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Abstract: Whole genome analysis for microbial genomics is critical to studying and monitoring
antimicrobial resistance strains. The exponential growth of microbial sequencing data necessitates
a fast and scalable computational pipeline to generate the desired outputs in a timely and cost-
effective manner. Recent methods have been implemented to integrate individual genomes into
large collections of specific bacterial populations and are widely employed for systematic genomic
surveillance. However, they do not scale well when the population expands and turnaround time
remains the main issue for this type of analysis. Here, we introduce AMRomics, a minimalized
microbial genomics pipeline that can work efficiently with big datasets. We use different bacterial
data collections to compare AMRomics against competitive tools and show that our pipeline can
generate similar results of interest but with better performance. The software is open source and is
publicly available at https://github.com/amromics/amromics under an MIT license.

Background

Whole genome sequencing (WGS) of bacterial isolates using the next-generation sequencing technology
has progressively become the predominant method in clinical microbiology, public health surveillance, and 15

disease control [1, 2, 3]. The ability to study the complete genetic information of a large number of bacterial
genomes provides the potential to generate insights into the pathogenic genotype/phenotype relationships [4],
pathogenic virulence transmissibility [5, 6] and antibiotic resistance tracking [7, 8]. The combination of
genomics information and epidemiological data has been used frequently in disease control processes, such
as rapid outbreak clustering investigation of the recent SARS-CoV-2 pandemic [9, 10] and evolutionary 20

perspectives inference/prediction with regards to pathogenic diversification [11, 12]. The richness of current
high-throughput genomic data has created a solid foundation to establish systematic studies for large cohorts
of related genomes by applications of genome-wide methods such as cgMLST, phylogenetic, or pan-genomic
analyses. WGS approaches can generate insightful data to discern knowledge about existing pathogenesis
and assist in unraveling the characteristics of unknown ones [13, 14], which is critical in understanding and 25

thus controlling disease outbreaks.

To meet the demand for analysis tools, a healthy number of computational pipelines have been developed
to facilitate the analysis of microbial WGS data and to generate practical results of interest. Several have
become well-established and widely used in the field, notably Nullarbor [15], Bactopia [16], and ASA3P [17].
The first-mentioned tool, Nullarbor, has been around as part of a standard process in public health microbial 30

genomic procedure for the long haul, while the latter two are relatively up-to-date with comprehensive
and wide-spectrum functionalities. However, these software pipelines usually require high-end computation
infrastructures and take prohibitively long running times to analyze when collection sizes reach beyond
thousands of genomes. Furthermore, while it is typical for laboratories to collect and sequence new samples
over time, none of the existing pipelines can efficiently manage the growing collections where new samples 35

are constantly added. In most cases, a large part of these pipelines need to be rerun every time new samples
are added to the collection, resulting in additional high computation costs.

Here we introduce AMRomics, a lightweight open-source software for analyzing and managing large
collections of bacterial genomes. This tool offers the ability to generate essential genomic results for
individual samples, together with a population analysis that outperforms other methods. Thanks to its 40

optimal design, the performance is significantly improved, making analyses of big collections of bacteria
feasible on regular desktop computers with reasonable turn-around time. AMRomics project source code is
available at https://github.com/amromics/amromics.git
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Workflow and Implementation

AMRomics is a software package that provides a comprehensive suite of genomics analyses of microbial45

collections in a simple and easy to use manner. It is designed to be performant and scalable to large
genome collection with minimal hardware requirements without compromising the analysis results. To that
end, we select the considered best practices tools in microbial genomics, and stitch them together via a
well-structured workflow as described in the next section. For certain tasks in the workflow, AMRomics
provides options for users to select among several alternative tools. The workflow is written in Python and50

is designed a modular and expandable application with the standardized data formats flowing between the
tools in the workflow.

Figure 1: AMRomics workflow. (A) General framework of AMRomics including modules for single sample
analysis and downstream comparative genomics for the collection. (B) Details of computational steps carried
out first when adding individual isolates to the collection. (C) Details of downstream comparative analyses
for the pan-genome collection.

