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«» Abstract

19 Senescence is a cell-intrinsic tumour suppressive response. A one-two-punch
» cancer treatment strategy aims to induce senescence in cancerous cells before
a1 removing them with a senolytic. It is important to accurately recognise senes-
2 cent cells to investigate the feasibility of such a treatment strategy and identify
;3 compounds that induce senescence in cancer. We focus specifically on the ter-
2 minal brain cancer glioblastoma, firstly identifying senescent glioblastoma cells
s with conventional stains, before training a machine learning model to distin-
2 guish senescent cells using only a DAPI nuclear stain. To demonstrate how our
7 method can aid drug discovery, we apply our pipeline to existing glioblastoma
2 high-throughput phenotypic drug screening imaging data to identify compounds
2 that induce senescence in glioblastoma and verify these predictions experimen-
s tally.
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x Author Summary

s Damaged cells can enter a senescent cell state, in which they do not divide, but
;3 continue to interact with the environment around them. A novel potential can-
s cer treatment strategy is to make tumor cells senescent, before removing senes-
35 cent cancer cells with a targeted drug. To investigate this treatment strategy in
s the brain cancer glioblastoma, it is important to be able to accurately recognise
s senescent glioblastoma cells. As identifying senescent cells is challenging, we
s create a machine learning pipeline which can detect senescent glioblastoma cells
3 in imaging data. We show that by applying our method to existing data we
2 can discover compounds that induce senescence in glioblastoma. We verify our
a predictions by testing the compounds experimentally.
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« 1 Introduction

s Senescent cells play a significant role in human ageing and disease. Charac-
% terised as a metabolically active state of proliferative arrest, senescence was
« first described in 1961 [1] and later identified as a cell-intrinsic tumour suppres-
s sor mechanism[2, 3]. More recently, pro-tumorigenic roles for senescent cells
s have been suggested, where they contribute towards an inflammatory tumour
s microenvironment (TME) [4, 5, 6].

51 Without a universal marker for senescent cells, a combination of common
2 markers has been used for classification [7]. The absence of long-term BrdU in-
53 corporation is used to demonstrate proliferative arrest. Increased expression of
s« pl6 or p21 [8], a loss of laminB1 [9] and the presence of senescence-associated-[-
s galactosidase (SABG) [10, 11] have been used to identify senescent cells through
ss  imaging. Senescent cells and nuclei often display specific morphological pheno-
s types [12, 13, 14, 15].

58 Primary glioblastoma (GBM) is the most common and aggressive type of
so primary brain cancer in adults, with a median survival time of 15 months [16,
o 17]. The treatment for GBM is surgical resection followed by chemotherapy
s and radiotherapy [18]. However, even with treatment, cancer reoccurs. Both
&2 radiotherapy and chemotherapy have been found to induce senescence in GBM
3 cells [19, 20], and although there is mounting evidence that senescence burden
s« leads to poorer outcomes for GBM patients [21, 22], we currently do not under-
s stand the role of senescence in treatment. Furthermore, primary GBM tumours
e show a mutational spectrum consistent with senescence escape, with frequent
e mutations in the TERT promoter and CDKN2A indicating that escape from
e senescence likely plays a role in the etiology of GBM [23].

69 Recently, a “one-two-punch” strategy for cancer treatment has gained pop-
7w ularity (Fig. 1a) [24, 25]. The treatment aims to induce senescence, specifically
7 in tumour cells, before killing these cells with a senolytic. A one-two-punch
2 strategy has the potential to not only be an effective treatment but also to
7z reduce the likelihood of recurrence by preventing senescent cells from contribut-
7+ ing towards a protumorigenic microenvironment [26]. Evidence suggests that a
75 one-two-punch strategy may work in the brain, as senolytics have been shown
6 to effectively remove senescent cells after radiation treatment [26].

7 Increasingly, a combination of high-throughput drug screening and machine
76 learning is used to advance drug discovery [27, 28]. In vitro cell lines are treated
7 with libraries of small-molecule compounds, and high-content imaging is used
s to automatically acquire images of cells after treatment [29]. Pipelines capable
&1 of analysing a large number of images search for compounds which lead to cell
22 death or phenotypic change, by first performing in-depth image processing [30]
&z and then applying machine learning algorithms [31]. These “hit” compounds
s are investigated further to determine if they can be used therapeutically.

& Two recent papers have used DAPI and machine learning techniques to
ss quantify senescence. The first used deep learning methods [12], and the second
& used feature extraction followed by random forest and tree-based classifiers [32].
s Although these methods claim to generalise well across cell types and to be ap-


https://doi.org/10.1101/2024.04.03.587883
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.03.587883; this version posted April 4, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s plicable in vivo, for the greatest accuracy, they must be trained on the cell type
o that they will be used on. Given the heterogeneity in the mutational spectrum
o1 and morphology of the GBM cell lines, we developed a GBM-specific senescence
o classifier using only features obtained from DAPI staining, enabling us to use
o3 existing imaging datasets to search for compounds which induce senescence in
u  GBM.

% Using cell labelling with multiple stains to identify senescence in GBM is a
o complicated, multi-step process that lacks clarity in results and reproducibility.
o A single method of senescence classification will ensure that senescent cells in
e vitro can be identified easily and in a cost-effective manner for high throughput
o screening, potentially aiding in the discovery of drugs that induce senescence in
wo glioblastoma. In this paper, we identify senescent GBM cells in four patient-
1w derived GBM cell lines using laminB1 and p21 stains to create a unique training
102 set. We develop a novel GBM senescence classifier which can be applied to exist-
03 ing drug screening resources. As an example, we apply our pipeline to reanalyse
s existing image-based high-throughput drug screening data, identifying several
105 compounds as senescence-inducing. Of these compounds, a significant fraction
s are glucocorticoids (GCs). While glucocorticoids are involved in GBM treat-
w7 ment, there are conflicting reports of whether they help or hinder tumour pro-
s gression. Similarly, the mechanism of GC crosstalk with GBM remains poorly
109 understood, such as whether their action is on the environment or the tumour
o cells. Our data indicates a direct interaction of GBM cells and GCs through
w the induction of senescence [33, 34].
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Figure 1: A pipeline to identify senescent glioblastoma cells. a) A “one-
two-punch” strategy can drive cells into senescence before eliminating them. b)
An outline of our experimental procedure: we induced senescence with radiation
before IF staining the cells.
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Figure 1: ¢) An example of the p21, laminB1 and DAPI stain, the yellow arrow
points to a non-senescent cell with lower p21 and higher laminB1 expression. d)
The fraction of cells positive for SABG and EdU incorporation in the control
and post-radiation. e) An example of the loss of laminB1 and gain of p21
post-radiation. f) An overview of our cell identification and machine learning
pipeline.

