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Abstract18

Senescence is a cell-intrinsic tumour suppressive response. A one-two-punch19

cancer treatment strategy aims to induce senescence in cancerous cells before20

removing them with a senolytic. It is important to accurately recognise senes-21

cent cells to investigate the feasibility of such a treatment strategy and identify22

compounds that induce senescence in cancer. We focus specifically on the ter-23

minal brain cancer glioblastoma, firstly identifying senescent glioblastoma cells24

with conventional stains, before training a machine learning model to distin-25

guish senescent cells using only a DAPI nuclear stain. To demonstrate how our26

method can aid drug discovery, we apply our pipeline to existing glioblastoma27

high-throughput phenotypic drug screening imaging data to identify compounds28

that induce senescence in glioblastoma and verify these predictions experimen-29

tally.30
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Author Summary31

Damaged cells can enter a senescent cell state, in which they do not divide, but32

continue to interact with the environment around them. A novel potential can-33

cer treatment strategy is to make tumor cells senescent, before removing senes-34

cent cancer cells with a targeted drug. To investigate this treatment strategy in35

the brain cancer glioblastoma, it is important to be able to accurately recognise36

senescent glioblastoma cells. As identifying senescent cells is challenging, we37

create a machine learning pipeline which can detect senescent glioblastoma cells38

in imaging data. We show that by applying our method to existing data we39

can discover compounds that induce senescence in glioblastoma. We verify our40

predictions by testing the compounds experimentally.41
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1 Introduction44

Senescent cells play a significant role in human ageing and disease. Charac-45

terised as a metabolically active state of proliferative arrest, senescence was46

first described in 1961 [1] and later identified as a cell-intrinsic tumour suppres-47

sor mechanism[2, 3]. More recently, pro-tumorigenic roles for senescent cells48

have been suggested, where they contribute towards an inflammatory tumour49

microenvironment (TME) [4, 5, 6].50

Without a universal marker for senescent cells, a combination of common51

markers has been used for classification [7]. The absence of long-term BrdU in-52

corporation is used to demonstrate proliferative arrest. Increased expression of53

p16 or p21 [8], a loss of laminB1 [9] and the presence of senescence-associated-β-54

galactosidase (SABG) [10, 11] have been used to identify senescent cells through55

imaging. Senescent cells and nuclei often display specific morphological pheno-56

types [12, 13, 14, 15].57

Primary glioblastoma (GBM) is the most common and aggressive type of58

primary brain cancer in adults, with a median survival time of 15 months [16,59

17]. The treatment for GBM is surgical resection followed by chemotherapy60

and radiotherapy [18]. However, even with treatment, cancer reoccurs. Both61

radiotherapy and chemotherapy have been found to induce senescence in GBM62

cells [19, 20], and although there is mounting evidence that senescence burden63

leads to poorer outcomes for GBM patients [21, 22], we currently do not under-64

stand the role of senescence in treatment. Furthermore, primary GBM tumours65

show a mutational spectrum consistent with senescence escape, with frequent66

mutations in the TERT promoter and CDKN2A, indicating that escape from67

senescence likely plays a role in the etiology of GBM [23].68

Recently, a “one-two-punch” strategy for cancer treatment has gained pop-69

ularity (Fig. 1a) [24, 25]. The treatment aims to induce senescence, specifically70

in tumour cells, before killing these cells with a senolytic. A one-two-punch71

strategy has the potential to not only be an effective treatment but also to72

reduce the likelihood of recurrence by preventing senescent cells from contribut-73

ing towards a protumorigenic microenvironment [26]. Evidence suggests that a74

one-two-punch strategy may work in the brain, as senolytics have been shown75

to effectively remove senescent cells after radiation treatment [26].76

Increasingly, a combination of high-throughput drug screening and machine77

learning is used to advance drug discovery [27, 28]. In vitro cell lines are treated78

with libraries of small-molecule compounds, and high-content imaging is used79

to automatically acquire images of cells after treatment [29]. Pipelines capable80

of analysing a large number of images search for compounds which lead to cell81

death or phenotypic change, by first performing in-depth image processing [30]82

and then applying machine learning algorithms [31]. These “hit” compounds83

are investigated further to determine if they can be used therapeutically.84

Two recent papers have used DAPI and machine learning techniques to85

quantify senescence. The first used deep learning methods [12], and the second86

used feature extraction followed by random forest and tree-based classifiers [32].87

Although these methods claim to generalise well across cell types and to be ap-88
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plicable in vivo, for the greatest accuracy, they must be trained on the cell type89

that they will be used on. Given the heterogeneity in the mutational spectrum90

and morphology of the GBM cell lines, we developed a GBM-specific senescence91

classifier using only features obtained from DAPI staining, enabling us to use92

existing imaging datasets to search for compounds which induce senescence in93

GBM.94

Using cell labelling with multiple stains to identify senescence in GBM is a95

complicated, multi-step process that lacks clarity in results and reproducibility.96

A single method of senescence classification will ensure that senescent cells in97

vitro can be identified easily and in a cost-effective manner for high throughput98

screening, potentially aiding in the discovery of drugs that induce senescence in99

glioblastoma. In this paper, we identify senescent GBM cells in four patient-100

derived GBM cell lines using laminB1 and p21 stains to create a unique training101

set. We develop a novel GBM senescence classifier which can be applied to exist-102

ing drug screening resources. As an example, we apply our pipeline to reanalyse103

existing image-based high-throughput drug screening data, identifying several104

compounds as senescence-inducing. Of these compounds, a significant fraction105

are glucocorticoids (GCs). While glucocorticoids are involved in GBM treat-106

ment, there are conflicting reports of whether they help or hinder tumour pro-107

gression. Similarly, the mechanism of GC crosstalk with GBM remains poorly108

understood, such as whether their action is on the environment or the tumour109

cells. Our data indicates a direct interaction of GBM cells and GCs through110

the induction of senescence [33, 34].111
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Figure 1: A pipeline to identify senescent glioblastoma cells. a) A “one-
two-punch” strategy can drive cells into senescence before eliminating them. b)
An outline of our experimental procedure: we induced senescence with radiation
before IF staining the cells.
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Figure 1: c) An example of the p21, laminB1 and DAPI stain, the yellow arrow
points to a non-senescent cell with lower p21 and higher laminB1 expression. d)
The fraction of cells positive for SABG and EdU incorporation in the control
and post-radiation. e) An example of the loss of laminB1 and gain of p21
post-radiation. f) An overview of our cell identification and machine learning
pipeline.

