
1

Evaluation and comparison of methods for 1

neuronal parameter optimization using the 2

Neuroptimus software framework 3

Máté Mohácsi1,2, Márk Patrik Török1,2, Sára Sáray1,2, Luca Tar1,2, Szabolcs Káli1,2,* 4

1 Institute of Experimental Medicine, Budapest, Hungary 5

2 Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 6

Budapest, Hungary 7

 8

* Corresponding author 9

Email: kali.szabolcs@koki.hun-ren.hu (SK) 10

 11

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

2

Abstract 12

Finding optimal parameters for detailed neuronal models is a ubiquitous challenge in 13

neuroscientific research. Recently, manual model tuning has been replaced by automated 14

parameter search using a variety of different tools and methods. However, using most of these 15

software tools and choosing the most appropriate algorithm for a given optimization task 16

require substantial technical expertise, which prevents the majority of researchers from using 17

these methods effectively. To address these issues, we developed a generic platform (called 18

Neuroptimus) that allows users to set up neural parameter optimization tasks via a graphical 19

interface, and to solve these tasks using a wide selection of state-of-the-art parameter search 20

methods implemented by five different Python packages. Neuroptimus also offers several 21

features to support more advanced usage, including the ability to run most algorithms in 22

parallel, which allows it to take advantage of high-performance computing architectures. We 23

used the common interface provided by Neuroptimus to conduct a detailed comparison of more 24

than twenty different algorithms (and implementations) on six distinct benchmarks that 25

represent typical scenarios in neuronal parameter search. We quantified the performance of the 26

algorithms in terms of the best solutions found and in terms of convergence speed. We identified 27

several algorithms, including covariance matrix adaptation evolution strategy and particle 28

swarm optimization, that consistently found good solutions in all of our use cases. By contrast, 29

some other algorithms including all local search methods provided good solutions only for the 30

simplest use cases, and failed completely on more complex problems. Finally, we created an 31

online database that allows uploading, querying and analyzing the results of optimization runs 32

performed by Neuroptimus, which enables all researchers to update and extend the current 33

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

3

benchmarking study. The tools and analysis we provide should aid members of the neuroscience 34

community to apply parameter search methods more effectively in their research. 35

Author summary 36

Model fitting is a widely used method in scientific research. It involves tuning the free 37

parameters of a model until its output best matches the corresponding experimental data. 38

Finding the optimal parameter combination can be a difficult task for more complex models 39

with many unknown parameters, and a large variety of different approaches have been proposed 40

to solve this problem. However, setting up a parameter search task and employing an efficient 41

algorithm for its solution requires considerable technical expertise. We have developed a 42

software framework that helps users solve this task, focusing on the domain of detailed models 43

of single neurons. Our open-source software, called Neuroptimus, has a graphical interface that 44

guides users through the steps of setting up a parameter optimization task, and allows them to 45

select from more than twenty different algorithms to solve the problem. We have also compared 46

the performance of these algorithms on a set of six parameter search tasks that are typical in 47

neuroscience, and identified several algorithms that delivered consistently good performance. 48

Finally, we designed and implemented a website that allows users to view and analyze our 49

results and to add their own results to the database. 50

 51

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

4

Introduction 52

The construction and simulation of data-driven models has become a standard tool in 53

neuroscience [1, 2, 3]. Such models can be employed, among other things, to consolidate the 54

knowledge obtained from various experimental approaches into a common framework, to test 55

the consistency of the data, and to make novel predictions by examining the response of the 56

model to arbitrary inputs and by applying clean manipulations. Models at a given level of 57

description (e.g., individual neurons) can also be combined to form models of entities at higher 58

levels (such as networks) and thus aid the mechanistic understanding of emergent phenomena. 59

Nevertheless, these data-driven models often contain parameters that are not directly 60

constrained (or are only weakly constrained) by the available experimental data. Traditionally, 61

such unknown parameters were often tuned manually to adjust the behavior of the model 62

towards some desired target. However, this approach is typically inefficient, not quantitative, 63

and may be heavily biased to reproduce a few selected experimental results at the expense of 64

other relevant data. Consequently, in recent years, automated parameter search has emerged as 65

the preferred method for the estimation of unknown parameters of neural models [4, 5, 6, 7, 8, 66

9, 10, 11, 12, 13, 14, 15, 16]. This approach requires the definition of an error function (or cost 67

function) that measures the quality of the model with a given set of parameters, often in terms 68

of how well it approximates data obtained using a particular experimental protocol. The goal 69

of parameter optimization is then to find the set of parameters that minimizes the selected cost 70

function. The difficulty of this task can vary widely depending on the nature and complexity of 71

the model, the definition of the error function (or multiple error functions representing different 72

goals, or objectives), and the number of unknown parameters. Simple optimization problems 73

can be solved effectively by traditional gradient-based, local methods or by random search, but 74

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

5

these approaches tend to fail when there are many unknown parameters and the cost function 75

has multiple local minima [16, 17]. In fact, no algorithm is guaranteed to find the globally 76

optimal parameter combination in a short time for all problems [18], and various clever search 77

methods (called metaheuristics) have been proposed that often find good solutions in an 78

acceptable amount of time by taking advantage of various types of regularities in the cost 79

function [19]. 80

Previous studies in neuroscience have used a variety of different software tools and 81

algorithms to perform parameter optimization. The general-purpose neural simulators 82

NEURON [20] and GENESIS [21] both include implementations of a few selected methods 83

that are adequate for certain parameter search tasks. In addition, several tools have been 84

developed specifically for neural parameter optimization, including Neurofitter [22], 85

BluePyOpt [23], pypet [24], and NeuroTune [25], and some more general computational 86

neuroscience tools such as NetPyNE [26] also have some support for parameter optimization. 87

However, most of these tools rely on a very limited set of parameter search methods, which 88

typically does not include many optimization algorithms that represent the state of the art in 89

global optimization and are popular in other fields of science and engineering. These new 90

methods were not included in any previous surveys of neural optimization. Systematic 91

comparisons of the existing neural optimization software tools have also been quite limited 92

[15]. Therefore, it is currently unknown which parameter search methods can be expected to 93

perform well in the parameter optimization tasks that are typical in neuroscience. 94

Furthermore, most of the existing tools for neural optimization lack any intuitive user 95

interface, and require substantial programming experience. One exception is our earlier 96

optimization software called Optimizer [15], which included a graphical user interface (GUI) 97

that was designed to guide users through the process of setting up, running, and evaluating the 98

results of a neuronal parameter optimization task. Optimizer also provided four different 99

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

6

optimization algorithms in two different Python packages, and was designed in a modular way 100

to facilitate the integration of new components including additional optimization algorithms. 101

The goal of the current study was twofold. First, we aimed to provide a general software 102

framework that allows the straightforward application of a large variety of state-of-the-art 103

parameter optimization methods to typical problems in data-driven neural modeling. This was 104

accomplished by significantly updating and extending our software tool (which is now called 105

Neuroptimus). Second, we aimed to perform a systematic comparison of parameter search 106

methods (including both previously used and novel algorithms) in the context of modeling 107

single neurons, which is probably the most common subtype of parameter optimization tasks in 108

neuroscience. To this end, we designed and implemented a test suite of neuronal parameter 109

optimization problems, and used Neuroptimus to systematically test the performance of a large 110

set of optimization algorithms on each of these benchmarks. The results of the different 111

algorithms on the test suite were systematically analyzed and compared. Finally, we designed 112

and deployed a web-accessible database that contains all the results of this study and also allows 113

users to upload, retrieve, and analyze the results of parameter optimization. 114

 115

Results 116

The systematic evaluation of parameter optimization methods in the context of neuronal 117

modeling required the development of several interrelated methods and tools, which are 118

described in detail in the Methods section and whose main features are also summarized below. 119

The first necessary ingredient was a software tool that allows users to set up, execute, and 120

evaluate the results of a wide variety of neural parameter optimization problems in a single 121

standardized framework. The second required component was a diverse set of benchmark 122

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

7

problems that differ in the type of the model, the number of unknown parameters, and the 123

complexity of the error function, and that collectively cover many types of parameter fitting 124

problems that are often encountered in neuronal modeling. The third necessary component was 125

a set of methods that allows the consistent evaluation and comparison of optimization results 126

across the different benchmarks and algorithms. Finally, the last ingredient was a web-127

accessible database of the optimization results that allows us to share all of our results publicly 128

and also enables us as well as other researchers to extend the study with additional optimization 129

runs and even new benchmarks. 130

The Neural Optimization User Interface (Neuroptimus) 131

We began our study by updating, improving and extending our previously developed 132

optimization software (Optimizer), which was already shown to be a useful tool for neuronal 133

optimization [15]. The new version (named Neuroptimus) inherited many useful features from 134

its predecessor, and added several important new capabilities. Both Optimizer and Neuroptimus 135

support the definition and solution of neural optimization problems through a graphical user 136

interface (GUI) that guides the users throughout the process. The main steps (represented by 137

different tabs in the GUI) involve selecting the target data, selecting the model and the 138

parameters to be optimized, setting up the simulations (including stimulation and recording 139

parameters), defining the cost function, selecting the optimization algorithm, running the 140

parameter search, and reviewing the results. A detailed guide to the GUI is available in the 141

online documentation of Neuroptimus (https://neuroptimus.readthedocs.io/en/latest/). All the 142

functionality is also accessible through a command line interface that uses configuration files 143

to set up the optimization, which enables batch processing (e.g., multiple runs with different 144

settings or random seeds). Simulations of the model can be performed either by the NEURON 145

simulator [20] (which is handled internally) or by arbitrary external code (which may include 146

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://neuroptimus.readthedocs.io/en/latest/
https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

8

running other simulators) handled as a “black box”. The modular, object-oriented structure of 147

the program makes it possible to extend its capabilities by adding new error functions and 148

optimization algorithms. 149

Neuroptimus includes several new and enhanced features compared to Optimizer. In 150

addition to specific time series (such as voltage traces), it is now also possible to use as target 151

data the statistics of features extracted (e.g., using the feature extraction module eFEL, [27]) 152

from a set of experimental recordings. In this case, Neuroptimus uses eFEL to extract the same 153

features from each simulated model, computes feature errors as the difference between the 154

feature value of the model and the mean value of the experimental feature, normalized by the 155

experimental standard deviation, and uses the sum of these feature errors as the cost function 156

during parameter optimization. Weights can also be provided individually for each error 157

component. 158

While Optimizer provided four different search algorithms (two local and two global 159

algorithms implemented by the Inspyred and Scipy packages), Neuroptimus currently supports 160

more than twenty different optimization algorithms from five external Python packages (see 161

Table 2 for a complete list), plus an internally implemented random sampling algorithm, which 162

can be considered as a simple baseline method. 163

Neuroptimus also contains many enhancements “under the hood”. The new version was 164

entirely developed in Python 3 to support recent open-source Python modules, such as search 165

algorithms, graphical and parallelization interfaces. The graphical user interface was 166

completely re-implemented using the PyQt5 package, which provides a Python binding to the 167

popular cross-platform GUI toolkit Qt. In addition to the parameter search methods offered by 168

Scipy and Inspyred, Neuroptimus now also provides an interface to the algorithms implemented 169

by the widely used optimization packages Pygmo and BluePyOpt, as well as an additional 170

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

9

parallelized Python implementation of the Covariance Matrix Adaptation Evolution Strategy 171

(CMA-ES) algorithm. For many of these search algorithms, parallel evaluation of models is 172

also supported and easily configurable, which can lead to a manifold reduction in execution 173

time, especially on highly parallel architectures such as compute clusters and supercomputers. 174

 175

Neural optimization benchmarks 176

We defined and implemented a test suite of different neuronal optimization problems to 177

demonstrate the utility of our Neuroptimus software and to quantitatively evaluate and compare 178

the effectiveness of different parameter optimization algorithms. Our aim was to identify which 179

parameter search methods (and which implementations) are able to find good solutions to each 180

of our benchmark problems, and which methods (if any) can provide consistently good 181

performance across all of these tasks. Our benchmarking use-cases differ in the complexity of 182

the models, the simulation protocol, the source and nature of the target data, the features and 183

error functions used to evaluate the model, and the number of unknown parameters. A subset 184

of our use-cases is analogous to those that were described by Friedrich et al. [15], although 185

some of these have been updated to improve their robustness. Each of the six benchmark 186

problems is described briefly below, and in more detail in the Methods section. 187

Four of the use cases involve finding the biophysical parameters of compartmental 188

models of neurons based on somatic voltage responses; however, these models differ greatly in 189

terms of the level of morphological and biophysical detail, and also in the number of unknown 190

parameters (between 3 and 12). One simple use case involves the classic single-compartment 191

