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Abstract 12 

Finding optimal parameters for detailed neuronal models is a ubiquitous challenge in 13 

neuroscientific research. Recently, manual model tuning has been replaced by automated 14 

parameter search using a variety of different tools and methods. However, using most of these 15 

software tools and choosing the most appropriate algorithm for a given optimization task 16 

require substantial technical expertise, which prevents the majority of researchers from using 17 

these methods effectively. To address these issues, we developed a generic platform (called 18 

Neuroptimus) that allows users to set up neural parameter optimization tasks via a graphical 19 

interface, and to solve these tasks using a wide selection of state-of-the-art parameter search 20 

methods implemented by five different Python packages. Neuroptimus also offers several 21 

features to support more advanced usage, including the ability to run most algorithms in 22 

parallel, which allows it to take advantage of high-performance computing architectures. We 23 

used the common interface provided by Neuroptimus to conduct a detailed comparison of more 24 

than twenty different algorithms (and implementations) on six distinct benchmarks that 25 

represent typical scenarios in neuronal parameter search. We quantified the performance of the 26 

algorithms in terms of the best solutions found and in terms of convergence speed. We identified 27 

several algorithms, including covariance matrix adaptation evolution strategy and particle 28 

swarm optimization, that consistently found good solutions in all of our use cases. By contrast, 29 

some other algorithms including all local search methods provided good solutions only for the 30 

simplest use cases, and failed completely on more complex problems. Finally, we created an 31 

online database that allows uploading, querying and analyzing the results of optimization runs 32 

performed by Neuroptimus, which enables all researchers to update and extend the current 33 
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benchmarking study. The tools and analysis we provide should aid members of the neuroscience 34 

community to apply parameter search methods more effectively in their research. 35 

Author summary 36 

Model fitting is a widely used method in scientific research. It involves tuning the free 37 

parameters of a model until its output best matches the corresponding experimental data. 38 

Finding the optimal parameter combination can be a difficult task for more complex models 39 

with many unknown parameters, and a large variety of different approaches have been proposed 40 

to solve this problem. However, setting up a parameter search task and employing an efficient 41 

algorithm for its solution requires considerable technical expertise. We have developed a 42 

software framework that helps users solve this task, focusing on the domain of detailed models 43 

of single neurons. Our open-source software, called Neuroptimus, has a graphical interface that 44 

guides users through the steps of setting up a parameter optimization task, and allows them to 45 

select from more than twenty different algorithms to solve the problem. We have also compared 46 

the performance of these algorithms on a set of six parameter search tasks that are typical in 47 

neuroscience, and identified several algorithms that delivered consistently good performance. 48 

Finally, we designed and implemented a website that allows users to view and analyze our 49 

results and to add their own results to the database. 50 

  51 
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Introduction 52 

The construction and simulation of data-driven models has become a standard tool in 53 

neuroscience [1, 2, 3]. Such models can be employed, among other things, to consolidate the 54 

knowledge obtained from various experimental approaches into a common framework, to test 55 

the consistency of the data, and to make novel predictions by examining the response of the 56 

model to arbitrary inputs and by applying clean manipulations. Models at a given level of 57 

description (e.g., individual neurons) can also be combined to form models of entities at higher 58 

levels (such as networks) and thus aid the mechanistic understanding of emergent phenomena. 59 

Nevertheless, these data-driven models often contain parameters that are not directly 60 

constrained (or are only weakly constrained) by the available experimental data. Traditionally, 61 

such unknown parameters were often tuned manually to adjust the behavior of the model 62 

towards some desired target. However, this approach is typically inefficient, not quantitative, 63 

and may be heavily biased to reproduce a few selected experimental results at the expense of 64 

other relevant data. Consequently, in recent years, automated parameter search has emerged as 65 

the preferred method for the estimation of unknown parameters of neural models [4, 5, 6, 7, 8, 66 

9, 10, 11, 12, 13, 14, 15, 16]. This approach requires the definition of an error function (or cost 67 

function) that measures the quality of the model with a given set of parameters, often in terms 68 

of how well it approximates data obtained using a particular experimental protocol. The goal 69 

of parameter optimization is then to find the set of parameters that minimizes the selected cost 70 

function. The difficulty of this task can vary widely depending on the nature and complexity of 71 

the model, the definition of the error function (or multiple error functions representing different 72 

goals, or objectives), and the number of unknown parameters. Simple optimization problems 73 

can be solved effectively by traditional gradient-based, local methods or by random search, but 74 
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these approaches tend to fail when there are many unknown parameters and the cost function 75 

has multiple local minima [16, 17]. In fact, no algorithm is guaranteed to find the globally 76 

optimal parameter combination in a short time for all problems [18], and various clever search 77 

methods (called metaheuristics) have been proposed that often find good solutions in an 78 

acceptable amount of time by taking advantage of various types of regularities in the cost 79 

function [19]. 80 

Previous studies in neuroscience have used a variety of different software tools and 81 

algorithms to perform parameter optimization. The general-purpose neural simulators 82 

NEURON [20] and GENESIS [21] both include implementations of a few selected methods 83 

that are adequate for certain parameter search tasks. In addition, several tools have been 84 

developed specifically for neural parameter optimization, including Neurofitter [22], 85 

BluePyOpt [23], pypet [24], and NeuroTune [25], and some more general computational 86 

neuroscience tools such as NetPyNE [26] also have some support for parameter optimization. 87 

However, most of these tools rely on a very limited set of parameter search methods, which 88 

typically does not include many optimization algorithms that represent the state of the art in 89 

global optimization and are popular in other fields of science and engineering. These new 90 

methods were not included in any previous surveys of neural optimization. Systematic 91 

comparisons of the existing neural optimization software tools have also been quite limited 92 

[15]. Therefore, it is currently unknown which parameter search methods can be expected to 93 

perform well in the parameter optimization tasks that are typical in neuroscience. 94 

Furthermore, most of the existing tools for neural optimization lack any intuitive user 95 

interface, and require substantial programming experience. One exception is our earlier 96 

optimization software called Optimizer [15], which included a graphical user interface (GUI) 97 

that was designed to guide users through the process of setting up, running, and evaluating the 98 

results of a neuronal parameter optimization task. Optimizer also provided four different 99 
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optimization algorithms in two different Python packages, and was designed in a modular way 100 

to facilitate the integration of new components including additional optimization algorithms. 101 

The goal of the current study was twofold. First, we aimed to provide a general software 102 

framework that allows the straightforward application of a large variety of state-of-the-art 103 

parameter optimization methods to typical problems in data-driven neural modeling. This was 104 

accomplished by significantly updating and extending our software tool (which is now called 105 

Neuroptimus). Second, we aimed to perform a systematic comparison of parameter search 106 

methods (including both previously used and novel algorithms) in the context of modeling 107 

single neurons, which is probably the most common subtype of parameter optimization tasks in 108 

neuroscience. To this end, we designed and implemented a test suite of neuronal parameter 109 

optimization problems, and used Neuroptimus to systematically test the performance of a large 110 

set of optimization algorithms on each of these benchmarks. The results of the different 111 

algorithms on the test suite were systematically analyzed and compared. Finally, we designed 112 

and deployed a web-accessible database that contains all the results of this study and also allows 113 

users to upload, retrieve, and analyze the results of parameter optimization. 114 

 115 

Results 116 

The systematic evaluation of parameter optimization methods in the context of neuronal 117 

modeling required the development of several interrelated methods and tools, which are 118 

described in detail in the Methods section and whose main features are also summarized below. 119 

The first necessary ingredient was a software tool that allows users to set up, execute, and 120 

evaluate the results of a wide variety of neural parameter optimization problems in a single 121 

standardized framework. The second required component was a diverse set of benchmark 122 
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problems that differ in the type of the model, the number of unknown parameters, and the 123 

complexity of the error function, and that collectively cover many types of parameter fitting 124 

problems that are often encountered in neuronal modeling. The third necessary component was 125 

a set of methods that allows the consistent evaluation and comparison of optimization results 126 

across the different benchmarks and algorithms. Finally, the last ingredient was a web-127 

accessible database of the optimization results that allows us to share all of our results publicly 128 

and also enables us as well as other researchers to extend the study with additional optimization 129 

runs and even new benchmarks. 130 

The Neural Optimization User Interface (Neuroptimus) 131 

We began our study by updating, improving and extending our previously developed 132 

optimization software (Optimizer), which was already shown to be a useful tool for neuronal 133 

optimization [15]. The new version (named Neuroptimus) inherited many useful features from 134 

its predecessor, and added several important new capabilities. Both Optimizer and Neuroptimus 135 

support the definition and solution of neural optimization problems through a graphical user 136 

interface (GUI) that guides the users throughout the process. The main steps (represented by 137 

different tabs in the GUI) involve selecting the target data, selecting the model and the 138 

parameters to be optimized, setting up the simulations (including stimulation and recording 139 

parameters), defining the cost function, selecting the optimization algorithm, running the 140 

parameter search, and reviewing the results. A detailed guide to the GUI is available in the 141 

online documentation of Neuroptimus (https://neuroptimus.readthedocs.io/en/latest/). All the 142 

functionality is also accessible through a command line interface that uses configuration files 143 

to set up the optimization, which enables batch processing (e.g., multiple runs with different 144 

settings or random seeds). Simulations of the model can be performed either by the NEURON 145 

simulator [20] (which is handled internally) or by arbitrary external code (which may include 146 
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running other simulators) handled as a “black box”. The modular, object-oriented structure of 147 

the program makes it possible to extend its capabilities by adding new error functions and 148 

optimization algorithms. 149 

Neuroptimus includes several new and enhanced features compared to Optimizer. In 150 

addition to specific time series (such as voltage traces), it is now also possible to use as target 151 

data the statistics of features extracted (e.g., using the feature extraction module eFEL, [27]) 152 

from a set of experimental recordings. In this case, Neuroptimus uses eFEL to extract the same 153 

features from each simulated model, computes feature errors as the difference between the 154 

feature value of the model and the mean value of the experimental feature, normalized by the 155 

experimental standard deviation, and uses the sum of these feature errors as the cost function 156 

during parameter optimization. Weights can also be provided individually for each error 157 

component. 158 

While Optimizer provided four different search algorithms (two local and two global 159 

algorithms implemented by the Inspyred and Scipy packages), Neuroptimus currently supports 160 

more than twenty different optimization algorithms from five external Python packages (see 161 

Table 2 for a complete list), plus an internally implemented random sampling algorithm, which 162 

can be considered as a simple baseline method. 163 

Neuroptimus also contains many enhancements “under the hood”. The new version was 164 

entirely developed in Python 3 to support recent open-source Python modules, such as search 165 

algorithms, graphical and parallelization interfaces. The graphical user interface was 166 

completely re-implemented using the PyQt5 package, which provides a Python binding to the 167 

popular cross-platform GUI toolkit Qt. In addition to the parameter search methods offered by 168 