2 Results112

We used radiation (6Gy, x-ray) to induce senescence in four patient-derived113

glioblastoma cell lines (E55, E57, E31, and E53, see Table 1) before using an114

immunofluorescence (IF) stain for laminB1 (LMNB1), cyclin-dependent kinase115

inhibitor p21 (p21), and DAPI (Fig. 1b and c). We confirm senescence post-116

radiation with EdU incorporation and SABG staining in addition to laminB1117

and p21 (Fig. 1d). We extracted over 300 quantitative features per cell relating118

to the p21, laminB1 and DAPI stain in both the irradiated and control cells119

using a CellProfiler image analysis pipeline (Fig. 1c and e), which is described120

in detail in the Methods (Section 4). Features quantify the size and shape of121

the nucleus in addition to the intensity of all three stains.122

Senescent glioblastoma cells can be characterised by the123

loss of laminB1 and the gain of p21124

After pre-processing and normalising the data (Section 4, Methods), we sought125

to identify cells as senescent based on the increased p21 expression and loss of126

laminB1. LaminB1 is predominantly expressed in the nuclear envelope and is127

observed as a high-intensity ring around the nuclear perimeter (Fig. 2a), whereas128

p21 is expressed predominantly in the nucleus.129

Each cell line was processed independently as they expressed differing basal130

levels of p21 and laminB1. This difference in basal and post-radiation expression131

was unsurprising, as GBM is a highly heterogeneous cancer. The four cell lines132

were morphologically distinct, even by phase microscope imaging, where they133

could be easily distinguished under the microscope and had differing division134

rates.135

In three of the four cell lines, we saw a loss of laminB1 and up-regulation136

of p21 in a subset of cells after radiation (Fig. 2b), with the most apparent137

distinction in cell line E31. We do not see clear changes in the quantitative138

values of intensity of laminB1 and p21 extracted from the CellProfiler pipeline139

for cell line E55 (Fig. 2a). However, EdU incorporation and SABG staining140

suggest that almost all E55 cells become senescent after radiation (Fig. 1d).141

For cell lines E31, E53, and E57, we used a threshold in our metrics for p21142

and laminB1 to select a subset of cells that showed low expression of laminB1143

and high expression of p21 (Section 4.3.7); these were classified as senescent144

(Fig. 2b). In the same way, non-senescent cells were identified as cells with145

high laminB1 expression and low p21 expression (Fig. 2b). For E55, based on146
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the SABG staining and EdU incorporation, we classified all radiated cells as147

senescent.148
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Figure 2: Identifying senescent glioblastoma cells from nuclear mor-
phology. a) Upper panels show the laminB1 stain for control (left) and irradi-
ated (right) E31 cells. Lower panels show the amount of stain in each segment
of the nucleus. The orange line shows the nucleus identified by the DAPI stain,
and the pink line is the expanded area used to identify the laminB1 stain.

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587883
http://creativecommons.org/licenses/by/4.0/


Figure 2: b) Identification of senescent and non-senescent cells based on the
laminB1 and p21 stain. Control cells are blue and irradiated in red; grey boxes
show the classification threshold. c) The predicted senescence score per cell for
the test dataset, with cells coloured red if they were identified as senescent based
on the levels of p21 and laminB1 and ordered by predicted senescence score. d)
The ROC curve for the SVM trained using only the cells identified as senescent
and non-senescent and applied to all cells.

Senescent glioblastoma cells can be identified with machine149

learning methods using only a DAPI stain150

Using the subset of cells that we had identified to be senescent from the lam-151

inB1 and p21 stain, we trained several machine-learning models using only the152

features extracted from the DAPI staining of the cells (∼ 100, features relating153

to the laminB1 and p21 stains were discarded). To account for uncertainty as-154

sociated with the senescence classification, we chose methods that would also155

output the probability that a cell is senescent.156

We used three supervised machine learning methods: a support vector ma-157

chine (SVM), adaptive boosting (AdaBoost), and a boosted decision tree. Ini-158

tially, we considered each cell line separately, training the classifier on a subset159

(50%, justified in Fig. S2b) of the data for each cell line and testing the classi-160

fier on the remaining cells. We found that all three models perform well across161

all four cell lines (Table S2, Table S3). To allow our model to be easily ap-162

plied to feature data from other CellProfiler pipelines, we reduced the number163

of features used by the model to 30 features commonly extracted by most Cell-164

Profiler pipelines (Table S4); this did not adversely impact the performance of165

our models.166

As we trained our classifiers with only a subset of senescent cells, those167

with the highest p21 and lowest laminB1 expression, we assume that we have168

underestimated the number of senescent cells in the training set. There will169

likely be a population of cells not initially labelled as senescent based on the170

intensity of laminB1 and p21 that are senescent and, therefore, have a senescent-171

like nuclear morphology. This was reflected in the large drop in precision (out172

of those cells predicted to be senescent, how many are senescent based on the173

laminB1 and p21 stain) when the models were tested on all cells.174

All three classifiers return a score indicating the likelihood that a given cell175

is senescent, and the performance of each model when trained and tested on176

E31 is summarised in Table S3. For the remaining analysis, we used the SVM177

classification as it performed best in all metrics over all cell lines and returned178

a distribution of senescence scores with few outliers (Fig. 2c).179

For all cell lines, cells classified as senescent by the laminB1 and p21 stain180

have a higher senescence prediction score in the test set (Fig. 2c). Of the three181

cell lines in which we could quantify a change in p21 and laminB1 expression,182

the SVM trained and tested on cell line E31 performs best (an AUC of 0.82, vs.183

0.75, Fig. 2d). This is unsurprising given the large change in p21 and laminB1184
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post-irradiation in cell line E31, suggesting that E31 undergoes a more distinct185

senescence transition. Furthermore, we find that in a t-distributed stochastic186

neighbour embedding (t-SNE) reduction of the DAPI feature data for cell line187

E31, the location of cells with higher predicted senescence scores matches the188

location of cells classified as senescent by laminB1 and p21 (Fig. S1, a and b).189

To test the cell line specificity of our model, we trained and tested an SVM on190

a mixture of cells from all four cell lines. We evaluated the overall performance191

of this more general model and found that the performance was worse (AUC of192

0.69), as expected, due to patient heterogeneity. The performance of the SVM193

on each cell line is given in Table S2.194

These results indicate that our classifier can accurately identify senescent195

GBM cells from their nuclear morphology.196

Comparison of nuclear features of senescent GBM cells to known197

features of senescence198

Previous studies have identified nuclear changes in fibroblasts with senescence199

through feature extraction [13], and deep learning models [12]. In fibroblasts,200

cells become larger in area and show changes to the nuclear envelope, with201

one study also showing that senescent cells have a larger convexity (a ratio of202

context hull perimeter to perimeter, a measure of how jagged the nuclear mem-203

brane is). However, morphological changes are known to be cell line-dependent;204

considering GBM cells are mutated in several senescence pathways, we did not205

necessarily expect our cell lines to behave in the same way as karyotypically206

normal fibroblasts.207

We used two algorithms to identify the importance of each feature in the208

SVM model trained on cell lines E31 and E57 (Fig. S3). First, using a permuta-209

tion importance algorithm [35], we found that across the cell lines, the most im-210

portant features are related to nuclear size and shape (e.g. “areashape compactness”,211

a measure distinguishing between nuclei that resemble filled circles, and irregular212

or irregularly stained nuclei) or the edge intensity of the DAPI stain (describ-213

ing the nuclear envelope)(Fig. S3a). This suggests that we saw some of the214

morphological changes previously described in fibroblasts.215

Using a game-theory-based approach (calculating SHAP values, SHapley216

Additive exPlanations [36]), we found that the three most important features217

were related to the intensity of the DAPI stain, not the nuclear size (Fig. S3b).218

However, we saw that cells with a larger nuclear extent and compactness and219

with a lower form factor and solidity are more likely to be senescent (Table S4),220

supporting the idea that senescent cells are more irregular or jagged in shape.221