Hodgkin-Huxley model with two voltage-gated conductances and a leak conductance; one uses 192

a morphologically detailed but passive model neuron; another benchmark optimizes the somatic 193

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

10

conductances of several voltage-gated ion channels in a simplified (6-compartment) model, 194

while our most complex use case involves fitting spatially varying conductance densities for a 195

large set of ion channels in a fully detailed compartmental model of a hippocampal pyramidal 196

cell. A different type of benchmark involves optimizing the parameters of a phenomenological 197

point neuron (an adaptive exponential integrate-and-fire model), and the final one simulates a 198

voltage-clamp experiment to estimate synaptic parameters. 199

Some of our benchmark problems (the Hodgkin-Huxley and the Voltage Clamp use-200

cases) use surrogate data as the target. In this case, target data are generated by the same 201

neuronal model with known parameters; some of these parameters are then considered to be 202

unknown, and the task is to reconstruct the correct values. Therefore, in these test cases, a 203

perfect solution with zero error is known to exist, and the corresponding parameters can be 204

compared to those found by the search algorithms. However, for most of our benchmark 205

problems, the target data were recorded in electrophysiological experiments, or (in one case) 206

generated by a more complex model than the one we were fitting. In these instances, the best-207

fitting parameters and the minimal possible error score are unknown. 208

In most of our use cases we compared the output of the model to the target data by 209

extracting several different electrophysiological features from the raw voltage traces. The 210

difference of each model feature from the corresponding (mean) experimental feature can be 211

considered as a separate error component (or objective). This allowed the direct application of 212

multi-objective optimization methods. When using single-objective algorithms, feature errors 213

were combined into a single cost function using an average with pre-defined (in most cases, 214

uniform) weights. The final best solution for multi-objective algorithms was also chosen using 215

the same weighted average of the objectives. Two of our use cases had simpler voltage or 216

current traces as their target. In these cases, the mean squared difference between the model 217

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

11

trace and the experimental trace was used as the only error function. This precluded the use of 218

multi-objective optimization methods, so only single-objective algorithms were included in the 219

comparison in these cases. 220

We used several criteria to select optimization algorithms for inclusion in our 221

benchmark study. First, we implemented a simple random search algorithm based on 222

independently repeated uniform sampling of the entire available search space defined by the 223

parameter boundaries. This algorithm can be considered as a natural baseline against which we 224

can measure the performance of more sophisticated methods. Second, we included some 225

popular local optimization algorithms (Nelder-Mead and L-BFGS-B) that are expected to be 226

efficient when the error function has a single optimum, but not for more complex problems with 227

multiple local optima. The rest of the search algorithms that we included are so-called global 228

optimization methods or meta-heuristics, which aim to take advantage of certain types of 229

regularities in the error function to find the global optimum (or another similarly good solution) 230

more efficiently than a random search or local optimization methods do. A very large selection 231

of such meta-heuristic algorithms has been developed, and many of these are included in one 232

(or several) of the Python packages that are accessible in Neuroptimus. Due to time and resource 233

constraints, not all of these algorithms were included in the current study, but we aimed to 234

include many of the algorithms that were previously used in neuronal optimization and those 235

that have proved particularly successful in other settings. More specifically, we included several 236

different types of evolutionary algorithms, several implementations of the particle swarm 237

algorithm, and also some other types of bioinspired algorithms and methods based on statistical 238

physics. 239

To ensure a fair comparison of different search methods, we allowed a maximum of 240

10,000 model evaluations in a single run of every optimization algorithm. For all the algorithms 241

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

12

that define populations of models that are evaluated as a batch in every iteration (this includes 242

both evolutionary and swarm algorithms), we set the population size to 100, and ran the 243

algorithms for 100 iterations (generations). We recorded the lowest error value achieved during 244

each run, and also looked at how the best error score evolved during the course of the 245

optimization. This allowed us to quantify the speed of convergence by calculating the area 246

under the curve showing the cumulative minimum error as a function of completed model 247

evaluations. We performed 10 repeated runs of each algorithm on every benchmark problem to 248

allow proper statistical evaluation of the results. 249

The performance of different optimization algorithms on 250

individual benchmarks 251

Hodgkin-Huxley model 252

 253

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

13

 254

Figure 1. The results of fitting conductance densities in the Hodgkin-Huxley model. 255

(A) Example of a comparison plot showing the voltage trace generated by the model with its original parameters 256

(blue) and the trace given by the model using the best parameter set found by the Random Search algorithm (red). 257

(B) Plot showing the evolution of the cumulative minimum error during the optimization. The curves show the 258

median of 10 independent runs for each relevant algorithm. Each generation corresponds to 100 model evaluations. 259

The colors corresponding to the different algorithms (and packages) are shown in the legend. (C) Box plot 260

representing the distribution of the final error scores over 10 independent runs of each algorithm. (D) Box plot 261

representing the convergence speed of the algorithms tested, measured as the area under the logarithmic cumulative 262

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

14

minimum error curve (as shown in panel B). In (C) and (D), horizontal red lines indicate the median, the boxes 263

represent the interquartile range, whiskers show the full range (excluding outliers), and circles represent outliers. 264

Boxes representing single-objective algorithms are colored blue and those of multi-objective ones are red. Results 265

are sorted by the median score, from the best to the worst. The names of the packages on the horizontal axis are 266

colored to indicate the implementing package according to the legend in (D). 267

 268

Our first benchmark problem involved finding the correct densities of two voltage-gated 269

conductances and a leak conductance (3 parameters overall) in the classic single-compartment 270

Hodgkin-Huxley model [28] based on the voltage response to a single current step stimulus 271

(Figure 1). We compared the response of each candidate model to that of the original model by 272

evaluating four features (spike count, spike amplitude, spike width, and mean squared error of 273

the voltage excluding spikes, evaluated using built-in error functions of Neuroptimus), which 274

also enabled the application of multi-objective optimization methods. We expected this to be a 275

relatively simple optimization problem based on the low number of parameters to fit, although 276

it is also clearly non-trivial due to the nonlinear nature of the neuronal dynamics and, 277

particularly, the complicated dependence of the extracted physiological features on the 278

conductance parameters. 279

Many of the search algorithms tested found relatively good solutions most of the time, 280

but most of them failed to converge completely in 10,000 model evaluations. The exception 281

was the CMAES algorithm, whose implementations both consistently converged to the optimal 282

solution after approximately 3,500 evaluations (the lowest possible error score was not exactly 283

zero due to rounding errors). Interestingly, multi-objective algorithms generally performed 284

worse on this use-case than single-objective ones, with Inspyred’s NSGA2, PAES and Pygmo’s 285

NSPSO algorithms giving worse results than Random Search. Different implementations of the 286

same algorithms (two versions for CMAES, three for PSO, and three for NSGA2) usually 287

showed similar convergence behavior, except for the implementation of NSGA2 by the 288

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

15

Inspyred package that performed significantly worse than the Pygmo and BluePyOpt versions 289

of the same method. Overall, even this simple benchmark revealed surprisingly large 290

differences in the performance of the different search methods that we included in our 291

comparison. 292

Voltage Clamp 293

 294

 295

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

16

Figure 2. The results of fitting the parameters of a synaptic connection based on simulated voltage-clamp 296

recordings. 297

The plots in all four panels are analogous to those in Figure 1. Only single-objective methods were tested in this 298

use-case because only a single error function (mean squared difference) was used to compare model outputs to the 299

target data. Panel A shows the results of a best-fitting model found by the Random Search algorithm. 300

 301

The second benchmark problem involved finding four parameters of a simulated 302

synaptic connection to a single-compartment model neuron using voltage-clamp recordings 303

(Figure 2). This use case also used surrogate data as the target, but in this case the recorded 304

variable was the current injected by the electrode during a simulated voltage-clamp experiment. 305

The parameters to be reconstructed were the maximal value (weight), delay, and rise and decay 306

times of the synaptic conductance change following each repeated activation of the synapse. 307

Due to the stereotyped nature of the data, mean squared difference was used as the only error 308

function, and thus only single-objective algorithms were tested. 309

Although this is still a relatively simple and low-dimensional problem, and the intrinsic 310

dynamics is much less complex than that of the Hodgkin-Huxley model in current clamp mode 311

in the first use-case above, we observed highly divergent performance for the set of algorithms 312

that we tested. Both implementations of CMAES reached the best possible score (again defined 313

by round-off error) in fewer than 40 generations (4000 model evaluations). The Inspyred 314

implementation of PSO also approached this limit by the end of the optimization (10,000 model 315

evaluations), but it converged substantially slower than CMAES. The Pygmo implementations 316

of PSO, two versions of the DE algorithm, and the CES algorithm of Inspyred also achieved 317

good results, but converged even more slowly. At the other end of the spectrum, local search 318

algorithms were typically not effective at solving this problem, and the XNES algorithm from 319

the Pygmo package actually performed worse than the baseline random search method. 320

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

17

Passive, anatomically detailed neuron 321

 322

 323

Figure 3. The results of fitting the passive biophysical parameters of a morphologically detailed multi-324

compartmental model to experimental recordings from a hippocampal pyramidal neuron. 325

The plots in all four panels are analogous to those in Figure 1. Only single-objective methods were tested in this 326

use-case because only a single error function (mean squared difference) was used to compare model outputs to the 327

target data. Panel A shows the results of a best-fitting model found by the CMAES algorithm. 328

 329

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

18

This use-case represents an important practical problem that has been investigated in 330

several previous studies [15, 29, 30, 31]. It involves the estimation of three basic biophysical 331

parameters that determine the propagation and integration of voltage signals within neurons in 332

the subthreshold voltage range: the (specific) membrane capacitance, membrane resistance, and 333

axial resistance. The task is to estimate these three parameters based on the voltage response of 334

a neuron to a current stimulus (which, in our case, consisted of a larger short and a smaller long 335

current step) recorded from a hippocampal pyramidal cell in vitro (Figure 3). The response of 336

the model is linear in terms of the injected current, but still depends on the combination of the 337

three biophysical parameters (which are assumed to be spatially uniform within the cell) in a 338

non-trivial way due to the complex morphology of the neuron. In the absence of spikes, we 339

used the mean squared difference between the simulated and the experimentally recorded 340

voltage traces as the only error function, and restricted our attention to single-objective 341

algorithms. 342

This benchmark proved to be the easiest in our entire test suite. Many algorithms found 343

the best possible fit to the data in (almost) all the runs, and most of them also converged 344

relatively rapidly. In this case, local search methods such as the Nelder-Mead and the L-BFGS-345

B algorithms also found the optimal solution efficiently in most runs. One curious exception 346

was the DE algorithm implemented by the Inspyred package, which achieved a worse result 347

than Random Search, even though the other implementation of the same algorithm by the 348

Pygmo package was among the high-performing methods. 349

 350

 351

Simplified active model 352

 353

 354

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

19

 355

Figure 4. The results of fitting the densities of somatic voltage-gated conductances in a morphologically 356

simplified six-compartment model using a simulated voltage trace from a detailed compartmental 357

model as the target. 358

The plots in all four panels are analogous to those in Figure 1. Panel A shows the results of a best-fitting model 359

found by the CMAES algorithm. 360

 361

This benchmark problem is more complex than the previous ones in several respects. 362

The task in this use case is to determine the somatic densities of nine voltage-gated 363

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

20

conductances in a model of a hippocampal CA1 pyramidal neuron with simplified morphology 364

(consisting of only six compartments) so that the somatic voltage response of the model best 365

approximates the response of a fully detailed CA1 pyramidal cell model under the same 366

conditions (Figure 4). We used five of the error functions implemented by Neuroptimus (mean 367

squared error excluding spikes, spike count, latency to first spike, action potential amplitude, 368

action potential width, and after-hyperpolarization depth) to compare the two voltage traces. 369

This also enabled us to test multi-objective algorithms besides the single-objective ones. 370

In this more complex use case, there were large differences in performance among the 371

algorithms, with two orders of magnitude difference between the final errors of the best- and 372

the worst-performing methods. Once again, implementations of the CMAES algorithm 373

achieved the best final scores, but the Pygmo implementations of PSO also delivered good final 374

scores along with the best convergence speed. Among multi-objective algorithms, IBEA 375

achieved the best final scores, and also performed quite well in terms of convergence speed. At 376

the other extreme, all local search algorithms typically performed worse than Random Search, 377

and are clearly inadequate for this type of problem. It is worth noting that all three 378

implementations of the NSGA2 algorithm gave similar results, as did the different flavors of 379