» 2 Results

us We used radiation (6Gy, x-ray) to induce senescence in four patient-derived
us  glioblastoma cell lines (E55, E57, E31, and E53, see Table 1) before using an
us  immunofluorescence (IF) stain for laminB1 (LMNB1), cyclin-dependent kinase
us inhibitor p21 (p21), and DAPI (Fig. 1b and c). We confirm senescence post-
w7 radiation with EAU incorporation and SABG staining in addition to laminB1
us  and p21 (Fig. 1d). We extracted over 300 quantitative features per cell relating
no  to the p21, laminB1 and DAPI stain in both the irradiated and control cells
1o using a CellProfiler image analysis pipeline (Fig. 1c and e), which is described
21 in detail in the Methods (Section 4). Features quantify the size and shape of
122 the nucleus in addition to the intensity of all three stains.

s Senescent glioblastoma cells can be characterised by the
s loss of laminB1 and the gain of p21

s After pre-processing and normalising the data (Section 4, Methods), we sought
s to identify cells as senescent based on the increased p21 expression and loss of
12z laminB1. LaminB1 is predominantly expressed in the nuclear envelope and is
s observed as a high-intensity ring around the nuclear perimeter (Fig. 2a), whereas
129 P21 is expressed predominantly in the nucleus.

130 Fach cell line was processed independently as they expressed differing basal
1 levels of p21 and laminB1. This difference in basal and post-radiation expression
12 was unsurprising, as GBM is a highly heterogeneous cancer. The four cell lines
113 were morphologically distinct, even by phase microscope imaging, where they
14 could be easily distinguished under the microscope and had differing division
135 rates.

136 In three of the four cell lines, we saw a loss of laminB1 and up-regulation
w of p21 in a subset of cells after radiation (Fig. 2b), with the most apparent
s distinction in cell line E31. We do not see clear changes in the quantitative
130 values of intensity of laminB1 and p21 extracted from the CellProfiler pipeline
uo for cell line E55 (Fig. 2a). However, EAU incorporation and SABG staining
1w suggest that almost all E55 cells become senescent after radiation (Fig. 1d).

142 For cell lines E31, E53, and E57, we used a threshold in our metrics for p21
w3 and laminB1 to select a subset of cells that showed low expression of laminB1
s and high expression of p21 (Section 4.3.7); these were classified as senescent
us  (Fig. 2b). In the same way, non-senescent cells were identified as cells with
s high laminB1 expression and low p21 expression (Fig. 2b). For E55, based on
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w7 the SABG staining and EdU incorporation, we classified all radiated cells as
us  Senescent.
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Figure 2: Identifying senescent glioblastoma cells from nuclear mor-
phology. a) Upper panels show the laminB1 stain for control (left) and irradi-
ated (right) E31 cells. Lower panels show the amount of stain in each segment
of the nucleus. The orange line shows the nucleus identified by the DAPI stain,
and the pink line is the expanded area used to identify the laminB1 stain.
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Figure 2: b) Identification of senescent and non-senescent cells based on the
laminB1 and p21 stain. Control cells are blue and irradiated in red; grey boxes
show the classification threshold. ¢) The predicted senescence score per cell for
the test dataset, with cells coloured red if they were identified as senescent based
on the levels of p21 and laminB1 and ordered by predicted senescence score. d)
The ROC curve for the SVM trained using only the cells identified as senescent
and non-senescent and applied to all cells.

w Senescent glioblastoma cells can be identified with machine
s learning methods using only a DAPI stain

151 Using the subset of cells that we had identified to be senescent from the lam-
12 inB1 and p21 stain, we trained several machine-learning models using only the
153 features extracted from the DAPI staining of the cells (~ 100, features relating
15« to the laminB1 and p21 stains were discarded). To account for uncertainty as-
155 sociated with the senescence classification, we chose methods that would also
156 output the probability that a cell is senescent.

157 We used three supervised machine learning methods: a support vector ma-
158 chine (SVM), adaptive boosting (AdaBoost), and a boosted decision tree. Ini-
150 tially, we considered each cell line separately, training the classifier on a subset
wo  (50%, justified in Fig. S2b) of the data for each cell line and testing the classi-
11 fier on the remaining cells. We found that all three models perform well across
62 all four cell lines (Table S2, Table S3). To allow our model to be easily ap-
13 plied to feature data from other CellProfiler pipelines, we reduced the number
14 of features used by the model to 30 features commonly extracted by most Cell-
s Profiler pipelines (Table S4); this did not adversely impact the performance of
16 our models.

167 As we trained our classifiers with only a subset of senescent cells, those
s with the highest p21 and lowest laminB1 expression, we assume that we have
10 underestimated the number of senescent cells in the training set. There will
o likely be a population of cells not initially labelled as senescent based on the
i intensity of laminB1 and p21 that are senescent and, therefore, have a senescent-
w2 like nuclear morphology. This was reflected in the large drop in precision (out
173 of those cells predicted to be senescent, how many are senescent based on the
s laminB1 and p21 stain) when the models were tested on all cells.

175 All three classifiers return a score indicating the likelihood that a given cell
e 18 senescent, and the performance of each model when trained and tested on
w E31 is summarised in Table S3. For the remaining analysis, we used the SVM
ws classification as it performed best in all metrics over all cell lines and returned
o a distribution of senescence scores with few outliers (Fig. 2c).

180 For all cell lines, cells classified as senescent by the laminB1 and p21 stain
;1 have a higher senescence prediction score in the test set (Fig. 2¢). Of the three
12 cell lines in which we could quantify a change in p21 and laminB1 expression,
183 the SVM trained and tested on cell line E31 performs best (an AUC of 0.82, vs.
e 0.75, Fig. 2d). This is unsurprising given the large change in p21 and laminB1


https://doi.org/10.1101/2024.04.03.587883
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.03.587883; this version posted April 4, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

185 post-irradiation in cell line E31, suggesting that E31 undergoes a more distinct
186 senescence transition. Furthermore, we find that in a t-distributed stochastic
w7 neighbour embedding (t-SNE) reduction of the DAPT feature data for cell line
18 K31, the location of cells with higher predicted senescence scores matches the
10 location of cells classified as senescent by laminB1 and p21 (Fig. S1, a and b).

