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Abstract

Background: Spatial transcriptomics (ST) technologies are revolutionizing our understanding
of intra-tumor heterogeneity and the tumor microenvironment by revealing single-cell
molecular profiles within their spatial tissue context. The rapid evolution of ST methods, each
with unique features, presents a challenge in selecting the most appropriate technology for
specific research objectives. Here, we compare four imaging-based ST methods — RNAscope
HiPlex, Molecular Cartography, MERFISH/Merscope, and Xenium — together with sequen-
cing-based ST (Visium). These technologies were used to study cryosections of
medulloblastoma with extensive nodularity (MBEN), a tumor chosen for its distinct

microanatomical features.

Results: Our analysis reveals that automated imaging-based ST methods are well suited to
delineating the intricate MBEN microanatomy, capturing cell-type-specific transcriptome
profiles. We devise approaches to compare the sensitivity and specificity of the different
methods together with their unique attributes to guide method selection based on the research
aim. Furthermore, we demonstrate how reimaging of slides after the ST analysis can markedly
improve cell segmentation accuracy and integrate additional transcript and protein readouts

to expand the analytical possibilities and depth of insights.

Conclusions: This study highlights key distinctions between various ST technologies and
provides a set of parameters for evaluating their performance. Our findings aid in the informed
choice of ST methods and delineate approaches for enhancing the resolution and breadth of
spatial transcriptomic analyses, thereby contributing to advancing ST applications in solid

tumor research.
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Background

Single cell RNA sequencing of dissociated cells (scRNA-seq) or nuclei (snRNA-seq) has
become a standard method in cancer research to dissect deregulated transcriptional programs
as well as cell types and cell fate trajectories [1]. However, in the sc/snRNA-seq analysis
spatial relations between cells in their native tissue context are lost. A variety of emerging
spatial transcriptomics (ST) approaches that acquire molecular gene expression profiles of
cells in situ reveal the spatial relations between individual cells [2-5]. ST technologies provide
novel insight into tumor heterogeneity as well as interactions of tumor cells with their
microenvironment [6, 7]. They can be broadly classified into sequencing (sST) and imaging
(iST) based methods. The sST analysis employs a readout by sequencing after transcripts
have been released from the sample and are captured directly or via hybridized probes, which
can be conducted in an unbiased way for the whole transcriptome. The iST methods apply
multiplex single molecule RNA fluorescence in situ hybridization (smRNA-FISH) approaches
in a targeted manner as defined by the probe panel together with transcript identification by
imaging. For ST experiments of tumor samples, the different methods have their own specific
strengths and weaknesses and numerous questions about the best technical implementation
of ST technologies and the experimental design exist. On the one hand, organism, tissue type
as well as sample processing, e.g., formalin-fixed, paraffin-embedded (FFPE) or fresh frozen
tissue will affect the results obtained with a given method. On the other hand, there is currently
no consensus on how to determine relevant parameters for quality control including the
following: (i) The sensitivity of the method, which is given by the probability that a given
transcript is detected. (ii) The target specificity as reflected by the false discovery rate (FDR).
(iii) The specific genes and their total number that are covered well in the experiment. (iv) The

assignment of transcripts to a cell.

The resolution of the transcriptome analysis and the cell type annotation will depend on the
experimental raw data as well as their preprocessing and downstream data analysis. For
example, a crucial step in the workflow is the segmentation of cells for transcript assignment
and cell type identification. Here, different dyes for staining of nuclei, membrane and whole
cells are available but results depend again on organism, tissue type and sample processing.
In addition, the microscopy system, e.g., wide-field vs. confocal microscope, used objectives
and/or detector sensitivity will affect the quality of the images with respect to the resolution
and signal-to-noise ratio and thus segmentation of nuclei and cells. Numerous computational
methods such as Cellpose [8], Baysor [9] and Mesmer [10] have been developed for

segmentation and their results are highly dependent on the input data.

For high-throughput iST commercial instruments with automated imaging and integrated

microfluidics or pipetting robotics are advantageous and the following platforms were used in
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this study: (i) Molecular Cartography (MC) on the MC 1.0 instrument (Resolve Biosicences)
[11]. (ii) Multiplexed error-robust fluorescence in situ hybridization (MERFISH) [12] on the
Merscope (Vizgen) system [13], which is referred to as “Merscope” in the following.
(iii) Hybridization with barcoded padlock probes directly targeting the RNA [14] as
implemented on the Xenium Analyzer instrument (10x Genomics) to which we referred to as
“Xenium” [15]. A number of reports compared the performance of these and other instruments
for FFPE cancer tissue samples [16, 17] as well as mouse brain FFPE [18] and fresh frozen
[19] tissue sections. However, a study using the same fresh frozen cancer samples on the
different /ST platforms is lacking. Fresh frozen samples can be advantageous with respect to
RNA integrity as well as conducting unbiased single nuclei transcriptome and/or open
chromatin profiling by scATAC-seq from the same sample. Here, we applied a comparative
ST analysis for a case study focusing on medulloblastoma tumors with extensive nodularity
(MBEN) [20]. MBENSs are a histopathologically defined subtype of medulloblastoma, which is
among the most common embryonal central nervous system tumor in children [21, 22]. Due
to mutations in the sonic hedgehog pathway MBEN mimics the development of cerebellar
granule neuronal precursors and thus features the complete developmental trajectory [20].
This is reflected in the MBEN tissue structure, which is characterized by a segregation into an
internodular (proliferating cerebellar granular neuronal precursor-like malignant cells together
with stromal, vascular, and immune cells) and nodular compartment (postmitotic, neuronally
differentiated malignant cells). In the present study, we conducted an iST analysis of the same
MBEN patient samples by MC, Merscope and Xenium in comparison to RNAscope HiPlex [23,
24] as a well-established reference for low-throughput iST. In addition, snRNA-seq and sST
on the Visium platform (10x Genomics) were included as methods for an unbiased
transcriptome analysis. Based on our experience with these six different methods we identified
informative QC parameters and metrics to assess sensitivity and specificity of the different
methods. Furthermore, we show how technological differences affect the results and provide

guidance for the experimental design for the analysis of fresh frozen tumor samples by iST.

Results

ST of MBEN samples

The analysis of MBEN samples by different ST methods was conducted with fresh frozen
tissue from four different patients (Supplementary Table S1) that have been studied
previously using sequencing, microdissection and spatial technologies [20]. Here, we
dissected the distinct MBEN microanatomy with a different cellular composition of the

internodular and the nodular compartment in a comparison of different ST methods (Fig. 1).
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Figure 1. Overview of ST technologies compared in this study. Marker genes NRXN3 (purple color,
nodular compartment) and LAMAZ2 (green color, internodular compartment) and MKI67 (orange color,
proliferating cells) are shown for sample MB295. (a) H&E reference staining. (b) Visium. (¢) RNAscope
HiPlex. (d) Molecular Cartography. (e) Merscope. (f) Xenium.

