
 1 

RELAX-Jr: An Automated Pre-Processing Pipeline for Developmental EEG 

Recordings 
 

Aron T. Hill1, Peter G. Enticott1, Paul B. Fitzgerald2,3, Neil W. Bailey2,3 

 

 

1. Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia 

2. Monarch Research Institute, Monarch Mental Health Group, Sydney, Australia 

3. School of Medicine and Psychology, The Australian National University, Canberra, ACT 

 

 

 

 

 

Correspondence: 
Aron T. Hill, PhD 
Cognitive Neuroscience Unit 
School of Psychology 
Deakin University 
Email: a.hill@deakin.edu.au 
 

 
Declarations: This research was supported by a Future Fellowship from the Australian Research Council 

awarded to PGE (FT160100077). PBF is supported by a National Health and Medical Research Council of 

Australia Investigator grant (1193596). In the last 3 years PBF has received equipment for research from 

Neurosoft and Nexstim. He has served on a scientific advisory board for Magstim and received speaker fees 

from Otsuka. He has also acted as a founder and board member for TMS Clinics Australia and Resonance 

Therapeutics.  

 
Key words: EEG, development, child, preprocessing, pipeline, automated, artifact, cleaning 

 
 
  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.587846doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.02.587846
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 
Automated EEG pre-processing pipelines provide several key advantages over traditional manual data 

cleaning approaches; primarily, they are less time-intensive and remove potential experimenter error/bias. 

Automated pipelines also require fewer technical expertise as they remove the need for manual artifact 

identification. We recently developed the fully automated Reduction of Electroencephalographic Artifacts 

(RELAX) pipeline and demonstrated its performance in cleaning EEG data recorded from adult populations. 

Here, we introduce the RELAX-Jr pipeline, which was adapted from RELAX to be designed specifically for pre-

processing of data collected from children. RELAX-Jr implements multi-channel Wiener filtering (MWF) 

and/or wavelet-enhanced independent component analysis (wICA) combined with the adjusted-ADJUST 

automated independent component classification algorithm to identify and reduce all artifacts using 

algorithms adapted to optimally identify artifacts in EEG recordings taken from children. Using a dataset of 

resting-state EEG recordings (N = 136) from children spanning early-to-middle childhood (4-12 years), we 

assessed the cleaning performance of RELAX-Jr using a range of metrics including signal-to-error ratio, 

artifact-to-residue ratio, ability to reduce blink and muscle contamination, and differences in estimates of 

alpha power between eyes-open and eyes-closed recordings. We also compared the performance of RELAX-

Jr against four publicly available automated cleaning pipelines. We demonstrate that RELAX-Jr provides 

strong cleaning performance across a range of metrics, supporting its use as an effective and fully 

automated cleaning pipeline for neurodevelopmental EEG data.  

 

 

 

The RELAX-Jr pipeline is publicly available under the terms of the GNU General Public Licence and can be 

download from: https://github.com/aronthill/RELAX-Jr. Step-by-step instructions for downloading, 

installing, and implementing the pipeline can be found on the accompanying GitHub Wiki: 

https://github.com/aronthill/RELAX-Jr/wiki.   
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Introduction 
Almost a century on from Hans Berger’s seminal non-invasive recordings of electrical brain activity in 

humans (Berger, 1929), electroencephalography (EEG) remains a highly popular method for investigating 

functional brain dynamics in both health and disease. Key advantages of EEG are its temporal precision 

(millisecond range) and cost-effectiveness. These advantages have facilitated its integration into broad-

ranging experimental paradigms and clinical practice, where it is frequently used to interrogate both 

spontaneous and task-related neural activity. The wide availability and affordability of EEG also makes it 

highly conducive to large-scale cross-sectional and longitudinal investigations into typical 

neurodevelopment, as well as for studying aberrant neural activity patterns across a range of 

neurodevelopmental disorders (Buzzell et al., 2023; Cellier et al., 2021; Gabard-Durnam et al., 2019; 

Marshall et al., 2002).  

 

EEG data, however, are frequently contaminated by a number of artifacts, both biological and 

environmental, which, if not adequately removed or suppressed, can obscure the underlying neural signals 

of interest. Furthermore, many of the biological artifacts, such as electromyographic (EMG) activity, 

movement related interference, and eye blinks/ocular artifacts, are often more common and pronounced in 

developmental populations (Brooker et al., 2020; Herve et al., 2022). Additional common artifacts (that are 

not specific to children) include electrical line noise at either 50 or 60 Hz, electrocardiographic (ECG) related 

signals, and noise related to poor electrode impedance (Daube, 2009; Sazgar & Young, 2019; Tandle & Jog, 

2016). Pre-processing strategies for reducing these artifacts can vary widely, both between investigators, 

and across laboratories, with a growing array of EEG artifact removal algorithms available to investigators 

(Jiang et al., 2019; Roy et al., 2021). Manual detection (via visual inspection) and removal of artifacts is 

frequently performed; however, this process is time-consuming, subjective, often imprecise, and not easily 

scalable to large datasets (Delorme, 2023; Mumtaz et al., 2021). Manual artifact reduction also requires 

considerable operator expertise in order to accurately interpret the EEG signal, making it vulnerable to 

potential bias and inconsistency resulting from human influence (Fitzgibbon et al., 2007; Jas et al., 2017).  

