 °C.

502 **Plasmid construction.** Plasmids used in this study are summarized in **Table S2**. Oligonucleotide
503 primers (**Table S7**) were synthesized by Sigma-Aldrich. Vector pDS132 was used to construct
504 plasmids for in-frame deletion, pSEVA227M for promoter probe studies, and pAM4891 for genetic
505 complementation (43–45). See Supplementary Information for details.

506 **In-frame deletion and complementation.** Mutants were generated by in-frame deletion via
507 homologous recombination (**Fig. S1**). pDS132 or pYD004-based suicide vectors were first
508 transformed into *E. coli* SM10(λpir), which was used as the conjugation donor for transferring
509 vectors into Ab134. The detailed conjugation protocol can be found under Supplementary
510 Information. Obtained clones were analyzed by two parallel PCRs to identify single crossover
511 (SCO) colonies (**Fig. S1**). Confirmed SCO clones were streaked onto non-selective MA plates
512 and incubated overnight at 30°C. MA containing 5% sucrose was used for counterselection of the
513 vector. Chloramphenicol-sensitive clones were analyzed by PCR to confirm the gene replacement
514 (**Fig. S2**). All pAM4891-based complementation vectors were first electroporated into *E. coli* S17-
515 1, which was used as the conjugation donor for introducing vectors into Ab134 mutants.

516 Kanamycin (200 µg/mL) was used to select for the incoming plasmid and exconjugants were
517 confirmed by plasmid extraction and restriction digest.

518 **Swarming assays.** The protocol used was as we previously reported (10) with only minor
519 modifications as detailed under Supplementary Information.

520 **Pseudovibriamide extraction and analysis.** Pseudovibriamides were extracted in two ways
521 based on culture conditions. A) Swarming agar cultures were extracted with one volume (20 mL)
522 of methanol by sonicating for 1 h, after which the extract was filtered through filter paper. B) Liquid
523 cultures were extracted by first capturing metabolites using XAD-7HP resin (Sigma-Aldrich), and
524 then extracting the resin with methanol. Methanol extracts were dried under reduced pressure
525 and stored at -20°C until analysis. See Supplementary Information for further details and for
526 pseudovibriamide extraction from cell pellet and supernatant. Extracts were analyzed by either
527 dried droplet MALDI-ToF MS or by UPLC-QToF-MS/MS as described under Supplementary
528 Information.

529 **RNA extraction and transcriptomics analyses.** The overall scheme is summarized in **Fig. S54**.

530 RNA was isolated from 24-h triplicate cultures using the RiboPure™-Bacteria kit (Thermo Fisher
531 Scientific) following the manufacturer's instructions. Purified RNA (**Table S8**) with RNA integrity
532 number > 8.0 were sent to SeqCenter (Pittsburgh, MA) for bacterial rRNA depletion RNA
533 sequencing using a NextSeq2000 sequencer giving 2×51bp reads. Demultiplexing, quality control,
534 and adapter trimming was performed with bcl-convert (v3.9.3). Raw Illumina reads of each sample
535 were mapped to the Ab134 whole genome (NCBI accession number GCA_018282095.1) using
536 Geneious. Expression levels (FPKM, RPKM, and TPM) were calculated (all contigs at once) with
537 the option that ambiguously mapped reads were counted as partial matches. Pairwise differential
538 expression analysis was performed by using DESeq2 package in Geneious or using TPM values
539 to calculate FC directly (FDR was calculated using Benjamini-Hochberg function in R studio). The
540 eggno-g-mapper V2.0 was used to perform functional annotation based on Clusters of
541 Orthologous Genes (COGs) (46). Further analysis of DE gene function was performed using

542 Basic Local Alignment Search Tool (BLAST) (47–50), Phyre2 protein fold recognition (21) and
543 contrastive learning-enabled enzyme annotation (CLEAN) (22). See Supplementary Information
544 for further details.

545 **Data availability.** RNA-seq data was deposited at NCBI (accession code XXXXXXX – pending
546 assignment).

547

548 **Acknowledgments**

549 We thank Dr. D. Schneider (Grenoble Alpes University) for vector pDS132, Dr. V. de Lorenzo
550 (SEVA collection) for pSEVA227M, Dr. S. Golden (Addgene plasmid #120080) for pAM4891, and
551 Dr. F. Thompson (Federal University of Rio de Janeiro) for the *P. brasiliensis* Ab134 strain.
552 Financial support for this work was provided by the Division of Integrative Organismal Systems of
553 the National Science Foundation under grant 1917492 (to ASE), and by FAPESP scholarships
554 2016/05133-7 and 2018/10742-8 (to LPI).