Scipy and Inspyred, Neuroptimus now also provides an interface to the algorithms implemented 169 

by the widely used optimization packages Pygmo and BluePyOpt, as well as an additional 170 
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parallelized Python implementation of the Covariance Matrix Adaptation Evolution Strategy 171 

(CMA-ES) algorithm. For many of these search algorithms, parallel evaluation of models is 172 

also supported and easily configurable, which can lead to a manifold reduction in execution 173 

time, especially on highly parallel architectures such as compute clusters and supercomputers. 174 

 175 

Neural optimization benchmarks 176 

We defined and implemented a test suite of different neuronal optimization problems to 177 

demonstrate the utility of our Neuroptimus software and to quantitatively evaluate and compare 178 

the effectiveness of different parameter optimization algorithms. Our aim was to identify which 179 

parameter search methods (and which implementations) are able to find good solutions to each 180 

of our benchmark problems, and which methods (if any) can provide consistently good 181 

performance across all of these tasks. Our benchmarking use-cases differ in the complexity of 182 

the models, the simulation protocol, the source and nature of the target data, the features and 183 

error functions used to evaluate the model, and the number of unknown parameters. A subset 184 

of our use-cases is analogous to those that were described by Friedrich et al. [15], although 185 

some of these have been updated to improve their robustness. Each of the six benchmark 186 

problems is described briefly below, and in more detail in the Methods section. 187 

Four of the use cases involve finding the biophysical parameters of compartmental 188 

models of neurons based on somatic voltage responses; however, these models differ greatly in 189 

terms of the level of morphological and biophysical detail, and also in the number of unknown 190 

parameters (between 3 and 12). One simple use case involves the classic single-compartment 191 

Hodgkin-Huxley model with two voltage-gated conductances and a leak conductance; one uses 192 

a morphologically detailed but passive model neuron; another benchmark optimizes the somatic 193 
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conductances of several voltage-gated ion channels in a simplified (6-compartment) model, 194 

while our most complex use case involves fitting spatially varying conductance densities for a 195 

large set of ion channels in a fully detailed compartmental model of a hippocampal pyramidal 196 

cell. A different type of benchmark involves optimizing the parameters of a phenomenological 197 

point neuron (an adaptive exponential integrate-and-fire model), and the final one simulates a 198 

voltage-clamp experiment to estimate synaptic parameters. 199 

Some of our benchmark problems (the Hodgkin-Huxley and the Voltage Clamp use-200 

cases) use surrogate data as the target. In this case, target data are generated by the same 201 

neuronal model with known parameters; some of these parameters are then considered to be 202 

unknown, and the task is to reconstruct the correct values. Therefore, in these test cases, a 203 

perfect solution with zero error is known to exist, and the corresponding parameters can be 204 

compared to those found by the search algorithms. However, for most of our benchmark 205 

problems, the target data were recorded in electrophysiological experiments, or (in one case) 206 

generated by a more complex model than the one we were fitting. In these instances, the best-207 

fitting parameters and the minimal possible error score are unknown. 208 

In most of our use cases we compared the output of the model to the target data by 209 

extracting several different electrophysiological features from the raw voltage traces. The 210 

difference of each model feature from the corresponding (mean) experimental feature can be 211 

considered as a separate error component (or objective). This allowed the direct application of 212 

multi-objective optimization methods. When using single-objective algorithms, feature errors 213 

were combined into a single cost function using an average with pre-defined (in most cases, 214 

uniform) weights. The final best solution for multi-objective algorithms was also chosen using 215 

the same weighted average of the objectives. Two of our use cases had simpler voltage or 216 

current traces as their target. In these cases, the mean squared difference between the model 217 
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trace and the experimental trace was used as the only error function. This precluded the use of 218 

multi-objective optimization methods, so only single-objective algorithms were included in the 219 

comparison in these cases. 220 

We used several criteria to select optimization algorithms for inclusion in our 221 

benchmark study. First, we implemented a simple random search algorithm based on 222 

independently repeated uniform sampling of the entire available search space defined by the 223 

parameter boundaries. This algorithm can be considered as a natural baseline against which we 224 

can measure the performance of more sophisticated methods. Second, we included some 225 

popular local optimization algorithms (Nelder-Mead and L-BFGS-B) that are expected to be 226 

efficient when the error function has a single optimum, but not for more complex problems with 227 

multiple local optima. The rest of the search algorithms that we included are so-called global 228 

optimization methods or meta-heuristics, which aim to take advantage of certain types of 229 

regularities in the error function to find the global optimum (or another similarly good solution) 230 

more efficiently than a random search or local optimization methods do. A very large selection 231 

of such meta-heuristic algorithms has been developed, and many of these are included in one 232 

(or several) of the Python packages that are accessible in Neuroptimus. Due to time and resource 233 

constraints, not all of these algorithms were included in the current study, but we aimed to 234 

include many of the algorithms that were previously used in neuronal optimization and those 235 

that have proved particularly successful in other settings. More specifically, we included several 236 

different types of evolutionary algorithms, several implementations of the particle swarm 237 

algorithm, and also some other types of bioinspired algorithms and methods based on statistical 238 

physics. 239 

To ensure a fair comparison of different search methods, we allowed a maximum of 240 

10,000 model evaluations in a single run of every optimization algorithm. For all the algorithms 241 
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that define populations of models that are evaluated as a batch in every iteration (this includes 242 

both evolutionary and swarm algorithms), we set the population size to 100, and ran the 243 

algorithms for 100 iterations (generations). We recorded the lowest error value achieved during 244 

each run, and also looked at how the best error score evolved during the course of the 245 

optimization. This allowed us to quantify the speed of convergence by calculating the area 246 

under the curve showing the cumulative minimum error as a function of completed model 247 

evaluations. We performed 10 repeated runs of each algorithm on every benchmark problem to 248 

allow proper statistical evaluation of the results. 249 

The performance of different optimization algorithms on 250 

individual benchmarks 251 

Hodgkin-Huxley model 252 

 253 
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 254 

Figure 1. The results of fitting conductance densities in the Hodgkin-Huxley model. 255 

(A) Example of a comparison plot showing the voltage trace generated by the model with its original parameters 256 

(blue) and the trace given by the model using the best parameter set found by the Random Search algorithm (red). 257 

(B)  Plot showing the evolution of the cumulative minimum error during the optimization. The curves show the 258 

median of 10 independent runs for each relevant algorithm. Each generation corresponds to 100 model evaluations. 259 

The colors corresponding to the different algorithms (and packages) are shown in the legend. (C) Box plot 260 

representing the distribution of the final error scores over 10 independent runs of each algorithm. (D) Box plot 261 

representing the convergence speed of the algorithms tested, measured as the area under the logarithmic cumulative 262 
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minimum error curve (as shown in panel B). In (C) and (D), horizontal red lines indicate the median, the boxes 263 

represent the interquartile range, whiskers show the full range (excluding outliers), and circles represent outliers. 264 

Boxes representing single-objective algorithms are colored blue and those of multi-objective ones are red. Results 265 

are sorted by the median score, from the best to the worst. The names of the packages on the horizontal axis are 266 

colored to indicate the implementing package according to the legend in (D). 267 

 268 

Our first benchmark problem involved finding the correct densities of two voltage-gated 269 

conductances and a leak conductance (3 parameters overall) in the classic single-compartment 270 

Hodgkin-Huxley model [28] based on the voltage response to a single current step stimulus 271 

(Figure 1). We compared the response of each candidate model to that of the original model by 272 

evaluating four features (spike count, spike amplitude, spike width, and mean squared error of 273 

the voltage excluding spikes, evaluated using built-in error functions of Neuroptimus), which 274 

also enabled the application of multi-objective optimization methods. We expected this to be a 275 

relatively simple optimization problem based on the low number of parameters to fit, although 276 

it is also clearly non-trivial due to the nonlinear nature of the neuronal dynamics and, 277 

particularly, the complicated dependence of the extracted physiological features on the 278 

conductance parameters. 279 

Many of the search algorithms tested found relatively good solutions most of the time, 280 

but most of them failed to converge completely in 10,000 model evaluations. The exception 281 

was the CMAES algorithm, whose implementations both consistently converged to the optimal 282 

solution after approximately 3,500 evaluations (the lowest possible error score was not exactly 283 

zero due to rounding errors). Interestingly, multi-objective algorithms generally performed 284 

worse on this use-case than single-objective ones, with Inspyred’s NSGA2, PAES and Pygmo’s 285 

NSPSO algorithms giving worse results than Random Search. Different implementations of the 286 

same algorithms (two versions for CMAES, three for PSO, and three for NSGA2) usually 287 

showed similar convergence behavior, except for the implementation of NSGA2 by the 288 
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Inspyred package that performed significantly worse than the Pygmo and BluePyOpt versions 289 

of the same method. Overall, even this simple benchmark revealed surprisingly large 290 

differences in the performance of the different search methods that we included in our 291 

comparison. 292 

Voltage Clamp 293 

 294 

 295 
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Figure 2. The results of fitting the parameters of a synaptic connection based on simulated voltage-clamp 296 

recordings. 297 

The plots in all four panels are analogous to those in Figure 1. Only single-objective methods were tested in this 298 

use-case because only a single error function (mean squared difference) was used to compare model outputs to the 299 

target data. Panel A shows the results of a best-fitting model found by the Random Search algorithm.  300 

 301 

The second benchmark problem involved finding four parameters of a simulated 302 

synaptic connection to a single-compartment model neuron using voltage-clamp recordings 303 

(Figure 2). This use case also used surrogate data as the target, but in this case the recorded 304 

variable was the current injected by the electrode during a simulated voltage-clamp experiment. 305 

The parameters to be reconstructed were the maximal value (weight), delay, and rise and decay 306 

times of the synaptic conductance change following each repeated activation of the synapse. 307 

Due to the stereotyped nature of the data, mean squared difference was used as the only error 308 

function, and thus only single-objective algorithms were tested. 309 

Although this is still a relatively simple and low-dimensional problem, and the intrinsic 310 

dynamics is much less complex than that of the Hodgkin-Huxley model in current clamp mode 311 

in the first use-case above, we observed highly divergent performance for the set of algorithms 312 

that we tested. Both implementations of CMAES reached the best possible score (again defined 313 

by round-off error) in fewer than 40 generations (4000 model evaluations). The Inspyred 314 

implementation of PSO also approached this limit by the end of the optimization (10,000 model 315 

evaluations), but it converged substantially slower than CMAES. The Pygmo implementations 316 

of PSO, two versions of the DE algorithm, and the CES algorithm of Inspyred also achieved 317 

good results, but converged even more slowly. At the other end of the spectrum, local search 318 

algorithms were typically not effective at solving this problem, and the XNES algorithm from 319 

the Pygmo package actually performed worse than the baseline random search method. 320 
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Passive, anatomically detailed neuron 321 