DE, although neither these algorithms nor several other bio-inspired algorithms (such as other 380

evolutionary algorithms or ant colony optimization) were capable of providing as good 381

solutions as CMAES and PSO on this benchmark. 382

 383

Extended integrate-and-fire model 384

 385

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

21

 386

Figure 5. The results of fitting a phenomenological spiking neuronal model (the adaptive exponential 387

integrate-and-fire model) to capture experimental recordings with multiple traces. 388

The plots in all four panels are analogous to those in Figure 1. Panel A shows the results of a best-fitting model 389

found by the CMAES algorithm. Note that the height of action potentials is irrelevant in the integrate-and-fire 390

model, and the spikes generated by the model are not explicitly represented in the figure. 391

 392

This use case involves fitting the parameters of an adaptive exponential integrate-and-393

fire model neuron so that it captures the spiking responses of a hippocampal CA3 pyramidal 394

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

22

neuron recorded in vitro (Figure 5). This is a single-compartment model that does not include 395

detailed models of neuronal biophysics; instead, it aims to capture neuronal spiking 396

phenomenologically, using an extended integrate-and-fire formalism with an exponential term 397

in the current-voltage relationship and an adaptation variable that is also linked to spiking [32, 398

33]. This model has a total of 10 parameters that had to be fitted by the optimization algorithms. 399

Unlike the models in the other use cases (which were implemented in NEURON), this model 400

was implemented in the NEST simulator [34], and was treated as a black box by Neuroptimus. 401

The parameters generated by the optimization algorithms were passed to an external Python 402

script, which constructed the model, ran the simulations using NEST, and passed the results 403

(spike times and subthreshold voltage traces in two separate files) back to Neuroptimus for 404

evaluation and comparison with the experimental data. The data included the voltage responses 405

of a real CA3 pyramidal cell to current steps of four different amplitudes (these responses are 406

shown concatenated in blue in Figure 5A), and the model had to capture all of these responses 407

simultaneously. As integrate-and-fire models cannot (and are not expected to) reproduce spike 408

shape, we used spike count, latency to first spike, and the mean squared difference of the voltage 409

excluding spikes as three error components during the optimization. 410

On this benchmark, the two implementations of CMAES found the solutions with the 411

lowest error. In fact, they obtained the same lowest error score several times, and this was lower 412

than the scores achieved by any other algorithm, so this error score likely corresponds to the 413

best possible solution of this optimization problem. Although clearly inferior to CMAES on 414

this problem, the various implementations of the particle swarm algorithm, the multi-objective 415

algorithm IBEA, and the classical evolutionary algorithm found relatively good solutions, while 416

several methods performed substantially worse than Random Search. We note that the PAES 417

algorithm generated parameter combinations that led to errors during the NEST simulation, and 418

was therefore excluded from the current comparison. 419

 420

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

23

Morphologically and biophysically detailed CA1 pyramidal cell model 421

 422

 423

Figure 6. The results of fitting conductance densities and kinetic parameters in a CA1 pyramidal cell model. 424

The plots in all four panels are analogous to those in Figure 1. Panel A shows the results of a best-fitting model 425

found by the CMAES algorithm. No target trace is shown because, in this use case, the actual target is defined by 426

the statistics of electrophysiological features that are extracted from a set of experimental recordings. 427

 428

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

24

Our final use case represents a typical scenario in the construction of morphologically 429

and biophysically detailed compartmental models [1, 4, 7, 35, 36, 37, 38]. The model is based 430

on the reconstructed morphology of a CA1 pyramidal neuron [39], and contains a large set of 431

voltage-gated conductances, several of which are distributed non-uniformly within the cell (see 432

Methods for further details of the model). The goal is to find the values of 12 parameters that 433

determine the densities and biophysical properties of voltage-gated and leak conductances in 434

the model such that the features extracted from the voltage responses of the model to multiple 435

step current injections best approximate the average of the same features extracted from 436

experimental recordings under matching conditions (Figure 6). One hyperpolarizing and five 437

depolarizing current steps were used, and these yielded a total of 66 features of 20 different 438

types (Table 3) that were extracted and evaluated for each model instance during the parameter 439

search. 440

Although this is certainly the most complex model in our benchmarking suite with the 441

largest number of free parameters, finding solutions with errors close to the smallest possible 442

value was apparently easier than in the previous two use-cases (although, strictly speaking, we 443

cannot rule out the possibility that none of the algorithms tested ever came close to the unknown 444

globally optimum error score). More specifically, all three versions of PSO, both 445

implementations of CMAES, and also the GACO and CEO algorithms consistently yielded 446

similar low error scores, but several other algorithms, including the multi-objective IBEA and 447

NSGA2 methods, also gave acceptable solutions. We note that running the PAES algorithm 448

resulted in memory errors, and it was therefore omitted from the evaluation of this use case. 449

 450

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

25

Overall performance of the algorithms 451

In general, no single algorithm is expected to perform well in all types of global 452

optimization problems. Popular methods can take advantage of different types of regularities in 453

the error function to speed up the search for the global optimum even in high-dimensional 454

spaces with multiple local optima. Therefore, problems with different structures may require 455

different algorithms for their efficient solution, and we can identify some signs of this 456

heterogeneity when comparing the results of the individual benchmarks described above. 457

Nevertheless, some clear patterns are evident, and we can quantify this by constructing and 458

examining summary statistics for the algorithms across all the use cases. 459

Figure 7 summarizes the rankings of the various algorithms in our study according to 460

final score and convergence speed. Individual ranks were based on the medians of the respective 461

performance measure across all runs of the algorithm in a particular benchmark (this was also 462

the basis of the placement of the algorithms along the horizontal axes in panels C and D of 463

Figures 1-6), and Figure 7 shows the statistics of these ranks for each algorithm across the 464

different benchmarks. 465

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

26

 466

 467

Figure 7. Overall rankings of optimization algorithms. 468

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

27

Statistics of the ranks achieved by individual optimization algorithms on the different benchmarks (Figures 1-6) 469

according to the final error (A) and convergence speed (B). Brown dots represent the ranks achieved by the 470

algorithms in each use-case; boxes indicate the full range and the orange line represents the median of these ranks. 471

The single-objective algorithms are shown in blue and the multi-objective ones in red boxes. The color of the name 472

of the algorithm indicates the implementing package, with the color code included in the legend. Algorithms are 473

sorted according to the median of their ranks. 474

 475

In terms of the generally best-performing algorithms on our neuronal optimization test 476

suite, the results are quite clear. In almost all cases, CMAES delivered the best results after 477

10,000 model evaluations, and its two implementations by different packages performed quite 478

similarly. The three implementations of the particle swarm algorithm that we tested also showed 479

similar performance, and were typically better than all the other methods except for CMAES. 480

IBEA was close behind the PSO variants in the rankings, and was clearly the best among the 481

multi-objective methods that we tested. It is interesting to note that some of the algorithms, 482

including local search methods (and especially the Nelder-Mead algorithm) but also some other 483

methods such as GACO and XNES showed widely varying performance across the different 484

benchmarks, so these may be suitable for some problems but completely inadequate for others. 485

Finally, the rankings based on the convergence score are generally quite similar to those based 486

on just the final score, although there are some minor differences - for instance, PSO appears 487

to be more competitive with CMAES according to this measure. 488

 489

Online database of optimization results 490

The results presented so far summarize the performance of a selected subset of the 491

algorithms implemented by five Python packages, using their default settings, on a pre-defined 492

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

28

suite of six neuronal optimization problems. To increase the utility and reproducibility of our 493

results, we also wanted to share the details of all the optimization runs, including the settings 494

that enable their replication as well as their detailed results. In addition, we wanted to find a 495

simple way of updating and extending the study with more optimization runs, potentially with 496

different settings or algorithms not included in the present comparison, or even involving 497

additional use cases, not just by us but also other interested researchers. We therefore designed, 498

implemented and deployed an online database with an associated, publicly accessible web 499

server (https://neuroptimus.koki.hu) that allows users to upload, query, and analyze 500

optimization runs performed by the Neuroptimus software tool. 501

The website allows users to browse the optimization results stored in the online 502

database, and filtering options are available to create lists of relevant results. The results of 503

optimization runs can be viewed in a detailed text-based format, and selected subsets of 504

optimizations can be analyzed and displayed graphically, similarly to the plots in Figures 1-6 505

above. Registered users can also add to the database their own optimization results by uploading 506

the JSON file (metadata.json) generated by Neuroptimus after each optimization run. Users can 507

optionally also upload the other files that belong to the optimization (including the model and 508

the target data) in the form of an archive, which creates an online record of the optimization 509

that allows its full replication. 510

The database currently contains the results of all the optimization runs from the current 511

study. This enables users of the website to replicate most of the figures in this paper, and to 512

download individual optimization runs (including their settings and results). Users can also 513

carry out custom analyses of the results, and (after registration) they can add their own 514

optimization results (created using Neuroptimus) on both existing and novel use cases and 515

compare these with other results on the same use case. This way, the website offers an 516

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://neuroptimus.koki.hu/
https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

29

interactive, continuously updated, and publicly accessible “live” version of this paper, which 517

will provide a valuable online resource for researchers to explore and share methods and results 518

on neuronal optimization. 519

 520

Discussion 521

The results of our study have the potential to advance the state of the art in neural 522

parameter optimization in several different ways. First, we have created and shared 523

Neuroptimus, a software tool that was designed to help both computational and experimental 524

neuroscientists in the complete formulation and solution of neuronal parameter search 525

problems. All the functions of Neuroptimus are accessible through a graphical user interface, 526

although there is also a command line interface to support more advanced usage. Users of 527

Neuroptimus gain uniform access to a large number of optimization algorithms implemented 528

by several widely used Python packages, including several algorithms that were used 529

successfully in previous neuronal modeling studies, and also several other state-of-the-art 530

optimization methods that are popular in other domains but have not been applied to neuronal 531

parameter optimization. This feature of Neuroptimus allowed us to systematically test the 532

performance of a wide variety of parameter search methods on six distinct neuronal 533

optimization problems, which makes it possible to offer some recommendations for future 534

neuroscientific studies that rely on parameter optimization (see below). Finally, we created an 535

online database of optimization results obtained by using Neuroptimus. This database currently 536

contains the results of the present study, but the online user interface also allows us as well as 537

others to add new results and compare them with already existing ones. 538

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

30

Comparison of Neuroptimus with other neural 539

optimization tools 540

A variety of software tools have been developed and used for the purpose of optimizing 541

the parameters of neural models. This includes the built-in optimization modules of the general-542

purpose neural simulators NEURON [20] and GENESIS [21], the optimization-oriented 543

features of the NetPyNE neural modeling framework [26], the Neurofitter program [22], as well 544

as the Python packages BluePyOpt [23], NeuroTune [25], and pypet [24]. However, each of 545

these tools (except for Neurofitter, which is no longer actively maintained, and focuses on a 546

single specific cost function) relies on just one or a few algorithms, or a single external 547

optimization package, to perform parameter search, while Neuroptimus provides access to a 548

large variety of different algorithms from five distinct Python packages. This gives users of 549

Neuroptimus a lot of flexibility to choose the best method for any particular fitting problem. As 550

an example, Neuroptimus can take advantage of the large number of local and global 551

optimization algorithms offered by the Pygmo package [40], which is a mature and actively 552

maintained tool used, among others, by the European Space Agency. Another distinguishing 553

feature of Neuroptimus is its graphical user interface. Among the other tools, only NEURON 554

offers GUI-based access to parameter optimization, but the utility of this feature is severely 555

limited by its reliance on the local search method PRAXIS as its only available algorithm. 556

Algorithm recommendations based on our benchmarking 557

results 558

The performance of optimization algorithms in general depends quite heavily on the 559

nature of the problem, and no particular algorithm is expected to provide good solutions 560

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

31

universally. However, within the task domain that we considered here, i.e., finding the 561

biophysical parameters of models of single neurons, we can make some clear recommendations. 562

Our benchmarking results were dominated by two different metaheuristics, covariance matrix 563

adaptation evolution strategy (CMAES) and particle swarm optimization (PSO), followed by 564

the multi-objective indicator-based evolutionary algorithm (IBEA) - so we would suggest trying 565

these methods first to attack a novel neuronal parameter optimization problem. We also 566

confirmed that local optimization algorithms are generally not suitable for more complex 567

parameter search tasks, although they can be adequate and even efficient in the simplest cases. 568

Although, in principle, implementation details (particularly the default settings of 569

algorithm parameters) could influence the performance of the algorithms, we found essentially 570

no difference in the quality of solutions found by implementations of the same algorithms by 571

different packages. However, the algorithms and even implementations of the same algorithm 572

differ in the extent to which their execution can be parallelized, and this can have a large impact 573

on the runtime of the algorithms, especially on highly parallel architectures. All algorithms of 574