Exemplary tissue images are shown for hematoxylin and eosin (H&E) staining (Fig. 1a)
together with the different ST technologies used (Fig. 1, S1, Supplementary Table S2).
These included Visium (Fig. 1b), RNAscope (10 gene panel, Fig. 1¢), MC (100 gene panel,
Fig. 1d), Merscope (138 gene panel, Fig. 1e) and Xenium (345 gene panel, Fig. 1f)
(Supplementary Dataset 1). All iST panels included the 10 genes from RNAscope, and
Merscope and Xenium shared 96 genes of the MC panel. The MBEN tumor microanatomy is
visible in the H&E staining and was revealed by all iST methods on the transcript level by
transcription of NRXN3 and LAMA2 as marker genes for the nodular and internodular
compartments, respectively (Fig. 1). The Visium analysis, however, did not provide sufficient
spatial resolution to clearly delineate the two different tumor compartments as apparent from
the NRXN3/LAMA2 expression ratio (Fig. 1b). In addition, we also included snRNA-seq data
generated on the Chromium platform in our comparison as a reference for the established and

frequently used approach for a single cell transcriptome analysis of solid tumor samples.

ST image acquisition and reimaging of slides

For Visium and RNAscope experiments, the image acquisition is decoupled from the transcript
detection and decoding. For these modalities, H&E images were acquired on a slide scanner
and the RNA-scope ST data acquisition was conducted by spinning disk confocal microscopy
(SDCM).
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Figure 2. Reimaging and segmentation. (a) Reimaging workflow of MC and Xenium slides. (b)
Widefield overview DAPI image, zoom and segmented image for MC. (c) Same as panel b but after
applying the MindAGap software to fill the non-overlapping line between images. (d) Same region as in
panel b and c but after reimaging on the spinning disk microscope. (e) The gap between images
introduces artifacts for stitching and registration that lead to the artificial generation of duplications for
0.15% of the transcripts. (f) Segmentation for Merscope with membrane staining. Left, DAPI stained
wide-field image; middle, membrane staining; right, segmentation based on DAPI signal and membrane
staining. (g) DAPI images (zoom-in of indicated regions) of Xenium slide and segmentation based on
SDCM and widefield images for tumor tissue MB266. The region overview is shown as a transcript
density. The fraction of transcripts assigned to segmented nuclei or cells were 68% for Xenium SDCM
nuclei (Xenium slide reimaged by SDCM), 59% for Xenium nuclei and 95% for Xenium cells. The cell
expansion used for the latter segmentation covers almost all transcripts. However, this is associated
with artifacts as seen for the cells marked with white triangles. For quantification see Fig. S2.

The commercial MC 1.0, Merscope and Xenium Analyzer instruments provide automated
image acquisition on a built-in wide-field fluorescence microscope with some differences

concerning objective and camera as well as the software provided for preprocessing. These
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systems implement different smRNA-FISH protocols, which has some implications for
practical usage. Placement of fresh frozen cryosections is relatively easy for MC and Xenium
but can be difficult for Merscope if more samples are to be placed on one slide due to the slide
architecture (Fig. $1). In the MC system readout probes are removed and the whole workflow
can be started again in case of a power cut or system malfunction. This is not possible for
Merscope, as the fluorophores are bleached. After the ST run, it can be advantageous to
conduct a reimaging step to either acquire higher resolution images (e.g., improved DAPI
images for cell segmentation, see below) or to include additional image modalities such as
H&E, membrane or immunostainings. For MC and Xenium, this is straightforward since the
tissue integrity is maintained during the runs and standard slide formats are used (Fig. S1).
We have developed a workflow for MC and Xenium that reimages the slides by SDCM
microscope that are then registered on the spatial transcriptomics map obtained with these
systems (Fig. 2a). We have not tested reimaging of the Merscope slides since the sample
clearing step before the run removes all tissue components other than RNA and DNA and
imaging is more difficult due to the custom slide format. To overlay the images of the tissue
obtained from a different microscope, images are first stitched and then registered to the DAPI
images from the iST analysis of the MC or Xenium system. In this manner, the cell’s

transcriptome profile can be integrated with additional readouts.

Image processing and cell segmentation

To assign transcripts to individual cells after segmentation, several image processing steps
are conducted. If not noted otherwise, we used segmentation based on DAPI staining (MC
1.0), DAPI and membrane staining (Merscope) and DAPI staining with cell expansion (Xenium
analyzer) as default workflows for the different systems. We find that the quality of the DAPI
images is crucial with respect to staining, image acquisition parameters (excitation intensity,
exposure time, dynamic range of detector) and the image resolution obtained with the wide-
field microscopes used in these systems. In particular, it is important to optimize the DAPI
signal-to-noise ratio and to avoid a too low signal as well as a fluorescence signal that is out
of the dynamic range of the detector. The images provided by the default settings of
commercial iST systems leave room for improvement in this respect for the very cell dense
MBEN tissue sections studied here. To specifically evaluate the effect of image quality,
preprocessing and segmentation method, we additionally acquired SDCM images for MC and
Xenium (referred to as MC SDCM and Xenium SDCM). In cell dense areas the analysis of the
original wide-field images leads to ambiguous results. This is illustrated for the MC workflow
in Fig. 2b-d. This analysis also revealed stitching artifacts due to non-overlapping images that
resulted in black strips splitting cells that span across imaging tiles (Fig. 2b), which can be

addressed by Gaussian blurring (Fig. 2¢) but results in partially duplicated cells and
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transcripts. To further investigate this issue, the confocal images were registered, and
transcript duplicates removed (Fig. 2d). These duplicates appeared at a low but still detectable
frequency of 0.15% across all transcripts (Fig. 2e). This type of stitching errors was not
detected for Merscope and Xenium systems. Finally, the option provided for Merscope to
include a membrane staining in the standard workflow can improve cell segmentation on

widefield areas as illustrated in Fig. 2f.