 

Advances in signal processing methods have seen automated and semi-automated cleaning approaches 

become increasingly utilised in EEG pre-processing. These automated approaches have the benefit of 

reducing experimenter error and/or bias, improving efficiency, and creating transparent and replicable 

workflows, thus advancing reproducible and open science (De Blasio & Barry, 2023). To this end, we 

previously released the open-source Reduction of Electroencephalographic Artifacts (RELAX) software, which 

enabled fully automated pre-processing of EEG data. RELAX showed favourable results for cleaning resting-

state and task-related datasets from adult populations when compared to several other commonly used 

automated pipelines (Bailey et al., 2023a; Bailey et al., 2023b). Development of RELAX was motivated by the 
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shortage of fully automated pipelines available to the EEG community, as well as our experience that some 

data are not effectively cleaned (or are over-cleaned) using existing independent component analysis (ICA)-

based approaches (Bailey et al., 2023a; Dimigen, 2020). In addition to RELAX, several other semi- and fully-

automated pipelines for pre-processing EEG data have been developed in recent years (Chang et al., 2020; 

Gabard-Durnam et al., 2018). While these have been mostly targeted for use in adult populations, some 

recent pipelines have been developed for use with data collected in children (e.g., Debnath et al., 2020; Flo 

et al., 2022). However, many automated EEG pre-processing pipelines (including RELAX) have been tested 

only in adult data. EEG is often also used to assess neural activity across developmental populations (both 

typically developing and clinical), which can pose additional challenges for data cleaning. For instance, 

movement and muscle-related artifacts are often more apparent in children (Herve et al., 2022), while their 

limited attentional capabilities often necessitate shorter recording times and less cognitively demanding 

tasks (Bell & Cuevas, 2012; DiStefano et al., 2019; Herve et al., 2022).   

 

Here, we present the RELAX-Jr (Reduction of Electroencephalographic Artefacts for Juvenile Recordings) EEG 

pre-processing software pipeline, which we have specifically developed for cleaning of EEG data recorded 

from children. This pipeline is based on the original RELAX software (Bailey et al., 2023a; Bailey et al., 2023b), 

which implements multi-channel Wiener filters (MWF) (Borowicz, 2018; Somers et al., 2018) and/or wavelet-

enhanced independent component analysis (wICA) (Castellanos & Makarov, 2006) to reduce or remove 

artifactual signals. However, RELAX-Jr also includes important modifications, such as the inclusion of the 

‘adjusted-ADJUST’ independent component analysis (ICA) artifact component selection algorithm designed 

for Geodesic electrode nets, which are frequently used in EEG recordings in children (Leach et al., 2020), and 

the use of the Preconditioned ICA for Real Data (PICARD) algorithm for maximum likelihood independent 

component analysis (ICA) (Ablin et al., 2018a, 2018b). Adjusted-ADJUST is more sensitive to the increased 

noise often present in data collected from children, and also considers a larger range of frequencies to 

identify alpha peaks in the neural signal, as alpha peak frequencies are often lower in children (Leach et al., 

2020; Marshall et al., 2002). PICARD has been shown to perform similarly to the popular Infomax ICA 

algorithm (Bell & Sejnowski, 1995), but with much faster speed of convergence (Frank et al., 2022). Like 

RELAX, RELAX-Jr is fully automated, meaning that no user input is required after initial cleaning settings are 

determined, thus promoting streamlined and consistent/unbiased batch processing of data files. By default, 

RELAX-Jr receives as inputs raw datafiles in EEGLAB format (Delorme & Makeig, 2004), and outputs cleaned 

continuous data referenced to the robust average reference ready for further segmentation (optional) and 

analysis (Bigdely-Shamlo et al., 2015).  
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In this paper, we apply and rigorously test four separate versions of the RELAX-Jr pipeline, testing four 

specific parameter variations. These tests were implemented using a large heterogeneous test dataset of 

resting-state EEG (both eyes-open and eyes-closed recordings) taken from typically developing children (4-

12 years of age). We compare the results obtained from RELAX-Jr against four popular automated pre-

processing pipelines: the Harvard Automated Processing Pipeline for Electroencephalography (HAPPE) 

(Gabard-Durnam et al., 2018), the Maryland analysis of developmental EEG (MADE) (Debnath et al., 2020), 

the Automated Pipeline for Infants Continuous EEG (APICE) (Flo et al., 2022), and the Artifact Subspace 

Removal followed by ICA (ASR) approach (Chang et al., 2020). We show that RELAX-Jr exhibits robust efficacy 

across a range of cleaning metrics, establishing it as an effective and unbiased automated method for 

processing EEG data collected from children. 

 

Methods 
Dataset 
Each pre-processing pipeline was applied to a dataset of resting-state EEG recordings collected from a cohort 

of typically developing children spanning early-to-middle childhood (N = 136, age range: 4–12 years; 71 

male; average age = 9.42 years, SD = 1.95). All participants were English speaking, and none had received a 

formal diagnosis of any neurological, psychiatric, or genetic disorder. Ethical approval was provided by the 

Deakin University Human Research Ethics Committee (2017–065), while approval to approach public schools 

was granted by the Victorian Department of Education and Training (2017_003429). The EEG data were 

recorded in a dimly lit room using a 64-channel HydroCel Geodesic Sensor Net (Electrical Geodesics, Inc, 

USA) containing Ag/AgCl electrodes surrounded by electrolyte-wetted sponges. Data were acquired either at 

Deakin University (Melbourne, Australia), or in a quiet room at the participant’s school using NetStation 

software (version 5.0) via a Net Amps 400 amplifier using a sampling rate of 1 KHz. Electrode Cz was used as 

the online reference. Electrode impedances were checked to ensure they were < 50 KOhms prior to 

recording. The data were recorded for two minutes while participants sat with their eyes open and focussed 

their gaze at a fixation cross on a computer screen, and two minutes while participants had their eyes 

closed. Three of the 136 participants did not have complete eyes-open recordings and were not included for 

this dataset.  
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Figure 1: Overview of the data analysis pipeline. Eyes-open and eyes-closed resting-state EEG recordings 

were processed using four separate versions the RELAX-Jr pipeline (MWF wICA, MWF Only, wICA ADJUST, 

ICA Subtract), or using one of four comparison pipelines (MADE, APICE, HAPPE, ASR). Quality metrics were 

then used to assess data cleaning performance.   

 

RELAX-Jr Pipelines 

To optimise the RELAX-Jr pipeline, we tested adaptations of four specific versions of RELAX that were found 

to be most effective for artifact removal in our adult datasets: MWF wICA, MWF Only, wICA ADJUST, and ICA 

Subtract (Bailey et al., 2023a). We note that within the original version of RELAX (designed for adult 

recordings) the wICA and ICA Subtract methods used ICLabel to identify artifact components, while RELAX-Jr 

replaces ICLabel with adjusted-ADJUST (which is designed for use in paediatric EEG data). Key details of each 

of these methods are summarised in Table 1. For brevity, we have not included a detailed description of 

each method. For specific details, the reader is encouraged to refer to our previous publications (Bailey et 

al., 2023a; Bailey et al., 2023b).  