The software flexibly takes in input data in various formats including sequencing reads (with Illumina,
Pacbio and Nanopore technologies), genome assembly, and genome annotations. It then performs assembly,
genome annotation, MLST, virulome and resistome prediction, pangenome clustering, phylogenetic tree55

construction for each gene and core genes, and pan-SNPs analysis, all with a simple command line. AMRomics
achieves this by building a pipeline consisting of the current best practice tools in bacterial genomics. It is
also designed to be fast, efficient, and scalable to collections of thousands of isolates on a computer with
modest hardware. Crucially, AMRomics supports the progressive analysis of a growing collection, where
new samples can be added to an existing collection without the need to build the collection from scratch.60

Functionally, the AMRomics pipeline can be split into 2 stages: single-sample analysis and pan-genome
analysis as depicted in Figure 1. In the single-sample stage, every sample is processed based on the types of
input data. Specifically, for Illumina sequencing data, fastp [18, 19] is employed for quality control, adaptor
trimming, quality filtering and read pruning. The pre-processed reads are then subject to sequence assembly
to generate a genome assembly. SKASE [20] is the method of choice for assemblying Illumina sequencing data65

for its speed, but the user can optionally choose to use SPAdes [21, 22] for slightly better N50 with the extra
computation time. If long read data (Nanopore and Pacbio) are provided, the sample genome is assembled
by Flye [23]. The assembly step can be skipped if the user provides the genome assembly in FASTA format
as input to the pipeline. Next, the genome assembly is annotated with Prokka [24] unless the annotations
are provided by the user. The gene sequences are extracted and stored in files at predefined locations. The70

genome sequence is also subject to multi-locus strain typing with pubMLST database of typing scheme for
bacterial strains[25], antibiotic-resistant gene identification with AMRFinderPlus database[26], and virulent
gene identification with the virulence factor database VFDB[27, 28]. All the results for single sample analysis
are organized in a standard manner.

In the second stage, AMRomics performs pan-genome comparative analysis of the genome collection.75
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The annotations of all the genomes in GFF format are loaded into a pan-genome inference module for gene
clustering. PanTA [29] is the method of choice for pan-genome construction for its speed and scalability,
but users can optionally choose Roary [30] as the alternative. AMRomics then classifies gene clusters into
core genes (genes clusters that present in at least 95% of genomes in the collection) and accessory genes. In
addition, AMRomics identifies shell genes, which are those present in at least a certain number of genomes in 80

the pangenome. The threshold for shell genes is defaulted at 25% but can be adjusted by users. AMRomics
then performs multiple alignments (MSA) of all the identified shell genes using MAFFT [31]. The MSAs
of these shell genes are then used to construct the phylogenetic trees of genes using FastTree 2 [32] or
IQTree2 [33]. In addition, AMRomics builds the phylogeny of collection from the concatenation of the MSAs
of all core genes using the chosen tree-building method. 85

AMRomics introduces pan-SNPs a novel concept to represent genetic variants of the samples in the
collection. Existing variant analysis methods usually rely on a reference genome, and can only identify
variants in the genes presenting in the reference genome. This severely limits the analysis to only a fraction
of the genome of interests because of the high variability between isolates within a clade. In addition, it
is often not possible to have a reference genome that can represent the whole collection, especially if the 90

collection is diverse and growing. AMRomics addresses this by building the pan-reference genome for the
collection from the representative genes of each of the gene clusters. It then identifies the variants of all
genes in a cluster against the representative gene directly from the MSA. The variant profile of a sample is
the concatenation of the variations of all its genes, reported in a VCF file.

The representative gene for a gene cluster is chosen such that comes from the earliest genome in the 95

collection list. With this selection strategy, if the users have a preferred reference genome, they can place the
reference genome first in the collection list so that genes from the reference genome will be the representatives
in their perspective clusters. Moreover, as AMRomics supports continuously adding new samples into the
collection, the selection strategy also ensures that the representative gene for a cluster does not change as the
new samples are added into the collection, and that a new representative gene is added to the pan-reference 100

genome only if a new cluster is created as the result of the collection expansion.
All results obtained from running AMRomics can be ultimately aggregated as the final output for reporting

or customized visualizations for end users. Details of the third-party bioinformatic tools and databases used
by AMRomics are listed in Supplementary Table 1 and 2.

Results 105

Comparison with other pipelines

To the best of our knowledge, at the time of writing, there are four existing open source software pipelines for
end to end microbial genomics analysis, namely Nullarbor [15], TORMES [34], ASA3P [17] and Bactopia [16].
While AMRomics and these software tools share the overall functionalities, they differ in the underlying
philosophies. Here, we present a high level discussion of AMRomics features and highlight the principles 110

behind the design of AMRomics.
Overall, AMRomics and the existing tools support a wide variety of input formats except Nullarbor

and TORMES which wre designed to run on Illumina paired-end reads only as per their specific public
health routine. AMRomics and the more recent methods, ASA3P [17] and Bactopia accept raw reads from
third-generation sequencing technology such as Oxford Nanopore Technology or PacBio long reads. A range 115

of genomics analyses are included in all pipelines. They are common tasks for bacteria genomics such as
sequence typing (MLST), AMR/virulence factor scanning, and genome annotation for an isolate. While
all of the tools provide SNP analysis results, AMRomics outputs variants (in VCF files) by the core gene
alignment from the pangenome analysis instead of snippy [35] core alignment as in other methods. Table 1
summarizes the key features across the software tools. 120