In general, segmentation with Cellpose [8] using the DAPI signal yielded good results and the
SDCM images provided a 15-30% higher number of segmented nuclei. This is illustrated for
the MB266 sample in Supplementary Fig. S2. About 71% (MC) and 68% (Xenium) of the
overall detected transcripts were located in the segmented nuclei. In contrast, nuclei
segmentation on the corresponding widefield microscope yielded ~10% less assignment of
the overall detected transcripts to nuclei (MC, 58%; Xenium, 59%). This can be partially
attributed to the lower overall numbers of segmented nuclei on widefield images (~28% for
MC and ~15% for Xenium in case of MB266). However, it is noteworthy that not only the
number of segmented cells or nuclei matters but also their size and shape. The larger the cells
the more transcripts were detected. Nevertheless, simple extension of segmented nuclei to
include cytoplasmic transcripts resulted in some wrongly assigned transcripts and thus

created a mixed transcriptome from different cells (Fig. 2g).

Sensitivity of ST methods

The sensitivity of ST methods can be defined as the transcript fraction that is detected. To
assess this parameter, we analyzed the distribution of the total number of transcripts detected
(“transcripts”) as well as the number of genes (“features”) for the shared 96 gene panel shared
between all ST methods except for RNAscope. To exclude the confounding effect of
segmentation, we conducted a spatial binning analysis as a segmentation-free approach.
Number and type of transcripts were determined within spatial bins (48,74 x 48,74 pm) that
correspond to area of a circular Visium spot, which is ~2,375 ym?in size. The iST techniques
clearly outperformed the Visium sST method with respect to the number of transcripts and
features in this comparison (Fig. 3a). While increasing the sequencing depth could improve
the Visium results, but based on our data, one would still expect that Visium sensitivity will
remain well below that of the /ST techniques. Within the latter group, MC yielded the highest
number of transcripts per bin while the number of features was similar for all iST methods (Fig.
3a).
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Figure 3. Sensitivity of ST methods. (a) Density ridge plots for transcript and feature counts per
spatial bin (48.74 um side length square) being equivalent to the area of one Visium spot. (b) Density
ridge plots of transcript and feature counts per cell after segmentation for 96 shared genes. (c) Same
as panel b but for the 10 shared genes present in the RNAscope panel. (d) Correlations of transcript
counts between different iST methods. The dashed line depicts the same number of transcripts detected
for the two methods compared. Correlations of /ST with snRNA-seq data are given in Fig. S3b-d.

Interestingly, the spatial binning analysis yielded a bimodal distribution for Xenium, which
points to the presence of tissue regions with reduced transcript coverage. The cells in the

lower transcript distribution appear to be enriched in the outer regions of the tissue (Fig. S3a).

Next, the number of transcripts or features was computed on a per cell basis for the 96 gene

set (Fig. 3b). This comparison showed only minor sensitivity differences between the
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automated iST instruments. The well-established RNAscope method consistently yielded high
numbers of transcripts/features per cell for the 10 shared genes (Fig. 3c). This result confirms
its use as a sSmRNA-FISH reference in the field. We then performed a pairwise comparison of
detected mean transcripts per cell between the different iST methods for the shared gene set
(Fig. 3d). For some genes with lower expression levels, e.g., BOC, they seemed to be better
detected by Merscope and Xenium as compared to MC. The same analysis was applied in
reference to snRNA-seq, which has a detection efficiency of 14-15% for the Chromium 3’-RNA
v2 chemistry from 10x Genomics used in our experiments (Fig. S3b-d). The resulting
correlation coefficients of /ST methods with snRNA-seq were between 0.53-0.63 and
somewhat lower than those between the iST methods themselves that ranged from 0.7-0.84
(Fig. 3d). On an average, the number of a given transcript per nucleus/cell was 2.3 to 2.5-fold
higher for the iST methods than for snRNA-seq (Fig. 3b, S3b-d). This suggest that the
detection efficiency of the iST methods is around 33-37%. Overall, the commercial iST
methods yielded very similar results with MC showing a slightly lower number of counts for
less abundant transcripts. When checking the number of transcripts and molecules per cell all
iIST techniques showed higher sensitivity than snRNA-seq as performed with the Chromium

v2-chemistry.

Specificity of iST methods using RNAscope as a reference

To assess ST specificity, we used the 10 genes mapped in the RNAscope data as a reference.
Correlations of the mean number of transcripts per cell for the 10 genes mapped by RNAscope
were calculated. The highest correlation was found between RNAscope and Xenium (Fig. 4a).
Next, we computed pairwise correlation coefficients between transcripts within a cell for each
of the different methods (Fig. 4b). According to this correlation analysis, the RNAscope data
reflected the MBEN tissue microanatomy described in ref. [20] very well. Marker genes of the
nodular compartment (RBFOX3, NRXN3) as well as those of the internodular compartment
(GLI, TRPM3, LAMAZ2 and PTCH1) showed high positive correlations among each other but
were not correlated or anti-correlated between these two groups. The Merscope data were
most similar to the pattern of (anti-)correlations between gene pairs seen in the RNAscope
data (coefficient of determination R = 0.72), while it was somewhat less apparent for the other
methods (MC, R? = 0.45; Xenium, R? = 0.42) (Supplementary Table S3). This type of
assessment is based on prior knowledge about the spatial expression patterns of a given
tissue. It can be implemented after cell segmentation as a quality assessment for specific

marker genes that display distinct spatial relations as demonstrated here for MBEN.
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Figure 4. Comparison with RNAscope. (a) Correlation of gene expression for the different iST
methods with RNAscope for the 10 shared genes. The dashed line depicts the same number of
transcripts detected for the two methods compared and shows that 7/10 (MC) and 8/10 genes
(Merscope, Xenium) had a higher number of transcripts per cell/nucleus while CTN2 was detected
better with all ;ST methods. (b) Analysis of marker gene co-expression from the pairwise correlation
(Pearson) coefficient.