555

556 **Author contributions:** Y.D. generated in-frame deletion mutants of *pppADGKLM*, with help from
557 I.M. and L.A. for three of the mutants. V.L. generated in-frame deletion mutants of *pppEF* and
558 L.P.I. generated in-frame deletion mutants of *pppHIJ*. Y.D. performed genetic complementation
559 of Δ *pppEFGHIJ* mutants, with the help from D.A. who constructed plasmids for Δ *pppHIJ*. V.L.
560 performed genetic complementation of the Δ *pppK* mutant. Y.D. and V.L. performed LC-MS
561 analyses. Y.D. performed swarming assays, with the help from V.L. for the Δ *pppF* mutant. Y.D.
562 extracted RNA and performed transcriptomics analyses. A.S.E and Y.D. designed experiments.
563 A.S.E. obtained funding for the project and advised Y.D., V.L., L.P.I., D.A.S., I.M., and L.A.
564 R.G.S.B. advised L.P.I. Y.D. advised V.L., D.A.S. I.M., and L.A. with vector construction and/or
565 mutant generation. Y.D. wrote the initial paper draft. A.S.E. wrote the final paper. All authors
566 commented on and approved the manuscript.

567 **References**

- 568 1. Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TCG, Hentschel U. 2022.
569 Symbiont transmission in marine sponges: reproduction, development, and
570 metamorphosis. *BMC Biol* 20:100.
- 571 2. Pawlik JR, McMurray SE. 2020. The emerging ecological and biogeochemical importance
572 of sponges on coral reefs. *Ann Rev Mar Sci* 12:315–337.
- 573 3. de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM,
574 Admiraal W. 2013. Surviving in a marine desert: the sponge loop retains resources within
575 coral reefs. *Science* 342:108–10.
- 576 4. Pita L, Rix L, Slaby BM, Franke A, Hentschel U. 2018. The sponge holobiont in a changing
577 ocean: from microbes to ecosystems. *Microbiome* 6:46.
- 578 5. Hentschel U, Usher KM, Taylor MW. 2006. Marine sponges as microbial fermenters. *FEMS
579 Microbiol Ecol* 55:167–177.
- 580 6. Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms:
581 evolution, ecology, and biotechnological potential. *Microbiol Mol Biol Rev* 71:295–347.
- 582 7. Romano S. 2018. Ecology and biotechnological potential of bacteria belonging to the genus
583 *Pseudovibrio*. *Appl Environ Microbiol* 84.
- 584 8. Enticknap JJ, Kelly M, Peraud O, Hill RT. 2006. Characterization of a culturable
585 alphaproteobacterial symbiont common to many marine sponges and evidence for vertical
586 transmission via sponge larvae. *Appl Environ Microbiol* 72:3724–32.
- 587 9. Kearns DB. 2010. A field guide to bacterial swarming motility. *Nat Rev Microbiol* 8:634–
588 644.
- 589 10. Ióca LP, Dai Y, Kunakom S, Diaz-Espinosa J, Krunic A, Crnkovic CM, Orjala J, Sanchez
590 LM, Ferreira AG, Berlinck RGS, Eustáquio AS. 2021. A family of nonribosomal peptides

591 modulate collective behavior in *Pseudovibrio* bacteria isolated from marine sponges.

592 Angew Chem Int Ed Engl 60:15891–15898.

593 11. Rua CPJ, Trindade-Silva AE, Appolinario LR, Venas TM, Garcia GD, Carvalho LS, Lima A,

594 Kruger R, Pereira RC, Berlinck RGS, Valle RAB, Thompson CC, Thompson F. 2014.

595 Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the

596 endemic marine sponge *Arenosclera brasiliensis*. PeerJ 2:e419.

597 12. Zhong W, Aiosa N, Deutsch JM, Garg N, Agarwal V. 2023. Pseudobulbiferamides:

598 Plasmid-encoded ureidopeptide natural products with biosynthetic gene clusters shared

599 among marine bacteria of different genera. J Nat Prod 86:2414–2420.