The primary principle of AMRomics is to extract the highest quality and most informative statistics
from the input data. For example, AMRomics constructs the phylogeny tree of the collection using the
multiple alignment of core genes. This provides a higher resolution of evolutionary information than SNPs
information or the multiple alignment of 16S genes [36], the two techniques applied by the existing tools. In
addition, AMRomics utilizes the population information to call variants across the pangenome instead of 125

from a chosen reference genome and hence provides a bigger picture of genetic relations among the isolates
in the collection. The users can still use one or more preferred reference genomes by placing the reference
genomes at the top of the list.

AMRomics second and perhaps equally important design principle emphasizes on the on scallability of the
software, aiming to be able to analyze large collections of genomes without the need to scale up hardware 130

infrastructures. While AMRomics uses the same underlying core tools (e.g., BLAST+, SPAdes, SKASE,
Flye, Prokka etc) as other pipelines, we chose to reimplement the helper and preprocessing modules such as
Shovill and Dragonflye. In the process, we pay attention to the data structures to manage large amount of
data flowing between steps of the pipeline. As a result, AMRomics is significantly faster and requires only
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Table 1: Functional comparison between AMRomics and other bacterial genomics pipeline in use.
AMRomics Nullarbor Bactopia ASA3P

Input

Long/short reads Short reads Long/short reads Long/short reads
Assemblies Assemblies Assemblies
Annotated genomes Annotated genomes

Output

Genotype Genotype Genotype Genotype
AMR/Virulence AMR/Virulence AMR/Virulence AMR/Virulence
Annotations Annotations Annotations Annotations
SNP analysis SNP analysis SNP analysis SNP analysis
Pangenomes Pangenomes Pangenomes Pangenomes
Phylogenetics Phylogenetics Phylogenetics Phylogenetics

Install conda+pip conda/docker conda/docker conda/docker

Progressive Yes No Yes No

a fraction of memory usage in comparison with its counterparts (shown in the following section). While135

speed is the paramount, AMRomics offers the flexibility for users to choose between alternatives to fit their
need when there are more than one core algorithms for the same step (such as SPAdes and SKASE for
assembling short reads, or FastTree and IQTREE for phylogenetic tree construction). AMRomics also takes
advantages of progressive analysis; when new samples are added into an existing collection, AMRomics
only performs the extra computation related to new the samples, instead of recomputing the scratch. This140

strategy offers a scalable solution practically suitable for analysis of the large growing collections of bacteria
in the sequencing ages.

Case study

Table 2: Running times and memory usages of the AMRomics, Bactopia, ASA3P and Nullarbor the case
study

AMRomics Bactopia ASA3P Nullarbor
E. time M. mem E. Time M. mem E. time M. mem E. time M. mem
(Hrs) (Gb) (Hrs) (Gb) (Hrs) (Gb) (Hrs) (Gb)

Batch 1

Sample analysis 4.32 3.44 8.82 5.83 22.24 6.71 11.09 7.91
Collection analysis 0.95 0.84 2.32 5.02 12.24 20.86 0.19 2.14
Total 5.27 3.44 11.14 5.83 34.48 20.86 11.28 7.91

Batch 2

Sample analysis 2.74 9.93 1.86 10.10 28.66 6.16 - -
Collection analysis 0.94 0.89 3.99 5.74 26.10 28.87 - -
Total 3.69 10.93 5.85 10.10 54.76 28.87 - -

Batch 3

Sample analysis 4.17 1.22 67.72 4.21 - - - -
Collection analysis 2.44 3.92 - - - - - -
Total 6.61 3.92 - - - - - -

Accumulated 9.06 10.93

We demonstrate the utility of AMRomics on a large and heterogeneous set of Klebsiella pneumoniae
genomes collected from various public sources. In particular, we designed a case study that reflects a practical145

use case and highlights the ease of use, flexibility and scallability of AMRomics. The input data of the
case study consisted of three batches of genome data. The first batch contained the sequencing data of 89
K. pneumoniae isolates from Patan Hospital in Kathmandu, Nepal between May and December 2012 [37].
These samples were multi-drug resistant isolates, in the form of Illumina paired-end short read data. While
AMRomics did not require a reference genome for variant calling, we included in the batch four genome150