 322 

 323 

Figure 3. The results of fitting the passive biophysical parameters of a morphologically detailed multi-324 

compartmental model to experimental recordings from a hippocampal pyramidal neuron. 325 

The plots in all four panels are analogous to those in Figure 1. Only single-objective methods were tested in this 326 

use-case because only a single error function (mean squared difference) was used to compare model outputs to the 327 

target data. Panel A shows the results of a best-fitting model found by the CMAES algorithm.  328 

 329 
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This use-case represents an important practical problem that has been investigated in 330 

several previous studies [15, 29, 30, 31]. It involves the estimation of three basic biophysical 331 

parameters that determine the propagation and integration of voltage signals within neurons in 332 

the subthreshold voltage range: the (specific) membrane capacitance, membrane resistance, and 333 

axial resistance. The task is to estimate these three parameters based on the voltage response of 334 

a neuron to a current stimulus (which, in our case, consisted of a larger short and a smaller long 335 

current step) recorded from a hippocampal pyramidal cell in vitro (Figure 3). The response of 336 

the model is linear in terms of the injected current, but still depends on the combination of the 337 

three biophysical parameters (which are assumed to be spatially uniform within the cell) in a 338 

non-trivial way due to the complex morphology of the neuron. In the absence of spikes, we 339 

used the mean squared difference between the simulated and the experimentally recorded 340 

voltage traces as the only error function, and restricted our attention to single-objective 341 

algorithms. 342 

This benchmark proved to be the easiest in our entire test suite. Many algorithms found 343 

the best possible fit to the data in (almost) all the runs, and most of them also converged 344 

relatively rapidly. In this case, local search methods such as the Nelder-Mead and the L-BFGS-345 

B algorithms also found the optimal solution efficiently in most runs. One curious exception 346 

was the DE algorithm implemented by the Inspyred package, which achieved a worse result 347 

than Random Search, even though the other implementation of the same algorithm by the 348 

Pygmo package was among the high-performing methods. 349 

 350 

 351 

Simplified active model 352 

 353 

 354 
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 355 

Figure 4. The results of fitting the densities of somatic voltage-gated conductances in a morphologically 356 

simplified six-compartment model using a simulated voltage trace from a detailed compartmental 357 

model as the target. 358 

The plots in all four panels are analogous to those in Figure 1.  Panel A shows the results of a best-fitting model 359 

found by the CMAES algorithm.  360 

 361 

This benchmark problem is more complex than the previous ones in several respects. 362 

The task in this use case is to determine the somatic densities of nine voltage-gated 363 
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conductances in a model of a hippocampal CA1 pyramidal neuron with simplified morphology 364 

(consisting of only six compartments) so that the somatic voltage response of the model best 365 

approximates the response of a fully detailed CA1 pyramidal cell model under the same 366 

conditions (Figure 4). We used five of the error functions implemented by Neuroptimus (mean 367 

squared error excluding spikes, spike count, latency to first spike, action potential amplitude, 368 

action potential width, and after-hyperpolarization depth) to compare the two voltage traces. 369 

This also enabled us to test multi-objective algorithms besides the single-objective ones. 370 

In this more complex use case, there were large differences in performance among the 371 

algorithms, with two orders of magnitude difference between the final errors of the best- and 372 

the worst-performing methods. Once again, implementations of the CMAES algorithm 373 

achieved the best final scores, but the Pygmo implementations of PSO also delivered good final 374 

scores along with the best convergence speed. Among multi-objective algorithms, IBEA 375 

achieved the best final scores, and also performed quite well in terms of convergence speed. At 376 

the other extreme, all local search algorithms typically performed worse than Random Search, 377 

and are clearly inadequate for this type of problem. It is worth noting that all three 378 

implementations of the NSGA2 algorithm gave similar results, as did the different flavors of 379 

DE, although neither these algorithms nor several other bio-inspired algorithms (such as other 380 

evolutionary algorithms or ant colony optimization) were capable of providing as good 381 

solutions as CMAES and PSO on this benchmark. 382 

 383 

Extended integrate-and-fire model 384 

 385 
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 386 

Figure 5. The results of fitting a phenomenological spiking neuronal model (the adaptive exponential 387 

integrate-and-fire model) to capture experimental recordings with multiple traces. 388 

The plots in all four panels are analogous to those in Figure 1. Panel A shows the results of a best-fitting model 389 

found by the CMAES algorithm. Note that the height of action potentials is irrelevant in the integrate-and-fire 390 

model, and the spikes generated by the model are not explicitly represented in the figure. 391 

 392 

This use case involves fitting the parameters of an adaptive exponential integrate-and-393 

fire model neuron so that it captures the spiking responses of a hippocampal CA3 pyramidal 394 
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neuron recorded in vitro (Figure 5). This is a single-compartment model that does not include 395 

detailed models of neuronal biophysics; instead, it aims to capture neuronal spiking 396 

phenomenologically, using an extended integrate-and-fire formalism with an exponential term 397 

in the current-voltage relationship and an adaptation variable that is also linked to spiking [32, 398 

33]. This model has a total of 10 parameters that had to be fitted by the optimization algorithms. 399 

Unlike the models in the other use cases (which were implemented in NEURON), this model 400 

was implemented in the NEST simulator [34], and was treated as a black box by Neuroptimus. 401 

The parameters generated by the optimization algorithms were passed to an external Python 402 

script, which constructed the model, ran the simulations using NEST, and passed the results 403 

(spike times and subthreshold voltage traces in two separate files) back to Neuroptimus for 404 

evaluation and comparison with the experimental data. The data included the voltage responses 405 

of a real CA3 pyramidal cell to current steps of four different amplitudes (these responses are 406 

shown concatenated in blue in Figure 5A), and the model had to capture all of these responses 407 

simultaneously. As integrate-and-fire models cannot (and are not expected to) reproduce spike 408 

shape, we used spike count, latency to first spike, and the mean squared difference of the voltage 409 

excluding spikes as three error components during the optimization. 410 

On this benchmark, the two implementations of CMAES found the solutions with the 411 

lowest error. In fact, they obtained the same lowest error score several times, and this was lower 412 

than the scores achieved by any other algorithm, so this error score likely corresponds to the 413 

best possible solution of this optimization problem. Although clearly inferior to CMAES on 414 

this problem, the various implementations of the particle swarm algorithm, the multi-objective 415 

algorithm IBEA, and the classical evolutionary algorithm found relatively good solutions, while 416 

several methods performed substantially worse than Random Search. We note that the PAES 417 

algorithm generated parameter combinations that led to errors during the NEST simulation, and 418 

was therefore excluded from the current comparison. 419 

 420 
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Morphologically and biophysically detailed CA1 pyramidal cell model 421 

 422 

 423 

Figure 6. The results of fitting conductance densities and kinetic parameters in a CA1 pyramidal cell model. 424 

The plots in all four panels are analogous to those in Figure 1.  Panel A shows the results of a best-fitting model 425 

found by the CMAES algorithm. No target trace is shown because, in this use case, the actual target is defined by 426 

the statistics of electrophysiological features that are extracted from a set of experimental recordings. 427 

 428 
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Our final use case represents a typical scenario in the construction of morphologically 429 

and biophysically detailed compartmental models [1, 4, 7, 35, 36, 37, 38]. The model is based 430 

on the reconstructed morphology of a CA1 pyramidal neuron [39], and contains a large set of 431 

voltage-gated conductances, several of which are distributed non-uniformly within the cell (see 432 

Methods for further details of the model). The goal is to find the values of 12 parameters that 433 

determine the densities and biophysical properties of voltage-gated and leak conductances in 434 

the model such that the features extracted from the voltage responses of the model to multiple 435 

step current injections best approximate the average of the same features extracted from 436 

experimental recordings under matching conditions (Figure 6). One hyperpolarizing and five 437 

depolarizing current steps were used, and these yielded a total of 66 features of 20 different 438 

types (Table 3) that were extracted and evaluated for each model instance during the parameter 439 

search. 440 

Although this is certainly the most complex model in our benchmarking suite with the 441 

largest number of free parameters, finding solutions with errors close to the smallest possible 442 

value was apparently easier than in the previous two use-cases (although, strictly speaking, we 443 

cannot rule out the possibility that none of the algorithms tested ever came close to the unknown 444 

globally optimum error score). More specifically, all three versions of PSO, both 445 

implementations of CMAES, and also the GACO and CEO algorithms consistently yielded 446 

similar low error scores, but several other algorithms, including the multi-objective IBEA and 447 

NSGA2 methods, also gave acceptable solutions. We note that running the PAES algorithm 448 

resulted in memory errors, and it was therefore omitted from the evaluation of this use case. 449 

 450 
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Overall performance of the algorithms 451 

In general, no single algorithm is expected to perform well in all types of global 452 

optimization problems. Popular methods can take advantage of different types of regularities in 453 

the error function to speed up the search for the global optimum even in high-dimensional 454 

spaces with multiple local optima. Therefore, problems with different structures may require 455 

different algorithms for their efficient solution, and we can identify some signs of this 456 

heterogeneity when comparing the results of the individual benchmarks described above. 457 

Nevertheless, some clear patterns are evident, and we can quantify this by constructing and 458 

examining summary statistics for the algorithms across all the use cases. 459 

Figure 7 summarizes the rankings of the various algorithms in our study according to 460 

final score and convergence speed. Individual ranks were based on the medians of the respective 461 

performance measure across all runs of the algorithm in a particular benchmark (this was also 462 

the basis of the placement of the algorithms along the horizontal axes in panels C and D of 463 

Figures 1-6), and Figure 7 shows the statistics of these ranks for each algorithm across the 464 

different benchmarks. 465 
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 466 

 467 

Figure 7. Overall rankings of optimization algorithms. 468 
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Statistics of the ranks achieved by individual optimization algorithms on the different benchmarks (Figures 1-6) 469 

according to the final error (A) and convergence speed (B). Brown dots represent the ranks achieved by the 470 

algorithms in each use-case; boxes indicate the full range and the orange line represents the median of these ranks. 471 

The single-objective algorithms are shown in blue and the multi-objective ones in red boxes. The color of the name 472 

of the algorithm indicates the implementing package, with the color code included in the legend. Algorithms are 473 

sorted according to the median of their ranks. 474 

 475 

In terms of the generally best-performing algorithms on our neuronal optimization test 476 

suite, the results are quite clear. In almost all cases, CMAES delivered the best results after 477 

10,000 model evaluations, and its two implementations by different packages performed quite 478 

similarly. The three implementations of the particle swarm algorithm that we tested also showed 479 

similar performance, and were typically better than all the other methods except for CMAES. 480 