19 To test the cell line specificity of our model, we trained and tested an SVM on
11 a mixture of cells from all four cell lines. We evaluated the overall performance
102 of this more general model and found that the performance was worse (AUC of
s 0.69), as expected, due to patient heterogeneity. The performance of the SVM
1w on each cell line is given in Table S2.

195 These results indicate that our classifier can accurately identify senescent
s GBM cells from their nuclear morphology.

1w Comparison of nuclear features of senescent GBM cells to known
108 features of senescence

19 Previous studies have identified nuclear changes in fibroblasts with senescence
20 through feature extraction [13], and deep learning models [12]. In fibroblasts,
21 cells become larger in area and show changes to the nuclear envelope, with
22 one study also showing that senescent cells have a larger convexity (a ratio of
203 context hull perimeter to perimeter, a measure of how jagged the nuclear mem-
24 brane is). However, morphological changes are known to be cell line-dependent;
205 considering GBM cells are mutated in several senescence pathways, we did not
206 necessarily expect our cell lines to behave in the same way as karyotypically
27 normal fibroblasts.

208 We used two algorithms to identify the importance of each feature in the
20 SVM model trained on cell lines E31 and E57 (Fig. S3). First, using a permuta-
20 tion importance algorithm [35], we found that across the cell lines, the most im-
au portant features are related to nuclear size and shape (e.g. “areashape_compactness”,
22 a measure distinguishing between nuclei that resemble filled circles, and irregular
a3 or irregularly stained nuclei) or the edge intensity of the DAPI stain (describ-
2. ing the nuclear envelope)(Fig. S3a). This suggests that we saw some of the
215 morphological changes previously described in fibroblasts.

216 Using a game-theory-based approach (calculating SHAP values, SHapley
27 Additive exPlanations [36]), we found that the three most important features
25 were related to the intensity of the DAPIT stain, not the nuclear size (Fig. S3b).
29 However, we saw that cells with a larger nuclear extent and compactness and
20 with a lower form factor and solidity are more likely to be senescent (Table S4),
21 supporting the idea that senescent cells are more irregular or jagged in shape.

» Application to drug screening datasets to identify com-
»» pounds inducing senescence

24 To find compounds that induce senescence in GBM cells, we applied our clas-
25 sification pipeline to the data generated in high-throughput drug screening ex-
26 periments in which two of our four initial cell lines, E31 and E57, were used.

10
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27 The cells were treated with compounds from two drug libraries, Targetmol (384
»s  compounds, 4 concentrations) and LOPAC (1280 compounds, 2 concentrations),
220 for 72 hours before the cells were fixed and stained with DAPI as part of a cell
20 painting assay (Section 4).

231 We applied our machine learning pipeline to feature extraction data from the
2 drug screening experiment, as raw images had already been processed with a
213 CellProfiler pipeline. We calculated the mean senescence score for cells treated
24 with each compound and the fraction of cells identified as senescent for each
25 compound (Fig. 3a). Some compounds killed GBM cells, resulting in fewer live
236 cells at the end of the treatment. For smaller total cell numbers, we expect to see
2w a greater variance in the average senescence score per compound. Therefore, we
28 used bootstrapping to calculate a cell number-dependent significance threshold
20 (Fig. 3a green points, details in Section 4.4.3). Compounds that exceeded this
20 threshold (Fig. 3a), both in average senescence score and the fraction of senes-
a1 cent cells for both cell lines, were classified as potential inducers of senescence.
212 Compounds can be grouped into positive controls (genotoxic compounds
23 known to induce senescence, such as etoposide), test compounds, negative con-
2 trols (DMSO, the solvent used for all compounds), and cell-killing controls (pa-
us  clitaxel (PAC), a microtubule-stabilizing agent that arrests cells in mitosis and
25 can lead to cell death). We expected small concentrations of DMSO to neither
27 reduce the number of cells (by causing cell death) nor induce senescence in cells,
28 which was confirmed in our data (Fig. 3b, magenta points). The cell-killing con-
20 trol PAC killed glioblastoma cells and increased the senescence score (Fig. 3b,
0 red points). Although evidence suggests that PAC kills glioblastoma cells, there
51 is currently no evidence in the literature that PAC induces senescence or leads
2 to morphological cell changes.

253 We chose to investigate compounds that caused a significant increase in the
254 senescence score without killing large numbers of cells (Fig. 3a, orange points).
s Focusing on non-cytotoxic compounds, we identified senescence inducers that
6 may be used as part of a one-two-punch treatment.

257 We identified approximately 20 candidates for senescence-inducing com-
253 pounds in the cell lines E31 and E57; several were GCs (Table S1). However, it is
0 also worth noting that some GCs seem to increase the number of glioblastoma
x0 cells in the drug-screening datasets. Of the four compounds in the LOPAC
s library that increased the cell number to above 1500 and induced significant
22 levels of senescence in E31 (Fig. 3b, lower right plot, orange), three are GCs,
3 suggesting that GCs may increase GBM cell proliferation (Fig. S5a).

264 To verify that the results are unaffected by small changes in the CellProfiler
%5 pipeline and, therefore, the feature extraction, we re-processed a selection of raw
%6 1mages taken as part of the drug screening experiments. We ran our CellProfiler
»7  pipeline on the images corresponding to two compounds of interest, and one
s DMSO control, extracting ~ 100 DAPI features (not just the 30 features used
20 in the simplified model), before determining the senescence score associated
oo with each cell (Fig. Sdc). We see significantly elevated levels of senescence in
on the compounds of interest compared to the DMSO control.

2 One GC of interest is dexamethasone, a compound often used in GBM treat-

11


https://doi.org/10.1101/2024.04.03.587883
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.03.587883; this version posted April 4, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a3 ment to reduce brain edema and inflammation and significantly improve patient
aa - quality of life. The effect of dexamethasone on GBM cells is an area of active
25 research [33], with some studies suggesting that it may lead to increased cell
a6 proliferation, migration, and therapy resistance. Although no specific link has
ar been made between dexamethasone and senescence in GBM cells (it has been
zs  found to induce senescence in lung epithelial cells [37]), it has been reported
a9 that dexamethasone induces p21 expression and inhibits apoptosis. If dexam-
20 ethasone induces senescence in GBM cells, this may explain both the chemo-
2 and radio-resistance and negative effects on survival rates if these senescent cells
22 help to create a protumorigenic TME.