Specificity of iST methods inferred from background probes

Next, we assessed specificity by relating the signal obtained from fluorescently labeled control
probes referred to here as background probes that lack a complementary sequence in the
sample to the target genes of the panel on different length scales as depicted in Fig. 5a. It is
noted that the background probes were those provided by the manufacturers and information
on their sequences is lacking. In addition, the three /ST methods employ different controls
(Supplementary Table S4). MC and Merscope depend on binding of numerous probes to
gain sufficient signal. Thus, false positive signals usually occur via the read-out probes rather
than the primary probes. For Xenium, due to the amplification of the signal from a single probe,
both off-target binding of primary and secondary probes needs to be considered. Accordingly,

also unspecific primary probes are included in the kit.
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Figure 5. Specificity analysis from a comparison of target and background probes. Data are
shown for MBEN 266. (a) Specificity analysis on different length scales. Coordinates for three different
transcripts are depicted in purple (NRXN3), green (LAMAZ2) and orange (MKI67) color. Left: whole tissue
analysis where target and background probes are ranked after summing up all signals detected for a
given probes. Middle: spatial autocorrelation of probe signal computed using Moran’s / at the cell level.
This value increases if a given cell’s signal (marked by outgoing distance vectors) is similar to the
average value of neighboring cells at distance r as indicated by the connecting vectors, which is
weighted with 1/r between two cells (vector thickness indicates higher weights). Right: minimal distance
to the next probe signal of the same type. This parameter can be used to identify clusters at subcellular
resolutions originating present in rare and isolated cell types. Exemplary pairs of transcripts are marked
with white arrows. (b) Distribution of target and background signal plotted against the signal count. See
Fig. S5 for additional datasets. (c) Analysis of the spatial distribution of target and background probes.
The spatial autocorrelation (Moran's /, scaled to a range from 0 to 1) was plotted against the median
nearest neighbor distance. Higher values of Moran’s / and lower values of the nearest neighbor distance
are indicative of a non-random distribution. Grey area indicates low confidence probes based on 0.05
percentile of the nearest neighbor distance in a given range of Moran’s /.
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By comparing the sum of all signals for a given probe across the whole tissue, we identified
2918 (MC), 43+2 (Merscope) and 18+2 (Xenium) probes for which the signal range was within
the range of signals obtained with the background probes (Fig. 5b, S4a). Of these, the genes
GFI1, LMX1A, IL4, FOXJ1, CD19, TMEM119, MOG, CD69 and GFI1B displayed a
consistently low expression value for all three iST technologies, which could point to true
negative signals. Based on the calls of target and background probes we computed global,
segmentation-free FDR values of 0.41+0.2 % (MC), 5.23+0.9 % (Merscope) and 0.47+0.1 %
(Xenium). According to these averaged global FDR estimates, specificity is very similar for

MC and Xenium with a higher FDR value determined for Merscope.

The averaged FDR value does not account for the presence of specific signals that are simply
lowly abundant. Accordingly, we evaluated the spatial distribution of the target probes by
computing their spatial autocorrelation using Moran’s / [25] as well as the minimal distance
between probe signals against the same target (Fig. 5a). This analysis was conducted with
the rational that a false positive signal due to technical issues would be randomly distributed
(I'=0) while a lowly abundant true positive signal (e.g., a lowly expressed marker for a niche
cell type) would show some enrichment (I > 0) and/or display clustering at the subcellular level
within isolated rare cell types that would yield a low minimal distance. Thus, by combining
spatial autocorrelation signal and nearest neighbor distances specific cut-offs can be used to
identify targets that reflect a lowly abundant specific signal that is not randomly distributed in
tissue space (Fig. 5c, S4b). The spatial autocorrelation is conducted at the resolution of
individual cells and their neighboring cells, whereas the distance of a transcript to its next
nearest neighbor covers also subcellular distances. This distance would be small for
transcripts present mostly only in isolated rare cell types that are scattered across the tissue
sections. We used a 0.95 percentile cut-off for a given Moran’s / range (four distinct ranges
for each technique based on Supplementary Dataset 2). The number of confident transcripts
increased for all techniques as compared to the expression level analysis. Around 7, 12 and
17 transcripts failed the threshold for Xenium, MC and Merscope respectively. This points to

a slightly noisier signal for the latter method, which is in line with its higher average FDR value.

Detection of cell types across platforms

To compare the six different methods with respect to cell type identification we followed
standard clustering workflows, assigned cell types based on the expression signatures
identified in our previous MBEN study [20] and visualized the data as UMAPs (Fig. 6a-c, Fig.
S5). The overall cell type annotation was very similar for the iST methods and the same major
cell types were found across all platforms. Inspection of the cluster heatmaps, however,

revealed some difference in the detection efficiency of single transcripts that affect the cell
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type assignment (Fig. S5d-f, Supplementary Dataset 3). For example, the TULPT,
KHDRBS2 and CD19 were only detected in MC, Merscope and Xenium respectively.
Accordingly, cell type annotations differ between the technologies mainly due to transcripts
that are detected on one platform but not on the other as for example for CD19 and B cells.
Subclustering of the “differentiated neuronal-like” annotation occurred for both Merscope and
Xenium, while the stromal compartment was subclustered in MC. Whether these subclusters

indeed represent distinct cell types/states is would require further investigations.
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Figure 6. Clustering and cell type annotation for iST methods. Clustering was based on the shared
set of 96 genes in samples MB266 and MB295 and MB266. The joint cell type annotation was based
on the expression signatures of the different clusters that is described in Supplementary Fig. S5. (a)
Clustering and UMAP visualization for Molecular Cartography. (b) Same as panel a but for Merscope.
(c) Same as panel a but for Xenium. (d) Images with cell coloring according to cluster. (e) Same as
panel d but for Merscope. (f) Same as panel d but for Xenium.
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The cell type annotation and corresponding coloring was also used for visualization of their

spatial distribution on the images and exemplary regions are shown in Fig. 6d-f.

Implementation of additional readouts after iST analysis

While the ST analysis provides a wealth of information on molecular cellular profiles in their
spatial tissue context, the corresponding studies typically require the integration with other
readouts. To accomplish this, a frequently used approach is to prepare consecutive tissue
sections used for ST and other readouts. However, in many instances, the cell-by-cell
assignment of the consecutive sections is cumbersome and works only in some areas.
Alternative approaches involve performing additional readouts on the same tissue by either
reimaging and subsequent image registration (MC and Xenium) or including additional custom

readouts directly in the ST run (Merscope). This is described here for three examples.

a Fluorescence imaging
DAPI (DNA) Eosin (protein)
l E%Fim
Projection
Color transformation
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MKIE7 transcript @ CD19 transcript CD163 transcript MKIB7 protein @ CD20 protein CD45 protein

NES (zoom in)
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Figure 7. Additional readouts after iST analysis. (a) Virtual H&E staining of MBEN tissue after MC
run. (b) Immunostaining on the Comet system from after the Xenium run. Transcript signal is given as
a single dot while the protein image reflects the original fluorescent signal. (c) Amplified readout of
nestin (NES) as an exemplary custom RNA via the auxiliary channel on the Merscope system.