 

Comparison Pipelines 

The comparison pipelines we tested were: i) the Maryland analysis of developmental EEG (MADE) pipeline 

(Debnath et al., 2020), ii) the Automated Pipeline for Infants Continuous EEG (APICE) (Flo et al., 2022), iii) the 

Harvard Automated Processing Pipeline for Electroencephalography (HAPPE) (Gabard-Durnam et al., 2018), 

and the Artifact Subspace Reconstruction approach followed by ICA subtraction of artifacts identified by 

Adjusted-ADJUST (referred to as ASR) (Chang et al., 2020).  

 

Segmentation of the Cleaned Data 

After cleaning with each of the pipelines, EEG channels that were rejected during the cleaning steps were 

interpolated using spherical interpolation and data were segmented into 2-second non-overlapping epochs. 

Epochs rejection thresholds were applied as per the default RELAX settings (i.e., single/all channel 

improbable data thresholds [SD]: 5 and 3, respectively; single/all channel improbable data thresholds [SD]; 5 
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and 3, respectively; log-frequency log-power slope threshold for detecting muscle activity: -0.31), except for 

absolute voltage amplitude thresholds, which were set slightly more conservatively (+/- 100 uV) to avoid 

removing any epochs containing high-amplitude alpha activity.  

 

Cleaning Quality Evaluation Metrics 
 Multi-artifact Cleaning Performance Indicators: SER and ARR 

Cleaning quality metrics used previously by our group (Bailey et al., 2023a; Bailey et al., 2023b) and others 

(Bertrand, 2015; Somers & Bertrand, 2016; Somers et al., 2018) were employed to examine pre-processing 

performance by each of the pipelines. Two complimentary metrics; the Signal-to-Error Ratio (SER) and 

Artifact-to-Residue Ratio (ARR) were used to estimate cleaning efficacy and preservation of the signal, 

respectively. SER measures the signal remaining unchanged after cleaning EEG data within periods of the 

continuous EEG data that were initially identified as free from all artifacts prior to cleaning. Artifact types 

included in the artifact templates included muscle activity, blinks, horizontal eye movements, and voltage 

drift. To understand how clean and contaminated periods were determined, refer to Bailey et al. (2023a). 

The SER measure is derived by dividing the expected value of the squared signal amplitude in clean periods 

for each electrode in the original (unprocessed) data by the squared signal of the removed artifacts during 

clean periods in the MWF templates (Somers et al., 2018). An average is then taken across all electrodes, 

with weighting applied according to the amplitude of the artifact signal in each electrode proportional to the 

amplitude across all electrodes. This results in electrodes containing greater artifact contributing more to 

the SER score. Larger SER values indicate better cleaning performance. ARR was calculated by obtaining the 

expected value operator of the square of the signal removed by the artifact reduction processes, divided by 

the expected value operator of the square of the raw data from the periods defined as containing artifacts 

prior to cleaning, minus the removed artifact signal from these artifact contaminated periods (Somers et al., 

2018). As with the SER, larger ARR values are indicative of better cleaning performance. Further, given the 

complementary nature of these metrics, to perform well, pre-processing pipelines should be expected to 

achieve both high SER and ARR values (it is trivially easy but also unhelpful to clean artifacts very effectively 

if we are not concerned about also preserving the non-artifact signal).  

 

Eye Blinks 

Blink-Amplitude-Ratio (BAR) measures were also used to examine the ratio of blink amplitude to data 

periods containing no blinks (Robbins et al., 2020). BAR was assessed both across frontal channels (fBAR; 

average across channels: Fp1, Fp2, F9, F10, AF3, AF4; i.e., where blink amplitudes are typically maximal), as 

well as across all electrodes (allBAR). For these BAR measures, values close to 1 indicate optimal 

performance, with values below 1 indicating overcleaning and values larger than 1 indicating under cleaning 

(Robbins et al., 2020). Blink metrics were not assessed for the eyes-closed recordings, and 35 files were 
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omitted from the blink metric analyses because there were not enough blink-specific segments of the EEG 

data left after removing epochs with multiple blinks. 

 

 Electromyographic Contamination 

In order to provide an indication of how many epochs contained residual electromyographic (EMG) 

contamination after cleaning, we determined the number of EEG epochs with any electrode showing a log-

power log-frequency slopes greater than -0.59, which previous research has indicated to reflect muscle 

activity (Fitzgibbon et al., 2016). Higher values represent poorer cleaning for this metric.  

 

Proportion of Epochs Rejected 

An important consideration for data cleaning is the number of data segments (epochs) that remain after pre-

processing. It is typically beneficial to retain as much good quality data as possible. This can be particularly 

important in cases where, for example, recording durations are relatively short, as can be the case with EEG 

collected in neurodevelopmental cohorts who may only be able to remain still for brief periods. Lower 

values for the proportion of epochs rejected metric (indicating a smaller proportion of epochs rejected) 

reflects better performance.  

 

 Alpha Power and Alpha Peak Detection 

As a final assessment, we investigated i) differences in alpha power values between the eyes-open and eyes-

closed recordings, and ii) the likelihood of detecting an alpha peak in the data following cleaning. To achieve 

this, we first parameterised the data into periodic (oscillatory) and aperiodic components using the fitting 

oscillations and one over f (FOOOF) algorithm (Donoghue et al., 2020). We then calculated the peak alpha 

spectral power for each participant (i.e., the detected peak with the highest power within the 7-13 Hz range) 

(Donoghue et al., 2020). This metric provides a test of the potential for the cleaning algorithms to reveal 

experimental effects, using a well-established between condition comparison where a reduction in alpha 

power with eye-opening is observed, i.e., the ‘Berger Effect’ (Kirschfeld, 2005). We also further examined 

the percentage of total electrodes that had a detectable alpha peak following spectral parameterisation for 

each of the pipelines. As alpha is the dominant cortical rhythm at rest, and alpha oscillations are ubiquitous 

in resting-state neural recordings across much of the cortex (although most pronounced in posterior regions) 

(Edgar et al., 2023; Lew et al., 2021), we used this approach to assess the ability to detect alpha oscillations 

within the periodic EEG signal following processing with each of the pipelines.   