Inspyred and BluePyOpt, and some algorithms of Pygmo support the parallel evaluation of 575

multiple candidate models (typically those within a particular generation or iteration), and 576

Neuroptimus allows users to take advantage of these capabilities. It is worth noting in this 577

context that Pygmo contains two variants of particle swarm optimization: PSO, which is closer 578

to the original formulation of this algorithm, updates the velocities and positions of particles in 579

a serial manner, and is thus not suitable for parallelization; and the generational variant PSOG, 580

where the velocities and positions of all particles are updated in parallel. PSOG shares this 581

feature with the implementation of PSO by the Inspyred package, and both of these can be run 582

in a parallelized fashion from Neuroptimus. As a result, although all three variants of PSO 583

produced similar final results in our tests, the runtimes of Pygmo’s PSOG and Inspyred’s PSO 584

were significantly lower than those of Pygmo’s PSO when multiple CPU cores were utilized. 585

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

32

The situation is similar for the CMAES algorithm, where the current implementation in Pygmo 586

does not support parallel evaluations. This was the reason for including the Cmaes package in 587

Neuroptimus: this module implements CMAES in a way that allows straightforward 588

parallelization, and Neuroptimus uses this implementation to support parallel execution of this 589

popular and efficient method. Finally, to demonstrate the importance of parallelized 590

implementations, we note that running a single optimization of our most complex use case (the 591

detailed CA1 pyramidal neuron) with 10,000 model evaluations took approximately 10 days on 592

our compute server for algorithms without parallelization; by contrast, a single run of this use 593

case using the same number of model evaluations (e.g., 100 generations with populations of 594

100 individuals) with algorithms that support parallel evaluations took only a few hours on a 595

single node of a supercomputer (accessed via the Neuroscience Gateway) that allowed an entire 596

generation of models to be evaluated in parallel. 597

Our findings regarding the relative performance of various optimization methods are 598

mostly in line with results of earlier studies that included such comparisons. Vanier and Bower 599

[17] compared four different algorithms on a set of use cases similar to ours. They examined 600

the performance of random search, conjugate gradient descent (a local search method), an 601

evolutionary (or genetic) algorithm, and simulated annealing. They found that their 602

evolutionary algorithm (which was similar to the CEO algorithm in our benchmark) delivered 603

good performance even for more complex use cases with a larger number of parameters. This 604

is consistent with the generally good results of evolutionary-type algorithms in our study, 605

although we found several more recent variants that outperformed the classic version. They also 606

found simulated annealing to be very effective, and this was later confirmed by Friedrich et al. 607

[15] using the implementation that is built into the GENESIS simulator. None of the packages 608

currently supported by Neuroptimus contain the traditional simulated annealing algorithm. In 609

fact, older versions of the SciPy module used to include simulated annealing, but it was later 610

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

33

deprecated and replaced by the basinhopping algorithm, which is considered to be a 611

generalization of simulated annealing. In this light, the generally poor performance of the 612

basinhopping algorithm in our tests is slightly surprising, although it may be caused by 613

implementational problems or improper default settings of the parameters. 614

Our finding that CMAES performs well in a variety of different tasks is supported by 615

several other studies. In particular, CMAES and IBEA have been compared on data-driven 616

neuronal models, and CMAES generally delivered better final scores [41]. CMAES was also 617

found to be efficient and robust in a study that involved fitting the biophysical parameters of 618

models of striatal neurons [42]. Outside the neuronal modeling domain, a recent study 619

compared two sophisticated evolution strategy variants, CMAES and xNES on different 620

problems, and the results clearly showed that CMAES consistently outperformed xNES [43]. 621

Our findings also support this conclusion, and add some evidence regarding two additional 622

evolution strategy types: classic evolution strategy (CES, from the Inspyred package), which 623

performed similarly to xNES (from Pygmo), and Pareto-archived evolution strategy (PAES, 624

from Inspyred), which was one of the weakest performers (worse than random search) in our 625

comparison. 626

Limitations of the benchmarking study 627

The specific results that we obtained in our benchmarking study depend, to some extent, 628

on some arbitrary choices that we had to take when designing our tests. For instance, we 629

arbitrarily set the number of model evaluations to 10,000 for every algorithm to ensure a fair 630

comparison of the final results. However, not all algorithms converged completely after 10,000 631

model evaluations in some of our use cases, and thus allowing more (or fewer) evaluations 632

would likely affect the rankings based on the final score. The other performance measure that 633

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

34

we used, the convergence score, is expected to be less sensitive to the exact number of model 634

evaluations allowed, and also provides an indication of the speed of convergence. 635

We made another arbitrary choice for every algorithm with a hierarchical design, which 636

includes all population-based methods (such as evolutionary and swarm intelligence 637

algorithms) but also other nested algorithms such as basinhopping. We set the number of model 638

evaluations in the innermost loop (i.e., the size of the population, or the number of steps in the 639

local optimization) to 100, and the number of iterations in the outer loop (e.g., the number of 640

generations) also to 100. This 100x100 partitioning of the total of 10,000 evaluations is a 641

reasonable choice for most algorithms, and led to good results in most cases; however, it is 642

entirely possible that a different choice (such as 200 generations with a population size of 50, 643

or the other way around) would have resulted in improved performance for some of the 644

algorithms. 645

Similarly, almost all the algorithms that we used include some tunable parameters that 646

change the course of the optimization and may heavily influence the quality of the results. We 647

decided to use the default settings specified in the optimization packages for all algorithms 648

(with the exception of the CEO algorithm from the Inspyred package - see the description of 649

this algorithm in Methods for details). In many cases, these settings were compatible with 650

parameters recommended in the relevant literature; in some other cases, different sources 651

suggested different settings; and in some cases, no such recommendations could be found. It is 652

also known that the best settings for such algorithmic parameters can depend on the details of 653

the problem, so it is possible that distinct settings would be optimal for the various use cases. 654

Overall, we may conclude that the rankings that we provide are not just about the 655

algorithms themselves (or even about their implementations by particular packages), but are 656

likely also influenced by the settings of the parameters (including the population size) for each 657

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

35

method. In fact, we expect that the results of some algorithms could be improved substantially 658

by using different settings, and there are also many additional optimization algorithms that were 659

not included in the current comparison. Therefore, we hope to update and extend our study as 660

more optimization results become available (see below for further discussion). 661

Possible extensions 662

In addition to testing our use cases with more algorithms and settings as described 663

above, the results of our study could be extended in other important ways. One possible 664

direction would be to extend the set of use cases to other types of problems. All of the use cases 665

included in the current study involved single cell models; however, in principle, Neuroptimus 666

can also handle neural models at the subcellular and network levels, and supports the 667

optimization of their parameters. For example, in one project, we used Neuroptimus to tune the 668

concentrations of molecules in biochemical pathways involved in synaptic plasticity, relying 669

on the reaction-diffusion (rxd) module of NEURON to run the simulations. In another project, 670

we used Neuroptimus to tune synaptic weights in a network model that was constructed and 671

simulated using Brian as an external simulator. The main reason why we did not include these 672

examples in the current comparison is that, in both of these cases, every single simulation of 673

the model requires more substantial resources and time, so that repeatedly running these 674

problems with all the algorithms would have been beyond our current computational resources, 675

and would have been completely unfeasible with algorithms that do not support parallel model 676

evaluations. 677

There are also many useful features that we could potentially add to our optimization 678

tool, Neuroptimus. For example, Neuroptimus currently returns only a single parameter 679

combination corresponding to the lowest error score at the end of the optimization (although 680

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

36

the parameters and errors of all the models tested are also saved into a file and may be analyzed 681

outside Neuroptimus). This is the case even when multi-objective methods are used; the winner 682

in this case is selected from the final population by minimizing the weighted sum of the 683

objectives, using weights provided by the user before the optimization run. However, the final 684

population of multi-objective optimization carries much more information, as it approximates 685

the Pareto front (the parameter combinations representing the best possible tradeoffs between 686

the objectives for different choices of the weights). Therefore, it would be useful to add to 687

Neuroptimus the capability of properly representing and analyzing the results of multi-objective 688

optimization. Other useful extensions could include the ability to chain optimization algorithms 689

(e.g., by automatically running local optimization using the output of a global algorithm as the 690

starting point), and the ability to visualize the progress of optimization (in error space and in 691

the parameter space) while it is still running. 692

Community and cooperation through the Neuroptimus 693

website 694

We do not see the benchmarking results presented in this paper as the final word in 695

evaluating parameter search methods for neuroscientific problems. As we argued above, it will 696

be important to extend our study with more use cases and further evaluation of different 697

algorithms and settings. Global parameter optimization is also a fast-moving field where new 698

methods emerge regularly; the fact that Neuroptimus supports several actively developed 699

packages, and is also flexible enough to accommodate new packages guarantees that new 700

developments can be integrated with minimal effort. 701

We have developed and deployed the Neuroptimus web server to provide a platform for 702

sharing and analyzing optimization results. By allowing all users to upload results obtained by 703

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

37

using Neuroptimus, and to compare them with already uploaded results (including all the results 704

of the current paper), the web site will become a continuously updated “live” version of this 705

paper. This should facilitate meaningful, quantitative comparisons of parameter optimization 706

methods, and aid the collaboration of different research groups that are interested in this topic. 707

We encourage all interested professionals (and especially those who are experts in using 708

particular algorithms) to run the use cases with improved settings, try other algorithms, add new 709

use cases, and share their results on the Neuroptimus website. This way, we can collectively 710

track new developments, and offer reliable solutions for an increasing variety of neural 711

optimization problems. 712

 713

Methods 714

Software tools and services 715

Neural Optimization User Interface (Neuroptimus) 716

At the core of our methodology is a software tool that we developed, called Neural 717

Optimization User Interface (or Neuroptimus). Neuroptimus implements a software framework 718

that allows users to set up and solve parameter optimization problems and analyze the results. 719

Neuroptimus performs parameter optimization mainly by providing a common interface to a 720

large number of popular parameter search algorithms implemented by various open source 721

packages. In principle, Neuroptimus can be used to optimize the parameters of all kinds of 722

systems; however, its main purpose is to aid parameter fitting in neural systems, and especially 723

in detailed models of neurons. Accordingly, it includes many features that were developed 724

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

38

specifically for this scenario, which support simulating biophysical models of neurons using 725

the NEURON simulator, and comparing their behavior to experimental data obtained with 726

common electrophysiological protocols. 727

Neuroptimus is essentially an updated and extended version of our previous tool 728

Optimizer (https://github.com/KaliLab/optimizer) [15]. The basic design of these two pieces of 729

software is quite similar, and they also share many details of their implementation. Therefore, 730

we will focus on the new features and other differences here, and summarize the features that 731

are used by the current benchmarking study, but we refer the reader to Friedrich et al. (2014) 732

and the Neuroptimus documentation (https://neuroptimus.readthedocs.io/) for further details. 733

Neuroptimus is open source software, implemented in Python3, and can be accessed at 734

the GitHub repository https://github.com/KaliLab/neuroptimus. Its functions are available both 735

via a graphical user interface (GUI) that guides users through the steps of setting up, running, 736

and evaluating the results of parameter optimization tasks, and via a command line interface 737

that performs these tasks based on the settings stored in a configuration file. The GUI was built 738

using the PyQt5 package that provides a Python binding to the cross-platform GUI toolkit Qt 739

(version 5). 740

The complete definition of a neural parameter optimization problem requires the 741

specification of multiple components. First, we need to provide the model whose parameters 742

we wish to optimize. Neuroptimus can load, manipulate and execute models implemented in 743

the HOC language of the NEURON simulator. The parameters to be optimized can be selected 744

from the parameters of this model, or the user can provide a function (implemented in Python) 745

that defines abstract parameters and how these should be mapped onto the concrete parameters 746

of the NEURON model. As an alternative, models can be implemented by any external program 747

that is capable of reading the variable parameters of a model candidate from a text file, setting 748

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://github.com/KaliLab/optimizer
https://neuroptimus.readthedocs.io/
https://github.com/KaliLab/neuroptimus
https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