The first one involves a virtual H&E staining of tissue after the MC run (Fig. 7a). Conventional

H&E staining after the iST run is compatible with both MC and Xenium, however it will prohibit

15


https://doi.org/10.1101/2024.04.03.586404
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.03.586404; this version posted April 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

subsequent acquisition of additional fluorescence signals since the broad fluorescence
emission of hematoxylin interferes with additional signal. This can be circumvented by
fluorescence imaging of DNA via DAPI staining (Aex = 405 nm, Aem = 421£23 nm) and eosin
(Aex = 488 nm, Aem = 521£19 nm) followed by a transformation of these signals into a virtual
H&E staining (Fig. 7a) [26, 27]. However, contributions like cell type specific shades of pink
seen with eosin in brightfield images or differences in cell autofluorescence cannot be fully

accounted for with the approach used here.

In Fig. 7b we show that the Xenium slide can also be used for subsequent multiplexed
immunostaining on the Comet platform (Lunaphore) (Supplementary Table S5). As a test
case we used the validation of the CD19 transcription signal, which was detected on the
Xenium but not on the MC and Merscope system. By using immune and B-cell specific
antibodies as well as Ki67 to stain cycling cells with the Comet system after a Xenium run, the
immunostaining confirms the presence of CD19+/CD20+ positive B cells both on the transcript

and protein level.

The third example is the detection of a custom gene with the Merscope using signal
amplification [28] (Fig. 7c). The primary probe carries overhangs to which a primary
amplification probe hybridizes that in turn provides a binding platform for a secondary amplifier
(Supplementary Table S6). The secondary amplifier can be detected with auxiliary probes in
the Merscope chemistry. Nestin (NES) as an exemplary custom RNA target was detected via
an auxiliary probe on the Merscope system and showed enrichment in the nodular structure
(dashed outline). Signal amplification enabled the detection of NES by using only two primary
probes as opposed to 30 in the original workflow. This workflow could be used to detect for

example short transcripts or gene fusions.

Discussion

Our comparative analysis of six different ST methods used MBEN cryosections as a case
study. Because of its characteristic microanatomy with two distinct tumor cell compartments,
this entity is particularly interesting for an ST analysis of the interplay of proliferation, migration
and differentiation of cancer cells [20]. In addition, an ST analysis revealed important
information for the spatial relation of tumor subclones and proliferating tumor cells in Group
3/4 medulloblastomas that have been reported in two recent studies [29, 30]. Our present work
provides valuable insights for the application of ST technologies specifically to tumor
cryosections, which can differ from non-malignant tissue, as for example by a high local cell
density seen here for MBEN. Other tissue and sample types like mouse brain sections or

FFPE samples have different requirements for optimizing the ST analysis. Furthermore,

16


https://doi.org/10.1101/2024.04.03.586404
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.03.586404; this version posted April 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

despite our efforts to standardize protocols and maximize comparability, technical variability
is introduced from differences in the complex experimental and data analysis workflow.
Factors like tissue handling, staining efficiency, and the calibration of the instrument imaging
settings impact on sensitivity and specificity. Accordingly, they might influence the results in
an experiment dependent manner that is not reflecting platform related differences. Finally,
ST technologies are rapidly evolving and undergo constant improvements of chemistry,
experimental data acquisition and updates of the instrument specific software. For example,
the MC 1.0 instrument will be replaced by a new system and new chemistry versions were
released continuously for multiple workflows. Thus, our study is not suited to select "the best"
technology. Rather, we see its value in identifying current key differences between the
methods together with critical steps in the workflow that warrant consideration for the
experimental design as well as in the assessment of the results. To guide selecting a method
for a specific application we have summarized selected features of the different platforms in
Table 1.

Table 1. Feature overview of commercial iST platforms

Control MC Merscope Xenium
Detected targets per cell ? 2112 2314 2541
Transcripts/cell 2 74111 62114 71£13
Correlation with RNAscope ° Medium High Medium
Average FDR (%) 0.41+0.2 5.23+0.9 0.47+0.1
Probes with low specificity ¢ 1213 1713 713
Re-imaging Yes © No Yes
Time to data (days) 4 2-3 2

@ Data are averages of median values and their standard errors and refer to the shared 96
gene panel.

® Based on 10 gene panel shared with RNAscope.

¢ Different background probes were used for the different technologies (Table S4).

4 Probes that displayed a signal intensity in the range of the background value, had low spatial
autocorrelation and a higher minimal distance to its nearest neighbor as described in the
context of Fig. 5.

¢ Slide is glued to chamber.

In our experience, MC is frequently used to study a limited number of samples with its standard
reagent kit for one run (8 tissue sections on one slide) and a panel of 100 custom genes. This
format is quite flexible, and makes it well suited for validation experiments. Vizgen allows for

larger customized panels of up to 960 genes, while many Xenium users aim to acquire large
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scale data sets with respect to the number of samples/tissue area analyzed. From a practical
point of view, we experienced easy and user-friendly protocols for both MC and Xenium with
simple washing and incubation steps. Merscope requires not only more time but also
optimization for clearance, quenching and stable gel formation. The latter can result in the loss
of the samples in case of gel detachment. The systems (microscope and liquid management)
usually worked robustly. However, issues occurred with sample transport and liquid handling
for MC due to the modular setup with a robotic arm and liquid pipetting robot. Alignment of the
objective for the Merscope required attention and re-adjustment while the Xenium displayed
malfunctions due to liquid leakage. Overall, in our hands, the least aborted runs were observed
for the Xenium system. However, as technology and associated costs are rapidly evolving
these scenarios are only snapshots of the current state. Accordingly, we focus here on

identifying guidelines for the experimental design and analysis based on our case study.

Including snRNA-seq data. The snRNA-seq data are a very good reference to select the probe
panel for the targeted iST methods. The sST methods such as Visium, Slide-seq/Curio Seeker
[31] and others could also provide this information. In our hands, the snRNA-seq approach is
more straightforward since it can use established single cell sequencing workflows with the
caveat that data will depend on the quality and amount of the isolated nuclei used as input.
New tools for panel design have been released to adjust for platform specifications [32].
Additionally, shRNA-seq data are also a very good reference to assess the quality and

coverage of the ST data.

Number of probes. With good a priori information (e.g., from snRNA-seq) even relatively small
probe panels like the 10 genes used for RNAscope already resolved the main cell types (Fig.
S5b). Thus, 100 well selected genes might be more informative than a several fold higher
number of probes from a more generic catalog panel. Again, the snRNA-seq data provide an
excellent reference to test the suitability of the iST probe panel. The latter can be used to
conduct a probe specific subsetting, clustering and UMAP visualization from the snRNA-seq

data and then evaluate the quality of the resulting cell type resolution [33].