283 We found that both dexamethasone and dexamethasone acetate produced
2 similar senescence scores in our two cell lines. Furthermore, other chemically
s similar compounds produced similar senescence scores, suggesting our pipeline
26 worked as intended. To determine if our pipeline can identify senescence in-
27 duction due to a range of chemically distinct compounds, we represented our
28 compounds using the Simplified Molecular Input Line Entry System (SMILES).
20 We performed dimensionality reduction of these chemical features with UMAP.
20 We found that senescence-inducing compounds identified by our machine learn-
21 ing method were chemically diverse (Fig. S4b).

12
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Figure 3: Using the machine learning model to identify senescent cells
from drug screening. a) Average senescence score for compounds from the
targetmol library, applied to cell line E31, showing the bootstrapped derived 4
standard deviations from the DMSO mean in green.
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Figure 3: b) Senescence scores with interesting compounds identified (orange),
and DMSO controls, PAC, and Etoposide are highlighted. ¢) Senescence scores
of compounds verified in the lab, with data points 4 standard deviations above
the DMSO mean highlighted in red.

»» Laboratory verification of senescence induction

23 To test the performance of our machine-learning model, we chose four of the
2a  compounds that were predicted to be senescence-inducing to test in the lab
25 (dexamethasone, PD153035, palbociclib hydroxide, and budesonide), alongside
25 two positive controls (temozolomide and etoposide). Etoposide, a topoisomerase
27 IT inhibitor, is commonly used to induce senescence in many cell lines [32], and
28 significant evidence now shows that the current standard of care chemotherapy
20 drug to treat glioblastoma, temozolomide, induces senescence in GBM cells [20].
300 The concentrations of these compounds predicted to give the maximum
sn senescence induction were used in the experiment (Table 2, Fig. S5b). To repli-
s cate the conditions of the drug screening experiments, compounds were applied
s3  for 72 before cells were fixed and stained.

304 For simplicity, we used only cell line E31 and stained for p21 to indicate
s senescence. In all six of these compounds, we see an increase in p21 intensity
ws compared to the control cells, which were treated only with DMSO (Fig. 4a).
sor This increase was significant for all compounds. However, the effect size differed
28 between compounds, with the largest change in etoposide-treated cells (a 2.52
s fold-change in p21 expression, compared to a 1.52 fold-change in dexametha-
a0 sone). Using a threshold (arbitrary) in p21 expression to determine senescence,
sn we found that all compounds also showed a significant increase in the number
a2 of senescent cells observed (Fig. 4b). The largest increase in the mean intensity
a1z of p21 per cell and the fraction of senescent cells was in etoposide, as predicted
su by our model (Fig. 3c).

315 All compounds led to a small increase in cell size (Fig. 4c). However, the
s changes in cell size observed did not correlate with the changes in p21 expression,
sir - supporting the conclusion that simple measures of morphological change are
ais  insufficient to predict senescence. Furthermore, only one of the compounds
a9 tested, dexamethasone, appeared to cause increased proliferation of the GBM
20 cells (Fig. 4d), and this increase was small (fold-change of 1.23).

» 3 Discussion

22 Glioblastoma is a cancer of unmet need. Although understanding of this cancer
33 has improved in the last decade, this has not translated into new therapeutic
24 options. Senescence is heavily implicated in GBM progression, with several
25  recent studies showing that a higher senescence burden before treatment can
w6 lead to poorer patient outcomes and that chemotherapy and radiotherapy lead to
a7 therapy-induced senescence in GBM. Furthermore, nearly all GBMs are mutated
»s in pathways associated with senescence, indicating that although GBM cells can
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19 become senescent, the senescent phenotype is likely to differ from the senescence
a0 observed in healthy cells.

331 With an increased understanding of senescence in GBM, it may be possible
sz to leverage therapy-induced senescence as part of a one-two-punch strategy, first
s inducing senescence specifically in GBM cells before clearing these cells with a
s senolytic. To do this, we need an effective way of identifying senescent GBM
15 cells and drugs that induce senescence in GBM.

336 We have created a dataset containing images of four GBM patient-derived
s cell lines with and without radiation treatment. We identify senescent cells
38 through immunocytochemistry p21 and laminB1 staining and develop a machine-
19 learning pipeline to identify senescent GBM cells based only on a DAPI nuclear
s stain. Applying our pipeline to high-throughput drug screening data, we identi-
s fled 20 compounds that we predict induce senescence in GBM cells. Our pipeline
s2  can be applied to any GBM in vitro imaging data with a DAPI stain, allowing
s existing high throughput drug screening data to be used to its full potential to
sa  explore the senescent phenotype.

5 For example, our machine-learning model identifies dexamethasone (and sev-
us eral other GCs) as a compound that may cause senescence in GBM cells. How-
sr  ever, the high-throughput drug screening data also suggests that GCs may lead
us  to increased proliferation in some GBM cell lines.

349 We tested four of our hit compounds in vitro. We found that all compounds
0 increased p21 expression in cell line E31. While the increase was significant for
s all compounds, the effect size varied, with the positive control etoposide leading
32 to the largest change in p21 expression. Furthermore, only one of the compounds
353 tested (dexamethasone) led to a small increase in cell proliferation, suggesting
s that senescence induction is not simply a result of increased proliferation and
s overcrowding and that GCs do not cause a significant increase in proliferation
36 in this cell line.

357 This study has several limitations. First, we only induce senescence through
s a single mechanism, radiation, and the senescence phenotype is known to vary
30 between induction mechanisms. Second, we tested our classifier using a dataset
w0 in which GBM cells were treated with compounds for 72 hours before cells were
1 fixed and stained. This may not be sufficient time for the senescence phenotype
2 to fully develop.

363 Furthermore, additional work will be needed to test hit compounds before
s they can be used in a one-two-punch treatment strategy. For example, showing
s that compounds induce senescence selectively in GBM cells, they do not affect
s healthy brain cells, and that the senescent cells can be removed with a senolytic.
7 Investigation of the mechanism of action of hit compounds may help identify
s which cells are vulnerable to senescence induction.