39

up the model accordingly, running the simulation(s), and saving the results to files that can be 749

interpreted by Neuroptimus. 750

Second, the cost function for neural parameter optimization is typically defined in terms 751

of some target data (from experiments or prior simulations) and a function (or set of functions) 752

that quantifies the difference between the output of the model and the target data. Neuroptimus 753

can handle different types of target data, including time series (such as voltage and current 754

traces), explicit spike times, and feature statistics. 755

Neuroptimus implements several error functions that can be used individually or in 756

combination to evaluate during the optimization process the discrepancy between the voltage 757

traces (or other time series) generated by the optimized model and the target data [15]. These 758

cost functions range from general ones such as the mean squared error to more specific ones 759

that are useful mainly in the context of fitting neuronal voltage responses and characterize the 760

pattern and shape of action potentials (Table 1). 761

 762

Feature name Definition

Mean squared error

Mean squared difference between the model trace and the target trace

point by point, normalized by the squared range of the target data

Mean squared error

(excluding spikes)

Same as above but excludes the parts of both traces in the vicinity of

action potentials (in either trace)

Derivative difference

Normalized mean squared difference of the temporal derivatives of

the two traces

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

40

Spike count

Absolute difference of the number of spikes in the entire traces,

normalized by the sum of the two spike counts

Spike count

(during stimulus)

Identical to spike count, except it only takes into account the action

potentials during the stimulus

ISI difference

Sum of the absolute differences of the inter-spike intervals of the two

traces, normalized by the length of the traces

Latency to 1st spike

Squared difference between the time to the first spike from the start

of the stimulus in the two traces, normalized by the squared length of

the traces

AP overshoot

First calculates the amplitudes of the action potentials in both traces

as the difference between the AP peak voltage and the AP threshold,

then takes the mean squared difference of the AP amplitudes

normalized by the squared maximal amplitude of the target trace

AP width

Mean squared difference between the width of the action potentials

at their base (at the threshold voltage level), normalized by the

squared mean width of the APs in the target trace

AHP depth

The squared mean of the difference in the corresponding after-

hyperpolarization depths, normalized by the squared range of

subthreshold potential in the target trace

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

41

Table 1: Cost functions implemented in Neuroptimus. 763

 764

The error functions above (which were already present in Optimizer; [15]) compare 765

each voltage (or current) trace generated by a model with a specific voltage (or current) trace 766

in the target data. However, a common task in single cell modeling involves finding model 767

parameters such that the behavior of the model becomes similar to the typical behavior within 768

a set of experimentally recorded neurons [5, 7]. In this case, it is more natural to define the 769

target of the optimization as the mean values of a set of pre-selected features extracted from the 770

experimental voltage traces (which may come from several experiments involving the same or 771

different neurons). Then the natural way of defining error functions is by evaluating the 772

difference between the value of a particular feature extracted from the voltage response of the 773

model and the mean value of the same feature in the experiments, divided by the standard 774

deviation of the feature in the experimental data. One additional advantage of this definition is 775

that it provides standardized, dimensionless error scores that may be combined in a 776

straightforward manner. 777

This approach based on feature statistics is now supported by Neuroptimus. To provide 778

access to a diverse array of electrophysiological features, and ensure compatibility with some 779

common workflows [5, 7, 44, 45], Neuroptimus utilizes the Electrophys Feature Extraction 780

Library (eFEL; https://github.com/BlueBrain/eFEL) [27] to characterize the voltage responses 781

of the models. The target data in this case contain the experimental mean and standard deviation 782

values of a predefined set of eFEL features extracted from voltage responses to specific current 783

step inputs, stored in a JSON file created from the recordings using the BluePyEfe tool 784

(https://github.com/BlueBrain/BluePyEfe) and a custom script that converts the output of 785

BluePyEfe to the format expected by Neuroptimus. This JSON file also contains the full 786

specification of the stimulation protocols. When the optimization is run using the GUI, the 787

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://github.com/BlueBrain/eFEL
https://github.com/BlueBrain/BluePyEfe
https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

42

settings of the stimuli and the features are automatically loaded into the GUI from this input 788

file. During the optimization process, in every model evaluation step, the features included in 789

the input file (and selected in the GUI) are extracted from the model’s voltage traces, and errors 790

are computed for every feature using the feature statistics-based error function described above 791

[46]. 792

Recent studies classify optimization problems according to the cardinality of objectives 793

as single, multi- (2-3 objectives) and many-objective tasks (more than 3 dimensions), which 794

affects the nature and the complexity of the problem [47]. However, we characterized our 795

problems simply as single- or multi-objective problems because these require different internal 796

representations and are solved by different algorithms. Multi-objective problems involve 797

several objective functions that are to be minimized simultaneously and require finding a set of 798

solutions that give the best tradeoffs between the objectives. 799

Neuroptimus makes it possible to use arbitrary weighted sums of error functions as the 800

ultimate objective function of the parameter search. When single-objective algorithms are used, 801

the weighted sum is calculated for every model during the optimization process, and is used as 802

the objective function. In the case of multi-objective algorithms, all the error functions are 803

treated as separate objectives during the optimization, but the weighted sum is still used after 804

running the search to select a single preferred solution from those returned by the algorithm [5, 805

23]. 806

Neuroptimus supports parameter optimization algorithms implemented by five external 807

Python packages (Pygmo, Inspyred, BluePyOpt, Scipy, and Cmaes), and also contains an 808

internal implementation of a simple random search algorithm that takes independent, uniformly 809

distributed samples from the entire search space. Pygmo is a general-purpose scientific Python 810

library for optimization, based on the C++ library pagmo, which implements many different 811

optimization algorithms in a common framework [48]. Inspyred is a Python library specifically 812

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

43

developed for bio-inspired (mainly evolutionary) computation, and was already supported by 813

Optimizer [15]. The Blue Brain Python Optimization Library (BluePyOpt) is a software 814

framework developed at the Swiss Blue Brain Project [23], which implements multi-objective 815

optimization algorithms including the Indicator Based Evolutionary Algorithm (IBEA), and has 816

been applied successfully in several computational neuroscience projects [5, 7, 44, 49, 50, 51, 817

52, 53]. SciPy [54] provides implementations of various methods for scientific computation, 818

and includes several basic optimization algorithms, some of which were already supported by 819

Optimizer [15]. Finally, we also included the Cmaes package because it provides a simple, 820

robust, and easily parallelizable implementation of the Covariance Matrix Adaptation Evolution 821

Strategy (CMAES) algorithm, a popular and powerful search method that is also included in 822

Pygmo but in an implementation that does not support the parallel evaluation of models within 823

a population. 824

Some of the algorithms are local (essentially gradient-based) search methods, but most 825

of them are based on metaheuristics that attempt to find the global minimum of the cost 826

function(s). Many of the most popular single- and multi-objective optimization algorithms are 827

included. Most of the algorithms also have parameters that are configurable through the GUI 828

or the configuration file. 829

Solving nontrivial parameter optimization problems typically requires the evaluation of 830

many parameter combinations. In our case, this corresponds to running a large number of 831

simulations, which may take a prohibitively long time if simulations are performed sequentially, 832

especially for complex models such as morphologically detailed neurons, circuits, or multi-833

scale models that include biochemical or molecular processes. Fortunately, many global 834

optimization methods (including evolutionary and swarm intelligence algorithms) can be 835

implemented in a way that populations of models can be evaluated in parallel, and several such 836

parallel (or easily parallelizable) implementations are included in the Python libraries supported 837

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

44

by Neuroptimus. However, Python provides several different methods for parallel execution of 838

code, and the optimization packages we use differ in terms of which parallelization approaches 839

they support. As a consequence, Neuroptimus uses the multiprocessing module for the parallel 840

execution of algorithms in Pygmo, Inspyred and Cmaes, while it relies on the IPython Parallel 841

(ipyparallel) package to run the algorithms of BluePyOpt in parallel. We note that some 842

optimization algorithms cannot be efficiently parallelized, while for some others (including 843

several in the Pygmo package) parallel execution is not currently supported by the optimization 844

library. 845

Batch evaluation of the models is a requisite to use one of the various parallelization 846

strategies in the Neuroptimus. Therefore both internal and external evaluations have to generate 847

results simultaneously. If we used a single model instance in every process, the results could be 848

mixed or swapped. Therefore, when simulations are carried out within Neuroptimus (using 849

NEURON), a new model instance is created for every parameter set generated by the selected 850

algorithm, and every evaluation running in parallel is performed with a separate model. In case 851

of using the external simulator, every individual is evaluated in a separate subprocess, and files 852

with unique names are used for communication between Neuroptimus and the external 853

simulation script. 854

 We list all of the available algorithms along with their basic properties in Table 2. Many 855

of these algorithms were tested in our benchmarking study, and these will be described in more 856

detail below. 857

 858

Algorithm Objectives Packages Parallelization

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

45

Custom Evolutionary Optimization

(CEO)
Single Inspyred multiprocessing

Classic Evolution Strategy (CES) Single Inspyred multiprocessing

Particle Swarm Optimization (PSO) Single

Inspyred multiprocessing

Pygmo None

Non-dominated Sorting Genetic

Algorithm (NSGAII)
Multi

Inspyred

multiprocessing

Pygmo

Bluepyopt
ipyparallel

Differential Evolution (DE)

Single

Inspyred multiprocessing

Pygmo None

Pareto Archived Evolution Strategy

(PAES)
Multi Inspyred multiprocessing

Basin-Hopping (BH) Single Scipy None

Nelder-Mead (NM) Single Scipy None

limited-memory Broyden-Fletcher-

Goldfarb-Shanno algorithm with

bound constraints (L-BFGS-B)

Single Scipy None

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

46

Self-Adaptive Differential Evolution

(SADE)
Single Pygmo None

Covariance Matrix Adaptation

Evolutionary Strategy (CMA-ES)
Single

Pygmo

None

Cmaes multiprocessing

Exponential Natural Evolution

Strategies (XNES)
Single Pygmo None

Extended Ant Colony Optimization

(GACO)
Single Pygmo multiprocessing

Multi-objective Hypervolume-based

Ant Colony Optimization (MACO)
Multi Pygmo multiprocessing

Particle Swarm Optimization

Generational (PSOG)
Single Pygmo multiprocessing

Non-dominated Sorting Particle

Swarm Optimization (NSPSO)
Multi Pygmo multiprocessing

Indicator Based Evolutionary

Algorithm (IBEA)
Multi Bluepyopt

ipyparallel

Simulated Annealing (SA) Single Inspyred multiprocessing

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

47

Praxis Single Pygmo None

Simple Genetic Algorithm (SGA) Single Inspyred multiprocessing

Estimation of distribution algorithm

(EDA)

Single Inspyred

multiprocessing

Artificial Bee Colony (ABC) Single Pygmo None

Differential Evolution 1220 Single Pygmo None

Table 2: Algorithms included in Neuroptimus. The properties listed include the full name of the algorithm, the 859

abbreviation used in this article, the type according to the number of objectives (single/multi-objective), the 860

implementing package(s), and the method of parallelization used in Neuroptimus (None if only serial execution is 861

supported). 862

 863

The easiest way to perform parameter optimization using Neuroptimus is by using the 864

GUI, whose seven tabs guide the user through the steps of setting up, running, and evaluating 865

the results of the parameter search. The GUI allows the user to load the target data, select the 866

model and the parameters to be optimized, set up the stimulation and recording conditions, 867

configure the error function(s), run the parameter search, and then visualize and analyze the 868

results. The final as well as intermediate results of the optimization are also saved to files, and 869

can be analyzed outside Neuroptimus. This includes the parameters and errors of each simulated 870

model as well as the statistics of generations saved into text files, the voltage trace of the best 871

model saved into text files and in several image formats, and a final summary of the 872

optimization process and the results saved into an HTML file for visual inspection through a 873

web browser and a JSON file for a machine-readable non-SQL data representation. This final 874

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

48

metadata file created after the optimization contains automatically generated names for the 875

optimization and the model, details of the parameters of the model (name, boundaries and 876

optimal values), details of the error functions used to calculate the final error (name, value, 877

weight, weighted value), settings of the target data, the algorithm and package used for the 878

optimization, parameters used by the algorithm, and finally the statistics of each generation. 879

The program also saves the full configuration of the optimization task, and the resulting 880

configuration file can be used (directly, or after suitable modifications) by the command-line 881

interface of Neuroptimus to re-run the optimization (with the same or modified settings). This 882

method was used in our benchmarking study to run batches of the same optimization with 883

different random seeds, using a simple Python script to edit the configuration file and create 884

multiple versions of the optimization task. 885

 886

 Neuroptimus server 887

To share our results in a way that allows easy replication and further analysis, and to 888

enable the straightforward extension and updating of the current study, we created an online 889

database of optimization results that is accessible via a web interface. We designed, created and 890

deployed the Neuroptimus web-server, which can be publicly accessed at 891

https://neuroptimus.koki.hu and enables all users to browse, view and analyze the optimization 892

results stored in the database. Furthermore, authenticated users can also upload their 893

optimizations and compare their results with previously uploaded ones. 894

 The Neuroptimus server structure consists of an Nginx web server that handles the 895

requests and responses, the frontend implemented using the JavaScript library ReactJS, the 896

backend created in the Python web framework Django, backed up by a PostgreSQL database 897

connection. The site handles the authentication of registered users, uploading of optimization 898