Application to drug screening datasets to identify com-222

pounds inducing senescence223

To find compounds that induce senescence in GBM cells, we applied our clas-224

sification pipeline to the data generated in high-throughput drug screening ex-225

periments in which two of our four initial cell lines, E31 and E57, were used.226
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The cells were treated with compounds from two drug libraries, Targetmol (384227

compounds, 4 concentrations) and LOPAC (1280 compounds, 2 concentrations),228

for 72 hours before the cells were fixed and stained with DAPI as part of a cell229

painting assay (Section 4).230

We applied our machine learning pipeline to feature extraction data from the231

drug screening experiment, as raw images had already been processed with a232

CellProfiler pipeline. We calculated the mean senescence score for cells treated233

with each compound and the fraction of cells identified as senescent for each234

compound (Fig. 3a). Some compounds killed GBM cells, resulting in fewer live235

cells at the end of the treatment. For smaller total cell numbers, we expect to see236

a greater variance in the average senescence score per compound. Therefore, we237

used bootstrapping to calculate a cell number-dependent significance threshold238

(Fig. 3a green points, details in Section 4.4.3). Compounds that exceeded this239

threshold (Fig. 3a), both in average senescence score and the fraction of senes-240

cent cells for both cell lines, were classified as potential inducers of senescence.241

Compounds can be grouped into positive controls (genotoxic compounds242

known to induce senescence, such as etoposide), test compounds, negative con-243

trols (DMSO, the solvent used for all compounds), and cell-killing controls (pa-244

clitaxel (PAC), a microtubule-stabilizing agent that arrests cells in mitosis and245

can lead to cell death). We expected small concentrations of DMSO to neither246

reduce the number of cells (by causing cell death) nor induce senescence in cells,247

which was confirmed in our data (Fig. 3b, magenta points). The cell-killing con-248

trol PAC killed glioblastoma cells and increased the senescence score (Fig. 3b,249

red points). Although evidence suggests that PAC kills glioblastoma cells, there250

is currently no evidence in the literature that PAC induces senescence or leads251

to morphological cell changes.252

We chose to investigate compounds that caused a significant increase in the253

senescence score without killing large numbers of cells (Fig. 3a, orange points).254

Focusing on non-cytotoxic compounds, we identified senescence inducers that255

may be used as part of a one-two-punch treatment.256

We identified approximately 20 candidates for senescence-inducing com-257

pounds in the cell lines E31 and E57; several were GCs (Table S1). However, it is258

also worth noting that some GCs seem to increase the number of glioblastoma259

cells in the drug-screening datasets. Of the four compounds in the LOPAC260

library that increased the cell number to above 1500 and induced significant261

levels of senescence in E31 (Fig. 3b, lower right plot, orange), three are GCs,262

suggesting that GCs may increase GBM cell proliferation (Fig. S5a).263

To verify that the results are unaffected by small changes in the CellProfiler264

pipeline and, therefore, the feature extraction, we re-processed a selection of raw265

images taken as part of the drug screening experiments. We ran our CellProfiler266

pipeline on the images corresponding to two compounds of interest, and one267

DMSO control, extracting ∼ 100 DAPI features (not just the 30 features used268

in the simplified model), before determining the senescence score associated269

with each cell (Fig. S4c). We see significantly elevated levels of senescence in270

the compounds of interest compared to the DMSO control.271

One GC of interest is dexamethasone, a compound often used in GBM treat-272
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ment to reduce brain edema and inflammation and significantly improve patient273

quality of life. The effect of dexamethasone on GBM cells is an area of active274

research [33], with some studies suggesting that it may lead to increased cell275

proliferation, migration, and therapy resistance. Although no specific link has276

been made between dexamethasone and senescence in GBM cells (it has been277

found to induce senescence in lung epithelial cells [37]), it has been reported278

that dexamethasone induces p21 expression and inhibits apoptosis. If dexam-279

ethasone induces senescence in GBM cells, this may explain both the chemo-280

and radio-resistance and negative effects on survival rates if these senescent cells281

help to create a protumorigenic TME.282

We found that both dexamethasone and dexamethasone acetate produced283

similar senescence scores in our two cell lines. Furthermore, other chemically284

similar compounds produced similar senescence scores, suggesting our pipeline285

worked as intended. To determine if our pipeline can identify senescence in-286

duction due to a range of chemically distinct compounds, we represented our287

compounds using the Simplified Molecular Input Line Entry System (SMILES).288

We performed dimensionality reduction of these chemical features with UMAP.289

We found that senescence-inducing compounds identified by our machine learn-290

ing method were chemically diverse (Fig. S4b).291
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a

b

c

Figure 3: Using the machine learning model to identify senescent cells
from drug screening. a) Average senescence score for compounds from the
targetmol library, applied to cell line E31, showing the bootstrapped derived 4
standard deviations from the DMSO mean in green.
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Figure 3: b) Senescence scores with interesting compounds identified (orange),
and DMSO controls, PAC, and Etoposide are highlighted. c) Senescence scores
of compounds verified in the lab, with data points 4 standard deviations above
the DMSO mean highlighted in red.

Laboratory verification of senescence induction292

To test the performance of our machine-learning model, we chose four of the293

compounds that were predicted to be senescence-inducing to test in the lab294

(dexamethasone, PD153035, palbociclib hydroxide, and budesonide), alongside295

two positive controls (temozolomide and etoposide). Etoposide, a topoisomerase296

II inhibitor, is commonly used to induce senescence in many cell lines [32], and297

significant evidence now shows that the current standard of care chemotherapy298

drug to treat glioblastoma, temozolomide, induces senescence in GBM cells [20].299

The concentrations of these compounds predicted to give the maximum300

senescence induction were used in the experiment (Table 2, Fig. S5b). To repli-301

cate the conditions of the drug screening experiments, compounds were applied302

for 72 before cells were fixed and stained.303

For simplicity, we used only cell line E31 and stained for p21 to indicate304

senescence. In all six of these compounds, we see an increase in p21 intensity305

compared to the control cells, which were treated only with DMSO (Fig. 4a).306

This increase was significant for all compounds. However, the effect size differed307

between compounds, with the largest change in etoposide-treated cells (a 2.52308

fold-change in p21 expression, compared to a 1.52 fold-change in dexametha-309

sone). Using a threshold (arbitrary) in p21 expression to determine senescence,310

we found that all compounds also showed a significant increase in the number311

of senescent cells observed (Fig. 4b). The largest increase in the mean intensity312

of p21 per cell and the fraction of senescent cells was in etoposide, as predicted313

by our model (Fig. 3c).314

All compounds led to a small increase in cell size (Fig. 4c). However, the315

changes in cell size observed did not correlate with the changes in p21 expression,316

supporting the conclusion that simple measures of morphological change are317

insufficient to predict senescence. Furthermore, only one of the compounds318

tested, dexamethasone, appeared to cause increased proliferation of the GBM319

cells (Fig. 4d), and this increase was small (fold-change of 1.23).320

3 Discussion321

Glioblastoma is a cancer of unmet need. Although understanding of this cancer322

has improved in the last decade, this has not translated into new therapeutic323

options. Senescence is heavily implicated in GBM progression, with several324

recent studies showing that a higher senescence burden before treatment can325

lead to poorer patient outcomes and that chemotherapy and radiotherapy lead to326

therapy-induced senescence in GBM. Furthermore, nearly all GBMs are mutated327

in pathways associated with senescence, indicating that although GBM cells can328
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become senescent, the senescent phenotype is likely to differ from the senescence329