369 In summary, our findings demonstrate the potential of machine learning
s classifiers to be applied to determine distinct cellular states and responses to
sn therapy to help in new drug discovery efforts for GBM.
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Figure 4: Laboratory testing of potentially senescence-inducing com-
pounds. a) The normalised p21 intensity in each cell for each applied com-
pound. b) The fraction of senescence in each replicate (denoted by the colour of
points) for each applied compound. ¢) The mean size of cells in each replicate
(denoted by the colour of points) for each applied compound. d) The number of
cells per pixel (per unit area) in each replicate (denoted by the colour of points)
for each applied compound. 1
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373

4 Methods

4.1 Key Resources Table

| REAGENT OR RESOURCE | SOURCE | IDENTIFIER ‘
| Antibodies ‘
Anti-LaminB1 antibody abcam Cat#ab16048
Goat Anti-Rabbit IgG (H+L), highly cross- | ANASPEC Cat#AS-61056-05-
adsorbed, Hilyte Fluor™ 488-labeled H488
Anti-p21WAF1/Ciplantibody, Mouse mono- | Sigma- Cat#P1484
clonal Aldrich
Goat Anti-Mouse IgG (H+L), highly cross- | ANASPEC Cat#AS-61057-05-
adsorbed, Hilyte Fluor™ 555-labeled H555
’ Chemicals, peptides, and recombinant proteins ‘
Dulbecco’s modified eagle medium (DMEM) | Sigma- Cat#D8437
with Ham’s F-12 Aldrich
D-(+)-Glucose solution Sigma- Cat#G8644
Aldrich
MEM Non-Essential Amino Acids Solution | Gibco Cat#11140-035
(100X)
Penicillin-Streptomycin (10,000 U/mL) Gibco Cat#15140-122
Bovine Albumin Fraction V (7.5% solution) Gibco Cat#15260-037
2-Mercaptoethanol (50 mM) Gibco Cat#31350-010
B-27™ Supplement (50X), serum free Gibco Cat#17504-044
N-2 Supplement (100X) Gibco Cat#17502-048
Recombinant Murine EGF PeproTech Cat#315-09
Recombinant Human FGF-basic (154 a.a.) PeproTech Cat#100-18B
3-D Culture Matrix Laminin I Culturex Cat#3446-005-01
Accutase®) Cell Detachment Solution BioLegend Cat#424201
Dimethyl sulfoxide (DMSO) Sigma- Cat#D2650
Aldrich
Etoposide 10 mM (in 1mL DMSO) Apexbio Cat#A1971-APE
Palbociclib Hydrochloride Cambridge Cat#827022-32-2
LKT Labs
Dexamethasone (Dex) Cell  guid- | Cat#50-02-2
ance systems
Temozolomide Cayman Cat#85622-93-1
chemicals
PD153035 (Hydrochloride) MedChem Cat#880813-42-3
Express
’ Critical commercial assays ‘
’ Click-iT™ EAU Alexa Fluor™ 647 HCS Assay \ Invitrogen \ Cat#C10356 ‘
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’ Deposited data ‘
’ Experimental models: Cell lines ‘
Human Glioma Stem Cells: E31, E53, E55, | Steven Pol- | N/A

E57 lard Lab,
Centre  for
Regenerative
Medicine,
Edinburgh,
UK
’ Software and algorithms ‘
CellProfiler v4.2.4 Open Source | www.cellprofiler.org
Python v3.9
| Other ‘
’ RX-650 X-Ray Unit ‘ Faxitron ‘ Cat#43855D ‘

Table 1: Key Resources Table

] COMPOUND \ CONCENTRATION USED
Etoposide 0.1 uM
Palbociclib hydroxide 0.1 uM
Dexamethasone 0.1 uM
Temozolomide 10 uM
PD153035 hydrochloride 0.5 M
Budesonide 0.5 microM

Table 2: Compound concentrations

4.2 Experimental Model and Subject Details

The four glioblastoma cell lines were from The Pollard Lab at the Centre for Re-
generative Medicine, University of Edinburgh. Patient-derived GSC lines were
obtained from the Glioma Cellular Genetics Resource (https://gegr.github.io),
funded by a Cancer Research UK Accelerator Award (A21922).

4.2.1 Cell Culture

Cells were cultured in a complete media of DMEM/HAMS-F12 (Sigma-Aldrich)
supplemented with Glucose solution (Sigma-Aldrich), MEM NEAA 100x (Gibco),
Penicillin-Streptomycin (Gibco), Bovine Serum Albumin Solution 7.5% (Gibco),
2-Mercaptoethanol (Gibco), B-27 supplement 50x (Gibco), N-2 supplement 100x
(Gibeo), human FGF (to a final concentration of 10 ng/ml)(Peprotech), murine
EGF (to a final concentration of 10 ng/ml)(Peprotech), and laminin (to a fi-
nal concentration of 2 ng/ml)(Culturex). For splitting, passaging, freezing, and
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57 thawing, a wash media of DMEM/HAMS-F12 (Sigma) supplemented with Glu-
s cose (Sigma) and Penicillin-Streptomycin (Gibco) was used.

389 The cells were grown in a complete media on CoStar Tissue Culture 25 cm?
wo (T25) plates and kept at 37 °C in 5% COz-humidified incubators. Media was
s changed every 5-10 days if necessary, and cells were split or passaged every 5-10
s  days, depending on the growth rate of the cell line. When passaging or splitting,
w3 cells were removed from their plates with Accutase solution (BioLegend). Cells
s were split 1:4 or 1:6 depending on the cell line.

305 For temporary storage throughout the experiment, cells were suspended in
2 a solution of 10% DMSO (Sigma-Aldrich) in wash media and kept at -80 °C in
s7 1 ml aliquots. Recovery times from freezing varied by cell line.

308 For longer-term storage, cells were kept in liquid nitrogen.

w 4.3 Method Details
w00 4.3.1 Irradiation

w  Cells were irradiated with 6 Gray (Gy) using an RX-650 Faxitron X-ray unit.
w2 All cells were transported to the radiation unit, and non-radiated controls were
w3 kept out of the incubator for the same period of time as radiated cells. One day
w4 prior to irradiation, cells from a T25 plate at around 80-90% confluency were
w5 passaged and used to seed glass coverslips in 12-well plates at a dilution of 1:6.
s The media was changed 4 days after radiation.

w7 4.3.2 Immunofluorescence Staining

ws Firstly, cells were fixed and permeabilised using 3.7% formaldehyde followed
ws by 0.5% Triton X-100. Washed cells were then incubated with the primary
a0 antibody against laminB1 for 45 minutes in the dark at room temperature,
a1 followed by the secondary antibody under the same incubation conditions. This
a2 was repeated for the primary and secondary antibodies against p21. Between
a3 incubations, cells were washed three times with phosphate-buffered saline (PBS)
ae with 0.1 % tween-20 (PBST). Cells were mounted using a mounting medium
a5 with DAPT (Vectashield).

as 4.3.3 Compound testing

a7 Six compounds were tested to determine if they induced senescence as predicted
ss by our classifier; four of these were strong hits from the classifier (dexametha-
a9 sone, PD153035, palbociclib hydroxide, budesonide), and two were positive con-
w20 trols (temozolomide and etoposide). DMSO was used as a negative control.

a1 One day prior to the application of compounds, cells from a T25 plate at
w2 around 80-90% confluency were passaged and used to seed glass coverslips in
w23 12-well plates at a dilution of 1:6. The compounds were applied to the cells
w¢  for 72 hours (concentrations used are described in table 2, concentrations were
w5 reached through serial dilution in DMSO), after which the cells were fixed and
w6 stained. Staining for p21 was performed as described in section 4.3.2.
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21 4.3.4 Fluorescence Microscopy

w28 Imaging was performed using an axioscan fluorescence microscope.