 

Statistical Analysis 
Statistical analyses were performed in R (version 4.0.3) (R Core Team, 2020) and JASP (JASP Team, 2023). 

Robust repeated measures ANOVAs based on trimmed means were used to compare each of the pre-
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processing pipelines on the various cleaning quality evaluation metrics using the WRS2 package (Mair & 

Wilcox, 2020). This approach is robust to violations of normality and homoscedasticity, while maintaining 

equivalent power to traditional parametric tests (Mair & Wilcox, 2020). Significant omnibus ANOVAs were 

followed-up with pairwise comparisons using robust post-hoc t-tests, which apply Hochberg’s method to 

control for family-wise error (Hochberg, 1988; Mair & Wilcox, 2020). We did not perform additional 

experiment-wise multiple comparison controls (i.e., for each quality evaluation metric), to emphasize 

sensitivity for the detection of differences in cleaning outcomes, in alignment with our aim to assess the 

potential superiority of specific cleaning pipelines (Bailey et al., 2023a; Bailey et al., 2023b; Bender & Lange, 

2001). We have also provided rank orders of the means for each pre-processing pipeline for each of the 

cleaning metrics to enable the reader to compare average cleaning performance for each metric across the 

pipelines (ranked from best performance to worst performance; Table 2). Finally, we have provided 

scatterplots of the SER x ARR values for each pre-processing pipeline to enable evaluation of these two 

complimentary metrics together (Figure 3). Heatmaps of the post-hoc tests for each metric are also provided 

in the Supplemental Materials (Figures S12-17). Bayesian analyses were also conducted to examine the 

strength of evidence supporting a power difference between eyes-open and eyes-closed recordings 

following cleaning by each pipeline.  
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Table 1 

Summary of the steps for each of the four implemented RELAX-Jr pipelines.  

  MWF wICA ICA Subtract wICA ADJUST MWF Only 
Filter 0.25-80 Hz Bandpass, 

47-53 Hz notch filter 
0.25-80 Hz Bandpass, 
47-53 Hz notch filter 

0.25-80 Hz Bandpass, 
47-53 Hz notch filter 

0.25-80 Hz Bandpass, 
47-53 Hz notch filter 

Bad Channel 
Rejection 

PREP’s 
’findNoisyChannels’, 
then for each 1s epoch, 
reject if >5% of data 
show extreme values 
(defined in Fig. 1) or log-
power log-frequency 
slopes >-0.59 

PREP’s 
’findNoisyChannels’, 
then for each 1s epoch, 
reject if >5% of data 
show extreme values 
(defined in Fig. 1) or log-
power log-frequency 
slopes >-0.59 

PREP’s 
’findNoisyChannels’, 
then for each 1s epoch, 
reject if >5% of data 
show extreme values 
(defined in Fig. 1) or log-
power log-frequency 
slopes >-0.59 

PREP’s 
’findNoisyChannels’, 
then for each 1s epoch, 
reject if >5% of data 
show extreme values 
(defined in Fig. 1) or log-
power log-frequency 
slopes >-0.59 

Initial Outlying 
Data Period 
Rejection 

After bad channels are 
rejected, mark remaining 
1s periods that exceed 
the same thresholds as 
per the bad channel 
rejection step for 
exclusion from the MWF 
cleaning template and 
rejection prior to wICA. 

After bad channels are 
rejected, reject 
remaining 1s periods 
that exceed the same 
thresholds as per the 
bad channel rejection 
step 

After bad channels are 
rejected, reject 
remaining 1s periods 
that exceed the same 
thresholds as per the 
bad channel rejection 
step 

After bad channels are 
rejected, mark remaining 
1s periods that exceed 
the same thresholds as 
per the bad channel 
rejection step for 
exclusion from the MWF 
cleaning template and 
rejection after cleaning.  

Initial Artifact 
Reduction 

3 sequential MWF runs, 
cleaning muscle activity 
first, then eye blinks, 
then horizontal eye 
movement and drift 

None None 3 sequential MWF runs, 
cleaning muscle activity 
first, then eye blinks, 
then horizontal eye 
movement and drift 

Second Artifact 
Reduction 

ICA computed using the 
PICARD algorithm. 
Artifacts identified using 
Adjusted-ADJUST. 
Artifactual ICA 
components reduced 
using wICA. 

ICA computed using 
PICARD. Artifactual ICA 
components subtracted 
(identified using 
Adjusted-ADJUST) 

ICA computed using 
PICARD. Artifactual ICA 
components identified by 
Adjusted-ADJUST. 
Artifacts reduced using 
wICA. 

None 

Note. Abbreviations: Hz = hertz; ICA = independent component analysis; PICARD = Preconditioned ICA for 

Real Data; PREP = Electroencephalography Pre-processing Pipeline; s = seconds; MWF = Multi-channel 

Wiener filters; wICA = wavelet enhanced independent component analysis. 

 

RESULTS 
The omnibus ANOVA was significant for all metrics tested for both the eyes-open and eyes-closed datasets 

(specific details in the sections below). A rank order of the means for each pre-processing pipeline is 

provided in Table 2. Due to the large number of comparisons across the various pipelines, we provide here a 

summary only of the most relevant results, with more detailed results from the follow-up post-hoc tests 

provided in the Supplemental Materials (Figures S12-17). An example of a raw (unprocessed) and cleaned 

EEG trace (single subject) is provided in Figure 6, while further examples for all pipelines are provided in the 

Supplemental Materials (Figures S3-11).  
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Signal-to-Error Ratio and Artifact-to-Error Ratio 
The omnibus ANOVA was significant for both the eyes-open, F(3.57, 278.78) = 83.58, p < 0.0001, and eyes-

closed, F(3.71, 300.61) = 76.84, p < 0.0001, conditions, indicating a significant difference in SER values 

between the pipelines (see Figure 2 for plots of SER and ARR values). For the ARR, the omnibus ANOVA was 

significant for both the eyes-open, F(3.82, 298.35) = 417.06, p < 0.0001, and eyes-closed, F(3.61, 292.81) = 