observed in healthy cells.330

With an increased understanding of senescence in GBM, it may be possible331

to leverage therapy-induced senescence as part of a one-two-punch strategy, first332

inducing senescence specifically in GBM cells before clearing these cells with a333

senolytic. To do this, we need an effective way of identifying senescent GBM334

cells and drugs that induce senescence in GBM.335

We have created a dataset containing images of four GBM patient-derived336

cell lines with and without radiation treatment. We identify senescent cells337

through immunocytochemistry p21 and laminB1 staining and develop a machine-338

learning pipeline to identify senescent GBM cells based only on a DAPI nuclear339

stain. Applying our pipeline to high-throughput drug screening data, we identi-340

fied 20 compounds that we predict induce senescence in GBM cells. Our pipeline341

can be applied to any GBM in vitro imaging data with a DAPI stain, allowing342

existing high throughput drug screening data to be used to its full potential to343

explore the senescent phenotype.344

For example, our machine-learning model identifies dexamethasone (and sev-345

eral other GCs) as a compound that may cause senescence in GBM cells. How-346

ever, the high-throughput drug screening data also suggests that GCs may lead347

to increased proliferation in some GBM cell lines.348

We tested four of our hit compounds in vitro. We found that all compounds349

increased p21 expression in cell line E31. While the increase was significant for350

all compounds, the effect size varied, with the positive control etoposide leading351

to the largest change in p21 expression. Furthermore, only one of the compounds352

tested (dexamethasone) led to a small increase in cell proliferation, suggesting353

that senescence induction is not simply a result of increased proliferation and354

overcrowding and that GCs do not cause a significant increase in proliferation355

in this cell line.356

This study has several limitations. First, we only induce senescence through357

a single mechanism, radiation, and the senescence phenotype is known to vary358

between induction mechanisms. Second, we tested our classifier using a dataset359

in which GBM cells were treated with compounds for 72 hours before cells were360

fixed and stained. This may not be sufficient time for the senescence phenotype361

to fully develop.362

Furthermore, additional work will be needed to test hit compounds before363

they can be used in a one-two-punch treatment strategy. For example, showing364

that compounds induce senescence selectively in GBM cells, they do not affect365

healthy brain cells, and that the senescent cells can be removed with a senolytic.366

Investigation of the mechanism of action of hit compounds may help identify367

which cells are vulnerable to senescence induction.368

In summary, our findings demonstrate the potential of machine learning369

classifiers to be applied to determine distinct cellular states and responses to370

therapy to help in new drug discovery efforts for GBM.371

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587883
http://creativecommons.org/licenses/by/4.0/


a

b

c

d

Replicate 1
Replicate 2
Replicate 3
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Figure 4: Laboratory testing of potentially senescence-inducing com-
pounds. a) The normalised p21 intensity in each cell for each applied com-
pound. b) The fraction of senescence in each replicate (denoted by the colour of
points) for each applied compound. c) The mean size of cells in each replicate
(denoted by the colour of points) for each applied compound. d) The number of
cells per pixel (per unit area) in each replicate (denoted by the colour of points)
for each applied compound. 16
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4 Methods372

4.1 Key Resources Table373

REAGENT OR RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-LaminB1 antibody abcam Cat#ab16048
Goat Anti-Rabbit IgG (H+L), highly cross-
adsorbed, Hilyte Fluor™ 488-labeled

ANASPEC Cat#AS-61056-05-
H488

Anti-p21WAF1/Cip1antibody, Mouse mono-
clonal

Sigma-
Aldrich

Cat#P1484

Goat Anti-Mouse IgG (H+L), highly cross-
adsorbed, Hilyte Fluor™ 555-labeled

ANASPEC Cat#AS-61057-05-
H555

Chemicals, peptides, and recombinant proteins

Dulbecco’s modified eagle medium (DMEM)
with Ham’s F-12

Sigma-
Aldrich

Cat#D8437

D-(+)-Glucose solution Sigma-
Aldrich

Cat#G8644

MEM Non-Essential Amino Acids Solution
(100X)

Gibco Cat#11140-035

Penicillin-Streptomycin (10,000 U/mL) Gibco Cat#15140-122
Bovine Albumin Fraction V (7.5% solution) Gibco Cat#15260-037
2-Mercaptoethanol (50 mM) Gibco Cat#31350-010
B-27™ Supplement (50X), serum free Gibco Cat#17504-044
N-2 Supplement (100X) Gibco Cat#17502-048
Recombinant Murine EGF PeproTech Cat#315-09
Recombinant Human FGF-basic (154 a.a.) PeproTech Cat#100-18B
3-D Culture Matrix Laminin I Culturex Cat#3446-005-01
Accutase® Cell Detachment Solution BioLegend Cat#424201
Dimethyl sulfoxide (DMSO) Sigma-

Aldrich
Cat#D2650

Etoposide 10 mM (in 1mL DMSO) Apexbio Cat#A1971-APE
Palbociclib Hydrochloride Cambridge

LKT Labs
Cat#827022-32-2

Dexamethasone (Dex) Cell guid-
ance systems

Cat#50-02-2

Temozolomide Cayman
chemicals

Cat#85622-93-1

PD153035 (Hydrochloride) MedChem
Express

Cat#880813-42-3

Critical commercial assays

Click-iT™ EdU Alexa Fluor™ 647 HCS Assay Invitrogen Cat#C10356
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Deposited data

Experimental models: Cell lines

Human Glioma Stem Cells: E31, E53, E55,
E57

Steven Pol-
lard Lab,
Centre for
Regenerative
Medicine,
Edinburgh,
UK

N/A

Software and algorithms

CellProfiler v4.2.4 Open Source www.cellprofiler.org
Python v3.9

Other

RX-650 X-Ray Unit Faxitron Cat#43855D
Table 1: Key Resources Table

COMPOUND CONCENTRATION USED

Etoposide 0.1 µM
Palbociclib hydroxide 0.1 µM
Dexamethasone 0.1 µM
Temozolomide 10 µM
PD153035 hydrochloride 0.5 µM
Budesonide 0.5 microM

Table 2: Compound concentrations

4.2 Experimental Model and Subject Details374

The four glioblastoma cell lines were from The Pollard Lab at the Centre for Re-375

generative Medicine, University of Edinburgh. Patient-derived GSC lines were376

obtained from the Glioma Cellular Genetics Resource (https://gcgr.github.io),377

funded by a Cancer Research UK Accelerator Award (A21922).378

4.2.1 Cell Culture379

Cells were cultured in a complete media of DMEM/HAMS-F12 (Sigma-Aldrich)380

supplemented with Glucose solution (Sigma-Aldrich), MEMNEAA 100x (Gibco),381

Penicillin-Streptomycin (Gibco), Bovine Serum Albumin Solution 7.5% (Gibco),382

2-Mercaptoethanol (Gibco), B-27 supplement 50x (Gibco), N-2 supplement 100x383

(Gibco), human FGF (to a final concentration of 10 ng/ml)(Peprotech), murine384

EGF (to a final concentration of 10 ng/ml)(Peprotech), and laminin (to a fi-385

nal concentration of 2 ng/ml)(Culturex). For splitting, passaging, freezing, and386
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thawing, a wash media of DMEM/HAMS-F12 (Sigma) supplemented with Glu-387