IBEA was close behind the PSO variants in the rankings, and was clearly the best among the 481 

multi-objective methods that we tested. It is interesting to note that some of the algorithms, 482 

including local search methods (and especially the Nelder-Mead algorithm) but also some other 483 

methods such as GACO and XNES showed widely varying performance across the different 484 

benchmarks, so these may be suitable for some problems but completely inadequate for others. 485 

Finally, the rankings based on the convergence score are generally quite similar to those based 486 

on just the final score, although there are some minor differences - for instance, PSO appears 487 

to be more competitive with CMAES according to this measure. 488 

 489 

Online database of optimization results 490 

The results presented so far summarize the performance of a selected subset of the 491 

algorithms implemented by five Python packages, using their default settings, on a pre-defined 492 
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suite of six neuronal optimization problems. To increase the utility and reproducibility of our 493 

results, we also wanted to share the details of all the optimization runs, including the settings 494 

that enable their replication as well as their detailed results. In addition, we wanted to find a 495 

simple way of updating and extending the study with more optimization runs, potentially with 496 

different settings or algorithms not included in the present comparison, or even involving 497 

additional use cases, not just by us but also other interested researchers. We therefore designed, 498 

implemented and deployed an online database with an associated, publicly accessible web 499 

server (https://neuroptimus.koki.hu) that allows users to upload, query, and analyze 500 

optimization runs performed by the Neuroptimus software tool. 501 

The website allows users to browse the optimization results stored in the online 502 

database, and filtering options are available to create lists of relevant results. The results of 503 

optimization runs can be viewed in a detailed text-based format, and selected subsets of 504 

optimizations can be analyzed and displayed graphically, similarly to the plots in Figures 1-6 505 

above. Registered users can also add to the database their own optimization results by uploading 506 

the JSON file (metadata.json) generated by Neuroptimus after each optimization run. Users can 507 

optionally also upload the other files that belong to the optimization (including the model and 508 

the target data) in the form of an archive, which creates an online record of the optimization 509 

that allows its full replication. 510 

The database currently contains the results of all the optimization runs from the current 511 

study. This enables users of the website to replicate most of the figures in this paper, and to 512 

download individual optimization runs (including their settings and results). Users can also 513 

carry out custom analyses of the results, and (after registration) they can add their own 514 

optimization results (created using Neuroptimus) on both existing and novel use cases and 515 

compare these with other results on the same use case. This way, the website offers an 516 
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interactive, continuously updated, and publicly accessible “live” version of this paper, which 517 

will provide a valuable online resource for researchers to explore and share methods and results 518 

on neuronal optimization. 519 

 520 

Discussion 521 

The results of our study have the potential to advance the state of the art in neural 522 

parameter optimization in several different ways. First, we have created and shared 523 

Neuroptimus, a software tool that was designed to help both computational and experimental 524 

neuroscientists in the complete formulation and solution of neuronal parameter search 525 

problems. All the functions of Neuroptimus are accessible through a graphical user interface, 526 

although there is also a command line interface to support more advanced usage. Users of 527 

Neuroptimus gain uniform access to a large number of optimization algorithms implemented 528 

by several widely used Python packages, including several algorithms that were used 529 

successfully in previous neuronal modeling studies, and also several other state-of-the-art 530 

optimization methods that are popular in other domains but have not been applied to neuronal 531 

parameter optimization. This feature of Neuroptimus allowed us to systematically test the 532 

performance of a wide variety of parameter search methods on six distinct neuronal 533 

optimization problems, which makes it possible to offer some recommendations for future 534 

neuroscientific studies that rely on parameter optimization (see below). Finally, we created an 535 

online database of optimization results obtained by using Neuroptimus. This database currently 536 

contains the results of the present study, but the online user interface also allows us as well as 537 

others to add new results and compare them with already existing ones. 538 
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Comparison of Neuroptimus with other neural 539 

optimization tools 540 

A variety of software tools have been developed and used for the purpose of optimizing 541 

the parameters of neural models. This includes the built-in optimization modules of the general-542 

purpose neural simulators NEURON [20] and GENESIS [21], the optimization-oriented 543 

features of the NetPyNE neural modeling framework [26], the Neurofitter program [22], as well 544 

as the Python packages BluePyOpt [23], NeuroTune [25], and pypet [24]. However, each of 545 

these tools (except for Neurofitter, which is no longer actively maintained, and focuses on a 546 

single specific cost function) relies on just one or a few algorithms, or a single external 547 

optimization package, to perform parameter search, while Neuroptimus provides access to a 548 

large variety of different algorithms from five distinct Python packages. This gives users of 549 

Neuroptimus a lot of flexibility to choose the best method for any particular fitting problem. As 550 

an example, Neuroptimus can take advantage of the large number of local and global 551 

optimization algorithms offered by the Pygmo package [40], which is a mature and actively 552 

maintained tool used, among others, by the European Space Agency. Another distinguishing 553 

feature of Neuroptimus is its graphical user interface. Among the other tools, only NEURON 554 

offers GUI-based access to parameter optimization, but the utility of this feature is severely 555 

limited by its reliance on the local search method PRAXIS as its only available algorithm. 556 

Algorithm recommendations based on our benchmarking 557 

results 558 

The performance of optimization algorithms in general depends quite heavily on the 559 

nature of the problem, and no particular algorithm is expected to provide good solutions 560 
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universally. However, within the task domain that we considered here, i.e., finding the 561 

biophysical parameters of models of single neurons, we can make some clear recommendations. 562 

Our benchmarking results were dominated by two different metaheuristics, covariance matrix 563 

adaptation evolution strategy (CMAES) and particle swarm optimization (PSO), followed by 564 

the multi-objective indicator-based evolutionary algorithm (IBEA) - so we would suggest trying 565 

these methods first to attack a novel neuronal parameter optimization problem. We also 566 

confirmed that local optimization algorithms are generally not suitable for more complex 567 

parameter search tasks, although they can be adequate and even efficient in the simplest cases. 568 

Although, in principle, implementation details (particularly the default settings of 569 

algorithm parameters) could influence the performance of the algorithms, we found essentially 570 

no difference in the quality of solutions found by implementations of the same algorithms by 571 

different packages. However, the algorithms and even implementations of the same algorithm 572 

differ in the extent to which their execution can be parallelized, and this can have a large impact 573 

on the runtime of the algorithms, especially on highly parallel architectures. All algorithms of 574 

Inspyred and BluePyOpt, and some algorithms of Pygmo support the parallel evaluation of 575 

multiple candidate models (typically those within a particular generation or iteration), and 576 

Neuroptimus allows users to take advantage of these capabilities. It is worth noting in this 577 

context that Pygmo contains two variants of particle swarm optimization: PSO, which is closer 578 

to the original formulation of this algorithm, updates the velocities and positions of particles in 579 

a serial manner, and is thus not suitable for parallelization; and the generational variant PSOG, 580 

where the velocities and positions of all particles are updated in parallel. PSOG shares this 581 

feature with the implementation of PSO by the Inspyred package, and both of these can be run 582 

in a parallelized fashion from Neuroptimus. As a result, although all three variants of PSO 583 

produced similar final results in our tests, the runtimes of Pygmo’s PSOG and Inspyred’s PSO 584 

were significantly lower than those of Pygmo’s PSO when multiple CPU cores were utilized. 585 
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The situation is similar for the CMAES algorithm, where the current implementation in Pygmo 586 

does not support parallel evaluations. This was the reason for including the Cmaes package in 587 

Neuroptimus: this module implements CMAES in a way that allows straightforward 588 

parallelization, and Neuroptimus uses this implementation to support parallel execution of this 589 

popular and efficient method. Finally, to demonstrate the importance of parallelized 590 

implementations, we note that running a single optimization of our most complex use case (the 591 

detailed CA1 pyramidal neuron) with 10,000 model evaluations took approximately 10 days on 592 

our compute server for algorithms without parallelization; by contrast, a single run of this use 593 

case using the same number of model evaluations (e.g., 100 generations with populations of 594 

100 individuals) with algorithms that support parallel evaluations took only a few hours on a 595 

single node of a supercomputer (accessed via the Neuroscience Gateway) that allowed an entire 596 

generation of models to be evaluated in parallel. 597 

Our findings regarding the relative performance of various optimization methods are 598 

mostly in line with results of earlier studies that included such comparisons. Vanier and Bower 599 

[17] compared four different algorithms on a set of use cases similar to ours. They examined 600 

the performance of random search, conjugate gradient descent (a local search method), an 601 

evolutionary (or genetic) algorithm, and simulated annealing. They found that their 602 

evolutionary algorithm (which was similar to the CEO algorithm in our benchmark) delivered 603 

good performance even for more complex use cases with a larger number of parameters. This 604 

is consistent with the generally good results of evolutionary-type algorithms in our study, 605 

although we found several more recent variants that outperformed the classic version. They also 606 

found simulated annealing to be very effective, and this was later confirmed by Friedrich et al. 607 

[15] using the implementation that is built into the GENESIS simulator. None of the packages 608 

currently supported by Neuroptimus contain the traditional simulated annealing algorithm. In 609 

fact, older versions of the SciPy module used to include simulated annealing, but it was later 610 
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deprecated and replaced by the basinhopping algorithm, which is considered to be a 611 

generalization of simulated annealing. In this light, the generally poor performance of the 612 

basinhopping algorithm in our tests is slightly surprising, although it may be caused by 613 

implementational problems or improper default settings of the parameters. 614 

Our finding that CMAES performs well in a variety of different tasks is supported by 615 

several other studies. In particular, CMAES and IBEA have been compared on data-driven 616 

neuronal models, and CMAES generally delivered better final scores [41]. CMAES was also 617 

found to be efficient and robust in a study that involved fitting the biophysical parameters of 618 

models of striatal neurons [42]. Outside the neuronal modeling domain, a recent study 619 

compared two sophisticated evolution strategy variants, CMAES and xNES on different 620 

problems, and the results clearly showed that CMAES consistently outperformed xNES [43]. 621 

Our findings also support this conclusion, and add some evidence regarding two additional 622 

evolution strategy types: classic evolution strategy (CES, from the Inspyred package), which 623 

performed similarly to xNES (from Pygmo), and Pareto-archived evolution strategy (PAES, 624 

from Inspyred), which was one of the weakest performers (worse than random search) in our 625 

comparison.  626 

Limitations of the benchmarking study 627 

The specific results that we obtained in our benchmarking study depend, to some extent, 628 

on some arbitrary choices that we had to take when designing our tests. For instance, we 629 

arbitrarily set the number of model evaluations to 10,000 for every algorithm to ensure a fair 630 

comparison of the final results. However, not all algorithms converged completely after 10,000 631 

model evaluations in some of our use cases, and thus allowing more (or fewer) evaluations 632 

would likely affect the rankings based on the final score. The other performance measure that 633 
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we used, the convergence score, is expected to be less sensitive to the exact number of model 634 

evaluations allowed, and also provides an indication of the speed of convergence. 635 