600 13. Inès M, Dhouha G. 2015. Lipopeptide surfactants: Production, recovery and pore forming

601 capacity. Peptides (NY) 71:100–112.

602 14. Höfer I, Crüsemann M, Radzom M, Geers B, Flachhaar D, Cai X, Zeeck A, Piel J. 2011.

603 Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling

604 metabolite. Chem Biol 18:381–91.

605 15. Luo C, Liu X, Zhou H, Wang X, Chen Z. 2015. Nonribosomal peptide synthase gene

606 clusters for lipopeptide biosynthesis in *Bacillus subtilis* 916 and their phenotypic functions.

607 Appl Environ Microbiol 81:422–431.

608 16. González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V, López-

609 Bucio J, Campos-García J. 2017. Non-ribosomal peptide synthases from *Pseudomonas*

610 *aeruginosa* play a role in cyclodipeptide biosynthesis, quorum-sensing regulation, and root

611 development in a plant host. Microb Ecol 73:616–629.

612 17. Kretsch AM, Morgan GL, Acken KA, Barr SA, Li B. 2021. *Pseudomonas* virulence factor

613 pathway synthesizes autoinducers that regulate the secretome of a pathogen. ACS Chem

614 Biol 16:501–509.

615 18. Strickland KC, Hoeferlin LA, Oleinik N V., Krupenko NI, Krupenko SA. 2010. Acyl carrier
616 protein-specific 4'-phosphopantetheinyl transferase activates 10-formyltetrahydrofolate
617 dehydrogenase. *J Biol Chem* 285:1627–1633.

618 19. Heathcote ML, Staunton J, Leadlay PF. 2001. Role of type II thioesterases: evidence for
619 removal of short acyl chains produced by aberrant decarboxylation of chain extender units.
620 *Chem Biol* 8:207–220.

621 20. Schwarzer D, Mootz HD, Linne U, Marahiel MA. 2002. Regeneration of misprimed
622 nonribosomal peptide synthetases by type II thioesterases. *Proc Natl Acad Sci U S A*
623 99:14083–8.

624 21. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal
625 for protein modeling, prediction and analysis. *Nat Protoc* 10:845–58.

626 22. Yu T, Cui H, Li JC, Luo Y, Jiang G, Zhao H. 2023. Enzyme function prediction using
627 contrastive learning. *Science* 379:1358–1363.

628 23. Jia B, Jia X, Kim KH, Jeon CO. 2017. Integrative view of 2-oxoglutarate/Fe(II)-dependent
629 oxygenase diversity and functions in bacteria. *Biochim Biophys Acta Gen Subj* 1861:323–
630 334.

631 24. Nikolic N. 2019. Autoregulation of bacterial gene expression: lessons from the MazEF
632 toxin-antitoxin system. *Curr Genet* 65:133–138.

633 25. Tremblay J, Déziel E. 2010. Gene expression in *Pseudomonas aeruginosa* swarming
634 motility. *BMC Genomics* 11:587.

635 26. Häse CC, Fedorova ND, Galperin MY, Dibrov PA. 2001. Sodium ion cycle in bacterial
636 pathogens: evidence from cross-genome comparisons. *Microbiol Mol Biol Rev* 65:353–70,
637 table of contents.

638 27. Kojima S, Yamamoto K, Kawagishi I, Homma M. 1999. The polar flagellar motor of *Vibrio*
639 *cholerae* is driven by an Na⁺ motive force. *J Bacteriol* 181:1927–30.

640 28. Bogachev A V, Murtasina RA, Shestopalov AI, Skulachev VP. 1993. The role of protonic
641 and sodium potentials in the motility of *E. coli* and *Bacillus* FTU. *Biochim Biophys Acta*
642 1142:321–6.

643 29. McLennan AG. 2006. The Nudix hydrolase superfamily. *Cell Mol Life Sci* 63:123–43.

644 30. Treffers HP, Spinelli V, Belser NO. 1954. A factor (or mutator gene) influencing mutation
645 rates in *Escherichia coli*. *Proc Natl Acad Sci U S A* 40:1064–1071.

646 31. Oliver A, Sánchez JM, Blázquez J. 2002. Characterization of the GO system of
647 *Pseudomonas aeruginosa*. *FEMS Microbiol Lett* 217:31–5.