cose (Sigma) and Penicillin-Streptomycin (Gibco) was used.388

The cells were grown in a complete media on CoStar Tissue Culture 25 cm2
389

(T25) plates and kept at 37 °C in 5% CO2-humidified incubators. Media was390

changed every 5-10 days if necessary, and cells were split or passaged every 5-10391

days, depending on the growth rate of the cell line. When passaging or splitting,392

cells were removed from their plates with Accutase solution (BioLegend). Cells393

were split 1:4 or 1:6 depending on the cell line.394

For temporary storage throughout the experiment, cells were suspended in395

a solution of 10% DMSO (Sigma-Aldrich) in wash media and kept at -80 °C in396

1 ml aliquots. Recovery times from freezing varied by cell line.397

For longer-term storage, cells were kept in liquid nitrogen.398

4.3 Method Details399

4.3.1 Irradiation400

Cells were irradiated with 6 Gray (Gy) using an RX-650 Faxitron X-ray unit.401

All cells were transported to the radiation unit, and non-radiated controls were402

kept out of the incubator for the same period of time as radiated cells. One day403

prior to irradiation, cells from a T25 plate at around 80-90% confluency were404

passaged and used to seed glass coverslips in 12-well plates at a dilution of 1:6.405

The media was changed 4 days after radiation.406

4.3.2 Immunofluorescence Staining407

Firstly, cells were fixed and permeabilised using 3.7% formaldehyde followed408

by 0.5% Triton X-100. Washed cells were then incubated with the primary409

antibody against laminB1 for 45 minutes in the dark at room temperature,410

followed by the secondary antibody under the same incubation conditions. This411

was repeated for the primary and secondary antibodies against p21. Between412

incubations, cells were washed three times with phosphate-buffered saline (PBS)413

with 0.1 % tween-20 (PBST). Cells were mounted using a mounting medium414

with DAPI (Vectashield).415

4.3.3 Compound testing416

Six compounds were tested to determine if they induced senescence as predicted417

by our classifier; four of these were strong hits from the classifier (dexametha-418

sone, PD153035, palbociclib hydroxide, budesonide), and two were positive con-419

trols (temozolomide and etoposide). DMSO was used as a negative control.420

One day prior to the application of compounds, cells from a T25 plate at421

around 80-90% confluency were passaged and used to seed glass coverslips in422

12-well plates at a dilution of 1:6. The compounds were applied to the cells423

for 72 hours (concentrations used are described in table 2, concentrations were424

reached through serial dilution in DMSO), after which the cells were fixed and425

stained. Staining for p21 was performed as described in section 4.3.2.426
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4.3.4 Fluorescence Microscopy427

Imaging was performed using an axioscan fluorescence microscope.428

4.3.5 High Content Feature Extraction429

A CellProfiler [38] pipeline was used to identify cells and quantify DAPI, lam-430

inB1 and p21 staining from fluorescent images. DAPI staining was used to431

create an object set of nuclei, which could be used to extract measurements432

across the DAPI, laminB1 and p21 image sets.433

Firstly, an illumination correction was carried out to remove uneven illumi-434

nation patterns in images using a median filter followed by a division function.435

Corrected images were termed CorrDAPI, CorrLaminB1, and CorrP21.436

Primary object identification was carried out using a manual threshold that437

varied by cell line from 0.001 to 0.003. To improve the consistency of the object438

identification module settings across images with varying background intensities,439

the mean intensity of CorrDAPI was subtracted from the image, and the output440

image was used for object identification. The objects identified were labelled as441

NucleiObject.442

NucleiObject was used to extract the nuclei’s size and shape features and per-443

object measurements of intensity, intensity distribution, texture, and granularity444

from CorrDAPI and CorrP21.445

Intensity measurements for CorrLaminB1 using NucleiObject failed to cap-446

ture the characteristic ring of laminB1 around the edge of the nucleus. To447

correct this, a second object set (DilatedNuclei 1) was created by dilating Nu-448

cleiObject with a size of 1. The DilatedNuclei 1 object set was used to extract449

the same measurements from CorrLaminB1.450

Masks of DilatedNuclei 1 on CorrDAPI, CorrLaminB1 and CorrP21 were451

used to measure the background intensity per image.452

The pipeline’s resulting output was a series of background intensity measure-453

ments per image and over 300 per-object measurements for DAPI, laminB1, and454

p21 staining, exported in a CSV file.455

4.3.6 Data Processing456

Data processing was performed in Python. Measurements from the CellProfiler457

pipeline were imported, and metadata and cell positional data were removed.458

Features related to the intensity of DAPI, p21, or laminB1 stains were459

rescaled using the background intensity levels of the image as a whole. For each460

cell, the mean background intensity was subtracted from intensity features.461

Objects (cells) that were outliers (above the 95% quantile, or below the 5%462

quantile) in more than 23% of features were removed. 23% was chosen using463

the “elbow” in a histogram of the number of outlying features per cell.464

To reduce the number of features per cell from over 300, only features that465

contained a large amount of variance were kept.466
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4.3.7 Identification of Senescent Cells from laminB1 and p21467

Cells above a manually derived threshold of mean p21 intensity and below a468

manually derived threshold for mean laminB1 intensity are classified as senes-469

cent. Conversely, those below a threshold in p21 and above a threshold in470

laminB1 are classified as non-senescent (Fig. 2c).471

4.3.8 Compound testing analysis472

After the experimental procedure described in Section 4.3.3, slides were images473

with the axioscan microscope. Nine images were taken per slide. Images were474

processed, and features were extracted using the CellProfiler pipeline described475

in Section 4.3.5. Results were normalised to account for variation in p21 in-476

tensity between the control (DMSO) slides so that the mode p21 intensity in477

each slide was 0. This normalisation relies on the assumption that there are478

significantly more non-senescent cells than senescent cells in each slide. This479

assumption is supported by the data shown in Figure S4a.480

4.3.9 Classifying Cells from DAPI Stain481

To identify cells as senescent based only on the DAPI stain, we created a feature482

matrix for each cell containing only features extracted from the DAPI stain.483

Each cell is labelled either senescent, not senescent, or unclassified, based on484

the thresholds described in section 4.3.7 and shown in figure 2c.485

We investigated three classification models (SVM, AdaBoost, and a boosted486

decision tree) from scikit-learn [39], training each model on only the senescent487

and non-senescent populations before testing it both on the remaining senescent488

and non-senescent cells and all the remaining cells, including those which were489

not classified as very senescent or non-senescent based on the laminB1 and p21490

stains (Table S3). We found that the SVM model performed best over a range of491

metrics and outputted a continuous range of senescence prediction scores with492

few outliers. Therefore, we used the SVM model in further analyses (Table S2).493

As the machine learning pipeline will be applied to other datasets (from im-494

ages taken with different microscopes and potentially different magnifications),495

we chose to normalise all data with respect to the control cells (un-radiated),496

as we expect a small number of senescent cells in vitro [21](confirmed through497

SABG staining and EdU incorporation). The scikit-learn standard scaler [40]498

was trained on the control cells only (removing the mean and scaling to unit499

variance), for both the training and test data, before applying the scaling to500

both the control and treated (whether with radiation or a compound) cells.501

This ensured that the model could be trained on one dataset and applied to502

another and that the fraction of cells determined to be senescent by the model503

was accurate, not relative.504
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4.3.10 Applying Machine Learning to Drug Discovery Data505