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://neuroptimus.koki.hu/
https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

49

results via a web form, visualization of the data in a table structure, and the creation of plots for 899

comparison. The database stores information about the optimization itself, the model used for 900

the optimization and its parameters, the algorithm and its configuration, details about the target 901

data, the statistics of each generation produced by the algorithm, creation time of results and 902

upload time. The metadata JSON file created by Neuroptimus can be uploaded to the server and 903

all of its information content is transferred to the database automatically. Optionally the 904

compressed optimization files can also be uploaded and subsequently downloaded. Analysis of 905

the optimization can be created semi-automatically by selecting the desired algorithms for 906

comparison and visualizing them on the charts. Thus far generation plots, final and convergence 907

score box plots are available for online observation. 908

During the registration process users need to provide their name, affiliation, and email 909

address, choose a username, and create a password. Verifying email addresses grants 910

permission for users to upload their optimizations. Forgotten passwords can be reset on the 911

website via email verification. 912

 913

Optimization algorithms 914

In the current study, we evaluated a large set of parameter search algorithms, including 915

several of the most widely used single-objective and multi-objective methods. Our optimization 916

tool supports optimization algorithms implemented by five separate Python packages: Inspyred 917

[55], Pygmo [48], BluePyOpt [23], Cmaes [56], and Scipy [54]. Table 2 shows which packages 918

implement each of the supported algorithms. The majority of these algorithms can be 919

categorized as evolutionary or nature-inspired metaheuristics. 920

Due to constraints on time and computational resources, we could not include every 921

single algorithm supported by Neuroptimus in the detailed comparison that we performed using 922

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

50

our neural benchmarking suite (see below). However, we aimed to provide good coverage of 923

algorithms that were used previously in neuronal optimization [9, 15, 17, 23], and also included 924

several additional algorithms that consistently provided good performance in other settings [57, 925

58, 59, 60]. 926

Finally, we added some basic search methods such as uniform random sampling and 927

two widely used local optimization algorithms to provide a baseline against which we can 928

measure the performance of more sophisticated methods. The following algorithms were tested 929

in our neural optimization benchmark. 930

Baseline algorithm 931

The Random Search (RAND) algorithm is the simplest heuristic to discover solutions by trial 932

and error. This is our baseline method, which samples parameters from the search space 933

repeatedly based on the uniform probability distribution. Neuroptimus uses our own 934

implementation of this method [61]. 935

Local optimization algorithms 936

The Nelder-Mead (NM) algorithm is a classic simplex-based direct search method to find a 937

local minimum of the cost function [62]. 938

The limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bound constraints (L-939

BFGS-B) is considered to be a modern and efficient algorithm that aims to find a local minimum 940

of the objective function using a limited amount of computer memory [63]. 941

Single-objective global optimization algorithms 942

The Custom Evolutionary Optimization (CEO) algorithm is a relatively simple member of the 943

large class of evolutionary optimization algorithms. Evolutionary algorithms are metaheuristics 944

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

51

for global optimization inspired by biological evolution. Each candidate solution, represented 945

by a particular combination of the unknown parameters, is considered to be an individual within 946

a population, and the value of the cost function for that parameter combination is treated as the 947

“fitness” of that individual (with lower costs normally associated with higher fitness). The 948

initial population typically consists of random samples from the search space. The population 949

is then updated through the application of various operators. New individuals are generated via 950

the application of genetic operators such as mutation, which introduces random variations into 951

the parameters of an individual, and crossover, which randomly combines the parameters of 952

two individuals. The size of the population is maintained by selecting individuals with higher 953

fitness. These steps are repeated iteratively for a certain number of generations. Many different 954

variants of evolutionary algorithms exist that differ in the details of the operators, and may also 955

apply additional heuristics. The CEO algorithm is based on the EvolutionaryComputation class 956

of the Inspyred package, and uses Gaussian mutation and blend crossover variators. 957

The Classic Evolution Strategy (CES) algorithm belongs to a subclass of evolutionary 958

optimization algorithms called evolution strategies. In these algorithms, there are distinct 959

mutation rates associated with each parameter, and these mutation rates are changed adaptively 960

during the optimization [64]. 961

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is an evolutionary 962

algorithm which samples candidate solutions from multivariate normal distributions with 963

adapting mean and covariance matrix [65]. 964

The Exponential Natural Evolution Strategy (XNES) algorithm is an evolution strategy (ES) 965

that uses the natural gradient to update the search distribution [66]. 966

The Differential Evolution (DE) algorithm is an evolutionary algorithm that generates new 967

candidate solutions from existing individuals based on some simple mathematical rules [57]. 968

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

52

The Self-Adaptive Differential Evolution (SADE) algorithm is a version of the Differential 969

Evolution algorithm, which adjusts the mutation rate and the crossover rate adaptively [67]. 970

The Particle Swarm Optimization (PSO) algorithm represents candidate solutions as particles 971

moving around in the search space. Each particle has a velocity and moves by adding this to 972

its current position in every iteration. Initially the velocity is random, and it is modified after 973

each iteration, influenced by the currently known best positions for the individual particles 974

and that of the entire group. In this basic implementation, velocity and position updates are 975

carried out sequentially for each particle [68]. 976

The Particle Swarm Optimization Generational (PSOG) algorithm is similar to the PSO 977

algorithm above but, in every iteration, it first updates the velocity for all particles, then updates 978

the positions. This allows efficient parallel execution of the algorithm. 979

The Extended Ant Colony Optimization (GACO) algorithm is a bio-inspired algorithm based on 980

the analogy of ants finding paths from colony to food. In this algorithm, artificial agents move 981

through the parameter space, and lay down “pheromones” depending on the quality of the 982

solutions they find. These pheromones attract the other agents, making it more likely that they 983

move to locations with high amounts of pheromone. This extended version of the algorithm 984

calculates the locations of future generations of ants by sampling from a multi-kernel Gaussian 985

distribution that depends on the quality of previously found solutions [69]. 986

The Basin-Hopping (BH) algorithm is a generalization of the Simulated Annealing algorithm 987

that was used in several earlier studies of neural parameter optimization [15, 17]. Basin-hopping 988

is a two-level algorithm: its outer loop performs stochastic jumps in the search space, while the 989

inner loop performs local optimization. The resulting new local minimum is always accepted if 990

it is better than the previous one, but it may also be accepted if it is worse with a probability 991

that depends on the increase in the cost function [70]. 992

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

53

Multi-objective global optimization algorithms 993

The Non-dominated Sorting Genetic Algorithm II (NSGA2) is an evolutionary multi-objective 994

algorithm. Multi-objective optimization algorithms aim to optimize several cost functions 995

simultaneously, trying to find non-dominated (or Pareto-optimal) solutions where none of the 996

cost functions can be improved without degrading the performance on some other cost 997

functions. The algorithms also aim to create a diverse set of solutions that collectively provide 998

good coverage of the Pareto front. In NSGA2, a child population is created from the parent 999

population using the usual genetic operators, mutation and crossover. Individuals in the next 1000

generation are then selected from the joint population based on Pareto dominance and the so-1001

called crowding distance that penalizes closely related individuals and helps maintain diversity 1002

within the population [58]. 1003

The Pareto Archived Evolution Strategy (PAES) algorithm is a simple multi-objective 1004

algorithm that uses local search (mutation) from the current individual(s) and maintains a 1005

reference archive of previously found non-dominated solutions to approximate the dominance 1006

ranking of candidate solutions [71]. 1007

The Indicator Based Evolutionary Algorithm (IBEA) is a multi-objective evolutionary 1008

algorithm that computes the fitness value based on predefined binary indicators. It performs 1009

environmental selection by removing the worst individuals, chooses parents by comparing the 1010

fitness values of randomly selected pairs of individuals, and applies mutation and crossover to 1011

create offspring, repeating the process iteratively until reaching the maximum number of 1012

generations [72]. 1013

The Multi-objective Hypervolume-based Ant Colony Optimizer (MACO) is a multi-objective 1014

optimization algorithm that extends the GACO algorithm described above, combining 1015

hypervolume computation and non-dominated fronts for ranking individuals [73]. 1016

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

54

The Non-dominated Sorting PSO (NSPSO) algorithm extends PSO by making a better use of 1017

personal bests and offspring for non-dominated comparison [74]. 1018

 1019

Use cases 1020

To compare the efficiency of various parameter search methods in solving neuronal 1021

parameter optimization tasks, we designed and implemented a suite of six different problems 1022

that may be considered typical use cases in this domain. All of these use cases can be handled 1023

by Neuroptimus, which allowed us to run all benchmarks using every selected algorithm within 1024

the same framework, and made the subsequent evaluation of their performance quite 1025

straightforward (see below). Five of the use cases were similar (or identical) to those presented 1026

in [15], although some of them were modified to increase the robustness of the simulations 1027

(avoiding errors due to invalid parameter combinations, in the case of the AdExpIF example) 1028

or to move the target behavior of the model away from a critical boundary (the transition to 1029

repetitive firing, in the case of the Hodgkin-Huxley model). We provide a description of each 1030

use case below; all the files required to run these examples, along with detailed guides to setting 1031

up the optimizations in the Neuroptimus GUI, can be found in the corresponding subfolders of 1032

the neuroptimus/new_test_files directory of the Neuroptimus Github repository 1033

(https://github.com/KaliLab/neuroptimus). 1034

Hodgkin-Huxley 1035

This use case is based on a single-compartment model, which contains conductances 1036

from the original Hodgkin-Huxley model (Na+, K+, leak)[28], and is implemented in 1037

NEURON. To generate the target voltage trace, a suprathreshold step current was injected into 1038

the soma of the neuron model (amplitude = 300 pA, delay = 200 ms, duration = 500 ms, and 1039

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://github.com/KaliLab/neuroptimus
https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

55

the voltage trace duration is 1000 ms). The test case involves recovering the correct 1040

conductance densities (3 parameters) that were used to generate the target trace, while keeping 1041

the properties of the currents and the other parameters of the model constant (at their original 1042

value). A combination of four features (spike count, spike amplitude, spike width, mean squared 1043

error of voltage excluding spikes) was used to compare each simulated trace to the original 1044

(target) trace. 1045

Voltage Clamp 1046

In the Voltage Clamp benchmark problem the same single-compartment model with the 1047

same conductances is used as in the Hodgkin-Huxley problem. In addition, this model contains 1048

a conductance-based synapse. The goal here is to recover the synaptic parameters (weight, rise 1049

and decay time constants, delay – 4 parameters) from simulated voltage clamp recordings 1050

during synaptic stimulation (four presynaptic spikes at 10 Hz), using the mean squared error 1051

cost function to compare the current traces. 1052

Passive, anatomically detailed neuron 1053

This benchmark uses a morphologically detailed passive model of a hippocampal CA1 1054

pyramidal cell implemented in NEURON. During the experiment, a short (3 ms, 500 pA) and 1055

a long (600 ms, 10 pA) current pulse (separated by 300 ms) were injected into the soma, and 1056

the membrane potential was also recorded there. The neuron was filled with a dye during the 1057

recording, and was reconstructed using Neurolucida. This reconstruction defines the 1058

morphology of the model, and the task involves fitting 3 passive parameters (specific 1059

capacitance, leak conductance density, specific axial resistance, all of which are assumed to be 1060

uniform within the cell) to reproduce the experimental data recorded using the same complex 1061

current clamp stimulus. Traces are compared via the mean squared error cost function. All the 1062

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

56

experimental data for this use case, including the morphological reconstruction and the 1063

electrophysiological recordings, were provided by Miklós Szoboszlay and Zoltán Nusser. 1064

Simplified model 1065

This use case attempts to fit the behavior of a six-compartmental simplification of a 1066

biophysically accurate and morphologically detailed hippocampal CA1 pyramidal cell model 1067

[35] to the somatic voltage responses of the original model with full morphology. Both models 1068

contained the same set of voltage-gated conductances in their somatic and dendritic 1069

compartments: transient Na channels (separate somatic and dendritic subtypes), delayed 1070

rectifier, A-type, and M-type voltage-gated K channels, C-type and AHP-associated Ca-1071

dependent K channels, L-type and N-type Ca channels, and the hyperpolarization-activated 1072

HCN channels. Dendrites of the full model were clustered based on their passive voltage 1073

responses, and each of these clusters defined a dendritic compartment in the simplified model. 1074