Cell segmentation. In comparative ST studies mouse brain tissue is frequently used as a
reference. However, cancer tissue like the MBEN sections studied here typically have a much
higher cell density, which makes segmentation more challenging. We find that optimizing the
DAPI imaging, both with respect to staining and image acquisition, can largely improve results.
Furthermore, segmentation of nuclei with Cellpose yields robust results and, due to the high
cell density of the tissue, the loss of information from transcripts outside of nuclei, had no
apparent negative effect on the downstream analysis in our study. In addition to Cellpose,
other powerful cell and nuclei segmentation tools are available. These include Mesmer [10]
and Stardist [34] as well as iST specific tools like Baysor [9], SCS [35] and BIDCell [36]. We
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also recommend testing whether optimizations on the cell segmentation part actually translate
in improvements of the results of interest in the downstream analysis since this part of the
workflow can become very time consuming. Finally, several pipelines have been published
which enable the automated preprocessing of iST data like Molkart for MC [37] and the
technology agnostic SOPA [38].

Sensitivity. The unbiased sST analysis by Visium covers the complete transcriptome.
However, its detection sensitivity and spatial resolution were insufficient to resolve the MBEN
microanatomy, which largely limits its application in our case study. Other sequencing-based
methods like Seq-Scope [39], Stereo-seq [40], Slide-seq/Curio Seeker [31] and Visium HD
provide higher subcellular spatial resolution. However, it is noted that sufficient RNA molecules
need to be captured per area, which might require spatial binning at the expense of spatial
resolution. Furthermore, sensitivity of sequencing based spatial technologies depends on the
read depth, in contrast to the imaging-based workflows that always have the full coverage in
terms of transcript number. Improvements in image resolution, e.g., by structured illumination
microscopy (SIM) [41] or other super-resolution techniques might overcome crowding effects

that can limit sensitivity and/or specificity.

In general, the sensitivity of all three commercial /ST platforms used in our study was high and
very similar. For the non-amplified MERFISH method values of 50% [42] or 80% [43] have
been reported previously for the detection rate with cell line samples using a custom
microscope and expansion. Using snRNA-seq as a reference for our analysis of transcripts
per cell (Fig. 3b, S3b-d), we estimated that the averaged detection efficiency in our
experiments was between 33-37 %. It is noted that the sensitivity depends on the integrity of
the RNA, which is usually very good for fresh frozen material. In contrast, RNA degradation
can be very significant in FFPE samples, which is likely to translate in significant differences

between technologies as reported recently [17].

Specificity. The specificity is dependent on both probe and tissue features and thus difficult to
assess in a quantitative manner. The background probes included in runs with the different
systems typically show some overlap with low signal target probes. Thus, there is no apparent
cutoff in terms of true negatives and false positives with respect to the signal intensity.
Including the spatial distribution of probes as an additional parameter to distinguish between
random and more localized and bona fide specific binding is helpful but also requires a probe-
by-probe interpretation of the results. As shown here, the assessment of the distribution
patterns using spatial autocorrelation and next nearest neighbor distance analysis can provide
valuable insight in probe specificity irrespective of the global expression level which can give

misleading results.
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Reimaging and inclusion of additional readouts. Reimaging of the tissue to improve the image
quality for segmentation and/or to include additional readouts benefits from the non-
destructive sample processing and slide format of MC and Xenium. The method of choice for
yielding images with improved resolution and signal-to-noise ratio are SDCM systems with
highly sensitive sCMOS or EMCCD cameras. Imaging with point confocal microscope was
found to be too slow for larger tissue areas in our hands. Alternatively, it is also possible to
apply an additional analysis on automated commercial widefield platforms as shown here for
the immunostaining on the Comet system after the Xenium run Fig. 7b. The Merscope
samples are less suited for reimaging due to their slide format and clearing of the sample.
However, the platform integrates membrane staining in the standard workflow (a feature
expected also to become available for the other systems) and provides additional custom
readouts via its auxiliary channels. The latter can be used flexibly for custom readouts as for
example with signal amplification as illustrated in Fig. 7c or antibody staining. Currently, in
addition to ST methods, different spatially resolved (epi)genome, proteome and metabolome
readouts are becoming available that are in many instances non-destructive and compatible
with each other [4, 7, 44]. Accordingly, both for commercial instruments as well as for custom
academic workflows, spatial multi-omics approaches are emerging that will further increase
the depth of insight that can be gained from the analysis of the same tissue section as opposed

to combining the separate analysis of consecutive sections.

In summary, we find that for cryosections of tumor tissue, all three /ST methods performed
very well in terms of their sensitivity and specificity in our case study. In addition, the spatial
distribution of cell types annotated based on the shared set of 96 genes studied yielded very
similar pictures of the MBEN tissue microanatomy and cellular neighborhoods. Accordingly,
selecting one over the other technology platforms would depend on the other criteria
discussed above that arise from differences in the technology and their implementation as well

as associated requirements for the practical work.
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Material and Methods

Tissue samples

MBEN samples MB263, MB266, MB295 and MB299 used in this study have been described
previously [20] and their analysis with the different technologies is listed in Supplementary
Table S1. Cryosections of 10 uym thickness were acquired with a Cryostar NX50 (Epredia)
cryostat at a cutting temperature of -15 °C for all technologies. Subsequent storage and
processing was performed following the standard protocols provided for each workflow as

described below.

snRNA-seq
The snRNA-seq data were from ref. [20] (accession number GSE239854) and acquired on
the Chromium drop-seq platform using 3’-Single Cell RNA-sequencing v2 kit (10x Genomics).

Visium

Tissues slices of 10 um were placed on the Visium slides and fixed with methanol at -20°C.
After H&E staining the samples were imaged using an Olympus VS200 scanner and the tissue
was lysed for 4 min according to the tissue optimization results that were obtained previously.
Visium libraries were generated following the manufacturer’'s recommendations. Libraries
were quantified using Tapestation and Qubit and sequenced on a NovaSeq 6000 machine

pooling four libraries per lane.

RNAscope HiPlex

The RNAscope HiPlex data involved 10 targets (Supplementary Dataset 1) and were
acquired as described in ref. [20] using the RNAscope HiPlex assay (ACD/Biotechne)
according to the RNAscope HiPlex Assay User Manual (324100-UM) from the manufacturer
with minor adaptions. For MB266 and MB299, four transcripts (labeled with Alexa488, Atto550,
Atto647 and Alexa750 fluorescent dyes) were imaged in three imaging rounds while for
MB295, three transcripts (Alexa488, Atto550, Atto647 and DAPI) were imaged in four imaging
rounds using the RNAscope HiPlex Alternate Display Module (R1-R4). Flatfield-correction was
conducted based on DAPI images and used for nuclei segmentation with Cellpose as
described below. Spot-calling of transcripts was conducted with RS-FISH. Called transcripts

from all rounds and colors were reformatted and concatenated in an output file in MC format.