The machine learning classification pipeline described above was applied to data506

from high-throughput drug screening experiments performed by Richard J.R.507

Elliott from Professor Neil Carragher’s Drug Discovery programme at the In-508

stitute of Genetics and Cancer, University of Edinburgh. As part of the drug509

screening, the cell lines E31 and E57 were fixed and stained with a cell paint-510

ing assay, following treatment for 72 hours with drugs from two different drug511

libraries, targetmol (330 compounds, four concentrations: 10, 1.0, 0.1, and512

0.01 micromolar) and LOPAC (1280 compounds, two concentrations). The cell513

painting assay included a DAPI nuclear stain. All images were acquired with514

an ImageXpress-Confocal high-content screening platform integrated with PAA515

plate handling robotics.516

The resulting images were processed with a CellProfiler pipeline created517

by the Carragher lab. From these high-throughput screening experiments, we518

received a matrix containing CellProfiler features describing each cell’s DAPI519

nuclear stain.520

DMSO was used as a negative control for both the Targetmol and LOPAC521

libraries, with two DMSO wells per row on each 384-well plate for the Targetmol522

library and one DMSO well per row on each 384-well plate for the LOPAC523

library. In addition, the Targetmol library used Paclitaxel (PAC) as a positive524

control, as it is known to kill glioblastoma cells.525

To apply our pipeline to data produced from a different CellProfiler pipeline,526

we limited the features in our SVM model to those that also appear in the drug527

screening pipeline (∼30 features). This did not impact the performance of our528

model.529

Our classification pipeline outputted senescence scores per cell, the fraction530

of senescent cells per well, the number of cells per well, and standard deviations531

for both the senescence score and the fraction of senescent cells per well.532

4.3.11 Identifying Interesting Compounds533

From this output, compounds of interest were selected as compounds that in-534

duced a significant senescence response in cells. Significance was defined as535

greater than 4 standard deviations above the mean of DMSO controls. The536

compounds selected induced a senescence response in both cell lines (E31 and537

E57) through a significant increase in the mean senescence score and the frac-538

tion of senescent cells per well. Only wells with over 200 cells (targetmol) or539

500 cells (LOPAC) remaining after treatment were selected to avoid choosing540

compounds that killed large numbers of cells, as this may induce senescence in541

the remaining cells.542

DMSO control wells were included per plate in the experiments, so compound-543

treated wells were compared to the DMSO controls of the same plate. Boot-544

strapping was carried out to eliminate bias from sample size in wells containing545

fewer cells (as described in Section 4.4.3).546
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4.3.12 SABG Staining547

Cells were stained with an X-gal solution which was left on for 19 hours/22548

hours at 37 °C. The solution contained 90% PBS, 5% 20X KC, and 5% X-gal549

(ThermoScientific). 800 µl of X-gal solution was added per well of a 12-well550

plate. Prior to staining, cells were fixed with a 0.5% glutaraldehyde solution551

made using 25% glutaraldehyde stock (Sigma) diluted in PBS and left on cells552

for 12 minutes. After removing the X-gal solution, cells were kept in the dark553

at 4 °C.554

4.3.13 Bright-field Microscopy555

Wells were imaged using a bright-field microscope. Three images were taken556

randomly per well of a 12-well plate, and all were taken in the same session.557

4.4 Quantification and Statistical Analysis558

4.4.1 Cell Number559

Cell numbers were quantified using CellProfiler’s primary object identification560

module for fluorescence and bright-field microscopy images (for full CellProfiler561

pipelines, see Data and Software Availability).562

A manual threshold was selected for fluorescence microscopy images to iden-563

tify cells from images in the DAPI channel. Different thresholds were set for564

different cell lines to account for differences in DAPI staining intensity. Prior565

to object identification, images were corrected for variations in background il-566

lumination, and the mean image background intensity was subtracted from the567

overall image to make identification more reliable across images.568

For bright-field images, the manual threshold and size parameters were ad-569

justed between cell lines to account for morphological differences. The original570

image was processed prior to the identify primary objects module to enhance571

cell shapes and increase the contrast between the cells and their background.572

4.4.2 Quantification of Senescence using SABG573

CellProfiler was used to quantify blue X-gal staining from bright-field cell im-574

ages. After background correction, we used the module unmix colours to extract575

blue shades from the original image. Unmix colours outputted a grayscale image576

where the highest intensity areas of the image reflected the areas of the input577

image with the most blue. This was quantified using primary object identifica-578

tion, with a manual threshold consistent across images and cell lines, identifying579

areas of stain within images that could be related to previously identified cells.580

4.4.3 Bootstrapping581

To identify interesting compounds from the drug screening experiments de-582

scribed above, we set a significance threshold for senescence score and fraction583

senescence at four standard deviations above the control mean. Wells with fewer584
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cells showed greater variance in mean senescence scores and the fraction of cells585

that were senescent. Because of this, we could not use a single standard devia-586

tion value to accurately reflect the significance of mean values from wells with587

smaller cell populations.588

To account for this sample size effect on standard deviation, we applied589

bootstrapping with replacement to assign an expected standard deviation value590

per well, given the number of cells. In the original experiments, DMSO controls591

were included in each plate. For each well, we added 4 bootstrapped standard592

deviations to the mean of DMSO wells in the appropriate plate. This method593

was used for both senescence scores and predicted fraction of senescence and594

used to determine which wells fell above this significance threshold.595

4.4.4 Important feature identification596

We used two algorithms, permutation feature importance and Shapley values,597

to identify important features in the SVM model.598

We use the sklearn permutation feature importance algorithm [35], applied599

to the training data (50% of all data per cell line. Fig. S3a). Feature scores are600

randomly shuffled, and the model is reevaluated to determine which features601

impact the goodness of fit most. A caveat of this algorithm is that misleading602

values may be returned for highly correlated features.603

We used the SHAP python package to calculate Shapley values for our model604

(Fig. S3b) [36]. This method is based on game theory, where features become605

players that can join or not join the game (model). If a feature has positive606

SHAP values for higher values of the feature, then higher values of that feature607

mean that a cell is more likely to be senescent.608

4.5 Statistical significance609

In Figure 4, statistical significance was calculated using a Mann–Whitney U test610

from the Python scipy.stats package.611

4.6 Data and Software Availability612

The CellProfiler pipeline and Python code used in this manuscript are available613

at https://github.com/lkmartin90/Image_ML_for_senescence.614
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and Le Roux I. Cellular senescence in malignant cells promotes tumor718