The densities of ion channels in the dendritic compartments of the simplified model were set to 1075

the average values in the corresponding clusters of the full model, while the densities of the 1076

nine somatic conductances were subject to parameter optimization. The original full model was 1077

implemented in GENESIS, while the simplified model was implemented in the NEURON 1078

simulator. The target data was the voltage response of the full model to the injection of a 200 1079

pA step current stimulus into the soma (the stimulus started at 200 ms and lasted for 600 ms, 1080

with a total recording duration of 1000 ms). The fit was evaluated via a combination of features 1081

including mean squared error (excluding spikes) weighted by 0.2, spike count (weight 0.4), 1082

latency to first spike (weight 0.1), action potential amplitude (weight 0.1), action potential width 1083

(weight 0.1), and after-hyperpolarization depth (weight 0.1). 1084

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

57

Extended integrate-and-fire model 1085

In this benchmark problem, the parameters of a phenomenological (adaptive 1086

exponential integrate-and-fire) spiking model [32, 33], implemented in the NEST simulator 1087

[34] were fitted to capture the somatic responses of a real neuron (hippocampal CA3 pyramidal 1088

cell) to four different inputs. Voltage traces were recorded experimentally in response to current 1089

steps of 900 ms duration, and 0.30, 0.35, 0.40, and 0.45 nA amplitudes (the step was delayed 1090

by 100 ms, and the recordings lasted for 1100 ms). Sampling frequency was 5 kHz. The 1091

unknown parameters to be optimized were the capacitance, the leak conductance, the reversal 1092

potential of the leak current, the threshold voltage, the reset voltage, the refractory period, the 1093

steepness of the exponential part of the current-voltage relation, the subthreshold adaptation 1094

conductance, the spike adaptation current, and the adaptation time constant (10 parameters). 1095

During the optimization the mean squared error (excluding spikes), the spike count (during 1096

stimulus), and the latency to first spike error functions were used with equal weights. 1097

CA1 pyramidal cell 1098

This is our most complex benchmark problem both regarding the number of parameters 1099

to be optimized and the complexity of the model. The test case is based on an anatomically and 1100

biophysically detailed rat hippocampal CA1 pyramidal cell model built for the NEURON 1101

simulator in our research group. The morphology of the model was from [39]. The model 1102

contained several different voltage-gated ion channels in its somatic, dendritic, and axonal 1103

compartments: a transient Na conductance, delayed rectifier, A-type, M-type, and D-type 1104

voltage-gated K conductances, and the hyperpolarization-activated current Ih. Many attributes 1105

of the model were well-constrained by experimental observations available in the literature, 1106

including the distributions and kinetic properties of the ion channels. The target data (provided 1107

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

58

by Judit Makara) consisted of the means (and associated standard deviations) of 20 different 1108

types of features extracted by eFEL from the voltage responses of five CA1 pyramidal neurons 1109

to somatic current step injections of six different amplitudes (-0.25, 0.05, 0.1, 0.15, 0.2 0.25 1110

nA), with each stimulus repeated three times for every cell. This resulted in a total of 66 feature 1111

values to be matched by the model. The eFEL features and the associated current step 1112

amplitudes are listed in Table 3. 1113

 1114

Feature name from eFEL Feature description Fitted current steps (nA)

Spikecount Number of spikes during stimulus 0.05, 0.1, 0.15, 0.2, 0.25

inv_first_ISI Reciprocal of first interspike interval 0.05, 0.1, 0.15, 0.2, 0.25

inv_last_ISI Reciprocal of last interspike interval 0.05, 0.1, 0.15, 0.2, 0.25

inv_time_to_first_spike Reciprocal of time to first spike 0.05, 0.1, 0.15, 0.2, 0.25

steady_state_voltage Average voltage after stimulus -0.25, 0.05, 0.1, 0.15, 0.2, 0.25

voltage_base Average voltage during the last 10% of

time before the stimulus

-0.25, 0.05, 0.1, 0.15, 0.2, 0.25

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

59

voltage_deflection Difference between the voltage base and

the steady-state voltage at the end of the

stimulus

-0.25

voltage_deflection_begin Difference between the voltage base and

the mean voltage in the early phase (5 to

15% of duration) of the stimulus

-0.25

AHP_depth_abs Absolute value of the depth of

afterhyperpolarization

0.15, 0.2, 0.25

AHP_time_from_peak Time from the peak of the AP to the

minimum of the afterhyperpolarization

0.15, 0.2, 0.25

AP2_amp Amplitude of second AP 0.15, 0.2, 0.25

AP_amplitude Average height of APs 0.15, 0.2, 0.25

AP_begin_voltage Threshold of AP initiation 0.15, 0.2, 0.25

AP_duration_half_width Half-width of the AP 0.15, 0.2, 0.25

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

60

AP_fall_time Time from the peak of the AP to the end

of the AP

0.15, 0.2, 0.25

AP_rise_time Time from the AP threshold to the peak

of the AP

0.15, 0.2, 0.25

AP_last_amp Amplitude of the last AP 0.15, 0.2, 0.25

time_to_last_spike Time to the last spike 0.15, 0.2, 0.25

sag_amplitude Difference between the minimal voltage

and the steady state voltage at the end of

the stimulus

-0.25

sag_ratio1 Ratio between sag amplitude and

maximal hyperpolarization from voltage

base

-0.25

Table 3: List of eFEL features (with brief explanations) and associated current amplitudes used as the target data 1115

in the detailed CA1 pyramidal neuron use case. 1116

 1117

We optimized 12 abstract parameters of the model that were mapped onto the actual 1118

parameters of the NEURON implementation by an appropriate user function. Ten parameters 1119

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

61

determined the densities of the voltage-gated and leak conductances in the different 1120

compartments (soma, dendrites, axon) of the neuron; one parameter represented the reversal 1121

potential of the leak current; and the final parameter determined the difference between the half-1122

activation and half-inactivation potential values of the Na conductance. 1123

Evaluation Methods 1124

We tested the different optimization algorithms on each of the six model optimization 1125

tasks described above. To ensure a fair comparison of model performance, we allowed 10,000 1126

model evaluations for every algorithm on each task. For all population-based methods 1127

(including evolutionary algorithms and swarm intelligence-based approaches) we set the 1128

population size to 100, and the number of generations to 100 as well. We similarly set 100 1129

global and 100 local minimization steps for two-stage algorithms. Otherwise, we ran every 1130

algorithm with its default settings in Neuroptimus. These default options are typically the 1131

package default settings, with one significant exception: we observed that the default settings 1132

of the EvolutionaryComputation class of the Inspyred package that underlies our CEO 1133

algorithm led to essentially no optimization, so we adjusted the default number of elites from 0 1134

to half of the population size, changed the mutation rate from 0.1 to 0.25 and standard deviation 1135

of Gaussian mutation from 1 to 0.5. 1136

Optimization runs were parallelized for all algorithms where this is supported by 1137

Neuroptimus and the underlying packages (see Table 2). For the most resource-intensive use 1138

case (the detailed CA1 pyramidal neuron model) these parallelized runs were performed on 1139

supercomputers via the Neuroscience Gateway [75]; simpler use cases and algorithms that do 1140

not support parallelization were run on a Dell PowerEdge R730 compute server or personal 1141

computers. To allow meaningful statistical comparisons between the algorithms, we performed 1142

10 independent runs (using distinct random seeds) of each algorithm in every use case. 1143

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

62

We visualized and compared the performance of the algorithms in each use case using 1144

several different methods. All the comparisons were based on the change in the total error 1145

during the optimization. First, we visualized the convergence of the algorithms by plotting the 1146

cumulative minimum of the error function after every generation (i.e., after every 100 model 1147

evaluations). We plotted the median value across the 10 runs to see which algorithms typically 1148

find the best solutions after a given number of model evaluations. The lowest and the highest 1149

errors achieved by the 10 runs were also calculated in every iteration to observe how well the 1150

algorithm performs in the best case, and whether it gets stuck in some cases. 1151

We defined two basic scores to characterize and compare the performance of the 1152

algorithms in a concise manner. The first of these scores was defined as the lowest error 1153

achieved during the entire optimization run (these are usually, but not always, associated with 1154

members of the final population). We visualized the distribution of this measure across the 10 1155

independent runs using box plots that show the median, interquartile range, minimum, and 1156

maximum values, and also indicate apparent outliers. 1157

In the case of more complex, detailed models, each model evaluation (simulation) can 1158

be time-consuming, and thus we are also interested in which algorithms can find a reasonably 1159

good solution in a relatively short time. To characterize the convergence speed of an algorithm, 1160

we used the sum of the logarithms of the error scores achieved by the best individuals in each 1161

generation. This is essentially the area under the logarithmic convergence curve - the smaller 1162

this sum is, the faster the algorithm found a relatively good solution. 1163

 1164

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

63

 1165

References 1166

 1167

1. Herz AVM, Gollisch T, Machens CK, Jaeger D. Modeling Single-Neuron Dynamics and Computations: 1168

A Balance of Detail and Abstraction. Science. 2006 Oct 6;314(5796):80–5. 1169

2. Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, et al. The Scientific Case for 1170

Brain Simulations. Neuron. 2019 May;102(4):735–44. 1171

3. Ramaswamy S. Data-driven multiscale computational models of cortical and subcortical regions. 1172

Current Opinion in Neurobiology. 2024 Apr;85:102842. 1173

4. Hay E, Hill S, Schürmann F, Markram H, Segev I. Models of Neocortical Layer 5b Pyramidal Cells 1174

Capturing a Wide Range of Dendritic and Perisomatic Active Properties. PLoS Computational Biology. 2011 Jul 1175

28;7(7):e1002107. 1176

5. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, et al. Reconstruction 1177

and Simulation of Neocortical Microcircuitry. Cell. 2015 Oct;163(2):456–92. 1178

6. Gouwens NW, Berg J, Feng D, Sorensen SA, Zeng H, Hawrylycz MJ, et al. Systematic generation of 1179

biophysically detailed models for diverse cortical neuron types. Nature Communications. 2018 Feb 19;9(1). 1180

7. Migliore R, Lupascu CA, Bologna LL, Romani A, Courcol JD, Antonel S, et al. The physiological 1181

variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified 1182

data-driven modeling workflow. PLOS Computational Biology. 2018 Sep 17;14(9):e1006423. 1183

8. Van Geit W, De Schutter E, Achard P. Automated neuron model optimization techniques: a review. 1184

Biological Cybernetics. 2008 Nov;99(4–5):241–51. 1185

9. Druckmann S. A novel multiple objective optimization framework for constraining conductance-based 1186

neuron models by experimental data. Frontiers in Neuroscience. 2007 Nov 1;1(1):7–18. 1187

10. Keren N, Peled N, Korngreen A. Constraining Compartmental Models Using Multiple Voltage 1188

Recordings and Genetic Algorithms. Journal of Neurophysiology. 2005 Dec;94(6):3730–42. 1189

11. Weaver CM, Wearne SL. The role of action potential shape and parameter constraints in optimization 1190

of compartment models. Neurocomputing. 2006 Jun;69(10–12):1053–7. 1191

12. Rossant C. Automatic fitting of spiking neuron models to electrophysiological recordings. Frontiers in 1192

Neuroinformatics. 2010;4. 1193

13. Hendrickson EB, Edgerton JR, Jaeger D. The use of automated parameter searches to improve ion 1194

channel kinetics for neural modeling. Journal of Computational Neuroscience. 2011 Jan 18;31(2):329–46. 1195

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

64

14. Svensson CM, Coombes S, Peirce JW. Using Evolutionary Algorithms for Fitting High-Dimensional 1196

Models to Neuronal Data. Neuroinformatics. 2012 Jan 20;10(2):199–218. 1197

15. Friedrich P, Vella M, Gulyás AI, Freund TF, Káli S. A flexible, interactive software tool for fitting the 1198

parameters of neuronal models. Frontiers in Neuroinformatics. 2014 Jul 10;8. 1199

16. Nogaret A, Meliza CD, Margoliash D, Abarbanel HDI. Automatic Construction of Predictive Neuron 1200

Models through Large Scale Assimilation of Electrophysiological Data. Scientific Reports. 2016 Sep 8;6(1). 1201