524.00, p < 0.0001, conditions. For both the eyes-open and eyes-closed data, when assessing the SER and 

ARR metrics together (Figure 3), the MWF wICA and MWF Only pipelines demonstrated a good middle-

ground between both values, with moderate scores on both metrics. In contrast, the ASR, wICA ADJUST, 

MADE, APICE, and ICA Subtract pipelines all showed relatively high SER values, but had lower ARR values, 

indicating that although these pipelines produced little distortion or reduction of the clean EEG signal, they 

were generally less effective at suppressing artifact. The most extreme examples of this were the ASR 

pipeline for the eyes-open data, and the wICA ADJUST, ICA Subtract, and ASR pipelines for the eyes-closed 

data, which demonstrated very high SER and low ARR values. In contrast, the HAPPE pipeline demonstrated 

very high ARR and very low SER values in both the eyes open and closed datasets, indicating that while it was 

effective at mitigating artifacts, it concurrently removed a substantial amount of the signal from the clean 

segments of the EEG recordings. 

 

It is also interesting to note that for the eyes-open data, the ASR pipeline resulted in higher values for SER 

but similar values for ARR compared to ICA Subtract, despite including ICA Subtract as one of the cleaning 

steps in the ASR pipeline. In contrast, MWF wICA showed higher ARR but lower SER than both pipelines that 

represented components of the combined MWF wICA pipeline (MWF Only and wICA ADJUST). One possible 

mechanism by which ASR (which combines ASR and ICA Subtract) could produce increased SER compared to 

ICA Subtract only is that the initial artifact reduction performed by ASR allowed the ICA Subtract step to 

better separate artifact components from neural components, better preserving the clean signal. However, 

MWF wICA applies an analogous approach, first reducing artifacts with MWF prior to wICA, so if this 

mechanism were accurate, then we might expect MWF wICA and wICA ADJUST to show the same pattern. 

As such, another potential mechanism worth considering is that ASR may enhance the amplitude of activity 

in the clean periods of the data, leading to higher SER values through an artificial increase in amplitude in 

clean periods rather than the preservation of signal in those clean periods.      
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Figure 2: Plots of A) Signal-to-Error (SER) and B) Artifact-to-Residue (ARR) values for the eyes-open and eyes-

closed recordings. Grey horizontal lines denote the median, while black diamonds denote the mean. Higher 

values for both SER and ARR concurrently reflect better cleaning performance (higher SER = better signal 

preservation; higher ARR = better artifact reduction).  

 

 
Figure 3: Scatterplots depicting the mean Signal-to-Error (SER) and Artifact-to-Residue (ARR) values for the 

eyes-open and eyes-closed recordings for each of the pre-processing pipelines. Higher SER and ARR values 

reflect better cleaning of the EEG data.   

 

Blink Amplitude Ratio 
For the fBAR values taken from anterior electrodes in close proximity to the eyes, the omnibus ANOVA was 

significant F(3.03, 154.63) = 59.80, p < 0.0001. For the allBAR values (all electrodes), the ANOVA was also 

significant, F(3.32, 169.54) = 111.56, p < 0.0001. The HAPPE pipeline performed the best across the fBAR and 

allBAR metrics, followed by ASR for fBAR and MWF wICA for allBAR, with APICE performing the worst for 

both the fBAR and allBAR metrics (values closest to 1 = best performance; see Table 2 for rank orders for 

each pipeline, and Table 3 for Mean and SD values). BAR values are depicted in Figure 4.  
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Figure 4: Blink amplitude ratios across frontal electrodes (average across Fp1, Fp2, F9, F10, AF3, AF4; fBAR) 

and across all electrodes (allBAR). Grey horizontal lines denote the median while black diamonds denote the 

mean.  

 

Proportion of Epochs Showing Muscle Activity After Cleaning 
The omnibus ANOVA was significant for both the eyes-open, F(1.2, 93.67) = 17231.98, p < 0.0001, and eyes-

closed, F(2.08, 168.17) = 48712.90, p < 0.0001, conditions. MWF wICA and MWF Only were the best 

performers in terms of the proportion of epochs showing EMG after cleaning, with MWF Only showing the 

best overall performance for the eyes-open dataset, and MWF wICA showing the best performance for the 

eyes-closed data. For both pipelines, the amount of EMG remaining was extremely close to zero, and means 

were identical to three decimal places (see Tables 3 and 4 for Means and SDs). The order of performance 

was the same for the rest of the pipelines for both the eyes-open and eyes-closed datasets, with the next 

best being APICE, followed by ICA Subtract, wICA ADJUST, MADE, ASR, and finally HAPPE (see Figure 5A). The 

HAPPE pipeline showed notably poor performance on this metric, with the majority of epochs showing log-

power log-frequency slopes that exceeded thresholds for indicating residual EMG following cleaning. 

 

Proportion of Epochs Removed by Cleaning 
The omnibus ANOVA was significant for both the eyes-open, F(4.21, 328.75) = 53.70, p < 0.0001, and eyes-

closed, F(3.51, 284.08) = 38.39, p < 0.0001, conditions. For both the eyes-open and eyes-closed data, MWF 

wICA performed the best, followed by MWF Only, both of which resulted in the rejection of  only 10% of the 
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data or less on average, with MWF wICA resulting in the preservation of more than 80% of epochs for all EEG 

files in the eyes open data. In contrast, the worst performers (in terms of mean values) in the eyes open data 

were MADE, ASR and HAPPE, with ASR and HAPPE pipelines rejecting 100% of epochs for some files, and ASR 

rejecting more than 25% of epochs on average. In the eyes closed data, wICA ADJUST, ICA Subtract, MADE, 

and HAPPE all rejected more than 20% of epochs on average, ASR rejected 33% of epochs, and both ASR and 

HAPPE rejected 100% of epochs for some EEG files (see Figure 5B).  