progression in mouse and patient Glioblastoma. Nature Communications.719

2023 Jan 27; 14. Number: 1 Publisher: Nature Publishing Group:441. doi:720

10.1038/s41467-023-36124-9 (cit. on pp. 3, 21)721

22. Li H and Li S. Establishment of a cell senescence related prognostic model722

for predicting prognosis in glioblastoma. Frontiers in Pharmacology. 2022723

Dec 6; 13. Publisher: Frontiers. doi: 10.3389/fphar.2022.1034794 (cit.724

on p. 3)725

23. Brennan CW et al. The Somatic Genomic Landscape of Glioblastoma.726

Cell. 2013 Oct 10; 155. Publisher: Elsevier:462–77. doi: 10.1016/j.727

cell.2013.09.034 (cit. on p. 3)728

24. Wang C, Vegna S, Jin H, Benedict B, Lieftink C, Ramirez C, Oliveira729

RL de, Morris B, Gadiot J, Wang W, Chatinier A du, Wang L, Gao D,730

Evers B, Jin G, Xue Z, Schepers A, Jochems F, Sanchez AM, Mainardi S,731

Riele H te, Beijersbergen RL, Qin W, Akkari L, and Bernards R. Inducing732

and exploiting vulnerabilities for the treatment of liver cancer. Nature.733

2019 Oct; 574. Publisher: Nature Publishing Group:268–72. doi: 10.1038/734

s41586-019-1607-3 (cit. on p. 3)735

25. Wang L, Lankhorst L, and Bernards R. Exploiting senescence for the736

treatment of cancer. Nature Reviews Cancer. 2022 Jun; 22. Number:737

6 Publisher: Nature Publishing Group:340–55. doi: 10.1038/s41568-738

022-00450-9 (cit. on p. 3)739

26. Fletcher-Sananikone E, Kanji S, Tomimatsu N, Cristofaro LFMD, Kolli-740

para RK, Saha D, Floyd JR, Sung P, Hromas R, Burns TC, Kittler R,741

Habib AA, Mukherjee B, and Burma S. Elimination of radiation-induced742

senescence in the brain tumor microenvironment attenuates glioblastoma743

recurrence. Cancer research. 2021 Dec 1; 81:5935–47. doi: 10.1158/0008-744

5472.CAN-21-0752 (cit. on p. 3)745

27. Krentzel D, Shorte SL, and Zimmer C. Deep learning in image-based phe-746

notypic drug discovery. Trends in Cell Biology. 2023 Jul 1; 33. Publisher:747

Elsevier:538–54. doi: 10.1016/j.tcb.2022.11.011 (cit. on p. 3)748

28. Wang L, Leite de Oliveira R, Wang C, Fernandes Neto JM, Mainardi749

S, Evers B, Lieftink C, Morris B, Jochems F, Willemsen L, Beijersbergen750

RL, and Bernards R. High-Throughput Functional Genetic and Compound751

Screens Identify Targets for Senescence Induction in Cancer. Cell Reports.752

2017 Oct 17; 21:773–83. doi: 10.1016/j.celrep.2017.09.085 (cit. on753

p. 3)754

29. Way GP, Sailem H, Shave S, Kasprowicz R, and Carragher NO. Evolu-755

tion and impact of high content imaging. SLAS Discovery. High-Content756

Imaging and Informatics: 3rd Annual Joint Special Issue with the Society757

for Biomolecular Imaging and Informatics 2023 Oct 1; 28:292–305. doi:758

10.1016/j.slasd.2023.08.009 (cit. on p. 3)759

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587883
http://creativecommons.org/licenses/by/4.0/


30. Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, Vasilevich760

AS, Barry JD, Bansal HS, Kraus O, Wawer M, Paavolainen L, Herrmann761

MD, Rohban M, Hung J, Hennig H, Concannon J, Smith I, Clemons PA,762

Singh S, Rees P, Horvath P, Linington RG, and Carpenter AE. Data-763

analysis strategies for image-based cell profiling. Nature Methods. 2017764

Sep; 14. Publisher: Nature Publishing Group:849–63. doi: 10.1038/nmeth.765

4397 (cit. on p. 3)766

31. Chandrasekaran SN, Ceulemans H, Boyd JD, and Carpenter AE. Image-767

based profiling for drug discovery: due for a machine-learning upgrade?768

Nature Reviews Drug Discovery. 2021 Feb; 20. Publisher: Nature Pub-769

lishing Group:145–59. doi: 10.1038/s41573-020-00117-w (cit. on p. 3)770

32. Duran I, Pombo J, Sun B, Gallage S, Kudo H, McHugh D, Bousset L,771

Barragan Avila JE, Forlano R, Manousou P, Heikenwalder M, Withers DJ,772

Vernia S, Goldin RD, and Gil J. Detection of senescence using machine773

learning algorithms based on nuclear features. Nature Communications.774

2024 Feb 3; 15. Publisher: Nature Publishing Group:1041. doi: 10.1038/775

s41467-024-45421-w (cit. on pp. 3, 14)776

33. Afshari AR, Sanati M, Aminyavari S, Shakeri F, Bibak B, Keshavarzi Z,777

Soukhtanloo M, Jalili-Nik M, Sadeghi MM, Mollazadeh H, Johnston TP,778

and Sahebkar A. Advantages and drawbacks of dexamethasone in glioblas-779

toma multiforme. Critical Reviews in Oncology/Hematology. 2022 Apr780

1; 172:103625. doi: 10.1016/j.critrevonc.2022.103625 (cit. on pp. 4,781

12)782

34. Yao YY, Liu DM, Xu DF, and Li WP. Memory and learning impairment783

induced by dexamethasone in senescent but not young mice. European784

Journal of Pharmacology. 2007 Nov 21; 574:20–8. doi: 10.1016/j.785

ejphar.2007.07.021 (cit. on p. 4)786

35. Permutation feature importance. scikit-learn. 2023 Aug 23. Available787

from: https://scikit-learn/stable/modules/permutation_importance.788

html [Accessed on: 2023 Aug 23] (cit. on pp. 10, 24)789

36. Lundberg SM and Lee SI. A Unified Approach to Interpreting Model Pre-790

dictions. Advances in Neural Information Processing Systems 30. Ed. by791

Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S,792

and Garnett R. Curran Associates, Inc., 2017 :4765–74. Available from:793

http://papers.nips.cc/paper/7062- a- unified- approach- to-794

interpreting-model-predictions.pdf (cit. on pp. 10, 24)795

37. Longhorne FL, Wilkinson HN, Hardman MJ, and Hart SP. Dexamethasone796

induces senescence of lung epithelial cells and augments TGF-1-mediated797

production of the fibrosis mediator serpin E1 (plasminogen activator inhibitor-798

1). Pages: 2021.11.29.470337 Section: New Results. 2021 Nov 29. doi:799

10.1101/2021.11.29.470337 (cit. on p. 12)800

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587883
http://creativecommons.org/licenses/by/4.0/


38. McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs801

KW, Doan M, Ding L, Rafelski SM, Thirstrup D, Wiegraebe W, Singh S,802

Becker T, Caicedo JC, and Carpenter AE. CellProfiler 3.0: Next-generation803

image processing for biology. PLOS Biology. 2018 Jul 3; 16. Publisher:804

Public Library of Science:e2005970. doi: 10.1371/journal.pbio.2005970805

(cit. on p. 20)806

39. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,807

Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos808

A, Cournapeau D, Brucher M, Perrot M, and Duchesnay E. Scikit-learn:809

Machine Learning in Python. Journal of Machine Learning Research 2011;810

12:2825–30 (cit. on p. 21)811

40. sklearnStandardScaler. scikit-learn. 2023 Aug 25. Available from: https:812

//scikit-learn/stable/modules/generated/sklearn.preprocessing.813

StandardScaler.html [Accessed on: 2023 Aug 25] (cit. on p. 21)814

41. CellProfilerFeatures. scikit-learn. 2023 Aug 29. Available from: https:815

//cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/816

modules/measurement.html [Accessed on: 2023 Aug 29] (cit. on p. 40)817

30

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587883
http://creativecommons.org/licenses/by/4.0/