17. Vanier MC, Bower JM. Journal of Computational Neuroscience. 1999;7(2):149–71. 1202

18. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on 1203

Evolutionary Computation. 1997 Apr;1(1):67–82. 1204

19. Yang XS. Nature-inspired Metaheuristic Algorithms. Luniver Press; 2010. 1205

20. Carnevale NT, Hines ML. The NEURON Book. Cambridge University Press; 2006. 1206

21. Bower JM, Beeman D. The Book of GENESIS: Exploring Realistic Neural Models with the GEneral 1207

NEural SImulation System. Springer; 1998. 1208

22. Van Geit W. Neurofitter: A parameter tuning package for a wide range of electrophysiological neuron 1209

models. Frontiers in Neuroinformatics. 2007;1. 1210

23. Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol JD, Muller EB, et al. BluePyOpt: Leveraging 1211

Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience. Frontiers in 1212

Neuroinformatics. 2016 Jun 7;10. 1213

24. Meyer R, Obermayer K. pypet: A Python Toolkit for Data Management of Parameter Explorations. 1214

Frontiers in Neuroinformatics. 2016 Aug 25;10. 1215

25. Welcome to Neurotune’s documentation! — neurotune 0.2.1 documentation [Internet]. Available from: 1216

https://neurotune.readthedocs.io/en/latest/ 1217

26. Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, et al. NetPyNE, a tool for 1218

data-driven multiscale modeling of brain circuits. eLife. 2019 Apr 26;8. 1219

27. Ranjan R, Geit V, Moor R, Rössert C, Riquelme JL, Damart T, et al. eFEL [Internet]. Zenodo. 2024. 1220

Available from: https://doi.org/10.5281/zenodo.593869 1221

28. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to 1222

conduction and excitation in nerve. The Journal of Physiology. 1952 Aug 28;117(4):500–44. 1223

29. Major G, Larkman A, Jonas P, Sakmann B, Jack J. Detailed passive cable models of whole-cell 1224

recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience. 1994 Aug 1225

1;14(8):4613–38. 1226

30. Stuart G, Spruston N. Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites. 1227

The Journal of Neuroscience. 1998 May 15;18(10):3501–10. 1228

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

65

31. Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N. Factors mediating powerful voltage attenuation 1229

along CA1 pyramidal neuron dendrites. The Journal of Physiology. 2005 Sep 28;568(1):69–82. 1230

32. Naud R, Marcille N, Clopath C, Gerstner W. Firing patterns in the adaptive exponential integrate-and-1231

fire model. Biological Cybernetics. 2008 Nov;99(4–5):335–47. 1232

33. Brette R, Gerstner W. Adaptive Exponential Integrate-and-Fire Model as an Effective Description of 1233

Neuronal Activity. Journal of Neurophysiology. 2005 Nov;94(5):3637–42. 1234

34. Fardet T, Vennemo SB, Mitchell J, Mørk H, Graber S, Hahne J, et al. NEST 2.20.1 [Internet]. Zenodo. 1235

2020 [cited 2024 Feb 27]. Available from: https://zenodo.org/record/4018718 1236

35. Káli S, Freund TF. Distinct properties of two major excitatory inputs to hippocampal pyramidal cells: a 1237

computational study. European Journal of Neuroscience. 2005 Oct;22(8):2027–48. 1238

36. De Schutter E, Bower JM. An active membrane model of the cerebellar Purkinje cell. I. Simulation of 1239

current clamps in slice. Journal of Neurophysiology. 1994 Jan 1;71(1):375–400. 1240

37. Poirazi P, Brannon T, Mel BW. Arithmetic of Subthreshold Synaptic Summation in a Model CA1 1241

Pyramidal Cell. Neuron. 2003 Mar;37(6):977–87. 1242

38. Almog M, Korngreen A. Is realistic neuronal modeling realistic? Journal of Neurophysiology. 2016 1243

Nov 1;116(5):2180–209. 1244

39. Megı́as M, Emri Z, Freund TF, Gulyás AI. Total number and distribution of inhibitory and excitatory 1245

synapses on hippocampal CA1 pyramidal cells. Neuroscience. 2001 Feb;102(3):527–40. 1246

40. Biscani F, Izzo D. A parallel global multiobjective framework for optimization: pagmo. Journal of 1247

Open Source Software. 2020 Sep 13;5(53):2338. 1248

41. Damart T, Van Geit W, Markram H. Data driven building of realistic neuron model using IBEA and 1249

CMA evolution strategies. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference 1250

Companion [Internet]. New York, NY, USA: ACM; 2020 [cited 2024 Feb 28]. Available from: 1251

http://dx.doi.org/10.1145/3377929.3398161 1252

42. Jȩdrzejewski-Szmek Z, Abrahao KP, Jȩdrzejewska-Szmek J, Lovinger DM, Blackwell KT. Parameter 1253

Optimization Using Covariance Matrix Adaptation—Evolutionary Strategy (CMA-ES), an Approach to 1254

Investigate Differences in Channel Properties Between Neuron Subtypes. Frontiers in Neuroinformatics. 2018 1255

Jul 31;12. 1256

43. Comparing algorithms: the case of xNES and CMA-ES — pygmo 2.19.6 documentation [Internet]. 1257

[cited 2024 Feb 28]. Available from: https://esa.github.io/pygmo2/tutorials/cmaes_vs_xnes.html#comparing-1258

algorithms-the-case-of-xnes-and-cma-es 1259

44. Ecker A, Romani A, Sáray S, Káli S, Migliore M, Falck J, et al. Data‐driven integration of hippocampal 1260

CA1 synaptic physiology in silico. Hippocampus. 2020 Jun 10;30(11):1129–45. 1261

45. Sáray S, Rössert CA, Appukuttan S, Migliore R, Vitale P, Lupascu CA, et al. HippoUnit: A software 1262

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

66

tool for the automated testing and systematic comparison of detailed models of hippocampal neurons based on 1263

electrophysiological data. PLOS Computational Biology. 2021 Jan 29;17(1):e1008114. 1264

46. Druckmann S, Berger TK, Hill S, Schürmann F, Markram H, Segev I. Evaluating automated parameter 1265

constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics. 2008 1266

Nov;99(4–5):371–9. 1267

47. Farzane K, Alireza B D. A review and evaluation of multi and many-objective optimization: Methods 1268

and algorithms. Global Journal of Ecology. 2022 Nov 9;7(2):104–19. 1269

48. Biscani F, Izzo D. esa/pagmo2: pagmo 2.11.1 [Internet]. Zenodo. 2019. Available from: 1270

https://zenodo.org/record/3364433 1271

49. Masoli S, Tognolina M, Laforenza U, Moccia F, D’Angelo E. Parameter tuning differentiates granule 1272

cell subtypes enriching transmission properties at the cerebellum input stage. Communications Biology. 2020 1273

May 8;3(1). 1274

50. Masoli S, Ottaviani A, Casali S, D’Angelo E. Cerebellar Golgi cell models predict dendritic processing 1275

and mechanisms of synaptic plasticity. PLOS Computational Biology. 2020 Dec 30;16(12):e1007937. 1276

51. Ecker A, Bagi B, Vértes E, Steinbach-Németh O, Karlócai MR, Papp OI, et al. Hippocampal sharp 1277

wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network 1278

model of area CA3. eLife. 2022 Jan 18;11. 1279

52. Schneider-Mizell CM, Bodor AL, Collman F, Brittain D, Bleckert A, Dorkenwald S, et al. Structure 1280

and function of axo-axonic inhibition. eLife. 2021 Dec 1;10. 1281

53. Chindemi G, Abdellah M, Amsalem O, Benavides-Piccione R, Delattre V, Doron M, et al. A calcium-1282

based plasticity model for predicting long-term potentiation and depression in the neocortex. Nature 1283

Communications. 2022 Jun 1;13(1). 1284

54. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: 1285

fundamental algorithms for scientific computing in Python. Nature Methods. 2020 Feb 3;17(3):261–72. 1286

55. Tonda A. Inspyred: Bio-inspired algorithms in Python. Genetic Programming and Evolvable Machines. 1287

2019 Nov 2;21(1–2):269–72. 1288

56. Nomura M, Shibata M. cmaes : A Simple yet Practical Python Library for CMA-ES [Internet]. 1289

arXiv.org. 2024. Available from: https://arxiv.org/abs/2402.01373 1290

57. Price K, Storn RM, Lampinen JA. Differential Evolution: A Practical Approach to Global Optimization. 1291

Springer Science & Business Media; 2006. 1292

58. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-1293

II. IEEE Transactions on Evolutionary Computation. 2002 Apr;6(2):182–97. 1294

59. Wales DJ, Scheraga HA. Global Optimization of Clusters, Crystals, and Biomolecules. Science. 1999 1295

Aug 27;285(5432):1368–72. 1296

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

67

60. Gad AG. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Archives 1297

of Computational Methods in Engineering. 2022 Apr 19;29(5):2531–61. 1298

61. Rastrigin LA. Random Search in Problems of Optimization, Identification and Training of Control 1299

Systems. Journal of Cybernetics. 1973 Jan;3(3):93–103. 1300

62. Nelder JA, Mead R. A Simplex Method for Function Minimization. The Computer Journal. 1965 Jan 1301

1;7(4):308–13. 1302

63. Byrd RH, Lu P, Nocedal J, Zhu C. A Limited Memory Algorithm for Bound Constrained Optimization. 1303

SIAM Journal on Scientific Computing. 1995 Sep;16(5):1190–208. 1304

64. Bäck T. Evolutionary Algorithms in Theory and Practice [Internet]. Oxford University Press; 1996 1305

[cited 2024 Feb 27]. Available from: http://dx.doi.org/10.1093/oso/9780195099713.001.0001 1306

65. Hansen N, Ostermeier A. Adapting arbitrary normal mutation distributions in evolution strategies: the 1307

covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation 1308

[Internet]. IEEE; [cited 2024 Feb 27]. Available from: http://dx.doi.org/10.1109/icec.1996.542381 1309

66. Glasmachers T, Schaul T, Yi S, Wierstra D, Schmidhuber J. Exponential natural evolution strategies. 1310

In: Proceedings of the 12th annual conference on Genetic and evolutionary computation [Internet]. New York, 1311

NY, USA: ACM; 2010 [cited 2024 Feb 27]. Available from: http://dx.doi.org/10.1145/1830483.1830557 1312

67. Qin AK, Suganthan PN. Self-adaptive Differential Evolution Algorithm for Numerical Optimization. 1313

In: 2005 IEEE Congress on Evolutionary Computation [Internet]. IEEE; [cited 2024 Feb 27]. Available from: 1314

http://dx.doi.org/10.1109/cec.2005.1554904 1315

68. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - International 1316

Conference on Neural Networks [Internet]. IEEE; [cited 2024 Feb 27]. Available from: 1317

http://dx.doi.org/10.1109/icnn.1995.488968 1318

69. Schlüter M, Egea JA, Banga JR. Extended ant colony optimization for non-convex mixed integer 1319

nonlinear programming. Computers & Operations Research. 2009 Jul;36(7):2217–29. 1320

70. Wales DJ, Doye JPK. Global Optimization by Basin-Hopping and the Lowest Energy Structures of 1321

Lennard-Jones Clusters Containing up to 110 Atoms. The Journal of Physical Chemistry A. 1997 Jul 1322

1;101(28):5111–6. 1323

71. Knowles J, Corne D. The Pareto archived evolution strategy: a new baseline algorithm for Pareto 1324

multiobjective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat 1325

No 99TH8406) [Internet]. IEEE; [cited 2024 Feb 27]. Available from: 1326

http://dx.doi.org/10.1109/cec.1999.781913 1327

72. Zitzler E, Künzli S. Indicator-Based Selection in Multiobjective Search. In: Lecture Notes in Computer 1328

Science [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004 [cited 2024 Feb 27]. p. 832–42. 1329

Available from: http://dx.doi.org/10.1007/978-3-540-30217-9_84 1330

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

68

73. Acciarini G, Izzo D, Mooij E. MHACO: a Multi-Objective Hypervolume-Based Ant Colony Optimizer 1331

for Space Trajectory Optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC) [Internet]. 1332

IEEE; 2020 [cited 2024 Feb 27]. Available from: http://dx.doi.org/10.1109/cec48606.2020.9185694 1333

74. Li X. A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization. In: Genetic 1334

and Evolutionary Computation — GECCO 2003 [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1335

2003 [cited 2024 Feb 27]. p. 37–48. Available from: http://dx.doi.org/10.1007/3-540-45105-6_4 1336

75. Sivagnanam S, Majumdar A, Yoshimoto K, Astakhov V, Bandrowski A, Martone ME, et al. 1337

Introducing the Neuroscience Gateway. Iwsg. 2013;993 of CEUR Workshop Proceedings(CEUR-WS.org). 1338

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.03.587881doi: bioRxiv preprint

https://doi.org/10.1101/2024.04.03.587881
http://creativecommons.org/licenses/by/4.0/