We made another arbitrary choice for every algorithm with a hierarchical design, which 636 

includes all population-based methods (such as evolutionary and swarm intelligence 637 

algorithms) but also other nested algorithms such as basinhopping. We set the number of model 638 

evaluations in the innermost loop (i.e., the size of the population, or the number of steps in the 639 

local optimization) to 100, and the number of iterations in the outer loop (e.g., the number of 640 

generations) also to 100. This 100x100 partitioning of the total of 10,000 evaluations is a 641 

reasonable choice for most algorithms, and led to good results in most cases; however, it is 642 

entirely possible that a different choice (such as 200 generations with a population size of 50, 643 

or the other way around) would have resulted in improved performance for some of the 644 

algorithms. 645 

Similarly, almost all the algorithms that we used include some tunable parameters that 646 

change the course of the optimization and may heavily influence the quality of the results. We 647 

decided to use the default settings specified in the optimization packages for all algorithms 648 

(with the exception of the CEO algorithm from the Inspyred package - see the description of 649 

this algorithm in Methods for details). In many cases, these settings were compatible with 650 

parameters recommended in the relevant literature; in some other cases, different sources 651 

suggested different settings; and in some cases, no such recommendations could be found. It is 652 

also known that the best settings for such algorithmic parameters can depend on the details of 653 

the problem, so it is possible that distinct settings would be optimal for the various use cases. 654 

Overall, we may conclude that the rankings that we provide are not just about the 655 

algorithms themselves (or even about their implementations by particular packages), but are 656 

likely also influenced by the settings of the parameters (including the population size) for each 657 
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method. In fact, we expect that the results of some algorithms could be improved substantially 658 

by using different settings, and there are also many additional optimization algorithms that were 659 

not included in the current comparison. Therefore, we hope to update and extend our study as 660 

more optimization results become available (see below for further discussion). 661 

Possible extensions 662 

In addition to testing our use cases with more algorithms and settings as described 663 

above, the results of our study could be extended in other important ways. One possible 664 

direction would be to extend the set of use cases to other types of problems. All of the use cases 665 

included in the current study involved single cell models; however, in principle, Neuroptimus 666 

can also handle neural models at the subcellular and network levels, and supports the 667 

optimization of their parameters. For example, in one project, we used Neuroptimus to tune the 668 

concentrations of molecules in biochemical pathways involved in synaptic plasticity, relying 669 

on the reaction-diffusion (rxd) module of NEURON to run the simulations. In another project, 670 

we used Neuroptimus to tune synaptic weights in a network model that was constructed and 671 

simulated using Brian as an external simulator. The main reason why we did not include these 672 

examples in the current comparison is that, in both of these cases, every single simulation of 673 

the model requires more substantial resources and time, so that repeatedly running these 674 

problems with all the algorithms would have been beyond our current computational resources, 675 

and would have been completely unfeasible with algorithms that do not support parallel model 676 

evaluations. 677 

There are also many useful features that we could potentially add to our optimization 678 

tool, Neuroptimus. For example, Neuroptimus currently returns only a single parameter 679 

combination corresponding to the lowest error score at the end of the optimization (although 680 
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the parameters and errors of all the models tested are also saved into a file and may be analyzed 681 

outside Neuroptimus). This is the case even when multi-objective methods are used; the winner 682 

in this case is selected from the final population by minimizing the weighted sum of the 683 

objectives, using weights provided by the user before the optimization run. However, the final 684 

population of multi-objective optimization carries much more information, as it approximates 685 

the Pareto front (the parameter combinations representing the best possible tradeoffs between 686 

the objectives for different choices of the weights). Therefore, it would be useful to add to 687 

Neuroptimus the capability of properly representing and analyzing the results of multi-objective 688 

optimization. Other useful extensions could include the ability to chain optimization algorithms 689 

(e.g., by automatically running local optimization using the output of a global algorithm as the 690 

starting point), and the ability to visualize the progress of optimization (in error space and in 691 

the parameter space) while it is still running. 692 

Community and cooperation through the Neuroptimus 693 

website 694 

We do not see the benchmarking results presented in this paper as the final word in 695 

evaluating parameter search methods for neuroscientific problems. As we argued above, it will 696 

be important to extend our study with more use cases and further evaluation of different 697 

algorithms and settings. Global parameter optimization is also a fast-moving field where new 698 

methods emerge regularly; the fact that Neuroptimus supports several actively developed 699 

packages, and is also flexible enough to accommodate new packages guarantees that new 700 

developments can be integrated with minimal effort. 701 

We have developed and deployed the Neuroptimus web server to provide a platform for 702 

sharing and analyzing optimization results. By allowing all users to upload results obtained by 703 
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using Neuroptimus, and to compare them with already uploaded results (including all the results 704 

of the current paper), the web site will become a continuously updated “live” version of this 705 

paper. This should facilitate meaningful, quantitative comparisons of parameter optimization 706 

methods, and aid the collaboration of different research groups that are interested in this topic. 707 

We encourage all interested professionals (and especially those who are experts in using 708 

particular algorithms) to run the use cases with improved settings, try other algorithms, add new 709 

use cases, and share their results on the Neuroptimus website. This way, we can collectively 710 

track new developments, and offer reliable solutions for an increasing variety of neural 711 

optimization problems. 712 

 713 

Methods 714 

Software tools and services 715 

Neural Optimization User Interface (Neuroptimus) 716 

At the core of our methodology is a software tool that we developed, called Neural 717 

Optimization User Interface (or Neuroptimus). Neuroptimus implements a software framework 718 

that allows users to set up and solve parameter optimization problems and analyze the results. 719 

Neuroptimus performs parameter optimization mainly by providing a common interface to a 720 

large number of popular parameter search algorithms implemented by various open source 721 

packages. In principle, Neuroptimus can be used to optimize the parameters of all kinds of 722 

systems; however, its main purpose is to aid parameter fitting in neural systems, and especially 723 

in detailed models of neurons. Accordingly, it includes many features that were developed 724 
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specifically for this scenario, which support simulating biophysical models of neurons using 725 

the NEURON simulator, and comparing their behavior to experimental data obtained with 726 

common electrophysiological protocols. 727 

Neuroptimus is essentially an updated and extended version of our previous tool 728 

Optimizer (https://github.com/KaliLab/optimizer) [15]. The basic design of these two pieces of 729 

software is quite similar, and they also share many details of their implementation. Therefore, 730 

we will focus on the new features and other differences here, and summarize the features that 731 

are used by the current benchmarking study, but we refer the reader to Friedrich et al. (2014) 732 

and the Neuroptimus documentation (https://neuroptimus.readthedocs.io/) for further details. 733 

Neuroptimus is open source software, implemented in Python3, and can be accessed at 734 

the GitHub repository https://github.com/KaliLab/neuroptimus. Its functions are available both 735 

via a graphical user interface (GUI) that guides users through the steps of setting up, running, 736 

and evaluating the results of parameter optimization tasks, and via a command line interface 737 

that performs these tasks based on the settings stored in a configuration file. The GUI was built 738 

using the PyQt5 package that provides a Python binding to the cross-platform GUI toolkit Qt 739 

(version 5). 740 

The complete definition of a neural parameter optimization problem requires the 741 

specification of multiple components. First, we need to provide the model whose parameters 742 

we wish to optimize. Neuroptimus can load, manipulate and execute models implemented in 743 

the HOC language of the NEURON simulator. The parameters to be optimized can be selected 744 

from the parameters of this model, or the user can provide a function (implemented in Python) 745 

that defines abstract parameters and how these should be mapped onto the concrete parameters 746 

of the NEURON model. As an alternative, models can be implemented by any external program 747 

that is capable of reading the variable parameters of a model candidate from a text file, setting 748 
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up the model accordingly, running the simulation(s), and saving the results to files that can be 749 

interpreted by Neuroptimus. 750 

Second, the cost function for neural parameter optimization is typically defined in terms 751 

of some target data (from experiments or prior simulations) and a function (or set of functions) 752 

that quantifies the difference between the output of the model and the target data. Neuroptimus 753 

can handle different types of target data, including time series (such as voltage and current 754 

traces), explicit spike times, and feature statistics. 755 

Neuroptimus implements several error functions that can be used individually or in 756 

combination to evaluate during the optimization process the discrepancy between the voltage 757 

traces (or other time series) generated by the optimized model and the target data [15]. These 758 

cost functions range from general ones such as the mean squared error to more specific ones 759 

that are useful mainly in the context of fitting neuronal voltage responses and characterize the 760 

pattern and shape of action potentials (Table 1). 761 

 762 

Feature name Definition 

Mean squared error 

Mean squared difference between the model trace and the target trace 

point by point, normalized by the squared range of the target data 

Mean squared error 

(excluding spikes) 

Same as above but excludes the parts of both traces in the vicinity of 

action potentials (in either trace) 

Derivative difference 

Normalized mean squared difference of the temporal derivatives of 

the two traces 
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Spike count 

Absolute difference of the number of spikes in the entire traces, 

normalized by the sum of the two spike counts 

Spike count  

(during stimulus) 

Identical to spike count, except it only takes into account the action 

potentials during the stimulus 

ISI difference 

Sum of the absolute differences of the inter-spike intervals of the two 

traces, normalized by the length of the traces 

Latency to 1st spike 

Squared difference between the time to the first spike from the start 

of the stimulus in the two traces, normalized by the squared length of 

the traces 

AP overshoot 

First calculates the amplitudes of the action potentials in both traces 

as the difference between the AP peak voltage and the AP threshold, 

then takes the mean squared difference of the AP amplitudes 

normalized by the squared maximal amplitude of the target trace 

AP width 

Mean squared difference between the width of the action potentials 

at their base (at the threshold voltage level), normalized by the 

squared mean width of the APs in the target trace 

AHP depth 

The squared mean of the difference in the corresponding after-

hyperpolarization depths, normalized by the squared range of 

subthreshold potential in the target trace 
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Table 1:  Cost functions implemented in Neuroptimus. 763 

 764 

The error functions above (which were already present in Optimizer; [15]) compare 765 

each voltage (or current) trace generated by a model with a specific voltage (or current) trace 766 

in the target data. However, a common task in single cell modeling involves finding model 767 

parameters such that the behavior of the model becomes similar to the typical behavior within 768 

a set of experimentally recorded neurons [5, 7]. In this case, it is more natural to define the 769 

target of the optimization as the mean values of a set of pre-selected features extracted from the 770 

experimental voltage traces (which may come from several experiments involving the same or 771 

different neurons). Then the natural way of defining error functions is by evaluating the 772 

difference between the value of a particular feature extracted from the voltage response of the 773 

model and the mean value of the same feature in the experiments, divided by the standard 774 

deviation of the feature in the experimental data. One additional advantage of this definition is 775 

that it provides standardized, dimensionless error scores that may be combined in a 776 

straightforward manner. 777 

This approach based on feature statistics is now supported by Neuroptimus. To provide 778 

access to a diverse array of electrophysiological features, and ensure compatibility with some 779 

common workflows [5, 7, 44, 45], Neuroptimus utilizes the Electrophys Feature Extraction 780 