Supplementary818

Compound Name Drug Class

CB 1954 Alkylating agent
Chloroambucil Alkylating agent
Doxorubicin hydrochloride Anthracycline
Selinexor Anti-cancer agent
Teniposide Anti-cancer agent
Beclomethasone Corticosteroid
Budesonide Corticosteroid
Dexamethasone acetate Corticosteroid
Hydrocortisone butyrate Corticosteroid
Nestorone Corticosteroid
Triamcinolone Corticosteroid
PD153035 hydrochloride Kinase inhibitor
Palbociclib hydrochloride Kinase inhibitor
CP466722 Kinase inhibitor
Palbociclib isethionate Kinase inhibitor
Cyclocytidine hydrochloride Nucleoside analog
Cytarabine Nucleoside analog
Talazoparib PARP inhibitor
ClProtoporphyrin IX (PpIX) disodium Porphyrin-based salt
1-(4-Chlorobenzyl)-5-methoxy-
2-methylindole-3-acetic acid

Small molecule

Wiskostatin Small molecule
Table S1: Compounds identified as senescence inducing

Cell line
trained
on

Cell lines
tested on

Tested on
(all or
subset)

Accuracy Precision Recall

E31 E31 subset 0.79 0.79 0.7
E31 E31 all 0.76 0.35 0.71
E57 E57 subset 0.82 0.79 0.55
E57 E57 all 0.85 0.15 0.44
E55 E55 subset 0.83 0.79 0.61
E55 E55 all 0.87 0.84 0.67
E53 E53 subset 0.82 0.86 0.86
E53 E53 all 0.61 0.22 0.79
All All all 0.77 0.75 0.58
All All subset 0.78 0.27 0.41
All E31 subset 0.77 0.34 0.61
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All E55 subset 0.77 0.76 0.31
All E53 subset 0.61 0.19 0.63
All E57 subset 0.87 0.13 0.31

Table S2: Metrics describing the performance of the SVM on all
cell lines. “Subset”, is used when models were tested on only cells
identified as senescent or non-senescent from the p21 and laminB1
stain.

Model Model details Tested on
(all or
subset)

Accuracy Precision Recall

SVM Kernel = ‘rbf’ subset 0.78 0.78 0.71
SVM Kernel = ‘rbf’ all 0.75 0.46 0.7
Ada
Boost

n estimators=100 subset 0.76 0.69 0.85

Ada
Boost

n estimators=100 all 0.74 0.45 0.73

Gradient
boost

n estimators=200,
learning rate=1.0,
max depth = 5

subset 0.75 0.7 0.75

Gradient
boost

n estimators=200,
learning rate=1.0,
max depth = 5

all 0.77 0.5 0.72

Table S3: Metrics describing the performance of the three tested
models on cell line E31. “Subset”, is used when models were tested
on only cells identified as senescent or non-senescent from the p21
and laminB1 stain.
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a

b

High 
senescence 
score

Low 
senescence 
score

Figure S1: a) 2D TSNE reduction of the DAPI features for each E31 cell (both
irradiated and control), coloured by whether the cells were identified as senescent
based on the laminB1 and P21 stain (Fig. 2c). Yellow points are cells that were
identified as very senescent-like, and blue points are cells that weren’t. b) The
same TSNE reduction as in (a), coloured by the senescence score from the SVM
model.
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a

b

Figure S2: a) Histogram showing the outlier metric for removing outlier cells,
for cell line E31. The vertical black line shows the threshold above which cells
were discarded. b) Performance of the SVM on cell line E31 as a function of
train/test set size.
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Figure S3: a) Importance of features in the SVM model for cell lines E31 and
E57. b) SHAP values for most important model features for cell lines E31 and
E57. Features are ordered by importance, with the most important at the top.
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a

b

c
*** ***

p = 1.33E-6 p = 7.21E-9

DMSO Dexamethosone Cyclocytidine 
hydrochloride

Figure S4: Identification of senescence-inducing compounds. a) The number
of cells predicted to be senescent due to the compounds in the Targetmol and
LOPAC libraries with DMSO controls, PAC controls, and senescence-inducing
compounds highlighted.
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Figure S4: b) UMAP of the SMILES representation of the compounds in the
targetmol library, coloured by senescence-inducing properties. c) Senescence
score prediction for 3 compounds from the targetmol library, where analysis
started from the raw images of cells treated by the compounds.
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a

b

Figure S5: Highlighted compounds of interest in the two high throughput drug
screening datasets. a) Glutocorticoids that were found to induce senescence. b)
Compounds that we tested in the lab.
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Feature Description

AreaShape Area Nuclear area
AreaShape Compactness The mean squared distance of nuclei’s

pixels from the centroid divided by the
area. A filled circle will have a compact-
ness of 1, with irregular objects or ob-
jects with holes having a value greater
than 1.

AreaShape Eccentricity the ratio of the distance between the
foci of the ellipse and its major axis
length. The value is between 0 and 1.

AreaShape Extent The area/volume of the object divided
by the area/volume of the bounding
box.

AreaShape FormFactor 4*π*Area/Perimeter2

AreaShape MajorAxisLength The length (in pixels) of the major axis
of the ellipse.

AreaShape MaxFeretDiameter The distance between two parallel lines
tangent on either side of the object.

AreaShape MaximumRadius The max distance of any pixel in the
object to the closest pixel outside of the
object.

AreaShape MeanRadius The mean distance of any pixel in the
object to the closest pixel outside of the
object.

AreaShape MedianRadius The median distance of any pixel in the
object to the closest pixel outside of the
object.

AreaShape MinFeretDiameter The distance between two parallel lines
tangent on either side of the object.

AreaShape MinorAxisLength The length (in pixels) of the minor axis
of the ellipse.

AreaShape Perimeter The total number of pixels around the
boundary of each region in the image

AreaShape Solidity The proportion of the pixels in the con-
vex hull that are also in the object, i.e.,
ObjectArea/ConvexHullArea.

Intensity UpperQuartileIntensity The intensity value of the pixel for
which 75% of the pixels in the object
have lower values.

Intensity IntegratedIntensityEdge The sum of the edge pixel intensities of
an object.

Intensity IntegratedIntensity The sum of the pixel intensities within
an object.
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Intensity LowerQuartileIntensity The intensity value of the pixel for
which 25% of the pixels in the object
have lower values.

Intensity MADIntensity The median absolute deviation (MAD)
value of the intensities within the ob-
ject.

Intensity MassDisplacement The distance between the centres of
gravity in the grey-level representation
of the object and the binary represen-
tation of the object.

Intensity MaxIntensityEdge The maximal edge pixel intensity of an
object.

Intensity MaxIntensity The maximal pixel intensity within an
object.

Intensity MeanIntensityEdge The average edge pixel intensity of an
object.

Intensity MeanIntensity The average pixel intensity within an
object.

Intensity MedianIntensity The median intensity value within the
object.

Intensity MinIntensityEdge The minimal edge pixel intensity of an
object.

Intensity MinIntensity The minimal pixel intensity within an
object.

Intensity StdIntensityEdge The standard deviation of the edge
pixel intensities of an object.

Intensity StdIntensity The standard deviation of the pixel in-
tensities within an object.

Table S4: Reduced list of features used in SVM model. Definition
taken from [41]
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