2 4.3.5 High Content Feature Extraction

a0 A CellProfiler [38] pipeline was used to identify cells and quantify DAPI, lam-
a1 inBl and p21 staining from fluorescent images. DAPI staining was used to
w2 create an object set of nuclei, which could be used to extract measurements
w3 across the DAPI, laminB1 and p21 image sets.

434 Firstly, an illumination correction was carried out to remove uneven illumi-
.5 nation patterns in images using a median filter followed by a division function.
a6 Corrected images were termed CorrDAPI, CorrLaminB1, and CorrP21.

437 Primary object identification was carried out using a manual threshold that
s varied by cell line from 0.001 to 0.003. To improve the consistency of the object
a0 identification module settings across images with varying background intensities,
w0 the mean intensity of CorrDAPI was subtracted from the image, and the output
w1 image was used for object identification. The objects identified were labelled as
w2 NucleiObject.

a3 NucleiObject was used to extract the nuclei’s size and shape features and per-
as  object measurements of intensity, intensity distribution, texture, and granularity
ws  from CorrDAPI and CorrP21.

a6 Intensity measurements for CorrLaminB1 using NucleiObject failed to cap-
w7 ture the characteristic ring of laminB1 around the edge of the nucleus. To
ws correct this, a second object set (DilatedNuclei_1) was created by dilating Nu-
ao  cleiObject with a size of 1. The DilatedNuclei_1 object set was used to extract
0 the same measurements from CorrLaminB1.

451 Masks of DilatedNuclei_l on CorrDAPI, CorrLaminB1 and CorrP21 were
42 used to measure the background intensity per image.

453 The pipeline’s resulting output was a series of background intensity measure-
sse ments per image and over 300 per-object measurements for DAPI, laminB1, and
s p21 staining, exported in a CSV file.

s 4.3.6 Data Processing

7 Data processing was performed in Python. Measurements from the CellProfiler
s pipeline were imported, and metadata and cell positional data were removed.
459 Features related to the intensity of DAPI, p21, or laminB1 stains were
w0 rescaled using the background intensity levels of the image as a whole. For each
w1 cell, the mean background intensity was subtracted from intensity features.

462 Objects (cells) that were outliers (above the 95% quantile, or below the 5%
w3 quantile) in more than 23% of features were removed. 23% was chosen using
ws  the “elbow” in a histogram of the number of outlying features per cell.

465 To reduce the number of features per cell from over 300, only features that
w6 contained a large amount of variance were kept.
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w 4.3.7 Identification of Senescent Cells from laminB1 and p21

s Cells above a manually derived threshold of mean p21 intensity and below a
w0  manually derived threshold for mean laminB1 intensity are classified as senes-
a0 cent. Conversely, those below a threshold in p21 and above a threshold in
an laminB1 are classified as non-senescent (Fig. 2c).

w2 4.3.8 Compound testing analysis

a3 After the experimental procedure described in Section 4.3.3, slides were images
4 with the axioscan microscope. Nine images were taken per slide. Images were
a5 processed, and features were extracted using the CellProfiler pipeline described
ae in Section 4.3.5. Results were normalised to account for variation in p21 in-
w7 tensity between the control (DMSO) slides so that the mode p21 intensity in
as each slide was 0. This normalisation relies on the assumption that there are
a0 significantly more non-senescent cells than senescent cells in each slide. This
w0 assumption is supported by the data shown in Figure S4a.

w1 4.3.9 Classifying Cells from DAPI Stain

w2 To identify cells as senescent based only on the DAPI stain, we created a feature
w3 matrix for each cell containing only features extracted from the DAPI stain.
s« Each cell is labelled either senescent, not senescent, or unclassified, based on
w5 the thresholds described in section 4.3.7 and shown in figure 2c.

486 We investigated three classification models (SVM, AdaBoost, and a boosted
w7 decision tree) from scikit-learn [39], training each model on only the senescent
a8 and non-senescent populations before testing it both on the remaining senescent
a0 and non-senescent cells and all the remaining cells, including those which were
a0 ot classified as very senescent or non-senescent based on the laminB1 and p21
w1 stains (Table S3). We found that the SVM model performed best over a range of
w2 metrics and outputted a continuous range of senescence prediction scores with
s few outliers. Therefore, we used the SVM model in further analyses (Table S2).
204 As the machine learning pipeline will be applied to other datasets (from im-
w5 ages taken with different microscopes and potentially different magnifications),
w5 we chose to normalise all data with respect to the control cells (un-radiated),
w7 as we expect a small number of senescent cells in vitro [21](confirmed through
ws  SABG staining and EdU incorporation). The scikit-learn standard scaler [40]
w0 was trained on the control cells only (removing the mean and scaling to unit
s0 variance), for both the training and test data, before applying the scaling to
sn  both the control and treated (whether with radiation or a compound) cells.
s This ensured that the model could be trained on one dataset and applied to
so3 another and that the fraction of cells determined to be senescent by the model
sa  Was accurate, not relative.
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s 4.3.10 Applying Machine Learning to Drug Discovery Data

sos ' The machine learning classification pipeline described above was applied to data
sor  from high-throughput drug screening experiments performed by Richard J.R.
ss  Elliott from Professor Neil Carragher’s Drug Discovery programme at the In-
so0  stitute of Genetics and Cancer, University of Edinburgh. As part of the drug
s screening, the cell lines E31 and E57 were fixed and stained with a cell paint-
su ing assay, following treatment for 72 hours with drugs from two different drug
sz libraries, targetmol (330 compounds, four concentrations: 10, 1.0, 0.1, and
sz 0.01 micromolar) and LOPAC (1280 compounds, two concentrations). The cell
s painting assay included a DAPI nuclear stain. All images were acquired with
sis. an ImageXpress-Confocal high-content screening platform integrated with PAA
sis  plate handling robotics.

517 The resulting images were processed with a CellProfiler pipeline created
sis by the Carragher lab. From these high-throughput screening experiments, we
si9 received a matrix containing CellProfiler features describing each cell’s DAPI
s0 nuclear stain.