assemblies obtained from RefSeq (two in the genome assembly fasta format and two in annotation GFF
format) for the other workflows to use as the reference. In the second batch, we included 11 samples that
were collected from Hospital Universitario Ramon y Cajal, exhibiting Carbapenem resistance and harboring
the pOXA-48 plasmid [38]. The input data for these 11 samples were Oxford Nanopore sequencing data.
Finally, we included a third batch of 1000 samples; the genomes in the batch were previously assembled and155

annotated by NCBI PGAP, and they were in GFF format. The data in the case study are provided in the
Supporting data.
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Despite the commonalities among the analysis pipelines, having a direct comparison can be challenging
due to the variations in the processing steps and the selection of different analysis tools within each pipeline.
For simplicity, we used the default settings to run all existing pipelines that would cover essential analyses 160

as shown in Table 1. We also with the best effort to use the parameters that the most compatible with
AMRomics. We did not include TORMES in the comparison because of its resemblance to its predecessor,
Nullarbor. The experiments were conducted on a cloud server with moderate performance, equipped with a
6-core 12-thread E-2286G processor, 32GB of RAM, and a 960GB SSD drive.

Table 2 shows the running time and resource consumption using the four pipelines. For the first batch, 165

AMRomics took only 4.32 hours for performing single analysis on 89 samples, significantly faster than
Bactopia and Nullarbor with 8.82 hours and 11.09 hours respectively even though the three pipelines use
the similar underlying algorithms (SKASE for Illumina read assembly, Prokka for annotation and BLAST
for virulome and resistome calling). This is likely due to better process management and parallelization
implemented in AMRomics software. ASA3P took much longer, 22.24 hours as a result of using a slower 170

assembly algorithm SPAdes that typically produced higher N50 quality assemblies. Of note, AMRomics,
Bactopia and Nullarbor could optionally use SPAdes as the short read assembler. It is also worth noting
that variation calling was part of single analysis in Bactopia, ASA3P and Nullarbor which also contributed
to the extended single analysis time of these tools. AMRomics took under 1 hour for collection analyses,
including pan-genome inference, multiple alignment of cloud genes, phylogenetic analyses of organisms and 175

of every cloud gene, and SNP analysis. Nullarbor performed collection analysis in much shorter time, 0.19
hours albeit producing only pan-genome and core-gene phylogeny. Bactopia and ASA3P took significantly
longer, 2.32 hours and 12.24 hours respectively. Taking together, AMRomics required less than half of the
times of other tools for the whole pipeline. It also consumed only 3.44Gb of memory, comparing with 5.83Gb
by Bactopia, 20.86Gb by ASA3P and 7.91Gb by Nullarbor. 180

The second batch consists of 11 Nanopore sequencing data, that was not supported by Nullarbor. ASA3P
did not support progressive analysis hence all samples in the first batch and second batch had to be analyzed
from scratch leading to a total of 54.76 hours. Bactopia took 1.86 hours for single analysis which was
significantly shorter than AMRomics that took 2.74 hours though both tools used the same underlying
assembly algorithm, Flye. Upon examining the runtimes, we noticed that Bactopia performed subsampling 185

of sequencing reads to 50x resulting in the speed-up. AMRomics took less than one hour for collection
analysis thanks to the use of progressive mode of its underlying pangenome method PanTA. On the other
hand, Bactopia took 3.99 hours.

The genomes in the third batch were already annotated in GFF format. We did not run ASA3P on the
third batch because of the excessive time required re-analyze the samples in the previous batches. Bactopia 190

did not have the function to extract the annotations in the GFF files, and instead re-annotated the input
genomes. In addition, Bactopia simulated sequencing reads from the assembled genomes, and mapped the
simulated reads back to the reference to call SNPs. These steps, while could produce the intended analysis
results, took 67.72 hours to analyze 1000 genomes. On the other hand, AMRomics reused the existing
annotations from the input genomes, leading to substantially shorter single analysis running time, only 4.17 195

hours. Similarly, the pangenome analysis strategy employed by AMRomics reused the existing pangenome
computation, requiring only 2.44 hours to add 1000 genomes into the existing pangenome. Bactopia ran
pangenome analysis for more than 20 hours before crashing due to out of memory.

DISCUSSION

We introduce AMRomics, a lightweight and scalable computational pipeline to analyze bacterial genomes 200

and pan-genomes cost-effectively. The main focus of our method is to optimize the selected sub-modules for
microbial genomic studies, especially comparative genomics, and most importantly to support progressive
analysis for growing big data collections. AMRomics provides flexible input scenarios by supporting a wide
range of data formats, such as different types of raw reads, assemblies, or annotated genomes for each
sample. It can generate fundamental genomic properties sample-by-sample by carrying out routine analyses 205

for bacteria isolates, and comparative genomics for the whole big collection i.e. pan-genome evaluation and
the corresponding phylogenetic results.
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