Library (eFEL;  https://github.com/BlueBrain/eFEL) [27] to characterize the voltage responses 781 

of the models. The target data in this case contain the experimental mean and standard deviation 782 

values of a predefined set of eFEL features extracted from voltage responses to specific current 783 

step inputs, stored in a JSON file created from the recordings using the BluePyEfe tool 784 

(https://github.com/BlueBrain/BluePyEfe) and a custom script that converts the output of 785 

BluePyEfe to the format expected by Neuroptimus. This JSON file also contains the full 786 

specification of the stimulation protocols. When the optimization is run using the GUI, the 787 
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settings of the stimuli and the features are automatically loaded into the GUI from this input 788 

file. During the optimization process, in every model evaluation step, the features included in 789 

the input file (and selected in the GUI) are extracted from the model’s voltage traces, and errors 790 

are computed for every feature using the feature statistics-based error function described above 791 

[46]. 792 

Recent studies classify optimization problems according to the cardinality of objectives 793 

as single, multi- (2-3 objectives) and many-objective tasks (more than 3 dimensions), which 794 

affects the nature and the complexity of the problem [47]. However, we characterized our 795 

problems simply as single- or multi-objective problems because these require different internal 796 

representations and are solved by different algorithms. Multi-objective problems involve 797 

several objective functions that are to be minimized simultaneously and require finding a set of 798 

solutions that give the best tradeoffs between the objectives. 799 

Neuroptimus makes it possible to use arbitrary weighted sums of error functions as the 800 

ultimate objective function of the parameter search. When single-objective algorithms are used, 801 

the weighted sum is calculated for every model during the optimization process, and is used as 802 

the objective function. In the case of multi-objective algorithms, all the error functions are 803 

treated as separate objectives during the optimization, but the weighted sum is still used after 804 

running the search to select a single preferred solution from those returned by the algorithm [5, 805 

23]. 806 

Neuroptimus supports parameter optimization algorithms implemented by five external 807 

Python packages (Pygmo, Inspyred, BluePyOpt, Scipy, and Cmaes), and also contains an 808 

internal implementation of a simple random search algorithm that takes independent, uniformly 809 

distributed samples from the entire search space. Pygmo is a general-purpose scientific Python 810 

library for optimization, based on the C++ library pagmo, which implements many different 811 

optimization algorithms in a common framework [48]. Inspyred is a Python library specifically 812 
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developed for bio-inspired (mainly evolutionary) computation, and was already supported by 813 

Optimizer [15]. The Blue Brain Python Optimization Library (BluePyOpt) is a software 814 

framework developed at the Swiss Blue Brain Project [23], which implements multi-objective 815 

optimization algorithms including the Indicator Based Evolutionary Algorithm (IBEA), and has 816 

been applied successfully in several computational neuroscience projects [5, 7, 44, 49, 50, 51, 817 

52, 53]. SciPy [54] provides implementations of various methods for scientific computation, 818 

and includes several basic optimization algorithms, some of which were already supported by 819 

Optimizer [15]. Finally, we also included the Cmaes package because it provides a simple, 820 

robust, and easily parallelizable implementation of the Covariance Matrix Adaptation Evolution 821 

Strategy (CMAES) algorithm, a popular and powerful search method that is also included in 822 

Pygmo but in an implementation that does not support the parallel evaluation of models within 823 

a population. 824 

Some of the algorithms are local (essentially gradient-based) search methods, but most 825 

of them are based on metaheuristics that attempt to find the global minimum of the cost 826 

function(s). Many of the most popular single- and multi-objective optimization algorithms are 827 

included. Most of the algorithms also have parameters that are configurable through the GUI 828 

or the configuration file. 829 

Solving nontrivial parameter optimization problems typically requires the evaluation of 830 

many parameter combinations. In our case, this corresponds to running a large number of 831 

simulations, which may take a prohibitively long time if simulations are performed sequentially, 832 

especially for complex models such as morphologically detailed neurons, circuits, or multi-833 

scale models that include biochemical or molecular processes. Fortunately, many global 834 

optimization methods (including evolutionary and swarm intelligence algorithms) can be 835 

implemented in a way that populations of models can be evaluated in parallel, and several such 836 

parallel (or easily parallelizable) implementations are included in the Python libraries supported 837 
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by Neuroptimus. However, Python provides several different methods for parallel execution of 838 

code, and the optimization packages we use differ in terms of which parallelization approaches 839 

they support. As a consequence, Neuroptimus uses the multiprocessing module for the parallel 840 

execution of algorithms in Pygmo, Inspyred and Cmaes, while it relies on the IPython Parallel 841 

(ipyparallel) package to run the algorithms of BluePyOpt in parallel. We note that some 842 

optimization algorithms cannot be efficiently parallelized, while for some others (including 843 

several in the Pygmo package) parallel execution is not currently supported by the optimization 844 

library. 845 

Batch evaluation of the models is a requisite to use one of the various parallelization 846 

strategies in the Neuroptimus. Therefore both internal and external evaluations have to generate 847 

results simultaneously. If we used a single model instance in every process, the results could be 848 

mixed or swapped. Therefore, when simulations are carried out within Neuroptimus (using 849 

NEURON), a new model instance is created for every parameter set generated by the selected 850 

algorithm, and every evaluation running in parallel is performed with a separate model. In case 851 

of using the external simulator, every individual is evaluated in a separate subprocess, and files 852 

with unique names are used for communication between Neuroptimus and the external 853 

simulation script.  854 

 We list all of the available algorithms along with their basic properties in Table 2. Many 855 

of these algorithms were tested in our benchmarking study, and these will be described in more 856 

detail below. 857 

 858 

Algorithm Objectives Packages Parallelization 
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Custom Evolutionary Optimization 

(CEO) 
Single Inspyred multiprocessing 

Classic Evolution Strategy (CES) Single Inspyred multiprocessing 

Particle Swarm Optimization (PSO) Single 

Inspyred multiprocessing 

Pygmo None 

Non-dominated Sorting Genetic 

Algorithm (NSGAII) 
Multi 

Inspyred 

multiprocessing 

Pygmo 

Bluepyopt 
ipyparallel 

 

Differential Evolution (DE) 
 

Single 

Inspyred multiprocessing 

Pygmo None 

Pareto Archived Evolution Strategy 

(PAES) 
Multi Inspyred multiprocessing 

Basin-Hopping (BH) Single Scipy None 

Nelder-Mead (NM) Single Scipy None 

limited-memory Broyden-Fletcher-

Goldfarb-Shanno algorithm with 

bound constraints (L-BFGS-B) 

Single Scipy None 
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Self-Adaptive Differential Evolution 

(SADE) 
Single Pygmo None 

Covariance Matrix Adaptation 

Evolutionary Strategy (CMA-ES) 
Single 

Pygmo 

 

None 

Cmaes multiprocessing 

Exponential Natural Evolution 

Strategies (XNES) 
Single Pygmo None 

Extended Ant Colony Optimization 

(GACO) 
Single Pygmo multiprocessing 

Multi-objective Hypervolume-based 

Ant Colony Optimization (MACO) 
Multi Pygmo multiprocessing 

Particle Swarm Optimization 

Generational (PSOG) 
Single Pygmo multiprocessing 

Non-dominated Sorting Particle 

Swarm Optimization (NSPSO) 
Multi Pygmo multiprocessing 

Indicator Based Evolutionary 

Algorithm (IBEA) 
Multi Bluepyopt 

ipyparallel 

Simulated Annealing (SA) Single Inspyred multiprocessing 
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Praxis Single Pygmo None 

Simple Genetic Algorithm (SGA) Single Inspyred multiprocessing 

Estimation of distribution algorithm 

(EDA) 

Single Inspyred 

multiprocessing 

Artificial Bee Colony (ABC) Single Pygmo None 

Differential Evolution 1220 Single Pygmo None 

Table 2: Algorithms included in Neuroptimus. The properties listed include the full name of the algorithm, the 859 

abbreviation used in this article, the type according to the number of objectives (single/multi-objective), the 860 

implementing package(s), and the method of parallelization used in Neuroptimus (None if only serial execution is 861 

supported). 862 

 863 

The easiest way to perform parameter optimization using Neuroptimus is by using the 864 

GUI, whose seven tabs guide the user through the steps of setting up, running, and evaluating 865 

the results of the parameter search. The GUI allows the user to load the target data, select the 866 

model and the parameters to be optimized, set up the stimulation and recording conditions, 867 

configure the error function(s), run the parameter search, and then visualize and analyze the 868 

results. The final as well as intermediate results of the optimization are also saved to files, and 869 

can be analyzed outside Neuroptimus. This includes the parameters and errors of each simulated 870 

model as well as the statistics of generations saved into text files, the voltage trace of the best 871 

model saved into text files and in several image formats, and a final summary of the 872 

optimization process and the results saved into an HTML file for visual inspection through a 873 

web browser and a JSON file for a machine-readable non-SQL data representation. This final 874 
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metadata file created after the optimization contains automatically generated names for the 875 

optimization and the model, details of the parameters of the model (name, boundaries and 876 

optimal values), details of the error functions used to calculate the final error (name, value, 877 

weight, weighted value), settings of the target data, the algorithm and package used for the 878 

optimization, parameters used by the algorithm, and finally the statistics of each generation. 879 

The program also saves the full configuration of the optimization task, and the resulting 880 

configuration file can be used (directly, or after suitable modifications) by the command-line 881 

interface of Neuroptimus to re-run the optimization (with the same or modified settings). This 882 

method was used in our benchmarking study to run batches of the same optimization with 883 

different random seeds, using a simple Python script to edit the configuration file and create 884 

multiple versions of the optimization task. 885 

 886 

 Neuroptimus server 887 

To share our results in a way that allows easy replication and further analysis, and to 888 

enable the straightforward extension and updating of the current study, we created an online 889 

database of optimization results that is accessible via a web interface. We designed, created and 890 

deployed the Neuroptimus web-server, which can be publicly accessed at 891 

https://neuroptimus.koki.hu and enables all users to browse, view and analyze the optimization 892 

results stored in the database. Furthermore, authenticated users can also upload their 893 

optimizations and compare their results with previously uploaded ones. 894 

 The Neuroptimus server structure consists of an Nginx web server that handles the 895 

requests and responses, the frontend implemented using the JavaScript library ReactJS, the 896 

backend created in the Python web framework Django, backed up by a PostgreSQL database 897 

connection. The site handles the authentication of registered users, uploading of optimization 898 
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results via a web form, visualization of the data in a table structure, and the creation of plots for 899 

comparison. The database stores information about the optimization itself, the model used for 900 

the optimization and its parameters, the algorithm and its configuration, details about the target 901 

data, the statistics of each generation produced by the algorithm, creation time of results and 902 

upload time. The metadata JSON file created by Neuroptimus can be uploaded to the server and 903 

all of its information content is transferred to the database automatically. Optionally the 904 

compressed optimization files can also be uploaded and subsequently downloaded. Analysis of 905 

the optimization can be created semi-automatically by selecting the desired algorithms for 906 

comparison and visualizing them on the charts. Thus far generation plots, final and convergence 907 

score box plots are available for online observation. 908 

During the registration process users need to provide their name, affiliation, and email 909 

address, choose a username, and create a password. Verifying email addresses grants 910 

permission for users to upload their optimizations. Forgotten passwords can be reset on the 911 

website via email verification. 912 

 913 

Optimization algorithms 914 

In the current study, we evaluated a large set of parameter search algorithms, including 915 

several of the most widely used single-objective and multi-objective methods. Our optimization 916 

tool supports optimization algorithms implemented by five separate Python packages: Inspyred 917 