Molecular Cartography
The MC data were from ref. [20] and were acquired with the probe set given in the
Supplementary Dataset 1. They were reanalyzed by using the restained with DAPI and

reimaged on the Andor Dragonfly SDCM system. Image processing followed the workflow
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depicted in Fig. 2a. It comprised stitching, correction and registration as described in further
detail in the image analysis section below. The resulting images were then processed with the
resolve-processing pipeline (https://github.com/scOpenLab/resolve_processing). The images
were first processed with the contrast limited adaptive histogram equalization (CLAHE) [45]
with a kernel size of 127 a clip limit of 0.01 and 256 bins. The resulting images were then
segmented using CellPose2 with the "cyto" model, a probability threshold of one and a cell
diameter of 70. After cell segmentation the transcripts were deduplicated with the MindaGap
software (https://github.com/Viriatoll/MindaGap) using a tile size of 2144 a window size of 30
considering shifts calculated from transcripts with less than 400 copies in the window and
occurring at least 10 times. The transcripts were then assigned to cells according to their

overlap with the segmentation mask and analyzed as described below.

Merscope

Tissues were sectioned in 10 um slices and placed on one Merscope slide. Subsequently, the
tissue was fixed with 4% PFA at 37°C for 15 min. After washing the with PBS, the sections
were permeabilized with 70% ethanol at 4°C and until the hybridization was started. The panel
(Supplementary Dataset 1) was hybridized for 48 hours, and all steps were performed

according to the manufactures protocol including the membrane staining.

Xenium

Tissues were sectioned in 10 um slices and four samples were placed on one Xenium slide.
Subsequently, the tissue was fixed with PFA according to the manufacture’s protocol. Tissues
were permeabilized with SDS, incubated in 70% ice cold methanol and washed with PBS.
Hybridization of the human generic brain panel with 70 add-on genes (Supplementary
Dataset 1) was performed at 50°C in a Bio-Rad C1000 touch cycler for 20 hours. Washing,
ligation and amplification steps were carried out according to the manufacturer’s instructions.
ROIs were selected according to the tissue area excluding non-tissue covered tiles. Each
transcript was imaged in a bright state five times across 60 cycle-channels (15 cycles x 4
channels). After the run on the Xenium analyzer slides were removed and buffer exchanged
with PBS-T for further storage at 4 °C.

H&E staining

H&E staining of Visium slides was conducted by first removing the coverslip by incubation in
1x PBS Buffer followed by washing with H,O. Next, slides were incubated in hematoxylin
solution for 7 min and then washed with H,O. Then, 300 pl bluing solution was added to the
tissue, incubated for 2 min at room temperature and then washed in H,0O. Staining with an
eosin solution (Sigma, 1:10 diluted in 0.45 M Tris acetic acid, pH=6) was performed for 1 min

at room temperature followed by washing with H,O. Then, slides were dehydrated by a series
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of washes at 70% (30 sec), 95% (30 sec) and two times 100% (1 min) ethanol and stored at
room temperature. Virtual H&E staining followed the approach described previously [26].
Sections were stained with eosin solution for 1 min at room temperature, washed in H,O and
incubated for 15 min in 4x SSC (saline-sodium citrate) buffer. Sections were then stained with
DAPI for 30 sec and mounted in Prolong Gold Antifade (Thermo Fisher Scientific). The H&E
coloring of the DAPI and eosin staining was performed in R using the EBImage [46] together

with custom scripts.

Spinning disk confocal fluorescence microscopy

Imaging of RNAscope samples and reimaging of MC and Xenium slides by SDCM was
conducted on an Andor Dragonfly 505 spinning disk confocal system equipped with a Nikon
Ti2-E inverted microscope and a CFI P-Fluor 40X/1.30 oil objective or a Plan Apo 60x/1.40 oil
objective. Multicolor images were acquired with the laser lines 405 nm (DAPI), 488 nm (Alexa
488, eosin), 561 nm (Atto 550), 637 nm (Atto 647) and 730nm (Alexa 750). Images were
recorded at 16-bit depth and with 1024x1024 pixels dimensions (pixel size: 0.301 ym or 0.217
pum) using an iXon Ultra 888 EM-CCD camera. The region of interest was selected based on
the DAPI signal and 50 z-slices were acquired with a step size of 0.4 ym (20 yum z-range) per
field of view (FOV). Tiles were imaged with a 10% overlap to ensure accurate stitching.
Subsequently, a flatfield-correction was conducted based on the DAPI channel and stitching

and registration of the tiles was conducted with Fiji.

Merscope amplification

Gene specific probes and amplification oligonucleotides were tested with the protein
verification kit provided by Vizgen for the Merscope. A list of primary, secondary and
amplification probes can be found in Supplementary Table S6. The tissue was fixed and
permeabilized as described above, washed with 30% formamide in 2x SSC (wash buffer) and
incubated with the primary probes at 1 uM concentration in hybridization buffer (0.05 % yeast
rRNA, 1U/ul RNase inhibitor, 30% formamide, 2x SSC, 10% dextran). After 36 h of incubation
at 37 °C in a humid environment the tissue was washed three times with wash buffer at 47 °C.
The tissue was embedded according to the manufacturer’s instructions and incubated in
clearing solution for 24h. Then, the tissue was washed with amplification buffer (10%
formamide, 2x SSC) and the primary amplifier was hybridized at 5 nM in hybridization buffer
(0.05 % yeast rRNA, 1U/ul RNase inhibitor, 10% formamide, 2x SSC, 10% dextran) for 30 min
at 37°C. After three washes with amplification buffer the secondary amp probe was hybridized
at 5 nM concentration in amp hybridization buffer (0.05 % yeast rRNA, 1U/ul RNase inhibitor,
10% formamide, 2x SSC, 10% dextran) for 30 min at 37 °C. After three washes the verification

reagent was added for 15 min followed by a formamide and sample prep wash. The readout
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of the amplification probe was done with the protein verification kit (mouse, rabbit, goat) using

only the mouse and rabbit channels.

Sequential IF using the COMET platform

After completion of the Xenium run, the slides were washed twice with PBS and then placed
in the comet system. The immuno-oncology SPYRE panel (Supplementary Table S5) was
used to stain and image the tissue section of the sample MB299 using the standard SPYRE

protocol on a Comet 1.0 instrument.