648 32. Sanders LH, Sudhakaran J, Sutton MD. 2009. The GO system prevents ROS-induced
649 mutagenesis and killing in *Pseudomonas aeruginosa*. *FEMS Microbiol Lett* 294:89–96.

650 33. Drabinska J, Ziecina M, Modzelan M, Jagura-Burdzy G, Kraszewska E. 2020. Individual
651 Nudix hydrolases affect diverse features of *Pseudomonas aeruginosa*. *Microbiology Open*
652 9:e1052.

653 34. Giltner CL, Nguyen Y, Burrows LL. 2012. Type IV pilin proteins: Versatile molecular
654 modules. *Microbiol Mol Biol Rev* 76:740–772.

655 35. Köhler T, Curty LK, Barja F, van Delden C, Pechère J-C. 2000. Swarming of *Pseudomonas*
656 *aeruginosa* is dependent on cell-to-cell signaling and requires flagella and pili. *J Bacteriol*
657 182:5990–5996.

658 36. Zhang Y, Liu H, Gu D, Lu X, Zhou X, Xia X. 2020. Transcriptomic analysis of PhoR reveals
659 its role in regulation of swarming motility and T3SS expression in *Vibrio parahaemolyticus*.
660 *Microbiol Res* 235:126448.

661 37. Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI
662 family of cell density-responsive transcriptional regulators. *J Bacteriol* 176:269–75.

663 38. Weng L-X, Yang Y-X, Zhang Y-Q, Wang L-H. 2014. A new synthetic ligand that activates
664 QscR and blocks antibiotic-tolerant biofilm formation in *Pseudomonas aeruginosa*. *Appl*
665 *Microbiol Biotechnol* 98:2565–72.

666 39. Weeks JN, Galindo CL, Drake KL, Adams GL, Garner HR, Ficht TA. 2010. *Brucella*
667 *melitensis* VjbR and C12-HSL regulons: contributions of the *N*-dodecanoyl homoserine
668 lactone signaling molecule and LuxR homologue VjbR to gene expression. *BMC Microbiol*
669 10:167.

670 40. Chanasit W, Gonzaga ZJC, Rehm BHA. 2020. Analysis of the alginate O-acetylation
671 machinery in *Pseudomonas aeruginosa*. *Appl Microbiol Biotechnol* 104:2179–2191.

672 41. Evans C, Hardin J, Stoebel DM. 2018. Selecting between-sample RNA-Seq normalization
673 methods from the perspective of their assumptions. *Brief Bioinform* 19:776–792.

674 42. Abrams ZB, Johnson TS, Huang K, Payne PRO, Coombes K. 2019. A protocol to evaluate
675 RNA sequencing normalization methods. *BMC Bioinformatics* 20:679.

676 43. Philippe N, Alcaraz J-P, Coursange E, Geiselmann J, Schneider D. 2004. Improvement of
677 pCVD442, a suicide plasmid for gene allele exchange in bacteria. *Plasmid* 51:246–55.

678 44. Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de Las Heras
679 A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de Lorenzo V. 2013.
680 The Standard European Vector Architecture (SEVA): a coherent platform for the analysis
681 and deployment of complex prokaryotic phenotypes. *Nucleic Acids Res* 41:D666-75.

682 45. Taton A, Unglaub F, Wright NE, Zeng WY, Paz-Yepes J, Brahamsha B, Palenik B,
683 Peterson TC, Haerizadeh F, Golden SS, Golden JW. 2014. Broad-host-range vector
684 system for synthetic biology and biotechnology in cyanobacteria. *Nucleic Acids Res*
685 42:e136.

686 46. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-
687 mapper v2: Functional annotation, orthology assignments, and domain prediction at the
688 metagenomic scale. *Mol Biol Evol* 38:5825–5829.

689 47. Needleman SB, Wunsch CD. 1970. A general method applicable to the search for
690 similarities in the amino acid sequence of two proteins. *J Mol Biol* 48:443–453.

691 48. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search
692 tool. *J Mol Biol* 215:403–10.

693 49. Geer LY, Domrachev M, Lipman DJ, Bryant SH. 2002. CDART: protein homology by
694 domain architecture. *Genome Res* 12:1619–23.

695 50. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI,
696 Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki
697 CJ, Marchler-Bauer A. 2020. CDD/SPARCLE: the conserved domain database in 2020.
698 *Nucleic Acids Res* 48:D265–D268.

699