[55], Pygmo [48], BluePyOpt [23], Cmaes [56], and Scipy [54]. Table 2 shows which packages 918 

implement each of the supported algorithms. The majority of these algorithms can be 919 

categorized as evolutionary or nature-inspired metaheuristics. 920 

Due to constraints on time and computational resources, we could not include every 921 

single algorithm supported by Neuroptimus in the detailed comparison that we performed using 922 
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our neural benchmarking suite (see below). However, we aimed to provide good coverage of 923 

algorithms that were used previously in neuronal optimization [9, 15, 17, 23], and also included 924 

several additional algorithms that consistently provided good performance in other settings [57, 925 

58, 59, 60].  926 

Finally, we added some basic search methods such as uniform random sampling and 927 

two widely used local optimization algorithms to provide a baseline against which we can 928 

measure the performance of more sophisticated methods. The following algorithms were tested 929 

in our neural optimization benchmark. 930 

Baseline algorithm 931 

The Random Search (RAND) algorithm is the simplest heuristic to discover solutions by trial 932 

and error. This is our baseline method, which samples parameters from the search space 933 

repeatedly based on the uniform probability distribution. Neuroptimus uses our own 934 

implementation of this method [61]. 935 

Local optimization algorithms 936 

The Nelder-Mead (NM) algorithm is a classic simplex-based direct search method to find a 937 

local minimum of the cost function [62]. 938 

The limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bound constraints  (L-939 

BFGS-B) is considered to be a modern and efficient algorithm that aims to find a local minimum 940 

of the objective function using a limited amount of computer memory [63]. 941 

Single-objective global optimization algorithms 942 

The Custom Evolutionary Optimization (CEO) algorithm is a relatively simple member of the 943 

large class of evolutionary optimization algorithms. Evolutionary algorithms are metaheuristics 944 
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for global optimization inspired by biological evolution. Each candidate solution, represented 945 

by a particular combination of the unknown parameters, is considered to be an individual within 946 

a population, and the value of the cost function for that parameter combination is treated as the 947 

“fitness” of that individual (with lower costs normally associated with higher fitness). The 948 

initial population typically consists of random samples from the search space. The population 949 

is then updated through the application of various operators. New individuals are generated via 950 

the application of genetic operators such as mutation, which introduces random variations into 951 

the parameters of an individual, and crossover, which randomly combines the parameters of 952 

two individuals. The size of the population is maintained by selecting individuals with higher 953 

fitness. These steps are repeated iteratively for a certain number of generations. Many different 954 

variants of evolutionary algorithms exist that differ in the details of the operators, and may also 955 

apply additional heuristics. The CEO algorithm is based on the EvolutionaryComputation class 956 

of the Inspyred package, and uses Gaussian mutation and blend crossover variators. 957 

The Classic Evolution Strategy (CES) algorithm belongs to a subclass of evolutionary 958 

optimization algorithms called evolution strategies. In these algorithms, there are distinct 959 

mutation rates associated with each parameter, and these mutation rates are changed adaptively 960 

during the optimization [64].  961 

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is an evolutionary 962 

algorithm which samples candidate solutions from multivariate normal distributions with 963 

adapting mean and covariance matrix [65]. 964 

The Exponential Natural Evolution Strategy (XNES) algorithm is an evolution strategy (ES) 965 

that uses the natural gradient to update the search distribution [66]. 966 

The Differential Evolution (DE) algorithm is an evolutionary algorithm that generates new 967 

candidate solutions from existing individuals based on some simple mathematical rules [57]. 968 
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The Self-Adaptive Differential Evolution (SADE) algorithm is a  version of the Differential 969 

Evolution algorithm, which adjusts the mutation rate and the crossover rate adaptively [67]. 970 

The Particle Swarm Optimization (PSO) algorithm represents candidate solutions as particles 971 

moving around in the search space. Each particle has a velocity and moves by adding this to 972 

its current position in every iteration. Initially the velocity is random, and it is  modified after 973 

each iteration, influenced by the currently known best positions for the individual particles 974 

and that of the entire group. In this basic implementation, velocity and position updates are 975 

carried out sequentially for each particle  [68].  976 

The Particle Swarm Optimization Generational (PSOG) algorithm is similar to the PSO 977 

algorithm above but, in every iteration, it first updates the velocity for all particles, then updates 978 

the positions. This allows efficient parallel execution of the algorithm. 979 

The Extended Ant Colony Optimization (GACO) algorithm is a bio-inspired algorithm based on 980 

the analogy of ants finding paths from colony to food. In this algorithm, artificial agents move 981 

through the parameter space, and lay down “pheromones” depending on the quality of the 982 

solutions they find. These pheromones attract the other agents, making it more likely that they 983 

move to locations with high amounts of pheromone. This extended version of the algorithm 984 

calculates the locations of future generations of ants by sampling from a multi-kernel Gaussian 985 

distribution that depends on the quality of previously found solutions [69]. 986 

The Basin-Hopping (BH) algorithm is a generalization of the Simulated Annealing algorithm 987 

that was used in several earlier studies of neural parameter optimization [15, 17]. Basin-hopping 988 

is a two-level algorithm: its outer loop performs stochastic jumps in the search space, while the 989 

inner loop performs local optimization. The resulting new local minimum is always accepted if 990 

it is better than the previous one, but it may also be accepted if it is worse with a probability 991 

that depends on the increase in the cost function [70]. 992 
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Multi-objective global optimization algorithms 993 

The Non-dominated Sorting Genetic Algorithm II (NSGA2) is an evolutionary multi-objective 994 

algorithm. Multi-objective optimization algorithms aim to optimize several cost functions 995 

simultaneously, trying to find non-dominated (or Pareto-optimal) solutions where none of the 996 

cost functions can be improved without degrading the performance on some other cost 997 

functions. The algorithms also aim to create a diverse set of solutions that collectively provide 998 

good coverage of the Pareto front. In NSGA2, a child population is created from the parent 999 

population using the usual genetic operators, mutation and crossover. Individuals in the next 1000 

generation are then selected from the joint population based on Pareto dominance and the so-1001 

called crowding distance that penalizes closely related individuals and helps maintain diversity 1002 

within the population [58]. 1003 

The Pareto Archived Evolution Strategy (PAES) algorithm is a simple multi-objective 1004 

algorithm that uses local search (mutation) from the current individual(s) and maintains a 1005 

reference archive of previously found non-dominated solutions to approximate the dominance 1006 

ranking of candidate solutions [71]. 1007 

The Indicator Based Evolutionary Algorithm (IBEA) is a multi-objective evolutionary 1008 

algorithm that computes the fitness value based on predefined binary indicators.  It performs 1009 

environmental selection by removing the worst individuals, chooses parents by comparing the 1010 

fitness values of randomly selected pairs of individuals, and applies mutation and crossover to 1011 

create offspring, repeating the process iteratively until reaching the maximum number of 1012 

generations [72]. 1013 

The Multi-objective Hypervolume-based Ant Colony Optimizer (MACO) is a multi-objective 1014 

optimization algorithm that extends the GACO algorithm described above, combining 1015 

hypervolume computation and non-dominated fronts for ranking individuals [73]. 1016 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/


54 

The Non-dominated Sorting PSO (NSPSO)  algorithm extends PSO by making a better use of 1017 

personal bests and offspring for non-dominated comparison [74]. 1018 

 1019 

Use cases 1020 

To compare the efficiency of various parameter search methods in solving neuronal 1021 

parameter optimization tasks, we designed and implemented a suite of six different problems 1022 

that may be considered typical use cases in this domain. All of these use cases can be handled 1023 

by Neuroptimus, which allowed us to run all benchmarks using every selected algorithm within 1024 

the same framework, and made the subsequent evaluation of their performance quite 1025 

straightforward (see below). Five of the use cases were similar (or identical) to those presented 1026 

in [15], although some of them were modified to increase the robustness of the simulations 1027 

(avoiding errors due to invalid parameter combinations, in the case of the AdExpIF example) 1028 

or to move the target behavior of the model away from a critical boundary (the transition to 1029 

repetitive firing, in the case of the Hodgkin-Huxley model). We provide a description of each 1030 

use case below; all the files required to run these examples, along with detailed guides to setting 1031 

up the optimizations in the Neuroptimus GUI, can be found in the corresponding subfolders of 1032 

the neuroptimus/new_test_files directory of the Neuroptimus Github repository 1033 

(https://github.com/KaliLab/neuroptimus).  1034 

Hodgkin-Huxley 1035 

This use case is based on a single-compartment model, which contains conductances 1036 

from the original Hodgkin-Huxley model (Na+, K+, leak )[28], and is implemented in 1037 

NEURON. To generate the target voltage trace, a suprathreshold step current was injected into 1038 

the soma of the neuron  model (amplitude = 300 pA, delay = 200 ms, duration = 500 ms, and 1039 
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the voltage trace duration is 1000 ms). The test case involves recovering the correct 1040 

conductance densities (3 parameters) that were used to generate the target trace, while keeping 1041 

the properties of the currents and the other parameters of the model constant (at their original 1042 

value). A combination of four features (spike count, spike amplitude, spike width, mean squared 1043 

error of voltage excluding spikes) was used to compare each simulated trace to the original 1044 