Preprocessing of iST data for downstream analysis

For Xenium datasets (post XeniumRanger) we cropped selected areas since some tissue
parts were folded/wrapped and disrupted. This is done to eliminate potential issues in further
(downstream) analysis steps. A custom script is available at
https://github.com/alikhuseynov/add-on_R/blob/develop/R/crop_seurat v1.R and related

discussion can be seen here https://github.com/satijalab/seurat/issues/8457.

Cell segmentation

For cell segmentation the approach included in the Merscope (Cellpose 2 nuclei segmentation
or cell segmentation with an additional cell boundary stain) and Xenium systems (nucleus
segmentation with a custom neural network followed by a 15 ym Voronoi based cell boundary
expansion) was used. For MC, cell segmentation was performed with Cellpose 2 as described
above [8]. For an independent segmentation of the DAPI images of nuclei and cell membrane
staining, if present, Cellpose 2 was used. Corresponding scripts to overlay images with the

segmentation results were generated with the R script BrushUpSegmentationResults.R.

Image processing and integration with ST data

Widefield images from the MC and Xenium platform were integrated with reimaged SDCM
data with the following workflow in Imaged. First, SDCM image stacks were subjected to a
maximum intensity projection, followed by flat field and chromatic aberration correction using
a custom script. Next, image tiles were stitched using the “Grid/Collection Stitching” plugin.
DAPI images from SDCM were registered to MC or Xenium widefield images using “Register
Virtual Stack Slices” with Affine feature extraction model and the Elastic bUnwarpJ splines
registration model. In case of further staining, images were transformed via Transform Virtual

Stack slices employing the transformation file of the DAPI registration.

Combining data sets
Most of the analysis and visualization (including tidyverse, data.table, ggridges R packages)

was done in R 4.2.2. Raw data were processed using technology-specific corporate pipelines
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(custom pipeline was used for MC). For each technology Seurat objects of the sample data
and analysis results were created using the Seurat (v. 4.3.0) R package. For loading
Vizgen/Merscope data and making a Seurat object, we optimized a loading function (see this
PR https://github.com/satijalab/seurat/pull/7190), which was separately tested by Vizgen as

well.

MC Seurat objects were created from the ROI file, segmentation mask, deduplicated
transcripts and cell expression matrix generated with the resolve_processing pipeline
(https://github.com/scOpenLab/resolve_processing, described above) with custom R scripts
(https://github.com/scOpenLab/resolve-analysis). We merged technology-specific objects
subset for same matching genes (96 in total) in a single object. When comparing to RNAscope
only 10 matching genes were used. Cells with 0 counts were removed. To address issues with
subset function on Seurat objects with spatial FOVs (see
https://github.com/satijalab/seurat/issues/6409, https://github.com/satijalab/seurat/issues/
7462) we wrote an optimized version https://github.com/scOpenLab/spatial_qc/blob/main/

scripts/subset_obj_seurat_v2.R, which was used in this study.

Analysis of transcript counts per spatial bin or cell/nucleus

The distribution of transcript and feature/gene counts was analyzed for the shared set of 96
genes (Supplementary Dataset 1). It was either based on the number of transcripts in spatial
bins with the size of a Visium spot of 55 ym diameter and 2,375 ym? area, corresponding to a
square side length of 55um/2-+/m = 48.74 um, or on transcripts per nuclei/cell after
segmentation. The spatial binning allows for an unbiased comparison at the selected bin size
that is not confounded by effects of the cell/nucleus segmentation. At gene-level, we computed
mean transcript counts across all cells and compared those value between the different
technologies. Pairwise gene expression correlation analysis (Pearson correlation) within a cell
was done for selected markers. The similarity to the RNAscope pattern was then computed
as the coefficient of determination (R squared) of the correlation coefficients (Supplementary
Table S3).

Specificity analysis using background probes

To evaluate specificity of iST methods we used the probes included with the reagents for MC
(25 false positive probes), Merscope (40 blank probes) and Xenium (128 unassigned
codeword probes) (Supplementary Dataset 1) to which we here refer as background probes.
Signals of 96 shared target genes and background were related based on their coordinates in
a segmentation free manner. The number of target probes overlapping with background signal
was determined by counting the spots of a given probe per tissue and ranking this sum of the

probe signal. Averaged FDR values were calculated from the same data as
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background barcode calls number of target genes

FDR(%) = 100.

number of background barcodes total target gene calls

To evaluate the spatial distribution of target and background probes at the cell level, the spatial
autocorrelation for each probe was computed as Moran’s / with the moranfast R package (C++
implementation). This function is similar to Moran.I from the ape R package but faster for large
datasets. The input for computing Moran’s / with moranfast were the transcript counts per cell
and the xy coordinates of cells centroids. The spatial neighborhood was defined using a
distance-based (Euclidean) approach that computes distances r between pairs of cell
centroids, this results in a distance matrix. The weighted inverse distance matrix was
computed as 1 / distance matrix, the larger the resultant weight, the closer are the cell
centroids. This approach was chosen over spatial contiguity-based approaches (queen, rook,
hexagon, bishop spatial neighbors) since it does not require cell borders or polygons to touch
each other. Bounds of Moran’s / go from -1 to +1 (similar to Pearson correlation coefficients).
A value round O indicates spatially random pattern, < 0 towards -1 negative spatial
autocorrelation (chessboard-like pattern), > 0 to towards 1 indicates positive spatial
autocorrelation (clustered, also gradient-like patterns). This approach yields the spatial
autocorrelation between transcripts at cellular resolution. Since our data set displayed no
significant anticorrelation but only fluctuation around 0 (= -0.002) as their lower limit, we used

min-max scaled Moran’s / from 0 to 1 in the plots shown.

As an alternative, molecule-level approach to assess spatial relations between the signal of a
given probe, the distance to its nearest neighbor was calculated using the FNN R package
with kd-tree search algorithm. The median of the resulting distribution was then used as the

minimal distance value for further analysis (Supplementary Dataset 2).

Integration, clustering and cell type annotation

We used Seurat SCTransform [47] and RunPCA to normalize data. Batch correction was
performed using Harmony v1.0 [48] R package on samples (only two samples MB266 and
295) for each technology separately (MC, Xenium, Merscope), when integrating snRNAseq
with those 3 spatial technologies, batch correction was also done on samples of the merged
object (snRNAseq, MC, Xenium, Merscope). Clustering was performed for each technology
on an integrated object using the Leiden algorithm [49] and visualized as UMAPs (all of these
using Seurat). Cell type annotations were manually assigned according to the gene expression

signatures reported previously [20].
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