521 DMSO was used as a negative control for both the Targetmol and LOPAC
s2  libraries, with two DMSO wells per row on each 384-well plate for the Targetmol
3 library and one DMSO well per row on each 384-well plate for the LOPAC
s« library. In addition, the Targetmol library used Paclitaxel (PAC) as a positive
s55  control, as it is known to kill glioblastoma cells.

526 To apply our pipeline to data produced from a different CellProfiler pipeline,
sz we limited the features in our SVM model to those that also appear in the drug
s  screening pipeline (~30 features). This did not impact the performance of our
s20  model.

530 Our classification pipeline outputted senescence scores per cell, the fraction
s of senescent cells per well, the number of cells per well, and standard deviations
s for both the senescence score and the fraction of senescent cells per well.

s3 4.3.11 Identifying Interesting Compounds

s From this output, compounds of interest were selected as compounds that in-
s duced a significant senescence response in cells. Significance was defined as
s3s  greater than 4 standard deviations above the mean of DMSO controls. The
s compounds selected induced a senescence response in both cell lines (E31 and
s 157) through a significant increase in the mean senescence score and the frac-
s tion of senescent cells per well. Only wells with over 200 cells (targetmol) or
so0 500 cells (LOPAC) remaining after treatment were selected to avoid choosing
sa. compounds that killed large numbers of cells, as this may induce senescence in
s22  the remaining cells.

543 DMSO control wells were included per plate in the experiments, so compound-
s treated wells were compared to the DMSO controls of the same plate. Boot-
ss  strapping was carried out to eliminate bias from sample size in wells containing
s fewer cells (as described in Section 4.4.3).
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s 4.3.12 SABG Staining

ses Cells were stained with an X-gal solution which was left on for 19 hours/22
se0  hours at 37 °C. The solution contained 90% PBS, 5% 20X KC, and 5% X-gal
ss0  (ThermoScientific). 800 pl of X-gal solution was added per well of a 12-well
ss1 plate. Prior to staining, cells were fixed with a 0.5% glutaraldehyde solution
52 made using 25% glutaraldehyde stock (Sigma) diluted in PBS and left on cells
3 for 12 minutes. After removing the X-gal solution, cells were kept in the dark
s at 4 °C.

s 4.3.13 Bright-field Microscopy

56 Wells were imaged using a bright-field microscope. Three images were taken
ss7  randomly per well of a 12-well plate, and all were taken in the same session.

s 4.4 Quantification and Statistical Analysis
s 4.4.1 Cell Number

sso  Cell numbers were quantified using CellProfiler’s primary object identification
s module for fluorescence and bright-field microscopy images (for full CellProfiler
s pipelines, see Data and Software Availability).

563 A manual threshold was selected for fluorescence microscopy images to iden-
sea  tify cells from images in the DAPI channel. Different thresholds were set for
ses  different cell lines to account for differences in DAPI staining intensity. Prior
sss  t0 object identification, images were corrected for variations in background il-
ssv lumination, and the mean image background intensity was subtracted from the
sss  overall image to make identification more reliable across images.

569 For bright-field images, the manual threshold and size parameters were ad-
s justed between cell lines to account for morphological differences. The original
sn image was processed prior to the identify primary objects module to enhance
s cell shapes and increase the contrast between the cells and their background.

s 4.4.2  Quantification of Senescence using SABG

s CellProfiler was used to quantify blue X-gal staining from bright-field cell im-
ss ages. After background correction, we used the module unmix colours to extract
st blue shades from the original image. Unmix colours outputted a grayscale image
s7 - where the highest intensity areas of the image reflected the areas of the input
sis image with the most blue. This was quantified using primary object identifica-
sr9  tion, with a manual threshold consistent across images and cell lines, identifying
ss0  areas of stain within images that could be related to previously identified cells.

ss1 4.4.3 Bootstrapping

se2 'To identify interesting compounds from the drug screening experiments de-
ss3 scribed above, we set a significance threshold for senescence score and fraction
ssa  senescence at four standard deviations above the control mean. Wells with fewer
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sss  cells showed greater variance in mean senescence scores and the fraction of cells
sss  that were senescent. Because of this, we could not use a single standard devia-
se7  tion value to accurately reflect the significance of mean values from wells with
sss  smaller cell populations.

589 To account for this sample size effect on standard deviation, we applied
s bootstrapping with replacement to assign an expected standard deviation value
s per well, given the number of cells. In the original experiments, DMSO controls
s were included in each plate. For each well, we added 4 bootstrapped standard
53 deviations to the mean of DMSO wells in the appropriate plate. This method
sa  was used for both senescence scores and predicted fraction of senescence and
sos  used to determine which wells fell above this significance threshold.

s 4.4.4 Important feature identification

sv We used two algorithms, permutation feature importance and Shapley values,
see  to identify important features in the SVM model.

500 We use the sklearn permutation feature importance algorithm [35], applied
o to the training data (50% of all data per cell line. Fig. S3a). Feature scores are
s randomly shuffled, and the model is reevaluated to determine which features
o2 impact the goodness of fit most. A caveat of this algorithm is that misleading
o3 values may be returned for highly correlated features.

604 We used the SHAP python package to calculate Shapley values for our model
oos (Fig. S3b) [36]. This method is based on game theory, where features become
o6 players that can join or not join the game (model). If a feature has positive
sor  SHAP values for higher values of the feature, then higher values of that feature
ss mean that a cell is more likely to be senescent.

o 4.5 Statistical significance

sw0  In Figure 4, statistical significance was calculated using a Mann—Whitney U test
su from the Python scipy.stats package.