 

 
Figure 5: A) Proportion of epochs showing log-power log-frequency values above the -0.59 threshold for 

EMG activity remaining for each of the pre-processing pipelines. Lower values reflect more effective cleaning 

of EMG activity. Grey horizontal lines denote the median while black diamonds denote the mean. Note the 

data presented here were first winsorised (z = +/-2.5) as outlying values from the MADE and ASR pipelines 

made it difficult to visualise differences between the pipelines. The HAPPE pipeline was also removed as it 

had a median value >0.95. Plots of the full dataset can be found in the Supplemental Materials (Figure S1). B) 

Proportion of epochs rejected after cleaning for each pipeline. 
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Table 2 

Rank order of each pipeline from best to worst performance (by mean). Note, either higher or lower values 

can reflect better performance (depending on the specific metric). In all instances, order is based on 

performance rather than value. Also note that blink-related metrics were only obtained for eyes-open 

datasets, while the alpha power metric was calculated as a percentage difference in power between the 

eyes-open and eyes-closed datasets.    

 
 

Table 3:  Means and standard deviations (in parentheses) of the quality evaluation metric values for the 

eyes-open data. Higher values for SER and ARR indicate better cleaning performance. For fBAR and allBAR, 

values ~1 indicate optimal cleaning performance, while for EMG remaining (i.e., proportion of epochs 

showing EMG after cleaning) and epochs removed (proportion of epochs removed by cleaning), lower values 

indicate better performance.   

Pipeline SER ARR fBAR allBAR EMG Remaining Epochs Removed 

MWF wICA 3.16 (1.37) 10.89 (2.72) 1.27 (0.35) 1.16 (0.21) 0.003 (0.010) 0.07 (0.03) 

MWF Only 3.88 (1.90) 9.84 (3.06) 1.40 (0.52) 1.22 (0.29) 0.003 (0.009) 0.09 (0.05) 

wICA ADJUST 4.91 (2.95) 5.92 (3.32) 1.73 (0.65) 1.45 (0.35) 0.02 (0.045) 0.15 (0.12) 

ICA Subtract 4.44 (3.24) 5.33 (3.17) 1.71 (0.64) 1.44 (0.34) 0.019 (0.044) 0.15 (0.13) 

MADE 5.10 (3.73) 6.59 (4.01) 1.67 (0.67) 1.44 (0.39) 0.037 (0.059) 0.19 (0.15) 

APICE 4.47 (2.79) 5.58 (2.88) 2.07 (0.63) 1.75 (0.39) 0.015 (0.037) 0.12 (0.10) 

HAPPE 0.55 (0.62) 20.72 (5.17) 1.09 (0.08) 1.06 (0.06) 0.988 (0.044) 0.17 (0.31) 

ASR 6.39 (3.53) 6.90 (3.46) 1.26 (0.19) 1.18 (0.11) 0.097 (0.097) 0.25 (0.21) 
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Table 4:  Means and standard deviations (in parentheses) of the quality evaluation metric values for the 

eyes-closed data. For EMG remaining (i.e., proportion of epochs showing EMG after cleaning) and epochs 

removed (proportion of epochs removed by cleaning), lower values indicate better performance.   

Pipeline SER ARR EMG Remaining Epochs Removed 

MWF wICA 4.57 (1.56) 8.57 (2.27) 0.000 (0.001) 0.08 (0.06) 

MWF Only 5.42 (1.69) 8.03 (2.24) 0.000 (0.001) 0.10 (0.07) 

wICA ADJUST 7.18 (3.88) 3.22 (2.37) 0.011 (0.029) 0.21 (0.17) 

ICA Subtract 6.82 (3.89) 3.20 (2.36) 0.011 (0.028) 0.22 (0.17) 

MADE 5.50 (4.12) 6.33 (5.58) 0.030 (0.046) 0.22 (0.16) 

APICE 5.79 (2.73) 4.73 (2.51) 0.009 (0.023) 0.15 (0.13) 

HAPPE 0.49 (0.70) 20.53 (5.71) 0.968 (0.075) 0.21 (0.34) 

ASR 7.01 (4.73) 5.09 (3.04) 0.048 (0.066) 0.33 (0.25) 

 
 

 
Figure 6: Left: EEG signal from a single example subject (eyes-open recording, 5 second segment) showing 

the raw data (with DC offset removed [top]) and following pre-processing with RELAX-Jr (MWF wICA pipeline 

[bottom]). Examples of several common artifacts are noted on the EEG trace. All scales are microvolts. Right: 

Power spectra from the same subject before (top) and after (bottom) cleaning with the same RELAX-Jr 

pipeline (power spectra are from the entire 2 min recording).  
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Variance Explained by Experimental Manipulation (Berger effect) 
Figure 7 shows the frequency spectra of the oscillatory neural activity (i.e., after removal of the aperiodic 

signal) for both the eyes-open and eyes-closed datasets. This figure highlights the alpha band demonstrating 

the distribution of alpha power across the scalp, while Figure 8 depicts the individual differences between 

the datasets for each pipeline using a power value derived from all electrodes (root mean square [RMS]). All 

pipelines showed the expected pattern of enhanced alpha power during eye closure, relative to the eyes-

open condition. To statistically assess differences between the eyes-open and eyes-closed conditions in 

terms of the strength of alpha activity differences between eyes-open and eyes-closed conditions, a 

Bayesian approach was used to determine the strength of the evidence supporting a power difference 

between the two conditions. Specifically, RMS alpha power values were compared between the eyes-open 

and eyes-closed conditions using Bayesian paired-samples t-tests. Bayes factors provided extremely strong 

support for the alternative hypothesis for all pipelines, indicating an expected pattern of robust alpha power 

differences between the eyes-closed and eyes-open conditions (see Supplemental Table S1 for complete 

table of results). APICE showed the highest Bayes factor value, followed by MADE, wICA ADJUST, ICA 

Subtract, MWF Only, ASR, and MWF wICA, with HAPPE showing the lowest Bayes factor value. Next, we 

computed difference scores ([eyes-closed] – [eyes-open]) for RMS power values for each individual 

participant after cleaning with each pipeline. We used these difference scores to statistically compare each 

of the pipelines using a one-way ANOVA. The omnibus ANOVA was significant, F(7,1059) = 8.952, p < 0.001; 

however, post-hoc tests (Bonferroni corrected) only revealed significant differences between the HAPPE 

pipeline and all other pipelines (all p < 0.001, with HAPPE showing a smaller difference than all other 

pipelines), with none of the other pipelines differing in terms of difference scores between eyes-open and 

eyes-closed power.   
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Figure 7: A) Power spectral density plots (POz electrode) of the eyes-open and eyes-closed data after 

removal of the aperiodic signal. Shaded line is 95% confidence interval. Translucent grey bar denotes the 

alpha frequency range (7-13 Hz). Accompanying topographic plots depict the distribution of alpha power 

across the scalp. B) Raincloud plots showing differences in alpha power (root mean square [RMS] values) 

between the eyes-open (EO) and eyes-closed (EC) conditions for each of the pipelines.  
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Figure 8: Plots of BF10 values for the Bayesian t-tests comparing the eyes-open and eyes-closed RMS alpha 

power values. Note, x-axis is log-scale to improve visualisation across results for the different pipelines which 

had large disparity.   