(target) trace. 1045 

Voltage Clamp 1046 

In the Voltage Clamp benchmark problem the same single-compartment model with the 1047 

same conductances is used as in the Hodgkin-Huxley problem. In addition, this model contains 1048 

a conductance-based synapse. The goal here is to recover the synaptic parameters (weight, rise 1049 

and decay time constants, delay – 4 parameters) from simulated voltage clamp recordings 1050 

during synaptic stimulation (four presynaptic spikes at 10 Hz), using the mean squared error 1051 

cost function to compare the current traces. 1052 

Passive, anatomically detailed neuron 1053 

This benchmark uses a morphologically detailed passive model of a hippocampal CA1 1054 

pyramidal cell implemented in NEURON. During the experiment, a short (3 ms, 500 pA) and 1055 

a long (600 ms, 10 pA) current pulse (separated by 300 ms) were injected into the soma, and 1056 

the membrane potential was also recorded there. The neuron was filled with a dye during the 1057 

recording, and was reconstructed using Neurolucida. This reconstruction defines the 1058 

morphology of the model, and the task involves fitting 3 passive parameters (specific 1059 

capacitance, leak conductance density, specific axial resistance, all of which are assumed to be 1060 

uniform within the cell) to reproduce the experimental data recorded using the same complex 1061 

current clamp stimulus. Traces are compared via the mean squared error cost function. All the 1062 
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experimental data for this use case, including the morphological reconstruction and the 1063 

electrophysiological recordings, were provided by Miklós Szoboszlay and Zoltán Nusser. 1064 

Simplified model 1065 

This use case attempts to fit the behavior of a six-compartmental simplification of a 1066 

biophysically accurate and morphologically detailed hippocampal CA1 pyramidal cell model 1067 

[35] to the somatic voltage responses of the original model with full morphology. Both models 1068 

contained the same set of voltage-gated conductances in their somatic and dendritic 1069 

compartments: transient Na channels (separate somatic and dendritic subtypes), delayed 1070 

rectifier, A-type, and M-type voltage-gated K channels, C-type and AHP-associated Ca-1071 

dependent K channels, L-type and N-type Ca channels, and the hyperpolarization-activated 1072 

HCN channels. Dendrites of the full model were clustered based on their passive voltage 1073 

responses, and each of these clusters defined a dendritic compartment in the simplified model. 1074 

The densities of ion channels in the dendritic compartments of the simplified model were set to 1075 

the average values in the corresponding clusters of the full model, while the densities of the 1076 

nine somatic conductances were subject to parameter optimization. The original full model was 1077 

implemented in GENESIS, while the simplified model was implemented in the NEURON 1078 

simulator. The target data was the voltage response of the full model to the injection of a 200 1079 

pA step current stimulus into the soma (the stimulus started at 200 ms and lasted for 600 ms, 1080 

with a total recording duration of 1000 ms). The fit was evaluated via a combination of features 1081 

including mean squared error (excluding spikes) weighted by 0.2, spike count (weight 0.4), 1082 

latency to first spike (weight 0.1), action potential amplitude (weight 0.1), action potential width 1083 

(weight 0.1), and after-hyperpolarization depth (weight 0.1). 1084 
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Extended integrate-and-fire model 1085 

In this benchmark problem, the parameters of a phenomenological (adaptive 1086 

exponential integrate-and-fire) spiking model [32, 33], implemented in the NEST simulator 1087 

[34] were fitted to capture the somatic responses of a real neuron (hippocampal CA3 pyramidal 1088 

cell) to four different inputs. Voltage traces were recorded experimentally in response to current 1089 

steps of 900 ms duration, and 0.30, 0.35, 0.40, and 0.45 nA amplitudes (the step was delayed 1090 

by 100 ms, and the recordings lasted for 1100 ms). Sampling frequency was 5 kHz. The 1091 

unknown parameters to be optimized were the capacitance, the leak conductance, the reversal 1092 

potential of the leak current, the threshold voltage, the reset voltage, the refractory period, the 1093 

steepness of the exponential part of the current-voltage relation, the subthreshold adaptation 1094 

conductance, the spike adaptation current, and the adaptation time constant (10 parameters). 1095 

During the optimization the mean squared error (excluding spikes),  the spike count (during 1096 

stimulus), and the latency to first spike error functions were used with equal weights. 1097 

CA1 pyramidal cell 1098 

This is our most complex benchmark problem both regarding the number of parameters 1099 

to be optimized and the complexity of the model. The test case is based on an anatomically and 1100 

biophysically detailed rat hippocampal CA1 pyramidal cell model built for the NEURON 1101 

simulator in our research group. The morphology of the model was from [39]. The model 1102 

contained several different voltage-gated ion channels in its somatic, dendritic, and axonal 1103 

compartments: a transient Na conductance, delayed rectifier, A-type, M-type, and D-type 1104 

voltage-gated K conductances, and the hyperpolarization-activated current Ih. Many attributes 1105 

of the model were well-constrained by experimental observations available in the literature, 1106 

including the distributions and kinetic properties of the ion channels. The target data (provided 1107 
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by Judit Makara) consisted of the means (and associated standard deviations) of 20 different 1108 

types of features extracted by eFEL from the voltage responses of five CA1 pyramidal neurons 1109 

to somatic current step injections of six different amplitudes (-0.25, 0.05, 0.1, 0.15, 0.2 0.25 1110 

nA), with each stimulus repeated three times for every cell. This resulted in a total of 66 feature 1111 

values to be matched by the model. The eFEL features and the associated current step 1112 

amplitudes are listed in Table 3. 1113 

 1114 

Feature name from eFEL Feature description Fitted current steps (nA) 

Spikecount Number of spikes during stimulus 0.05, 0.1, 0.15, 0.2, 0.25 

inv_first_ISI Reciprocal of first interspike interval 0.05, 0.1, 0.15, 0.2, 0.25 

inv_last_ISI Reciprocal of last interspike interval 0.05, 0.1, 0.15, 0.2, 0.25 

inv_time_to_first_spike Reciprocal of time to first spike 0.05, 0.1, 0.15, 0.2, 0.25 

steady_state_voltage Average voltage after stimulus -0.25, 0.05, 0.1, 0.15, 0.2, 0.25 

voltage_base Average voltage during the last 10% of 

time before the stimulus 

-0.25, 0.05, 0.1, 0.15, 0.2, 0.25 
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voltage_deflection Difference between the voltage base and 

the steady-state voltage at the end of the 

stimulus 

-0.25 

voltage_deflection_begin Difference between the voltage base and 

the mean voltage in the early phase (5 to 

15% of duration) of the stimulus 

-0.25 

AHP_depth_abs Absolute value of the depth of 

afterhyperpolarization 

0.15, 0.2, 0.25 

AHP_time_from_peak Time from the peak of the AP to the 

minimum of the afterhyperpolarization 

0.15, 0.2, 0.25 

AP2_amp Amplitude of second AP  0.15, 0.2, 0.25 

AP_amplitude Average height of APs  0.15, 0.2, 0.25 

AP_begin_voltage Threshold of AP initiation 0.15, 0.2, 0.25 

AP_duration_half_width Half-width of the AP 0.15, 0.2, 0.25 
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AP_fall_time Time from the peak of the AP to the end 

of the AP 

0.15, 0.2, 0.25 

AP_rise_time Time from the AP threshold to the peak 

of the AP 

0.15, 0.2, 0.25 

AP_last_amp Amplitude of the last AP 0.15, 0.2, 0.25 

time_to_last_spike Time to the last spike 0.15, 0.2, 0.25 

sag_amplitude Difference between the minimal voltage 

and the steady state voltage at the end of 

the stimulus 

-0.25 

sag_ratio1 Ratio between sag amplitude and 

maximal hyperpolarization from voltage 

base 

-0.25 

Table 3: List of eFEL features (with brief explanations) and associated current amplitudes used as the target data 1115 

in the detailed CA1 pyramidal neuron use case. 1116 

 1117 

We optimized 12 abstract parameters of the model that were mapped onto the actual 1118 

parameters of the NEURON implementation by an appropriate user function. Ten parameters 1119 
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determined the densities of the voltage-gated and leak conductances in the different 1120 

compartments (soma, dendrites, axon) of the neuron; one parameter represented the reversal 1121 

potential of the leak current; and the final parameter determined the difference between the half-1122 

activation and half-inactivation potential values of the Na conductance. 1123 

Evaluation Methods 1124 

We tested the different optimization algorithms on each of the six model optimization 1125 

tasks described above. To ensure a fair comparison of model performance, we allowed 10,000 1126 

model evaluations for every algorithm on each task. For all population-based methods 1127 

(including evolutionary algorithms and swarm intelligence-based approaches) we set the 1128 

population size to 100, and the number of generations to 100 as well. We similarly set 100 1129 

global and 100 local minimization steps for two-stage algorithms. Otherwise, we ran every 1130 

algorithm with its default settings in Neuroptimus. These default options are typically the 1131 

package default settings, with one significant exception: we observed that the default settings 1132 

of the EvolutionaryComputation class of the Inspyred package that underlies our CEO 1133 

algorithm led to essentially no optimization, so we adjusted the default number of elites from 0 1134 

to half of the population size, changed the mutation rate from 0.1 to 0.25 and standard deviation 1135 

of Gaussian mutation from 1 to 0.5. 1136 

Optimization runs were parallelized for all algorithms where this is supported by 1137 

Neuroptimus and the underlying packages (see Table 2). For the most resource-intensive use 1138 

case (the detailed CA1 pyramidal neuron model) these parallelized runs were performed on 1139 

supercomputers via the Neuroscience Gateway [75]; simpler use cases and algorithms that do 1140 

not support parallelization were run on a Dell PowerEdge R730 compute server or personal 1141 

computers. To allow meaningful statistical comparisons between the algorithms, we performed 1142 

10 independent runs (using distinct random seeds) of each algorithm in every use case. 1143 
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We visualized and compared the performance of the algorithms in each use case using 1144 

several different methods. All the comparisons were based on the change in the total error 1145 

during the optimization. First, we visualized the convergence of the algorithms by plotting the 1146 

cumulative minimum of the error function after every generation (i.e., after every 100 model 1147 

evaluations). We  plotted the median value across the 10 runs to see which algorithms typically 1148 

find the best solutions after a given number of model evaluations. The lowest and the highest 1149 

errors achieved by the 10 runs were also calculated in every iteration to observe how well the 1150 

algorithm performs in the best case, and whether it gets stuck in some cases. 1151 

We defined two basic scores to characterize and compare the performance of the 1152 

algorithms in a concise manner. The first of these scores was defined as the lowest error 1153 

achieved during the entire optimization run (these are usually, but not always, associated with 1154 

members of the final population). We visualized the distribution of this measure across the 10 1155 

independent runs using box plots that show the median, interquartile range, minimum, and 1156 

maximum values, and also indicate apparent outliers. 1157 

In the case of more complex, detailed models, each model evaluation (simulation) can 1158 

be time-consuming, and thus we are also interested in which algorithms can find a reasonably 1159 

good solution in a relatively short time. To characterize the convergence speed of an algorithm, 1160 

we used the sum of the logarithms of the error scores achieved by the best individuals in each 1161 

generation. This is essentially the area under the logarithmic convergence curve - the smaller 1162 

this sum is, the faster the algorithm found a relatively good solution. 1163 
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