« 4.6 Data and Software Availability

sz The CellProfiler pipeline and Python code used in this manuscript are available
s1a at https://github.com/lkmartin90/Image_ML_for_senescence.
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= Supplementary

] Compound Name \ Drug Class
CB 1954 Alkylating agent
Chloroambucil Alkylating agent
Doxorubicin hydrochloride Anthracycline
Selinexor Anti-cancer agent
Teniposide Anti-cancer agent
Beclomethasone Corticosteroid
Budesonide Corticosteroid
Dexamethasone acetate Corticosteroid
Hydrocortisone butyrate Corticosteroid
Nestorone Corticosteroid
Triamcinolone Corticosteroid
PD153035 hydrochloride Kinase inhibitor
Palbociclib hydrochloride Kinase inhibitor
CP466722 Kinase inhibitor
Palbociclib isethionate Kinase inhibitor
Cyclocytidine hydrochloride Nucleoside analog
Cytarabine Nucleoside analog
Talazoparib PARP inhibitor
ClProtoporphyrin IX (PpIX) disodium | Porphyrin-based salt
1-(4-Chlorobenzyl)-5-methoxy- Small molecule
2-methylindole-3-acetic acid
Wiskostatin Small molecule

Table S1: Compounds identified as senescence inducing

Cell line | Cell lines | Tested on | Accuracy | Precision | Recall
trained tested on | (all or

on subset)

E31 E31 subset 0.79 0.79 0.7
E31 E31 all 0.76 0.35 0.71
E57 E57 subset 0.82 0.79 0.55
E57 E57 all 0.85 0.15 0.44
E55 E55 subset 0.83 0.79 0.61
E55 E55 all 0.87 0.84 0.67
E53 E53 subset 0.82 0.86 0.86
E53 E53 all 0.61 0.22 0.79
All All all 0.77 0.75 0.58
All All subset 0.78 0.27 0.41
All E31 subset 0.77 0.34 0.61
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All E55 subset 0.77 0.76 0.31
All E53 subset 0.61 0.19 0.63
All E57 subset 0.87 0.13 0.31

Table S2: Metrics describing the performance of the SVM on all
cell lines. “Subset”, is used when models were tested on only cells
identified as senescent or non-senescent from the p21 and laminB1

stain.
Model Model details Tested on | Accuracy | Precision | Recall
(all or
subset)
SVM Kernel = ‘rbf’ subset 0.78 0.78 0.71
SVM Kernel = ‘rbf’ all 0.75 0.46 0.7
Ada n_estimators=100 subset 0.76 0.69 0.85
Boost
Ada n_estimators=100 all 0.74 0.45 0.73
Boost
Gradient | n_estimators=200, subset 0.75 0.7 0.75
boost learning rate=1.0,
max_depth = 5
Gradient | n_estimators=200, all 0.77 0.5 0.72
boost learning rate=1.0,
max_depth = 5

Table S3: Metrics describing the performance of the three tested
models on cell line E31. “Subset”, is used when models were tested
on only cells identified as senescent or non-senescent from the p21
and laminB1 stain.
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Figure S1: a) 2D TSNE reduction of the DAPI features for each E31 cell (both
irradiated and control), coloured by whether the cells were identified as senescent
based on the laminB1 and P21 stain (Fig. 2¢). Yellow points are cells that were
identified as very senescent-like, and blue points are cells that weren’t. b) The
same TSNE reduction as in (a), coloured by the senescence score from the SVM

model.
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Figure S2: a) Histogram showing the outlier metric for removing outlier cells,
for cell line E31. The vertical black line shows the threshold above which cells
were discarded. b) Performance of the SVM on cell line E31 as a function of
train/test set size.
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Figure S3: a) Importance of features in the SVM model for cell lines E31 and
E57. b) SHAP values for most important model features for cell lines E31 and
E57. Features are ordered by importance, with the most important at the top.
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Figure S4: Identification of senescence-inducing compounds. a) The number
of cells predicted to be senescent due to the compounds in the Targetmol and
LOPAC libraries with DMSO controls, PAC controls, and senescence-inducing
compounds highlighted.
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Figure S4: b) UMAP of the SMILES representation of the compounds in the
targetmol library, coloured by senescence-inducing properties. ¢) Senescence
score prediction for 3 compounds from the targetmol library, where analysis
started from the raw images of cells treated by the compounds.
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Figure S5: Highlighted compounds of interest in the two high throughput drug
screening datasets. a) Glutocorticoids that were found to induce senescence. b)
Compounds that we tested in the lab.
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Feature

Description

AreaShape_Area

Nuclear area

AreaShape_Compactness

The mean squared distance of nuclei’s
pixels from the centroid divided by the
area. A filled circle will have a compact-
ness of 1, with irregular objects or ob-
jects with holes having a value greater
than 1.

AreaShape_Eccentricity

the ratio of the distance between the
foci of the ellipse and its major axis
length. The value is between 0 and 1.

AreaShape_Extent

The area/volume of the object divided
by the area/volume of the bounding
box.

AreaShape_FormFactor

4*7* Area/Perimeter?

AreaShape_MajorAxisLength

The length (in pixels) of the major axis
of the ellipse.

AreaShape_MaxFeretDiameter

The distance between two parallel lines
tangent on either side of the object.

AreaShape_MaximumRadius

The max distance of any pixel in the
object to the closest pixel outside of the
object.

AreaShape_MeanRadius

The mean distance of any pixel in the
object to the closest pixel outside of the
object.

AreaShape_MedianRadius

The median distance of any pixel in the
object to the closest pixel outside of the
object.

AreaShape_MinFeretDiameter

The distance between two parallel lines
tangent on either side of the object.

AreaShape_MinorAxisLength

The length (in pixels) of the minor axis
of the ellipse.

AreaShape_Perimeter

The total number of pixels around the
boundary of each region in the image

AreaShape_Solidity

The proportion of the pixels in the con-
vex hull that are also in the object, i.e.,
ObjectArea/ConvexHullArea.

Intensity _UpperQuartileIntensity

The intensity value of the pixel for
which 75% of the pixels in the object
have lower values.

Intensity _IntegratedIntensityEdge

The sum of the edge pixel intensities of
an object.

Intensity _IntegratedIntensity

The sum of the pixel intensities within
an object.

39



https://doi.org/10.1101/2024.04.03.587883
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.03.587883; this version posted April 4, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Intensity _LowerQuartileIntensity

The intensity value of the pixel for
which 25% of the pixels in the object
have lower values.

Intensity M ADIntensity

The median absolute deviation (MAD)
value of the intensities within the ob-
ject.

Intensity _MassDisplacement

The distance between the centres of
gravity in the grey-level representation
of the object and the binary represen-
tation of the object.

Intensity _MaxIntensityEdge

The maximal edge pixel intensity of an
object.

Intensity _MaxIntensity

The maximal pixel intensity within an
object.

Intensity_MeanIntensityEdge

The average edge pixel intensity of an
object.

Intensity_MeanIntensity

The average pixel intensity within an
object.

Intensity _MedianIntensity

The median intensity value within the
object.

Intensity_MinIntensityEdge

The minimal edge pixel intensity of an
object.

Intensity_MinIntensity

The minimal pixel intensity within an
object.

Intensity _StdIntensityEdge

The standard deviation of the edge
pixel intensities of an object.

Intensity _StdIntensity

The standard deviation of the pixel in-
tensities within an object.

Table S4: Reduced list of features

taken from [41]

40

used in SVM model. Definition
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