 

Alpha Peak Detection 
Separate one-way ANOVAs were run for the eyes-open and eyes-closed recording conditions comparing 

each pipeline in terms of the percentage of total electrodes that had a detectable alpha peak following 

spectral parameterisation with the FOOOF algorithm to account for the aperiodic signal (Figure 9). The 

omnibus ANOVAs were significant for both conditions (eyes open: F(7,1037) = 41.155, p < 0.001; eyes-

closed: F(7,1062) = 22.898, p < 0.001). For both conditions, Bonferroni corrected post-hoc tests indicated 

that the HAPPE pipeline had a significantly lower percentage of electrodes with a detected alpha peak 

compared to all other pipelines (all p < 0.001). No significant differences were observed between any of the 

other pipelines. Additional plots comparing pipelines across theta (4-7 Hz) and beta (13-30 Hz) peaks are also 

available in the Supplementary Material (Figure S2).     
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Figure 9: Percentage of total electrodes having a detected peak within the alpha band after removal of the 

1/f-like aperiodic signal for the eyes-open and eyes-closed data after cleaning with each pipeline (average 

over all participants).  

 

Discussion 

This study sought to provide an overview and assessment of the newly developed RELAX-Jr pre-processing 

pipeline for use with EEG data recorded in children. This software provides an important extension to the 

original RELAX software, which was designed for, and extensively evaluated in, adult populations (Bailey et 

al., 2023a; Bailey et al., 2023b). We have optimised this pipeline through the inclusion of the PICARD ICA 

algorithm, which has been demonstrated to perform equivalently to extended-infomax ICA but is 

computationally much faster (Ablin et al., 2018a), as well as the adjusted-ADJUST independent component 

classification algorithm specifically designed for use with data collected from children. This allows RELAX-Jr 

to provide a comprehensive integrated MATLAB-based approach for cleaning data collected from 

neurodevelopmental cohorts, which, in addition to the neural signal of interest, often also contain high 

levels of artifact. We tested four versions of the RELAX-Jr software on resting-state EEG data collected in 

children aged between 4-to-12 years of age. We compared our software against four popular open-source 

automated EEG cleaning pipelines. Results from our comprehensive assessment indicate that RELAX-Jr 

generally performed well overall across the majority of included metrics, in particular the MWF wICA and 

MWF Only settings providing superior performance in terms of preserving epochs for analysis and reducing 

the impact of muscle artifacts on the data, while also providing amongst the highest performance for blink 

artifact reduction (only being outperformed by HAPPE, which may over-clean the data) and statistically 

similar detection of the Berger effect compared to other pipelines.  
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The MWF wICA and MWF Only versions of the pipeline demonstrated strong overall performance when 

considering all metrics.  The SER and ARR metrics indicated that these pipelines performed well in terms of 

removing artifacts from the data, while preserving the neural signal. In contrast, while the ICA Subtract and 

wICA ADJUST demonstrated higher SER values indicating that they were able to preserve more of the signal, 

they were less effective at removing artifact, as indicated by lower ARR values. This was most apparent for 

the eyes-closed recordings, where two pipelines obtained amongst the highest scores for SER, but the 

lowest scores for ARR. In contrast, the very high ARR score combined with very low SER score obtained by 

the HAPPE pipeline suggests that it was likely to be overcleaning the data. We also note that ASR performed 

strongly (i.e., ASR showed the best performance for SER), indicative of its strong cleaning performance.  The 

MWF Only and MWF wICA pipelines also performed exceptionally well in terms of successful removal of 

EMG activity from the EEG recordings and minimising the number of artifact-contaminated epochs meeting 

the threshold for removal after cleaning. MWF wICA and MWF Only also showed statistically equivalent 

performance to the second-best performing pipeline (ASR) in terms of blink artifact reduction. In contrast, 

APICE performed considerably worse than other pipelines, with an average fBAR value of >2 indicating that 

blink periods in the data were twice the amplitude of non-blink periods following cleaning, thus suggesting 

inadequate removal of blinks from the data. We note that while the HAPPE pipeline performed the best for 

blink artifact reduction, the very low SER values observed, as well as very low amplitude EEG activity 

following cleaning by HAPPE, suggest that HAPPE’s excellent blink reduction performance likely comes at the 

expense of excessive over-cleaning of the EEG recording, where considerable neural signal is also removed 

from the data. This closely mirrored the very low amplitude recordings obtained after pre-processing with 

HAPPE when comparisons were made to the RELAX pipeline in adults (Bailey et al., 2023a).  

 

It may be interesting to consider the contrast to our conclusions for the optimum pipeline in adult data, 

where MWF wICA or wICA ICLabel were recommended as default pipelines (with wICA ICLabel 

recommended when a sufficient amount of data are available, as it produced higher effect sizes for task 

related frequency band power experimental outcomes despite inferior cleaning to MWF wICA). In the 

current study, although wICA ADJUST was adapted to optimize its application to childhood EEG recordings, 

MWF Only performed better, despite not being specifically adapted to childhood EEG recordings. It may be 

that wICA ADJUST was not able to sufficiently clean the childhood EEG data due to the increased frequency 

and severity of artifacts, allowing MWF Only and MWF wICA to show higher performance. Future research 

may be able to optimize MWF Only for application to childhood EEG recordings by systematically testing the 

thresholds used to identify blink, muscle, and horizontal eye movement artifacts. However, we note that the 

muscle artifact thresholds used within RELAX were identified through research that involved paralysing 
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participant’s scalp muscles prior to EEG to eliminate the potential for scalp EMG (Fitzgibbon et al., 2016), an 

approach that is unlikely to be feasible in children.  

 

In addition to our results for artifact cleaning, it was also encouraging to see that all cleaning pipelines 

enabled clear differentiation between the eyes-open and eyes-closed recordings, indicating sensitivity to this 

experimental manipulation. Specifically, all pipelines revealed the expected finding of higher alpha power 

during the eyes-closed relative to eyes-open recordings, with Bayes factors showing extremely strong 

evidence in favour of the alternative hypothesis. Further, when comparing each of the pipelines directly 

(using difference scores between the [eyes-closed] – [eyes-open] RMS power values), there were no 

significant differences between the pipelines in their ability to detect the Berger effect (with the exception 

of HAPPE, which showed lower difference values compared to all other pipelines). Similarly, with the 

exception of HAPPE, the pipelines did not differ in terms of the percentage of electrodes with a detected 

alpha peak following removal of the aperiodic signal. This suggests that experimental outcomes are likely to 

be similar regardless of the cleaning pipeline used, so decisions about which pipeline to implement may be 

made based on which pipelines provide the best artifact reduction (as long as this is concurrent with 

sufficient preservation of the neural signal). This observation corroborates our previous results comparing 

pre-processing pipelines in adults (Bailey et al., 2023a). However, we note that the Berger effect (i.e., alpha 

blocking) is a robust phenomenon that typically produces large differences in EEG amplitude between 

conditions (Goncharova & Barlow, 1990; Kirschfeld, 2005; Niedermeyer, 1997). As such, it is possible that 

more subtle differences, such as disease-specific alterations in neural activity, or changes following 

therapeutic interventions, might be more heavily influenced by specific pre-processing pipelines. Future 

work comparing pre-processing pipelines across participants with various neurodevelopmental and/or 

neuropsychiatric diagnoses might be useful to explore this possibility.   

 
Limitations and Future Directions 

We only tested RELAX-Jr on 64-channel Geodesic Sensor-Net EEG caps. As such, its effectiveness for cleaning 

data from higher density (e.g., 128, or 256 electrode) montages is uncertain. However, we do not foresee 

any obvious constraints that might prohibit applying RELAX-Jr to higher density recordings other than a likely 

increase in analysis times arising from greater computational burden produced by the inclusion of larger 

data files. The RELAX-Jr software was also assessed using a developmental dataset containing a relatively 

wide participant age range (4-12 years), and we did not assess its performance using data from infants or 

very young children. As EEG recordings in these populations can deviate substantially from older children 

and adults, including greater prevalence of low frequency activity (Hrachovy & Mizrahi, 2016; Marshall et al., 

2002), it is possible that artifact cleaning performance in samples of infants might differ from that reported 
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using the present cohort. Future work examining performance in younger cohorts and incorporating 

datasets with high-density recordings, would therefore be beneficial. 

  

Additionally, as RELAX-Jr was assessed using a typically developing sample of children, its cleaning 

performance in clinical samples (e.g., autism, attention deficit hyperactivity disorder, epilepsy) remains to be 

established. We also note that lower density recordings, particularly those with <32 electrodes, could 

achieve significantly poorer performance resulting from insufficient ICA decomposition, which may not 

adequately separate neural from artifactual components (Janani et al., 2018; Klug & Gramann, 2021). For 

such recordings, the use of non-ICA based methods for data pre-processing should be considered. The 

efficacy of MWF for artifact reduction with <32 electrodes is currently untested, but we suspect it may still 

perform adequately for reducing artifacts in recordings with <32 electrodes. However, since the MWF 

approach acts as a spatial filter, its performance will have a lower boundary in terms of numbers of available 

electrodes, and we encourage future research to test where this lower boundary lies. We also note that 

recent automated pipelines have been developed specifically for data with low numbers of channels (e.g., 

HAPPILEE; Lopez et al., 2022) and may be beneficial for investigators analysing very low-density EEG 

recordings. We further observe that the Adjusted-ADJUST algorithm (Leach et al., 2020) integrated into the 

RELAX-Jr pipeline for objective selection of independent components representing artifacts requires the 

presence of left and right anterior electrodes for classification of blinks and horizontal eye movements. It is 

therefore possible that, in rare cases, a file with very high levels of artifact across frontal regions could lead 

to problems if large numbers of electrodes are removed. In such cases, more liberal extreme rejection 

thresholds could be considered, and might still provide adequate performance (Delorme, 2023). Finally, we 

note that our tests of experimental effects only include the examination of differences in the alpha 

frequency band, and that the current results may not apply to event-related potential analyses. In adult 

populations, our previous research with the RELAX software indicated that the wICA ICLabel setting was 

optimal for clean data where many epochs were available, and that MWF wICA might be preferred where 

data are noisier or fewer epochs are available. However, it is worth noting that more aggressive (e.g., 1 Hz) 

high pass filter settings are not appropriate for event-related potential analyses (as commonly analysed slow 

latency event-related potentials contain frequencies below 1Hz), but also that all artifact reduction pipelines 

performed more poorly in adult data when 0.25 Hz high pass filters (which are appropriate for event-related 

potential analyses) were implemented. As such, further research is required to determine the best approach 

for analysing event-related potentials in childhood EEG data. 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.587846doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.02.587846
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Conclusion 

Here, we have provided an assessment of the cleaning performance of the RELAX-Jr software pipeline 

developed for pre-processing of EEG data collected from neurodevelopmental populations. The aim of this 

software is to provide users with a versatile and fully automated toolbox for removing artifacts that 

frequently contaminate the EEG record, enabling reliable and reproducible cleaning of EEG datasets while 

preserving the neural signal and minimising user bias (and workload). Based on the results of our analyses, 

we recommend the MWF wICA implementation of the software for applications to child EEG data, given its 

strong performance across the range of metrics assessed, including the ability to maximise the number of 

epochs included for analysis, which can be an important consideration for developmental EEG recordings, 

which are often limited in length. 
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